
1.  Introduction
Drought is one of the severe natural hazards that imposes destructive effects on a wide range of sectors 
including economy and ecosystems (Li et al.,  2021; Williams et al.,  2020). Drought control and disaster 
mitigation require timely and reliable drought predictions that provide essential information to develop 
and implement feasible drought mitigation measures (Li, Wang, Wu, Xu, et al., 2020; Ma et al., 2019; Su-
tanto et al., 2020). In general, drought prediction methods include dynamical and statistical predictions. 
Although dynamical models provide useful information for drought situations based on the short-term 
climatic forecasting, it is usually difficult to implement in applications at local agencies due to complex 
procedures, especially for undeveloped regions (Chen & Georgakakos, 2014). In addition, it contains uncer-
tainty and limited skill with respect to long lead times (Liu et al., 2018). Alternatively, statistical models that 
utilize macro-scale interconnections between oceanic and atmospheric variables are relatively simple but 
perform as well as or even better than the dynamical ones (Deo et al., 2017). Therefore, some scientists and 
managers still rely on statistical models for practical applications (Chen & Georgakakos, 2014).

To date, much effort has made to develop reliable and effective statistical drought prediction models by 
developing new or improved methods and selecting most related predictors. Both linear and nonlinear 
models have been widely used to construct the interconnections between predictor and predictand (Agha-
Kouchak, 2014). For example, autoregressive integrated moving average models have been the most widely 
used stochastic models for hydrological drought prediction (Tian et al., 2016). Nevertheless, the relation-
ships between predictor and predictand are somewhat nonlinear (Mishra & Singh, 2012). Machine learn-
ing algorithms, such as Support Vector Regression (SVR), Random forest (RF), and extreme learning ma-
chine (ELM), are thus introduced to address the limitation of linear models (Belayneh & Adamowski, 2012; 
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Belayneh et al., 2014; Feng et al., 2020). These three models have been extensively applied in various fields, 
such as floods and precipitation prediction (Ali et al., 2020; Lee et al., 2017; Sadler et al., 2018).

SVR is a machine learning method, popular in hydrological prediction (Khan & Coulibaly, 2006; Rasouli 
et al., 2012). Belayneh and Adamowski (2012) utilized SVR to predict the standardized precipitation index 
(SPI) in the Awash River basin. To improve prediction accuracy, the wavelet transforms were applied to the 
pre-processing of SVR, forming the wavelet-SVR model (Belayneh et al., 2014). Zeng et al.  (2011) found 
that SVR has better prediction skill in predicting winter extreme precipitation than the multiple linear 
regression and Bayesian neural network models. RF is generally used for drought prediction over different 
drought prone regions around the world (Dikshit et al., 2020; Loken et al., 2019). Based on RF, drought 
prediction models were developed for South Korea (Rhee & Im, 2017). For East Asia, Park et al. (2018) con-
structed a short-term meteorological drought prediction model by employing RF and using the Madden-Ju-
lian oscillation index as the predictor. Extreme learning machine (ELM) is another widely used method in 
hydroclimate prediction (Lima et al., 2016; Niu et al., 2020). For example, Li and Cheng (2014) conducted 
1-month ahead monthly discharge prediction for two reservoirs located in southwestern China, and demon-
strated that the ELM-based model performed slightly better than SVM for peak discharge estimation. Lima 
et al. (2015) also demonstrated that ELM outperformed other commonly used models such as the multiple 
linear regression, SVR, RF, and artificial neural networks in terms of the computational efficiency.

For predictor screening, the factors that reflect large-scale atmospheric and oceanic conditions are usually 
considered for hydroclimate prediction, among which sea surface temperature (SST) is one of the strongest 
signals (Manzano et al., 2019). As indicated by Dai (2011) and Schubert et al. (2016), there is close rela-
tionship between SST and large-scale atmospheric circulation and SST plays a significant role in driving 
hydro-climatic variability. As such, SST is commonly used for hydro-climatic predictions (Hao et al., 2018). 
Using SST, together with Pacific-North American atmospheric teleconnection and Pacific Decadal Oscilla-
tion, linear- and nonlinear-based models were developed for prediction of the April-August streamflow in 
the Columbia River, Canada (Hsieh et al., 2003). Diro et al. (2011a) developed a seasonal precipitation pre-
diction system over Ethiopia based on the linkage between global SST and precipitation anomalies. Funk 
et  al.  (2014) discovered that the eastern African boreal spring precipitation variability is related to SST 
fluctuations, and determined SST indices to predict spring precipitation in eastern African. While in China, 
a prediction model for large and regional scale droughts was developed based on drought-related SST (Liu 
et al., 2018).

Meteorological drought prediction is important for predicting other types of droughts, since water deficit 
may propagate to the relevant component of the hydrological cycle (Hao & Singh,  2016). Although the 
aforementioned studies employing SST as the drought predictor are useful and encouraging, developing a 
general, accurate meteorological drought prediction model still remains a challenge (Madadgar et al., 2016). 
On one hand, most of drought prediction models utilize SST signals over one or some specific sea zones (Be-
layneh et al., 2014; Feng et al., 2020; Madadgar et al., 2016). For example, the nino3.4, one of the indicator 
of El Niño-Southern Oscillation (ENSO), is referred to as the average SST anomaly in the region bounded 
by 5°N–5°S and 170°–120°W. Consequently, the potential useful information of SST over other sea zones are 
neglected, limiting the model inputs and in turn hampering the improvement of model accuracy (Chen & 
Georgakakos, 2014). Moreover, there is still a lack of consideration of the temporal fluctuation of SST. Many 
studies extract SST signals in such a way that SST is averaged over a time span (e.g., wintertime SST and 
monthly SST), or SST over different time periods is used separately (e.g., September SST and October SST 
are regarded as two separate predictors). In fact, the temporal SST fluctuation is indicative of hydro-climatic 
variables variations. It is possible that through using SST fluctuation the accuracy of drought prediction 
model improves. On the other hand, under the backdrop of climate change, meteorological droughts in 
future probably show larger uncertainties than the past, making deterministic drought prediction models 
less informative for drought control and disaster mitigation (Xu et al., 2018). In this regard, ensemble or 
probability prediction is beneficial and essential, since it provides more information than deterministic 
prediction for decision or policy makers to manage meteorological droughts.

In terms of drought characterization, precipitation-based drought indices such as SPI are often utilized 
for drought monitoring and prediction. However, the index that only involves precipitation neglects the 
other climate factors (e.g., temperature and potential evapotranspiration), and it assumes the stationarity 
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of other variables (Vicente-Serrano et al., 2010). The SPI-based drought prediction may deviate from the 
actual dry situations (Rhee & Im, 2017). Drought indices like standardized precipitation evapotranspiration 
index (SPEI) are more preferable, especially for applications involving drought prediction in complicated 
and changing climate scenarios (Vicente-Serrano et al., 2010).

This then is the focus of our study, where we introduced a new drought prediction approach, capable of 
making ensemble, probability and deterministic prediction of meteorological droughts across different riv-
er basins around the world with relatively high accuracy. The antecedent SST fluctuation pattern (ASFP) 
is defined and served as the predictor. Three machine learning algorithms, that is, SVR, RF, and ELM are 
employed to develop models to predict SPEI with 1- and 3-month lead times. To demonstrate our approach, 
four river basins including the Colorado, Danube, Orange, and Pearl River basins with different climates 
and frequent droughts are chosen as the cases. We hope that our approach help provide timely and reliable 
outlooks of droughts to mitigate adverse drought impacts and improve water resource management.

2.  Methodology
2.1.  Rationale of Drought Prediction Approach

The new drought prediction approach includes three key steps. The first step is to pre-process predictor and 
predictand, and the second step is to define predictor, followed by the last step in which machine learning 
is employed to form ensemble, probability, and deterministic drought prediction models. The flowchart of 
the drought prediction approach is depicted in Figure 1.

2.1.1.  Predictor/Predictand Decomposition

The linear and nonlinear methods usually have limited ability to predict non-stationary series; they often 
fail to handle non-stationary data without input data pre-processing (Belayneh et al., 2014). Therefore, han-
dling non-stationary data requires pre-processing. One traditional data pre-processing way is to use wavelet 
transforms (Belayneh et al., 2014). Another widely used data pre-processing method is the seasonal-trend 
decomposition procedure based on loess (STL-decomposition), a simple and robust method for decompos-
ing time series (Sun et al., 2019). The main advantage of this method is that it has strong resilience to outli-
ers, resulting in robust component sub-series. Moreover, based on numerical methods, it can be utilized to a 
large number of series without the restriction of the properties of each time series (Verbesselt et al., 2010).

In this study, we employ STL-decomposition to decompose SST and SPEI into additive components of var-
iation (trend, seasonality, and residual) instead of the wavelet transforms. Wavelet transforms produce the 
number of decomposition levels that must be carefully selected (Belayneh et al., 2014). Given that the mod-
els in our study would predict droughts at the grid scale, the decomposition levels could differ from one grid 
to another with the wavelet transforms applied, which leads to much difficulty in selecting decomposition 
levels. In comparison, the decomposed component from STL-decomposition is more stable. For each de-
composition component, a prediction model is established, and the prediction of each sub-component is 
added together to form the final prediction.

2.1.2.  Antecedent SST Fluctuation Patterns

SST predictors based on SST fluctuations between two periods or regions can infer seasonal fluctuations 
in climate system (Diro et al.,  2011a, 2011b; Frankignoul, 1985). It is possible that using the superposi-
tion/difference of SSTs between different periods or regions has the potential to improve prediction mod-
el accuracy. While the lead time for long-range hydro-climatic prediction can range from month to year 
(Gobena et al., 2013), the prediction accuracy would decrease and uncertainty enlarge along with increased 
lead times, probably due to climate change (Chen & Georgakakos, 2014). To reduce prediction uncertainty 
caused by long lead times, it is better to screen the most recent predictor signals. Meanwhile, the 1–3-month 
lead time predictions are more accurate than those with longer lead times (Rhee & Im, 2017). We thus select 
1–3 months antecedent SST as the predictors.

For the 1-month lead time prediction, the antecedent SST fluctuation pattern is defined by using 1- to 
3-month antecedent SST. Define 1K , 2K , and 3K  as the 1–3-months antecedent SST, respectively, and ASFPs 
are the combination of the 1–3-month antecedent SST superposition or difference.
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�1.	� Type Ⅰ: include 1 month antecedent SST signals:

 1ASFP1 .K� (1)

�2.	� Type Ⅱ: include 2 months antecedent SST signals:

   
   

1 2 1 2

1 3 1 3

ASFP2 , ASFP3 ,
ASFP4 , ASFP5 ,

K K K K
K K K K� (2)

�3.	� Type Ⅲ: include 3 months antecedent SST signals:

     
     

1 2 3 1 2 3

1 2 3 1 2 3

ASFP6 , ASFP7 ,
ASFP8 , ASFP9 ,

K K K K K K
K K K K K K� (3)

The nine ASFPs are for the 1-month lead prediction. Alternatively, the 3–6 months antecedent SSTs are for 
the establishment of ASFPs for the 3-months lead prediction.
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Figure 1.  Flow diagram of the meteorological drought prediction approach based on ASFP and machine learning.
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2.1.3.  Predictor Screening

It is essential to identify suitable predictors that can explain large variances of the predictand in certain 
periods before the setup of a prediction model (Liu et al., 2018). One way to screen predictors is the linear 
correlation method. Though it could miss the nonlinear relationship between predictor and predictand, it is 
still the most commonly used tool for diagnosing and selecting potential predictors (Hao et al., 2018). Previ-
ous literatures also indicate that models using correlation analysis to select predictors could show predictive 
skills for different regions (Feng et al., 2020; Hsieh et al., 2003; Rasouli et al., 2012). In this study, the moving 
time window method is employed; for a moving window, the correlation between a decomposition compo-
nent (i.e., trend, seasonality and residual) of ASFP (predictor) and that of SPEI (predictand) is examined 
(Figure S1). The 0.05 significant level is used to identify significant oceanic grids.

2.1.4.  Machine Learning Algorithms

When a predictor is screened through correlation analysis, it is not necessarily linearly correlated with pre-
dictand. Machine learning algorithm can explore the potential nonlinear connection and has the potential 
to improve prediction accuracy (Belayneh et al., 2014). Of the various machine learning algorithms, RF, 
SVR, and ELM are widely employed for hydro-climatic predictions (Dikshit et al., 2020; Niu et al., 2020; 
Zeng et al., 2011). The three algorithms show many advantages over others, such as high prediction ability 
and acceptable tolerance to outliers and noise (Huang et al., 2006). As such, these three models have been 
widely applied to many fields including, but not limited to, hydro-climatic researches (Ali et al., 2020; Lee 
et al., 2017; Sadler et al., 2018). Therefore, we use the three machine learning algorithms to build drought 
prediction models.

RF is a combination classification or regression method based on the statistical learning theory (Brei-
man, 2001). In a RF, multiple samples are drawn using the resampling bootstrap method, and regression 
trees are built corresponding to each bootstrap sample. SVR is also a regression prediction tool that uses 
machine learning theory to maximize predictive accuracy while automatically avoiding over-fitting (Chang 
& Lin, 2011). ELM is a simple and efficient single-hidden layer feedforward network (Huang et al., 2006). Its 
key idea is to randomly generate the weights between the input layer and the hidden layer, and analytically 
calculate the output weights by using Moore-Penrose generalized inverse.

2.1.5.  Prediction Model Formulation

For the decomposition components (trend, seasonality, and residual) of ASFP and SPEI, the relationship 
between them is established using the three machine learning algorithms, forming drought prediction 
models (hereafter ASFP-RF, ASFP-SVR, and ASFP-ELM). The calibration and validation of the models are 
conducted with the moving time window method (Figure S1). Since there are nine ASFPs, for a decomposi-
tion component of SPEI, nine prediction outputs are obtained and the final prediction of SPEI is produced 
by adding each decomposition component of SPEI. Nine SPEIs would be obtained composing ensemble 
and probability prediction, which can also be used for deterministic prediction. To obtain a deterministic 
prediction, merging multiple models is an effective way to alleviate the uncertainties from a single result 
and to obtain a robust deterministic prediction (Kim et al., 2017). The Bayesian model averaging method is 
adopted for ensemble averaging (Wang et al., 2017).

2.2.  Model Performance Evaluation

The Brier score (BS) and Brier skill score (BSS) are used to estimate ensemble and probability prediction 
accuracy. The BS is negatively oriented (0  BS  1), with perfect prediction BS = 0. A positive BSS indicates 
a better prediction, while a negative value indicates a worse prediction than the reference system that refers 
to the threshold of SPEI that identifies drought events (Muluye, 2011). A threshold of −0.5 for SPEI is used 
which is also widely used elsewhere for identification of drought events (Hateren et al., 2019). The correla-
tion coefficient (r) is for the evaluation of probability and deterministic prediction performance. The nor-
malized Root Mean Square Error (nRMSE) and a contingency table approach (recommended by the World 
Weather Research Program, https://community.wmo.int/activity-areas/wwrp) are employed to assess de-
terministic prediction (Feng et al., 2020). If it is lower than 10.0%, the performance of the model is consid-
ered excellent; higher than 10.0% but lower than 20.0% indicates good performance; higher than 20.0% but 

LI ET AL.

10.1029/2020WR029413

5 of 20

https://community.wmo.int/activity%2Dareas/wwrp


Water Resources Research

lower than 30.0% suggests fair prediction; higher than 30.0% implies poor prediction (Feng et al., 2020). 
There are four possibilities, including hit, miss, false alarm and correct negative. At a given lead time, a hit 
is calculated when both observation and prediction indicate a drought. It is a miss if the observation shows 
drought while the prediction does not. A false alarm is identified when the prediction indicates a drought 
but the observation does not. It is a correct negative if no drought occurs in both observation and prediction. 
From the contingency table, the accuracy (AC), bias score (BIS), probability detection (POD), false alarm 
ratio (FAR), and equitable threat score (ETS) are derived (Mo & Lettenmaier, 2020).

3.  Case Study and Data
3.1.  Case Regions

Four river basins are chosen from different continents (respectively located in East Asia, North America, 
Europe, and Southern Africa, Figure 2) to demonstrate the performance of the presented approach. The 
first river basin named Pearl River basin (PRB), is the third largest drainage basin in China, with an approx-
imate area of 454,000 km2. Though it is characterized by the humid climate, it has suffered considerably 
from frequent and severe meteorological droughts (Li, Wang, Wu, Chen, et al., 2020). The Colorado River 
basin (CRB) is located within the intermountain region of the western United States. In recent decade, CRB 
underwent several largest droughts observed in the historical record (He et al., 2017). The third case is the 
Danube River basin (DRB) in Europe, covering a total area of about 800,000 km2. The fourth basin is the 
Orange River basin (ORB) located in Southern Africa, which has an area of about 900,000 km2. The climates 
over these four basins are different, varying from humid to arid climates; correspondingly, the drought con-
ditions in these basins are different. Selecting these basins as case regions helps underscore the generality 
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Figure 2.  Locations of four river basins used in this study. (a) Colorado River Basin (CRB) in North America, (b) Pearl River Basin (PRB) in Asia, (c) Danube 
River Basin (DRB) in Europe, and (d) Orange River Basin (ORB) in Africa.



Water Resources Research

of the proposed approach. Moreover, these basins suffer from frequent droughts in recent decades that can 
provide enough drought events for the validation of the approach (Baudoin et al., 2017; He et al., 2017; 
Masih et al., 2014).

3.2.  Data Sources

Monthly 0.5 × 0.5° precipitation and potential evapotranspiration (PET) data sets from the Climatic Re-
search Unit (CRU TS v. 4.03) of the University of East Anglia (Harris et al., 2014) are used to calculate the 
SPEI in these four basins during 1901–2018. The 3-months SPEI are used as it is considered more stable 
than 1-month SPEI and more sensitive to the drought processes than those with longer time scales (Zhao 
et al., 2017). The CRU has strictly validated and controlled the quality of the data, and the Penman-Mon-
teith method is utilized to compute PET. It is a widely used climate data source around the world which is 
updated in time and reliable for drought application (Beguería et al., 2014). Considering that if the spatial 
resolution of the prediction models are set too fine, there would be a number of grids resulting in exception-
al computation burden, while too coarse could hinder precise prediction. Finally, the prediction models are 
developed at the spatial resolution of 1° × 1° and SPEI are thus resampled to such resolution by the bilinear 
interpolation. The National Oceanic and Atmospheric Administration COBE-SST data set with 1° × 1° reso-
lution from 1901 to 2018 is used for SST anomaly analysis (Ishii et al., 2005). Like CRU data, COBE-SST data 
are open accessed and updated in time, which supports the development of SST-based monthly or seasonal 
drought prediction models.

3.3.  Model Setup and Parameter Specification

In the case study, we select some oceanic regions where predictors (ASFP) are screened from for four basins 
(Figure S2), given that the computational cost might be huge if global SST is involved. The time moving win-
dow is set to 30-year length resulting in 30 calibration periods (i.e., 1901–1988, 1902–1989, ..., 1930–2017) 
and 30 validation outputs (i.e., 1989, 1990, ..., 2018). In addition, the e-SVR is used in the study, along with 
“elmNNRcpp,” “e1071,” and “randomForest” packages in the R software, to drive ELM, SVR and RF models.

The impact of hidden neurons in ELM (or regression trees in RF) on model accuracy are assessed. Simu-
lation and prediction results during calibration and validation are obtained according to different hidden 
neurons (or regression trees). During calibration, for each ASFP and sub-decomposition model, the r and 
RMSE values between observation and simulation are calculated at each grid in each widow; while during 
validation, the BS and BSS values for ensemble prediction and r values for deterministic prediction are cal-
culated. The parameter specification and the corresponding results are shown in Figures S3–S6. The hidden 
neurons for ASFP-ELM model is set to 300, and the regression trees for ASFP-RF model is set to 500. As 
for ASFP-SVR model, the “tune” function in the “e1071” R package is used to select the optimal parameter.

4.  Results
4.1.  Ensemble and Probability Predictions

Using the ensemble prediction from 1989 to 2018, BS and BSS are calculated to evaluate ensemble predic-
tion (Figure 3). For 1-month lead time prediction, the ASFP-ELM model overall shows lower BS values than 
that driven by ASFP-RF and ASFP-SVR models in these four basins. BS values of the ASFP-ELM model are 
mostly less than 0.15 across most of the study areas in four basins (Figure 3a). However, they mostly range 
from 0.2 to 0.3 for the ASFP-RF and ASFP-SVR models in PRB, DRB, and CRB; high BS values were found 
in ORB, with a range of 0.3–0.4. BSS values are mostly larger than 0.4 for most areas of the four basins ac-
cording to the ASFP-ELM model (Figure 3b). Nevertheless, the BSS values are less than 0.2 for the ASFP-RF 
and ASFP-SVR models across the most areas of the PRB, DRB, and CRB, and are lower than 0 in ORB. 
The BS and BSS values of the 3-months lead time prediction share similar spatial pattern with those of the 
1-month lead prediction (Figures 3c and 3d). Low BS values are found in most parts of the four basins for 
the ASFP-ELM model, ranging from 0 to 0.15 (Figure 3c). In contrast, the ASFP-RF and ASFP-SVR models 
show larger BS values, ranging from 0.2 to 0.3. Figure 3d indicates that most areas of the four basins present 
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satisfied BSS values based on the ASFP-ELM model, with a range of 0.3–0.4. However, BSS values of the 
ASFP-RF and ASFP-SVR models in most parts of the study areas are less than 0.2.

The BS and BSS values of probability prediction are similar to those of ensemble prediction (Figure 4). The 
ASFP-ELM model in four basins present lower BS values, with a range of 0–0.15. In contrast, the ASFP-RF 
and ASFP-SVR models display relatively larger BS values ranging from 0.2 to 0.3. Moreover, most areas of 
the study regions show satisfactory BSS values for the ASFP-ELM model, with a range of 0.3–0.4. However, 
BSS values of the ASFP-RF and ASFP-SVR models in most parts of the study areas are less than 0.2. In ad-
dition, r values of ASFP-ELM model are lower than those of ASFP-RF and ASFP-SVR in the study regions. 
Specifically, r values of the ASFP-ELM model in most of the study areas are less than −0.7. However, r val-
ues of the other two models in most areas of the four basins are higher than −0.5 (Figures 5a and 5b). Over-
all, the BS, BSS, and r values indicate that ASFP-ELM presents better performance for the 1- and 3-months 
lead times than those obtained by ASFP-RF and ASFP-SVR; it shows favorable skills for 1- and 3-months 
lead time ensemble and probability prediction in PRB, CRB, DRB, and ORB.
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Figure 3.  The BS and BSS metrics for ensemble prediction of the three models in four river basins. (a and b) 1-month lead prediction; (c and d) 3-months lead 
prediction.
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4.2.  Deterministic Prediction

Using the deterministic prediction outputs from 1989 to 2018, r values were initially applied to assessing 
the deterministic prediction (Figures  5c and  5d). The ASFP-ELM model fairly presents higher r values 
than ASFP-RF and ASFP-SVR models in these four basins. r values of the ASFP-ELM model in most of the 
study areas are larger than 0.7; this metric in almost the whole CRB and the eastern DRB even reaches to 
0.8. However, r values of the other two models in most areas of the four basins are fairly less than 0.5. The 
r values of the 3-months lead time prediction share similar pattern with those of 1-month lead prediction. 
These imply that the ASFP-ELM model is fairly more skillful than the ASFP-RF and ASFP-SVR models for 
both 1- and 3-months lead time deterministic prediction.

Using nRMSE, AC, POD, FAR, BIS, and ETS, we further examine the model prediction performances (Fig-
ures 6, S7 and S8). The nRMSE values of the ASFP-ELM model are mostly between 10%–16% (Figure 6a), 
while the other two models present higher nRMSE values. In the ASFP-ELM model, the AC values are 
basically greater than 75% (Figure 6b), but low AC values (55%–70%) are found for the other two models. 
The POD values of the ASFP-ELM model are mostly greater than 70% (Figure 6c). In contrast, FAR values 
are mostly less than 25% (Figure 6d). The ASFP-RF and ASFP-SVR models show low POD values (<40%) 
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Figure 4.  The BS and BSS metrics for probability prediction of the three models in four river basins. (a and b) 1-month lead prediction; (c and d) 3-months lead 
prediction.



Water Resources Research

but relatively high FAR values (>25%). BIS values for the ASFP-ELM model are between 0.8 and 1.1 (Fig-
ure 6e), but this metric for ASFP-RF and ASFP-SVR models are generally smaller than 0.4. ETS values of 
the ASFP-ELM model are between 0.4 and 0.6 (Figure 6f), while ETS values for the other two models range 
from 0 to 0.2.

The spatial pattern of these several metrics for 3-months lead prediction is similar to that for 1-month lead 
prediction (Figures 7, S9  and S10). In the ASFP-ELM model, nRMSE values are mostly smaller than 16% 
(Figure 7a), while this metric for RF- and SVR-based models are between 16% and 22%. The AC values of 
the ASFP-ELM model are fairly higher than 75% (Figure 7b), while the other two models show low AC val-
ues (<70%). The ASFP-ELM model overall presents high POD values (>65%) but relatively low FAR values 
(<25%) (Figures 7c and 7d). POD values for the other two models are mostly smaller than 40%, but FAR val-
ues are higher than 25%. BIS values for the ASFP-ELM model indicate that the model, in general, does not 
tend to overestimate or underestimate droughts (Figure 7e), while the two models tend to underestimate 
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Figure 5.  Correlation coefficients for probability (a and b) and deterministic (c and d) predictions of the three models in four river basins.
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droughts. In the ASFP-ELM model, ETS values are in a range of 0.4–0.6 (Figure 7f), but are between 0 and 
0.2 for the other two models.

4.3.  Real-World Drought Events Prediction

The above evaluation metrics indicate the ASFP-ELM model outperforms ASFP-RF and ASFP-SVR models. 
To further test whether the ASFP-ELM model can fairly predict the spatiotemporal variations of droughts 
from both the deterministic and probabilistic aspects, several typical drought events across the four basins 
were chosen. Despite located in the humid climate zone, PRB suffered from exceptional drought during the 
autumn 2009 and the spring 2010 (Lin et al., 2015). As shown in Figures 8 and S11, the drought started to 
appear in west and east of the PRB in August 2009, with mild dry conditions, and then drought intensity 
gradually increased in the upper reaches in September; the prediction generally detects the drought on-
set. In October, drought became rather severe, and extended to the whole basin, which in accord with the 
model prediction; specifically, a good prediction for drought condition is found in the north region, with 
high probability of SPEI < −0.5, while it tends to underestimate the dry condition in the south region. 
Drought in the middle and lower reaches of the basin gradually faded away during the next few months; 
nevertheless, severe drought still persisted in the upstream areas during November 2009 and March 2010. 
The deterministic prediction overall reproduces the severe dry condition persisted in the west region, and 
the regions with a high probability of SPEI < −0.5 generally cover those with severe dry conditions revealed 
by observations. Drought intensity in these areas alleviated from April to May 2010, and deterministic and 
probability models both fairly predict such alleviation process, in accord with the previous study (Huang 
et al., 2021). Overall, the predictions well reflect this specific drought event over PRB.

A particularly extreme drought has hit Europe in 2003 (Rebetez et al., 2006). During February and March 
2003, the drought was observed in the north of DRB, where a high probability of SPEI < −0.5 is detected 
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Figure 6.  The six-evaluation metrics of the 1-month lead prediction obtained from the ASFP-ELM model in four river 
basins.
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(Figures 9 and S12). It gradually spread throughout the basin in April and dry conditions became worse in 
May, as shown by prediction and observations; the drought probability largely increases across the whole 
region. The dry condition lasted for over 3 months in most of areas from June to August, as reported in Sto-
janovic et al. (2017); deterministic prediction fairly indicates this persistent dry condition, while it underes-
timates the dry condition in August, and the probability prediction presents a high probability of drought 
occurrence. Both prediction and observation indicate after that, drought intensity decreased and disap-
peared in most regions by November 2003, with low drought probability.

Drought in the west United States usually affects millions of people and causes widespread damages (He 
et al., 2017). Two typical drought events that respectively occurred in 1989 and 2017/2018 are selected for 
analyses in CRB. During March 1989, the drought began to occur in the south of CRB, with relatively large 
drought probability (Figures  10 and  S13). However, both prediction and observation show that drought 
expanded to the whole basin and intensity became high in the next month. The severe dry condition per-
sisted in the entire basin from May to June; the drought areas and category are fairly consistent with the 
observations, and the whole basin experienced high drought probability. Intensity gradually reduced from 
July to August, with decrease in dry probability. The other event started to appear in CRB during November 
2017. Severe dry condition then extended to the whole basin in December and maintained until January 
2018; probability prediction indicates the entire basin tends to suffer dry condition, as reflected by the deter-
ministic model but with somewhat underestimation. It decreased during February but still stayed in most 
of the basin from March to April, which is generally predicted by both the deterministic and probability 
models. Prediction and observation show that drought again became severe in east part of the basin during 
May–June, when most regions experienced high drought probability. Though it still persisted in north of 
the basin with high probability, the intensity then gradually reduced in most of the areas during July–Sep-
tember. Such change is predicted by the deterministic model further indicating that the model has favorable 
skill. This event disappeared until October 2018, when most of the basin presents low dry probability.
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Figure 7.  The six-evaluation metrics of the 3-months lead prediction obtained from the ASFP-ELM model in four river 
basins.
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Figure 8.  The spatial evolution of 2009–2010 drought based on observations and 1-month lead deterministic and 
probability (P (SPEI < −0.5)) predictions in the Pearl River basin.
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Figure 9.  The spatial evolution of 2003 drought based on observations and 1-month lead deterministic and probability 
(P (SPEI < −0.5)) predictions in the Danube River basin.



Water Resources Research

Located in the southern African region, ORB is naturally prone to droughts (Masih et al., 2014). In 2015 and 
2016, ORB experienced a severe drought triggered by warm sea surface temperature anomalies (Baudoin 
et al., 2017). The drought initiated in western basin in September 2015 as indicated by observations and 
predictions (Figures 11 and S14), while in the next month it propagated to the entire basin with increase 
of drought probability. In November, however, it became serious and severe dry condition persisted until 
December, while deterministic prediction shows less severe dry condition in December. Prediction and 
observation both show this event gradually faded away and disappeared in west of the basin during Janu-
ary–March in 2016, with decreasing drought probability. Mild dry condition was still scattered in the basin 
from April to June. However, this event again hit the western part of the basin in July 2016, and then spread 
to most areas in August and dry conditions lasted from September to December, which is well predicted by 
both the deterministic and probability models. The drought diminished during January 2017, when most of 
basin showed low drought probability. Overall, the drought patterns across the study regions indicated by 1- 
and 3-months lead predictions are fairly in accord with observations, indicating that the ASFP-ELM model 
can broadly predict the spatiotemporal variations in droughts under different climates.
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Figure 10.  The spatial evolutions of droughts respectively occurred in 1989 and 2017–2018 based on observations and 1-month lead deterministic and 
probability (P (SPEI < −0.5)) predictions in the Colorado River basin.

Figure 11.  The spatial evolution of 2015–2016 drought based on observations and 1-month lead deterministic and probability (P (SPEI < −0.5)) predictions in 
the Orange River basin.
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5.  Discussion
5.1.  Effectiveness of Different ASFPs in Drought Prediction

According to the definition of ASFP, the predictive ability of ASFP differs from one mode to another due to 
the different preceding SST signals. Taking the ASFP-ELM model as the example, we further show the dif-
ferent performances of these models using the nine ASFP patterns. For the 1-month lead prediction in PRB 
(Figure S15), when ASFP7 is employed, nRMSE and FAR values are lower and AC, ETS, and r values are 
higher than the remaining ASFP patterns, showing that ASFP7 is more predictive of droughts. In addition, 
ASFP1-based, ASFP5-based, and ASFP3-based models display relatively high satisfactory skills in DRB, 
CRB, and ORB, respectively. The assessment for the 3-months lead prediction is shown in Figure S16. The 
ASFP3-based model overall shows highest prediction in PRB, while ASFP1-based model presents best skill 
in DRB. For CRB and ORD, the best ASFP patterns are ASFP6 and ASFP5, respectively. These demonstrated 
that the way of combining SST signals in different time periods has an impact on the accuracy of drought 
prediction model, and that involving more SST information may not necessarily receive better prediction 
skill, for example, the 1-month lead prediction over PRB.

5.2.  Decomposition and Grid Grouping Effects on Model Performances

Though the previous studies demonstrated that time series decomposition can improve model prediction 
(Belayneh et al., 2014), it is unclear whether the ASFP-based models coupling with STL-decomposition are 
indeed more accurate than without decomposition in terms of drought prediction. We further explore the 
prediction accuracy of the models without STL-decomposition. The parameterizations of the models with-
out STL-decomposition are presented in Figures S17–S20, and the corresponding performances are shown 
in Figure S21. In combination with Figure 3, it can be found that the models with STL-decomposition out-
perform those without decomposition. A possible explanation is that the raw ASFP and SPEI series contain 
much noise reducing the prediction accuracy if no decomposition procedure is used (Belayneh et al., 2014).

In addition, this study does not merge any predictors between two neighboring oceanic grids. The identified 
ASFP over an oceanic grid is regarded as an independent predictor in the model. In some previous litera-
tures, yet the identified neighboring oceanic grids are grouped (Chen & Georgakakos, 2014). Again, we test 
the model performances by grouping the identified neighboring oceanic grids (STL-decomposition consid-
ered). Figures S22–S26 respectively show the parameter specifications and model performances. Clearly, 
when grid grouping is used, the model performances have decreased accordingly. One possible reason for 
this is that machining learning methods usually require a variety of inputs for training. If neighboring grids 
are merged into one predictor, the inputs for ASFP-ELM, ASFP-SVR, and ASFP-RF would decrease substan-
tially and the models cannot be trained sufficiently, leading to large biases in drought prediction.

5.3.  Comparison With Other Approaches

Many studies have developed various drought prediction models for different regions, making important 
contributions to drought management. A comparison between the prediction models, including ours, is 
beneficial for the understanding of the differences between models and obtaining the most favorable one for 
practical drought prediction. However, partly due to the differences in the regions of interest and data avail-
ability, it is rather difficult to compare the performances of different models in detail. Su et al. (2021) shows 
that for the humid and semi-humid regions in China, including PRB, r values between simulated and ob-
served drought characteristics during 1986–2005 are generally smaller than 0.3 according to the CMIP5 and 
CMIP6 models. Turco et al. (2017) used the European Centre for Medium-Range Weather Forecasts-System 
4 to conduct prediction of summer droughts over Europe for 1981–2015. The correlations between observed 
and predicted SPEI across (not exactly) DRB largely range from 0.4 to 0.8. Using the multi-component satel-
lite technique, Du et al. (2019) found that over the Southwestern United States, there is an overall moderate 
correlation (r values of 0.3–0.7) between surface wetness index and the Palmer moisture anomaly index in 
summer for the period of 2002–2017. Focusing on South Africa, Mehta et al. (2014) stated that the decadal 
correlations between actual and hindcast Self-calibrating PDSI are 0.2–0.6 overall. Compared to our find-
ings, these possibly indicate that, to some extent, our approach introduced in the current study outperforms 
these traditional methods to varying degrees (Figure 5).
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5.4.  Caveats of the New Approach

The proposed approach in the current study provides useful and reliable tool for meteorological prediction. 
However, like other approaches at their first stages, it has some limitations. First, the water balance in SPEI 
is represented by the difference between precipitation and PET, and the use of PET in this index makes 
it somewhat difficult to interpret in water stressed situations, that is, when PET is far larger than actual 
evapotranspiration, which limits SPEI ability of monitoring droughts to some extent. In addition, the SPEI 
requires a wide range of data such as radiation, humidity and wind speed which are often more infrequently 
measured compared to precipitation. At the same time, this study employs the linear method to select pre-
dictors, which might loss the nonlinear signals between predictor and predictand. The nonlinear methods 
could be more appropriate for screening predictors as the inputs for machine learnings (Maier et al., 2010). 
Nevertheless, considering grid-based prediction is conducted with long records, STL-decomposition and 
time moving window method, the computational cost would increase distinctly if nonlinear techniques are 
used instead. In this regard, linear correlation is a favorable, though not the most appropriate method for 
the diagnosing useful SST signals.

Moreover, the new approach does not consider the commonly known SST variations such as ENSO, Pacific 
Decadal Oscillation and Atlantic Multidecadal Oscillation (Grantz et  al.,  2005), nor does it include any 
atmospheric circulation patterns as predictors. There are teleconnections across different oceanic zones 
(Dai,  2011); by extension, possible linkage between ASFP and other oceanic fluctuation patterns (e.g., 
ENSO) exist and needs further exploration, and the drought prediction models in the study may improve by 
combining the nine ASFP patterns with these oceanic fluctuation patterns. On the other hand, the circula-
tion patterns due to variations in atmospheric pressure also play important role in drought onset and vari-
ations (Fu & Zeng, 2005; Manzano et al., 2019). For example, the North Atlantic Oscillation has shown to 
be one of the primary atmospheric circulations that impact the climate in Europe (Bonaccorso et al., 2015). 
Therefore, the performances of the models in this study could be further improved if circulation patterns 
related to atmospheric pressure are considered. More importantly, an exploration of the linkages between 
ASFP, the aforementioned known SST variations and circulation patterns could help reveal the physical 
mechanisms behind the screened ASFP and droughts across the regions of interest, which is conducive to 
the better understanding of SST impact on droughts.

6.  Conclusions and Outlooks
In this study, we present a new meteorological drought prediction approach using ASFP and machine learn-
ing algorithms. The ASFP is constructed based on the antecedent SST fluctuations and serve as the drought 
predictors. Three models, that is, ASFP-SVM, ASFP-ELM, and ASFP-RF are constructed to produce ensem-
ble, probability and deterministic predictions. To verify the models, four river basins including PRB, CRB, 
DRB and ORB across different continents are selected as the cases, where SPEI is predicted with 1 and 
3 months lead times. Our findings demonstrate that the ensemble, probability, and deterministic predic-
tions of ASFP-ELM outperform those of the other two models. Real-world drought predictions show that 
the spatiotemporal evolutions of historical severe droughts revealed by ASFP-ELM are fairly in accord with 
observations, which further demonstrates the applicability of the proposed drought prediction approach. In 
addition, there is little difference between the 1- and 3-months lead time predictions for all basins, indicat-
ing that ASFP-ELM has potential to yield robust seasonal prediction.

Covering ensemble, probability, and deterministic drought predictions, the new approach is deemed to pro-
vide more information for decision making. While the proposed approach provides an alternative, effective 
way for drought prediction in the case regions characterized by different climates and frequent droughts, 
it has potential to be applied in other regions, crucial for both social and environmental aspects such as 
integrated water resources management, drought risk mitigation, and ecosystem health issues. Given that 
drought is a complicated phenomenon with various influential factors, further studies should improve the 
proposed approach by combining other climatic factors such as ENSO and large-scale atmospheric circu-
lation patterns.
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Data Availability Statement
The precipitation and potential evapotranspiration datasets are publicly available from the Climat-
ic Research Unit of the University of East Anglia (https://catalogue.ceda.ac.uk/uuid/10d3e3640f-
004c578403419aac167d82); the SST data set used are publicly available from the National Oceanic and At-
mospheric Administration (https://psl.noaa.gov/data/gridded/data.cobe.html).
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