
1.  Introduction
In the conventional practice of flood frequency analysis, the flood frequency distribution (FFD) estimation 
is usually based on at-site flood samples, and generally includes two standard procedures, i.e., assuming the 
interested flood samples follow a theoretical probability distribution; and then estimating the distribution 
parameters in terms of fitting the flood samples by using some statistical techniques such as the method of 
moments, L-moments and maximum likelihood estimation (MLE) (Hosking, 1990; Merz & Blöschl, 2008a). 
Hence, the FFD estimation based on at-site flood samples is more like a pure statistical issue without con-
cerning any hydrological reasoning about the physical processes of floods. Regardless of the choice of the-
oretical probability distributions and the techniques of distribution parameter estimation, the reliability of 
FFD estimation principally depends on whether the at-site flood samples are able to be representative of the 
overall occurrence behavior of floods.

The FFD estimation relying only on at-site flood samples is often limited by available flood observations 
(Merz & Blöschl, 2008a; B. Xiong et al., 2020). In practice, continuous flood records at hydrological gaug-
ing sites often have a far less length than the design return periods of hydraulic projects (such as 100 and 
1,000 years) or maybe even unavailable in many regions (Engeland et al., 2018). In addition, due to climate 
condition changes and intensive human activities, flood observations in numerous rivers around the world 
have been found to exhibit significant nonstationarity (El Adlouni et al., 2007; Jiang, Xiong, et al., 2019; 
Khaliq et al., 2006; López & Francés, 2013; Villarini et al., 2009; Yan et al., 2017). This suggests that the 
FFDs relying only on the nonstationary flood samples might fail to be accurately representative of current 
or future occurrence behaviors of floods.
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Beyond local at-site flood samples, incorporating the additional information relevant to flood processes 
into FFD estimation appears to be the only way to deal with the issues of both the lack of long-term flood 
observations and flood nonstationarity. Historical information from palaeoflood surveys can expand flood 
records dating back to a much earlier period than gauging site observations (Engeland et al., 2018; Guo 
& Cunnane, 1991). By utilizing more evidence of large flood records, the FFD involving historical flood 
information is able to enhance the reliability of flood quantiles, especially these at the tail (Toonen, 2015; 
B. Xiong, et al., 2020). Unlike the FFD estimation relying on the flood samples at a single gauging site, the 
regional flood frequency analysis utilizes the flood samples of a group of neighboring catchments, which 
contain the information about the regional homogeneity of catchment characteristics controlling flood gen-
erations. The methods of regional flood frequency analysis have been shown to be able to improve the 
accuracy of FFD estimation and apply to ungauged regions (Dawdy et al., 2012; Hosking & Wallis, 1997; 
Kroll & Stedinger, 1998; Thorarinsdottir et al., 2018). Eagleson (1972) outlined a process-based approach 
for FFD estimation, in which FFD is no longer directly estimated from at-site flood samples based on an 
assumed theoretical probability distribution, but is derived by the probability distribution of hydrological 
input variables (such as rainfall intensity, rainfall duration and soil moisture) via a hydrological model 
(Sivapalan et al., 2005; Yu et al., 2019). Obviously, the process-based approach concerning the hydrological 
reasoning information of both hydrological input conditions and flood generation processes can provide a 
practicable alternative to estimate FFDs at ungauged regions. From a cause-effect perspective, flood nonsta-
tionarity can be certainly attributed to some specific driving forces, such as climatic condition changes and 
human activities (Jiang, Xiong, et al., 2019; López & Francés, 2013; Villarini et al., 2009; Vogel et al., 2011; 
Volpi et al., 2018; B. Xiong et al., 2020; L. Xiong et al., 2015). In recent decades, the generalized additive 
model for location, scale and shape (GAMLSS) (Rigby & Stasinopoulos, 2005) has been widely employed to 
capture flood nonstationarity by linking FFD parameters to the covariates indicating nonstationarity driv-
ing forces (Debele et al., 2017; Jiang, Xiong, et al., 2019; López & Francés, 2013; Villarini et al., 2009, 2010; 
B. Xiong et al., 2019; Yan et al., 2017). The FFDs involving the additional information of nonstationarity 
driving forces are more adaptable to a changing environment. Given the above, the expansion of the addi-
tional information with hydrological reasoning is of great significance in improving the accuracy of FFD 
estimation as well as providing a better understanding of flood characteristics (Khaliq et al., 2006; Merz & 
Blöschl, 2008a, 2008b; Naghettini et al., 1996; Toonen, 2015).

Due to the hydraulic connection of river channel, there is an inherent linkage between the flood processes 
at different locations in the river network (Dingman, 2015; Ravindranath et al., 2019). In other words, the 
flood variable at a gauging site of interest should be dependent on its upstream flood variables. It can be 
expected that the flood dependence within the river network can provide a more complete understanding 
of the flood characteristics such as the regional composition of rive floods and the transmission of flood 
characteristics along river channel. However, to our knowledge, only very few studies have took account of 
the flood dependence within the river network in flood frequency analysis. Merz and Blöschl (2008b) pre-
sented a relevant study, in which the flood moments at a river confluence were directly calculated by simply 
summing the flood moments at two immediately upstream sites. Apparently, the aforementioned approach 
only applies to a particular situation, in which the flood at the site of interest should be the linearly additive 
sum of its upstream floods. The methods of regional flood frequency analysis are able to utilize the flood 
information at the gauging sites in neighboring catchments, but do not involve the flood dependence within 
the river network.

In this study, a river network-based hierarchical model is developed as an approach that can make full 
use of the hydrological reasoning information of the flood dependence within the river network in FFD 
estimation. To illustrate the development of the hierarchical model, we present a case study for the Upper 
Yangtze River basin, where the flood processes are being significantly regulated by reservoirs. A covariate 
analysis based on the GAMLSS model is carried out to build the conditional distribution of the interested 
flood variable given both its upstream flood variables and the reservoir index (RI) quantifying reservoir reg-
ulation. Under the framework of the hierarchical model, the FFD at a gauging site of interest is no longer 
characterized by a theoretical distribution relying only on the local at-site flood samples, but is derived by 
combining the conditional distribution of the interested flood variable with the probability distribution of 
its upstream flood variables.
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Section 2 of this paper presents a brief introduction to the study region and data set used in this study, 
as well as details of the river network-based hierarchical model. Results of the case study for the Upper 
Yangtze basin are provided in Section 3. Some discussion is given in Section 4, followed by the conclusion 
in Section 5.

2.  Data and Methodology
2.1.  Study Region and Data Set

The Yangtze River is the largest river in China, controlling a catchment area of 1.8 million km2. The Yangtze 
basin, which contributes more than half of the total GDP of the country and is the home to 459 million peo-
ple, is the most important economic zone of China. Unfortunately, river flooding has always been a serious 
natural hazard in the basin because of a huge catchment area as well as a humid subtropical monsoon cli-
mate. In this study, we focus on the floods in the Upper Yangtze basin, which has a drainage area of about a 
million km2 and contributes the major source of river flooding in the whole basin. Figure 1 presents a map 
of the Upper Yangtze basin above the gauging site of Yichang, which is exactly the dividing point between 
the Upper and Middle Yangtze basins.

In the Upper Yangtze basin, the main river channel absorbs the flows of four major tributaries, which are 
the Yalong River, Min River, Jialing River and Wu River (see Figure 1). In this study, we have gathered the 
annual maximum daily discharge series at eight key hydrological gauging sites during the observation peri-
od from 1951 to 2015. Among these gauging sites, five of them are located at the main river channel, and the 
rest are located near the outlets of the tributaries of the Min River, Jialing River and Wu River (see Figure 1 
and Table S1). Since long-term flood observations of the Yalong River are unavailable, we have to ignore the 
flood frequency of this tributary.

JIANG ET AL.

10.1029/2020WR029374

3 of 21

Figure 1.  Map of the Upper Yangtze basin.



Water Resources Research

For the purpose of both hydropower generation and flood control, dozens 
of dams have been built in the Upper Yangtze basin, forming the reser-
voirs with huge storage volume. As a result, these reservoirs are able to 
regulate the discharge out from the dams, and thereby inevitably disrupt 
natural flood routing processes in the river network (B. Gao et al., 2013; 
Jiang, Zhang, & Luo, 2019; B. Xiong et al., 2020). By the end of 2015, a 
total of 21 reservoirs with considerable flood control capacity have been 
constructed. Table S2 summarizes the detailed information of these res-
ervoirs, including catchment area, volume of flood control capacity and 

year of putting into operation. It can be seen that the Three Gorges Reservoir (TGR) has a far larger reg-
ulation capacity than other reservoirs. According to the construction timeline of the Three Gorges Dam, 
the reservoir entered an initial operation period in September 2006, and began to be fully operated in 2009. 
Given that the maximum flood of 2006 at Yichang occurred prior to September, the TGR should begin to 
significantly affect the downstream flood processes from 2007.

In this study, the RI, which was first defined by López and Francés (2013), is employed to quantify the effect 
of reservoir regulation on floods. RI is a dimensionless quantity depending on two reservoir characteristics, 
i.e. flood control capacity and catchment area, and is calculated by:



  
   

  


1
RI

K
i i

i T T

A V
A V

� (1)

where K is the number of the reservoirs upstream the gauging site at a given year, iA  is the catchment area of 
each reservoir, TA  is the catchment area of the gauging site, iV  is the flood control capacity of each reservoir, 
and TV  is the total flood control capacity of all reservoirs by the end of 2015. According to the above defini-
tion, RI can vary with the construction of new reservoirs, and is therefore able to capture the evolution of 
the reservoir influence on floods.

2.2.  River Network-Based Hierarchical Model for FFD Estimation

2.2.1.  General Framework of the Hierarchical Model

To introduce the general framework of the river network-based hierarchical model, a simple river network 
structure is designed. As shown in Figure 2, a hydrological gauging site S2 is assumed to be located at the 
lower reach of two parallel gauging sites 1

1S  and 2
1S , and a reservoir is also assumed to lie between S2 and its 

upstream gauging sites. Thus the flood variable 2Z  at S2 should be dependent on the bivariate flood variables 

 1 2
1 1,Z Z  at 1

1S  and 2
1S , as well as the RI quantifying the reservoir regulation. It is important to note that there 

is a substantial difference between  1 2
1 1,Z Z  and RI, that the former are stochastic variables having a joint 

probability distribution, whereas the latter is a deterministic variable.

The dependence of 2Z  on  1 2
1 1, ,RIZ Z  is denoted by  1 2

2 1 1| , ,RIZ Z Z , and is described by a conditional distri-
bution as follows:

       
1 2 1 2

2 1 1 2 1 12 2| , ,RI ; , ,RI;Z ZZ Z Z f z z zθ α� (2)

where the distribution parameter vector 2Zθ  is stochastic variables conditioned on the variables  1 2
1 1, ,RIz z ;  

and 2Zα  denotes the hyperparameter vector modeling the relationship between 2Zθ  and  1 2
1 1, ,RIz z . The 

vector 2Zθ  generally contains at most three distribution parameters, i.e.,    2 2 2 2, ,Z Z Z Zθ , which are 
defined as location parameter (denoted by  2Z ) with respect to the mean value of the distribution, scale 
parameter ( 2Z ) with respect to the variance of the distribution, and, if any, shape parameter ( 2Z ) with 
respect to the skewness of the distribution. Corresponding to  2Z ,  2Z  and  2Z , the hyperparameter vector 

2Zα consists of three components, i.e.,    2 , ,Zα α α α .

GAMLSS is a univariate distributional regression model, where all the statistical parameters of the assumed 
probability distribution function can be modelled as additive functions of the explanatory variables (Rigby 
& Stasinopoulos, 2005). In this study, a covariates analysis based on the GAMLSS model is performed to 
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build the relationship between 2Zθ  and the covariates of  1 2
1 1, ,RIz z . Taking the location parameter  2Z  as an 

example, it is generally expressed as:

                  1 2
,0 ,1 1 1 ,2 2 1 ,3 32 RIZ g z g z g� (3)

where  ,0,  ,1,  ,2 and  ,3 are the parameters of the GAMLSS model, and are also the hyperparameters 
for  2Z , i.e.,          ,0 ,1 ,2 ,3, , ,α ; and  ig  (  1,2,3i ) are transforming functions and chosen from the 
candidates of identity, exponential, and logarithmic functions, aiming for capturing linear or nonlinear 
relationships between  2Z  and the covariates.

It is worth reemphasizing that   
  

1 2
2 1 12 2; , ,RI;Z Zf z z zθ α  does represent the conditional distribution of 2Z  

given 1 1
1 1Z z  and 2 2

1 1Z z , rather than the FFD of 2Z . According to the formula of total probability, the 
probability density function of 2Z  can be theoretically derived by:

         
1 2 1 2 1 2

2 2 1 1 1 1 1 12 2 2; , ,RI; , d dZ Z Zf z f z z z h z z z zθ α∬� (4)

where  1 2
1 1,h z z  denotes the density function of the joint distribution of  1 2

1 1,z z . Thus the FFD of 2Z  can be 
characterized by a hierarchical model as follows:

   
   

    


1 2 1 2
2 1 1 2 1 12 2

1 2 1 2
1 1 1 1

| , ,RI ; , ,RI;

, ,

Z ZZ Z Z f z z z

Z Z h z z

θ α
� (5)

It can be seen that the above hierarchical model consists of two stages: the first stage    1 2 1 2
1 1 1 1, ,Z Z h z z  

modeling the joint probability distribution of the upstream flood variables  1 2
1 1,Z Z , and the second stage 

       
1 2 1 2

2 1 1 2 1 12 2, ,RI ; , ,RI;Z ZZ Z Z f z z zθ α  modeling the dependence of 2Z  on the conditioning variables 

of  1 2
1 1, ,RIZ Z . The hierarchical model provides an alternative solution to FFD estimation by thinking of 

FFD in a hierarchy in addition to a theoretical probability distribution with explicit expression and param-
eters (Casella & Berger, 2002; Steinschneider & Lall, 2015).

If the bivariate flood variables  1 2
1 1,Z Z  are independent, their joint probability distribution  1 2

1 1,h z z  can be 
further expressed as:

      1 2 1 2
1 1 1 1 2 1

1 1
,

Z Z
h z z f z f z� (6)

where  1
1 1
1Z

f z  and  2
2 1
1Z

f z  denote the probability density functions of 1
1Z  and 2

1Z , respectively. If 1
1Z  and 2

1Z  

are correlated, the joint probability distribution of  1 2
1 1,Z Z  can be constructed by using the copula technique 

(Jiang, Xiong, et al., 2019; Nelsen, 2006; Salvadori & De Michele, 2010).

Furthermore, if another hydrological gauging site S3 is located at the downstream of S2 (Figure 2), the flood 
variable 3Z  at S3 can also be derived by a two-stage hierarchy:

 
 
   



3 2 3 23 3

2 22

; ;Z Z

Z

Z Z f z z

Z f z

θ α
� (7)

where the first stage  2 22ZZ f z  in the above equation is actually the result of combining the two stages 
in Equation 5. In other words, the two-stage hierarchy defined by Equation 7 is equivalent to a three-stage 
one as follows:

 
   

   

   
    



3 2 3 23 3

1 2 1 2
2 1 1 2 1 12 2

1 2 1 2
1 1 1 1

; ;

, ,RI ; , ,RI;

, ,

Z Z

Z Z

Z Z f z z

Z Z Z f z z z

Z Z h z z

θ α

θ α� (8)
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The FFD of 2Z  can be treated as the transitive node of two nested two-stage hierarchies. In other words, 
the flood variable 2Z  on one hand is dependent on their upstream flood variables, and on the other hand, 
is also conditioning variable for deriving the FFD of 3Z  at the downstream site. Hence, it is easy to extend 
a two-stage hierarchical model to the case of more stages when each additional stage is model by another 
two-stage hierarchy, and conversely, a multi-stage hierarchical model can also be thought of as a combina-
tion of several nested two-stage hierarchies.

2.2.2.  Theoretical Probability Distributions

In the hierarchical model, the conditional distributions of the flood variables 2Z  and 3Z , as well as the FFDs 
of 1

1Z  and 2
1Z  are assumed to have some theoretical probability distributions. In this study, the optimal theo-

retical probability distributions are chosen from gamma, normal, lognormal, Weibull, Pearson type III (PIII) 
and generalized extreme value distributions, which are all commonly used in flood frequency analysis. The 
detailed information about these probability distributions is presented in Table S3.

2.2.3.  Model Parameter Estimation and Uncertainty Analysis

In this study, the parameters of the river-network hierarchical model are estimated by using the MLE meth-
od (Rigby & Stasinopoulos, 2005). For the purpose of a better fitting quality but avoiding overfitting, the 
proper theoretical distributions, covariates and transforming functions for the GAMLSS models are deter-
mined in terms of the Bayesian information criterion (BIC) (Schwarz, 1978).

To assess the uncertainty of the hierarchical model, the Markov chain Monte Carlo-based (MCMC-based) 
Bayesian approach is also employed to separately estimate the model parameters for each gauging site in 
the river network. In the application, noniformative prior probability distributions are specified for the 
unknown parameters, and then the posterior distributions of model parameters are calculated through the 
MCMC method (Vrugt et al., 2009; B. Xiong et al., 2020).

2.2.4.  Computation of FFDs Derived by the Hierarchical Model

To illustrate how to compute the FFDs derived by the hierarchical model, we take the hierarchical model 
defined by Equation 5 as an example. According to the probability density function of 2Z  in Equation 4, the 
cumulative distribution function of 2Z  can be theoretically calculated by:

                   
2 2

1 2 1 2 1 2
2 1 1 1 1 1 12 2 2 2

0 0
d ; , ,RI; , d d d

z z

Z Z Z ZF z f f z z h z z z zθ α∬� (9)

It is necessary to point out that Equation 9 implicitly define a time-varying probability distribution, which 
can change with the covariate RI or the probability distributions of the conditioning variables 1

1Z  and 2
1Z . The 

mean value of 2Z  has the following theoretical expression:

       
1 2

2 2 1 1, ,RIE Z E E Z Z Z� (10)

In practice,  22Zf z ,  22ZF z  and  2E Z  could have no analytical solutions, but can be calculated using the 
numerical integration based on the Monte Carlo (MC) sampling technique (Niederreiter, 1978). First, based 
on the joint probability distribution  1 2

1 1,h z z , we can generate random samples of  1 2
1 1,Z Z  with the size of N ,  

i.e.,  1 2
1, 1,,i izs zs  (  1,2,...,i N). Then, the probability density function of 2Z  can be calculated by:

   


     1 2
2 2 , 1, 1,2 2 2

1

1 ; , ,RI;
N

Z Z i i i Z
i

f z f z zs zs
N

θ α� (11)

where ,2Z iθ  (  1,2,...,i N) is calculated from the random sample  1 2
1, 1,,i izs zs  (  1,2,...,i N) and RI according to 

Equation 3. Also with respect to   
  

1 2
2 , 1, 1,2 2; , ,RI;Z i i i Zf z zs zsθ α  (  1,2,...,i N), we can generate random sam-

ples of 2Z  with the size of N, i.e., 2,1 2,2 2,, ,..., Nzs zs zs . Finally, the cumulative probability function of 2Z  can be 
computed from the samples 2,1 2,2 2,, ,..., Nzs zs zs  using the empirical distribution function:
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   


 
 2 2, 22

1

1
1

N

Z i
i

F z zs z
N

1� (12)

In addition, some important statistical characteristics of 2Z  such as the mean value  2E Z , coefficient of 
variation (Cv) and flood quantiles can also be calculated from 2,1 2,2 2,, ,..., Nzs zs zs .

2.2.5.  Goodness-of-Fit Test for FFDs

The goodness of fit (GoF) of FFDs is evaluated by the graphical Probability-Probability (PP) plot and the 
Kolmogorov-Smirnov (KS) test (Frank & Massey, 1951). The PP plot tests the fitting quality of a FFD by 
checking the agreement between the theoretical probabilities calculated by the FFD and empirical proba-
bilities. The KS test is used to decide if the flood variables follow a given FFD based on a hypothesis testing. 
If the p-value of the KS test is larger than a critical significance level, the null hypotheses that the flood 
variables follow the FFD should be accepted. In this study, the critical significance level for the KS test is 
set to be 0.05.

2.3.  River Network-Based Hierarchical Model for the Upper Yangtze Basin

According to the structure of the river network as well as the spatial distribution of both hydrological gaug-
ing sites and reservoirs in the Upper Yangtze basin (Figure 1), the river-network hierarchical model for this 
basin is outlined in Figure 3.

As shown in Figure 1, Shigu is located at the upstream from Xiangjiaba, and 10 reservoirs lie in the catch-
ment between these two gauging sites, thus the flood variable xZ  at Xiangjiaba should be associated with 
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Figure 3.  Schematic of the hierarchical model with respect to the river network in the Upper Yangtze basin. sZ , xZ , gZ , lZ , bZ , cZ , wZ  and yZ  represent the flood 
variables at the hydrological gauging sites of Shigu, Xiangjiaba, Gaochang, Lizhuang, Beibei, Cuntan, Wulong and Yichang, respectively. RIs x and RIc y denote 
the reservoir indices regarding the reservoirs in the catchment between Shigu and Xiangjiaba and the catchment between Cuntan and Yichang, respectively; 
and RIg, RIb and RIw stand for the reservoir indices regarding the reservoirs in the catchments above Gaochang, Beibei and Wulong, respectively. The flood 
frequency distributions (FFDs) of sZ , gZ , bZ  and wZ  are estimated by directly fitting the assumed theoretical probability distributions to the at-site flood samples, 
and the FFDs of xZ , lZ , cZ  and yZ  are derived by the hierarchical model.
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both the flood variable sZ  at Shigu and the reservoir index RIs x. Thus the distribution of xZ  can be mod-
eled by a two-stage hierarchy as follows:

   
 

 
   



,RI ; ,RI ;x s s x x Z s s x Zx x

s Z ss

Z Z f z z

Z f z

θ α
� (13)

where the distribution  Z ssf z  of sZ  is modeled by an assumed theoretical probability distribution.

The flood variable lZ  at Lizhuang depends on those at Xiangjiaba and Gaochang, and thus the second two-
stage hierarchy is given by:

   
   

   


, ; , ;

, ,
l x g l Z x g Zl l

x g x g

Z Z Z f z z z

Z Z h z z

θ α
� (14)

where gZ  is the flood variable at Gaochang, and  ,x gh z z  denotes the density function of the joint probability 
distribution of xZ  and gZ . The FFD of gZ  is estimated by using the GAMLSS model with the covariate of the 
reservoir index RIg.

After estimating the FFD of lZ  from Equation 14, the probability distribution of the flood variable cZ  at 
Cuntan is given by:

   
   

   


, ; , ;

, ,
c l b c Z l b Zc c

l b l b

Z Z Z f z z z

Z Z h z z

θ α
� (15)

where bZ  denotes the flood variable at Beibei and its probability distribution is estimated by using the 
GAMLSS model with the covariate of the reservoir index RIb.

Finally, the fourth two-stage hierarchy for deriving the probability distribution of the flood variable yZ  at 
Yichang is defined by:

   
   

 
    



, ,RI ; , ,RI ;
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y c w c y y Z c w c y Zy y

c w c w

Z Z Z f z z z

Z Z h z z

θ α
� (16)

where wZ  represents the flood variable at Wulong;  ,c wh z z  represents the joint probability distribution of 
the flood variables at Cuntan and Wulong; and the reservoir index RIc y actually indicates the regulation 
effect of the TGR, which lies between Cuntan and Yichang.

Figure 4 displays a flow chart to depict the organization of the entire case study for the Upper Yangtze ba-
sin. First, the flood dependence within the river network is preliminarily examined by a spatial correlation 
analysis of flood variables. Then, according to the hierarchical model for the Upper Yangtze basin presented 
above, the FFD at each gauging site in the river network will be estimated. In particular, the FFDs at the up-
stream gauging sites of Shigu, Gaochang, Beibei and Wulong are estimated by directly fitting the assumed 
theoretical probability distributions to the at-site flood samples using the GAMLSS model, and on this basis 
the FFDs at the downstream gauging sites of Xiangjiaba, Lizhuang, Cuntan and Yichang are derived by the 
hierarchical model in sequence. Based on the modeling results, the effect of reservoir regulation on floods is 
evaluated. Finally, the uncertainty of the hierarchical model is assessed by using the MCMC-based Bayesian 
approach.

3.  Results and Analysis
3.1.  Spatial Correlations of Floods in the Upper Yangtze Basin

Before employing the hierarchical model to derive the FFDs in the Upper Yangtze basin, a preliminary 
analysis for the spatial correlations of flood variables is performed. Figure S1 displays the correlations of the 
flood variables at Xiangjiaba, Lizhuang, Cuntan and Yichang to those at their upstream gauging sites. It can 
be seen that the linear correlation coefficients r2 for almost all flood pairs are larger than 0.2, indicating a 
correlation at the 0.01 significance level. This finding reveals a strong flood dependence within the network 
in the Upper Yangtze River.
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For the hierarchical model outlined in Figure 3, we need to construct the joint probability distributions of 
the flood variables at three pairs of parallel gauging sites, i.e., Xiangjiaba-Gaochang, Lizhuang-Beibei, and 
Cuntan-Wulong. Figure S2 illustrates that the linear correlation coefficients r2 of all bivariate flood variables 
are near zero, which indicates a very weak dependence. Therefore, we prefer to assume that these bivariate 
flood variables are all independent, and thus the joint probability distributions are calculated by the method 
shown in Equation 6, i.e., multiplying the probability densities of the univariate flood variables.

3.2.  FFD Estimation for the River Network

3.2.1.  FFD Estimation Based on the Assumed Theoretical Probability Distributions for 
Upstream Sites

The FFDs at the upstream gauging sites of Shigu, Gaochang, Beibei and Wulong are estimated by directly 
fitting the assumed theoretical probability distributions to the at-site flood samples. The optimally fitted 
theoretical probability distribution for each gauging site is determined by using the GAMLSS model with 
the covariate of RI. The PP plots in Figure S3 suggest that the probabilities calculated by the optimally fitted 
theoretical probability distributions are generally consistent with the empirical probabilities. The KS test 
indicates that these FFDs present a satisfactory fitting quantity with passing the GoF examination at the 
0.05 significance level.

Table 1 displays the results of the covariate analysis for the flood variables at Shigu, Gaochang, Beibei and 
Wulong. For Gaochang and Wulong, the fitted theoretical probability distributions with the covariate of RI 
outperform those with constant statistical parameters. The location parameters (which refer to mean values 
of flood variables) of the FFDs at these two gauging sites have negative relationships with RI. This finding 
verifies the reservoir regulation effect of declining the flood mean values at Gaochang and Wulong.

Figure 5 displays the evolutions of the FFDs during the observation period from 1951 to 2015. It can be 
found that the covariate of RI is able to reasonably capture the changes of the observed flood samples, 
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Figure 4.  Flow chart of the organization of the entire study.
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which generally occurred in the period after 2005. In particular, the flood mean value at Gaochang declines 
from 16,349  to 11,762 m3/s, indicating an absolute reduction of 4,587 m3/s and a relative reduction of 28%. 
For the flood at Wulong, the flood mean value decreases from 11,945  to 6,512 m3/s, indicating an absolute 
reduction of 5,433 m3/s as well as a relative reduction more than 45%. For the FFD at Beibei, none of the 
distribution parameters is related to the RI despite there are four reservoirs in the catchment above this 
gauging site (Figure 1). In a nonstationarity situation, the flood quantile corresponding to a given exceed-
ance probability will change over time, since the FFD no longer holds constant (Obeysekera & Salas, 2016; 
Yan et al., 2017). To assess the effect of reservoir regulation on the hydrological designs at Gaochang and 
Lizhuang, Figure 5 also presents the evolutions of the flood quantiles of 75%, 90%, 95%, 98% and 99%. It is 
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Hydrological gauging site Distribution   BIC

Shigu Gamma 4949.7 0.262 1121.4

Gaochang Gamma 15756.4 0.296 1287.0

Lognormal   9.662 0.898 ln RI 1g 0.282 1283.0 (optimal)

Beibei Weibull 25,280 3.400 1349.0

Wulong Gamma 11418.6 0.362 1269.5

Lognormal 9.331 0.700RIw 0.338 1261.9 (optimal)

Abbreviations: BIC, Bayesian information criterion; FFD, flood frequency distribution.

Table 1 
Results of the FFD Estimation Based on the Assumed Theoretical Distributions for the Flood Variables at Shigu, Gaochang, Beibei and Wulong

Figure 5.  Evolutions of the optimally fitted theoretical probability distributions for the flood variables at the gauging sites of (a) Shigu, (b) Gaochang, (c) 
Beibei, and (d) Wulong, respectively.
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found that the reduction magnitude of flood quantiles generally gets to be enlarged with increasing cumu-
lative probability. This finding indicates that the reservoir regulation tends to have a greater impact on the 
large floods at the upper tail.

3.2.2.  FFD Estimation Based on the Hierarchical Model for Downstream Sites

Under the river network-based hierarchical model, the FFDs at the downstream sites of Xiangjiaba, Liz-
huang, Cuntan and Yichang are derived by coupling the distributions conditioned on the upstream flood 
variables and RI with the probability distributions of the upstream floods. By using the GAMLSS model 
based on MLE, the conditional distributions of the flood variables at these four gauging sites are estimated, 
and the modeling results are summarized in Table 2. In agreement with the spatial correlation analysis for 
the flood variables (see Figure S1), there are positive relations between the location parameters of the con-
ditional distributions and the upstream floods variables. Moreover, the scale parameters for Lizhuang and 
Cuntan are also found to be positively related to the upstream flood variables.

As shown in Figure 1, by the end of 2015, 10 reservoirs had been put into operation in the catchment be-
tween Shigu and Xiangjiaba, nevertheless, none of the parameters of the conditional distribution at Xiang-
jiaba is related to the RI. For the flood at Yichang, the location parameter of the conditional distribution 
presents a negative relation with the RI regarding the TGR, verifying the ability of this reservoir to reduce 
the downstream flood magnitude. The conditional distributions against with the observed flood samples are 
illustrated in Figure 6. It can be seen that the conditional distributions present noisy evaluations, which are 
able to capture the annual variability exhibited by the observed flood samples.

Figure S4 indicates that the flood probabilities calculated by the FFDs derived by the hierarchical model are 
generally consistent with the empirical probabilities. The p-values of the KS test suggest that all the derived 
FFDs pass the GoF test at the 0.05 significance level. Hence, the hierarchical model exhibits an acceptable 
performance in the Upper Yangtze basin. Figure 7 displays the evolutions of the FFDs derived by the hierar-
chical model in contrast to the observed flood samples. It is found that the mean values and quantile regions 
of the derived FFDs are able to reasonably capture the scatters of the observed flood samples. According to 
the modeling results, the FFD at Xiangjiaba presents a stable process, while the FFDs at Lizhuang, Cuntan 
and Yichang exhibit declines in mean values after 2005. The flood mean values at Lizhuang and Cuntan 
present similar reductions of about 4,000 m3/s. In particular, the flood mean value at Lizhuang decreases 
from 26,392  to 22,710 m3/s, and the flood mean value at Cuntan decreases from 48,402  to 44,123 m3/s. Dur-
ing the period from 2005 to 2015, the flood mean value at Yichang falls from 50,070  to 35,378 m3/s, resulting 
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Hydrological
gauging site Distribution   BIC

Xiangjiaba Lognormal 9.71 0.240 1269.4

Lognormal  4.562 0.608 ln sz 0.177 1234.7 (optimal)

Lizhuang Gamma 25848.3 0.195 1299.5

Gamma  5832 0.802 0.438g xz z  /16971.70.003 0.034 zxe 1216.9 (optimal)

Cuntan Gamma 46630.0 0.217 1392.3

Gamma    261600 28840 ln 0.744l bz z  /22720.80.048 0.027 zbe 1330.9 (optimal)

Yichang Normal 48348 8857 1374.4

Normal  
  

  

 RI

301784 30288 ln

3371 ln 5689
c

c y
w

z

z e

4494 1269.4 (optimal)

Abbreviation: BIC, Bayesian information criterion.

Table 2 
Results of Covariate Analysis for the Conditional Distributions of the Floods at Xiangjiaba, Lizhuang, Cuntan and 
Yichang in the Hierarchical Model
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in an absolute reduction of about 15,000 m3/s, which is the largest absolute reduction among all the flood 
variables considered in this study. The flood quantiles with given typical probabilities also exhibit substan-
tial declines, suggesting the benefit of reservoir regulation to mitigating the flooding risk in the basin.

3.3.  Attribution of Flood Decline in the Upper Yangtze Basin

The cause-effect relationship between reservoir regulation and flood magnitude decline has been re-
vealed in numerous basins around the world (Jiang, Xiong, et al., 2019; López & Francés, 2013; Merz & 
Blöschl, 2008b; Volpi et al., 2018; B. Xiong et al., 2020). With the consideration of the flood dependence 
within the river network, the hierarchical model has the advantage of being able to capture the transmission 
of flood characteristics along the river network. Thus the changes of the floods in the Upper Yangtze basin 
can easily be attributed to the relevant reservoirs. Figure 8 compares the probability density curves of the 
FFDs with and without the effect of reservoir regulation, which are represented by the FFDs of 1951 and 
2015, respectively. Since the flood variable at Lizhuang is dependent on that at Gaochang, the regulation 
effect of the reservoirs above Gaochang can transfer to the FFD at Lizhuang. In the similar spirit, the regula-
tion effect of the reservoirs above Gaochang can also transfer to the FFD at Cuntan via Lizhuang. The flood 
variable at Yichang is conditioned on the flood variables at Cuntan and Wulong, and therefore the flood de-
clines at Cuntan and Wulong can both spread to Yichang. In natural condition before the regulation of the 
TGR, the flood magnitude at Yichang should generally be larger than that at the upstream gauging site of 
Cuntan (see panel (d) in Figure 8), since the former gauging site has a larger catchment area. But the prob-
ability density curves of the FFDs of 2015 suggest that the flood magnitude at Cuntan is generally larger 
than that at Yichang. This finding indicates that the TGR located between these two gauges has remarkably 
declined the flood magnitude at Yichang.

Some previous study revealed that the decline of the flood mean value at Yichang, which controls the dis-
charge of the whole Upper Yangtze basin, is attributed to the joint regulation of multiple reservoirs, includ-
ing the TGR and these reservoirs above the gauging sites of Wulong and Cuntan (Jiang, Zhang, & Luo, 2019; 
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Figure 6.  Conditional distributions of the flood variables at (a) Xiangjiaba, (b) Lizhuang, (c) Cuntan and (d) Yichang given the observed floods at the upstream 
gauging sites and reservoir index (RI).
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Li et al., 2020; Wang et al., 2017). According to Equation 10, the mean value (or expectation) of the FFD at 
Yichang is given by:

    
   | , ,RIy y c w c yE Z E E Z Z Z� (17)

Table 2 illustrates that  , ,RIy c w c yZ Z Z  follows a normal distribution, in which the location parameter 

is actually the expectation of  , ,RIy c w c yZ Z Z . Thus, combining Equation 17 and the expression of the 
location parameter of the conditional distribution in Table 2, the mean value of the FFD at Yichang can be 
expressed by:
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Based on the above equation, it is easy to separate the contributions of different reservoirs to declining the 
flood mean value at Yichang. As shown in Figure 9, the flood mean value at Yichang presents a stepwise 
decline during the period from 2006 to 2015, when the reservoirs in the Upper Yangtze basin were put into 
operation in succession. The TGR was initially operated in 2006 and then put into full operation in 2009, 
resulting in apparent reductions in the flood magnitude at Yichang. The flood declines in 2008 and 2011 are 
mainly attributed to the reservoirs upstream Cuntan and Wulong, respectively. In general, the TGR contrib-
utes the majority of the reduction in the flood mean value at Yichang, followed by the reservoirs above Cun-
tan and those above Wulong. In 2015, the TGR leads to a flood reduction of 9,775 m3/s, accounting for about 
67% of the total reduction as well as about 20% of the flood mean value of 1951. The reservoirs above Cuntan 
induces a flood reduction of 2,853 m3/s, i.e., a relative contribution of about 19% to the total reduction. The 
rest reduction induced by the reservoirs above Wulong is 2,045 m3/s, making a relative contribution of 14% 
to the total reduction. This finding generally agrees with the previous studies, in which the TGR was also 
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Figure 7.  Evolutions of the flood frequency distributions (FFDs) derived by the hierarchical model. Panels (a), (b), (c) and (d) present the results for the 
gauging sites of Xiangjiaba, Lizhuang, Cuntan and Yichang, respectively.
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found to have the largest contribution in declining the flood magnitude of the whole Upper Yangtze basin 
(Jiang, Zhang, & Luo, 2019; B. Xiong et al., 2020).

The reservoirs in the Upper Yangtze River basin normally follow a general operation rule: if the flood mag-
nitude downstream a reservoir is forecasted to exceed a security threshold, the reservoir will be operated 
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Figure 8.  Changes of flood probability density curves (PDC) in the Upper Yangtze basin. The probability density curves in panels (a), (b), (c) and (d) 
correspond to the flood variables in hierarchies 1, 2, 3 and 4 in Figure 3, respectively.

Figure 9.  Contributions of reservoirs to reducing the flood mean value at Yichang.
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to restrain the discharge out of the reservoir; and if the downstream flood magnitude is below the security 
threshold, the reservoir shall not be used to impound flood flow, guaranteeing the water level of the reser-
voir below a limited stage. In other words, to a certain extent, the specific operation strategy of a reservoir 
for flood control shall be determined by the flood risk of the downstream region. The TGR is designed to 
protect the flooding plain in the Middle Yangtze basin, which is more susceptible to river flooding than the 
Upper Yangtze basin. Because of the mountainous topography, the flood risk in the region upstream the 
TGR is relatively small. The TGR has a far more significant influence on downstream flood than other res-
ervoirs do, not only due to its larger flood control capacity but a greater flood risk of the downstream region.

3.4.  Uncertainty Analysis of the Rive-Network Based Hierarchical Model

3.4.1.  Uncertainty Intervals of Flood Quantiles

In addition to MLE, the MCMC-based Bayesian approach is used to individually estimate the empirical 
posterior distributions of the model parameters at each node in the rive-network based hierarchical model. 
Figures S5–S12 present the histograms of the posterior distributions, each of which is actually characterized 
by a set of parameter samples. It is found that the model parameters estimated by MLE are generally around 
the medians of the posterior distributions, indicating the reliability of the MLE method. As displayed in 
panel (b) of Figure S7, panel (b) of Figure S11 and panel (d) of Figure S12, the posterior distributions of 
the model parameters related to reservoir indices are generally below zero. This finding further verifies that 
the reservoir regulation presents a significant effect of reducing the flood magnitude in the Upper Yangtze 
basin.

Given the empirical posterior distributions of model parameters, we can calculate the uncertainty intervals 
of flood quantiles at each hydrological gauging site. It is important to note that the uncertainty of the FFDs 
modeled by the theoretical distributions is only associated with model parameter estimation, and the uncer-
tainty of the FFDs derived by the hierarchical model is not only due to the uncertainty in parameter estima-
tion but also comes from numerical integration. For the hierarchical model, the uncertainty associated with 
numerical integration is calculated through repeating the numerical integration with the model parameters 
estimated by MLE 10,000 times. Figure 10 displays the 95% uncertainty intervals of flood quantiles, which 
are estimated based on the FFDs of 2015. It is found that the width of the uncertainty intervals due to nu-
merical integration is very narrow, indicating that the uncertainty of the FFDs derived by the hierarchical 
model is mainly from model parameter estimation.

3.4.2.  Propagation of Model Parameter Uncertainty Along the Network

According to the structure of the hierarchical model outlined in Figure 3, the uncertainty associated with 
model parameters can propagate along the river network downwards. For example, the uncertainty asso-
ciated with the model parameters of the FFD at Shigu will spread to the FFDs at the downstream gauging 
sites of Xiangjiaba, Lizhuang, Cuntan and Yichang. Given both the model parameter samples at Shigu 
which are randomly drawn from the empirical posterior distributions and the model parameters estimated 
by MLE at the related gauging sites, the corresponding FFDs at Xiangjiaba, Lizhuang, Cuntan and Yichang 
can be estimated, respectively. By repeating this procedure 10,000 times, the uncertainty of the FFDs at 
these four gauging sites can be calculated. The results for the propagation of the uncertainty associated with 
the model parameters at Shigu are presented in Figure S13. The model parameter uncertainty of the FFD 
at Shigu presents pronounced effect on the FFD at Xiangjiaba, however, the effect on the FFDs at Cuntan 
and Yichang is almost invisible. The results for the propagation of the uncertainty associated with the mod-
el parameters of the other seven gauging sites are displayed in Figures S14–S20, all of which suggest that 
the influence of the model parameter uncertainty tends to substantially diminish along the river network 
downwards.
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Figure 10.  Uncertainty intervals of flood quantiles based on the flood frequency distributions (FFDs) of 2015.



Water Resources Research

4.  Discussion
4.1.  Comparison Between the Hierarchical Model and the Assumed Theoretical Probability 
Distributions

In addition to the proposed river network-based hierarchical model, the FFDs at Xiangjiaba, Lizhuang, 
Cuntan and Yichang can also be estimated by fitting the assumed theoretical probability distributions to the 
observed flood samples. The GAMLSS model with the covariate of RI is also employed to obtain the optimal 
theoretical probabilities to fit the at-site observed flood samples. Figure 11 compares the FFDs derived by 
the hierarchical model and the optimally fitted theoretical distributions in describing the evolutions of the 
observed flood samples. It can be seen that these two methods exhibit similar modeling results for the floods 
at Xiangjiaba and Yichang (see panels (a) and (d) in Figure 11), but show apparent discrepancies between 
the modeling results for the floods at Lizhuang and Cuntan (see panels (b) and (c) in Figure 11). Intuitively, 
the river network-based hierarchical model has a more reasonable performance in capturing the evolution 
of the observed flood samples at Lizhuang (panel (b) in Figure 11). Since the flood variable at Cuntan is 
significantly related to that at Lizhuang, the FFD at Cuntan should present an evolution similar to the FFD 
at Lizhuang due to reservoir regulation. However the fitted theoretical distribution for the flood at Cuntan 
suggests a stationary process. This indicates that the hierarchical model considering the flood dependence 
within the river network should be more effective in identifying the effect of reservoir regulation on the 
flood at Cuntan.

The results of uncertainty analysis for the FFDs both derived by the hierarchical model and by directly 
fitting theoretical distributions to the at-site flood samples are displayed in Figure 12. In this figure, the un-
certainty intervals of flood quantiles are calculated by the FFDs of 2015. Compared to the fitted theoretical 
distributions, the FFDs derived by the hierarchical model generally present narrower uncertainty intervals 
of flood quantiles. This finding indicates that the hierarchical model is able to reduce the uncertainty in 
flood quantile estimation by incorporating the flood dependence within the river network, even though it 
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Figure 11.  Evolutions of the flood frequency distributions (FFDs) both derived by the hierarchical model and by fitting the theoretical probability distributions 
to the at-site flood samples.
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has a complex structure with more parameters. Ravindranath et al. (2019) also found that a spatial river 
network structure produced a substantial reduction in the uncertainty associated with paleo-streamflows 
while reconstructing the streamflow in the Upper Missouri River. Merz and Blöschl (2008a) grouped the 
meaningful additional information in flood frequency analysis into three types: temporal, spatial and causal 
expansions. According to this concept, the flood dependence within the river network should be the addi-
tional information regarding spatial and causal expansions.

In this study, the proposed hierarchical model presents an advantage over the conventional FFD estimation 
method based on the assumed theoretical distributions in estimating the FFDs in the Upper Yangtze basin, 
due to the capturing of the flood dependence within the river network. However, the hierarchical model 
is still a statistical approach, which is unable to consider the physical factors dominating flood depend-
ence, such as the distance between gauging sites, the timing of the floods, the travel time between floods, 
and the specific rule of reservoir operation. The above limitation could be a challenge for the hierarchical 
model while being employed to a more complex and larger river network with numerous gauging sites and 
reservoirs.

4.2.  Effect of Reservoir Regulation on Floods

Although all the reservoirs considered in this study have considerable capacities of flood control, the mod-
eling results in Tables 1 and 2 indicate that the flood variables at Xiangjiaba and Beibei are independent 
of the covariates of reservoir indices. This finding does not necessarily mean that these reservoirs make no 
difference to the downstream flood processes. As displayed in Table S2, most reservoirs in the Upper Yang-
tze basin were put into operation after 2010, whereas the flood samples used in this study are end in 2015. 
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Figure 12.  Uncertainty intervals of flood quantiles derived by both the hierarchical model and the fitted theoretical probability distributions. The flood 
quantiles are calculated from the flood frequency distributions (FFDs) of 2015.
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The changes of the flood variables caused by reservoir regulation may be not statistically significant and are 
unlikely to be detected by a statistical analysis, since the flood samples under reservoir regulation are too 
short. For example, if the flood samples at Shigu and Xiangjiaba are extended from 2015 to 2019, we will 
obtain a different modeling result of the covariate analysis for the flood variable at Xiangjiaba. As displayed 
in Table S4, the flood samples with different lengths lead to different modeling results of covariate selection 
for the RI. The modeling results for the samples from 1951 to 2015 indicate that the RI is not selected as a 
significant covariate for the flood variable at Xiangjiaba in terms of the optimal value of BIC. For the flood 
samples from 1951 to 2019, the GAMLSS model with the covariate of RI outperforms the model without 
this covariate in terms of BIC. The results in Table S4 suggest that, using the extended flood samples, the RI 
is chosen as a significant covariate for the location parameter of the conditional distribution of the flood at 
Xiangjiaba, and therefore reservoir regulation shall have a significant impact on the flood at Xiangjiaba. In 
order to examine the impacts of perturbation from calibrated parameter values, or the impacts of parameter 
calibration errors, an uncertainty analysis for the regression coefficient for the RI is done by using the MC-
MC-based Bayesian approach. The empirical posterior distribution of the regression coefficient for the RI is 
displayed in Figure S21. For the flood samples from 1951 to 2019, the posterior distribution of the regression 
coefficient is generally below zero, suggesting a significantly negative relationship between the flood at 
Xiangjiaba and the RI. For the flood samples from 1951 to 2015, the median of the posterior distribution of 
the regression coefficient for the RI is near to zero, suggesting a negligible relationship between the flood 
variable at Xiangjiaba and the RI. This finding verifies the results of covariate selection for the RI and the 
length of flood samples shall be an important factor affecting the modeling results of covariate analysis.

The above findings also indicate that the RI based on storage capacity and catchment area might fail to 
reflect the complete effect of reservoir regulation on floods. In practice, the flood control ability of a res-
ervoir could be dependent on multiple factors, including its storage capacity, catchment area, reservoir 
position, operation rule and even the flood regime in the basin (Ayalew et al., 2013; S. Gao et al., 2019; Volpi 
et al., 2018; B. Xiong et al., 2019). The effect of reservoir regulation on floods requires a deeper investigation 
with involving more reasoning information about reservoir characteristics.

5.  Conclusion
In this study, we present a hierarchical model to estimate the FFDs by considering both the flood depend-
ence within the river network and the effect of reservoir regulation on flood characteristics. Under this 
hierarchical model, the FFD is not directly modeled by an assumed theoretical distribution relying only on 
local at-site flood samples, but arises from a hierarchy, which combines the conditional distribution of the 
interested flood variable given both its upstream flood variables and the RI with the probability distribution 
of the upstream flood variables.

The application of the proposed hierarchical model to the Upper Yangtze basin suggests a satisfactory per-
formance in estimating the FFDs, which not only exhibit acceptable fitting quality but also reasonably cap-
ture the effect of reservoir regulation on floods. The reservoir regulation especially that of the TGR is found 
to remarkably decline the flood magnitude in the Upper Yangtze basin. In addition, the uncertainty analysis 
of the hierarchical model shows that the influence of the uncertainty associated with model parameters 
tends to substantially diminish along the river network downwards.

Compared to the conventional FFD estimation method that directly fits the assumed theoretical probabil-
ity distributions to the at-site flood samples, the river network-based hierarchical model incorporating the 
additional information of the flood dependence within the river network is more capable of modeling the 
effect of reservoir regulation on the floods in the Upper Yangtze basin. On the other hand, the hierarchical 
model produces a reduction in the uncertainty in flood quantile estimation, even though it has a complex 
structure with more parameters. This finding indicates that it is worthy of expanding additional informa-
tion with hydrological reasoning in FFD estimation.
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Data Availability Statement
The flood data used in this study are collected by Bureau of Hydrology, Changjiang Water Resources Com-
mission, China, and available under request. Most of the flood data used in this study are also available 
at the website of Hydrology and Water Researches Center of Hubei (http://113.57.190.228:8001/#!/web/
Report/RiverReport).
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