
 

 

Article Title:   

Updating Intensity-Duration-Frequency curves for urban infrastructure design 

under changing environment 

Article Type: 

OPINION  

ADVANCED REVIEW  

PRIMER  

FOCUS ARTICLE  

OVERVIEW  

SOFTWARE FOCUS

 

Authors: 
Lei Yan* 
College of Water Conservancy and Hydropower, Hebei University of Engineering, 
Handan 056021, China. Email: yanl@whu.edu.cn 

Lihua Xiong 
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan 
University, Wuhan 430072, China. Email: xionglh@whu.edu.cn 

Cong Jiang 
School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 
430074, China. Email: jiangcong@cug.edu.cn 

Dong Wang 
College of New Energy and Environment, Jilin University, Changchun 130021, China. 
Email: wangdong19@mails.jlu.edu.cn 

Chong-Yu Xu 
Dept. of Geosciences, Univ. of Oslo, N-0315 Oslo, Norway. Email: c.y.xu@geo.uio.no 

 

Abstract 

Over the past century, the intensity and frequency of extreme precipitation are increasing due to 

changing climate. Moreover, many studies have revealed that short-duration extreme precipitations 

are likely to become more and more severe, particularly in urban areas, thus raising a question 

whether our urban infrastructures have been designed adequately to cope with these changes for 

future climate. Currently, Intensity-duration-frequency (IDF) curves, which summarize relationships 

between the intensity and frequency of extreme precipitation for different durations, are recommended 

as criterion for urban infrastructure design and storm water management. However, climate change is 

thought to have invalidated the stationary assumption employed in deriving IDF curves, thus making 

that current IDF curves may underestimate future extreme precipitation. Therefore, it is necessary to 

update current IDF curves to consider the possible changes in probabilistic behaviour of extreme 

precipitation. We first summarize observed changes in urban short-duration extreme precipitation and 

explore the physical mechanisms associated with these changes, including thermodynamic mechanism 

due to the increase in moisture and dynamic mechanism due to changing vertical motions. Then we 

introduced two major approaches for updating IDF curves, namely the covariate-based nonstationary 
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IDF curves and climate-model-based IDF curves. Advances in these two updating approaches for IDF 

curves are our review focus, including the investigation of physically-based covariates associated with 

nonstationary modeling of extreme precipitation, the nonstationary precipitation design strategies, the 

statistical downscaling methods and numerical prediction models for projecting future high-quality 

short-duration precipitation, and the derivation of future IDF curves based on climate simulations. 

Finally, future research challenges and opportunities are summarized on how to better characterize the 

probabilistic behaviour of short-duration extreme precipitation for IDF design considerations. 

Graphical/Visual Abstract and Caption 

 

Schematic diagram of updating current stationary IDF curves under changing environment 

1. INTRODUCTION 

Over the past century, we have witnessed an increase in the global temperature as a result of human 

activities and associated anthropogenic greenhouse gas emission (Hansen, Ruedy, Sato, & Lo, 2010; 

Meinshausen et al., 2009). The increasing temperature is expected to boost the water-holding capacity 

of air at a rate of approximately 7%℃-1, governed by the Clausius-Clapeyron (C-C) curves (Feng et 

al., 2016; Guerreiro et al., 2018; Herath, Sarukkalige, & Van Nguyen, 2018; Lenderink & Fowler, 

2017). Higher water-holding capacity can intensify the extreme precipitation and probable maximum 

precipitation (PMP) (Ben Alaya, Zwiers, & Zhang, 2020; Chen, Hossain, & Leung, 2017; Kunkel et 

al., 2013), particularly for the short-duration extreme precipitation. As reported by the Fifth 

Assessment Report (AR5) of Intergovernmental Panel on Climate Change (IPCC), at the end of the 

21st century, the frequency and intensity of extreme precipitation are likely to increase in most land 

areas (IPCC, 2013). Compared with undeveloped and suburb regions, urban areas, particularly the 

densely-populated and highly-developed megacities are more sensitive to the impacts of climate 

change because of the Urban Heat Island (UHI), thus leading to more serious economic and social 

losses. The impacts of urbanization on extreme precipitation have been identified in recent decades 

(Agilan & Umamahesh, 2016; Golroudbary, Zeng, Mannaerts, & Su, 2019; Gu, Zhang, Li, Singh, & 

Sun, 2019; Lu et al. 2019; Miao, Sun, Borthwick, & Duan, 2016; Zhang, Villarini, Vecchi, & Smith, 

2018). Moreover, at local and global scale, many studies have reported the increase in urban short-

duration extreme precipitation in Europe, Asia, America et al., (Barbero, Fowler, Lenderink, & 

Blenkinsop, 2017; Jakob, Karoly, & Seed, 2011; Lenderink, Mok, Lee, & Van Oldenborgh, 2011; 

Liang & Ding, 2017; Madsen, Arnbjergnielsen, & Mikkelsen, 2009; Mishra, Ganguly, Nijssen, & 

Lettenmaier, 2015). 
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Currently, Intensity-duration-frequency (IDF) curves are typically employed to deal with 

extreme precipitation and urban flooding in urban infrastructure design and storm water management. 

IDF curves are designed to reflect statistical characteristics of extreme precipitation and represent the 

relationships between intensity and frequency of extreme precipitation for different durations. Based 

on the extreme value theory (EVT), precipitation intensities for different durations (e.g., 15-min, 30-

min, 1-hr, 2-hr, 6-hr, 12-hr, and 24-hr) are estimated by fitting a theoretical probability distribution to 

annual maximum extreme precipitation samples or peaks over threshold samples. Currently, the 

design concepts of IDF curves are based on the stationary assumption. Under the stationary condition, 

the statistical characteristics of extreme precipitation are assumed to be invariant over time, thus the 

probability distribution of extreme precipitation in future period is expected to be the same as in the 

historical period. However, the stationary assumption is challenged in recent decades since climate 

change and urbanization are expected to have altered the intensity and frequency of extreme 

precipitation. To cope with this challenge, nonstationary assumption is proposed in hydrology and 

climate-related literature (Hu et al., 2018; Lu et al., 2019; Villarini, Serinaldi, Smith, & Krajewski, 

2009; Vogel, Yaindl, & Walter, 2011; Xiong et al., 2019; Yan et al., 2019a; Yan, Xiong, Liu, Hu, & 

Xu, 2017a; Yan et al., 2020). 

Under nonstationary condition, the statistical parameters of probability distribution of extreme 

precipitation are no longer constant but changing with covariate over time. This kind of changing 

statistical properties of extreme precipitation raises the question of whether the stationarity-based 

conventional design concepts of urban infrastructures are still adequate under changing environment. 

Given the observed increase in extreme precipitation, it is recommended that the current IDF curves 

should be undated to account for the impacts of climate change (Acero et al., 2017; Agilan & 

Umamahesh, 2017; Cheng & Aghakouchak, 2014; Ganguli & Coulibaly, 2017; Hassanzadeh, Nazemi, 

& Elshorbagy, 2014; Sarhadi & Soulis, 2017; Singh & Zhang, 2007; Westra et al., 2014; Willems, 

2013). In recent years, the nonstationary frequency analysis has become one of the research hotspots 

in hydrological and climatic fields (Bayazit, 2015; Hao & Singh, 2016; Salas, Obeysekera, & Vogel, 

2018). Moreover, more attention has been paid to the nonstationary IDF curves to sustain the 

reliability of urban infrastructures and storm water management. In this paper, we focus on the 

construction of nonstationary IDF curves and aim to provide a review of the existing methods as well 

as discuss future research opportunities. 

2. URBAN SHORT-DURATION EXTREME PRECIPITATION 

2.1 Observed changes in urban short-duration extreme precipitation 

Short-duration extreme precipitation generally refers to extreme precipitation with sub-daily or even 

sub-hourly durations. For decades, trend analysis is often carried out for daily precipitation due to the 

scarcity and accessibility of short-duration extreme precipitation. However, many studies have 

suggested that the intensity of short-duration extreme precipitation is intensifying more rapidly than 

daily extreme precipitation Westra et al. (2014), which will result in more hazardous flooding in urban 

areas because of the difficult of proactive warning and rapid emergency response. Therefore, it is 

important to directly analyse the trend of urban short-duration precipitation to reveal the changing 

properties of urban short-duration extreme precipitation. Currently, trend analysis for extreme 

precipitation can be categorized into 3 groups: 

• Collect samples of annual maximum extreme precipitation (AMEP) with different durations, and 

analyze the change of intensity or frequency for AMEP. 
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• Define different kinds of extreme precipitation index (EPI), and analyze the trend of EPI. 

• Split the entire historical precipitation data into sequential subsets and estimate design 

precipitation or IDF curves for each subset. Finally, analyze the change of design precipitation or 

IDF curves. 

Table 1 summarized some studies concerning trend analysis of urban short-duration extreme 

precipitation using historical observation data. Generally, the increase of intensity and frequency of 

urban short-duration extreme precipitation were observed and identified in most cities, although 

several cities exhibited opposite trend. In addition, the trend of urban short-duration extreme 

precipitation is related to the length of durations and occurrence seasons. Moreover, the trend of short-

duration extreme precipitation is more significant than daily extreme precipitation, and exhibits spatial 

variability. 

Table 1 Summary of trend analysis of urban short-duration extreme precipitation in some regions 

2.2 Physical mechanism associated with extreme precipitation 

It is crucial to investigate the physical mechanisms associated with extreme precipitation, for the 

purpose of prediction of extreme precipitation and regional flood control and disaster reduction. The 

response of extreme precipitation to climate change is dominated by governed by two major physical 

mechanisms, namely the thermodynamic mechanism and the dynamic mechanism. 

2.2.1 Thermodynamic mechanism 

Thermodynamic mechanism rules the relationship between water-holding capacity and temperature. 

Currently, based on the thermodynamic Clausius-Clapeyron (C-C) curves which argues that 

increasing temperature is anticipated to increase the water-holding capacity of air at a rate of 

approximately 7%℃-1, it is widely accepted that atmospheric moisture can be well characterized by 

the air temperature, and assumed the extreme precipitation responds directly to the change of 

atmospheric moisture. Therefore, the precipitation-temperature scaling has become an important 

approach to study the changing properties of extreme precipitation. Many studies have been carried 

out worldwide to analyze the relationship between temperature and short-duration extreme 

precipitation. However, it is found that the extreme precipitation may deviate from the C–C 

relationship for many regions. In the mid-latitude regions, changes in intensity of subdaily extreme 

precipitation can be up to twice the C–C relationship (Lenderink et al., 2011; Westra et al., 2014). On 

the contrary, in some regions, evidence suggests that even decrease of intensity of extreme 

precipitation with warming is observed (Lenderink & Fowler, 2017). This deficiency is due to the fact 

that air temperature cannot directly reflect humidity. Thus, Lenderink et al. (2011) explored the 

relationship between hourly extreme precipitation and dew point temperature, which directly 

corresponds to humidity, and found that the change of hourly extreme precipitation can be better 

explained by dew point temperature. However, it is difficult to distinguish cause from effect since 

both precipitation and temperature are affected by the impacts of atmospheric circulation. In addition, 

precipitation types and durations are likely to modulate the precipitation-temperature scaling 

relationship (Berg & Haerter, 2013; Wasko, Sharma, & Johnson, 2015). Therefore, the changes in 

short-duration extreme precipitation cannot be directly explained using precipitation–temperature 

scaling method (Lenderink & Fowler, 2017). 

2.2.2 Dynamic mechanism 
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The thermodynamic mechanism is now relatively well understood, while the theory of dynamic 

mechanism has not been fully developed (O’Gorman, 2015). Dynamic mechanism determines the 

occurrence of multiscale weather systems (e.g., extratropical cyclones, tropical plumes and tropical 

cyclones) and their interactions driving the transport of atmospheric moisture (Liu et al., 2020; 

Trenberth, 1999). To further reveal the dynamic mechanism of changes in extreme precipitation, Pfahl, 

O’Gorman, & Fischer (2017) employed the measure of condensation in updraft to diagnose the 

occurrence of extreme precipitation based on the simulation results of 22 global climate models 

(GCMs) from Coupled Model Intercomparison Project Phase 5 (CMIP5), and accurately reproduced 

daily extreme precipitation worldwide for the present climate. The good results are benefit from the 

physical formulation relying on both the atmospheric moisture and the vertical velocity of the air. It 

should be noted that temporal and spatial resolution of the GCMs used in their study are relatively 

coarse. Nevertheless, the physical process resulting in urban short-duration extreme precipitation 

usually occurs at finer temporal and spatial resolution. Thus, although GCMs are able to capture the 

main physical processes of extreme precipitation, their capabilities are insufficient to model the reality 

of urban short-duration extreme precipitation.  

Under changing environment, both the precipitation-temperature scaling approaches and the 

physical-based diagnostic methods provide feasible schemes for quantifying the physical mechanisms 

associated with extreme precipitation. In future, it is essential to improve the observation capabilities 

of extreme precipitation at finer temporal and spatial resolutions, besides more efforts are needed to 

develop GCMs which can explicitly resolve convention conditions to further our understanding of 

urban short-duration extreme precipitation. 

3. COVARIATE-BASED NONSTATIONARY IDF CURVES 

3.1 Nonstationary models 

Under stationary (ST) conditions, the intensities of extreme precipitation corresponding to various 

design return periods for different durations are estimated based on the EVT. The annual maxima 

series for different durations (e.g., 15-min, 30-min, 1-hr, 2-hr, 6-hr, 12-hr, and 24-hr) are first fitted by 

a theoretical probability distribution, and then precipitation intensities corresponding to various design 

return periods (e.g., 2-yr, 5-yr, 10-yr, 25-yr, 50-yr, 100-yr) are determined. Generalized extreme value 

(GEV) distribution is often used to model the annual maxima, such as AMEP. For the AMEP 

 ( 1,..., )tz t n= , the cumulative distribution function (CDF) of stationary GEV (GEV-ST) model is 

given by 
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where, -   , 0  and -    are the location, scale and shape parameters of GEV-ST 

model, respectively. It should be noted that 0 → ,   0     0  corresponds to Gumbel, Fréchet 

and Weibull distributions, respectively. Under ST conditions, statistical parameters of GEV are 

invariant. However, under nonstationary (NS) conditions, the statistical parameters of GEV model are 

time-dependent and can be modeled as a function of covariates, such as time and other physical 

covariates, to capture the changing properties of AMEP. The CDF of a fully nonstationary GEV 

(GEV-NS) model is defined as 
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where 1( )tG−   denotes the time-varying CDF of GEV-NS model. t , t and t are the time-varying 

location, scale and shape parameters of GEV-NS model, respectively, and t is the time scale. 

Theoretically, although all the three statistical parameters can be described as time-varying parameters, 

the shape parameter is sensitive and difficult to estimate (Cheng & Aghakouchak, 2014; Du et al., 

2015; Um, Kim, Markus, & Wuebbles, 2017). Thus, the GEV-NS models only consider the changing 

properties of location parameter and/or scale parameters are widely used in practical applications. 

This kind of simplified GEV-NS models can yield realistic design precipitation quantiles consistent 

with the probabilistic behaviour of extreme precipitation (Cheng & Aghakouchak, 2014; Sarhadi & 

Soulis, 2017). 

3.2 What are the best covariates for nonstationary IDF curves 

To model the changing properties of nonstationary extreme precipitation, the time-varying statistical 

parameters should be described as functions of covariates using the generalized linear model (GLM), 

or generalized additive model for location, scale and shape parameters (GAMLSS) which is more 

powerful and flexible (Rigby & Stasinopoulos, 2005). Thus, the time-varying location and scale 

parameters of GEV-NS models are given by 
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where ( )h   is the link function, such as logarithm function. 
0=( ,... )m   and 

0=( ,... )m   are 

model parameters to describe the trend of t  and t , respectively.  ( 1,..., )jx j m=  are the time-

dependent covariates employed to explain the changing properties of extreme precipitation, and m is 

the number of used covariates. 

In the implementation of nonstationary models, it is crucial to strengthen the physical meaning of 

the established statistical model, instead of doing a statistical exercise without paying much attention 

to the physical process of extreme precipitation (Yan et al., 2019b). Moreover, the prediction of future 

evolution of the probability distribution of extreme precipitation is one of the most challenging issues 

in the estimation of nonstationary design precipitation intensities, which heavily depends on the 

projections of covariates in future period. Therefore, it is essential to select appropriate covariates 

associated with extreme precipitation. In most recent studies, only time covariate is used to model 

nonstationarity of extreme precipitation. Cheng and AghaKouchak (2014) proposed a general 

framework for developing nonstationary IDF curves using GEV-NS model with time covariate for the 

illustration purpose. Yan et al. (2017b) argued that the covariates used for nonstationary frequency 

analysis should satisfy two requirements: (i) owning sufficient explanatory power to describe the 

changing properties of extreme events; and (ii) being able to be reliably predicted in future period. 

Sarhadi and Soulis (2017) constructed GEV-NS model using both time and Southern Oscillation 

Index (SOI) in deriving nonstationary IDF curves of the Great Lakes area. Ouarda et al. (2019) 

developed the nonstationary GEV and Gumbel models using time and the climate indices, such as 



Atlantic Multi-decadal Oscillation (AMO) and Western Hemisphere Warm Pool (WHWP) for the 

stations in Canada, and SOI and Pacific Decadal Oscillation (PDO) for the stations in United States. 

Agilan and Umamahesh (2017) comprehensively evaluate possible covariates associated with extreme 

precipitation, namely urbanization, temperature, global warming, El Niño Southern Oscillation 

(ENSO), Indian Ocean Dipole (IOD) and time. They found that local process, such as urbanisation 

and temperature are the best covariates for local short-duration extreme precipitation, while global 

processes, such as global warming, ENSO and IOD are the best covariates for long-duration extreme 

precipitation. Besides, time covariate is not recommended for constructing nonstationary IDF curves. 

3.3 Nonstationary design methods for estimating precipitation intensities 

The statistical parameters of GEV-NS models are described as function of time or other physical 

covariates. Thus, how to estimate the nonstationary design precipitation with a prescribed return 

period under nonstationary condition is one of the core questions (Acero, Parey, García, & Dacunha-

Castelle, 2018; Acero et al., 2017; Jiang, Xiong, Yan, Dong, & Xu, 2019; Salas & Obeysekera, 2014; 

Yan et al., 2017b). If we still follow the design concepts under stationary condition, the annual design 

precipitation associated with a given return period varies over time. Obviously, this kind of time-

varying annual design precipitation would be impractical for urban infrastructure design and storm 

water management under changing environment.  

In recent years, several nonstationary design methods have been proposed to tackle the problem 

of design precipitation estimation under nonstationary condition (Acero et al., 2018; Cheng & 

Aghakouchak, 2014); Hu et al., 2018; Olsen, Lambert, & Haimes, 1998; Parey, Hoang, & Dacunha 

Castelle, 2010; Parey, Malek, Laurent, & Dacunha-Castelle, 2007; Rootzén & Katz, 2013; Salas & 

Obeysekera, 2014; Yan et al., 2017b). Initially, Cheng and AghaKouchak (2014) determined the time-

variant location parameter of GEV model using the 95th percentile of the location parameters in 

observation period, and then the stationary design concepts can be used to derive design precipitation 

corresponding to a specified return period. Based on different interpretations of return period under 

nonstationary conditions, expected waiting time (EWT) (Cooley, 2013; Olsen et al., 1998) and 

expected number of exceedances (ENE) (Parey et al., 2010, 2007) were proposed. In EWT method, 

the return period m is defined as the expected waiting time until the next precipitation intensity 

exceeds associated design precipitation z(m), while in ENE method, the return period m is defined as 

the time period over which the expected number of precipitation intensity exceeding design 

precipitation z(m) is equal to one. Cooley (2013) provided the mathematical expressions of ENE and 

EWT methods under both stationary and nonstationary contexts. Hu et al. (2017) compared the 

difference between EWT and ENE methods in calculating nonstationary design flood. Yan et al. 

(2020) explored the applicability of the EWT method in nonstationary flood design, and found that 

the extrapolation time of EWT was influenced by the trend of extreme series and the choice of 

extreme distributions. 

Under changing environment, the design life of a project should be considered in the 

nonstationary design, since the risk of failure is different for different future periods. In recent years, 

researchers have developed several well-designed nonstationary design methods considering design 

lifespan of projects. The concept of design life level (DLL) was proposed by Rootzén and Katz (2013) 

to communicate the reliability of a project over its design lifespan. However, how to determine the 

reasonable value of reliability that urban infrastructures will experience over the design lifespan may 

be a challenging work, for the reason that engineers and decision makers are more familiar with the 

concept of return period which has served as basis of engineering design for decades. Therefore, Hu et 

al. (2018) proposed the concept of equivalent reliability (ER). In this method, the reliability over a 
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project’s design lifespan under nonstationary conditions is assumed to be identical to the reliability 

under stationary conditions. Yan et al. (2017b) proposed another nonstationary design method, i.e., 

average design life level (ADLL), which argued that the annual average reliability over a project’s 

design lifespan under nonstationarity should be equal to that of yearly reliability. To investigate the 

performance of the above nonstationary hydrological design methods, Yan et al. (2017b) compared 

the design results estimated by ENE, DLL, ER and ADLL methods, and found ENE, ER and ADLL 

can yield similar design results using physical-based covariates. 

4. CLIMATE-MODEL-BASED IDF CURVES 

4.1 Projections of future short-duration precipitation 

Different from projecting future IDF curves using nonstationary models, evaluate the potential 

changes in IDF curves using projections of climate model is more straightforward. However, the 

temporal and spatial resolution of GCM outputs are still too coarse to directly assess future changes of 

sub-daily precipitation, despite the progress made by GCMs participated in CMIP5. Therefore, 

downscaling and bias correction of outputs from GCMs or Regional Circulation Models (RCMs) to 

the desired spatial resolution (i.e., spatial downscaling) and temporal resolution (i.e., temporal 

downscaling) for assessing changes in urban short-duration extreme precipitation is necessary, and 

have becoming one of the demanding topics in recent years (Willems, Arnbjergnielsen, Olsson, & 

Nguyen, 2012). Researchers have developed a few approaches to generate future short-duration 

precipitation and update IDF curves with a range of complexities and underlying assumptions. These 

methods can be categorized into two major groups: (i) statistical downscaling methods (Hassanzadeh, 

Nazemi, Adamowski, Nguyen, & Van-Nguyen, 2019; Li, Johnson, Evans, & Sharma, 2017; Pastén-

Zapata, Jones, Moggridge, & Widmann, 2020; Pui, Sharma, Mehrotra, Sivakumar, & Jeremiah, 2012) 

and (ii) Numerical prediction models with high spatial and temporal resolutions, such as RCMs and 

Convention-Permitting Models (CPMs) (Ban, Schmidli, & Schär, 2015; Liu et al., 2017; Prein et al., 

2015, 2017; Zittis, Bruggeman, Camera, Hadjinicolaou, & Lelieveld, 2017). 

4.1.1 Statistical downscaling methods 

Statistical downscaling methods are the most commonly used methods in projecting future sub-daily 

precipitation. They are typically easier to understand and require less computational efforts than 

dynamic downscaling methods. Srivastav et al. (2014) reviewed the existing statistical downscaling 

methods and categorized them into three groups: 

• Delta change method. This method is usually used to transfer the signal of climate change from 

climate models to observations. The change factors of GCM/RCM outputs between baseline 

period and future period are applied to manipulate observed historical precipitation with different 

durations (Hosseinzadehtalaei, Tabari, & Willems, 2018; Mailhot, Duchesne, Caya, & Talbot, 

2007; Semadeni-Davies, Hernebring, Svensson, & Gustafsson, 2008; Zahmatkesh, Karamouz, 

Goharian, & Burian, 2015). 

• Bias correction methods. In this method, differences between GCM/RCM simulation and 

observed precipitation for the historical period are firstly estimated, and then used to perturb 

GCM/RCM outputs in future periods (Hassanzadeh et al., 2019, 2014; Ngai, Tangang, & Juneng, 

2017; Pastén-Zapata et al., 2020). 

• Downscaling-disaggregation methods. In this method, spatial downscaling and bias correction for 

GCM/RCM outputs are firstly applied to generate future daily or monthly precipitation, and 
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thereafter temporal disaggregation models are employed to disaggregate future precipitation from 

daily to sub-daily scales (Li et al., 2017; Mirhosseini, Srivastava, & Stefanova, 2013; Nguyen, 

Nguyen, & Cung, 2007; Pui et al., 2012). Li et al. (2017) and Pui et al. (2012) reviewed and 

compared different downscaling-disaggregation methods. 

The aforementioned methods differ from each other in the way they simulate the relationship between 

GCM/RCM outputs and observed daily or sub-daily precipitation for the baseline period and how they 

utilize the changes between GCM/RCM simulated precipitation for the historical period and future 

period (Lima, Kwon, & Kim, 2016). The advantages and disadvantages of some above methods have 

been discussed by researchers (Lehmann, Phatak, Stephenson, & Lau, 2016; Lima et al., 2016; Pui et 

al., 2012; Srivastav et al., 2014). 

4.1.2 Numerical prediction models with high spatial and temporal resolutions 

Researchers have also dedicated to develop more powerful climate models to better understand the 

physical process of extreme precipitation. Such as the higher-resolution RCMs with 10–50 km spatial 

resolution, which are capable of improving the representation of daily extreme precipitation compared 

with GCMs. Moreover, researchers have reported that this kind of RCM with 10-50 km spatial 

resolution can better reproduce the observed sub-daily precipitation and capture the spatial structure 

of sub-daily precipitation extremes (Evans & Westra, 2012; Lenderink & Van Meijgaard, 2008; 

Tripathi & Dominguez, 2013; Westra et al., 2014). However, RCMs is still insufficient to reproduce 

the observed local sub-daily precipitation and represent the spatial characteristics of extreme short-

duration precipitation, particularly when the required resolution is lower than 10km (Jiang, Gautam, 

Zhu, & Yu, 2013; Prein et al., 2015; Westra et al., 2014; Zhang, Zwiers, Li, Wan, & Cannon, 2017).  

Currently, the development of Convection-permitting models (CPMs) with spatial resolution less 

than about 4 km has become one of the hotspots in the field of numerical prediction. CPMs are found 

to be capable of better modeling the diurnal cycle of convective precipitation, the spatial structure of 

precipitation, and reproduce the intensities of extra-large extreme precipitation (Langhans, Schmidli, 

Fuhrer, Bieri, & Schar, 2013; Prein et al., 2017; Westra et al., 2014). Differ from GCMs/RCMs which 

use convection parameterization schemes to account for the influence of convection over the model 

grid scale (sources of errors and uncertainties), the improvements of CPMs in projecting future short-

duration extreme precipitation are attributed to their explicit resolving of deep convection and better 

representation of local high-resolution orography and variations of surface fields (Clark, Roberts, 

Lean, Ballard, & Charltonperez, 2016; Liu et al., 2017; Westra et al., 2014; Zittis et al., 2017). 

Generally, CPMs can adequately represent the spatial and temporal characteristics of observed hourly 

extreme precipitation, thus providing effective tools for analysing the changes in future short-duration 

extreme precipitation. 

4.2 Derivation of future IDF curves 

Once the future short-duration extreme precipitation is projected, the distribution of extreme 

precipitation with various durations is determined for future period based on EVT, and then the IDF 

curves and related changes in them can be easily evaluated. Typically, the most wildly used 

probability distribution for annual maximum precipitation series is GEV distribution (Agilan & 

Umamahesh, 2017; Cheng & Aghakouchak, 2014; Ganguli & Coulibaly, 2017; Lu et al., 2019). 

Researchers have also explored other distributions in building IDF curves. Lima et al. (2016) 

proposed a Bayesian beta model to derive IDF curves in South Korea based on GCM outputs for 

future climate. They found that the fitting qualities of the proposed Bayesian beta model are as good 



as those of conventional GEV models, and the Bayesian beta model can be applied to disaggregate 

future 24-hour precipitation to finer scales to facilitate the impact analysis of future changes to current 

IDF curves. Ragno et al. (2018) developed nonstationary models for bias corrected historical and 

multi-model projected extreme precipitation, and estimate IDF curves and their associated 

uncertainties using Bayesian inference framework. They found that the intensity is expected to 

increase 20%, while the occurrence of extreme precipitation is twice as frequent as historical period 

for densely-populated regions in United States. 

In addition to conducting frequency analysis directly on the projected future extreme 

precipitation with different durations, Alternatively, future IDF curves can also be derived using delta 

change method based on projection of climate models. Hosseinzadehtalaei et al. (2018) firstly 

conducted frequency analysis for peaks over threshold (POT) extreme precipitation statistics of both 

historical and future simulations in EURO-CORDEX project (an ensemble of 88 RCMs) using a two-

component exponential distribution. Then they calculated the change factors of precipitation 

intensities for different return periods and durations, and applied these change factors on IDF statistics 

of observed extreme precipitation to generate IDF statistics for future period. 

5. SUMMARY 

Under changing environment, the intensity and frequency of short-duration extreme precipitation are 

anticipated to increase for future climate, which destroys the stationary assumption in urban 

infrastructure design and storm water management. Thus, the IDF curves should be updated to 

account for future changes in extreme precipitation. This study provides a review on the changes in 

urban extreme precipitation and potential physical mechanisms, and particularly we reviewed current 

progresses in methods for updating IDF curves for future climate, namely the covariate-based 

nonstationary IDF curves and climate-model-based IDF curves. The covariate-based nonstationary 

models provide an avenue to predict future IDF curves based on observed and reliable sub-daily 

extreme precipitation. However, there is no well-accepted and non-controversial nonstationary 

modeling approach. Reliable nonstationary modeling requires attribution analysis to identify the 

physical causes of nonstationarity (Montanari & Koutsoyiannis, 2014; Serinaldi & Kilsby, 2015). 

Typically, the relationship between statistical parameters and covariates are assumed to be unchanged 

when projecting distributions of future extremes, which may lead to unreliable results (Luke, Vrugt, 

AghaKouchak, Matthew, & Sanders, 2017; Ragno et al., 2018; Serinaldi & Kilsby, 2015). The 

climate-model-based methods highly rely on the projections of local high-resolution extreme 

precipitation, which inevitable contains different degrees of uncertainties, despite the improvements 

made in recent years, particularly for urban areas. 

There are limited studies comparing the differences and performance of these two methods. For 

example, Agilan and Umamahesh (2016) firstly developed the IDF curves based on 24 GCMs’ 

simulated precipitation and K nearest neighbour weather generator based downscaling method, and 

the IDF curves derived using nonstationary models with best physical covariates (i.e., urbanization, 

temperature, global warming, ENSO and IOD), separately for the Hyderabad city, India. Then they 

compared the design precipitation with return periods of 2, 5, 10 and 25 years estimated using these 

two kinds of IDF curves, and found that the covariate-based nonstationary IDF curves are reasonable 

and able to capture the signal of climate change for at least future 50 years. Therefore, covariate-based 

nonstationary IDF curves by modeling the trend in observed extreme precipitation are appropriate 

choices for urban infrastructure design, if the best possible physical covariates are identified properly. 

From another perspective, Ragno et al. (2018) argued that one drawback of covariate-based 

nonstationary IDF curves is the dependence of solely observed precipitation records for nonstationary 



modeling, with an assumption that extrapolates observed trends to future periods, while GCMs 

outputs can offer plausible scenarios for future climate and can be incorporated for deriving future 

IDF curves. So, they tried to take advantages of both covariate-based and climate-model-based 

methods by developing nonstationary models for future projected precipitation.  

Despite the increased attention given to update current IDF curves, there is still no well-accepted 

and non-controversy methodology for updating IDF curves. In fact, there is not even agreement on the 

need for updating IDF curves. Ganguli and Coulibaly (2017) compared the current stationarity-based 

IDF curves with the covariate-based nonstationary IDF curves, and no significant differences were 

found especially for short return period, which is commonly used in urban infrastructure design. 

Therefore, the signal of nonstationarity does not automatically implies the requirement of updating 

IDF curves for urban design considerations. Even so, there are some efforts made by government to 

highlight the need for updating IDF design guidelines. Such as the recommendation by Guidelines for 

Canadian water resources practitioners (CSA, 2010) to emphasize the necessity to update IDF curves 

more frequently than previous periods to account for the increase in intensity and frequency of 

extreme precipitation in Canada.  

6. FUTURE CHALLENGES 

In future urban design strategies, it is crucial to revisit the current IDF design guidelines and assess 

possible impacts of future climate. Thus, collaborative and interdisciplinary research efforts with 

engineers, climate scientists and decision makers et al. are required for updating the design strategies 

for IDF curves (Cheng & Aghakouchak, 2014; Ganguli & Coulibaly, 2017; Ragno et al., 2018). In the 

following section, we would like to provide some future research possibilities and challenges in 

updating IDF curves under changing environment, which we hope will lead to better understanding of 

changing properties of short-duration extreme precipitation and provide advice for urban 

infrastructure design. 

(1) High-quality subdaily extreme precipitation is essential for impacts analysis of climate change 

and updating IDF curves for future climate. However, the record lengths of available subdaily 

precipitation is limited and their qualities are not satisfactory. Moreover, there is commonly no 

free access to high-quality subdaily precipitation records in most countries. Currently, remotely 

sensed satellite precipitation products and ground-based radar products provide new avenues to 

obtain high-quality subdaily precipitation data, in spite of the observation errors associated with 

them. In future studies, research efforts should be made to improve the observation capabilities 

and bias correction methods for short-duration precipitation. 

(2) Reliable projections of future short-duration extreme precipitation are crucial for either 

developing climate-based IDF curves or analysis of future changes of short-duration precipitation. 

However, almost all the climate models are, currently, lack of characterisation for changes in 

urban underlying surface. For relatively large scale, changes of short-duration may be mainly 

dominated by climate change, while for urban areas the impacts of underlying surface changes 

cannot be neglected. To adequately characterize the urban environment in climate models, 

researchers recommended introduce parameterization scheme of urban canopy into climate 

models, describe the links between the urban system and aerosols in climate models, and so on 

(Garuma, 2017; Jin & Shepherd, 2005; Pitman, Arneth, & Ganzeveld, 2012; Wang, Feng, Yan, 

Hu, & Jia, 2012). Thus, more research efforts are called to improve the capabilities of climate 

models in modeling the interaction between urban underlying and local atmosphere. 

chongyux
Inserted Text
s

chongyux
Line



(3) Precipitation extremes are typically described by multi-attribute properties, such as intensity, 

duration and volume. Thus, univariate frequency analysis is inadequate to fully describe the 

dependence structure among different attributes (Jiang, Xiong, Yan, Dong, & Xu, 2019). Under 

stationary conditions, there has been several studies exploring developing copula-based IDF 

curves using multivariate statistical approaches (Ariff, Jemain, Ibrahim, & Zin, 2012; Bezak, Sraj, 

& Mikos, 2016; Singh & Zhang, 2007). Under nonstationary conditions, Vinnarasi and Dhanya 

(2019) derived the time-varying Intensity-Duration relationship to investigate the joint statistical 

properties of intensity and duration using dynamic Bayesian copula function. In future studies, 

more research efforts are required to improve the understanding of relationship between intensity 

and duration of short-duration precipitation extremes using multivariate statistical approaches. 

(4) Under changing environment, urban infrastructures are expected to suffer different risk of failure 

during the service period or design life period due to the changing properties of short-duration 

extreme precipitation. Therefore, for both covariate-based nonstationary IDF curves and climate-

model-based IDF curves, the updated IDF curves should be linked with the design life of urban 

infrastructures to communicate risk under future climate. In hydrology community, several well-

designed nonstationary design approaches have been proposed considering design lifespan of 

infrastructures, such as DLL, ER and ADLL methods. In future studies, more efforts are needed 

to test the existing methods worldwide and meanwhile develop more rational design strategies for 

updating IDF curves. 
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Tables 

Table 1 Summary of trend analysis of urban short-duration extreme precipitation in some regions 

Country/region Data Methods Key findings Reference 

Global scale 8326 stations 

Annual maximum 

daily precipitation 

(1900-2009) 

The Mann Kendall nonparametric 

trend test method; Non-stationary 

generalized extreme values 

models 

The extreme precipitation of 

nearly two-thirds of stations 

worldwide exhibits increasing 

trend. 

Westra et al. 

(2013) 

Global scale 217cities  

24 h rainfall extreme 

(1973-2012) 

Mann-Kendall test; 

Theil-Sen’s slope estimation 

method 

10% of annual maximum 24 h 

rainfall in urban area shows a 

clear upward trend 

Mishra et al. 

(2015) 

China/ 

Beijing-Tianjin-

Hebei, Yangtze 

River delta 

146 cities  

24 h rainfall data  

(1960-2014) 

Define 6 extreme rainfall indices; 

Ordinary least squares method; 

Principal component analysis 

Extreme precipitation in 

Beijing-Tianjin-Hebei shows 

a downward trend, while for 

Yangtze River delta an 

upward trend is confirmed. 

Zhou et al. 

(2017) 

China/ 

Shanghai 

11 stations  

1 h rainfall data 

(1916-2014) 

Linear tendency estimation 

method; Ensemble Empirical 

Mode Decomposition; Mann-

Kendall test 

The annual maximum 1 h 

rainfall shows a significant 

upward trend 

Liang et al. 

(2017) 

China/ 

Hong Kong 

Hong Kong station  

1 h rainfall data 

(1885-1939 and 1947-

2010) 

Design rainfall based on EVT and 

generalized Pareto distribution; 

Sliding window 

The 1 h rainfall extremes in 

the urban area of Hong Kong 

has shown a clear increasing 

trend.  

Lenderink et al. 

(2011) 

China/ 

South 

2420 stations  

1 h precipitation 

Student’s t test 

Mann-Kendall test 

There is a clear increasing 

trend of hourly precipitation 

Fu et al. (2016) 
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(1982-2012) extremes in South China 

Indonesia/ 

Jakarta  

Jakarta station  

1 h rainfall data 

(1866-1950 and 1959-

2010) 

Linear regression 

5-year moving window 

No significant trend in the 5-

year moving average of the 

annual maximum 1 h rainfall 

is found 

Siswanto et al. 

(2016) 

Japan 

Nationwide 

92 stations  

Rainfall with duration 

10 min, 1 h, 24 h 

(1951-2010) 

Linear regression 

Annual maxima and 95th 

percentile 

10 min rainfall extremes show 

the most significant upward 

trend 

Fujibe (2013) 

Peninsular 

Malaysia 

25 stations 

1 h rainfall data 

(1975-2010) 

Linear regression. 1 h precipitation extremes 

show an upward trend 

Syafrina et al. 

(2015) 

India/ 

Northwest 

33 cities 

24 h rainfall data 

(1971-2005) 

Mann-Kendall test 

Theil-Sen's slope estimation 

method 

Annual maximum 24h rainfall 

in 18% of cities shows a clear 

trend 

Pingale et al. 

(2014) 

Australia/ 

Sydney 

Sydney station 

Rainfall data with 

duration between 6 

min and 72 h 

(1921-2005) 

Comparison of the 10-year 

moving average and the long-

term series average 

Changes in rainfall frequency 

and magnitude are closely 

related to season, duration, 

and rainfall threshold 

Jakob et al. 

(2011) 

Belgium/ 

Uccle, Brussels 

Uccle station 

10 min precipitation 

extremes 

107-year time series 

Frequency analysis for moving 

window with 5 and 15 years 

10 min precipitation extremes 

increase significantly 

Ntegeka and 

Willems (2008) 

Czech Republic 17 stations 

30 min rainfall data 

(1961-2011) 

Theil-Sen’s slope estimation 

method 

Precipitation extremes of 

most stations are increasing 

Hanel et al. 

(2016) 

Denmark 

Nationwide 

66 stations 

Rainfall data with 

duration between 1 

min and 48 h 

(1979-2005) 

Analyze the changes in the 

estimated IDF curves between 

1979-1997 and 1979-2006 

10-year design rainfall 

between 30 min and 3 h 

increased by more than 15%; 

Intensity of rainfall over 24 h 

did not change significantly 

Madsen et al. 

(2009) 

United 

Kingdom 

Nationwide 

1311 stations  

1 h rainfall data 

(1982-2011) 

Least squares regression 

Mann-Kendall test 

Average hourly rainfall 

intensity trend is significant, 

but the annual extreme 

rainfall has no significant 

trend 

Blenkinsop and 

Fowler (2014) 

United States 

Nationwide 

more than 6,000 

stations 

Hourly precipitation 

data 

(1950-2011) 

Mann-Kendall test 

Pettitt test 

Nonstationary GEV model 

Both hourly and daily rainfall 

extremes have significantly 

increased over the last six 

decades across the U.S. 

Barbero et al 

(2017) 
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