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Abstract
Surface soil moisture (SSM) is a key factor for water and heat exchanges between land surface and
the atmosphere. It is also important to water resources, agriculture, and ecosystems. In the
backdrop of global warming, SSM variations and potential causes are not well-known at regional
scales. Based on soil moisture (SM) data from GLDAS-Noah and 16 global climate models (GCMs)
selected from 25 GCMs in CMIP5, we analyzed spatial distribution and temporal changes of SSM
in China and quantified fractional contributions of four meteorological factors to the SSM
variations. The selected models have the same direction of historic trends in SSM during
1981–2005 as those in the GLDAS SSM data which were also further used to calibrate the trends
simulated by the 16 GCMs. Based on the calibration results for the 16 GCMs, future SSMs for nine
regions were analyzed in mainland China under four Intergovernmental Panel on Climate Change
emission scenarios. No significant changes were identified in SSM across most regions of mainland
China under RCP2.6 scenario. However, there is a general wetting tendency in the arid regions and
drying tendency across the humid regions under all the scenarios except RCP2.6. In general, the
higher the global temperature raises, the more grids with significant increase or significant
decrease in SSM. These findings contradicted prevailing view that wet regions get wetter and dry
regions get drier. Attribution analysis indicates that precipitation acts as the major driver for SSM
variations and contributes up to 43.4% of SSM variations across China. These results provide new
insights into future SSM response to climate warming and a scientific basis to mitigation and
adaptation works related to SSM in the future.

1. Introduction

Surface soil moisture (SSM) is a pivotal variable of the
terrestrial system and plays a critical role in energy
exchange and hydrological cycle (Brocca et al 2012,
Miralles et al 2014, Berg et al 2017,McColl et al 2017),
mainly through its control on the partitioning of radi-
ation and evapotranspiration at the surface (Albergel
et al 2013, Fan et al 2019). Furthermore, SSM also
plays a critical role in hydro-climatic extreme events
(Miralles et al 2019), vegetation changes (Chen et al

2014) and physical properties of soil (Gunda et al
2017). Soil moisture (SM) is also a state variable con-
trolling surface runoff, soil drainage, and soil-freeze-
thaw status (Zhang et al 2015), and for other hydrolo-
gical, meteorological and ecological applications (Cui
et al 2019). As a consequence, the Global Climate
Observing System (GCOS) Programme recognizes
SM as an essential climate variable (ECV) (Albergel
et al 2013, Zhang et al 2019).

Recent years witnessed an increasing availability
of datasets of SM sourced from satellite
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remote sensing and assimilation technologies
(Miralles et al 2010, Zhang et al 2018, Gu et al 2019).
The remotely sensed data products such as those
from the Advanced Microwave Scanning Radiometer
for Earth Observing System (AMSR-E and AMSR-2),
the Advanced Scatterometer (ASCAT), the Soil Mois-
ture Ocean Salinity or the Soil Moisture Active Pass-
ive, and from the European Space Agency Climate
Change Initiative were widely used. A limitation of
these datasets is that they provide only near-surface
(∼0–5 cm) SM estimates (Zohaib et al 2017, Zhang
et al 2018). For this reason, assimilation technolo-
gies were employed to derive SM estimates from
multiple soil layers, such as the European Centre
for Medium-Range Weather Forecasts atmospheric
reanalysis (ERA), The Global Land Data Assimilation
System (GLDAS), theModern-Era Retrospective ana-
lysis for Research and Application (MERRA), which
were also widely used as alternatives for ‘true value’
(Deng et al 2020). In addition, GLDAS has been used
to study global and regional SM trends (Dorigo et al
2012, Zhang et al 2018, 2019, Gu et al 2019).

SM changes can be influenced by numerous
factors such as human activities (Samaniego et al
2018) like irrigation (Yu et al 2019) and climate
changes such as changes in precipitation and tem-
perature (Feng and Liu 2015, Gunda et al 2017,
Guillod et al 2015, Hauser et al 2016). Temper-
ature directly affects the loss of SM to the atmo-
sphere by influencing evapotranspiration processes,
while precipitation provides inputs to SM (Varal-
lyay 2010, Gunda et al 2017). According to the Fifth
Assessment Report (AR5) by the Intergovernmental
Panel on Climate Change (IPCC), global warming
has become indisputable and is caused mainly by
human activities (Stocker et al 2013). Global warm-
ing heavily affects hydrological cycles and water bal-
ances at different spatial scales, modifying spatiotem-
poral patterns of water resources (Berg et al 2017).
As an example, mounting evidences indicate that
increased continental precipitation and evapotran-
spirationmost likely lead to decreased SM in a warm-
ing climate, although regional differences exist (Feng
and Liu 2015, Zhao and Dai 2015, Huang et al 2016).

SM can influence crop yields directly by mod-
ulating the plant-available water (Wang et al 2011).
China is the world’s largest agricultural producer and
has the world’s largest population. Because of the
importance of water resources and agricultural devel-
opment to China’s economy and people, the rela-
tionships between extreme weather events, floods,
and droughts, and agricultural production have been
intensively studied (Zhang et al 2015, 2017). In par-
ticular, it is critical for China to bridge the knowledge
gap between climate changes and SM variations in
both space and time (Koster et al 2004 Fan et al 2019).
Currently, there are limited studies of SM changes and
related causes in China. Wang et al (2011) employed
four physically based land surface hydrology models

to explore the characteristics of SM drought in China
during 1950–2006 and found SM in southeastern and
northeastern China were drying significantly. Chen
et al (2016a and 2016b) found a significant drying
trend of SSM in Eastern China and explored the spa-
tiotemporal SSM changes across China in responses
to climate in the 1979–2010 period. Previous studies
focused on the causes of SSM changes during the his-
torical period only.

Characteristics of future SM are rarely explored in
previous studies. Besides, it still remains a challenge
to quantify how SM changes at regional scale due
to substantial spatial heterogeneity of SM variations
(e.g. Wang 2005). Therefore, in this study, we first
used GLDAS-Noah SM dataset to assess the histor-
ical simulations of global climate models (GCMs) in
CMIP5 and selected GCMs with the consistent trend
to GLDAS-Noah for better reliability of future projec-
tions. Then we employed the SM median of chosen
GCMs in CMIP5 as projected SM to investigate the
characteristics and causes of future SM changes that
can help predict agricultural drought across China
during historical and future periods.

2. Study region and data

Given the distinct spatial heterogeneity of meteor-
ological variables and SM over mainland China
(CHN) was subdivided into nine regions (figure 1),
i.e. Northeast China (NEC); North China (NCH);
Central China (CCH); South China (SCH); Southw-
est China (SWC); the eastern part of Northwest China
(ENW); the central part of Northwest China (CNW);
the western part of Northwest China (WNW); Tibet
Plateau (TPC). In order to investigate the effects of
potential driving factors on SSM at the regional scale,
we divided the area into regular rectangles to further
minimize the errors sourced from the reduced num-
ber of grids in marginal areas (table 1, totally 1062
grids across China). Generally, NEC, NCH, CCH,
SCH, SEC mostly locate in the monsoon area in the
eastern China; ENW, CNW, WNW mostly situate
in the arid and semi-arid areas in the northwest-
ern China, and TPC is approximately in the Tibetan
Plateau high-cold area (Xiao et al 2013).

We selected SM outputs of 25 GCM mod-
els from Coupled Model Intercomparison Project
Phase 5 (CMIP5) in historical and future peri-
ods under historical forcing and RCP2.6, RCP4.5,
RCP6.0 and RCP8.5 scenarios (table 2). The monthly
SM dataset was sourced from the ESGF (the
Earth System Grid Federation) node (https://esgf-
data.dkrz.de/search/cmip5-dkrz/). The outputs of
models considered in this study include at least two
future scenarios in both the uppermost 10 cm soil
layer and root-zone soil layers. Meanwhile, the mod-
els chosen in this study are with the ensemble of
r1i1p1 and only the data from output1 was accep-
ted (Taylor et al 2012). Moreover, the monthly data
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Figure 1. Relief and geographical division map across China. Mainland China (CHN) is subdivided into nine sub-regions which
are marked with Acronyms: NEC (Northeastern China); NCH (Northern China); CCH (Central China); SCH (Southern China);
SWC (Southwestern China); ENW (the east part of Northwestern China); CNW (the central part of Northwestern China); WNW
(the west part of Northwestern China); TPC (Tibet Plateau). According to the most commonly used geographic (mainly climatic)
divisions, NEC, NCH, CCH, SCH, SEC are located mainly in the monsoon climate area in the East China; ENW, CNW, WNW are
mostly situated in the arid and semi-arid areas in the northwestern China; and the TPC is approximately the Tibetan Plateau
high-cold area.

Table 1. Coordinates of corners of nine different regions around China. The nine regions are defined in the standard rectangular meshes
which can be found in figure 1.

Percent in total area
No Region Acronym Left-bottom Right-top Grid No. (1◦ × 1◦) of CHN

1 Northeastern China NEC 120 E, 41 N 133 E, 53 N 156 14.7%
2 Northern China NCH 110 E, 35 N 120 E, 41 N 54 5.1%
3 Central China CCH 108 E, 28 N 121 E, 35 N 91 8.6%
4 Southern China SCH 108 E, 22 N 119 E, 28 N 66 6.2%
5 Southwestern China SWC 99 E, 22 N 108 E, 35 N 117 11.0%
6 East part of Northwestern China ENW 110 E, 41 N 120 E, 46 N 50 4.7%
7 Central part of Northwestern China CNW 99 E, 35 N 110 E, 43 N 88 8.3%
8 West part of Northwestern China WNW 77 E, 37 N 99 E, 48 N 242 22.8%
9 Tibet Plateau TPC 77 E, 28 N 99 E, 37 N 198 18.6%

of climate variables, including precipitation, 2 m air
temperature, wind speed and relative humidity from
the CMIP5 outputs were also analyzed to quantify
climatic effects on SM.

The Global Land Data Assimilation System
(GLDAS) was developed to generate optimal
fields of land surface states and fluxes by integ-
rating satellite- and ground-based observed data
products, using land surface modeling and data

assimilation techniques (Rodell et al 2004). GLDAS
drives four models, including Noah, Mosaic, VIC
and CLM, which are sourced from the Goddard
Earth Sciences Data and Information Services Cen-
ter (http://disc.sci.gsfc.nasa.gov/hydrology/data-
holdings). Noah simulates SM outputs of four layers
(0–10 cm, 20–40 cm, 40–100 cm and 100–200 cm).
In this study, Noah V2.0 with spatial resolution of
0.25◦ × 0.25◦ and time interval of 1948–2010 can

3
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meet the requirement in spatial resolution at the
regional scale and time length of validating modelled
SM data in CMIP5. The Noah V2.0 used in this
study covered the period of 1981–2005 and has been
used widely in SM analysis (Zhang et al 2018, 2019,
Gu et al 2019).

3. Methods

3.1. Pre-processing of the SM
In this study, hydrologically active soil depth varies
from 3 to 14 m for GCMs (table 2) and only the first
ten layers, down to 3.8 m for NorESM1 model are
hydrological active (Lawrence et al 2011, Berg et al
2017). For SSM, GLDAS-Noah and the outputs of
GCMs in CMIP5, which have been integrated over
uppermost 10 cm, has the same surface soil depth.
As a result, SSM is quantitatively comparable. Corres-
pondingly, the deeper SM content varies widely due
to obviously different SM depth. Given that GLDAS-
Noah have maximum depth of 2 m and we focused
more on SM changes of the upper SM columnmostly
accessible to ecosystems, we used SM outputs from
CMIP5 to compute a 2 m SM content, which cor-
responds to the root-zone soil depth. Meanwhile, SM
outputs were linearly interpolated to integrate the 2m
SM content for GCMswith the units ofm3 m−3 (Berg
et al 2016). To reduce uncertainties and capture spa-
tial patterns at regional scale, all SM variables were
also resampled to a 1◦ × 1◦ grid by bilinear inter-
polation before further analysis. All monthly data has
been integrated into annual scale to explore the vari-
ation during the whole period. Then, we analyzed the
relative SM changes in terms of the ratio (%) of the
future (2005–2100) simulated mean SM change and
the baseline mean SM during 1981–2005 rather than
the absolute SM changes since that the SM changes
are heavily model-dependent. Meantime, we normal-
ized future SM where future-minus-present differ-
ences were divided by present simulated SM (Koster
et al 2009, Berg et al 2016).

3.2. Verification and selection of GCMs in CMIP5
In this study, we adopted GLDAS-Noah SM data
which has been widely used in SM analysis world-
wide and for China as well (Dorigo et al 2012, Gu et al
2019, Liu et al 2019). Besides, we proposed the follow-
ing indicator to showdirection of trends at grid scales:

Ratioi=
Trendi2

Trendi1

(1)

Wherein, i indicates the ith grid out of 1062 grids
considered in this study; Trendi1 refers to the trend
of the ith grid of the GLDAS-Noah SM data dur-
ing 1981–2005; Trendi2 refers to the trend of the
ith grid of the SM under historical scenarios dur-
ing 1981–2005. The SM trends were calculated using
the Sen’s slope method by the ‘trend’ R package.

Therefore, if Trendi1 and Trendi2 are positive or
negative simultaneously, Ratioi is positive, which
indicates the prediction ability of the GCM in catch-
ing the direction of trend in the ith grid. Sixteen
models with positive ratios in more than half of the
total 1062 grids covering the entire study region were
chosen for SSM, and the median SM of the simulated
SM was used to explore SM variations.

Besides, magnitude of trends should also be nor-
malized keeping consistency between magnitude of
trends in SM by models and that by GLDAS-Noah
dataset. In this case, we proposed a correction factor
for this purpose, i.e. Ctrend:

Trendic = Trendim×Ctrend (2)

wherein, Trendic indicates the calibrated SM trend
of the ith grid forGCMs, Trendim refers to the trend of
the median SM in the ith grid for the chosen GCMs.
The correlation factor is further used in the analysis
under future scenarios. Ctrend is calculated as:

Ctrend =
Mean(Abs(Trendin))

Mean(Abs(Trendim))
(3)

wherein, Trendin refers to the trend of the median SM
in the ith grid for the GLDAS-Noah SM dataset. Abs
refers to the absolute value function.

3.3. Attribution analysis with the geographic
detector method
In this study, the attribution analysis was done using
the geographic detector method that is a set of stat-
istical methods that detect spatial differentiation and
reveal the driving forces behind (Wang et al 2010).
The major assumption behind geographic detector
is that if an independent variable has an import-
ant influence on a dependent variable, the spatial
pattern of the independent variable should be sim-
ilar to that of the dependent variable. Geographic
detectors method is adept at analyzing type quant-
ities, and for sequential Quantities, ratios or inter-
vals, as long as they are appropriately discretized
(Cao et al 2013). Another unique advantage of Geo-
detector is to detect impacts of the interaction of
two factors on the dependent variable. The general
identification method of interaction is to add the
product of two factors to the regression model to test
its statistical significance. That is why we used Geo-
detector to quantify the effects of climate variables
on SSM.

The geographic detector can determine whether
there is interaction between two variables, and the
strength, direction, linearity, or non-linearity of the
interaction by calculating and comparing the single
factor and the factor after the two factors are super-
imposed. The two-factor superposition includes both
the multiplicative relationship and other relation-
ships. As long as there is a relationship stand-
ing between two variables and this relationship
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Figure 2. Comparison between the simulated SM with 25 CMIP5 GCMs and SM in the GLDAS-Noah dataset for 1981–2005.
The upper panels show the ratio of the trends in CMIP5 GCMs to the trends in the GLDAS-Noah: (a) surface soil moisture;
(b) root-zone soil moisture. The red solid points refer to the value >0 and the blue hollow points refer to the value <0. The X-axis
is corresponding to the first column in table 2. (c) The lower panels show the spatial pattern of the GLDAS-Noah (d) and the
median soil moisture value based on 16 chosen GCM outputs.

can be evaluated (Wang et al 2010). More detailed
information about the algorithms can be found in
Wang et al (2010).

PD,G = 1− 1

σG
2

m∑
i=1

nD,iσD,i
2

where i = 1, 2, …, m is each unit of influencing
factors; nD,i is the number of units; σG

2 and σD,i
2 are

the variance of observed region and each unit. PD,G
locates among 0–1, and the more the value of PD,G
is, the greater the influence of the factor D on SM).

When the PD,G equal closely to 1, that is,
m∑
i=1

nD,iσD,i
2

is near to 0, that means the influencing factor has the
same spatial patterns with the SM (Wu et al 2016).

4. Results and discussions

4.1. Selection and verification of GCMs from
CMIP5
Figure 2 shows the ratio of the calibrated trend
of historical SM from 25 GCMs to the trend of
the GLDAS-Noah SM by the Sen’s slope method
during 1981–2005 and relevant spatial patterns of

SSM trends. In general, the SSM in CMIP5 can be
used to further explore the future variation, which
performs better than the RZSM. There are 16 models
of which the median of the ratios is positive for SSM
(figure 2(a)), implying consistent trend directions of
SSM in GCMs and GLDAS-Noah in more than half
of the grids. Therefore, the median of 16 GCMs was
calculated to show the calibrated SSM (figure 2(d)).
For the root-zone SM (RZSM, figure 2(b)), there
are only nine GCMs for which consistent trend dir-
ections were identified at more than half of the
grids, which indicates that GCMs have it harder to
depict the trends in the RZSM than for SSM. To
some extent, the RZSM is difficult to be simulated
using modeling techniques such as GCMs in CMIP5
and GLDAS-Noah as well. Meanwhile, the modeled
soil depth is heavily model-dependent and varies
widely from GCMs. Berg et al (2016) found that the
maximum monthly SM over the hydrological act-
ive layers varies from ∼1400 kg m−2 for ACCESS1-
0 to∼7000 kg m−2 for MIROC-ESM. The processing
method to integrate RZSM to 2 m depth and the
hypothesis of linear variation in the soil layers may
also introduce uncertainties and even errors.
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Figure 3. Annual variations of the surface volumetric soil moisture under four scenarios: RCP2.6, RCP4.5, RCP6.0 and RCP8.5.
The annual variations of the surface volumetric soil moisture were derived from 20 year moving average of the GCM outputs
during 2006–2100. The horizontal line corresponds to the mean value over the whole time period for different scenarios. The
individual figures represent the models listed in table 2. Among, the x-axis labels: 06, 25, 50, 75 and 00 refer to the year of 2006,
2025, 2050, 2075 and 2100.

The magnitude of trends cannot be well quanti-
fied, even the trend direction can be well captured
by SSM of GLDAS-Noah and GCMs. The correc-
tion factors are 5.64 and 10.32 for the SSM and
the RZSM respectively based on the chosen mod-
els (16 for SSM; 9 for RZSM, equation (3)). This
indicates that the magnitude of the SSM can be pre-
dicted with higher accuracy than the RZSM and the
GCMs usually underestimate the magnitude of SM
change relative to the DLDAS-Noah data. Figure 2(c)
shows spatial patterns of SSM trend based on the
GLDAS-Noah SSM data and figure 2(d) shows spa-
tial patterns of the calibrated SSM trend based on
the GCMs outputs. Magnitude of the SSM trend is
−0.03 m3 m−3 100−yr. We also observed similar SSM
trends for GLDAS-Noah and GCMs in most grids
across China, and in NEC, CNW, NWC, CCH, SCH,
TPC, in particular. Obvious drying trends of GLDAS-
Noah SSM are −0.015 m3 m−3 100−yr in ENW and
−0.013 m3 m−3 100−yr in NCH, which is similar
to the standing results (Dorigo et al 2012). How-
ever, wetting trends were found for SSM in ENW
and NCH with magnitude of 0.015 m3 m−3 100−yr

and 0.007 m3 m−3 100−yr, respectively. Moreover,

wetting tendencywas found inWNWbased onGCMs
outputs with magnitude of 0.002 m3 m−3 100−yr.
While most regions in WNW are in drying tendency
based on GLDAS-Noah dataset with magnitude of
−0.004 m3 m−3 100−yr.

4.2. Future SSM changes based on GCM outputs
Figure 3 illustrates the annual change of the volumet-
ric moisture content for SSM under four scenarios:
RCP2.6, RCP4.5, RCP6.0 and RCP8.5 covering
2006–2100, which has been calculated by moving
average. Projection results indicate that SSM out-
puts of more than half of 16 models are in drying
trend for all scenarios considered in this study, by
which the drying trend is acceptable in the future.
Feng and Fu (2013) and Dai (2013) advocated that,
in the backdrop of global warming, the arid areas in
many lands have expanded and will continue to be
expanding in the next century. Meanwhile, the results
of different models are discrepant, even the GCMs
have been selected by certain criteria and the SSM
based on CMIP5 outputs is comparable in quant-
ity (Berg et al 2016). The averaged SSM based on
most GCMs outputs is around 0.20–0.25 m3 m−3.
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Figure 4. Trend and P-value of SSM change under different scenarios calculated by Sen’s Slope method. The colored tape indicates
the magnitude of trend of SM change relative to the baseline period of 1981–2005.

However, SSM outputs by FGOALS-s2 and INM-
CM4 predicts the SSM of ∼0.33 m3 m−3 above the
mean value, and SSMoutputs by IPSL-CM5A-LR and
IPSL-CM5A-MR predict the SSM of ∼0.10 m3 m−3

below the mean value. Lu et al (2019) found that
the uncertainty of future SM projection is mainly
determined by models, compared with the uncer-
tainty from the global decadal annual temperature
changes (Hawkins and Sutton 2009). Under RCP8.5
scenario, SSM of 12 GCMs is in obvious drying
tendency. Nearly half of models identify that, under
RCP8.5 scenario, the surface soil layer displays less
mean SM content than other scenarios, as a contrast,
and the models display different features for differ-
ent scenarios. Generally, the warmer the climate, the
drier the SSM. Lu et al (2019) found that the average
annual SM in the 21st century shows significantly
large-scale drying and wetting tendency in a limited
area under all scenarios, and the stronger radiative
forcing brings stronger drying tendency, which is
consistent with our findings.

Throughout the whole future periods
(2006–2100) in CMIP5 simulations, the spatial
patterns of SSM changes are basically similar, that

is, wetting SSM in WNW, CNW, ENW, NCH and
south of NEC, and drying SSM in the other regions
(figure 4). From lower to higher emission scenarios,
the magnitude of SSM changes gradually increases
and more grids are characterized by significant SSM
changes. But SSM changes under RCP6.0 scenario
do not conform to this pattern. Under RCP2.6 scen-
ario, the magnitude of SSM change is not evident
and a drying SSM trend can be found in 66.8% of
mainland China (15.4% with <0.05 P-value, 7.9%
with <0.01 P-value). Comparatively, wetting SSM
trends were identified in 33.2% of mainland China
(2.8% with <0.05 P-value, 1.2% with <0.01 P-value).
Also, substantial spatial heterogeneity of SSMchanges
across China was found, implying no obviously con-
sistent SSM changes under RCP2.6 scenario relative
to those under other scenarios. Under RCP8.5 scen-
ario, drying SSM trends were detected across 56.9%
of China (44.2% with <0.05 P-value, 38.0% with
<0.01 P-value). Contrastively, wetting SSM trends
were observed across 43.1% of China (29.4% with
<0.05 P-value, 25.1% with <0.01 P-value). Consider-
able spatial heterogeneity in SSM changes can also be
observed across different regions of China. However,
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Figure 5.Multi-model (16) median of SSM change percentage for 2005–2030, 2041–2065 and 2076–2100 relative to 1981–2005
under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios.

confirmative and discernable spatial patterns of SSM
changes under RCP8.5 scenario can also be identi-
fied with exceptions of CNW and NCH. These results
indicated larger area of regions with significant SSM
changes given higher temperature. These results are
consistent with the findings that the south regions are
getting dryer and the north regions except northeast
regions are getting wetter in China (Berg et al 2016).
Moreover, Douville and Plazzotta (2017) found that
a summer mid-latitude drying on the northern con-
tinents recently appeared at the end of 20th century,
which has been attributed to anthropogenic climate
change.

4.3. Evolution of relative percentage of SSM under
different scenarios
Figure 5 shows the evolution of the multi-model
ensemble median of the percentage of SSM change

relative to the reference time (1981–2005), which is
generally used to explore the past and future SM vari-
ations (Rodrigo 2015; Wu et al 2015). Generally, SSM
changes during the periods of 2006–2030, 2041–2065
and 2076–2100 indicated wetting tendency in arid
regions and drying tendency in humid regions. Spe-
cifically, most regions in WNW are getting wetter,
and wetting tendency can also be found in the north
parts of CNW and the northwest parts of ENW. The
south parts of China are getting drier where there are
naturally humid regions.

Under RCP2.6 scenario, the north China includ-
ing WNW, TPC, NEC, ENW and north of CNW
are getting wetter, and in WNW particularly dur-
ing 2006–2030. The period of 2041–2065 witnessed
shrinking regions with wetting tendency to north
and west such as WNW, ENW and north of CNW.
The period of 2076–2100 was characterized by drying
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Figure 6. Spatial evolution of the SSM change under RCP8.5 scenario. The multi-model (16) median of the soil moisture change
relative to the benchmark period was displayed in every following 10 years.

tendency across the entire China. Relative to area and
magnitude of wetting tendency during 2041–2065,
the area and magnitude of wetting tendency shrink
during 2076–2100. Meanwhile, the bounds and mag-
nitude of drying tendency are expanding. Wherein,
the obviously drying regions can be observed in the
northwestern part of CCH. Under RCP4.5 scenario,
the wetting tendency can be found in WNW during
2006–2030 and 2041–2065 and gradually extends
to CNW during 2076–2100. However, regions with
appreciable drying tendency move westwards till to
the TPC. Under RCP6.0 scenario, the WNW is dom-
inated by wetting tendency. The north China is dom-
inated by wetting tendency during 2006–2030, by
drying tendency during 2041–2065 and again by wet-
ting tendency during 2076–2100. Consistent drying
tendency can be found in the south China. Under
RCP8.5 scenario, magnitude of SSM change con-
tinues to increase, i.e. the dry-wetter and wet-drier
scheme.

For cold regions like NEC and TPC, wetting trend
is detected during 2006–2030 and followed by a sharp
drying trend under RCP6.0 and RCP8.5 scenarios.
Under these scenarios, the persistently rising air tem-
perature gives rise to melting of glaciers, snow cover
and permafrost in NEC and TPC. In WNW, the

increased SSM is observed during historical period
relative to the reference period. The discrepancy
in the SSM projections under these four scenarios
considered in this study is quite small during the
period of 2006–2030 due to the similar radiative for-
cing during this period (Meinshausen et al 2011).
During 2041–2065, from RCP2.6, RCP4.5, RCP6.0 to
RCP8.5 scenarios, the drying amplitude of the SSM
gradually increases, drying amplitude of SSM under
RCP6.0 scenario is smaller than that under RCP4.5
scenario which is related to the radiative forcings
under different scenarios. RCP8.5 is referred to the
highest radiative forcing scenario, and RCP2.6 is the
lowest radiative forcing scenario in the following cen-
tury. But in the near future, approximately by the year
of 2050, the radiative forcing under RCP4.5 is higher
than that under RCP6.0, that is adverse in the long-
term future (Masui et al 2011, Nazarenko et al 2015).

Here we also presented the evolution process of
SSM to explore the SM variation at shorter time
step under RCP8.5 scenario and the SM variation of
each 10 years was displayed (figure 6). RCP8.5, as
the highest radiative forcing, will bring to a strongest
global warming related with other scenarios (Riahi
et al 2011). But we found that the trends of SM vari-
ation in the same one place during different future
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Figure 7. Temporal variations of the standardized surface soil moisture in the past periods and in the future under different
scenarios (historical, RCP2.6, RCP4.5, RCP6.0, RCP8.5). The surface soil moisture was standardized by the mean surface soil
moisture during 1981–2005. The hard line shows the multi-model median of 25 models. The shadow indicates the 90%
confidence interval of 25 model predictions.

periods are different even under the highest radiative
forcing scenarios, RCP8.5. It can be seen from figure 6
that SSM atmost of the grids is in consistent changing
properties during the entire study period. However,
the entire NEC is dominated by wetting SSM during
2011–2030, then by drying SSM during 2030–2080.
During 2081–2100, SSM variation is subject to dis-
cernable spatial heterogeneity in NEC, SSM in most
grids continues to decrease and increased SSM can be
observed in the southwest of NEC.

Figure 7 shows the temporal variations of the
standardized SSM during 1981–2100. SSM overall
is in a downward trend across the entire mainland
China under all scenarios considered in this study,
indicating a drying tendency in the future under
RCP8.5 scenario in particular. In WNW, increased
SSM during in 2005–2035 is observed. A wetting
trend in SSM variability can be identified during
2036–2100, highlighting the possibility for increased
frequencies of extremely dry and wet spells. In ENW,
there is a slightly wetting SSM trend in the future.
Besides, NEC, CCH, SCH, SWC and TPC witness
a significant drying SSM in the future (figure 6).
Interesting is that the period of 2005–2100 shows no

obvious trend in NCH and CNW; however, the vari-
abilities are increasing. Figures 5 and 6 illustrate signi-
ficant spatial heterogeneity of SSM inNCHandCNW
and nearly half of the area shows different changing
features of SSM.

4.4. Attribution of meteorological variables to SSM
variations
Meteorological variables having potential impacts on
SSM are precipitation, temperature, relative humid-
ity and wind speed (Deng et al 2020). Precipitation
amount has direct impacts on SSM changes, with the
relative contribution of up to 43.4% to SSM vari-
ations (table 3) due to the most important supply
from precipitation for most regions which is con-
sistent with the previous findings all over the world
in the past period (e.g. Deng et al 2020). Temper-
ature, wind speed and relative humidity have the
relative contribution of 22.5%, 19.9% and 14.2%
respectively (table 3) which all can change SSM
content by soil evaporation and vegetation tran-
spiration, among them, temperature have greater
impacts on evapotranspiration under global warming
(Deng et al 2020).
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Table 3. The relative contribution (%) of relative humidity (a), wind speed (b), temperature (c) and precipitation (d) calculated to
surface soil moisture changes based on Geodetector method in different regions of China under the RCP8.5 scenario.

Variables CHN NEC NCH CCH SCH SWC ENW CNW WNW TPC

Precipitation 43.4 39.4 42.6 45.2 45.2 43.1 48.0 41.9 51.1 44.1
Temperature 22.5 27.6 28.5 16.4 18.1 17.7 18.3 14.1 14.7 16.4
Wind 19.9 17.7 13.0 13.8 20.5 18.8 16.6 21.8 16.1 17.7
Humidity 14.2 15.3 15.8 24.7 16.2 20.3 17.2 22.2 18.1 21.9

We found different impacts of these meteorolo-
gical factors on SSM changes. Specifically, SSM in the
WNW is mainly influenced by precipitation changes
with relative contribution of 51.1% (table 3). SSM
in NCH is affected by the temperature changes with
relative contribution of 28.5% (table 3) due to the
fact that a sharp rise of temperature can affect SSM
content by modifying evapotranspiration processes.
Meanwhile, evapotranspiration also affects precipit-
ation by changing water vapor transportation to the
atmosphere (Oki and Kanae 2006). It was evidenced
that SSM is in negative relation with temperature
(Cheng and Huang 2016, Deng et al 2020). Besides,
SSM changes in CNW and CCH are affected mainly
by the wind speed and the relative humidity with
relative contribution of 21.8% and 24.7% respect-
ively to SSM changes. The results show that the SSM
change is affected by the combination of meteorolo-
gical factors, except these, the vegetation and agricul-
tural activities in the future also have great impacts on
SSM changes (Liu et al 2015, Deng et al 2020).

5. Conclusions

We thoroughly analyzed spatiotemporal patterns of
SSM across mainland China and the relevant influ-
encing factors behind the variations in SSM. The fol-
lowing findings and conclusions are obtained:

(a) The direction of the historic trends of SSM dur-
ing 1981 and 2005 can be well captured by 16
out of the 25 CMIP5 GCMs. The historic sim-
ulation and future projections of SSM for these
16 models provides the basis for further ana-
lysis. The SSM data for the historic period by
the GLDAS-Noah was used to calibrate the mag-
nitudes of the corresponding SSM trends estim-
ated by the selected 16 models with satisfactory
performance. The calibration is then used for
future GCM projections under four IPCC emis-
sion scenarios.

(b) Under RCP2.6 scenario, SSM has no significant
change in most regions across China. But under
the other three emission scenarios, arid and
semi-arid regions are dominated by wetting SSM
and vice versa. The higher the global temperat-
ure rises, the more grids with significant changes
and larger magnitude of SSM changes. Under
RCP8.5 scenario, drying SSM can be found in
56.9%of regions across China (44.2%with<0.05

P-value). As a comparison, wetting SSM trends
can be observed in 43.1% of the regions across
mainland China (29.4% with <0.05 P-value).

(c) For all regions considered, precipitation is the
most important factor for SSMvariations among
the fourmeteorological variables considered. On
average, its relative contribution to SSM vari-
ation can reach over 43.4%. Temperature, wind
speed and relative humidity have relative con-
tributions of 22.5%, 19.9% and 14.2% to SSM
changes respectively. There is a small difference
in the relative contributions of the four variables
among the regions.
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