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A B S T R A C T   

In this study, a spatiotemporal estimation method based on Funk singular value decomposition (F-SVD) that 
considers the spatiotemporal correlation of rainfall is proposed to improve estimations from gauge observations. 
Hourly rainfall data of several flood events are selected to verify the proposed method by comparing with Inverse 
Distance Weighting (IDW) and Ordinary Kriging (OK) in Hanjiang basin, China. The results show that (1) F-SVD 
has the best performance in rainfall estimation, the larger the amount of rainfall event, the greater the 
improvement of F-SVD method as compared to OK and IDW; (2) through the combination/integration with F- 
SVD, the accuracy of IDW and OK can be greatly improved. Therefore, F-SVD can be employed as a practical 
method to estimate rainfall spatial distribution, which is essential data for regional hydrological modelling and 
water resource analysis.   

1. Introduction 

Rainfall is one of the main sources of the water system and a key 
component of the water cycle on the earth (Diez-Sierra and del Jesus 
2017). Due to the influence of natural climate, terrain and underlying 
surface, the spatial and temporal distributions of rainfall on the earth’s 
surface are uneven, where apparent characteristics of regional and 
temporal variation exist. The spatial and temporal distribution of rain-
fall is of great significance for maintaining the life and health of all 
biological communities (Dai et al., 2020). It is also one of the most 
critical data sources for hydrological scientific research, water resources 
management, drought and flood disaster management, and ecological 
environment governance (Sivakumar and Woldemeskel 2015). 
Currently, the most common way of rainfall observation and collection 
is a rainfall gauge network, of which the main features are convenient, 
real-time and accurate. However, since the gauges are discrete, spatial 
calculation methods are needed to obtain the spatially continuous 
rainfall distribution. The spatial interpolation method plays a vital role 
in the calculation of the spatial distribution of rainfall data and has been 

widely concerned by many scholars (Ahrens 2006; Garcia et al., 2008; 
Kumari et al., 2016; Morris et al., 2016). 

The spatial interpolation methods for rainfall are based on Tobler’s 
First Law of Geography (Tobler 1970) that points closer in space are 
more likely to have similar eigenvalues, and points farther away are less 
likely to have similar eigenvalues, such as Tyson Polygon (Thiessen 
1911), Inverse Distance Weight (IDW) (Shepard 1968) and Kriging 
(Delhomme 1978), are among the most widely used methods in the 
spatial estimation for rainfall (Cai et al., 2018; Carrera-Hernández and 
Gaskin 2007; Foehn et al., 2018; Goovaerts 2000; Plouffe et al., 2015; 
Ryu et al., 2021; Zhang et al., 2018). While during the process of rainfall, 
not only points adjacent in space are more likely to have similar char-
acteristics, but also points contiguous in time are more likely to have a 
consistent variation trend. Therefore, to obtain more accurate results, 
both the spatial dimension and the time dimension should be considered 
during interpolating. Many researches have been carried out on the 
spatiotemporal estimation method for rainfall, such as Space-time 
Autoregressive Moving Average model (STARMA) and Kriging interpo-
lation method with time extension (Cliff and Ord 1975; Dalezios and 
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Adamowski 1995; Pfeifer and Deutrch 1980). Dalezios and Adamowski 
(1995) applied STARMA models in spatiotemporal rainfall modelling. 
Bargaoui and Chebbi (2009) proposed a 3-dimensional variogram 
(Location-Duration-Intensity) to replace the traditional 2-dimensional 
variogram (Location-Intensity), which can effectively consider the 
spatial variability of the maximum rainfall intensity in a given duration 
range and significantly reduce the rainfall prediction error. Spada-
vecchia and Williams (2009) compared simple Kriging (SK), ordinary 
Kriging (OK) and space-time Kriging with an external drift using a re-
sidual variogram with spatiotemporal lags in the interpolation of 
meteorological variables. Besides, some scholars combined the time 
machine learning method with spatial simulation to realize the spatio-
temporal interpolation of rainfall. Xu et al. (2019) proposed a novel 
spatiotemporal prediction model based on the cubic spline method and 
the spatiotemporal echo state networks, which showed advantages in 
predicting meteorological series over other spatial estimation models. In 
general, some progress has been made in the spatiotemporal estimation 
method for rainfall, and the existing results have shown that the 
spatial-temporal interpolation methods have higher accuracies than 
those spatial interpolation methods without considering the time 
dimension. 

The superiority of spatial-temporal interpolation methods for rainfall 
has been proved, however, compared with extensive application of the 
spatial estimation methods for rainfall, the existing spatiotemporal 
estimation methods for rainfall are too complex to be widely applied due 
to strong randomness and complexity of the rainfall process. In order to 
more conveniently and widely use the spatial-temporal estimation 
methods for rainfall, there are still exploration works to be worth doing 
for them. If the rainfall data at different times of each gauge are putting 
together, it can be found that an enormous two-dimensional spatio-
temporal matrix is formed, where the rows are the time dimension and 
the columns are the spatial dimension, as shown in Fig. 1(a). From Fig. 1 
(a), it can be seen that the rainfall process has a clear correlation in the 
time (T) and space dimension (S). It is possible to transform the spatial- 
temporal interpolation problem into a two-dimensional matrix solution 
problem. For example, if a certain value in a matrix is missing, it can be 
calculated through matrix factorization technology, which has been 
widely used in the e-commerce recommender system (Fig. 1 (b)). 

A common task of the recommender system is to improve customer 
experience through personalized recommendations based on historical 
interactions and prior implicit feedback (Hu et al., 2008). These in-
teractions are stored in the so-called “user-item interactions matrix” 
(Fig. 1(b)), which are used in many famous e-commerce platforms to 
recommend relevant products to users, such as Amazon, Taobao, Joy-
buy, Youtube, and Netflix etc. Its algorithms are mainly divided into two 

categories: collaborative filtering methods and content-based methods. 
And the collaborative filtering (CF) algorithm gains an advantage due to 
its insensitivity to content (Yu et al., 2018), which predicts user pref-
erences for products by learning known user-item relationships (Bell and 
Koren 2007). Matrix Factorization (MF) technique is one of the most 
popular approaches for solving the problem of CF, which views user 
preference ratings of items as a user-item matrix and uses known user 
ratings of items to predict user preferences in item selection (Takacs 
et al., 2009). As MF in the recommender system has high prediction 
accuracy, it has become recognized as a mature method in environ-
mental science, biomedicine and many other fields (Xie and Berkowitz 
2006; Xue et al., 2014; Zhang et al., 2019). González-Macías et al. 
(2014) used the positive matrix factorization approach in identification 
and source apportionment of the anthropogenic heavy metals in the 
sediments of sea. Lee et al. (2012) applied non-negative matrix factor-
ization to new gene expression data quantifying the molecular changes 
in four tissue types due to different dosages of an experimental panPPAR 
agonist in mouse. Yeh et al. (2018) proposed a rain removal method 
based on non-negative matrix factorization to improve image quality. 
Funk Singular Value Decomposition model (F-SVD), proposed by Funk 
(2006), is a variant of MF that outperforms other models in the Netflix 
Prize competition. The essential idea incorporated in F-SVD of MF is that 
users and items can be described by their latent features vectors inferred 
from rating matrix, and the high correspondence between user and item 
features leads to recommendation (Koren et al., 2009). As rainfall data 
can be viewed as an intrinsically related matrix, F-SVD is a good way to 
estimate an unknown point in the spatiotemporal rainfall matrix. From 
Fig. 1, it can be seen that there are similar interactions between 
spatiotemporal rainfall matrix and the user-item interactions matrix. In 
this study, F-SVD in the recommender system is regarded as a potential 
spatiotemporal method to estimate the rainfall for the first time, and its 
performance is evaluated by compared with IDW and OK methods. 

This paper aims to present a new approach using information of 
points both adjacent in space and contiguous in time to estimate rainfall 
more accurately and obtain continuous spatial distribution of rainfall, 
which is helpful for regional hydrological modelling and spatial statis-
tical analysis. The rest of this paper is structured as follows. Section 2 
introduces the proposed spatiotemporal interpolation method based on 
F-SVD and its implementation steps. Section 3 introduces the study area, 
data and evaluation indicators. Section 4 analyzes and discusses the 
results of spatiotemporal interpolation. Finally, section 5 summarizes 
the results of the study and presents existing problems and suggestions. 

Fig. 1. Spatiotemporal interactions matrix of rainfall and user-item interactions matrix.  
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2. Spatiotemporal estimation method based on F-SVD 

2.1. Rainfall spatiotemporal estimation expressed by F-SVD 

Rainfall data can be viewed as an intrinsically related matrix, with 
columns representing time and rows representing space, respectively. 
There is an implicit interactions relationship between time and space, 
which cannot be figured out directly, thus latent factors are needed to 
establish an indirect relationship. There is an example to illustrate the 
basic ideas of F-SVD to achieve spatiotemporal estimation of rainfall, as 
shown in Fig. 2. The rainfall records of 5 gauges with 5 moments form a 
spatiotemporal two-dimensional matrix R, and the rainfall at gauge S5 at 
moment T5 is supposed to be unknown marked with red box in R. Firstly 
assuming there are latent factors affecting the spatiotemporal distribu-
tion of the rainfall at each gauge and each moment, they can’t be 
observed directly from R. While they can be decomposed from R by 
using F-SVD. In this case the derived latent spatial factors matrix X and 
temporal factors matrix Yconsist of 5 row vectors xi and column vectors 
yi (i = 1, …,5), which represent the interactions relationships of latent 
factors in space and time. Then, it can be assumed that rainfall values in 
R can be derived from latent factors X and Y by multiplying them. For 
example, there exist latent factors x5 and y5 for gauge S5 and moment T5 
marked with red box in X and Y, which can be deduced from spatio-
temporal interactions relationships in R by using F-SVD. The supposed 
unknown values at gauge S5 and moment T5 can be estimated by 
multiplying latent factors x5 and y5, whose estimation is 5.1 mm. 

By comparing the estimation matrix R’ and original matrix R, it can 
be seen that there are estimation errors between them, while they are 
relatively small. For example, for unknown points, the relative error is 
− 8.9 %, which indicates the high accuracy of F-SVD in rainfall estima-
tion. Of course, this is a specific case, and the applicability of the F-SVD 
method needs to be further verified in the following sections. 

2.2. Proposed spatiotemporal estimation model based on F-SVD 

The objective of the proposed spatiotemporal estimation method 
based on F-SVD, is to use the current time and historical information to 
interpolate rainfall at the target points. The steps are as follows, where 
the transformation of variables involved is shown in Fig. 3. 

(1) For the estimation of rainfall at position i at moment j, a spatio-
temporal interactions matrix R sized of m × n which consists of 
rainfall of m positions at n moments is needed. The positions and 
moments corresponding to the rows and columns of the matrix 
have to be figured out first and the method is shown below. 

In matrix R the m positions consists of target position and rainfall 
gauges around, which belong to the optimal set chosen by the spatial 
uniformity L after running through all the possible permutations. 
Randomly select m − 1 gauges from all available gauges and combine 
them with the target position to form a set of m points. For the formed 
set, L is calculate based on the spatial distribution of points drawn ac-
cording to the latitudes and longitudes. L is a measure of spatial rela-

tionship of point set, and the larger the L value, the more evenly 
distributed the points. By listing all possible combinations and calcu-
lating the spatial uniformity, the point set with the largest L is the 
optimal set. L can be defined as 

L=
4a
πA

(1) 

In the equation above, A represents the area of the grid rectangle that 
contains all the points, and a indicates the total area of exclusive circles, 
which is defined for each point in the set as a circle with the center of 
itself and a radius of half the distance from the nearest adjacent point. 

As for the set of previous moments Tn involved, considering the ef-
ficiency and accuracy of matrix factorization, it is determined by N ac-
cording to the following rules: 

Tn

{
n = tstart, tstart + 1,…j, j − tstart < N
n = j − N, j − N + 1,…j, j − start ≥ N (2)  

where tstart denotes the starting time of rainfall event. If the rainfall 
event does not last long, then n ranges from the starting time tstart to the 
interpolated time j. Else if the event lasts longer than N, for moment j to 
which over N hours passed from the starting time, n includes N moments 
before j and j itself.  

(2) After obtaining the correspondence between matrix rows and 
positions, matrix columns and moments, the rainfall data used for 
interpolation need to be filled into the matrix accordingly. For the 
m − 1 rainfall gauges involved, the rainfall data before and at the 
interpolation time are filled directly into the related locations in 
the matrix. For the target position, if there are observation re-
cords before the interpolation time, then the observed data are 
directly filled into the corresponding locations, in which way only 
F-SVD is used for interpolation; else the traditional method such 
as IDW has to be used to interpolate the historical rainfall first, 
and then the historical interpolation result is filled into the ma-
trix, in which way the F-SVD is integrated with traditional 
method. After the data filling is completed, only the position 
corresponding to the target point and the interpolated time in the 
matrix is a null value.  

(3) Based on the F-SVD model, the matrix R is decomposed into 
spatial feature matrix X and temporal feature matrix Y by 
computing the relationships of q latent features in time and space 
through minimizing squared error on all known rainfall. More-
over, in case of the phenomenon of over-fitting, regularization 
method is introduced to the objective function: 

E2
i,j =

(
Ri,j − R′

i,j

)2
=

(

Ri,j −
∑q

q=1
Xi,qYq,j

)2

(3)  

min : SSE =
∑m+1

i=1

∑n

j=1
E2

i,j + λ
∑

i,q

⃒
⃒Xi,q

⃒
⃒2 + λ

∑

q,j

⃒
⃒Yq,j

⃒
⃒2 (4)  

where SSE denotes the loss function and λ is a hyper-parameter that 
controls the degree of regularization. 

Fig. 2. Example of rainfall spatiotemporal estimation using F-SVD.  
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In order to minimize SSE, stochastic gradient descent (SGD) algo-
rithm is chosen to solve the optimization problem above. A summary of 
this method is available as a flowchart here in Fig. 4. Xi,q and Yq,j will 
decrease in the direction of the fastest one in which the gradient descent 
and therefore the optimal solution can be inferred. To learn the optimum 
value of spatial feature vector Xi⋅, rainfall of all known time 
Pi,j(j= 1, 2…n) are used to factorized, that is to say, the value of each 
component in spatial feature vector Xi⋅ is related to all temporal feature 
vector Y⋅j(j= 1,2…n) that extracted from historical rainfall information. 
The equations are as follow: 

Xi,q =Xi,q − α
∂E2

i,j

∂Xi,q
= Xi,q + 2α

(
Ei,jYq,j − λXi,q

)
(5)  

Yq,j =Yq,j − α
∂E2

i,j

∂Yq,j
= Yq,j + 2α

(
Ei,jXi,q − λYq,j

)
(6) 

In the equations above, α indicates the learning rate in machine 
learning.  

(4) The spatial feature matrix X and temporal feature matrix Y are 
multiplied to obtain the optimal reconstructed interactions ma-
trix R′ and each element in it has a value. A one to one corre-
spondence exists between the elements in R and R’, that is, the 
value of the element in spatiotemporal interactions matrix R is 
equal to that of reconstructed interactions matrix R’ plus recon-
struction error matrix. Hence, the value of row i, column j in R′ is 
the estimated rainfall of point i at moment j. 

2.3. Evaluation methods 

In this study, two widely used spatial interpolation approaches 
including IDW and OK are adopted as benchmark methods for com-
parison without considering the temporal change trend. F-SVD can es-
timate the rainfall value of one site by using the spatiotemporal matrix of 
rainfall, which can be applied to the estimation of missing rainfall value 
or the test of rainfall abnormal value for sites. When it is applied to the 
interpolation of unknown points in space, it needs to be combined with 
the existing spatial interpolation methods to obtain more accurate 
spatial interpolation results. In order to evaluate the performance of the 
combination of F-SVD with the spatial interpolation methods, this study 
considered the combined use of F-SVD with IDW and OK, respectively 
named F-SVD-IDW and F-SVD-OK. 

The leave-one-out cross validation method was adopted to assess the 
accuracy. In this process, each time a record of one gauge from the 
dataset was removed and then be assumed using the information of all 
the gauges left. Then the interpolation results were compared to the 
observations to evaluate the estimation error using four statistical 

measures, namely root-mean-square error (RMSE), mean average error 
(MAE), percentage error (PERC) and two-sample Kolmogorov-Smirnov 
test statistic (KS). Among these statistical measures, the two-sample 
Kolmogorov-Smirnov test is a non-parametric test that compares 
whether there is a significant difference between two samples based on 
the empirical distribution function, and it is applicable and even for 
small sample sizes (Engmann and Cousineau 2011). The calculation 
formulas of each indicator are as follows: 

RSME =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(zsim

i − zobs
i )

2

√

(7)  

MAE=
1
n
∑n

i=1

⃒
⃒zsim

i − zobs
i

⃒
⃒ (8)  

PERC =
1

n1 + n2

(
∑n1

i=1

⃒
⃒
⃒
⃒
zsim

i − zobs
i

zobs
i

⃒
⃒
⃒
⃒+ n2

)

(9)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sup
x∈R

|F1(x) − F2(x)| ≤ dp,KSi = 0

sup
x∈R

|F1(x) − F2(x)| > dp,KSi = 1

KS =
1
n
∑n

i=1
KSi

(10)  

where zobs
i and zsim

i denote the observed value and the interpolated value 
at the i-th gauge; n1 and n2 represent the number of records which are 
non-zero and records where a measured zero is not predicted; F1 and F2 
indicate the distribution functions of calculation sequence and obser-
vation sequence of the i-th gauge; dp is the critical value at the signifi-
cance level p = 5%. 

For all measures, the smaller the value, the better the results. The low 
values of the first three measures indicate that the errors of the inter-
polation results are small, and the closer the fourth measure is to 0, the 
fewer gauges with significant errors in the interpolation and the 
measured sequence. 

3. Study region and data 

The study region is the upstream of the Hanjiang basin (Fig. 5), 
which is the largest tributary in the Yangtze River and the water source 
of the Middle Route Project of South to North Water Transfer, China 
(Chen et al., 2007). It originates from Qinling Mountain and is located in 
the southeast of China between east longitude of 106◦15′–112◦00′ and 
north latitude of 31◦40′–34◦20’. The entire drainage area of the study 
region is about 96,000 km2. Influenced by geographical factors, the 
basin has a subtropical monsoon climate with humid air and abundant 

Fig. 3. The sketch diagram of the proposed spatiotemporal estimation model based on F-SVD.  
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rainfall. The annual average rainfall is approximately 830 mm, 
decreasing from south to north. 

The spatial distribution of 176 rainfall gauges is shown in Fig. 5, 
hourly rainfall data from several flood events were selected during the 
period from 2012 to 2018 under different meteorological conditions in 
Hanjiang basin. The starting and finishing time of rainfall events were 
determined according to the division of flood event based on hydro-
logical hydrographs observed at the outlet streamflow gauge of the 
study area. The 20 selected events as well as some statistics are listed in 
Table 1. It can be seen from the table that the selected rainfall events are 
distributed from April to October, spanning the three seasons of spring, 
summer and autumn, including the main rainfall season in the Hanjiang 
River Basin (May to October); thus have a good representation. The 
duration of different rainfall events spans a wide range, with the shortest 
being only 16 h and the longest reaching 106 h. The percentage of 
gauges with a cumulative observed rainfall of zero varies from less than 
5 to more than 20, which represents the different spatial concentration 
of rainfall. 

4. Results and discussions 

4.1. Sensitivity analysis on the value of m and N 

The F-SVD method requires two parameters m and N to determine 
the size of the matrix when interpolating, where m is the number of 
gauges involved in interpolation and is related to the number of rows of 
the matrix; combining N and interpolation time j can determine the 
number of columns in the matrix. To obtain the best interpolation result, 
various values of these two parameters are selected for calculation and 
comparison. Table 2 lists the average spatial uniformity of all stations 
when m takes different values. As the value of m increases, the spatial 
uniformity increases first and then decreases. When the value of m is 20, 
L reaches the maximum value, which means the distribution of the 
surrounding stations is the most uniform and can well reflect the spatial 
information in all directions around the interpolation point in this case. 
Therefore, the value of m in this study is assigned 20. 

For the determination of the value of N, to ensure the efficiency of 
the calculation, three typical long-term events were selected, and the 
accuracy of interpolation is calculated in different situations. These 
three events are No. 1, No. 14 and No. 19, respectively, and their 
duration exceeds 50 h, which are long-lasting rainfall events. Here RSME 

Fig. 4. Flow chart of stochastic gradient descent method.  

Fig. 5. Study area and geographical distribution of rainfall gauges in Han-
jiang basin. 

Table 1 
Information of selected rainfall events with hourly time step data.  

Event Period Duration Season No-rain fraction 

NO. (− ) (h) (− ) (%) 

1 19 Jul-22Jul 2012 60 Summer 26.54 
2 7 Sep-8 Sep 2012 30 Autumn 17.90 
3 24 May-26 May 2013 64 Spring 4.32 
4 24 Jun-25 Jun 2013 32 Summer 14.81 
5 17 Jul-20 Jul 2013 88 Summer 8.64 
6 18 Apr-19 Apr 2014 32 Spring 21.60 
7 1 Sep-2 Sep 2014 32 Autumn 11.11 
8 26 Sep-28 Sep 2014 48 Autumn 9.26 
9 7 May-8 May 2015 16 Spring 15.43 
10 23 Jun-25 Jun 2015 54 Summer 8.64 
11 23 Sep-24 Sep 2015 24 Autumn 15.43 
12 22 Jun-25 Jun 2016 62 Summer 6.17 
13 13 Jul-15 Jul 2016 38 Summer 4.32 
14 24 Sep-28 Sep 2016 106 Autumn 9.88 
15 2 May-3 May 2017 34 Spring 11.11 
16 3 Jun-6 Jun 2017 68 Summer 3.09 
17 5 Oct-7 Oct 2017 58 Autumn 3.09 
18 23 Sep-27 Sep 2017 106 Autumn 3.70 
19 25 May-27 May 2018 50 Spring 9.88 
20 17 Jun-19 Jun 2018 44 Summer 2.47 

*The proportion of gauges with a cumulative rainfall of zero is listed as no-rain 
fraction. 

H. Chen et al.                                                                                                                                                                                                                                    



Environmental Modelling and Software 144 (2021) 105148

6

is used as the evaluation indicator, and the result is shown in Fig. 6. It is 
found that as the value of N becomes larger, RSME decreases first and 
then increases, reaching the minimum value, that is, the highest accu-
racy, when N is 24. So N is assigned 24 in this study. 

4.2. Models evaluation on all rainfall events 

The overall estimation results of the five models in 20 rainfall events 
are comprehensively evaluated using the four different indicators and 
shown in Table 3. It can be seen from Table 3 that the accuracy of the 
results of the five methods is within a reasonable range, indicating that 
they can be well applied to rainfall estimation in the Hanjiang River 
Basin. The evaluation results using four selected indicators are consis-
tent, with the accuracy of F-SVD being the highest, F-SVD-IDW and F- 
SVD-OK being the second and third highest, IDW being the fourth 
highest, and OK being the lowest. The result of IDW is better than OK 
with a small gap, which is similar to previous research (Hadi and 
Tombul 2018; Yang et al., 2015). Besides, the difference in accuracy 
between the five methods is more obvious judged by MAE and RSME 
since these two indicators are directly related to the amount of rainfall 
and heavy rainfall usually has a great impact on the values of them. And 
PERC and KS are less likely to be influenced by the magnitude of rainfall; 
thus the difference is smaller (Wasko et al., 2013). 

The cumulative rainfall of 20 events in the basin and the cross- 
validation interpolation results of the five methods are shown in 
Fig. 7. It can be seen that rainfall is mainly concentrated in the southwest 
of the basin. This is due to the high terrain in the southwest, the warm 
and humid air flows along the windward slope of the mountain range, 
plus the influence of the local climate, forming a strong rainfall center in 
the southwest of the basin. With RSME as the evaluation index, the sites 
with large cumulative rainfall, mainly distributed in the southwest, have 
large interpolation errors as the value of RSME is directly affected by the 
amount of rainfall. The sites with small interpolation errors are mainly 
distributed in the northern part of the basin since the rainfall in the north 
is very small or even zero. Comparing the distribution of gauges errors 
using the five methods, methods that combined with F-SVD have more 
yellow points in the northern part and less blue points in the southern 
part of the basin than OK and IDW, indicating that the use of F-SVD will 
improve the accuracy no matter the rainfall is large or small. 

The areal rainfall characters of 20 events calculated by the interpo-
lation results are shown in Table 4, among them the calculation results 
that are closest to the actual rainfall records are marked with a green 
background, and the farthest ones are marked with orange. It can be 

seen that the average of areal rainfall ranges from 0.5 mm to 3 mm. The 
standard deviation reflects the fluctuation of rainfall at different times. 
No. 5 event has an average areal rainfall of 1.22 mm, which is of 
medium-scale, but the standard deviation is the lowest, indicating that 
the rainfall process is relatively smooth with few cases of sudden in-
crease and decrease. The average areal rainfall of the No.9 event is 1.86 
mm and it only lasts for 16 h, but the standard deviation reaches 2.01, 
indicating that rainfall mainly concentrated in several periods. The 
characteristic values of the events calculated by the five interpolation 
methods are not much different from the measured values. Among the 
20 selected rainfalls, for both rainfall characteristic indicators, at least 
16 of the rainfall characteristic values calculated by F-SVD are the 
closest to the actual measurement, and that calculated by OK are the 
farthest. Besides, through combination with F-SVD, both IDW and OK 
perform better and generate more accurate rainfall characteristics than 
before. 

4.3. Models evaluation on representative rainfall events 

To better evaluate the interpolation ability of the F-SVD model, the 
magnitude of the event is sorted, and three typical events of heavy, 
moderate and small rain are selected for comparative analysis. They are 
in turn the No. 7 small rain event (7 May-8 May 2015), No. 20 moderate 
rain event (17 Jun-19 Jun 2018) and No. 18 heavy rain event (23 Sep-27 
Sep 2017). The results are shown in Fig. 8. In the figure, (a) is the cu-
mulative observed rainfall at each site, (b), (c), and (d) are the MAE of F- 
SVD, IDW, and OK, respectively, and (e) and (f) are the difference in 
accuracy between SVD and the other two methods, where the blue dots 
indicate the accuracy of F-SVD is higher, and the red dot indicates that of 
F-SVD is lower. It can be seen that for rainfall events of different mag-
nitudes, the interpolation error of gauges with heavy rainfall is large. 
Besides, the blue dots in figures (e) and (f) are more than the red points, 
indicating the number of gauges, whose interpolation accuracy using F- 
SVD is higher than using IDW and OK, is more. But for the gauges with 
small cumulative rainfall (<5 mm), the accuracy is not improved. The 
difference in accuracy between F-SVD and the other two methods is 
small during small rain, but as the rainfall magnitude becomes larger, 
the difference gradually increases. In the heavy rain event, the historical 
rainfall at most gauges is not zero, thus the F-SVD method can effectively 
extract the spatial and temporal feature information from the historical 
rainfall for interpolation, resulting in a noticeable improvement in 
accuracy. 

The results of three representative rainfall events using all five 
interpolation methods evaluated by different indicators are listed in 
Table 5. It can be seen that the accuracy of IDW is higher than that of OK, 
and through combination with F-SVD, the accuracy of IDW and OK are 
greatly improved. The accuracy of F-SVD is highest, which shows good 
estimation ability than traditional interpolators. As the magnitude of 
rainfall increases, the difference in accuracy between the five methods 
becomes larger. The interpolation error of No. 7 small rain event is the 
lowest judging from MAE, RSME and PERC. Besides, the evaluation 
result of No.20 moderate rain event using all indicators is worser than 
No. 18 heavy rain event. As can be seen from Table 1, N0.20 event lasts 
for 106 h and No.18 event only lasts for 44 h. For N0.20 event, the 
rainfall is very scattered and is extremely low in many moments, and the 
trend and regularity are not obvious, contributing to a larger 

Table 2 
Average spatial uniformity of all gauges with m of different values.  

m 16 18 19 20 21 22 24 

L 0.2952 0.3061 0.3081 0.3084 0.3062 0.3025 0.2833  

Fig. 6. RSME of 3 long-duration rainfall events under different values of N.  

Table 3 
Models performances on all rainfall events.  

Methods MAE (mm) RSME (mm) KS(− ) PERC (− ) 

OK 2.190 3.751 0.360 0.936 
IDW 2.163 3.669 0.257 0.911 
F-SVD-OK 1.263 2.357 0.204 0.839 
F-SVD-IDW 1.220 2.294 0.180 0.825 
F-SVD 1.123 2.141 0.178 0.795  
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Fig. 7. Spatial distribution of cumulative rainfall events of 20 selected rainfalls over Hanjiang basin and average value of RSME using 5 interpolation methods.  

Table 4 
Information of basin rainfall characteristics of 20 selected events from the records and interpolation results. 
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Fig. 8. For three representative rainfall events. (a) Recorded rainfall. (b) Error from interpolation using SVD. (c) Error from interpolation using IDW. (d) Error from 
interpolation using OK. (e) The change in error using result of IDW minus that of SVD. The blue dots represent an improvement, and the red dots represent a 
deterioration. (f) The change in error using result of OK minus that of SVD. 
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interpolation error. 

4.4. Estimation error distribution of interpolation methods 

The average gauge error in different selected events using five 
interpolation methods is shown in Fig. 9. It is found that except for few 
events, most of them produce the largest error using OK and the smallest 
error using F-SVD. Through combination with F-SVD, the accuracy of 
both IDW and OK is improved. The evaluation results by RSME and MAE 
are similar since they are both greatly affected by the rainfall amount. 
The results of PERC and KS are not the same; some rainfall events (such 
as No. 11) have low RSME, MAE, and high KS and PERC. As the areal 
total rainfall in the No. 11 event is only 15.9 mm, the accumulated 
rainfall at each gauge is relatively low, so the RSME and MAE values are 
not too large. The calculation of PERC concerns more with the relative 
error than the absolute error, for gauges with little rainfall, although the 
interpolated rainfall is also very low, the relative error may be large, 
causing PERC to become large. 

To evaluate the uncertainty of the five methods, two indicators, MAE 
and RSME, are selected, and a box plot of the errors of all stations in 20 
events is shown in Fig. 10. It can be seen from the figure that the vari-
ation trends of MAE and RSME are consistent. The median values of OK 
and IDW are higher than other methods, and the confidence intervals of 
them are wider. OK has a rather large uncertainty as its confidence in-
terval varies in different events. For most rainfall events, the median 
value and the width of the confidence interval of F-SVD-OK and F-SVD- 
IDW are very close, and sometimes the median value of F-SVD-IDW is 
slightly lower than that of F-SVD-OK. Through combination, the width 
of the confidence interval of them is greatly shorter than the previous 
two methods, and the median is also lower. The error distribution of F- 
SVD is the best as it directly uses observed records for estimation. It 
shows that the F-SVD method not only improves the interpolation ac-
curacy but also has higher stability. Among the 20 rainfall events 
interpolated by F-SVD, the relatively large errors mainly occur in No. 2, 
No. 4, No. 9, and No. 13 events and their durations are 30, 32, 16 and 38 
h, respectively, thus the F-SVD method may perform less well in short 
duration rainfall events. 

5. Conclusions 

In this paper, a new method based on F-SVD to improve rainfall 
estimation is proposed. Unlike traditional interpolators that only focus 
on the spatial relationships of gauges, the proposed method incorporates 
rainfall information at the current and historical moments into the 
estimation process which results in a more accurate result. Through 
combination with traditional interpolators, it can be applied to inter-
polate rainfall at unknown points and obtain continuous spatial distri-
bution of rainfall. Thus it is a practical method to process rainfall data 
for spatial pattern analysis and prepare input data for distributed hy-
drological models. Twenty rainfall events are selected from the hourly 
rainfall data of the rainfall gauges in the Hanjiang basin to verify this 
method by cross-validation using four indicators, and IDW and Kriging 
are included as benchmarks for accuracy comparison. The study con-
cludes that:  

(1) According to the interpolation results of 20 rainfalls, F-SVD has 
the highest accuracy and OK has the lowest accuracy. Through 

Table 5 
Prediction Error for three representative rainfall events.  

Event 
NO. 

Scale Methods MAE 
(mm) 

RSME 
(mm) 

KS 
(− ) 

PERC 
(− ) 

7 small OK 2.406 3.303 0.373 1.369 
IDW 2.334 3.098 0.363 1.315 
F-SVD-OK 1.077 1.704 0.279 0.865 
F-SVD- 
IDW 

1.038 1.641 0.234 0.852 

F-SVD 0.965 1.507 0.238 0.851 
20 moderate OK 3.082 4.440 0.432 1.529 

IDW 3.107 4.469 0.372 1.599 
F-SVD-OK 1.699 2.615 0.324 0.928 
F-SVD- 
IDW 

1.624 2.546 0.275 0.927 

F-SVD 1.406 2.227 0.226 0.926 
18 heavy OK 2.701 4.339 0.304 1.424 

IDW 2.665 4.266 0.159 1.414 
F-SVD-OK 1.355 2.365 0.173 1.016 
F-SVD- 
IDW 

1.310 2.320 0.136 1.074 

F-SVD 1.188 2.076 0.133 0.976  

Fig. 9. Interpolation error of different methods for all selected events.  
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combination of OK and IDW with F-SVD, the accuracy of OK and 
IDW can be greatly improved. Due to the different emphasis of 
the indicators, the gap between five methods in RSME and MAE is 
larger than that in PERC and KS.  

(2) In cross-validation, the rainfall magnitude has an effect on the 
interpolation accuracy. For different rainfall events, the larger 
the rainfall magnitude, the more gauges of which the accuracy 
can be improved by the F-SVD method.  

(3) According to the error distribution of all stations in each rainfall 
event, F-SVD not only improves the interpolation accuracy but 
also reduces the uncertainty of the error, so F-SVD has better 
stability. 

However, there are also some limitations in this study. F-SVD is a 
latent factor model and its algorithmic meaning is to build relationships 
between time and space through latent factors, which cannot correspond 
to physical concepts in reality, thus it has a poor interpretability. Be-
sides, only two widely used interpolation methods (OK and IDW) are 
used for comparison, and one basin, Hanjiang basin, is considered in this 
study, the conclusions may not be generalized. Therefore, more basins 
with different distribution of gauges and more methods for comparison 
will be helpful to validate the proposed interpolation method. 
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