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Abstract 

Fault detection, diagnosis, identification and location are crucial to improve the sensitivity and reliability of system 
protection. This maintains power systems continuous proper operation; however, it is challenging in large-scale 
multi-machine power systems. This paper introduces three novel Deep Learning (DL) classification and regression 
models based on Deep Recurrent Neural Networks (DRNN) for Fault Region Identification (FRI), Fault Type 
Classification (FTC), and Fault Location Prediction (FLP).. These novel models explore full transient data from 
pre- and post-fault cycles to make reliable decisions; whereas current and voltage signals are measured through 
Phasor Measurement Units (PMUs) at different terminals and used as input features to the DRNN models. 
Sequential Deep Learning (SDL) is employed herein through Long Short-Term Memory (LSTM) to model 
spatiotemporal sequences of high-dimensional multivariate features to achieve accurate classification and 
prediction results. The proposed algorithms were tested in a Two-Area Four-Machine Power System. Training and 
testing data are collected during transmission lines faults of different types introduced at various locations in 
different regions. The presented algorithms achieved superior detection, classification and location performance 
with high accuracy and robustness compared to contemporary techniques.   
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1. Introduction 

Modern power systems exhibit very fast increase in both size with the integration of renewable energy resources 
and complexity of generation, transmission and distribution parts to meet the increasing demand of energy [1] 
and guarantee continuous delivering of energy. However, faults occur frequently and they are inevitable due to 
various random causes; this severely impacts the performance of power systems, interrupts the delivery of energy 
[2], and degrades the system health as well as efficiency and reliability. Therefore, the main goal today is the 
successful earliest detection of these faults to eliminate them rapidly which enables maintenance of faulted 
element; it also reduces the downtime via recovering the system main function in a minimum time and keeps the 
components reliabilities closer to initial ones. Efficient protection and maintenance schemes are required to meet 
this goal of mitigating these faults and restoring proper system operation [3]. One kind of these faults is electrical 
short-circuit faults that may occur in generation, transmission, or distribution systems; particularly, faults occur 
at generators, transformers, insulations, HVDC converter, feeder bus, underground cables and transmission lines. 
Electrical short-circuit faults have negative effects on power system operation and they cause the loss of its main 
function [2]. It was mentioned in [4] that most of the faults in power system transmission part occur on 
transmission lines. Short-circuit faults are common in transmission lines and considered as the worst type of 
faults which cause high risks on the lines such as reducing components remaining useful lifetime, increasing the 
power loss and the heat at cables, and damage the insulators [5]. Various types of short-circuit faults are 
encountered during daily operation and mainly classified into symmetrical and unsymmetrical faults. The 
symmetrical or balanced faults, which keep the system balanced, consist of triple line to ground (LLLG), and 
triple line (LLL) faults, and have a small occurrence probability of but they are the most severe type of short-
circuit faults due to their big effect and damage to system equipment. The asymmetrical or unbalanced faults 
that make the power system unbalanced during the fault consist of double line to ground (LLG), line to ground 
(LG), and line-to-line (LL) faults. Even though they are less severe compared to the balanced ones, they have a 
greater occurrence probability of 0.80 due to single line to ground faults [6]. 

The fault impact on the system depends on its type, location, and duration thereby faster and reliable detection, 
identification, and localization of faults greatly improve the protection and maintenance strategies of the system 
[3], [4] and aid in maintaining power systems quality and quantity performance [7]. During short-circuit faults, 
the amplitude, phase, and frequency of signals in the system such as voltages, currents, and rotor angles will 
undergo transient variations based on the fault type and location. Their temporal patterns provide a set of 
covariate features to be extracted from the signals to distinguish among them and other disturbances.  

Owing to the development of wide area measurement systems (WAMs) due to the emergence of PMUs,  massive 
data becomes available which allow the application of data-driven approaches to become more widespread in 
power systems such as in [8], [9]. Modern power systems are becoming digital and data-rich; many variables 
can be measured at various terminals using PMUs such as current, voltage, and frequency and are available as 
inputs to intelligent techniques for detection and classification. Furthermore, with PMUs emergence, recent 
works aim to address the problem of fault detection, diagnosis, and location in transmission lines through 
measurements of variables at different points in the power system. [10] presented a simple method for fault 
detection and location based on the concept of post-fault change in the injected current at various buses. Thus, 
in case of no fault at the power system, the change in injected current at all buses is equal to zero where in case 
of a fault at transmission line, the change of injected currents at the two buses in transmission lines ends is far 
from zero. In [11], the authors proposed a method based on the pilot impedance for transmission lines fault 
detection to improve the sensitivity and reliability of the protection by defining the fault components of positive, 
negative and zero sequence currents and voltages. Authors in [12] introduced a method for transmission lines 
fault identification and location based on three-phase estimation framework considering measurement chain error 
model, the method is suitable for both symmetrical and unsymmetrical networks. However, the limitation of 
these methods is due to ignoring the transient performance where fault detection and location are mainly 
explained from a single timestamp measurement rather than explaining faults by their full transient multivariate 
patterns.  

Recently machine learning techniques gain more interest with the advent of WAMs and big data availability 
[13]. Authors in ]14[  suggested Fuzzy-Neuro method to detect and classify faults at transmission lines. In the 
proposed Fuzzy-Neuro method, current and voltage samples have been used as inputs and harmonics were 
removed via Fast Fourier Transform (FFT) through back propagation with fuzzy controllers; the method has 
been tested on 220 kV, 177.4 km, 50 Hz transmission line and particularly single line to ground faults and double 



 

 

line to ground fault. Similarly, In [15], Discrete Wavelet Transforms (DWT) and Artificial Neural Networks 
(ANNs) were used for fault detection and identification in a single transmission line with limitations of 
unsuccessful voltage sags detection and classification of single line to ground faults. Authors in [16] showed that 
the results for fault detection and classification can be improved using a DWT and self-organized ANN to 
decompose the signal into three levels and 3960 fault cases were taken for training and validation. A Bayesian 
classifier and adaptive wavelet method for fault detection and identification has been proposed in [17]. The main 
shortcoming for the previous approaches is their limitation to single transmission line fault detection and 
classification. 

Conventional machine learning techniques are limited to modelling single sample of features to classification 
and regression. Advanced deep learning techniques have the advantage of modelling both spatial and temporal 
relationships in multidimensional features observed sequentially in time. These techniques include Recurrent 
Neural Network (RNN) and particularly Long Short-Term Memory (LSTM), Stacked Auto Encoder (SAE) and 
Convolutional Neural Networks (CNNs). Through image processing, authors in [18] showed a great performance 
of applying the deep CNN method based on faster Region-CNNs for fault detection and classification of high-
voltage line by locating the broken insulators and bird nests based on image features. In [19], authors showed 
another deep learning method for fault classification based on deep belief neural networks (DBNs) in 
underground cable distribution system by extracting features from the fault signal and classifying them into 
various categories. [20] showed that results can be improved for fault line selection using adaptive CNNs applied 
for distribution network with satisfactory classification performance. Another deep learning algorithm used for 
fault detection and classification of transmission lines based on convolutional SAEs was introduced in [21] by 
considering many conditions including noise and measurement errors. Authors in [22] showed the performance 
of a deep learning method for three-phase fault detection and classification in transmission lines based on multi-
layer Perceptron DNN with wavelet transform.  

RNN and particularly LSTM show a great efficiency in feature sequence extraction and data classification in 
many applications. The advantage of recurrent networks is that they can handle sequences of data where a long 
pattern of multidimensional features is modelled to classify a particular example in its correct class or mapping 
the full sequence into a predicted scalar in regression problems. LSTM was proved useful in [23] for automatic 
feature extraction for photovoltaic array fault diagnosis with high accuracy. [24] proved the superiority of LSTM 
for fault diagnosis in wind turbines from multivariate time series. In [25], LSTM have been used for sequential 
fault diagnosis in Tennessee Eastman chemical process. [26] Used LSTM for railway track circuit fault diagnosis. 
In [27], the authors presented a mixed building of CNN with LSTM trained to predict the fault location distance 
in a 2-bus single line test system of 220 km length with single-ended voltage and current measurements, this 
method proved to be superior in classifying transmission line faults compared with other schemes. Authors in 
[28] presented a combination of LSTM with calibration training filter for transmission lines fault classification, 
the method was tested on 2-bus single line test system of 300 km length. Authors in [29] presented a wavelet 
technique with artificial neural networks to detect, classify and locate different types of faults in transmission 
line of 300 km length, the technique showed a great performance in terms of average error and percentage 
maximum error of the fault prediction. [30] presented a support vector machine technique with wavelet transform 
for features extraction to classify and locate short-circuit faults in transmission lines. This technique has been 
tested on single line, 69 kV, 29.4 km length. Authors in [31] presented a transmission line fault classification 
based on support vector machine (SVM) with different trained types models. The method has been tested on a 
single 400-kV, 50-Hz, 300 km transmission line and it achieved a superior fault classification. However, these 
methods presented in [27], [28] and [29] have been accomplished in a two-bus, single-line power systems. Large-
scale multi-machine power systems are more general and more complex and require the completion of three 
LSTM novel models, to identify the defective region, classifying the type of the fault and to find the distance of 
the fault location in that faulted region. Beside the fact that LSTM is assumption-free algorithm that easily 
handles complex nonlinear dynamics in higher-dimensional noisy space. LSTM is also a powerful machine 
learning tool that has a remarkable advantage compared to classical neural network structures since it captures 
all important information in both features and time directions coordinately. It captures long-term dependencies 
in addition to the standard parallel dependencies between input features. It is used to extract the maximum 
information from the full transient period using high-dimensional input features. To the authors’ knowledge, 
LSTM sequential deep learning was not investigated before for transmission line fault detection, diagnosis, and 
location in large-scale multi-machine power systems. Also, both FRI and FTC models were not reported in 
previous works in large-scale multi-machine power systems and this paper is the first paper which addresses 
these models and provides information on the accuracy of both faulted region identification and fault type 
classification. This work presents novel algorithms to determine the fault region, diagnose the fault, and 



 

 

determine its precise location after the fault is detected. Observing and modelling the full sequence, which 
represents the entire transient phase, which reflects the unique system response for a fault, grants the presented 
algorithms an increased accuracy and robustness.  

The input feature space spans thousands of training and validation examples each includes a long sequence of 
high-dimensional vector using amplitude and phase of 3-phase voltage and current signals measure at different 
locations as shown in figure 1. This work presents three novel models, the first model is a deep LSTM classifier 
to detect a fault and identify the faulty region. For each region, a deep LSTM classifier is constructed to classify 
the faults based on their type and it is used for fault diagnosis in that region. The third deep LSTM regression 
model is used to determine the exact distance at which the fault occurred within the region.  

 

Figure 1: An overview of the presented classification and regression methods. 

The rest of this article is organized as follows, section 2 provides a review of RNN and particularly LSTM 
methods for time series sequence classification and regression; Section 3 then describes the benchmark system 
used for validation in this work, data collection and faults experiments; The proposed transmission line fault 
detection, diagnosis, and location methods are presented and described in Section 4; the obtained results are 
presented and discussed in Section 5; and important conclusions are finally drawn in Section 6. 

2. Overview on LSTM Cell-Based Sequence Processing 

The recurrent neural network (RNN) is a type of deep neural networks (DNNs). It is a developed and an advanced 
version of artificial neural networks (ANNs) [23]. RNN is based sequence model that can learn and extract 
features directly from inputs in time series domain and it can be used in a vast range of applications where inputs 
are in time series sequence. It is used herein for fault diagnosis in transmission lines where the measured current 
and voltage data at the end of transmission lines are time series sequences. However, RNN has some 
disadvantages due to gradient evanescence and it has a limited capability to learn long-term temporal correlations 
because of the exponentially fast decreasing gradient norm toward zero and due to blast problems. To overcome 
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the vanishing gradient problem [32], LSTM neural network has been proposed. A single LSTM cell consists of 
an input gate (𝑖), output gate (𝑜), forget gate (𝑓) and the cell candidate (𝑐) as shown in figure 7. Each gate has 
an activation function with two weighted inputs; the previous hidden state	ℎ!"# of the LSTM cell is weighted by 
a recurrent weight 𝑅𝑊 and the current input 𝑋! is weighted by an input weight 𝐼𝑊 where forget, input and output 
gates have a sigmoid activation function and the cell candidate gate has a tangent hyperbolic function (TanH) 
with biases	𝑏. LSTM cell has two outputs; the memory cell state 𝐶! and the hidden state	ℎ!. 
The output gates values [23] at time 𝑡 are computed as follows: 

𝑖! = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐼𝑊$ × 𝑋! + 𝑅𝑊$ × ℎ!"# + 𝑏$)                                                              (1) 

𝑓! = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐼𝑊% × 𝑋! + 𝑅𝑊% × ℎ!"# + 𝑏%)                                                            (2) 

𝑜! = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐼𝑊& × 𝑋! + 𝑅𝑊& × ℎ!"# + 𝑏&)                                                            (3) 

𝑐!∗ = 𝑇𝑎𝑛𝐻(𝐼𝑊( × 𝑋! + 𝑅𝑊( × ℎ!"# + 𝑏())                                                                (4) 

Where: 𝑋! is the input feature at the timestamp	𝑡, ℎ!"# is the previous hidden state,	𝑅𝑊 and 𝐼𝑊 and 𝑏 are the 
recurrent weights, input weights and biases respectively.  

The activation function is a smooth nonlinear function that defines the output of the neuron given an input or a 
set of inputs. Hyperbolic Tangent (TanH) and sigmoid functions are activation functions used for LSTM structure 
and they are defined in table 1 as follows: 

Table.1: Activation functions description 

The activation function The formula 
Sigmoid Sigmoid(𝑥) =

1
1 + 𝑒") 

TanH 𝑇𝑎𝑛ℎ(𝑥) =
𝑒) −	𝑒")

𝑒) +	𝑒") 

 

The memory cell state 𝑐! and the LSTM hidden state ℎ! are updated as follows: 

𝑐! = 𝑐!"#⨂𝑓! +	𝑐!∗⨂	𝑖!                                                                                   (5) 

ℎ! = 𝑜!⨂TanH	(𝑐!)                                                                                      (6) 

Where: 𝑐!"# represents the previous memory cell state value. The operation × is matrix vector multiplication 
and the operation ⨂ is the Hadamard (Element-Wise) product. 

3. System and Faulty Scenarios Description for Data Collection 

The Two-Area Four-Machine system is used as a case study in this work. The system is publicly available in 
MATLAB and it is a well-known benchmark that has been used widely in conducting power system studies and 
it has been detailed in [33]. It consists of two fully symmetrical areas linked together by two transmission lines 
of 220 km length as shown in figure 2. The synchronous generators are represented by their detailed models. The 
system parameters can be found in [33]. For the analysis of detection, classification, and localization of short-
circuit faults, this system is composed of 6 different regions (region from bus 5 to bus 6, region from bus 6 to 
bus 7, region from bus 7 to bus 8, region from bus 8 to bus 9, region from bus 9 to bus 10 and region from bus 10 
to bus 11) in which any fault type can occur at different locations. 



 

 

 

Figure 2: Single Line Diagram of Four-Machine Two-Area Test Power System. 

The leading important task in machine learning is creating a data set of sufficient and good-quality training data. 
This should ensure maximum information coverage with minimum redundancy [34], [35]. Moreover, it is 
important that the collected training data are both informative and representative [34]. The current and voltage 
patterns are selected as inputs directly measured via PMUs whereas other variables such as rotor speed angles 
and rotor speed deviations are estimated. Moreover, short-circuit faults directly affect the currents and voltages 
at system buses. Hence, the magnitudes and phases of voltages and currents at the system buses are used as inputs 
for the following LSTM models, except for generator buses 1, 2, 3, and 4 since these buses are connected to 
adjacent buses through step up transforms. Those inputs can be obtained from PMUs measurements in real time 
as well as simulations. Faults occur on the transmission lines even though faults can occur on other components 
such as transformers, generators, incipient short-circuit faults at underground cables in the distribution network 
or other equipment faults. However, this work focuses on short-circuit faults on transmission lines. For the offline 
training of LTSM, a comprehensive data set is constructed to test the LSTM-based models by simulating 10 
types of short-circuit faults {AB, AC, BC, ABG, ACG, BCG, AG, BG, CG and ABC}. These faults are classified 
as line to ground (LG), line to line (LL), line to line to ground faults (LLG), and line to line-to-line faults (LLL), 
only LLL fault is symmetrical and the remaining are asymmetrical faults as shown in figure 3. Where A, B, C, 
and G stand for Phase A, Phase B, phase C, and ground respectively. These short-circuit faults considered are 
simulated using Simcape toolbox in Simulink environment in a publicly available test system presented in [33]. 

 

Figure 3: Short circuit fault types classification 

The simulation duration is set to 10	𝑠 and that value is considered since it is long enough to ensure most 
symptoms of the faults are manifested without system loss of synchronism. The various faults were introduced 
after 𝑡 = 1	𝑠 of normal operation. The criteria adopted in this work for loss of synchronism are whenever the 
difference between the rotor angles of any two generators exceeds 180°. All generated voltages and currents 
signals are sampled every 1/60	𝑠 over 601 timestamps. Each signal has two features; phase and magnitude time 
series with time intervals of 0.016 s. Hence for each region l (l=1,2, …,6) at timestamp t, four input features are 
sent to the LTSM that are; the current angles 𝜃*!(𝜑$)!, the current magnitude 𝐼+(𝜑$)!, voltages angle 𝜃,!(𝜑$)! 
and the voltage magnitude 𝑉+(𝜑$)!, in different phases 𝜑$, 𝑖 = 1,2,3, and at buses 𝑛 = {5,6,7,8,9,10,11}. In total, 
the system is monitored through a set of 𝑚 = 84 covariate features in 𝑚-dimensional data matrix. Each region 
is subject to a set of faults of different fault types at different locations, and the generated training data are stored 
as multi-dimensional array of 𝑋 ∈ ℝ-×+ of 𝑚 = 84 features of 𝑛 = 601 samples for each experimental scenario; 
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the full array represent only a single training example in this framework. A total of 𝑁 = 𝑁% × 𝐷𝑅/ scenarios are 
conducted at each region to generate 𝑁 different examples from 𝑁% = 11 fault-free and 10 various faults at 𝐷𝑅/ 
various distances for the 𝑙!0 region		𝑙 ∈ {1,2,3,4,5,6}. A key point is the incremental distances of faults. In this 
work, we consider a 0.8 km to 5 km incremental distance depending on the line length. As these distances were 
practically chosen to minimize the time required for maintenance. Naturally, large selected distance intervals in 
training process will result in obtaining large intervals of predicted distances that will negatively affect the 
maintenance strategy, as the workforce will search for the location of the fault over large distance after 
determining the faulty region and the type of the fault. This will increase the time required for maintenance that 
should be minimum. Conversely, selecting very short distances in the training process will greatly complicate 
the proposed models in which the number of examples will increase. This will affect the proposed models whose 
practical implementation would be very expensive due to the increase in the number of neurons. Moreover, the 
large number of examples will lead to increased learning time and stressful computations due to the complexity 
of these proposed models. More details about the fault distance increment and the number of locations are 
presented in table 2 and figure 4. The training data is hence of dimension	ℝ-×+×1"×23#. 

Table.2: Training data description 

Region R5-6 
 (𝑙 = 1) 

R6-7 
 (𝑙 = 2) 

R7-8 

 (𝑙 = 3) 
R8-9 

 (𝑙 = 4) 
R9-10 

 (𝑙 = 5) 
R10-11 

(𝑙 = 6) 
No fault 

Fault distance increment (km) 1 1 5 5 1 1 - 
Number of locations 𝐷𝑅/ 24 9 21 21 9 24 - 
Number of examples 240 90 210 210 90 240 1 

To ensure the effectiveness of the proposed models and avoid overfitting, separate testing data are generated 
with the parameters indicated in table 3 to obtain a new set of examples – different and independent from the 
training data – to fairly test the models. Notice also that the testing data includes a number of 1481 examples 
larger than the training data set of 1081 examples; moreover, the testing data includes scenarios at new distances 
which are unseen for the training stage.  

Table.3: Testing data description 

Region R5-6 
 (𝑙 = 1) 

R6-7 

 (𝑙 = 2) 
R7-8 

 (𝑙 = 3) 
R8-9 

 (𝑙 = 4) 
R9-10 

(𝑙 = 5) 
R10-11 

(𝑙 = 6) 
No fault 

Fault distance increment (km) 0.8 0.8 3.5 3.5 0.8 0.8 - 
Number of locations 𝐷𝑅/ 31 12 31 31 12 31 - 
Number of examples 310 120 310 310 120 310 1 



 

 

 

Figure 4: Data structure for one fault type at one region along all locations 

The training data will be used to train three models: two LSTM classification models for faulted region 
identification and fault type diagnosis besides an LSTM regression model for fault location (distance) prediction. 
The data are then first pre-processed before being fed into the inputs of each of the three LSTM models, since 
each LSTM model needs a specific interval and sampling of the data to produce its output as described in detail 
in figure 5. For faulted region detection, the training data have been down sampled to a rate of 1/3 and the 
sequence starts from the 55th timestamp and increments by 3 timestamps until the 601st timestamp. Each fault 
type in each region at each distance has its data of voltage and current angles and magnitudes at all the different 
7 buses and all the different 3 phases and that gives (7	 × 	3	 × 	4) = 84 features for region classification. Each 
feature has 183 different timestamps. The dimension of data for one fault at one distance in each region isℝ-$×+$. 
Then the dimension of all the data at each region is ℝ-$×+$×1"×23# where	𝑚# = 84,𝑛# = 183 and𝑁% × 𝐷𝑅/ =
1081. The motivation behind the down sampling is that the high frequency data is not necessary for faulted 
region identification. For fault type classification, the data have been extracted from the full resolution of 601 
timestamps starting from 60th to the 100th timestamp and the length of the data is 𝑛4 = 41 timestamps. The fault 
classification is challenging and hence the full resolution is required for the LSTM models to extract information; 
however, the total sequence length is unnecessary for this task and only the first 41 samples are used. After 
identifying the faulted region, the classification input feature space now spans the difference in voltage 
angles	∆a𝜃,!,!&$(𝜑$)!b, current angles	∆a𝜃*!,!&$(𝜑$)!b, voltage magnitudes	∆ c𝑉𝑛,𝑛+1(𝜑𝑖)𝑡d, and current 
magnitudes ∆a𝐼+,+6#(𝜑$)!b	between two successive buses 𝑛 and 𝑛 + 1 at the identified phase 𝜑$ for line 𝑖 at 
timestamp	𝑡. That gives 𝑚4 = 3 × 4	 = 	12 features for fault type classification. Then the size of all the data at 
each region is	ℝ-'×+'×1"×23#. 
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Figure 5: The real-time response of the proposed LSTM models. 

For fault location, the training data have been down sampled to a rate of 1/3 and the sequence starts from the 80th 

timestamp and increments by 3 timestamps until the 601st timestamp and the length of the data is	𝑛7 = 174. The 
fault location feature space include full sequence length with down sampling, the input feature space is similar 
to the fault classification space and it spans the difference of voltage angles ∆a𝜃,!,!&$(𝜑$)!b, current angles 
∆a𝜃*!,!&$(𝜑$)!b, voltage magnitudes ∆/𝑉','()(𝜑*)+0 and current magnitudes ∆a𝐼+,+6#(𝜑$)!b between two 
successive buses 𝑛 and 𝑛 + 1 at the identified phase 𝜑$ for line 𝑖 at timestamp 𝑡 and that gives	𝑚7 = 𝑚4 = 12 
features for fault each fault location. Then the size of all the data at each region is	ℝ-(×+(×##×23#. From a 
practical aspect, the proposed models in section.4 enable the identification of faulted region then the fault type 
classification and after that the fault location, so it will greatly reduce the time required for maintenance. In 
addition, with the development of the PMUs the implementation of control strategies, protection schemes, 
monitoring in real time becomes possible. The PMUs are capable of extracting measurements (voltages, currents, 
frequencies … etc.) at high rates which allows to provide signals in real time for applications in power systems. 
PMUs provide signals with 80 to 250 samples per nominal cycles for both 50 and 60 Hz [36], which allow the 
implementation of our models in real time since the considered interval, in our paper, is 0.016 s or 1.6 ms 
(equivalently to 60 samples per second), that is practical to obtain through down sampling as clarified in figure 5. 
Therefore, the practical application of the proposed models depends strongly on the advancement of synchro-
phasors. The proposed models depend on the PMUs and it is not practical to apply the proposed models if the 
data extraction is done through SCADA. It is worth noting that with the traditional SCADA, the samples are 
proceeds each minutes. Thus, with slower data extraction, the accuracy of the fault detection will decrease. 
SCADA is capable of extracting data at low rates with low sampling frequency and it has been considered too 
weak for performing a precise fault diagnosis [37] and eventually it will not be practical to apply the proposed 
models, thereby the protection and maintenance strategies cannot be implemented. 

4. LSTM Models for Faulted Region Detection, Fault Classification and Fault Location 

Three separate but dependent models have been developed in this work; a classification model for faulted region 
identification (M1), fault type classification model (M2), and a regression model for fault location (M3). The 
models are connected hierarchically as presented in figure 1. Each of the deep models contains five layers; Input 
layer, Hidden LSTM layer, LSTM layer, fully connected layer, Softmax layer (for fault detection and fault 
classification models M1 and M2 respectively) or a Regression layer (for fault location model M3), followed by 
the output layer. The overall flowchart of the proposed fault detection, classification and location algorithms is 
shown in Figure 6. This algorithm consists of three stages: faulted region identification, fault type classification 
and fault distance prediction. 



 

 

 

Figure 6: flowchart of the proposed approach 

4.1. LSTM and Hidden LSTM Layers 

LSTM networks are robust to the known learning problem of vanishing gradient problem, they are also 
advantageous in applications of unknown-duration delays in time series data. The main parameters that are 
selected are the number of cells per LSTM layer. The LSTM layers are used to model both parallel dependencies 
(correlation between input features) and the temporal dependencies (serial correlations) together from the 
available data. Since the numbers of (sequences, features per sequence, time length of the sequence) varies 
between the three problems, their structures should vary respectively.  

In faulted region identification model, both LSTM layers include 𝑁# = 𝑛# = 183 LSTM cells since a rough 
number around 150 to 200 is needed with the aim to model the full sequence in a multi-class classification 
problem. This model is the largest since it is for the entire multi-machine power system. Each LSTM cell has 4 
inputs assigned to its 4 gates as shown in figure 7. In the first layer, the 84 input features are weighted through 
the input weight vector of 𝐼𝑊8

# ∈ ℝ(:×-$)×# for each LSTM cell	𝑘. So, the overall feature space is inputted to 
the first LSTM layer through an input weight	𝐼𝑊	 # ∈ ℝ(:×+$)×1$. The outputs of the 𝑘!0 LSTM cell in the first 
hidden layer at timestamp 𝑡 are the cell hidden state ℎ8#(𝑡) and the memory cell state	ℎ8#(𝑡). The output vectors 
𝐻#(𝑡) and 𝐶#(𝑡) of the first layer are both of dimension	ℝ=$×# and they are both fed back as inputs to the same 
layer while weighted through the four gates recurrent weights	𝑅𝑊	 # ∈ ℝ(:×1$)×1$. The second LSTM layer has 
a similar structure. However, the first hidden LSTM layer passes the full sequence of ℝ1$×+$ of hidden states 
vector over all timestamps 𝑡 = 1,2, … , 𝑛# to the second LSTM layer, which passes only the last output  𝐻4(𝑇) ∈
ℝ1$×# to the next layer.   

In fault type classification model, both LSTM layers include 𝑁4 = 82 LSTM cells. Here 82 cells have been 
selected instead of 41 because it was verified to be insufficient and this classification problem is more challenging 
since it is difficult to separate the fault classes which have similarities (AB, BC, AC, … etc.) and a more complex 
model was required. In fault location prediction, the LSTM layers include 𝑁7 = 100 LSTM cells. Deepest and 
widest possible models have been selected and provided that the training data are enough to fit the model 
properly. Of course, the deeper (more layers) and the wider (more cells per layer) the network is, the better the 
performance will be. Unfortunately, this comes at the cost of increased complexity of the model in addition to 
falling into a high-dimensional problem where the number of unknown parameters (degrees of freedom in the 

 

NO Determine the fault 
type class 

Extract Features using 
LSTM Neural Networks 

Compute faulted region class’s 
Softmax probabilities 

End 

∆|I|, ∆|𝑉|, ∆𝜑𝑖 , ∆𝜑𝑣 

Calculate difference in magnitudes and angles 
between two successive buses in faulted region 

  

Determine the faulted 
region |I|, |𝑉|, 𝜑𝑖 , 𝜑𝑣  

Import Post-fault VI time 
series Data for all buses 

Extract Features using 
LSTM Neural Networks 

Compute faulted region 
class’s Softmax 

probabilities 

Faulted   
region? 

End 

Compute the fault 
distance 

Extract Features using 
LSTM Neural Networks 

End 

YES 



 

 

model) exceeds greatly the number of available training observations (sequences, features, time points). In either 
of the cases, it is difficult to fit the model, the first causes an over fitted model with uncontrolled variance, the 
second causes an insufficiently trained model where error bias cannot be controlled. A sort of tradeoff should be 
reached to ensure acceptable performance without complexity and over/under fitting, this is what has been done, 
as shown in subsection 5.3 and subsection 5.4, by the prediction results where the mean prediction error is around 
zero and the error deviation is not too far. The input 𝑋! represents the time series input with 𝑚 channels of 
voltage and current magnitudes and angles as	𝑡 ∈ {1,2,3, … , 𝑇}, T is the total number of timestamps where 𝑇 =
𝑛# = 183 in region classification, 𝑇 = 𝑛4 = 41 for fault type classification and 𝑇 = 𝑛7 = 174 for fault location. 
For fault region identification, 𝑋! is 	[𝜃*!(𝜑$)!	, 𝜃,!(𝜑$)!	, 𝐼+(𝜑$)! , 𝑉+(𝜑$)!]	and for fault type classification or 
for fault location; 𝑋! is	c∆a𝜃*!,!&$(𝜑$)!b, ∆a𝜃,!,!&$(𝜑$)!b, ∆a𝐼+,+6#(𝜑$)!b, ∆a𝑉+,+6#(𝜑$)!bd.  

 

 Figure 7: Input sequences connections with 𝑘!0 LSTM cell in an LSTM layer 

The initial values are set to vector of zeros as 𝐶#(0) = 𝜃 and 𝐻#(0) = 𝜃 and the operator	⨂ denotes the 
Hadamard product. The time series data, of set of features sequences	X> in terms of timestamps	𝑡, pass 
sequentially through an LSTM layer where the next hidden state vector 𝐻#(𝑡) is computed at each timestamp 𝑡 
in order to be as a hidden state vector for the next LSTM unit	𝑘. The process continues until scanning a one 
sequence for one fault type at a certain distance and then the next sequence starts to flow. The cell memory state 
vector 𝐶# and the cell next hidden state vector 𝐻#(𝑡) of the hidden LSTM layer 1 at timestamp	𝑡 are determined 
in Eq. (7) and Eq. (8) respectively: 

𝐶#(𝑡) = [	𝑐##(𝑡), 𝑐4#(𝑡), … , 𝑐8#(𝑡), … , 𝑐1# (𝑡)	]?                                                                (7) 

𝐻#(𝑡) = [	ℎ##(𝑡), ℎ4#(𝑡), … , ℎ8#(𝑡), … , ℎ1# (𝑡)	]?                                                               (8) 

Where: 𝐶#(𝑡) and	𝐻#(𝑡) ∈ 𝑅=×#.  
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4.2. Fully Connected, Softmax, Classification and Regression layers: 

In the three models, the output of hidden LSTM layer 𝐻4(𝑡) is put into the input of the fully connected layer, 
which contains a number of simple neurons. Each neuron has its input of the previous hidden LSTM layer output 
vector 𝐻4(𝑇) with dimension of 𝑅1×# and multiplied by weights 𝐼𝑊@7 with dimension of 𝑅#×1  and added to the 
layer bias	𝑏@7. 

The fully connected layer (third layer) outputs vector 𝑜@7at each unit 𝑗 is computed as follows [38]: 

𝑜@7 	= 𝑓(∑ 𝐼𝑊@,87 ×𝐻84(𝑡) + 𝑏@7)1
8A#                                                                    (9) 

Where 𝑓 is the activation function, it is a smooth nonlinear function such as the sigmoid function (𝜎) or a 
hyperbolic tangent function.	𝐼𝑊7,@,8 are the fully connected layer weights of neuron 𝑗	multiplied by the 𝑘!0 value 
of the LSTM layer output vector𝐻84(𝑇),  𝑏@7 is the bias of neuron	𝑗,	𝐼𝑊@7 ∈ R#×=, The vector	𝐼𝑊7of all the input 
weights in fully connected layer is with dimension o𝑓𝑅B×1 and  b(7) ∈ RC×# is the bias vector of all neurons 
biases. 

In faulted region identification, the fully connected layer has 7 neurons since the total number of classes is	𝐽 = 7 
and the class number	𝑗 ∈ {1,2,3,4,5,6,7}.  

In fault type classification, a total number of 11 neurons have been used according to total number of faults 
classes	𝐽 = 11 in which each class number	𝑗 ∈ {1,2,3,4,5,6,7,8,9,10,11}. 

In faulted location, the FCL has only one neuron as	𝐽 = 1 and	𝑗 = 1.  

The vector 𝑜@7 is called the logits vector or the scores vector, o7 is the predicted location of one fault example. 

For both faulted region identification and the fault type classification models, the output of the fully connected 
layer is fed into the input of a Softmax layer.  

𝑜@: = Softmax	s𝑜@7t =
D
)*
((,)

∑ D).
((,)/

.0$

= 𝑃s𝐶@v𝑥, 𝜃t                                                  (10) 

Where:	𝑜@: ∈ RC×# and J is the total number of classes which represents the number of neurons in the fully 
connected layer (which is equal to the number of units in the Softmax layer); J=7 for faulted region identification, 
𝐽 = 11 for fault type classification and	𝑗 = {1,2, … , 𝐽}. This quantity represents the probability of class	𝐶@, given 
the sample 𝑥 and the neural network parameters	𝜃. 

The cross entropy loss function has been used by the classification layer based on the results of the Softmax 
cross entropy [39]. The cross entropy loss function is defined as follows [40]:  

𝐿𝑜𝑠𝑠 = −∑ ∑ 𝐼*, ln 9𝑃:𝐶𝑗;𝑥𝑖, 𝜃<=-
,.)

/
*.)                                                                     (11) 

Where: 𝑀 is the number of all examples of sequences, and 𝐽 is the number of classes. 𝐼$@ is an indicator of the 

desired class, 𝐼$@ = x1	for	correct	class0				for	other	class  . 

The loss is then reversely proportional to the probability of making correct classifications for all input sequences, 
and hence the challenge of the deep sequential is to minimise this loss. The training phase determines the optimal 
input and recurrent weights besides biases for all the units in all the layers to ensure minimum loss [41] [42] by 
the neural network model.  

The fault location is a regression problem where a regression layer is used after the fully connected layer instead 
to calculate the root mean-squared-error loss for the regression fault location problem. The root-mean-squared-
error loss is computed as follows [43]: 



 

 

𝐿𝑜𝑠𝑠	 = ∑ �𝑦H − 𝑜	7(𝑝)�
4

I
HA#                                                                    (12) 

Where: 𝑦H is the real location, 𝑜	7(𝑝) is the predicted location of fault example	𝑝 and 𝑀 is the total number of 
examples. 

On a set of training sequences, LSTM units can be trained in a supervised manner using an optimisation 
algorithm, like Stochastic Gradient Descent Method (SGDM) using back propagation through time to compute. 
Using the gradient, the large parameters vector 𝜃 is pushed closer to optimal values in each iteration [44] [45]: 

𝜃$!6# = 𝜃$! − 𝜂
JK&LL
JM

                                                                          (13) 

Where 𝜃 is a large vector of all layers’ parameters in the neural network model, 𝜂 is the learning rate, it+1 is the 
next iteration. In batch training, the stochastic gradient is used to approximate the real gradient by calculating 
the gradient of stochastic loss over a randomly selected subset of 𝑚$!6# < 𝑀 training examples instead of the 
global set of overall examples. 

5. Results and Discussion 

The proposed method has been tested on the test system described in section 3. The model output is either a class 
label of identified faulted region and fault type classification or a real number representing the distance for fault 
location. 

5.1. Faulted Region Identification (FRI) Model 

The FRI model was not reported before for large-scale multi-machine power systems. This paper is the first to 
report on the FRI model and provide the accuracy of region classification in large-scale multi-machine power 
systems. A multi-class classification problem of 7-class has been presented for FRI model. The number of epochs 
used for training is set to 500 and the maximum number of iterations is 12,000 where 24 iterations have been 
used for one epoch. Over a single CPU, the models’ parameter tuning is achieved using SGDM with back 
propagation through time; A piecewise learning rate schedule has been used, the choice of the learning rate is 
selected according to the stopping criteria, here it is the number of epochs and the number of iterations per epoch 
(for SGDM). The learning rate is generally selected in the interval of 1% to 10%. Large learning rate implies 
faster convergence to optimal tuning but with larger oscillations around it, and the opposite for smaller learning 
rates. The learning rate is set to decay exponentially from 5% by a factor of 0.97 each 10 epochs; the high training 
rate at the beginning speeds up the convergence toward optimal parameters, this rate is gradually reduced to 
reduce the chattering effects and limit the oscillations around the optimal parameters when approaching the end 
of training. The training process reached 100 percent during a number of 7905 iterations and at a learning time 
of 1397 minutes and 16 seconds and the learning rate reached 1.8865% at this number of iterations. The training 
procedure has given a great performance. The accuracy achieved nearly 100% and the loss has achieved nearly 
zero after 8000 iterations. For testing performance, the confusion matrix is shown in figure 8; the matrix has 
been translated into table.4. The deep LSTM classification achieved a very high accuracy and the misidentified 
examples are those very close to regions buses. The number of faults, the correct identified faults, the 
misidentified faults and the accuracy of faulted region identification are listed in table 4, which shows the great 
performance of faulted region detection and identification where the No-fault accuracy is 100%. In which a total 
number of 24 faults have been correctly identified. The accuracy for regions 10–11, 5–6 and 6–7 is very high 
where just nine faults have been misidentified in region 10–11 and have been attributed to region 9–10 from a 
total number of 341 faults with accuracy of 97.36%. Only ten faults have been wrongly identified in region 5–6 
and have been assigned to region 6–7 from a total number of 341 faults with accuracy of 97.06% and six faults 
have been misidentified in region 6–7 from 132 faults and have been attributed to region 5–6 with accuracy of 
95.45%. While the accuracy is reasonable and good in regions 7–8, 8–9 and 9–10, a number of 249 faults have 
been correctly identified and have been attributed to region 7–8 from a number of 341 faults with accuracy of 
73.02% and the wrongly identified faults have been assigned to regions 5–6, 6–7 and 8–9. A number of 255 
faults have been correctly assigned to region 8–9 from a total number of 341 faults with accuracy of 74.78% and 
the other misidentified faults have assigned to all other regions. A total number of 98 faults have been correctly 



 

 

identified in region 9–10 from a total number of 132 faults with accuracy of 74.24% and the misidentified faults 
have been assigned to region 10–11. 

Table 4: The testing accuracy of the faulted region identification model  

Region Number of faults Correctly identified faults Misidentified faults Accuracy (%) 
No-Fault 24 24 0 100 

10–11 341 332 9 97.36 
5–6 341 331 10 97.06 
6–7 132 126 6 95.45 
7–8 341 249 92 73.02 
8–9 341 255 86 74.78 
9–10 132 98 34 74.24 

 

Figure 8: The testing confusion matrix of the faulted region identification model. 

5.2. Fault Type Classification (FTC) Model :  

The FTC model is first proposed in multi-machine power systems in this work. A multi-class classification 
problem of 11-class has been presented for FTC model. The fault type classification model is trained through 
300 epochs and the maximum number of iterations is 2100 where 7 iterations have been used for one epoch. 
Over a single CPU, a piecewise learning rate schedule has been used for our case of study and the learning rate 
is initialized at 0.07 with a decaying factor of 0.97 each 10 epochs. The training process reached 100 percent 
during a number of 1469 iterations and at a learning time of 5 minutes and 23 seconds where the learning rate 
achieved 3.8066% at this number of iterations, the training procedure has given a great performance. The 
accuracy achieved almost 100% and the loss has achieved nearly zero at a number after 1400 iterations. For 
testing performance, the confusion matrix is shown in figure 9 and it has been translated into table.5 where only 
few faults are wrongly classified. In region 10–11, No-Faults, AB faults, ABC faults and AC faults have been 
totally and correctly classified with 100% of accuracy from a total number of 24 faults for No-Fault condition 
and 31 faults for fault condition. ABG faults, ACG faults and AG faults have been correctly classified with 
96.77% of accuracy from a total number of 31 faults where one fault has been classified as AB fault for ABG 
faults case, one fault has been classified as AC fault for ACG faults case and one fault has been classified as AC 
fault for AG faults case. BCG and BG faults have been correctly classified with 93.54% of accuracy of a full 
number of 31 faults in which only two faults have been classified as BC and ACG faults for BCG faults case and 
two faults have been classified as CG and AB faults for BG faults case. CG faults have been classified with 
87.09% accuracy and only 4 faults have been misclassified from a full number of 31 faults where two faults have 
been classified as AG faults and the others have classified as BC and BG faults. The number of faults, the correct 



 

 

classified faults, the misclassified faults and the accuracy of fault type classification in region 10–11 are listed 
in table 5, which shows the great performance of fault type classification. 

Table.5: The testing accuracy of the fault-type-classification model in region 10–11 

Fault type Number of faults Correctly classified faults Misclassified faults Accuracy (%) 
No-F 24 24 0 100 
AB 31 31 0 100 

ABC 31 30 0 100 
ABG 31 30 1 96.77 
AC 31 31 0 100 

ACG 31 30 1 96.77 
AG 31 30 1 96.77 
BC 31 31 0 100 

BCG 31 29 2 93.54 
BG 31 29 2 93.54 
CG 31 27 4 87.09 

 

Figure 9: The testing confusion matrix of the fault-type classification model  

5.2.1. Comparison Results of Fault Type Classification 

In this subsection, the fault type classification model is compared with the SVM fault classifier model presented 
in [31] including its two training methods; Poly SVM (𝓃 = 2) and Gaussian SVM (𝜎 = 0.5). [31] used binary 
classification only 𝑦 ∈ {−1, 1} to classify faults 𝑦 = 1  from no-fault 𝑦 = −1. The binary fault classification is 
simpler since it groups all faults in one class and it ignores the type of the fault. Three SVM binary classifiers 
have been used; SVM-1 for fault type classification, SVM-2 for ground fault detection and SVM-3 for section 
identification. A total number of 89 test cases, for SVM classification, have been used for L-G, LL-G, LL and 
LLL faults types whereas a total number of 334 test cases have been used in our case for LSTM-based 
classification models. Table 6 shows the different classifiers used for FTC, parameter values of different SVM 
models reported in [31] and our LSTM models, number of test cases and fault type classification accuracy.  

Table.6: Comparison of results of different fault type classification models. 

Fault type Method Name Number of test cases Classification rates (%) 
 

No-Fault 
Poly-SVM(a), 𝓃 = 2 - - 

Gaussian-SVM(a),	 𝜎 = 0.5 - - 
LSTM(b) 24 100 

 Poly-SVM(a), 𝓃 = 2 15 96.52 



 

 

L-G Gaussian-SVM(a),	 𝜎 = 0.5 13 95.23 
LSTM(b) 93 92.47 

 
LL-G 

Poly-SVM(a), 𝓃 = 2 9 96.27 
Gaussian-SVM(a),	 𝜎 = 0.5 7 97.51 

LSTM(b) 93 95.70 
 

LL 
Poly-SVM(a), 𝓃 = 2 11 96.84 

Gaussian-SVM(a),	 𝜎 = 0.5 9 95.99 
LSTM(b) 93 100 

 
LLL 

Poly-SVM(a), 𝓃 = 2 14 96.28 
Gaussian-SVM(a),	 𝜎 = 0.5 11 95.68 

LSTM(b) 31 100 
(a): used a total number of 89 Data sets, tested on a simple 2-bus test power system; 400-kV, 50-Hz, 300 km transmission line; The binary 
classifier classifies faults (class I) from no-fault (class II).   
(b): used a total number of 334 Data sets, tested on large-scale multi-machine test power system; (Four-Machine Two-Area 11-Bus Test 
Power System), the model classifies all fault types in addition to fault and no-fault operation. 

In terms of binary fault classification, i.e. classifying all faults in one class from no-faults in an alternative class, 
the proposed LSTM-based FTC greatly outperforms the results of the SVM model; The no-fault cases, labelled 
NF in the first row in Figure 9, are purely classified from the faults in the other rows. In addition, Figure 8 shows 
that all types of faults in all regions are purely classified from the no-fault cases. The 100% binary classification 
accuracy of the LSTM classifiers is because fault symptoms are easily detected using sequential deep learning; 
classifying faults from no-fault cases reduces to a trivial problem since the symptoms of faults are apparent; The 
LSTM FTC only struggles in distinguishing the symptoms of one fault from the symptoms of another equally-
severe fault in order to classify the region then the types of these faults, this was not reported in previous works. 
In addition to the multi-class FTC problem, the proposed LSTM – FTC model has been tested on large-scale 
multi-machine power systems while taking into account spatiotemporal dependencies between all signals in all 
transmission lines. SVM fault classifiers have been tested on simple power system of single 400-kV, 50-Hz, 
300 km transmission line and there are no other transmission lines that may affect this test transmission line. Yet, 
our approach still maintained its high accuracy and excellence despite the presence of many transmission lines 
that influence each other and this may affect the accuracy of the classification process. This strongly 
demonstrates the robustness of our method for classifying faults and that the proposed LSTM – FTC model 
accuracy is unaffected by the complexity of power systems.  

Table 7 shows the total performance of our proposed LSTM-FTC model. The proposed model totally performs 
better than both Poly-SVM (𝓃 = 2) and Gaussian-SVM (𝜎 = 0.5) fault classifiers in which the total LSTM-
FTC model accuracy is 96.71% while it is 96.48% and 95.92% for both Poly-SVM (𝓃 = 2) and Gaussian-SVM 
(𝜎 = 0.5) fault classifiers despite the fact that our proposed LSTM-FTC model is tested on large-scale multi-
machine power system and SVM fault classifiers have been tested on simple power system and that this work 
considered a multi-class fault type classification whereas [31] considered binary fault classification only. 

Table.7: Comparison results of FTC models. 

Model Number of test cases Classification rates (%) 
Poly-SVM(a), 𝓷 = 𝟐 49 96.48 

Gaussian-SVM(a),	 𝝈 = 𝟎. 𝟓 40 95.92 
LSTM(b) 334 96.71 

(a): used a total number of 89 Data sets, tested on a simple 2-bus test power system; 400-kV, 50-Hz, 300 km transmission line; The binary 
classifier classifies faults (class I) from no-fault (class II).   
(b): used a total number of 334 Data sets, tested on large-scale multi-machine test power system; (Four-Machine Two-Area 11-Bus Test 
Power System), the model classifies all fault types in addition to fault and no-fault operation. 

Ground faults in [31], are treated separately and another SVM block has been used for detecting the ground 
faults. In our case of study, only one FTC model classifies all faults types from one another beyond classifying 
just fault class from no-fault class or the presence of ground fault from its absence. However, to be totally fair, 
it is also important to mention that the superior LSTM based models are more complex than the SVM models; 
the advantage of SVM is that it can be implemented on advanced protection devices whereas the deep LSTM-
based models require serious computation resources and they can only be used in surveillance and control centres 
to monitor the entire system.   



 

 

5.3. Fault Location (FL) Model: 

This model is trained to predict the fault location using 1000 epochs with a maximum number of 8000 iterations 
where 8 iterations have been used for one epoch. Over a single CPU, a piecewise learning rate schedule has been 
used for our case of study and the learning rate is set to 0.07 and its decaying factor is set to 0.997 at each epoch. 
The training process reached final number of 8000 iterations at a training time of 30 minutes and 33 seconds 
where the learning rate achieved 0.34799%, the training procedure has given a great performance. The root mean 
square error (RMSE) and the loss function are very small just after a number of 3000 iterations. For training 
performance, the distance prediction errors, which are a difference between the true fault location distances and 
the predicted fault location distances, are shown in figure 10. Figure 10 explains the errors in predicting distances 
for each fault type. From the figure, standard deviations of distance errors for ABG, ACG and BCG fault types 
are close to each other and smaller than standard deviations of distance errors for CG, BG and AG faults that are 
also close to each other. Standard deviations of distance errors for CG, BG and AG faults are smaller than 
standard deviations of distance errors for AB, AC and BC faults that are close to each other. The standard 
deviation of distance errors for ABC fault type is the greatest one. Table 9 shows statistical results of the 
prediction error of the fault location distance during training for each fault type in region 10–11 and it explains 
the figure 10. The true locations, the predicted locations and the predicted errors of ABG fault in region 10–11 
are listed in table 8, which shows the great performance of fault location prediction; a negative sign means that 
the true value is greater than the predicted value.  

Table.8: The distance predictions of ABG faults location during training in region 10–11 

Table.9: Statistical results of prediction errors of fault location distances for each fault type in region 10–11. 

Fault type Standard deviation of Errors  Mean of Errors Fault type Standard deviation of Errors  Mean of Errors  
CG 0.0627 0.0107 ACG 0.0494 0.0220 
BG 0.0627 0.0107 AC 0.1520 0.0191 

BCG 0.0496 0.0221 ABG 0.0494 0.0219 
BC 0.1519 0.0190 ABC 1.0145 0.0047 
AG 0.0629 0.0106 AB 0.1520 0.0189 

The true distance (km) The predicted distance (km) The distance prediction error (km) 
1 1.0595 0.0595 
2 1.9518 -0.0482 
3 3.0275 0.0275 
4 4.0773 0.0773 
5 4.9936 -0.0064 
6 5.9946 -0.0054 
7 7.0094 0.0094 
8 7.9761 -0.0239 
9 8.9894 -0.0106 
10 10.1480 0.1480 
11 11.0161 0.0161 
12 12.1349 0.1349 
13 13.0505 0.0505 
14 13.9887 -0.0113 
15 15.0217 0.0217 
16 16.0807 0.0807 
17 16.9744 -0.0256 
18 18.0436 0.0436 
19 18.9974 -0.0026 
20 20.0311 0.0311 
21 20.9930 -0.0070 
22 21.9892 -0.0108 
23 23.0017 0.0017 
24 23.9761 -0.0239 



 

 

 

Figure 10: The distance prediction errors of all faults location distance predictions during training in region 10–11 

5.4.5.3.1. Comparison Results of Fault Location: 

The results of the proposed fault location model have been compared statistically with other techniques presented 
in the introduction. These techniques have been tested on single line 2-bus small-scale simple power systems. In 
that way it is assured that the problem of fault detection for larger system with greater lines lengths is more 
complicated than in ones of smaller sizes. Thereby it further demonstrates the superiority of the proposed models 
as they are able to achieve better accuracy in larger systems. This allows for a very fair comparison with other 
techniques as the transmission lines, in very complex power systems, are affected by each other and this 
adversely affects the accuracy of prediction error, unlike very simple power systems that contain one 
transmission line that is not affected by any other lines. Proving the proposed fault location model to be effective 
in complex power systems will prove its strength compared to other techniques that have been tested on very 
simple power systems. The fault location absolute error (%), which is expressed in Eq.(14), has been used in 
table 11 for comparison of our location model against the approach presented in [30] and it specifies the 
percentage of absolute prediction error over the total length of the transmission line. This fault location absolute 
error (%) is a measure that allows to make a comparison using different frames of references because it is, in 
fact, a ratio of a distance prediction absolute error to the total length of the line. Table 10 shows the comparison 
results of the proposed fault location model with wavelet-ANN technique presented in [29] for locating the faults 
in transmission line. 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑒𝑟𝑟𝑜𝑟(%) = |OPDQ$(!DQ	/&(R!$&+	Q$L!R+(D"?PSP	/&(R!$&+	Q$L!R+(D|
?&!R/	/$+D	/D+T!0

× 100%                                      (14) 

The fault location error (%) and the fault location absolute average error (%), used for generating table 8, are 
expressed in Eq.(15) and Eq.(16): 

𝑒8(%) =
OPDQ$(!DQ	/&(R!$&+	Q$L!R+(D1"?PSP	/&(R!$&+	Q$L!R+(D1

?&!R/	/$+D	/D+T!0
× 100%                                    (15) 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑒𝑟𝑟𝑜𝑟(%) = :∑ D1(%)
2
10$

I
:                                                                 (16) 

Where, 𝑒8(%) is the 𝑘!0 error (%) and 𝑀 is the number of data. 

 

 



 

 

Table.10: Comparison of statistical results of fault location distances prediction error for different types 

Method LSTM a Wavelet-ANN b [29] 
Fault type Average error (%) Average error (%) 
LG faults 0.0427 0.10 

LLG faults 0.0880 0.16 
LLG faults 0.0189 - 
LL faults 0.0761 0.01 

a: Results from complex power system: Kundur Four-Machine Two-Area 11-Bus Test Power System. 
b: Results from simple power system: Single line 2-Bus Test Power System 

The proposed method works well to locate the faults compared to other wavelet-ANN method, as it surpasses it 
in many cases except in the case of line-to-line faults. The absolute average error rate does not exceed 0.1 in all 
cases, and this proves the superiority of our proposed method despite the fact that the power system, used for 
training and testing, is very complex and all lines are affected by each other. Table 11 shows another comparison 
with another technique called Wavelet-SVM, the comparison results are statistical results of distance prediction 
error for LG fault type location.  

Table.11: Comparison of statistical results of distance prediction error for LG fault type location 

a: Results from Complex power system: Region 10–11, Kundur Four-Machine Two-Area 11-Bus Test Power System. 
b: Results from very simple power system: Single line -69 kV - 29.4 km Test Power System. 

Table 11 shows that the proposed method performs very well as it outperforms in most cases a method of 
wavelet-SVM. This is evidenced by table 12, which shows a statistical comparison of mean, standard deviation 
(STD), minimum value and maximum value of the absolute error (%). It can be found that the proposed method 
excels the method wavelet-SVM in all statistical results. 

Table.12: Comparison of absolute error statistical results of distance prediction error for LG fault type location. 

Error type Absolute Error (%) 
Method Mean Std Min (%) Max (%) 
LSTM 0.213 0.196 0.004 0.632 

Wavelet-
SVM [30] 

0.475 0.297 0.064 1.010 

6. Conclusion 

This paper considered the problem of fault detection, identification, and diagnosis in transmission lines in a data-
driven approach for large-scale multi-machine power systems in which an extensive data validation across 
numerous scenarios in a Two-Area Four-Machine Power System has been performed. The tacked challenge is 
data driven faulted zone identification, accurate fault type classification, and exact fault location prediction. 
Novel three deep learning models – based on LSTM – are designed for intelligent fault identification, 

Method LSTM a Wavelet-SVM b [30] 
True distance (km) Predicted distance (km) Absolute error (%) Predicted distance (km) Absolute error (%) 

2 2.034 0.136 2.178 0.605 
4 4.031 0.124 3.899 0.343 
6 6.001 0.004 6.019 0.064 
8 7.940 0.240 8.117 0.398 
10 10.089 0.356 10.149 0.506 
12 12.032 0.128 12.146 0.496 
14 14.041 0.164 14.119 0.404 
16 15.866 0.536 16.060 0.204 
18 18.158 0.632 17.964 0.122 
20 20.016 0.064 19.835 0.561 
22 21.984 0.064 21.710 0.986 
24 23.973 0.108 23.703 1.010 



 

 

classification and location in transmission lines of the Two-Area Four-Machine Power System. The neural 
network models are developed in both classification and regression frameworks; namely faulted region 
identification model, fault type classification model, and fault location model. The faulted region identification 
(FRI) and fault type classification (FTC) models have not been verified before in Large-Scale Multi-Machines 
Power Systems and this paper is the major one for addressing this work and providing accuracy results of both 
FRI and FTC models. The novel models explore whole transient data of angles and magnitudes of both current 
and voltage signals from pre- and post-fault cycles while current and voltage signals are measured through Phasor 
Measurement Units (PMUs), that are of high rates (high sampling frequencies/very low intervals), at different 
buses and used as input features to recurrent deep neural network models. These models rely on features self-
extraction directly from the voltage and current input patterns over a period of time without the need for 
additional techniques to extract the features. The presented sequential learning algorithms extract maximum 
spatiotemporal information from the sequential features to model the system behavior. This ensures the highest 
classification and prediction accuracy and robustness. Both region identification and fault type classification 
models show high accuracy in fault detection and fault type classification, especially the greatest accuracy in 
identifying of the type of the fault. The accuracy and robustness of the results obtained from predictions of fault 
location distance have been discussed through a statistical study by both the mean and the standard deviation 
respectively of the prediction error of the fault location distance. The results show that the LSTM-based models 
are accurate, reliable and very effective for identifying, classifying, and locating the faults in power systems 
transmission lines. This contribution, of proposing three novel deep learning models working in tandem with 
each other, greatly improves the performance of maintenance strategies in large-scale power systems. In addition, 
the proposed models depend strongly on the advancement of synchro phasors and they will contribute a lot with 
the progress of synchro phasors. In future works, the proposed method will be tested on larger power systems. 

7. References 

[1] H. Fathabadi, ‘Ultra high benefits system for electric energy saving and management of lighting energy in 
buildings,’ Energy Convers. Manag., vol. 80, pp. 543–549, 2014. 

[2] A. J. Mazon, I. Zamora, J. F. Miñambres, M. A. Zorrozua, J. J. Barandiaran, and K. Sagastabeitia, ‘A new 
approach to fault location in two-terminal transmission lines using artificial neural networks,’ Electr. 
Power Syst. Res., vol. 56, no. 3, pp. 261–266, Dec. 2000, doi: 10.1016/S0378-7796(00)00122-X. 

[3] S. El Safty and A. El-Zonkoly, ‘Applying wavelet entropy principle in fault classification,’ Int. J. Electr. 
Power Energy Syst., vol. 31, no. 10, pp. 604 – 607, Nov. 2009, doi : 10.1016/J.IJEPES.2009.06.003. 

[4] T. A. Kawady, N. I. Elkalashy, A. E. Ibrahim, and A.-M. I. Taalab, ‘Arcing fault identification using 
combined Gabor Transform-neural network for transmission lines,’ Int. J. Electr. Power Energy Syst., 
vol. 61, pp. 248 – 258, Oct. 2014, doi : 10.1016/J.IJEPES.2014.03.010. 

[5] H. Fathabadi, “Novel filter based ANN approach for short-circuit faults detection, classification and 
location in power transmission lines,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 374–383, Jan. 2016, 
doi: 10.1016/J.IJEPES.2015.08.005. 

[6] M. Farshad and J. Sadeh, ‘Fault locating in high-voltage transmission lines based on harmonic components 
of one-end voltage using random forests,’ Iran. J. Electr. Electron. Eng., vol. 9, no. 3, pp. 158–166, 2013. 

[7] Z. He, S. Lin, Y. Deng, X. Li, and Q. Qian, ‘A rough membership neural network approach for fault 
classification in transmission lines,’ Int. J. Electr. Power Energy Syst., vol. 61, pp. 429 – 439, Oct. 2014, 
doi : 10.1016/J.IJEPES.2014.03.027. 

[8] M. R. Aghamohammadi and M. Abedi, ‘DT based intelligent predictor for out of step condition of 
generator by using PMU data,’ Int. J. Electr. Power Energy Syst., vol. 99, pp. 95–106, 2018. 

[9] Y. Zhou, Q. Guo, H. Sun, Z. Yu, J. Wu, and L. Hao, ‘A novel data-driven approach for transient stability 
prediction of power systems considering the operational variability,’ Int. J. Electr. Power Energy Syst., 
vol. 107, pp. 379–394, 2019. 

[10] S. Das, S. P. Singh, and B. K. Panigrahi, ‘Transmission line fault detection and location using Wide Area 
Measurements,’ Electr. Power Syst. Res., vol. 151, pp. 96–105, 2017, doi: 10.1016/j.epsr.2017.05.025. 

[11] X. Tong and H. Wen, ‘A novel transmission line fault detection algorithm based on pilot impedance,’ 
Electr. Power Syst. Res., vol. 179, no. June 2019, p. 106,062, 2020, doi: 10.1016/j.epsr.2019.106062. 

[12] A. Ghaedi, M. E. Hamedani Golshan, and M. Sanaye-Pasand, ‘Transmission line fault location based on 
three-phase state estimation framework considering measurement chain error model,’ Electr. Power Syst. 
Res., vol. 178, no. October 2019, p. 106,048, 2020, doi: 10.1016/j.epsr.2019.106048. 

[13] J. Hu and A. V. Vasilakos, ‘Energy big data analytics and security: challenges and opportunities,’ IEEE 
Trans. Smart Grid, vol. 7, no. 5, pp. 2423–2436, 2016. 



 

 

[14] Huisheng Wang and W. W. L. Keerthipala, ‘Fuzzy-neuro approach to fault classification for transmission 
line protection,’ IEEE Trans. Power Deliv., vol. 13, no. 4, pp. 1093 – 1104, Oct. 1998, doi : 
10.1109/61.714467. 

[15] K. M. Silva, B. A. Souza, and N. S. D. Brito, ‘Fault detection and classification in transmission lines based 
on wavelet transform and ANN,’ IEEE Trans. Power Deliv., vol. 21, no. 4, pp. 2058 – 2063, Oct. 2006, 
doi : 10.1109/TPWRD.2006.876659. 

[16] S. E. Cheng Hong, “A B-Spline Wavelet Based Fault Classification Scheme for High Speed Protection 
Relaying,” Electr. Mach. Power Syst., vol. 28, no. 4, pp. 313–324, 2000, doi: 10.1080/073135600268289. 

[17] F. E. Pérez, E. Orduña, and G. Guidi, “Adaptive wavelets applied to fault classification on transmission 
lines,” IET Gener. Transm. Distrib., vol. 5, no. 7, pp. 694–702, Jul. 2011, doi: 10.1049/iet-gtd.2010.0615. 

[18] X. Lei and Z. Sui, ‘Intelligent fault detection of high-voltage line based on the Faster R-CNN,’ 
Measurement, vol. 138, pp. 379–385, 2019, doi: https://doi.org/10.1016/j.measurement.2019.01.072. 

[19] X. qin et al., “A cable fault recognition method based on a deep belief network,” Comput. Electr. Eng., 
vol. 71, pp. 452–464, 2018, doi: https://doi.org/10.1016/j.compeleceng.2018.07.043. 

[20] J. Liang, T. Jing, H. Niu, and J. Wang, ‘Two-Terminal Fault Location Method of Distribution Network 
Based on Adaptive Convolution Neural Network,’ IEEE Access, vol. 8, pp. 54035–54043, 2020, doi: 
10.1109/ACCESS.2020.2980573. 

[21] K. Chen, J. Hu, and J. He, ‘Detection and Classification of Transmission Line Faults Based on 
Unsupervised Feature Learning and Convolutional Sparse Autoencoder,’ IEEE Trans. Smart Grid, vol. 9, 
no. 3, pp. 1748–1758, May 2018, doi: 10.1109/TSG.2016.2598881. 

[22] M. N. Mahmud, M. N. Ibrahim, M. K. Osman, and Z. Hussain, ‘A robust transmission line fault 
classification scheme using class-dependent feature and 2-Tier multilayer perceptron network,’ Electr. 
Eng., vol. 100, no. 2, pp. 607–623, 2018, doi: 10.1007/s00202-017-0531-5. 

[23] A. Y. Appiah, X. Zhang, B. B. K. Ayawli, and F. Kyeremeh, ‘Long Short-Term Memory Networks Based 
Automatic Feature Extraction for Photovoltaic Array Fault Diagnosis,’ IEEE Access, vol. 7, pp. 30089–
30101, 2019, doi: 10.1109/ACCESS.2019.2902949. 

[24] J. Lei, C. Liu, and D. Jiang, ‘Fault diagnosis of wind turbine based on Long Short-term memory networks,’ 
Renew. Energy, vol. 133, pp. 422–432, 2019, doi: https://doi.org/10.1016/j.renene.2018.10.031. 

[25] H. Zhao, S. Sun, and B. Jin, ‘Sequential Fault Diagnosis Based on LSTM Neural Network,’ IEEE Access, 
vol. 6, no. c, pp. 12929–12939, 2018, doi: 10.1109/ACCESS.2018.2794765. 

[26] T. de Bruin, K. Verbert, and R. Babuška, ‘Railway Track Circuit Fault Diagnosis Using Recurrent Neural 
Networks,’ IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 523–533, 2017, doi: 
10.1109/TNNLS.2016.2551940. 

[27] R. Fan, T. Yin, R. Huang, J. Lian, and S. Wang, ‘Transmission Line Fault Location Using Deep Learning 
Techniques,’ in 2019 North American Power Symposium (NAPS), Oct. 2019, pp. 1–5, doi: 
10.1109/NAPS46351.2019.9000224. 

[28] M. Li, Y. Yu, T. Ji, and Q. Wu, ‘On-line Transmission Line Fault Classification using Long Short-Term 
Memory,’ in 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power 
Electronics and Drives (SDEMPED), Aug. 2019, pp. 513–518, doi: 10.1109/DEMPED.2019.8864831. 

[29] A. G. Shaik and R. R. V. Pulipaka, ‘A new wavelet based fault detection, classification and location in 
transmission lines,’ Int. J. Electr. Power Energy Syst., vol. 64, pp. 35–40, 2015, doi: 
https://doi.org/10.1016/j.ijepes.2014.06.065. 

[30] S. Ekici, ‘Support Vector Machines for classification and locating faults on transmission lines,’ Appl. Soft 
Comput., vol. 12, no. 6, pp. 1650–1658, 2012, doi: https://doi.org/10.1016/j.asoc.2012.02.011. 

[31] P. K. Dash, S. R. Samantaray, and G. Panda, ‘Fault Classification and Section Identification of an 
Advanced Series-Compensated Transmission Line Using Support Vector Machine,’ IEEE Trans. Power 
Deliv., vol. 22, no. 1, pp. 67–73, Jan. 2007, doi: 10.1109/TPWRD.2006.876695. 

[32] W. Kong, Z. Y. Dong, Y. Jia, D. Hill, Y. Xu, and Y. Zhang, ‘Short-Term Residential Load Forecasting 
based on LSTM Recurrent Neural Network,’ IEEE Trans. Smart Grid, vol. PP, p. 1, 2017, doi : 
10.1109/TSG.2017.2753802. 

[33] P. (Prabha) Kundur, Power system stability and control. New York: McGraw-Hill. 
[34] A. Jacobsson and C. Gustavsson, ‘Prediction of the Number of Residue Contacts in Proteins Using LSTM 

Neural Networks,’ no. January, pp. 1–61, 2003. 
[35] U. Hobohm, M. Scharf, R. Schneider, and C. Sander, ‘Selection of representative protein data sets.,’ 

Protein Sci. Publ. Protein Soc., vol. 1, no. 3, pp. 409 – 417, Mar. 1992, doi: 10.1002/pro.5560010313. 
[36] C. Brunner, G. Lang, F. Leconte, and F. Steinhauser, ‘Implementation guideline for digital interface to 

instrument transformers using IEC 61,850–9–2,’ Tech Rep, 2004. 



 

 

[37] W. Yang, ‘18 - Condition monitoring of offshore wind turbines,’ in Offshore Wind Farms, C. Ng and L. 
Ran, Eds. Woodhead Publishing, 2016, pp. 543–572. 

[38] K. Liu, G. Kang, N. Zhang, and B. Hou, ‘Breast cancer classification based on fully-connected layer first 
convolutional neural networks,’ IEEE Access, vol. 6, pp. 23722–23732, 2018. 

[39] W. Zhang, C. Li, G. Peng, Y. Chen, and Z. Zhang, ‘A deep convolutional neural network with new training 
methods for bearing fault diagnosis under noisy environment and different working load,’ Mech. Syst. 
Signal Process., vol. 100, pp. 439–453, 2018. 

[40] R. Yu, Y. Wang, Z. Zou, and L. Wang, ‘Convolutional neural networks with refined loss functions for the 
real-time crash risk analysis,’ Transp. Res. Part C Emerg. Technol., vol. 119, p. 102,740, 2020. 

[41] S. Fernández, A. Graves, and J. Schmidhuber, ‘Sequence labelling in structured domains with hierarchical 
recurrent neural networks,’ in IN PROC. 20TH INT. JOINT CONF. ON ARTIFICIAL IN℡LIGENCE, 
IJCAI 2007, 2007, pp. 774–779. 

[42] A. Graves, S. Fernández, and F. Gomez, ‘Connectionist temporal classification: Labelling unsegmented 
sequence data with recurrent neural networks,’ in In Proceedings of the International Conference on 
Machine Learning, ICML 2006, 2006, pp. 369–376. 

[43] J. Wang and W. Wan, ‘Optimization of fermentative hydrogen production process using genetic algorithm 
based on neural network and response surface methodology,’ Int. J. Hydrog. Energy, vol. 34, no. 1, pp. 
255–261, 2009. 

[44] J. F. Kolen and S. C. Kremer, ‘Gradient Flow in Recurrent Nets: The Difficulty of Learning LongTerm 
Dependencies,’ Field Guide Dyn. Recurr. Netw., no. March 2003, 2010, doi: 
10.1109/9780470544037.ch14. 

[45] Y. H. Eom, J. W. Yoo, S. B. Hong, and M. S. Kim, ‘Refrigerant charge fault detection method of air source 
heat pump system using convolutional neural network for energy saving,’ Energy, vol. 187, p. 115,877, 
2019. 

  


