
1.  Introduction
Baseflow (Qb) is the portion of streamflow that comes from groundwater and other delayed sources, and 
generally sustains river flows during dry periods (S. Cheng et al., 2020; Hall, 1968; Wu et al., 2019). Under-
standing how baseflow varies spatially with changing climate and landscape properties is crucial for dealing 
with various water resource management issues related to water quantity and quality such as sustaining 
aquatic habitats (Fan et al., 2013; Poff et al., 1997), water supply (Kelly et al., 2019; W. Xu et al., 2021), 
diluting pollution from wastewater (Male & Ogawa, 1984; Smakhtin, 2001), etc. At the mean annual scale, 
there is a general consensus that the spatial variability of baseflow is controlled by climate and catchment 
properties, including precipitation, potential evapotranspiration, soil, geology, topography, and vegetation 
(Mcdonnell et al., 2007). However, the identified dominant factors controlling baseflow have been differ-
ent in different studies. These factors include precipitation and potential evapotranspiration (Ahiablame 
et al., 2013; Beck et al., 2013; Peña-Arancibia et al., 2010; Van Dijk, 2010), geology, topography, and soil 
properties (Bloomfield et al., 2009; Brandes et al., 2005; Gebert et al., 2007; Jolánkai & Koncsos, 2015; Lon-
gobardi & Villani, 2008; Rumsey et al., 2015; Singh et al., 2019), and vegetation (L. Cheng et al., 2017; Huse-
by Karlsen et  al.,  2016). A universal method for explaining the underlying mechanisms of climate and 
physiography that control the spatial variability of baseflow is still lacking (Price, 2011).

Catchment storage capacity plays a major role in how much precipitation will be partitioned into base-
flow, especially in humid catchments (Gnann et al., 2019). In humid catchments with saturation-excess 
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climatic conditions (BFC = 0.001–0.650) were collected to demonstrate the capability of the developed 
curve. Results showed that the BFC curve captured the spatial variability of observed BFC in the 950 
study catchments (R2 = 0.75, RMSE = 0.058). Mean annual baseflow estimated by the BFC curve agreed 
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an analytical solution for understanding how aridity index and storage capacity control mean annual 
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mechanisms, storage capacity determines how much precipitation becomes surface runoff (Qs) or soil wet-
ting retention (Milly, 1994; Sankarasubramanian & Vogel, 2002; Yokoo et al., 2008). For catchment with 
small retention capability, storage capacity can be easily and frequently filled up and become saturated, 
with a larger fraction of precipitation quickly becoming runoff as saturated surface flow to the stream and 
lesser baseflow generated (Hahm, Rempe et al., 2019). However, very few studies have used the storage 
capacity to directly depict the spatial variability of baseflow. Aridity index (AI, commonly embedded in the 
Budyko (1958, 1974)) is generally considered to be the dominant control on hydrological partitioning, while 
catchment storage capacity is usually regarded as being much less important (Abatzoglou & Ficklin, 2017; 
Trancoso et al., 2016; X. Xu et al., 2013). Wang and Wu (2013) attempted to use aridity index as a first order 
controlling factor on baseflow, assuming that baseflow coefficient (i.e., BFC =  /bQ P) has similar behavior 
as the total flow coefficient (i.e., TFC = Q/P). Neto et al.  (2020) also reported that the spatial variability 
of baseflow can be captured using an exponential function of aridity index only. Based on a data set that 
included humid catchments in the United Kingdom, Gnann et al. (2019) recognized that storage capacity 
was as important as aridity index and was a first-order control on spatial variability of BFC in humid catch-
ments. In Gnann et al. (2019), the numerical solution of BFC derived from the Ponce-Shetty model (Ponce 
& Shetty, 1995; Sivapalan et al., 2011) was too complex to aid understanding of the upper limit control of 
storage capacity on baseflow generation. Except Wang  (2018) proposed an analytical expression of total 
runoff as a function of storage capacity and wetness, a simple equation to directly relate storage capacity to 
mean annual baseflow estimation has not yet been found (Neto et al., 2020).

The spatial variability of mean annual total flow can be well formulated by the Budyko framework 
(Budyko, 1974; Fu, 1981; Good et al., 2017; Shen et al., 2017; Yang et al., 2007; L. Zhang et al., 2004). The 
“limit” concept of the Budyko framework is a useful tool for dealing with spatial variability issues as it 
provides two theoretical upper bounds under equilibrium conditions (Calder, 1998; Good et al., 2017; L. 
Zhang et al., 2008). The Budyko framework shows that, under very dry conditions, evapotranspiration (Ea) 
is limited by available water supply (P), and under very wet conditions, Ea is limited by available energy 
demand (Ep). However, a similar framework that incorporates the “limit” of storage capacity to show the 
spatial variability of baseflow has not been reported in the literature (Neto et al., 2020). Most of the pre-
vious studies that have attempted to depict the spatial variability of BFC usually partitioned precipitation 
into baseflow using two-step methods in terms of temporal runoff generation processes following rainfall 
events at the point scale, such as the Lvovich approach (Lvovich, 1979) and the Ponce-Shetty model (Ponce 
& Shetty, 1995; Sivapalan et al., 2011). The two-step partitioning methods must detangle the interactions 
amongst Ea, Qs, and Qb both temporally (step-by-step at the annual or monthly scale) and spatially (between 
catchments). These methods consider baseflow and evapotranspiration as complementary components par-
titioned from soil wetting, and results in the controlling factors for baseflow to be complex and unclear 
(Gnann et al., 2019; Sivapalan et al., 2011; Tang & Wang, 2017). L. Zhang et al. (2008) suggested that the 
“limit” concept for total flow (Q) (i.e., Budyko framework) could be extended to depict the surface flow (Qs) 
generation between catchments by introducing storage capacity as another theoretical boundary. It is well 
known that mean annual catchment Qb can be estimated by subtracting Qs from Q (i.e., Qb/P = Q/P−Qs/P). 
If the “limit” hypothesis for Qs proposed by L. Zhang et al.  (2008) is valid, then the combination of the 
Budyko framework for Q/P and the extended Budyko framework for Qs/P can relate Qb/P to climatic factors 
and storage capacity. We can thus focus only on spatial variability without having to resolve complex inter-
actions between evapotranspiration and baseflow generation.

To depict the spatial variability of baseflow, an analytical framework (i.e., BFC curve) was developed by 
combining the Budyko framework (for Q/P) and the extended Budyko framework (for Qs/P) that accounts 
for the dominant controls of both aridity index and storage capacity on baseflow coefficient (BFC). Ob-
served hydro-meteorological data for 950 catchments across Australia, the conterminous United States, 
and the United Kingdom with a wide range of climatic and physiographical conditions are collected to test 
the capability of the proposed BFC curve. Furthermore, catchment storage capacity is inferred from the 
Ponce-Shetty model due to the lack of directly observed values. The primary objectives of this study were 
to (1) determine if storage capacity is as important to baseflow as aridity index is; (2) develop an analytical 
BFC curve to depict the spatial variability of baseflow by directly relating storage capacity and aridity index 
to baseflow estimation; (3) examine the capability of the developed BFC curve using observed baseflow 
coefficients for 950 study catchments.
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2.  Derivation of Baseflow Coefficient Curve
2.1.  “Limit” Concept in Budyko Framework

The Budyko framework can partition long-term precipitation into run-
off (Q) and actual evapotranspiration (Ea) by considering only the domi-
nant controls of water supply (typically P) and energy demand (typically 
Ep) on Ea (Budyko,  1958; L. Cheng et  al.,  2011; Good et  al.,  2017). As 
shown in Figure 1, the “limit” concept (the fundamental theory of the 
Budyko framework) places two theoretical limit boundaries on Ea (Good 
et al., 2017; L. Zhang et al., 2008). Mathematically, the “limit” concept 
can be expressed as:

 / 1 as / for very dry conditionsa pE P E P  � (1)

 as / 0 for very wet conditionsa p pE E E P � (2)

that is, under very dry conditions when evapotranspiration is limited by 
water supply, Ea will approach P; and under very wet conditions when 
evapotranspiration is limited by energy demand, Ea will asymptotically 
approach Ep.

The “limit” concept for evapotranspiration can be appropriately applied to catchment rainfall retention 
(CR). When catchment P is partitioned into Qs and CR (i.e., P = Qs + CR), L. Zhang et al. (2008) proposed 
that CR satisfies the extended “limits” concept, and is defined as:

0/ 1 as / (for very dry conditions)CR P CR P  � (3)

 0 0as / 0 for very wet conditionsCR CR CR P � (4)

where the demand limit for CR is CR0 (the sum of soil storage capacity Sp and potential evapotranspiration 
Ep). The supply limit for CR is considered to be P. CR0/P is analogous to Budyko's aridity index (Ep/P).

2.2.  Derivation of BFC Curve Based on the “Limit” Concept

An analytical framework (i.e., BFC curve) was developed in this study to depict the spatial variability of 
mean annual catchment baseflow. Based on the “limit” concept, both runoff coefficient (Q/P) and surface 
flow coefficient (Qs/P) can be derived using the Budyko framework. As shown in Figure 2, baseflow coeffi-
cient (Qb/P) is calculated as the difference between Q/P and Qs/P.

Q/P can be calculated from Ea/P (i.e., Q/P = 1−Ea/P) under equilibrium conditions, that is, when storage 
change can be neglected. Based on the “limits” concept, Ea/P is calculated using the equation proposed by 
Fu (1981) (see Figure 1), which is one of the analytical models for estimating mean annual evapotranspira-
tion (L. Zhang et al., 2004). Assuming that Ea/P satisfies a Budyko curve with a parameter a1, Fu's equation 
can be expressed as:

1/ 11

1 1

aa
p pa E EE

P P P

             

� (5)

When change in catchment water storage can be neglected, one can obtain:
1/ 11

1

aa
p pE EQ

P P P

             

� (6)
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Figure 1.  Schematic diagram of Budyko framework for partitioning mean 
annual precipitation (P) into actual evapotranspiration (Ea) and runoff 
based on the “limit” concept. Ep is potential evapotranspiration.
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where a1 is a parameter representing the joint control of other secondary climatic and landscape properties 
on evapotranspiration efficiency. Parameter a1 ranges from 1 to ∞. A higher a1 indicates a larger evapotran-
spiration efficiency (i.e., higher actual evapotranspiration and lower runoff for a given precipitation and 
potential evapotranspiration condition).

Qs/P is calculated as a function of catchment rainfall retention fraction (CR/P) (i.e., Qs/P = 1−CR/P). Similar 
to the calculation of Ea/P, the calculation of CR/P also uses the Budyko formulation proposed by Fu (1981) 
based on the “limit” concept (see Equations 3 and 4). Assuming that CR satisfies the Budyko curve with 
parameter equal to a2, the mathematic equation for estimating CR/P is:

             

1/ 22

1 1

aa
p p p pE S E SCR

P P P
� (7)

Then, Qs/P is calculated from 1−CR/P, expressed as:

             

1/ 22

1

aa
p p p ps E S E SQ

P P P
� (8)

where a2 is a parameter representing the joint control of all other secondary climatic and landscape prop-
erties (except for storage capacity Sp) on retention efficiency. A larger a2 value will result in more rainfall 
retention and less surface runoff. As stated earlier, Sp is effective catchment storage capacity, defined as 
the maximum water volume that a catchment can hold after rainfall events (McNamara et al., 2011; Pan 
et al., 2020).

Combining Equations 6 and 8, Qb/P can be calculated from Q/P−Qs/P as:

Q

P
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P
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P

E S
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b p p
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Under very limited storage capacity conditions (for instance, an impervious catchment), the available water 
for baseflow generation approaches 0, and baseflow also approaches 0, that is,
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Figure 2.  Schematic diagram showing partitioning baseflow (Qb) from precipitation (P) combining first step and 
second step partitioning at the mean annual scale based on the “limit” concept. Ea is actual evapotranspiration, Ep is 
potential evapotranspiration, Q is total flow, Qb is baseflow, Qs is surface flow, W is catchment wetting, Sp is storage 
capacity, a1 and a2 are parameters.
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/ 0 as / 0b pQ P S P � (10)

Therefore, when Ep + Sp/P approaches Ep/P (i.e., Sp/P→0), Qs/P should approach Q/P to make Qb/P→0 (see 
Figure 2). To satisfy this boundary condition, parameter a1 has to be equal to parameter a2. Thus Equation 9 
can be written as:

Q

P

S

P

E

P

E S

P

b p p p p  
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
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


1 1

1  /



1/

� (11)

where α is a new lumped parameter, reflecting the secondary controls of other climatic and landscape prop-
erties on long-term baseflow generation. These other properties include vegetation, slope, elevation, and 
soil infiltration capacity, etc. α ranges from 1 to ∞. This simplification has a limitation that a1 and a2 reflect 
joint control of secondary climatic and landscape properties on Q/P and Qs/P, respectively. The simplifica-
tion a1 = a2 is adopted in this study to satisfy the boundary condition (i.e., Equation 10) and to obtain a sim-
ple formulation to be shown in 3D space as in Figure 3a. Furthermore, the influence of the simplification 
a1 = a2 on the shape of the BFC curve is unnoticeable because both a1 and a2 reflect the secondary controls 
on baseflow. The influence of α on baseflow coefficient will be discussed in Section 5.3.

The BFC curve specifies that Qb/P is a function of aridity index (Ep/P) and Sp/P, where Sp/P is defined as the 
retention index. The sum of Ep/P and Sp/P represents catchment capability to retain mean annual precipita-
tion for baseflow and evapotranspiration. P, Ep, and Sp are the dominant factors that determine how much 
precipitation will be partitioned into baseflow.

2.3.  Visualization of the Developed BFC Curve

Figure  3a shows the 3-dimensional (3D) state space of the developed BFC curve (Equation  11). Catch-
ment aridity index (Ep/P) and the retention index (Sp/P) have opposite effects on how much precipitation 
becomes baseflow at mean annual scale. BFC decreases nonlinearly with increasing Ep/P, but increases 
nonlinearly with increasing Sp/P. The joint controls of Ep/P and Sp/P are demonstrated using several BFC 
curves in Figure 3a. Figure 3b shows the projection of 3D BFC curves into Qb/P versus Ep/P 2-dimensional 
(2D) space, and clearly shows the influence of Sp/P on catchment BFC. The 2D BFC curves in Figure 3b 
are similar to the shape of the Budyko curves for Q/P and Qb/P (both decreasing with increasing Ep/P). The 
difference is that BFC curves have different values when Ep/P approaches 0. For curves with very large re-
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Figure 3.  Visualization of the developed baseflow coefficient curve (i.e., Equation 11): (a) 3-dimensional state space and (b) 2-dimensional Qb/P versus Ep/P 
space in which Sp/P is left as a parameter. Subregions (a–c) in panel (a) represent different catchment conditions. Note that the color of the state space has no 
meaning, but is provided for better visualization. Qb is baseflow, P is precipitation, Ep is potential evapotranspiration, Sp is storage capacity.
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tention index (e.g., Sp/P = 6.0), BFC approaches 1.0 when Ep/P = 0, and then decreases with increasing Ep/P. 
BFC for curves with very small retention index (e.g., Sp/P = 0.2) are much smaller than 1.0 when Ep/P = 0. 
The different shapes of BFC curves indicate that the controls of aridity index and retention index on BFC 
are different across different catchment conditions.

Basically, the state space of the BFC curve can be divided into three subregions, that is, (a–c) regions in Fig-
ure 3a, according to the relative importance of the three limits (P, Ep, and Sp) on BFC across different con-
ditions. Subregion (a) represents the precipitation-limited condition with small P and large Ep (Ep/P ≥ 1.0 
as suggested by Fu, 1981). Subregion (b) represents the energy-limited condition with small EP, large P, and 
large Sp (Ep/P < 1.0, Sp/P ≥ 5.0, note that the sensitivity of BFC to Sp/P is equal to 0 when /pS P = 5.0 [see 
Figure 4b]). Subregion (c) represents the combination of energy- and storage-capacity-limited conditions 
with small Ep, small Sp, and large P (Ep/P < 1.0, Sp/P < 5.0). In the precipitation-limited and energy-lim-
ited conditions in subregions (a and b), Ep/P has a much more dominant influence than Sp/P on BFC. In 
subregion (c), baseflow is jointly controlled by energy and storage capacity, and both Sp/P and Ep/P have 
significant impacts on BFC.

The impacts of Ep and Sp in subregion (c) can be further demonstrated by the sensitivity of BFC to Ep/P and 
Sp/P (see Figure 4). BFC is sensitive to changes in Ep/P at low Ep/P, and sensitivity increases with increasing 
Sp/P (Figure 4a). BFC is sensitive to changes in Sp/P only at low Ep/P and low Sp/P conditions (Figure 4b). At 
low Ep/P and low Sp/P conditions (i.e., subregion (c)), the response of BFC to both Ep/P and Sp/P indicates 
that both Ep and Sp are important for depicting the spatial variability of BFC in humid catchments.

From Figures 3 and 4, it can be seen that aridity index is the dominant control on BFC in all conditions, 
while retention index has significant impact on BFC only in humid catchments with small retention index 
where typically Ep/P < 2.0 and Sp/P < 2.0. Mean annual catchment baseflow is determined by three first or-
der controls, water supply P, energy demand Ep and catchment storage capacity Sp. When Sp is smaller than 
P, Sp can be easily and frequently saturated for baseflow generation. Under this condition, a large fraction of 
P runs off quickly to the stream as surface flow rather than baseflow. Compared with the first order controls 
of P and Ep in the Budyko framework, the introduction of Sp as a first order factor as important as P and Ep 
for baseflow generation is the fundamental characteristic of the BFC curve.

3.  Catchments and Data
Daily hydrological and meteorological data from a total of 950 catchments were used to test the capability 
of the developed analytical baseflow coefficient curve. These 950 catchments were located in Australia 
(n = 443), the conterminous United States (n = 372), and the United Kingdom (n = 135).
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Figure 4.  Sensitivity of baseflow coefficient (BFC =  /bQ P) to the dominant control factors: (a) the sensitivity to aridity index (Ep/P) and (b) the sensitivity 
to retention index (Sp/P). Note that the color of the state space has no meaning but is provided for better visualization. P is precipitation, Ep is potential 
evapotranspiration, Sp is storage capacity.
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3.1.  Australian Catchments and Data

Long-term daily precipitation, potential evapotranspiration and streamflow data of 443 un-nested catch-
ments in Australia were obtained. Data for these catchments are part of the Australia unregulated catchment 
data set (Y. Zhang et al., 2013) with minimum instances of human interference (i.e., without dams, inten-
sive irrigation, and land use change). Daily catchment precipitation and potential evapotranspiration were 
aggregated from the 5 km gridded data set. Gridded daily meteorological data including precipitation, tem-
perature, solar radiation and vapor pressure were provided by the Australian Bureau of Meteorology (BoM) 
(http://www.bom.gov.au/climate/data/). Gridded potential evaporation was calculated by the Priestley-Tay-
lor equation (Priestley & Taylor, 1972) using BOM meteorological data and 5 km monthly albedo data cre-
ated using 1 km resolution MODIS albedo data (https://modis.gsfc.nasa.gov/). The collected precipitation, 
streamflow and potential evapotranspiration data in Australia span over the period of 1975–2012. All the 
catchments have a minimum length of 20-years records with at least 10-years continuous records and less 
than 10% missing data in total. The drainage area ranged from 48 to 72,902 km2. These 443 catchments have a 
broad range of hydrological characteristics. The average precipitation is 948 mm ± 413 (mean ± standard de-
viation), aridity index is 1.76 ± 1.01, runoff coefficient is 0.19 ± 0.15, and baseflow coefficient is 0.06 ± 0.07.

3.2.  Conterminous United States Catchments and Data

A total of 372 catchments from the conterminous United States (CONUS) were used in this study, which are 
obtained from the Model Parameter Estimation Experiment (MOPEX) data set (Duan et al., 2006). Daily pre-
cipitation, potential evapotranspiration and streamflow data of these 372 catchments are collected, spanning 
the period of 1943–2003. The daily precipitation data sets were developed by the NWS Hydrology Laboratory 
(HL) based on rain gauge data from the National Climate Data Center (NCDC) (http://www.ncdc.noaa.gov/). 
The climatic potential evaporation data was derived from the NOAA Freewater Evaporation Atlas (Farnsworth 
et al., 1982), using the Penman method (Penman, 1948). The fraction of precipitation falling as snow of the 
selected catchments is no larger than 0.2 to avoid the influence of snow on baseflow separation. The drainage 
area of the study catchments varied from 67 to 10,375 km2. The selected catchments cover all major geological 
and climate regions in the CONUS. The average precipitation is 1,038 mm ± 335 (mean ± standard deviation), 
aridity index is 1.07 ± 0.64, runoff coefficient is 0.35 ± 0.17, and baseflow coefficient is 0.15 ± 0.09.

3.3.  United Kingdom Catchments and Data

The 135 selected catchments in the United Kingdom are part of the UK Benchmark Network (UKBN2) 
(Harrigan et al., 2018). Hydro-meteorological data for these catchments was obtained from different sourc-
es. Daily precipitation data were obtained from the Center for Ecology & Hydrology–Gridded Estimates of 
Areal Rainfall (GEH-GEAR) (Tanguy et al., 2016). Daily streamflow data and catchment boundaries were 
obtained from the website of National River Flow Archive (NRFA, 2019). Daily potential evapotranspiration 
data were obtained from the Climate Hydrology and Ecology Research Support System–Potential Evapo-
transpiration (GHESS-PE) (E. L. Robinson et al., 2017). The potential evapotranspiration were calculated us-
ing the Penman-Monteith equation for well-watered grass but a correction is added for interception on days 
where rainfall has occurred (Penman, 1948). Daily P and Ep data were at 1-km resolution and covered the 
period of 1986–2015 without any missing data. Available streamflow data length for these 135 catchments 
ranged from 24 to 87 years. The study period for the 135 catchments from the UK was set as the common 
period of the three data sets (1992–2015). The 135 study catchments in the UK were all in humid climatic 
conditions. The fraction of precipitation falling as snow of the selected UK catchments is no larger than 0.2. 
The average precipitation of all United Kingdom catchments is 1,254 mm ± 582 (mean ± standard devia-
tion), aridity index is 0.51 ± 0.22, runoff coefficient is 0.59 ± 0.23, and baseflow coefficient is 0.25 ± 0.14.

3.4.  Baseflow Separation

Daily baseflow (Qb) and surface flow (Qs) are separated from daily total streamflow (Q) using a digital filter 
technique, that is, the Lyne-Hollick (denoted as LH) method (Lyne & Hollick, 1979). Different digital filter 
techniques have no significant influence on the annual and mean annual estimation of Qb and Qs (L. Cheng 
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et al., 2012, 2016; Kelly et al., 2019; Tan et al., 2020; J. Zhang et al., 2017). The LH method has the advantage 
of being minimally parameterized, and thus is easily applied to a large sample of catchments (Jolánkai & 
Koncsos, 2015). Here the LH method was applied in a traditional way, that is, baseflow was separated from 
total flow with three passes (forward, backward, and forward) and the filter parameter f1 was set to 0.925 as 
suggested by Nathan and McMahon (1990). Daily Qb and Qs were aggregated to the annual and mean an-
nual scales as observed Qb and Qs. Catchment baseflow coefficient (BFC) is calculated as the ratio of mean 
annual Qb to mean annual P, that is, BFC = Qb/P.

3.5.  Estimation of Effective Storage Capacity Sp

Equation 11 has four parameters for estimation of mean annual catchment baseflow coefficient (BFC). One 
is a synthetic parameter (i.e., α), and the other three have explicit physical meanings (i.e., P, Ep, and Sp). P 
and Ep can be derived directly from long-term meteorological data, however, Sp is currently not available 
(Han et al., 2020). In this study, catchment effective storage capacity Sp was inferred from the process-based 
annual Ponce-Shetty model (Ponce & Shetty, 1995). This model is based on the two-stage partitioning theory 
of Lvovich (1979) that was later reintroduced by Sivapalan et al. (2011). The Ponce-Shetty model describes 
how precipitation is stored and released through the two-stage partitioning processes. The parameter wet-
ting potential (Wp) in the Ponce-Shetty model was used to represent effective catchment storage capacity. 
Wp can well discriminate the difference in Sp between catchments in the following application and demon-
stration of Equation 11.

The two-stage partitioning theory partitions annual precipitation (P) into three components: surface flow 
(Qs), baseflow (Qb), and actual evapotranspiration (Ea). In the first stage, P is partitioned into Qs and catch-
ment wetting (W). In the second stage, W is further partitioned into Qb and Ea. In the first stage partitioning, 
P=Qs+W:

  , 0,s p sP W Q W P� (12)
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In the second stage partitioning,  b aW Q E :
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where Wp, Vp, λs, and λu are four parameters. Wp and Vp are the upper bounds on W and Ea, and are referred 
as the wetting and evapotranspiration potentials of a catchment, respectively. A higher value of Wp usually 
means a larger catchment storage capacity. A higher Vp usually means a larger potential evaporation rate. 
λs represents the proportion of P that must satisfy W before Qs can occur. λu represents the proportion of W 
that must be used to satisfy Ea before baseflow Qb can occur. λs and λu are coefficients related to the genera-
tion of surface flow and baseflow and have a range of 0 < λs, λu < 1. The closer that λs and λu approach 1.0, 
the more difficult it is for a catchment to generate surface flow and baseflow, respectively.

Wp, Vp, λs, and λu in the Ponce-Shetty model were calibrated in every catchment using an automatic optimi-
zation technique (Genetic Algorithm (GA)) (Grefenstette, 1986) to maximize the Nash-Sutcliffe efficiency 
(Nash & Sutcliffe, 1970) of annual surface flow (NSE1) and annual baseflow (NSE2), stage by stage. Annual 
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Qb and Qs derived in Section 3.4 were used to calibrate annual parameters for the Ponce-Shetty model. Wp 
and λs were calibrated for the first stage by maximizing NSE1 between “observed” Qs separated from total 
streamflow using the LH method and Qs simulated by the Ponce-Shetty model. Vp and λu for the second 
stage were calibrated by maximizing the NSE2 between “observed” Qb derived from the LH method and Qb 
simulated by the Ponce-Shetty model. The influence of Wp on the partitioning process gives us insight into 
the control of storage capacity on the spatial variability of baseflow (Gnann et al., 2019). Therefore, the cal-
ibrated values of Wp for every catchment were further used to represent different magnitudes of catchment 
storage capacity (i.e., Sp) in the proposed method.

4.  Validation of the Proposed BFC Curve
4.1.  Maps of Flow Metrics and Catchment Climatic and Storage Attributes

Figure 5 shows the spatial distribution of observed total flow coefficient (TFC =  /Q P) (Figure 5a), baseflow 
coefficient (BFC =  /bQ P) (Figure 5b), aridity index (AI =  /pE P) (Figure 5c) and retention index (Sp/P) 
(Figure 5d) across Australia, the conterminous United States, and the United Kingdom. Generally, BFC and 
TFC exhibited similar spatial patterns with higher values in the UK, lower values in Australia, and high 
variability in the CONUS. In Australia, the average TFC and BFC were 0.19 ± 0.15 (mean ± standard devi-
ation) and 0.06 ± 0.07, respectively. Basically, BFC and TFC increased from inland to coastal catchments, 
especially in the southeast region within mainland Australia. In contrast, this was not the case for Western 
Australia, where BFC was relatively small even for the catchments close to the coast. In the CONUS, the 
average TFC and BFC were 0.35 ± 0.17 and 0.15 ± 0.09, respectively. Generally, TFC and BFC were smaller 
in the central and southeastern coastal regions than in other regions of the CONUS. TFC and BFC of most 
catchments located in the central CONUS were lower than 0.25 and 0.10, respectively. TFC and BFC became 
larger in the western CONUS. In the UK, the average TFC and BFC values were 0.58 ± 0.23 and 0.25 ± 0.14, 
respectively. Generally, TFC and BFC were smaller on the southeastern coast of the UK than in other re-
gions. Except for the southeastern coast, TFC and BFC of most catchments were higher than 0.49 and 0.25, 
respectively. These results show that TFC and BFC are spatially distinct across catchments with different 
climate and landscape properties.

Generally, Aridity index (AI) was relatively smaller across the United Kingdom (humid region) than across 
the other two countries. Spatial variability of AI for CONUS catchments was greater than for the other two 
countries. The average AI in Australia, the CONUS, and the UK was 1.76 ± 1.01 (mean ± standard devi-
ation), 1.07 ± 0.63, and 0.51 ± 0.22, respectively. The retention index (Sp/P) for the UK catchments were 
smaller than observed for the catchments in Australia and the CONUS. Sp/P showed no obvious spatial 
pattern for any of the three study countries. Generally, baseflow coefficient (BFC) and aridity index (AI) had 
oppositional spatial patterns across Australia and the CONUS. That is, higher AI values usually correspond-
ed to lower BFC and vice versa (see Figures 5b and 5c). However, this oppositional spatial pattern was not 
obvious across the United Kingdom.

4.2.  Joint Control of Aridity Index and Retention Index on Spatial Variability of Catchment 
Baseflow

Figure 6 shows scatter plots of total flow coefficient (Q/P) versus aridity index (Ep/P) (Figure 6a), as well as 
baseflow coefficient (Qb/P) versus aridity index (Ep/P) (Figure 6b) for all 950 study catchments. Q/P decreas-
es with the increases of Ep/P, falling relatively close to a single Budyko curve as expected. In contrast, Qb/P 
did not always decrease with increasing Ep/P, and exhibited especially high variability in humid catchments 
located in the UK. Budyko curves (see Equation 6) were fitted for Q/P and Qb/P by maximizing Nash-Sut-
cliffe efficiency (NSE; Nash & Sutcliffe, 1970) with parameter a equal to 2.6 and 6.9, respectively. Com-
pared with NSE for observed Q/P and Budyko-simulated Q/P (0.81), the NSE of Qb/P degraded remarkably 
(−0.76). This suggests that the Budyko curve was incapable of capturing the spatial variability of baseflow, 
especially the humid catchment located in the UK (see Figure S1). As interpreted by Gnann et al. (2019), 
the high variability of BFC in humid catchments shown in Figure 6b can be attributed to differences in 
catchment retention index Sp/P, indicating the influence of Sp/P on baseflow generation.
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Figure 5.  Spatial distribution of flow metrics and catchment attributes across Australia, the conterminous United States, and the United Kingdom: (a) total 
flow coefficient (TFC), (b) baseflow coefficient (BFC), (c) aridity index (AI), and (d) retention index (Sp/P). Note that the color scales of maps (a–d) are different. 
Note that the map scales are not the same in order to have better visualization.
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As shown in Figure  7, scatterplots of observed Qb/P versus Ep/P for all 950 catchments can be separat-
ed into three groups according to the magnitude of the surrogate retention index (Sp/P) (i.e., Sp/P ≤ 1.0, 
1.0 < Sp/P ≤ 3.0, and Sp/P > 3.0). The three separate point clouds demonstrate the great influence of Sp/P on 
Qb/P. The point cloud with lowest Sp/P values exhibited lower BFC values (Figure 7a) and vice versa (Fig-
ure 7c). Ep/P and Sp jointly determined the spatial variability of catchment baseflow. Basically, 2D Qb/P ver-
sus Ep/P BFC curves with different Sp/P values (similar lines shown in Figure 3b) can capture the observed 
BFC of the catchments (i.e., scatter points) in the three subplots of Figure 7. These results demonstrate that 
the joint control of aridity index and retention index on spatial variability of baseflow observed from catch-
ment data can be depicted by the BFC curve proposed in this study.

4.3.  Estimation of Baseflow Using Proposed BFC Curve

The 3-dimensional BFC curve (Equation 11) was used to estimate mean annual catchment BFC and base-
flow. Aridity index (Ep/P) and retention index (Sp/P equal to Wp/P) of catchments are known values, and 
parameter α in Equation  11 was calibrated for each catchment using Genetic Algorithm (GA) (Grefen-
stette, 1986). The distribution of calibrated catchment α values is shown in the inset panel of Figure 8a. 
Because of the wide range of α values (1.0–4.0), the BFC curve using α fixed at 2.5 (i.e., median value of the 
range 1.0–4.0) cannot accurately model the observed BFC for all 950 catchments (Figure 8a). Thus, the 950 
catchments were separated into three groups according to the calibrated α values, and shown in Figure 8b 
(α = 1.0–1.3, 430 catchments), Figure 8c (α = 1.31–3.0, 170 catchments), and Figure 8d (α = 3.01–4.0, 350 
catchments). α values for the BFC curves were fixed at mean values of α for the three groups (i.e., 1.16, 1.77, 
and 3.83, respectively) to model catchment baseflow in the three separated groups shown in Figures 8b–8d, 
respectively. The state space for the three BFC curves appeared to cover the scatterplots of observed BFC 
well.

The simulated baseflow metrics using the BFC curve with α equal to 1.16, 1.77, and 3.83 were compared 
with the observed baseflow metrics in Figures 9a and 9b. The BFC curve estimated mean annual BFC and 
Qb reasonably well compared with the observations. The coefficients of determination (R2) and root mean 
square errors (RMSE) between the observed and simulated BFC were 0.75 and 0.058, respectively. The BFC 
curve also performed well in modeling Qb, with R2 and RMSE values of 0.86 and 0.19 mm, respectively. Fur-
thermore, the BFC curve significantly improved the accuracy of Qb/P and Qb estimation compared with the 
Qb/P and Qb directly estimated by Budyko framework. Determination of Budyko parameter was consistent 
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Figure 6.  Plots relating flow coefficients to aridity index: (a) mean annual runoff coefficient (Q/P) versus aridity index 
(Ep/P) and (b) mean annual baseflow coefficient (Qb/P) versus aridity index (Ep/P) across Australia (green circle), the 
conterminous United States (red circle), and the United Kingdom (blue circle). The black lines are the fitted Budyko 
curves with parameter α equal to 2.6 and 6.9, respectively. Q is total flow, Qb is baseflow, P is precipitation, Ep is 
potential evapotranspiration.
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with that of BFC curve. The Budyko framework performed worse than 
the BFC curve with lower R2 of 0.40 and 0.65 (Figure 9c), as well as larg-
er RMSE of 0.087 and 0.30 mm for Qb/P and Qb estimation, respectively 
(Figure 9d). Figure 9 demonstrates that the proposed BFC curve deter-
mined in this study can accurately estimate mean annual catchment BFC 
and Qb.

5.  Discussion
5.1.  Different Control of Storage Capacity on Qb and Ea

Previous studies have reported the significant influence of storage ca-
pacity on hydrological partitioning (Donohue et al., 2012; Hahm, Dralle, 
et al., 2019; Shen et al., 2017). From a process-based perspective in the 
Ponce-Shetty model, storage capacity has a persistent effect on catchment 
wetting and catchment wetting simultaneously influences both baseflow 
and evapotranspiration. However, the influence of storage capacity on 
mean annual baseflow or spatial variability of baseflow are much more 
significant than the influence on evapotranspiration (Gnann et al., 2019; 
Neto et  al.,  2020). The different impact of storage capacity on Qb and 
Ea can be well reflected in the BFC curve and the Budyko curve. In the 
Budyko framework, storage capacity is not a dominant controlling fac-
tor. Aridity index is the dominant factor controlling evaporation. For the 
baseflow coefficient, Equation 11 suggests that both the storage capacity 
and aridity index can affect baseflow significantly.

Although the structure of Ponce-Shetty model structure shows that stor-
age capacity plays important roles in both baseflow and evaporation gen-
eration, the sensitivity analysis of the Ponce-Shetty model proves that 
storage capacity plays more important roles on Qb than Ea. Figure  10 
shows the sensitivity of Qb and Ea to Wp in the Ponce-Shetty model. The 
relative changes of Qb and Ea were calculated with the fitted parameter 
Wp changing by 40% (form −20% to 20%) in the 950 catchments. Qb was 
much more sensitive to Wp than Ea, with the average relative change of 
Qb being 35.4%  ±  31.0% (mean  ±  standard deviation) and the average 
relative change of Ea being 7.4% ± 4.5% for all 950 study catchments. The 
relative change of Qb was 3.9 ± 1.7 times larger than that of Ea. The much 
higher sensitivity of Qb to Wp than Ea to Wp suggests that the influence of 
storage capacity on Qb was much more important than the influence of 
storage capacity on Ea. It is reasonable that storage capacity is considered 

as a dominant control factor for Qb in the BFC curve and a secondary control factor for Ea in the Budyko 
curve.

5.2.  Advantages of Proposed Method for Estimating Long-Term Baseflow Coefficient

An important finding of this study is that the concise formulation of the BFC curve (Equation 11) can direct-
ly relate storage capacity to baseflow estimation. The simple but robust BFC curve mainly benefitted from 
the “limit” concept without detangling the complex interactions between evapotranspiration and baseflow 
generation temporally. Compared with conceptual models (e.g., the Ponce-Shetty model), the simple for-
mulation of the BFC curve has advantages related to understanding how storage capacity affects baseflow.

Although the Ponce-Shetty model can represent detailed hydrologic processes and explicitly describe the 
controls of catchment properties on hydrological functions (Gentine et al., 2012; Potter et al., 2005), the 
complex numerical solution of BFC (Equation A1) based on the Ponce-Shetty model limits its practical 
application to explain the spatial variability of baseflow (Sivapalan et al., 2011; L. Zhang et al., 2001). Fig-
ure 11 shows the upscaled Ponce-Shetty model (described in the Appendix) at the mean annual scale to 
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Figure 7.  Scatterplots of observed baseflow coefficient (BFC =  /bQ P)  
versus aridity index (Ep/P) for 982 study catchments in Australia, the 
conterminous United States, and the United Kingdom. Each point 
represents one catchment at the mean annual scale. Three distinct point 
clouds separated by different ranges of Sp/P are presented, with (a) 
Sp/P ≤ 1.0, (b) 1.0 < Sp/P ≤ 3.0, and (c) Sp/P > 3.0. The black lines in the 
figures are projected bidimensional BFC curves.
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explain the spatial variability of observed BFC. The plot of observed BFC versus rescaled (see Appendix 
for description of rescaling) aridity index ( /pV P) (Figure 11) is very similar to the BFC versus Ep/P plot 
(Figure 6). To some extent, the scatter points in Figures 11a can be roughly separated by rescaled precipi-
tation ( P). However, the plots cannot be separated by rescaled vapourization potential (pV ) (Figures 11b). 
Essentially, the Ponce-Shetty model can symmetrically depict spatial variability in mean annual water bal-
ance (between-catchments) and temporal variability at the annual time scale (Gnann et al., 2019; Harman 
et al., 2011; Sivapalan et al., 2011). Regarding the spatial variability of mean annual catchment BFC, the 
upscaled Ponce-Shetty model at mean annual scale is too complex for explaining the spatial variability of 
mean annual baseflow because the rescaled aridity index ( /pV P) is a synthesis of several factors including 
observed hydro-climate fluxes and four fitted parameters.

5.3.  Secondary Controls on Proposed BFC Curve

The dominant controls of P, Ep, and Sp were explicitly accounted for in the proposed BFC curve. α in the pro-
posed BFC curve represented the integrated secondary controls of catchment properties on the catchment 
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Figure 8.  3D plots of observed baseflow coefficients (BFC =  /bQ P) versus aridity index (Ep/P) and retention index (Sp/P): (a) all catchments and (b–d) 
catchments separated according to the value of parameter α. Each point represents one catchment at the mean annual scale. Lines are BFC curves with 
parameter α equal to (a) 2.5; (b) 1.16; (c) 1.77; and (d) 3.83. The inset panel (a) shows the distribution of calibrated catchment parameter α.
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BFC. The larger the α value, the steeper the slope of the BFC curve. This means larger BFC in humid catch-
ments and smaller BFC in arid catchments. For catchments with different properties, the value of α can be 
different. Figure 12 shows the spatial distribution of α calibrated in Section 5.3. Obvious spatial patterns of 
α can be seen across Australia and the conterminous United States. Basically, α was smaller on the southeast 
coast of Australia and became larger in western and northern Australia. α clearly increased from coastal to 
inland catchments in southeastern Australia. In the CONUS, α in western catchments had high variability. 
In the central CONUS, α had high values and became smaller in the eastern CONUS. In the UK, α for most 
catchments was small with α of 91.9% UK catchments smaller than 2.0.

The influences of all other secondary controlling factors are synthesized in parameter α, including intra-an-
nual climate variability, soil, vegetation, and topography. Ahiablame et al. (2013) found that basin drainage 
area and open water bodies in the watershed were positively correlated with baseflow. Longobardi and 
Villani (2008) pointed out that permeability index influenced baseflow generation. Singh et al. (2019) evalu-
ated the influence of catchment elevation, rain days, and upstream average slope on baseflow. It is essential 
to investigate the impact of the second controlling roles on α. The relationships between α and climate and 
landscape properties are also very important for advancing our understanding about the BFC curves, and 
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Figure 9.  Scatterplots of observed and simulated baseflow metrics by baseflow coefficient curves (shown in Figure 8) 
and Budyko framework for 950 study catchments in Australia, the conterminous United States, and the United 
Kingdom: (a) baseflow coefficient (BFC =  /bQ P) estimated by BFC curve, (b) baseflow (Qb) estimated by BFC curve, 
(c) Qb/P estimated by Budyko framework, and (d) Qb estimated by Budyko framework.
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these relationships will be explored in the future with more data (Daly 
et al., 2019; Xing et al., 2018; X. Xu et al., 2013).

5.4.  Implications of the Proposed BFC Curve

The assessment of the impacts of climate and vegetation changes on 
catchment water balance has a long tradition in hydrology. The Budyko 
framework has been widely used for analyzing the sensitivity of mean 
catchment water yield to the changes in aridity index, its individual 
components, and/or the lumped parameter (Roderick & Farquhar, 2011; 
Wang & Hejazi,  2011). Catchment baseflow can also be altered signif-
icantly by changing climate and vegetation (Ayers et  al.,  2019; Ficklin 
et al., 2016). Several studies have attempted to quantify the impact of cli-
mate and vegetation changes on baseflow through paired-catchment data 
(L. Cheng et al., 2017) and statistical analysis (Ahiablame et al., 2017; Tan 
et al., 2020; Trancoso et al., 2017). There is no analytical tool that can be 
used for such assessment, except for an exponential function of aridity in-
dex for baseflow modeling proposed by Meira Neto et al. (2020). Howev-
er, this proposed method did not account for the control of storage capac-
ity on baseflow, and the method was only tested using the conterminous 
United States catchments without considering the humid catchments in 

the United Kingdom. In this study, the proposed BFC curve was used for similar procedures as the Budyko 
framework, assessing the effects of climate change and storage capacity changes on spatial differences in 
baseflow and direct flow spatially. This method will likely prove valuable for studies of the effects of climate 
change on groundwater resources.

6.  Conclusions
In this study, an analytical framework (i.e., baseflow coefficient curve; Equation 11), was developed to ex-
plain the spatial variability of baseflow coefficient (i.e., BFC =  /bQ P) using hydroclimatic data for 950 
catchments across Australia, the conterminous United States, and the United Kingdom. By expressing BFC 
as a function of aridity index (Ep/P) and retention index (Sp/P), the BFC curve demonstrated that BFC de-
creased nonlinearly as Ep/P increased, and BFC increased nonlinearly as Sp/P increased. The BFC curve also 
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Figure 10.  Boxplots of sensitivity of partitioning components (Qb and 
Ea) to Wp using the Ponce-Shetty model. The y-axis values are the relative 
changes of Qb and Ea with Wp changing by 40% (−20% to 20%). The 
lower and upper box boundaries indicate the 25th and 75th percentiles. 
The line inside the box indicates the median. Qb is baseflow, Ea is 
evapotranspiration, Wp is wetting potential.

Figure 11.  Scatterplots of observed baseflow coefficient (BFC =  /bQ P) versus rescaled aridity index ( /pV P, see Ponce-Shetty model, Appendix) for 982 
study catchments in Australia, the conterminous United States, and the United Kingdom. Each point represents one catchment at the mean annual scale. 
Lines are fitted Equation A1 derived from the Ponce-Shetty model. The scatterplots and lines are separated by different rescaled variables: (a) P (rescaled 
precipitation) and (b) pV  (rescaled vapourization potential).
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demonstrated that storage capacity is an important controlling factor on BFC as important as aridity index 
in humid catchments. Observed hydro-climate data for the 950 study catchments proved that the proposed 
BFC curve has excellent capability to capture the spatial variability of mean annual catchment baseflow. 
High variability of / versus /b pQ P E P scatterplots from humid catchments could be separated into three 
distinct point clouds according to Sp/P, consistent with the separation performed for BFC curves. Further-
more, the BFC curve performed well in modeling mean annual BFC for 950 study catchments with R2 of 
0.75 and RMSE of 0.058. The performance in modeling mean annual baseflow was good, with R2of 0.86 and 
RMSE of 0.19 mm. The derived analytical BFC curve (Equation 11) in this study was used to predict the 
baseflow coefficient (Qb/P) similar to how the Budyko equation predicts the runoff coefficient (Q/P). This 
method showed that both aridity index and storage capacity are the dominant controls on spatial variability 
of mean annual baseflow, thereby improving our ability to predict mean annual baseflow for ungauged 
catchments.

Appendix:  Upscaled Ponce-Shetty Equations
The annual Ponce-Shetty model can be upscaled to the mean annual scale to model BFC. Based on the work 
of Sivapalan et al. (2011) and Gnann et al. (2019), BFC can be expressed as a function of rescaled climate 
variables:
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where P is rescaled precipitation and pV  is the rescaled vapourization potential at the mean annual scale, 
calculated as:
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 /pV P can be called rescaled aridity index. From Equation A1, it can be seen that BFC is jointly controlled by 
P and pV , thereby synthesizing the controls of precipitation and four parameters. The four parameters are 

wetting potential (Wp), evapotranspiration potential (Vp), surface flow abstraction (λs), and baseflow initial 
abstraction (λu).
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Figure 12.  Spatial distribution of the calibrated parameter α across Australia, the conterminous United States, and the United Kingdom.
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Data Availability Statement
Data of Australia catchments are part of the Australia unregulated catchment data set (Y. Zhang et al., 2013). 
Data of the conterminous United States catchments are obtained from the Model Parameter Estimation Ex-
periment (MOPEX) data set (Duan et al., 2006). For catchments from United Kingdom, catchment bounda-
ries and daily streamflow data are obtained from UK Benchmark Network (UKBN2) (Harrigan et al., 2018), 
on the website of National River Flow Archive (https://nrfa.ceh.ac.uk/benchmark-network). Daily pre-
cipitation data are obtained from the Center for Ecology & Hydrology (https://catalogue.ceh.ac.uk/docu-
ments/33604ea0-c238-4488-813d-0ad9ab7c51ca) (Tanguy et al., 2016). Daily potential evapotranspiration 
data are obtained from the Climate Hydrology and Ecology Research Support System–Potential Evapotran-
spiration (GHESS-PE) (http://nora.nerc.ac.uk/id/eprint/516155) (E. Robinson et al., 2016).
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