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Abstract

We derive a series expansion by Hermite polynomials for the price of an arithmetic Asian option.
This requires the computation of moments and correlators of the underlying asset price which for a
polynomial jump-diffusion process are given analytically, hence no numerical simulation is required
to evaluate the series. This allows to derive analytical expressions for the option Greeks. The
weight function defining the Hermite polynomials is a Gaussian density with scale b. We find that
the rate of convergence of the series depends on b, for which we prove a lower bound to guarantee
convergence. Numerical examples show that the series expansion is accurate but unstable for initial
values of the underlying process far from zero, mainly due to rounding errors.

Keywords Asian option; Option pricing; Greeks; Orthogonal polynomials; Hermite polynomials;
Polynomial jump-diffusion process; Correlators.

1 Introduction
Asian options are path-dependent options whose payoff is a function of the (discrete or continuous)
average underlying price. This kind of derivatives is bought and sold in, e.g., currency, interest rate,
energy and insurance markets. Within the energy markets, for example, Asian options were traded a
decade ago at Nord Pool, the Nordic commodity market for electricity [26]. However, because of their
path-dependent nature, their valuation is not straightforward, and, in particular, no closed pricing
formula is available in general, neither in the standard Black and Scholes setting. We focus here
on discrete averaging which is the normal specification in real contracts. In this case, the payoff
depends on the average of the underlying asset price over some prespecified period of time, usually
a low number of trading days. In particular, we derive a series representation for the option price
functional with polynomials which are orthogonal with respect to a Gaussian density function. By
modeling the underlying asset price with a polynomial jump-diffusion process, all of the terms in the
series expansion can be computed analytically thanks to the moment and correlator formulas, hence no
numerical simulation is required.

In fact, several different approaches have been proposed for solving the Asian option pricing problem.
In the Black and Scholes setting, the payoff function is a sum of correlated lognormal distributions,
for which there is no recognizable density function. Some authors have then proposed to approximate
the unknown distribution of the average price with the maximum entropy approach [13] or via the
Edgeworth series expansion approach [18, 21], by exploiting that the density law of the logarithm of the
arithmetic average is uniquely determined by its moments. Other approaches to evaluate Asian options
are via Monte Carlo simulations with variance reduction techniques [16, 17] or via Fourier transform
[11]. In some other cases, the authors have derived exact representations for the pricing functional, for
example as a triple integral to be evaluated numerically [27], by the Laplace transform [14] or Taylor
expansion [15]. Another part of the literature has worked instead on providing lower and upper bounds
for the prices of arithmetic Asian options [2, 12, 22].

The part of literature that we are contributing to concerns with obtaining exact series expansions
for distributions or option values by orthogonal polynomials, such as the Laguerre polynomials [7].
In particular, a very recent branch of literature has combined this technique with the choice of an
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affine or polynomial stochastic process for the underlying asset price in order to obtain analytic price
representations [1, 9, 10, 25]. The general idea is to define an auxiliary probability density and introduce
the corresponding weighted Hilbert space. One then finds an orthonormal basis of polynomials for the
Hilbert space and compute the series expansion for the option price by projecting the price functional
on the space of polynomials. The auxiliary density could be, for example, a finite Gaussian mixture
density [1], a mixture of log-normal densities [25] or a gamma density [10]. Some of the desirable
properties for the auxiliary density are listed in [9, Sec. 7].

Our approach is partly similar to the one in [25], in the sense that we derive a series representation
for the option price functional with orthogonal polynomials and we work with polynomial processes.
However, there are at least two big fundamental differences. In [25] the underlying spot price is consid-
ered to follow a geometric Brownian motion, and, by the time-reversal property of Brownian motions
(see [5]), they derive a stochastic differential equation (SDE) whose solution process has the same
distribution of the average price process (scaled by the terminal time). Specifically, the SDE defines
a polynomial diffusion, so that the moments of the average price process can be computed in closed
form by the moment formula for polynomial processes. Since the SDE is driven by a Brownian motion,
this framework excludes the possibility of discontinuities in the asset price paths. We thus model the
asset price with a polynomial jump-diffusion directly. Hence, on the one hand, we allow for disconti-
nuities, and, on the other hand, the moment formula for polynomial processes is used for computing
the moments of the underlying spot price. Since we still need to compute the moments of the average
price process, we achieve this by the multinomial theorem and the correlator formula for polynomial
processes derived in [4].

We fix a stochastic basis (Ω,F , {Ft}t≥0,Q), with Q a risk-neural measure, and we work in a one-
dimensional setting. We want to price the fixed-strike call-style Asian option defined by

ΠK(t) := e−r(T−t)E [ϕK(X(T ))| Ft] with ϕK(x) := max(x−K, 0), (1.1)

where K > 0 is the strike price, r ≥ 0 the risk-free interest rate and X is the discrete average of a
stochastic process Y over the period (t, T ], namely

X(T ) =
1

m+ 1

m∑
j=0

Y (sj) for t < s0 < s1 < · · · < sm = T and m ≥ 0. (1.2)

We point out that one can similarly consider X to be the continuous average X(T ) = 1
T−t

∫ T
t
Y (s)ds.

Then, for a discrete sampling t < s0 < s1 < · · · < sm = T with constant time step ∆ := T−t
m+1 small

enough, the integral
∫ T
t
Y (s)ds can be reasonably well approximated with the sum

∑m
j=1 Y (sj)∆. This

indeed coincides with Eq. (1.2) for ∆ = T−t
m+1 .

We consider Y to be a polynomial process in the sense introduced by [9]. The idea is to derive the
series representation of the payoff function ϕK in terms of Hermite polynomials. More precisely, we
shall introduce the generalized Hermite polynomials that form a basis for the space

L2 (R, ωa,b(x)dx) with ωa,b(x) = exp

(
− (x− a)2

2b2

)
, a, b ∈ R, b > 0. (1.3)

After evaluating the series at x = X(T ) in Eq. (1.2), we obtain an infinite sum of polynomial functions in
X(T ). The price of the Asian option is then given by the discounted expected value of this infinite sum.
By the multinomial theorem, we rewrite the terms of the sum as a linear combination of correlator-type
terms in the sense of [4], that is, terms of the form

E
[
Y (s0)k0Y (s1)k1 · · ·Y (sm)km

∣∣Ft] , (1.4)

which we compute by the closed formula for correlators [4, Theorem 4.5].
This procedure gives an exact formula for pricing discrete Asian options. For numerical purposes,

we truncate the infinite summation to a certain N > 0 and we study the approximation error with
respect to the three parameters involved, namely N , a and b. In particular, we find a lower bound for
the scale b in order to achieve convergence. This bound is proved under the strong hypothesis that the
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tails of the distribution of X(T ) are flatter than the ones of the weight function ωa,b, and it depends
on the variance of X(T ). We confirm our findings with numerical examples and we compare the results
with a Monte-Carlo-simulation approach. This shows that the Hermite series can reach much higher
accuracy than Monte Carlo. However, numerical instabilities are observed, mainly due to the intrinsic
exploding nature of polynomial functions of high order and to rounding errors. In particular, these are
more likely to happen when the initial point of the underlying spot price process Y is far out from 0.

The models considered for the numerical experiments in Sec. 5 are a simple Brownian motion, an
Ornstein-Uhlenbeck (OU) process, and a jump-diffusion process whose SDE is basically given by the
SDE of the OU plus a normal inverse Gaussian (NIG) jump term. In the first two cases, the asset
price follows a Gaussian distribution, and in the last case the asset follows a distribution (that we
could define) as of a Gaussian plus a NIG term. In particular, we find that for these three cases the
behavior of the approximating series is similar, even when adding the jump component. On the other
hand, in Sec. 6 we consider the Black and Scholes setting, hence the process Y follows a log-normal
distribution. In this case, the approximation works well only if the parameters are chosen in such a way
that the corresponding log-normal distribution can be well approximated with a Gaussian one. This, in
particular, is related to the coefficient of variation of the process. In all other cases, a different weight
function should be considered.

Due to computational constraints, we can not run experiments for m > 2. This means that in the
case of the continuous averaging that we described above, approximating the integral with a discrete sum
would not be efficient. An alternative approach adopted in Sec. 6 is to consider the bivariate process
(Y,X), with X(T ) = 1

T−t
∫ T
t
Y (s)ds. As this turns out to be a bivariate jump-diffusion process, the

moment formula in R2 can be used to compute the terms in the approximating series with Hermite
polynomials. In particular, this requires the generator matrix associated with the bivariate process
(Y,X), for which we derive a recursion formula in Appendix A. This extends the formula obtained in
[4] for one-dimensional processes, although omitting the jump-component.

The rest of the paper is organized as follows. In Sec. 2 we briefly introduce polynomial processes
and recall the moment and correlator formulas. In Sec. 3 we introduce the family of generalized
Hermite polynomials and we derive the series expansion for a call-payoff function, also studying the
approximation error as a function of the truncation number. In Sec. 4 we derive the option price
approximation, first for a European-style option and then for an Asian option with discrete sampling.
We also analyze the approximation error and derive explicit representations for two of the option
Greeks. Finally in Sec. 5 we show some numerical examples and in Sec. 6 we compare our ap-
proach with some others from the literature. Sec. 7 summarizes the findings. In Appendix A we
construct the generator matrix for a two-dimensional diffusion process, while Appendix B contains
the proofs of the principal results and Appendix C some definitions for understanding the correlator
formula. The code for the experiments of Sec. 5 and 6 is implemented in Python and is available at
https://github.com/silvialava/Pricing_options_with_correlators.git.

2 Polynomial Processes and Correlator Formula
Let Poln(R) be the space of all polynomials on R with degree less than or equal to n. Following [9], we
consider a jump-diffusion operator on R of the form

Gf(x) = b(x)f ′(x) +
1

2
σ2(x)f ′′(x) +

∫
R

(f(x+ z)− f(x)− f ′(x)z) `(x, dz), (2.1)

for some measurable maps b : R→ R and σ : R→ R, and a transition kernel ` : R× R→ R, such that
the conditions in [9, Lemma 1] are satisfied, namely

b ∈ Pol1(R), σ2 +

∫
R
z2`(·, dz) ∈ Pol2(R) and

∫
R
zm`(·, dz) ∈ Polm(R) for all m ≥ 3. (2.2)

Under conditions (2.2), the operator G is called polynomial in the sense of [9, Definition 1], and the
process Y having G as extended generator is a polynomial jump-diffusion process. Moreover, a poly-
nomial generator G can be expressed in matrix form. Its matrix representation is called the generator
matrix and it strictly depends on the polynomial basis of choice.
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We consider as basis for Poln(R) the family of monomials {1, x, . . . , xn} and we introduce the vector
valued function

Hn : R −→ Rn+1, Hn(x) = (1, x, x2, . . . , xn)>. (2.3)

For every n ≥ 1, the generator matrix associated with G is thus the matrix Gn ∈ R(n+1)×(n+1) sat-
isfying GHn(x) = GnHn(x). For Y polynomial process and p ∈ Poln(R), the conditional expectation
E [p(Y (T ))| Ft] is then a polynomial function in Y (t), 0 ≤ t ≤ T , and is given in closed form in [9,
Theorem 1] and in the following theorem for completeness.

Theorem 2.1. For Y polynomial process and p ∈ Poln(R), the following moment formula holds:

E [p(Y (T ))| Ft] = ~p>n e
Gn(T−t)Hn(Y (t)), 0 ≤ t ≤ T, (2.4)

with ~pn ∈ Rn+1 the vector of coefficients of p with respect to Hn(x).

Let now ~en,j denote the j-th euclidean basis vector in Rn. As a consequence of Theorem 2.1, the
n-th conditional moment of Y (T ) can be computed explicitly as a linear combination of powers of Y (t).

Corollary 2.2. For every n ≥ 0, we get that E [Y (T )n| Ft] = ~e>n+1,n+1 e
Gn(T−t)Hn(Y (t)).

In [4, Theorem 4.8], the moment formula is extended to correlators, namely conditional expectations
of products of polynomial functions in the polynomial process Y evaluated at different time points. We
shall not discuss here the meaning of the symbols appearing in the formula. However the main details
can be found in Appendix C. For more interested readers, we refer to [4].

Theorem 2.3. For m ≥ 1, we consider m + 1 polynomial functions pk ∈ Polnk(R), k = 0, . . . ,m,
in the polynomial process Y , evaluated at different time points, t < s0 < s1 < · · · < sm, and with
vector of coefficients ~pk,n ∈ Rn+1, for n = max{n0, . . . , nm}. There exist m + 1 matrices G̃(r)

n ∈
R(n+1)r+1×(n+1)r+1

, r = 0, . . . ,m, such that the following expectation formula holds:

E [pm (Y (s0)) pm−1 (Y (s1)) · · · · · p0 (Y (sm))| Ft]

= ~p>m,n

{
vec−1 ◦ eG̃

(m)
n (s0−t) ◦ vec

(
Hn(Y (t))> ⊗m Hn(Y (t))

)}
·
m∏
k=1

eG̃
(m−k)>
n (sk−sk−1)

{
In+1 ⊗m−k ~pm−k,n

}
, (2.5)

where
∏m
k=1 is the product obtained starting with the matrix corresponding to k = 1 and multiplying

on the right by the following matrices until the matrix corresponding to k = m. In particular, G̃(r)
n =

D
(r)
n+1Gn(r+1)E

(r)
n+1 and eG̃

(r)
n t = D

(r)
n+1e

Gn(r+1)tE
(r)
n+1, with G̃

(0)
n = Gn. Here In+1 ∈ R(n+1)×(n+1)

denotes the identity matrix.

Corollary 2.4. For every n ≥ 0 and 0 ≤ k0, k1, . . . , km ≤ n, the following formula holds:

E
[
Y (s0)k0Y (s1)k1 · · ·Y (sm)km

∣∣Ft]
= ~e>n+1,k0+1

{
vec−1 ◦ eG̃

(m)
n (s0−t) ◦ vec

(
Hn(Y (t))> ⊗m Hn(Y (t))

)}
·
m∏
j=1

eG̃
(m−j)>
n (sj−sj−1)

{
In+1 ⊗m−j ~en+1,kj+1

}
.

3 Payoff Representation with Hermite Polynomials
We shall construct a polynomial approximation for the payoff function ϕK in Eq. (1.1). In order to do
that, we first introduce an orthogonal polynomial basis for Poln(R). Let q0(x), q1(x), . . . be orthogonal
polynomial functions with values in R such that the family {q0(x), q1(x), . . . , qn(x)} forms a basis for
Poln(R), and let

Qn : R −→ Rn+1, Qn(x) = (q0(x), q1(x), . . . , qn(x))>. (3.1)
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From classical linear algebra, there exists a matrix

Mn ∈ R(n+1)×(n+1) such that MnHn(x) = Qn(x) and M−1
n Qn(x) = Hn(x). (3.2)

By Eq. (3.2) we can exploit both the readability of Hn(x) and the orthogonality of Qn(x).

3.1 Generalized Hermite polynomials
We restrict our attention to the probabilistic Hermite polynomials (which we shall refer to simply as
Hermite polynomials) defined by

qn(x) := (−1)ne
x2

2
dn

dxn
e−

x2

2 , n ≥ 0. (3.3)

The family {qn}n≥0 forms an orthogonal basis for the Hilbert space L2(R, w(x)dx) with weight function
w(x) := e−

x2

2 . The norm of qn in L2(R, w(x)dx) is

‖qn‖2L2(R,w(x)dx) =

∫ ∞
−∞

q2
n(x)w(x)dx =

√
2πn! . (3.4)

It is easy to check that ϕK ∈ L2(R, w(x)dx). However, the weight function w is centered in x = 0, which
means that an approximation with Hermite polynomials will have the main focus in a neighborhood of
x = 0 and will potentially not be good for points far from it. Since we want to approximate the payoff
function ϕK whose most interesting point is x = K, we thus need a weight function possibly centered
in x = K. Alternatively, in view of option pricing where ϕK is evaluated in a random variable X, one
might want to focus around the mean of X. We should then consider a weight function that allows to
shift the focus of the approximation to the area of greatest interest.

To keep it general, for a, b ∈ R, b > 0, we introduce a family of weight functions and the correspond-
ing orthogonal polynomials by

wa,b(x) := e−
(x−a)2

2b2 and qa,bn (x) := (−1)ne
(x−a)2

2b2
dn

dxn
e−

(x−a)2

2b2 . (3.5)

The family {qa,bn }n≥0 forms an orthogonal basis for the Hilbert space L2(R, wa,b(x)dx) with norm

‖f‖2L2(R,wa,b(x)dx) :=

∫
R
f(x)2wa,b(x)dx for f ∈ L2(R, wa,b(x)dx). (3.6)

The norm of qa,bn in L2(R, wa,b(x)dx) is given in the following lemma.

Lemma 3.1. For every n ≥ 0, the norm of qa,bn in L2(R, wa,b(x)dx) is
∥∥qa,bn ∥∥2

L2(R,wa,b(x)dx)
=
√

2πn!
b2n−1 .

We shall from now on refer to a as the drift and to b as the scale, while to {qa,bn }n≥0 as generalized
Hermite polynomials (GHPs). We also introduce the notation L2

a,b := L2(R, wa,b(x)dx), where L2
0,1 =

L2(R, w(x)dx). We point out that, while we use the terminology “weight function”, “approximating
series”, etc., we deal in practice with a family of weight functions, a family of approximating series, etc.,
depending on the choice of the parameters a and b.

3.2 Series expansion for the call-payoff function
We introduce ϕa,bK as the series representation of ϕK in terms of the GHPs {qa,bn }n≥0, namely

ϕa,bK (x) :=

∞∑
n=0

〈
ϕK , q

a,b
n

〉
L2
a,b∥∥∥qa,bn ∥∥∥2

L2
a,b

qa,bn (x) =

∞∑
n=0

b2n−1

√
2πn!

∫ ∞
−∞

ϕK(y)qa,bn (y)wa,b(y)dy qa,bn (x), (3.7)

which we shall compute explicitly. From now on, we denote with φ and Φ, respectively, the probability
density function and the cumulative distribution function of a standard Gaussian random variable.
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Proposition 3.2. The series ϕa,bK can be written in terms of the Hermite polynomials {qn}n≥0 by

ϕa,bK (x) =

∞∑
n=0

βa,bn qn

(
x− a
b

)
with βa,bn :=


b φ
(
K−a
b

)
+ (a−K)

(
1− Φ

(
K−a
b

))
for n = 0

b
(
1− Φ

(
K−a
b

))
for n = 1

b
n!φ

(
K−a
b

)
qn−2

(
K−a
b

)
for n ≥ 2

. (3.8)

Example 3.1. Let X be a random variable with mean and variance denoted respectively with µ and σ2.
We then consider the drift a = µ and the scale b = σ. From Proposition 3.2 we get

ϕµ,σK (x) = σ φ

(
K − µ
σ

)
+

(
1− Φ

(
K − µ
σ

))
(x−K) +

∞∑
n=2

βµ,σn qn

(
x− µ
σ

)
. (3.9)

If X follows a Gaussian distribution, then by computing the expectation of ϕµ,σK (X) we get that

E [ϕµ,σK (X)] = σ φ

(
K − µ
σ

)
+

(
1− Φ

(
K − µ
σ

))
(µ−K) + E

[ ∞∑
n=2

βµ,σn qn

(
X − µ
σ

)]

= E [ϕK(X)] + E

[ ∞∑
n=2

βµ,σn qn

(
X − µ
σ

)]
. (3.10)

In this case the weight function ωµ,σ coincides with the density function of X. Hence, calculating
the expectation E [ϕK(X)] by computing E [ϕµ,σK (X)] might add uncertainty to the result, unless the
coefficients βµ,σn are non significant for n ≥ 2.
Example 3.2. For X as in Example 3.1, we let the drift be a = K and the scale be b = σ. Then

ϕK,σK (x) =
σ√
2π

+
x−K

2
+

∞∑
n=2

βK,σn qn

(
x−K
σ

)
with βK,σn =

σ√
2πn!

qn−2(0). (3.11)

If n is an odd number then βK,σn = 0 because the Hermite polynomials of odd orders have no constant
term. More precisely, for every n ≥ 2, we introduce k ≥ 1 as the integer such that either n = 2k or
n = 2k + 1. Then, the coefficients βK,σn in Eq. (3.11) can be rewritten as

βK,σn =

{
(−1)k−1σ√

2πk!(2k−1)2k
for n = 2k

0 for n = 2k + 1
. (3.12)

This is obtained by observing that qn(0) = (−1)
n
2

n!
2n/2k!

for n = 2k even, and qn(0) = 0 for n odd,
where !! denotes the double factorial. Then βK,σn = 0 for n odd, while for n even we write that

βK,σn =
σ√
2πn!

qn−2(0) =
(−1)

n−2
2 (n− 3)!!σ√

2πn!
=

(−1)
2k−2

2 (2k − 3)!!σ√
2π(2k)!

=
(−1)k−1(2k − 1)!!σ√

2π(2k)!(2k − 1)
. (3.13)

In particular, (2k − 1)!! = (2k−1)!
2k−1(k−1)!

, so that, after simplification, we obtain (3.12).

3.3 Error analysis
For computational purposes, we truncate the infinite sum defining ϕa,bK to a certain N big enough so
that the resulting series well approximates the payoff function ϕK . This leads to introduce

ϕa,bK,N (x) :=

N∑
n=0

βa,bn qn

(
x− a
b

)
= βa,b>N QN

(
x− a
b

)
= βa,b>N MNHN

(
x− a
b

)
, (3.14)

where βa,bN := (βa,b0 , βa,b1 , . . . , βa,bN )> andMN is the matrix for the change of basis with respect to HN (x)

in Eq. (3.2). We point out that ϕa,bK,N can be computed for any choice of the orthogonal basis {qn}n≥0.
Then Eq. (3.14) holds with the obvious modifications for MN and βa,bN .
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Figure 1: Approximation of the call payoff function ϕK with strike price K = 5.0 (black line) by
generalized Hermite polynomials of different order N and scale b (red line). The drift is fixed to a = K.

In Figure 1 we observe the behavior of ϕa,bK,N for different values of N ∈ {5, 15, 30, 100} and b ∈
{0.5, 1.0, 2.0, 3.0}. In particular, we fix the drift to a = K so that the approximations are centered
around the strike price value K = 5.0. The area where the Hermite series well approximates the payoff
function gets wider when increasing the scale b. Similarly, increasing the truncation number N gives
better performances, however this is more evident for higher values of b. On the other hand, including
higher order polynomials in the series adds oscillations to the approximation. We point out that the
value of the drift a is kept constant since the only effect of changing the drift is a shift in the center
of the approximation, which is not particularly interesting. We stress the fact that ϕa,bK,N converges to
ϕK in the norm of L2

a,b, so that we cannot expect convergence in the supreme norm, as it can also
be observed in Figure 1. The next proposition gives a semi-explicit formula for the L2

a,b-norm of the
approximation error.

Proposition 3.3. By the Parseval identity, the norm in L2
a,b of the approximation error is

∥∥∥ϕK − ϕa,bK,N∥∥∥
L2
a,b

= b φ

(
K − a
b

)√√√√ ∞∑
n=N+1

(
1

n!
qn−2

(
K − a
b

))2

. (3.15)
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Proposition 3.3 does not give a precise intuition on the behavior of the approximation error as a
function of N . We however observe that the quantity

ha,bK := b φ

(
K − a
b

)
=

b√
2π

exp

(
− (K − a)2

2b2

)
(3.16)

does not depend on N , but it does depend on b. More precisely, if ignoring the dependence of the
squared root in Eq. (3.15) on b (which is not straightforward), the approximation error is an increasing
function of b. Hence, despite Figure 1 shows an improving in the approximation for larger values of the
scale, the L2

a,b-norm of the approximation error might grow with the scale b.
To analyze this further, in Figure 2 we plot the L2

a,b-norm of the approximation error for different
values of N , b and a, and K = 5.0. In the first row, the norm is a function of N for three different
cases, namely a = 5.0, a = 7.0 and a = 10.0. Here b ∈ {0.5, 1.0, 2.0, 3.0, 6.0, 10.0}, however the lines
are not distinguishable. In the second row we report a zoom of the three previous plots, where we
focus on 10 ≤ N ≤ 30. Here we distinguish the six different lines and observe in particular that the
approximation error is smaller for smaller values of b. Finally, in the last row we plot the error together
with ha,bK as functions of b. Here we fix N = 20 and consider many values for the scale in the interval
0.5 ≤ b ≤ 10.0. To calculate the infinite sum in Eq. (3.15), we truncate at n = 160 since for bigger
values the factorial cannot be converted to a floating-point number.

For the plots in the first column, since a = K = 5.0, the coefficient ha,bK = b√
2π

is proportional
to b and the squared root in Eq. (3.15) does not depend on b. We see indeed in the last plot of
the first column that the approximation error is proportional to ha,bK (proportional to b in fact). In
the second and third plots of the last row, since a 6= K, the behavior of the approximation error
diverges from the one of ha,bK . In particular, it is not monotone in b. However, since the main interest
for the polynomial approximation is around K, we shall mostly deal with configurations that we can
approximately consider increasing functions of the scale parameter.

4 Pricing Options with Correlators
We focus on the pricing of options with call-style payoff function. If the underlying spot process is
evaluated in a single time point T ≥ t, then the option is of European type. If the underlying spot
process is averaged over the settlement period (t, T ], then the option is of Asian type. We shall see that
the price formula for this second kind of contracts can be derived starting from the price formula for
the first kind. We shall also derive explicit formulations for two of the Greeks of the Asian option.

4.1 European options
We consider X = Y , where Y is an Ft-adapted stochastic process. For the payoff function ϕK in
Eq. (1.1), we compute the conditional expectation ΠK(t) = E [ϕK(X(T )) | Ft] with respect to the
risk-neutral measure Q. Starting from the Hermite series constructed in Sec. 3, we have a family of
approximations depending on a, b and N , namely

Πa,b
K,N (t) := E

[
ϕa,bK,N (X(T ))

∣∣∣Ft] ≈ E [ϕK(X(T ))| Ft] = ΠK(t). (4.1)

These give an approximation for the price of a European-style call option with underlying process X,
which we state in the following theorem. Notice that, at the current stage, X is a generic Ft-adapted
stochastic process, and not the discrete average defined in Eq. (1.2). Thus Theorem 4.1 gives an
approximation for the price of a European-style call option with underlying process X.

Theorem 4.1. The price approximation by Hermite polynomials for a European-style call option is

Πa,b
K,N (t) =

N∑
k=0

β̂
a,b

N,k+1

1

bk

k∑
i=0

(
k

i

)
(−a)k−i E

[
X(T )i

∣∣Ft] , (4.2)

where β̂
a,b

N := βa,b>N MN with components β̂
a,b

N,k+1 = βa,b>N (MN ):,(k+1), k = 0, . . . , N .
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Figure 2: L2
a,b-norm of the approximation error of ϕa,bK,N with K = 5.0. In the first and second row, the

error is a function of the truncation number N . In the third row, the error is a function of b.
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In Theorem 4.1 the vector βa,bN and the matrix MN depend on the choice of the orthogonal basis,
the GHPs in our case, while the moments E

[
X(T )i

∣∣Ft] only depend on the distribution of the random
variable X(T ). Then, once the orthogonal basis is chosen, the approximation of the expected payoff
Πa,b
K,N (t) is fully determined by the conditional moments of X(T ). In the next section we extend the

result in Theorem 4.1 to Asian options (hence for X as in Eq. (1.2)) by the multinomial theorem.

4.2 Asian options
We now consider Asian-style options as introduced at the beginning of Sec. 1. For m ≥ 0, X is the
discrete average of an Ft-adapted stochastic process Y over the period (t, T ], namely

X(T ) =
1

m+ 1

m∑
j=0

Y (sj) for t < s0 < s1 < · · · < sm = T. (4.3)

From Theorem 4.1, we need to compute the conditional moments E
[
X(T )i

∣∣Ft], for i = 1, . . . , N ,
where N is the truncation number for the Hermite series (3.14). These can be rewritten in terms of
correlator-type expectations (as defined in Eq. (1.4)) by means of the multinomial theorem.

Proposition 4.2. For every 1 ≤ i ≤ N , the i-th conditional moment of the average process X in Eq.
(4.3) can be rewritten as a linear combination of correlator terms for the process Y , namely

E
[
X(T )i

∣∣Ft]= 1

(m+ 1)i

∑
|k|=i

i!

k0!k1! · · · km!
E
[
Y (s0)k0Y (s1)k1 · · ·Y (sm)km

∣∣Ft] , (4.4)

where the summation is over the multi-indexes k = (k0, . . . , km) with |k| = k0 + k1 + · · ·+ km.

By means of Proposition 4.2, we obtain the pricing formula for Asian options.

Theorem 4.3. For every N ≥ 0, the price of a discretely sampled arithmetic Asian option can be
approximated with generalized Hermite polynomials by

Πa,b
K,N (t) =

N∑
k=0

k∑
i=0

∑
|k|=i

(
k

i

)
β̂
a,b

N,k+1(−a)k−i

(m+ 1)ibk
i!

k0!k1! · · · km!
E
[
Y (s0)k0Y (s1)k1 · · ·Y (sm)km

∣∣Ft] . (4.5)

By Theorem 4.1 and 4.3, we have explicit approximation formulas for the price of European and
Asian options which require the computation of conditional moments and correlators. As we have
seen in Sec. 2, for a jump-diffusion polynomial process both conditional moments and correlators
admit closed formulation. In all other cases, one must rely on Monte Carlo simulations, loosing the
advantages of an explicit price functional representation.

Remark 1. In the continuous case, the payoff of an arithmetic Asian option is a function of the integrated
underlying process, namely ofX(T ) := 1

T−t
∫ T
t
Y (s)ds. If Y is a polynomial jump-diffusion process, then

the pair (Y,X) is a bivariate polynomial jump-diffusion process. Hence one can reduce the Asian option
pricing problem for the process Y to a European option pricing problem for the process Z := (Y,X). On
the one hand, this only requires the conditional moments of X(T ) (Z(T )), and not the joint moments,
namely the correlators, of Y at the discrete times t < s0 < s1 < · · · < sm = T. On the other hand, one
needs to deal with a two-dimensional process. We shall analyze this alternative approach in Sec. 6.

4.3 Error analysis and scale criterion
Let ψX(T ) be the density function of X(T ). We estimate the error in approximating ΠK(t) with GHPs.

Theorem 4.4. If the density function ψX(T ) satisfies the condition∫
R
ψ2
X(T )(x)ω−1

a,b(x)dx <∞, (4.6)
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then the absolute error in approximating the option price ΠK(t) with Πa,b
K,N (t) is bounded by the L2

a,b-
norm of the error in approximating the payoff function ϕK with ϕa,bK,N , namely∣∣∣ΠK(t)−Πa,b

K,N (t)
∣∣∣ ≤ Ca,b ∥∥∥ϕK − ϕa,bK,N∥∥∥

L2
a,b

, (4.7)

where Ca,b :=
(∫

R ψ
2
X(T )(x)ω−1

a,b(x)dx
) 1

2

.

Remark 2. To have convergence for the price approximation, by Theorem 4.4 we need ψX(T ) to satisfy
condition (4.6) which is quite restrictive. Indeed, it basically asks the tails of ψX(T ) to vanish faster than
the tails of a Gaussian density function. In general, this does not hold for Lévy processes, which are
characterized by heavy tails. However, condition (4.6) is only sufficient for proving the error bound in
Theorem 4.4, and not really necessary for convergence. Indeed, we shall see from the numerical examples
that the convergence is reached also when considering a jump process, such as a jump-diffusion process
with normal inverse Gaussian Lévy measure as in Sec. 5.3 and 5.4.

Remark 3. Since condition (4.6) is obtained from a weight function being the density of a Gaussian
random variable, one can aim at theoretical convergence criteria for other families of distributions
by considering a different weight function. For example, the Laguerre polynomials are orthogonal
polynomials with respect to the weight function w(x) = e−x, which would allow to prove convergence
for the Gamma distribution. Similarly, [25] obtained convergence for a log-normal distribution by
considering a log-normal density for the weight function. Other examples are in [20, Appendix B].

If X(T ) follows a Gaussian distribution with mean µ and variance σ2, by direct computation we get

C2
a,b =

∫
R
ψ2
X(T )(x)ω−1

a,b(x)dx =
b√

2πσ2

e
(a−µ)2

(2b2−σ2)

√
2b2 − σ2

, (4.8)

which leads to a more explicit formulation for condition (4.6).

Proposition 4.5. If the random variable X(T ) follows a Gaussian distribution with mean µ and
variance σ2, then condition (4.6) is equivalent to

b >
σ√
2

=: bσ (4.9)

where b is the scale for the GHPs. For b = bσ we expect instabilities in the approximation.

Remark 4. Condition (4.6) extends [25, Proposition 3.1], since it basically coincides with asking that
the likelihood ratio function η defined by ψX(T )(x) = η(x)ωa,b(x) is such that η ∈ L2

a,b for any generic
density function ψX(T ) (and not only for a log-normal density function like in [25]). Indeed, if considering
ψX(T ) and ωa,b to be the density functions of two log-normal distributions with mean µ and variance σ2,
respectively, with mean a and variance b2, then Ca,b takes a form similar to Eq. (4.8). In particular, the
squared root

√
2b2 − σ2 still appears. Then, with abuse of notation, by setting σ2 = σ2T , we recover

[25, Proposition 3.1] which now coincides with condition (4.9)1.

Corollary 4.6. In the same setting of Proposition 4.5, if a = µ then Ca,b is a monotone decreasing
function of the scale b with limit 1

4√
4πσ2

.

Remark 5. Theorem 4.4 shows that the absolute error in approximating the option price ΠK(t) with
generalized Hermite polynomials is bounded by the product of Ca,b with the L2

a,b-norm of the error
in approximating the payoff function ϕK . In particular, due to Proposition 3.3, this last term is an
increasing function of b (if a is in a neighborhood of K), while, according to Corollary 4.6, Ca,b is a
decreasing function of b, at least in the Gaussian case.

1To be more precise, the setting in [25] defines a likelihood ratio function ` in terms of a the weight ω and a density
g, where the latter one is the density function of the average price process defined in a continuous manner starting from
a log-normally distributed underlying spot price. Then g does not define a log-normal distribution. However, its tails are
dominated by the tails of a log-normal density function, as proved in [25].
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4.4 Greeks for path-dependent options
The pricing formulas of Theorem 4.1 and 4.3, together with the moment and correlator formulas of
Theorem 2.1 and 2.3, allow for sensitivity analysis and risk management. Indeed, thanks to the com-
pact and closed formulation, it is possible to differentiate the price functional with respect to various
parameters and obtain the option Greeks. In [4, Section 6] the authors derive the expressions for the
Delta and the Theta for correlators, namely for the partial derivatives

∆k0,...,km
(s0,...,sm;t) :=

∂Ck0,...,km(s0, . . . , sm; t)

∂Y (t)
and

Θjk0,...,km(s0,...,sm;t) :=
∂Ck0,...,km(s0, . . . , sm; t)

∂sj
,

(4.10)

for 0 ≤ j ≤ m, with Ck0,...,km(s0, . . . , sm; t) := E
[
Y (s0)k0Y (s1)k1 · · ·Y (sm)km

∣∣Ft]. Starting from their
results, we compute Delta and Theta for discretely sampled arithmetic Asian options.

Proposition 4.7. For every N ≥ 0, the Delta of a discretely sampled arithmetic Asian option can be
approximated with generalized Hermite polynomials by

∂Πa,b
K,N (t)

∂Y (t)
=

N∑
k=0

k∑
i=0

∑
|k|=i

(
k

i

)
β̂
a,b

N,k+1(−a)k−i

(m+ 1)ibk
i!

k0!k1! · · · km!
∆k0,...,km

(s0,...,sm;t) (4.11)

with ∆k0,...,km
(s0,...,sm;t) given in [4, Proposition 6.1].

Proposition 4.8. For every N ≥ 0, the Theta of a discretely sampled arithmetic Asian option can be
approximated with generalized Hermite polynomials by

∂Πa,b
K,N (t)

∂sj
=

N∑
k=0

k∑
i=0

∑
|k|=i

(
k

i

)
β̂
a,b

N,k+1(−a)k−i

(m+ 1)ibk
i!

k0!k1! · · · km!
Θjk0,...,km(s0,...,sm;t) for 0 ≤ j ≤ m, (4.12)

with Θjk0,...,km(s0,...,sm;t) given in [4, Proposition 6.2].

One similarly computes Delta and Theta for European options as dealt in Sec. 4.1.

5 Numerical Examples
We shall implement numerically the pricing formulas in Theorem 4.1 and 4.3. We first test the pricing
formula with moments (Theorem 4.1) for a Brownian motion, a Gaussian Ornstein–Uhlenbeck process
and a jump-diffusion process, all of these being polynomial processes as described in Sec. 2. We
then test the pricing formula with correlators (Theorem 4.3) for the Gaussian Ornstein–Uhlenbeck
process and the jump-diffusion process. The code for reproducing the experiments is available at
https://github.com/silvialava/Pricing_options_with_correlators.git.

5.1 Brownian motion
We consider X = B, where B is a Brownian motion. Then X(T )| Ft ∼ N (0, T − t) and the price
functional ΠK(t) is given in closed form by

ΠK(t) = σX(T ; t) φ

(
K − µX(T ; t)

σX(T ; t)

)
− (K − µX(T ; t))

(
1− Φ

(
K − µX(T ; t)

σX(T ; t)

))
, (5.1)
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with σX(T ; t) =
√
T − t and µX(T ; t) = 0, so that we can benchmark the price approximation. To do

that, we introduce the quantity

γNa,b := − log


∣∣∣ΠK(t)−Πa,b

K,N (t)
∣∣∣

ΠK(t)

 (5.2)

which measures the accuracy of Πa,b
K,N (t), namely, the accuracy is of order 10−γ

N
a,b . We also compare

γNa,b with the accuracy of a Monte-Carlo-simulation (MC) approach calculated in the same manner. We
report γNa,b in Figure 3 and 4 as a function of N for different values of K and b. Here we draw with a
red horizontal dashed line the MC accuracy, and with a red vertical bar the value of N for which the
Hermite series reaches the same accuracy of the MC method. This latter one is obtained by averaging
over 102 outcomes, each of them resulting from 2 · 104 simulations.

In Figure 3 we have T = 1/2 and t = 0, hence σX(T ; t) ≈ 0.707. We observe that for b = 0.5 the
Hermite series is barely able to reach the accuracy of the Monte Carlo simulations, and it is not clear
if we can actually consider it converging. This coincides indeed with the case b = bσ in Proposition
4.5 which is expected to show instabilities. Things get better for b = 0.6 and b = 1.0: here we observe
convergence of the Hermite approximation, reaching a level of accuracy of order 10−10. This convergence
is slower for b = 1.0 than for b = 0.6. For b = 2.0 and b = 3.0 the convergence is even slower and to
reach the same accuracy of Monte Carlo we need more than 50 terms in the first case and more than
100 terms in the second case, meaning that a big scale parameter slows down the convergence.

Very similar comments hold for Figure 4, where T = 2, t = 0 and σX(T ; t) ≈ 1.41. Here the
plots show a similar behavior to the ones in Figure 3, even if the values of the scale b considered are
different. More precisely, for Figure 4 we consider values for b which are two times (i.e. the double) the
values used in Figure 3. Since from Eq. (4.8) Ca,b is proportional to b

σ , it seems reasonable to think
that this phenomenon is related to the fact that the standard deviation of the process is exactly two
times the standard deviation of the process in Figure 3. In other words, because of the ratio b

σ that
somehow controls the approximation error, in order to get the same accuracy we need to keep this ratio
constant. Hence, if σ doubles, also b must double. Finally, we notice that the singularity in the sense
of Proposition 4.5 is here expected for b = 1.0, as indeed Figure 4 shows.

Another phenomenon observable in both Figure 3 and 4 is that, after reaching the best accuracy,
the bars in the plots decrease. Moreover, some parts of the plots are empty, as, for example, in the plot
corresponding to K = 0.0 and b = 0.6 of Figure 3 after N = 60. This is because, after that, the values
of γNa,b become negative thus they don’t appear in the plot. A negative γNa,b means in particular that
the value of Πa,b

K,N (t) is completely far away from the true price value. We believe that this is due to
numerical instabilities. In computing the approximation Πa,b

K,N (t) in Theorem 4.1 we need indeed the
conditional moments of X(T ). It is clear that for high values of the truncation number N , we need to
calculate high-order moments of X, which create numerical instabilities due to rounding errors.

5.2 Gaussian Ornstein–Uhlenbeck process
We consider X = Y , where Y is the Gaussian Ornstein–Uhlenbeck (OU) process defined by

dY (t) = (b0 + b1Y (t)) dt+
√
σ0 dB(t), (5.3)

for b0, b1, σ0 ∈ R and σ0 > 0. Then X(T )| Ft ∼ N (µX(T ; t), σ2
X(T ; t)) with

µX(T ; t) = X(t) eb1(T−t) +
b0
b1

(
eb1(T−t) − 1

)
and σ2

X(T ; t) :=
σ0

2b1

(
e2b1(T−t) − 1

)
. (5.4)

Moreover, since Y is a polynomial process (thus X is a polynomial process), the moments of X(T ) are
given by Corollary 2.2 and the price functional ΠK(t) is again given in closed form by Eq. (5.1).

In Figure 5 and 6 we report the numerical results for (b0, b1, σ0) = (−0.02, 0.01, 0.98), T = 2 and
t = 0, which have been chosen so to get µX(T ; t) = X(0) = 2.0 for Figure 5 and µX(T ; t) = X(0) = 20.0
for Figure 6. Moreover σX(T ; t) ≈ 1.41 for both figures as for the process in Figure 4. Indeed, Figure
5 looks very similar to Figure 4 and the behavior of the approximation with respect to the scale b
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Figure 3: γNa,b as a function of N when the underlying process is a BM with σX(T ; t) ≈ 0.707. The drift
is a = µX(T ; t) = 0. The dashed red horizontal lines indicate the accuracy of the MC method. The red
vertical bars indicate when the Hermite series reaches the MC accuracy.
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Figure 4: γNa,b as a function of N when the underlying process is a BM with σX(T ; t) ≈ 1.41. The drift
is a = µX(T ; t) = 0. The dashed red horizontal lines indicate the accuracy of the MC method. The red
vertical bars indicate when the Hermite series reaches the MC accuracy.
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is similar, as we would expect due to the fact the the volatility is the same. However, the maximum
accuracy reached is lower than the one for the Brownian motion (10−8 at best). Moreover, the numerical
instabilities in the sense discussed above appear earlier, namely, for a smaller N . We believe that both
these phenomena are related to the fact that X(0) = 2.0 > 0: the high-order moments of X(T ) that we
need to calculate for approximating the price reach here larger values than for the Brownian motion,
which has mean zero. Hence the instabilities occur at an earlier stage. This phenomenon is even more
emphasized in Figure 6 where X(0) = 20.0 >> 0. Here indeed the numerical instabilities start around
N = 20, which in some cases is not even enough for reaching a reasonable accuracy.

5.3 Polynomial jump-diffusion process
We consider X = Y , where Y is the polynomial jump-diffusion process following the dynamics

dY (t) = (b0 + b1Y (t)) dt+
√
σ0 dB(t) +

∫
R
zÑ(dt, dz), (5.5)

where Ñ(dt, dz) is a compensated Poisson random measure with compensator ν(dz)dt. In this case,
the jump measure `(x, dz) is given by

∫
R f(z)`(x, dz) =

∫
R f(δ(x, z))ν(dz), see [4, Example 2.1] for

details. Moreover, we consider ν to be the Lévy measure of a normal inverse Gaussian (NIG) process
with location parameter µ ∈ R, scale δ > 0, asymmetry parameter β and steepness parameter α (see
[3]). Since Y is a polynomial process, the moments of X(T ) are given in closed form by Corollary 2.2.
However, there is no explicit price functional in this case.

In Figure 7 we report the results for a jump-diffusion process with (b0, b1, σ0) = (−0.02, 0.01, 0.49),
(α, β, µ, δ) = (1.0, 0, 0, 0.05), T = 2, t = 0 and initial condition X(0) = 2.0. The mean and standard
deviation, calculated with the moment formula in Corollary 2.2, are µX(T ; t) = 2.00 and σX(T ; t) = 1.00
respectively. Since no closed price formula is available, we cannot quantify the level of accuracy. The
plots of Figure 7 show then the approximated price with generalized Hermite polynomials compared
with the approximated price via Monte Carlo. For each experiment, we print two plots: the first one
showing the results from the whole experiment and the second one showing a selected subset of it.

In particular, we use values for b which have the same proportion with respect to bσ = σ√
2
(for

σ = σX(T ; t) calculated with the moment formula (4.2)) of Figure 3. Even if bσ has been introduced
in Proposition 4.5 for a Gaussian random variable, the results in Figure 7 are in line with the previous
ones. Specifically, we see that for higher values of the scale the convergence is slower but more stable
at the same time. For example, for b = 2.0bσ, the convergence is reached around N = 17, but after
N = 47, due to numerical instabilities, the series starts to diverge. On the other hand, for b = 6.0bσ, we
see that N = 60 terms are not enough to reach convergence. Last, we notice that for b = bσ there is no
convergence, as expected in line with Proposition 4.5. This is noticeable both for K = 1.0 and K = 2.0
in the zoomed plots: we see that the option price oscillates around the MC price, without reaching
convergence. After a certain number of iterations (around N = 30), because of numerical instabilities,
the series starts to diverge.

5.4 Asian options
We shall now test the pricing formula with correlators in Theorem 4.3 for discretely sampled arithmetic
Asian options. In particular, making use of the insight learnt from the previous experiments, we shall
deal only with the Gaussian OU process and the polynomial-jump diffusion process introduced above.
In the first case, we benchmark the approximation with a closed pricing formula, while for the second
process no closed formula is available.

We first consider the OU process Y introduced in Eq. (5.3). Then the average process X is

X(T ) =
1

m+ 1

m∑
j=0

Y (sj) with

Y (sj) = Y (t)eb1(sj−t) +
b0
b1

(
eb1(sj−t) − 1

)
+
√
σ0

∫ sj

t

eb1(sj−v)dB(v). (5.6)
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Figure 5: γNa,b as a function of N when the underlying process is an OU with σX(T ; t) ≈ 1.41. The drift
is a = µX(T ; t) = 2.0. The dashed red horizontal lines indicate the accuracy of the MC method. The
red vertical bars indicate when the Hermite series reaches the MC accuracy.
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Figure 6: γNa,b as a function of N when the underlying process is an OU with σX(T ; t) ≈ 1.41. The drift
is a = µX(T ; t) = 20.0. The dashed red horizontal lines indicate the accuracy of the MC method. The
red vertical bars indicate when the Hermite series reaches the MC accuracy.
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K = 1.0 K = 1.0 (zoom) K = 2.0 K = 2.0 (zoom)
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Figure 7: Πa,b
K,N (t) as a function of N when the underlying process is a jump-diffusion with NIG measure

and σX(T ; t) ≈ 1.41. The drift is a = µX(T ; t) = 2.0. The black dots represent the option price, the
solid red line the MC price, the two red dashed lines are the 95% confidence interval for MC. The plots
in the second and fourth columns are a zoomed subplot of the plots in the first and third columns.
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In particular, the random variables {Y (sj)}mj=0 are not independent. We can however rewrite their sum
as the sum of some other independent random variables {Zj}mj=0.

Proposition 5.1. For s−1 := t, the random variable X(T ) equals in distribution the weighted sum of
m+ 1 independent random variables {Zj}mj=0, namely X(T )

d
= 1

m+1

∑m
j=0 Zj, where Zj is defined by

Zj := Y (t)eb1(sj−t) +
b0
b1

(
eb1(sj−t) − 1

)
+
√
σ0

∫ sj

sj−1

 m∑
k=j

eb1(sk−v)

 dB(v) for j = 0, . . . ,m. (5.7)

As a direct consequence of Proposition 5.1, we find that X(T )| Ft ∼ N (µX(T ; t), σ2
X(T ; t)) with

µX(T ; t) =
1

m+ 1

m∑
j=0

(
Y (t) eb1(sj−t) +

b0
b1

(
eb1(sj−t) − 1

))
and

σ2
X(T ; t) =

σ0

(m+ 1)2

m∑
j=0

m∑
k1=j

m∑
k2=j

eb1(sk1+sk2−2sj−1) − eb1(sk1+sk2−2sj)

2b1
,

(5.8)

which, together with Eq. (5.1), gives a benchmark for the experiments.
In Figure 8 and 9 we report the results for, respectively, the Gaussian OU and the polynomials jump-

diffusion process with a = µX(T ; t) and b = 2.0bσ, since in the previous experiments this was the value
of the scale performing at best. All the experiments are in line with the previous ones: the accuracy of
the approximation increases with N increasing, until a certain value after which it starts decreasing. We
see that the Hermite approximation performs well also for a path-dependent option, whose evaluation
requires the correlator formula instead of the moment formula for polynomial processes. Indeed, there
is no significant difference between m = 0, m = 1 and m = 2. From the zoomed plots in Figure 9
we also notice some discrepancy between the price values estimated with the Hermite series and the
ones estimated with MC. Based on the previous experiments, we think that the Hermite series is more
accurate than the MC approach. The difference is indeed in the fourth decimal, while in the previous
experiments the accuracy of MC was not much better than 10−3.

For practical purposes, one needs a way to understand when to truncate the series, i.e., how to
choose the value for N . We then propose the following stopping criterion: for each N one calculates

γ̃Na,b := − log


∣∣∣Πa,b

K,N−1(t)−Πa,b
K,N (t)

∣∣∣
Πa,b
K,N−1(t)

 . (5.9)

For a selected level of accuracy γ̄ > 0, if γ̃Na,b > γ̄, then the contribution of the N -th term is smaller
than 10−γ̄ and one truncates the series. In Figure 9 the prices obtained with γ̄ = 4 are marked with a
red star. Unfortunately, due to computational constraints, it is not possible to test the approximation
for m > 2.

6 A Comparison Case Study in Continuous Time
In Sec. 1 we introduced discretely-sampled arithmetic Asian options, which we have priced analytically
in Sec. 4 and numerically in Sec. 5. From a realistic point of view, the underlying price process (and the
option price process) is observed at discrete time intervals. However, Asian options are often defined
with continuous sampling. This means that the process X is the continuous average

X(T ) :=
1

T

∫ T

0

Y (s)ds (6.1)

of the underlying process Y . As outlined in Sec. 1, the integral defining X can be approximated
with a sum by considering a discrete sampling with time step small enough, so that to fall again in
the discrete-time setting analyzed so far. However, to have a small time step means that the number
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Figure 8: γNa,b as a function of N when the underlying process is an (m + 1)-point weighted OU. The
drift is a = µX(T ; t) = 2.0 and the scale is b = 2.0bσ. The dashed red horizontal lines indicate the
accuracy of MC. The red vertical bars indicate when the Hermite series reaches the MC accuracy.
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Figure 9: γNa,b as a function of N when the underlying process is an (m + 1)-point weighted jump-
diffusion with NIG measure. The drift is a = µX(T ; t) = 2.0 and the scale is b = 1.2bσ. The black dots
represent the option price, the solid red line the MC price, the two red dashed lines are the 95% MC
confidence interval. The red stars denote the prices chosen with the stopping criterion (5.9). The plots
in the second and fourth columns are a zoomed subplot of the plots in the first and third columns.
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Case r σ T Y0 GHP LNS10 LNS15 LNS20 LS EE VEC MC 95% CI

1 .02 .10 1 2.0 .05604 .05601 .05600 .05599 .0197 .05599 .05595 [.05598, .05599]
2 .18 .30 1 2.0 .2188 .2185 .2184 .2184 .2184 .2184 .2184 [.2183, .2185]
3 .0125 .25 2 2.0 .1736∗ .1723 .1722 .1722 .1723 .1723 .1723 [.1722, .1724]
4 .05 .50 1 1.9 .1949∗ .1930 .1927 .1928 .1932 .1932 .1932 [.1929, .1933]
5 .05 .50 1 2.0 .2524∗ .2466 .2461 .2461 .2464 .2464 .2464 [.2461, .2466]
6 .05 .50 1 2.1 .3162∗ .3068 .3062 .3061 .3062 .3062 .3062 [.3060, .3065]
7 .05 .50 2 2.0 .3574∗∗ .3501 .3499 .3499 .3501 .3501 .3500 [.3494, .3504]

Table 1: Asian option price approximation for different sets of parameters and different methods. The
column GHP refers to generalized Hermite polynomials with drift a = µX(T ; t) and scale b = 2bσ as
discussed in this paper; LNSX refers to the method presented in [25] with 1 +X terms; LS, EE and
VEC to the methods presented in [7], [19] and [23, 24], respectively; the last column MC 95% CI
refers to the 95% confidence interval of the Monte-Carlo simulation.

of points in the discretization grid, namely m, is reasonably high. On the other hand, the numerical
experiments in Sec. 5 revealed that, due to computational constraints, we cannot deal with m > 2.

An alternative approach to introducing a discretization grid and approximating the integral in the
definition of X with a sum, is to look at the pair Z := (Y,X) as a bivariate process. If Y is a
polynomial jump-diffusion whose coefficients satisfy (2.2), then Z is a bivariate jump-diffusion process.
In this framework, the Asian option pricing problem for the process Y reduces to a European option
pricing problem for the bivariate process Z. In particular, since Z is a polynomial jump-diffusion,
we can use the price approximation with generalized Hermite polynomials as given in Theorem 4.1,
together with the moment formula for (two-dimensional) polynomial processes in order to compute the
price approximation for an arithmetic Asian option with continuous sampling.

We shall test this second approach numerically. In particular, we consider the Black and Scholes
framework and define the underlying process Y to follow a geometric Brownian motion of the form

dY (t) = rY (t)dt+ σY (t)dB(t), (6.2)

where r ∈ R is the short rate and σ > 0 is the volatility of the asset. Then X is given by Eq. (6.1).
It is easy to see that Y is a polynomial diffusion process with b1 = r, σ2 = σ2 and b0 = σ0 = σ1 = 0.
Moreover, the pair (Y,X) is a bivariate polynomial diffusion process. Indeed

d

(
Y (t)
X(t)

)
=

(
rY (t)
Y (t)

)
dt+

(
σY (t)

0

)
dB(t) (6.3)

satisfies the necessary conditions given in [9, Lemma 1] for polynomial diffusion processes in R2.
The aim of this experiment is twofold. On the one hand, we test the option price approximation

with GHPs on one of the most popular models, that, differently from the models considered in Sec.
5, is exponential and log-normally distributed. On the other hand, we compare our results with other
existing methods from the literature. In particular, we shall consider the same set of parameters as in
[25], so that to be able to use their numerical results.

In Table 1 we report the price results for seven different sets of parameters, namely different r’s,
different σ’s, different T ’s, different initial condition Y0’s and strike K = 2.0. Here GHP denotes
the price obtained with generalized Hermite polynomials with drift a = µX(T ; t) and scale b = 2bσ =

2σX(T ;t)√
2

(where µX(T ; t) and σX(T ; t) were computed with the moment formula for bivariate polynomial
process, see Appendix A); LNSX denotes the price approximated with the method presented in [25]
with 1 +X terms; LS, EE and VEC are the prices obtained with the method presented in [7], [19] and
[23, 24], respectively; finally MC 95% CI is the 95% confidence interval of the Monte-Carlo simulation.
We point out that all the values (except the GHP column) have been simply copied from [25, Table 1].

Since there is no exact price formula for these experiments, we use the stopping criterion defined in
Eq. (5.9). However, for the prices marked with an asterisk ∗ we had to reduce the tolerance to 10−2 and
the price marked with a double asterisk ∗∗ was obtained with a tolerance equal to 10−1. This means
that in these cases the approximating series could not converge, unless we reduced the tolerance level.
The truncation number N for the Hermite series is reported in the last column of Table 2. In particular,
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Case r σ T Y0 µX(T ; t) σX(T ; t) cv N

1 .02 .10 1 2.0 2.020 .1170 .05795 11
2 .18 .30 1 2.0 2.191 .3926 .1792 12
3 .0125 .25 2 2.0 2.025 .4213 .2080 7
4 .05 .50 1 1.9 1.948 .5843 .3000 5
5 .05 .50 1 2.0 2.051 .6152 .3000 5
6 .05 .50 1 2.1 2.153 .6459 .3000 5
7 .05 .50 2 2.0 2.103 .9287 .4415 6

Table 2: Characteristics for the seven sets of parameters considered. Here µX(T ; t) and σX(T ; t)
have been computed with the moment formula for bivariate polynomial process in Eq. (A.5). The
column cv denotes the coefficient of variation and N is the truncation number for the Hermite series
approximations which led to the price results in Table 1.

the GHP prices are less accurate than the corresponding values obtained with the other methods.
The explanation for the phenomenon we are observing is the following. The weight function used to

define the generalized Hermite polynomials corresponds to the density function of a Gaussian random
variable. However, the underlying process considered here follows a log-normal distribution. It is known
that, if the coefficient of variation of the underlying process, namely the ratio between σX(T ; t) and
µX(T ; t) is indicatively below 0.18, then the log-normal distribution LogN (µX(T ; t), σ2

X(T ; t)) can be
approximated with a normal distribution N (µX(T ; t), σ2

X(T ; t)) with the same mean and variance. In
Table 2 we report for each of the seven cases the corresponding value for the mean µX(T ; t), variance
σX(T ; t) and their ratio, namely the coefficient of variation (cv). We see that only in the first two cases
the coefficient-of-variance criterion described above is satisfied. This explains the results of Table 1.

To confirm this statement, we consider one last numerical example which is reported in Figure 10.
Here we consider a European option (similarly to Sec. 4.1) with X = Y and Y being the geometric
Brownian motion defined in Eq. (6.2). Here the drift is set to a = µX(T ; t) and the scale to b = 2bσ,
where mean µX(T ; t) and standard deviation σX(T ; t) vary for each row. More precisely, in each row
we consider a different value for the coefficient of variation (cv). We notice that, as this latter one
increases, the accuracy of the approximation gets worse. In particular, we can talk about convergence
of the series only for the experiments in the first two rows.

7 Conclusions
We derive explicit pricing formulas for discrete-average arithmetic Asian options in the context of one-
dimensional polynomial jump-diffusion processes. This can be extended to continuous-average Asian
options either by approximating the integral with a discrete sum and appropriate small time step, or,
alternatively, by dealing with a two-dimensional process with components the underlying asset and
its integral. The proposed approach is based on approximating the payoff function with generalized
Hermite polynomials. In particular, the generalized Hermite polynomials are defined in relation to a
weight function which is the density of a Gaussian random variable with mean a (the drift) and standard
deviation b (the scale). Hence we get a family of approximations depending on the parameters a and
b. By modeling the underlying asset price with a jump-diffusion polynomial process, we obtain a fully
explicit expression for the price functional thanks to the well-known moment formula for polynomial
processes and to the correlator formula derived in [4]. This allows for sensitivity analysis, since Greeks
are within reach, as we show. From the numerical point of view, the most time consuming part is
the computation of moments and correlators. However, these do not depend on the strike price of the
option, hence one can compute moments and correlators for the underlying asset price process and use
these values to evaluate different options with different strike prices.

We summarize the following findings:
1. We provide a lower bound for the scale b which is proportional to the standard deviation, say σ, of

the underlying process. Values for b smaller than this threshold do not guarantee convergence. On
the other hand, big values of b slow down the convergence rate. Despite the lower bound is proved
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Figure 10: γNa,b as a function of N when the underlying process is a geometric BM with different
coefficient of variation (cv) values. The drift for the Hermite series is fixed to a = µX(T ; t) and the
scale is fixed to b = 2bσ. The dashed red horizontal lines indicate the accuracy of the MC method. The
red vertical bars indicate when the Hermite series reaches the MC accuracy.
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in the case of a Gaussian underlying process, numerical experiments show similar behaviors also for
processes composed by a Gaussian term plus a jump term.

2. We find analytically a relation between the behavior of the series and the ratio b
σ which is also

confirmed by numerical results. For example, when doubling the value of σ, also b must be doubled
to get the same behavior for the approximation. Indeed, in the experiments with the Brownian
motion and the Gaussian Ornstein–Uhlenbeck process, by choosing the parameters in such a way
that the two processes have the same standard deviation, we obtain two series with very similar
behaviors. Moreover, the numerical experiments for the jump process are in line with this result.

3. Working with polynomial functions require the evaluation of high-order powers. In our context, this
means the evaluation of high-order moments or correlators in the underlying process. The bigger is
the initial value of the process, the higher is the value of its moments and correlators. High initial
values coupled with high-order powers create numerical instabilities due to rounding errors. This
is the main reason which makes the series to diverge after convergence. If the initial value of the
process is high enough, then numerical instabilities might start even before reaching convergence.

4. Numerical experiments with Gaussian underlying processes, for which closed price formulas are
available for benchmarking, show that the Hermite price approximation can reach higher accuracy
than the MC approach, namely 10−10 against 10−3 for MC. However, for big values of the scale b
the convergence might be so slow that to reach such an accuracy level one needs many more terms
than what numerically feasible. Despite we do not have closed price formulas for the jump-diffusion
case, the plots obtained show that the Hermite series converges to a value very closed to the price
value approximated via MC. Based on the experiments in the Gaussian case, we actually believe the
Hermite series to be more accurate than the MC approximation.

5. When considering a geometric model, such as a geometric Brownian motion, the underlying distribu-
tion is a log-normal one. We find that our price approximation still works whenever the log-normal
distribution is well approximated with a Gaussian one. This, in particular, depends on the coefficient
of variation of the underlying process, as we have seen in Sec. 6.
The generalized Hermite polynomials can be replaced with any other family of orthogonal polyno-

mials. In particular, Theorem 4.4 sets a very strong condition on the tails for the distribution of the
underlying process, which are required to vanish faster than the tails of a Gaussian density function.
Despite this is usually not true for jump processes, such a condition is only sufficient, and not necessary,
for convergence. The numerical results on the jump-diffusion process reveal indeed that convergence
is reached even with an additional NIG-jump-measure term. As pointed out in Remark 3, one may
obtain theoretical convergence results for other families of distributions (other than the Gaussian one)
by considering a different weight function. For example, the weight function w(x) = e−x is used to
construct the Laguerre polynomials, and it would give convergence for a Gamma distribution. Other
examples can be found in [20, Appendix B].

We also point out that working with the class of polynomial jump-diffusion processes is the key for
getting fully explicit price formulas. However, the price approximation with Hermite polynomials can
be applied to other kind of processes. In these cases, one must rely on Monte Carlo simulations for
computing moments and correlators. Similarly, remaining in the class of polynomial jump-diffusions,
it is also possible to avoid the use of the correlator formula. Indeed, as pointed out in [4], this can be
replaced by the iteratively applying the moment formula combined with the tower rule. However, in
both these cases, one looses the advantages of an explicit price functional.

We finally remind that the formulas obtained in this paper are restricted to one-dimensional models.
The correlator formula, which is the key for obtaining an explicit price functional for Asian-style options,
has indeed been derived in [4] only for the one-dimensional case. Increasing the dimension would make
calculations more challenging and would require further considerations, since for any d ≥ 2 the monomial
basis for Rd is more complex than the univariate one. On the other hand, the moment formula for
polynomial jump-diffusion processes holds for processes in any (finite) dimension. Hence one can still
price European options via Hermite polynomials approximation as in Sec. 4.1.

A Generator Matrix for Two-Dimensional Polynomial Processes
We derive a recursion formula for the generator matrix associated with two-dimensional polynomial
processes. This extends the formula obtained in [4] for one-dimensional processes, although omitting
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the jump component for simplicity. We implemented the formula in Python and the code is available
at https://github.com/silvialava/Pricing_options_with_correlators.git. We now start by defining a
polynomial diffusion operator and by stating the moment formula for processes in Rd, for d > 0.

Following [8], we denote by Sd the set of real symmetric d×d matrices and with Poln(Rd) the space
of all polynomials on Rd with degree less than or equal to n. We then consider the maps a : Rd → Sd
and b : Rd → Rd satisfying, respectively,

aij ∈ Pol2(Rd) and bi ∈ Pol1(Rd) for all i, j, (A.1)

and we introduce the partial differential operator of the form

Gf(z) = b(z)>∇f(z) +
1

2
Tr
(
a(z)∇2f(x)

)
. (A.2)

Under conditions (A.1), the operator G defines the polynomials diffusion

dZ(t) = b(Z(t))dt+ σ(Z(t))dW (t), (A.3)

for a d-dimensional Brownian motion W and a continuous function σ : Rd → Rd×d with a = σσ>.
For every n and d, the dimension of Poln(Rd) isD :=

(
d+n
d

)
. We then consider a family of polynomial

functions {h1(z), . . . , hD(z)} that forms a basis for Poln(Rd), and introduce the vector valued function

Hn,d : Rd −→ RD, Hn,d(z) = (h1(z), · · · , hD(z))>. (A.4)

By the polynomial property, the operator G can be expressed in matrix form by introducing Gn,d ∈
RD×D such that GHn,d(z) = Gn,dHn,d(z). As a consequence, we obtain the following moment formula
for the d-dimensional polynomial diffusion Z defined in Eq. (A.3):

E [p(Z(T ))| Ft] = ~p>De
Gn,d(T−t)Hn,d(Z(t)), 0 ≤ t ≤ T, (A.5)

where p ∈ Poln(Rd) and ~pD ∈ RD is the vector of coefficients of p with respect to Hn,d(z).

A.1 The two-dimensional case
We now restrict to d = 2 and introduce the notation z := (y, x) ∈ R2. Moreover, we consider σ as a
vector and not as a matrix, namely σ : R2 → R2. As a consequence, in order to match the dimensions,
the Brownian motion W must be unidimensional, namely W = B as, e.g., in Eq. (6.3). In order to
fulfill conditions (A.1), we set

b(z) :=

(
by(z)
bx(z)

)
=

(
b0 + b1y + b2x
β0 + β1y + β2x

)
and σ(z) :=

(
σy(z)
σx(z)

)
=

(
σ0 + σ1y + σ2x
s0 + s1y + s2x

)
(A.6)

so that
a(z) = σ(z)σ(z)> =

(
σ2
y(z) σy(z)σx(z)

σx(z)σy(z) σ2
x(z)

)
, (A.7)

where

σ2
y(z) = σ2

0 + 2σ0σ1y + 2σ0σ2x+ σ2
1y

2 + 2σ1σ2yx+ σ2
2x

2,

σx(z)σy(z) = σ0s0 + (σ1s0 + σ0s1)y + (σ0s2 + σ2s0)x+ σ1s1y
2 + (σ1s2 + σ2s1)yx+ σ2s2x

2,

σ2
x(z) = s2

0 + 2s0s1y + 2s0s2x+ s2
1y

2 + 2s1s2yx+ s2
2x

2.

(A.8)

The operator G in Eq. (A.2) can then be rewritten as

Gf(z) = by(z)fy(z) + bx(z)fx(z) +
1

2
σ2
y(z)fyy(z) + σy(z)σx(z)fyx(z) +

1

2
σ2
x(z)fxx(z), (A.9)
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where we have introduced the notation

fy(z) =
∂f

∂y
(z), fx(z) =

∂f

∂x
(z), fyy(z) =

∂2f

∂y2
(z), fyx(z) =

∂2f

∂y∂x
(z), fxx(z) =

∂2f

∂x2
(z). (A.10)

Finally, for a fixed n, we consider as basis for Poln(R2) the set of bivariate monomials up to degree n,
namely the set of dimension D = (n+1)(n+2)

2 of monomials of the form ymxw for 0 ≤ m+ w ≤ n. This
is given by the set

Bn = {ymxw : 0 ≤ m+ w ≤ j, for 0 ≤ j ≤ n} , (A.11)

for which we fix a total order like follows2:{
1, y, x, y2, yx, x2, y3, y2x, yx2, x3, . . . . . . , yn, yn−1x, yn−2x2, . . . , yxn−1, xn

}
. (A.12)

With this total order, the vector valued function Hn,2(z) introduced in Eq. (A.4) is uniquely defined.
In order to obtain a recursion formula for the generator matrix associated to Hn,2(z), we need first

to compute the action of G on the elements of Bn. Since G is a second order differential operator, we
distinguish the following eight cases which need to be considered:

y, x, yx, ym, ymx, ymxw, yxw, xw, for m,w ≥ 2. (A.13)

Moreover, since Gn,2 satisfies GHn,2(z) = Gn,2Hn,2(z), we start by constructing the row vectors AN,w
satisfying G(ymxw) = AN,wHN,2(z) for m,w ≥ 0 and N = m + w ≤ n. The matrix Gn,2 will then be
obtained by stacking these row vectors in an appropriate manner.

Proposition A.1. For m,w ≥ 2, the action of G on the elements of Bn can be outlined as follows:

Gy = b0 + b1y + b2x; (A.14)
Gx = β0 + β1y + β2x; (A.15)

Gyx = σ0s0 + (β0 + σ0s1 + σ1s0)y + (b0 + σ0s2 + σ2s0)x+ (β1 + σ1s1)y2 (A.16)

+ (b1 + β2 + σ1s2 + σ2s1)yx+ (b2 + σ2s2)x2;

Gym =
m(m− 1)

2
σ2

0y
m−2 +m(b0 + (m− 1)σ0σ1)ym−1 +m(m− 1)σ0σ2y

m−2x (A.17)

+m(b1 +
(m− 1)

2
σ2

1)ym +m(b2 + (m− 1)σ1σ2)ym−1x+
m(m− 1)

2
σ2

2y
m−2x2;

Gymx = mσ0s0y
m−1 +

m(m− 1)

2
σ2

0y
m−2x+ (β0 +m(σ0s1 + σ1s0))ym (A.18)

+m(b0 + (m− 1)σ0σ1 + σ0s2 + σ2s0)ym−1x+m(m− 1)σ0σ2y
m−2x2

+ (β1 +mσ1s1)ym+1 + (mb1 + β2 +
m(m− 1)

2
σ2

1 +m(σ1s2 + σ2s1))ymx

+m(b2 + (m− 1)σ1σ2 + σ2s2)ym−1x2 +
m(m− 1)

2
σ2

2y
m−2x3;

Gymxw =
w(w − 1)

2
s2

0y
mxw−2 +mwσ0s0y

m−1xw−1 +
m(m− 1)

2
σ2

0y
m−2xw (A.19)

+ w(w − 1)s0s1y
m+1xw−2 + w(β0 + (w − 1)s0s2 +m(σ0s1 + σ1s0))ymxw−1

+m(b0 + (m− 1)σ0σ1 + w(σ0s2 + σ2s0))ym−1xw +m(m− 1)σ0σ2y
m−2xw+1

+
w(w − 1)

2
s2

1y
m+2xw−2 + w(β1 + (w − 1)s1s2 +mσ1s1)ym+1xw−1

+ (mb1 + wβ2 +
m(m− 1)

2
σ2

1 +mw(σ1s2 + σ2s1) +
w(w − 1)

2
s2

2)ymxw

+m(b2 + (m− 1)σ1σ2 + wσ2s2)ym−1xw+1 +
m(m− 1)

2
σ2

2y
m−2xw+2;

Gyxw =
w(w − 1)

2
s2

0yx
w−2 + wσ0s0x

w−1 + w(w − 1)s0s1y
2xw−2 (A.20)

2Intuitively, this is the order that one would naturally use when expanding the binomial (y + x)j , for 0 ≤ j ≤ n.
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+ w(β0 + (w − 1)s0s2 + s0σ1 + σ0s1)yxw−1 + (b0 + w(σ0s2 + σ2s0))xw

+
w(w − 1)

2
s2

1y
3xw−2 + w(β1 + (w − 1)s1s2 + σ1s1)y2xw−1

+ (b1 + wβ2 +
w(w − 1)

2
s2

2 + w(σ1s2 + σ2s1))yxw + (b2 + wσ2s2)xw+1;

Gxw =
w(w − 1)

2
s2

0x
w−2 + w(w − 1)s0s1yx

w−2 + w(β0 + (w − 1)s0s2)xw−1+ (A.21)

+
w(w − 1)

2
s2

1y
2xw−2 + w(β1 + (n− 1)s1s2)yxw−1 + w(β2 +

(w − 1)

2
s2

2)xw.

Proof. The result is obtained by applying the generator in Eq. (A.9) to the elements in Eq. (A.13).

Let us notice that in each equation of Proposition A.1 the elements have been ordered accordingly
to Eq. (A.12). The vectors AN,w are then obtained by rewriting these equations in vector form.

Corollary A.2. We denote by ~0[r] ∈ Rr a row vector of 0’s. Then for m,w ≥ 2, we construct the
following row vectors:

A1,0 = (b0, b1, b2) ; (A.22)
A1,1 = (β0, β1, β2) ; (A.23)
A2,1 = (σ0s0, β0 + σ0s1 + σ1s0, b0 + σ0s2 + σ2s0, β1 + σ1s1, (A.24)

b1 + β2 + σ1s2 + σ2s1, b2 + σ2s2) ;

Am,0 =

(
~0

[
(m− 1)(m− 2)

2

]
,
m(m− 1)

2
σ2

0 , ~0 [m− 2] , m(m− 1)σ0σ1 +mb0, (A.25)

m(m− 1)σ0σ2, ~0 [m− 2] , mb1 +
m(m− 1)

2
σ2

1 , mb2 +m(m− 1)σ1σ2,
m(m− 1)

2
σ2

2 , ~0 [m− 2]

)
;

Am+1,1 =

(
~0

[
m(m− 1)

2

]
, mσ0s0,

m(m− 1)

2
σ2

0 , ~0 [m− 2] , β0 +m(σ0s1 + σ1s0), (A.26)

m(b0 + (m− 1)σ0σ1 + σ0s2 + σ2s0), m(m− 1)σ0σ2, ~0 [m− 2] , β1 +mσ1s1,

mb1 + β2 +
m(m− 1)

2
σ2

1 +m(σ1s2 + σ2s1), m(b2 + (m− 1)σ1σ2 + σ2s2),
m(m− 1)

2
σ2

2 , ~0 [m− 2]

)
;

Am+w,w =

(
~0

[
(m+ w − 2)(m+ w − 1)

2
+ w − 2

]
,
w(w − 1)

2
s2

0, mwσ0s0,
m(m− 1)

2
σ2

0 , (A.27)

~0 [m+ w − 4] , w(w − 1)s0s1, w(β0 + (w − 1)s0s2 +m(σ0s1 + σ1s0)),

m(b0 + (m− 1)σ0σ1 + w(σ0s2 + σ2s0)), m(m− 1)σ0σ2, ~0 [m+ w − 4] ,
w(w − 1)

2
s2

1,

w(β1 + (w − 1)s1s2 +mσ1s1), mb1 + wβ2 +
m(m− 1)

2
σ2

1 +mw(σ1s2 + σ2s1) +
w(w − 1)

2
s2

2,

m(b2 + (m− 1)σ1σ2 + wσ2s2),
m(m− 1)

2
σ2

2 ,~0 [m− 2]

)
;

Aw+1,w =

(
~0

[
w(w + 1)

2
− 2

]
,
w(w − 1)

2
s2

0, wσ0s0, ~0 [w − 2] , w(w − 1)s0s1, (A.28)

w(β0 + (w − 1)s0s2 + s0σ1 + σ0s1), b0 + w(σ0s2 + σ2s0), ~0 [w − 2] ,
w(w − 1)

2
s2

1,

w(β1 + (w − 1)s1s2 + σ1s1), b1 + wβ2 +
w(w − 1)

2
s2

2 + w(σ1s2 + σ2s1), b2 + wσ2s2

)
;

Aw,w =

(
~0

[
w(w − 1)

2
− 1

]
,
w(w − 1)

2
s2

0, ~0 [w − 2] , w(w − 1)s0s1, w(β0 + (w − 1)s0s2), (A.29)

~0 [w − 2] ,
w(w − 1)

2
s2

1, w(β1 + (n− 1)s1s2), w(β2 +
(w − 1)

2
s2

2)

)
.
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Proof. Starting from Proposition A.1, we rewrite each equation in vector form, so that G(ymxw) =
Am+w,wHm+w,2(z) for m,w ≥ 0. In particular, we need to add appropriate vectors of 0’s in order to
fill the gaps, namely we set to 0 the coefficients of the powers not appearing in Eq. (A.14)–(A.21). To
do that, we use the fact that the term of the form ymxw takes in the vector Hm+w,2(z) (and also in all
vectors HN,2(z) for N ≥ m + w) the position pos(ymxw) := (m+w)(m+w+1)

2 + w + 1 (for example, the
term y2x is in position pos(y2x) = 8, see Eq. (A.12)). This gives the result.

We now provide the recursion formula for the generator matrix in R2.

Theorem A.3. For every n ≥ 2, the generator matrix Gn,2 ∈ RD×D associated with the operator G
in Eq. (A.9) with respect to the monomial basis Hn,2(z), can be obtained by the following recursive
formula:

Gn,2 =

(
Gn−1,2 0n

An

)
with G1,2 =

 0 0 0
b0 b1 b2
β0 β1 β2

 . (A.30)

Here 0n ∈ R
n(n+1)

2 ×(n+1) is a matrix of 0’s, and An ∈ R(n+1)×D is a matrix with rows An,0, An,1, . . . , An,n
given in Corollary A.2, where the j-th row An,j corresponds to the coefficients of G(yn−jxj), 0 ≤ j ≤ n.

Proof. We proceed by induction on the power n ≥ 1.
n = 1: the base case is easily verified from Eq. (A.22) and (A.23), since Gf(z) = 0 for f(z) = 1.
n→ n+ 1: we assume the statement holds for n− 1. This means that Gn−1,2 ∈ RD̃×D̃ is the generator
matrix for Hn−1,2(z), where D̃ = n(n+1)

2 is the number of basis elements in Bn−1. In particular, by
passing from Bn−1 to Bn we need to add D − D̃ = n + 1 elements of the form yn−jxj for 0 ≤ j ≤ n.
From Proposition A.1 and Corollary A.2, the extended generator applied to yn−jxj is expressed by
G(yn−jxj) = An,jHn,2, where An,j ∈ RD. By defining An ∈ R(n+1)×D as the matrix with rows
An,0, An,1, . . . , An,n, we then obtain Gn,2 by stacking An under Gn−1,2. In order to make dimensions to
match, we also add a matrix of 0’s of dimensions n(n+1)

2 ×(n+1), where n(n+1)
2 is the squared dimension

of Gn−1,2, and n+ 1 is the number of basis elements we added to Hn−1,2(z) to obtain Hn,2(z).

B Proofs
This section contains the proofs of the main results together with a lemma that is needed for the proofs.

Lemma B.1. We introduce the map ta,b : R→ R, x 7→ x−a
b . Then:

1. The weight function wa,b is obtained by composing w with ta,b, namely wa,b(x) = w
(
x−a
b

)
.

2. The generalized Hermite polynomial qa,bn is obtained by composing the Hermite polynomial qn with
ta,b and by scaling with the inverse of bn, namely qa,bn (x) = 1

bn qn
(
x−a
b

)
, n ≥ 0.

Proof. The first part of the lemma is easily verified. For the second part, we proceed by induction on
the order n ≥ 0. Since for n = 0, qa,b0 (x) = q0(x) = 1 is trivial, we start from n = 1.
n = 1: one finds that q1(x) = x and qa,b1 (x) = x−a

b2 = 1
b q1

(
x−a
b

)
, so the base case holds;

n→ n+ 1: we assume the statement holds for n. This means that

(−1)ne
(x−a)2

2b2
dn

dxn
e−

(x−a)2

2b2 =
1

bn
qn

(
x− a
b

)
, (B.1)

hence
(−1)n

dn

dxn
e−

(x−a)2

2b2 =
1

bn
e−

(x−a)2

2b2 qn

(
x− a
b

)
. (B.2)

We now focus on qa,bn+1: by induction hypothesis

qa,bn+1(x) = (−1)n+1e
(x−a)2

2b2
dn+1

dxn+1
e−

(x−a)2

2b2 = (−1)e
(x−a)2

2b2
d

dx

(
1

bn
e−

(x−a)2

2b2 qn

(
x− a
b

))
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=
1

bn+1

((
x− a
b

)
qn

(
x− a
b

)
− q

′

n

(
x− a
b

))
=

1

bn+1
qn+1

(
x− a
b

)
, (B.3)

where the last equality is due to the recurrence relation for Hermite polynomials, namely qn+1(y) =
yqn(y)− q′n(y), see [6]. This concludes the proof.

Proof of Lemma 3.1

Proof. From the definition of norm in L2
a,b and Lemma B.1, we get

∥∥qa,bn ∥∥2

L2
a,b

=

∫ ∞
−∞

(
qa,bn (x)

)2
wa,b(x)dx =

b

b2n

∫ ∞
−∞

(qn (y))
2
w (y) dy =

√
2πn!

b2n−1
, (B.4)

where we have used the change of variables y = x−a
b and Eq. (3.4).

Proof of Proposition 3.2

Proof. We start by proving that the value of the integrals in the series (3.7) is

∫ ∞
−∞

ϕK(y)qa,bn (y)wa,b(y)dy =


b
√

2π
(
b φ
(
K−a
b

)
+ (a−K)

(
1− Φ

(
K−a
b

)))
for n = 0

b
√

2π
(
1− Φ

(
K−a
b

))
for n = 1√

2πφ
(
K−a
b

)
qa,bn−2 (K) for n ≥ 2

. (B.5)

The first two equalities are easily verified with qa,b0 (y) = 1 and qa,b1 (y) = y−a
b2 by, possibly, the change

of variables z = y−a
b and by integrating (twice) by parts. For n ≥ 2, we integrate by parts twice:

∫ ∞
−∞

ϕK(y)qa,bn (y)wa,b(y)dy = (−1)n
∫ ∞
K

(y −K)
dn

dyn
e−

(y−a)2

2b2 dy = (−1)n−2 d
n−2

dyn−2
e−

(y−a)2

2b2

∣∣∣∣
y=K

= e−
(K−a)2

2b2

(
(−1)n−2e

(y−a)2

2b2
dn−2

dyn−2
e−

(y−a)2

2b2

)∣∣∣∣
y=K

=
√

2πφ

(
K − a
b

)
qa,bn−2 (K) . (B.6)

From Eq. (3.7) and (B.5), the function ϕK is then expressed in terms of the GHPs by

ϕa,bK (x) =

∞∑
n=0

αa,bn qa,bn (x) with αa,bn :=


b φ
(
K−a
b

)
+ (a−K)

(
1− Φ

(
K−a
b

))
for n = 0

b2
(
1− Φ

(
K−a
b

))
for n = 1

b2n−1

n! φ
(
K−a
b

)
qa,bn−2 (K) for n ≥ 2

. (B.7)

The result then follows by Lemma B.1.

Proof of Theorem 4.1

Proof. Starting from Eq. (3.14), for every N ≥ 0 we can express Πa,b
K,N (t) in matrix form by

Πa,b
K,N (t) = βa,b>N MNE

X
N (T ; t) where EX

N (T ; t) := E
[
HN

(
X(T )− a

b

)∣∣∣∣Ft] . (B.8)

Thus we need to compute the entries of EX
N (T ; t). By the binomial theorem, its k-th component,

k = 1, . . . , N + 1, is of the form

EX
N (T ; t)k =

1

bk−1
E
[

(X(T )− a)
k−1
∣∣∣Ft] =

1

bk−1

k−1∑
i=0

(
k − 1

i

)
(−a)k−1−i E

[
X(T )i

∣∣Ft] . (B.9)
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Then, for β̂
a,b

N := βa,b>N MN , we rewrite Πa,b
K,N (t) in Eq. (B.8) by expanding the matrix multiplication

into the following sum

Πa,b
K,N (t) =

N+1∑
j=1

β̂
a,b

N,jE
X
N (T ; t)j =

N∑
k=0

β̂
a,b

N,k+1

1

bk

k∑
i=0

(
k

i

)
(−a)k−i E

[
X(T )i

∣∣Ft] , (B.10)

where the last equality we used the change k = j − 1. This concludes the proof.

Proof of Theorem 4.4

Proof. By definition of ΠK(t) and Πa,b
K,N (t), we write that∣∣∣ΠK(t)−Πa,b

K,N (t)
∣∣∣ =

∣∣∣E [ϕK(X(T ))| Ft]− E
[
ϕa,bK,N (X(T ))

∣∣∣Ft]∣∣∣
≤ E

[∣∣∣ϕK(X(T ))− ϕa,bK,N (X(T ))
∣∣∣∣∣∣Ft] (B.11)

were the last inequality is due to Jensen’s inequality. By definition of conditional expectation, and
being ψX(T ) the density function of X(T ), by the Cauchy–Schwartz inequality, this becomes

E
[∣∣∣ϕK(X(T ))− ϕa,bK,N (X(T ))

∣∣∣∣∣∣Ft] =

∫
R

∣∣∣ϕK(x)− ϕa,bK,N (x)
∣∣∣ψX(T )(x)dx

≤
(∫

R

∣∣∣ϕK(x)− ϕa,bK,N (x)
∣∣∣2 ωa,b(x)dx

) 1
2
(∫

R
ψ2
X(T )(x)ω−1

a,b(x)dx

) 1
2

, (B.12)

which concludes the proof.

Proof of Proposition 4.5

Proof. From Eq. (4.8), we see that for Ca,b to make sense condition (4.9) must hold. In particular, it
cannot be b < bσ because of the squared root, while the expression becomes singular for b = bσ, hence,
in this case, we can expect instabilities in the approximation.

Proof of Corollary 4.6

Proof. By taking a = µ in Eq. (4.8), we obtain that

C2
a,b =

1√
2πσ2

b√
2b2 − σ2

and
∂C2

a,b

∂b
= − 1√

2πσ2

σ2

(2b2 − σ2)
3
2

< 0, (B.13)

hence C2
a,b is decreasing in b. The limit is easily computed.

Proof of Proposition 5.1

Proof. One can observe that∫ sj

t

eb1(sj−v)dB(v) =

j∑
k=0

∫ sk

sk−1

eb1(sj−v)dB(v), for j = 0, . . . ,m, (B.14)

hence, by rearranging the terms in the two summations, we write that

m∑
j=0

∫ sj

t

eb1(sj−v)dB(v) =

m∑
j=0

j∑
k=0

∫ sk

sk−1

eb1(sj−v)dB(v) =

m∑
k=0

∫ sk

sk−1

 m∑
j=k

eb1(sj−v)

 dB(v). (B.15)

By switching the role of k and j, we get the result.
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C Some Details on the Correlator Formula
We briefly report the definitions needed to understand the correlator formulas in Theorem 2.3. For
more details and for the idea behind this construction, we refer the reader to [4].

Vectorization Given a matrix A ∈ Rn×m whose j-th column we denote by A:j , we define the
vectorization of A as the operator vec : Rn×m → Rnm×1 that associates to A the nm-column vector
vec(A) =

(
A>:1 A>:2 A>:m

)>
.

Inverse-vectorization Given a vector v ∈ Rnm, we define the inverse-vectorization of v as the
operator vec−1 : Rnm → Rn×m that associates to v the n × m matrix A = vec−1(v) such that
[A]i,j = vn(j−1)+i, for i = 1, . . . , n and j = 1, . . . ,m.

L-vectorization Given a matrix A ∈ Rn×m with elements [A]i,j = ai,j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m,
we define the L-vectorization of A as the operator vecL : Rn×m → Rn+m−1 that associates to A the
(n + m − 1)-column vector obtained by selecting the first column and the last row of A, namely
vecL(A) =

(
a1,1 a2,1 an,1 an,2 an,m

)>
.

Hankel matrix We define An,m ⊂ Rn×m as the space of matrices whose elements on the same
skew-diagonal coincide. We call A ∈ An,m an Hankel matrix and write An := An,n.

Kronecker product The Kronecker product of a matrix A ∈ Rn×m with elements [A]i,j = ai,j , for
1 ≤ i ≤ n and 1 ≤ j ≤ m, and a matrix B ∈ Rr×s, is defined by

A⊗B =

a1,1B a1,mB

an,1B an,mB

 ∈ Rnr×ms. (C.1)

d-Kronecker product We define the d-Kronecker product between A ∈ Rn×m and B ∈ Rr×s, as
the d-th Kronecker power of A multiplied in the Kronecker sense with B, for d ≥ 1, or equal to B,
for d = 0, namely {

A⊗d B = A⊗d ⊗B d ≥ 1

A⊗0 B = B d = 0
. (C.2)

L-eliminating matrix For n,m ≥ 1 and A ∈ Rn×m, we define the L-eliminating matrix as the
matrix En,m ∈ R(n+m−1)×nm such that En,mvec(A) = vecL(A). We write En := En,n.

L-duplicating matrix For n,m ≥ 1 and A ∈ An,m, we define the L-duplicating matrix as the
matrix Dn,m ∈ Rnm×(n+m−1) such that Dn,mvecL(A) = vec(A). We write Dn := Dn,n.

Let now X
(m)
n (x) := Hn(x)> ⊗m Hn(x).

m-th L-eliminating matrix For n,m ≥ 1, we define the m-th L-eliminating matrix as the matrix
E

(m)
n+1 ∈ R(n(m+1)+1)×(n+1)m+1

such that E(m)
n+1vec(X

(m)
n (x)) = Hn(m+1)(x). In particular{

E
(1)
n+1 = En+1 m = 1

E
(m)
n+1 = Enm+1,n+1

(
In+1 ⊗ E(m−1)

n+1

)
m ≥ 2

. (C.3)

m-th L-duplicating matrix For n,m ≥ 1, we define the m-th L-duplicating matrix as the matrix
D

(m)
n+1 ∈ R(n+1)m+1×(n(m+1)+1) such that D(m)

n+1Hn(m+1)(x) = vec(X
(m)
n (x)). In particular{

D
(1)
n+1 = Dn+1 m = 1

D
(m)
n+1 =

(
In+1 ⊗D(m−1)

n+1

)
Dnm+1,n+1 m ≥ 2

. (C.4)
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