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A B S T R A C T

Battery systems are becoming an increasingly attractive alternative for powering ocean going ships, and the
number of fully electric or hybrid ships relying on battery power for propulsion and manoeuvring is growing.
In order to ensure the safety of such electric ships, it is of paramount importance to monitor the available
energy that can be stored in the batteries, and classification societies typically require that the state of health of
the batteries can be verified by independent tests — annual capacity tests. However, this paper discusses data-
driven state of health modelling for maritime battery systems based on operational sensor data collected from
the batteries as an alternative approach. Thus, this paper presents a comprehensive review of different data-
driven approaches to state of health modelling, and aims at giving an overview of current state of the art. More
than 300 papers have been reviewed, most of which are referred to in this paper. Moreover, some reflections
and discussions on what types of approaches can be suitable for modelling and independent verification of
state of health for maritime battery systems are presented.
1. Introduction and background

There is currently a significant push for emission reduction and
a change to more environmentally friendly technologies for maritime
transport, with global energy-efficiency requirements from the Interna-
tional Maritime Organization (IMO) as well as global and regional caps
on air pollution from ships. In addition, several zero-emission zones
at sea have been declared. Hence, there is a significant societal and
regulatory push for emission reduction and environmentally friendly
shipping. Electric or hybrid ships using batteries are an attractive
alternative for many shipping segments with significant environmental
benefits and large potential for fuel, cost and emission savings [1–3].

The past few years have seen a significant growth in the number
of battery-powered ships. The growth is currently dominated by car
ferries and offshore vessels, but the interest is growing in several other
shipping segments, such as cruise and cargo vessels, and the growth
is expected to continue. Currently lithium-ion (li-ion) batteries are
the predominant technology, but different battery chemistries within
the li-ion family, e.g. NMC (lithium nickel manganese cobalt oxide) ,
NCA (lithium nickel cobalt aluminium oxide), and LFP (lithium iron
phosphate), may have different characteristics with respect to capacity
and ageing.
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(Ø.Å. Alnes).
1 SOH may also be defined in terms of resistance, maximum power, etc. but discharge capacity is the most common way of defining SOH.

The safety of battery-powered ships is extremely important. Fire
and explosion are obvious risks, but another central aspect is ensuring
that the available energy stored in the batteries is sufficient to cover
the required propulsion or manoeuvring power demand [1]. Loss of
propulsion power in a critical situation can lead to serious accidents
such as collision or grounding. Therefore, a reliable estimation and
prediction of the actual available energy of a battery is crucial.

Battery systems are ageing, meaning that the energy storage ca-
pacity degrades (energy fade) and the power delivery capability de-
teriorates (power fade) by calendar time and by charge/discharge
cycles. Most maritime battery systems are designed with an expected
lifetime of 10 years, and end of life (EOL) is typically defined as
State of Health (SOH) = 70%–80%, where SOH stands for the ratio
of remaining capacity to initial capacity (in %).1 For ships relying on
energy from onboard battery systems, it is of paramount importance to
ensure that the capacity of the battery system is sufficient for the safe
operation of the vessel at all times. Any failure to deliver the required
amount of energy in critical manoeuvring situations may lead to serious
accidents. Thus, accurate evaluation and verification of the capacity
and performance of maritime battery systems is crucial to safe and
sustainable operation of battery powered ships. It is noted that other
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aspects of battery degradation may be equally important. For example,
degradation does not only affect the capacity and power performance,
but also fire safety and thermal runaway properties are influenced by
degradation [4,5].

This paper aims at describing the state of the art in data-driven
methods for SOH estimation and to reflect on applications to maritime
battery systems. It is based on a thorough literature survey and will
outline various approaches reported in the scientific and engineering
literature for utilizing sensor data to estimate the effect of degradation
on the available capacity of such battery systems. However, first some
background and important concepts and terminology will be briefly
outlined.

The main function of a lithium-ion battery is to store and then
release energy by converting chemical energy into electric energy and
it typically consists of many battery cells. A lithium-ion battery cell
typically consists of a few main components. These are the positive
and negative electrodes, often referred to as the cathode and the anode,
respectively, the electrolyte, a separator and current collectors. The cell’s
active materials reside in the electrodes, where oxidation (loss of elec-
trons) and reduction (gain of electrons) processes take place in order
to liberate or bind lithium ions (LI+) and electrons (e−). The liberated
ithium ions are allowed to diffuse between the electrodes through
he electrolyte, and the electrons can be transported by the current
ollectors to generate a potential between the battery terminals and
ence drive a current in an outer circuit. The separator should allow for
ransport of the lithium-ions between the electrodes, but block electron
ransport to prevent internal short circuits. A rechargeable battery cell
perates in two modes: charging and discharging. When fully charged,
he active lithium ions reside in the negative electrode (anode) and
hen the battery is fully discharged, the active lithium ions reside in

he positive electrode (cathode).
During discharge, when a load is connected to the battery, current

s allowed to flow from the positive to the negative electrode in
he outer circuit, supported by an oxidation reaction in the negative
lectrode. This liberates electrons (negatively charged) and lithium
ons (positively charged), which are de-intercalated from the negative
lectrode. The electrons are transported via the current collectors to
he outer circuit and the ions can move in the electrolyte through
he separator to the positive electrode. At the positive electrode, the
ithium ions take part in a reduction process, where they are inserted
nto the positive electrode. During charge a current source forces the
urrent to move from the negative to the positive electrode. The active
aterial in the positive electrode is now oxidized and lithium ions

re de-intercalated and can move to the negative electrode in the
lectrolyte through the separator, where a reduction process takes place
nd the lithium ions are intercalated back into the negative electrode.
or a rechargeable battery, this process of lithiation/delithiation at
he positive and negative electrodes can be repeated many times in a
equence of charge–discharge cycles.

The available energy stored in an electric ship’s battery is of utter-
ost importance for the safe operation of the ship. With a rechargeable

attery system, the amount of energy available at all times will vary
ontinuously as the battery is repeatedly charged and discharged, and
he state of charge (SOC) is a measure of the extent to which the battery
s charged relative to its capacity. That is, a fully charged battery will
ave SOC = 100% and a fully discharged battery will have SOC = 0%.
he depth of discharge (DOD) is simply an alternative way of indicating
he SOC of the battery and 100% DOD corresponds to 0% SOC and vice
ersa.

The terminal voltage refers to the voltage between the battery
erminals with load applied. This typically varies with SOC and current.
he open-circuit voltage (OCV) refers to the voltage of the battery
ith no load and depends on the SOC. The internal resistance of a
attery is the resistance within the battery and this is generally different
2

or charging and discharging, and may also be dependent of SOC.
Impedance is another measure of the opposition to current in a circuit
that also takes the effect of capacitance and inductance into account.

The capacity of a battery to store energy will typically degrade over
time, and the state of health (SOH) is a measure of the battery’s capacity
relative to its nominal capacity, that is, the initial capacity when the
battery is new. Formally, the State of Health of a battery can be defined
as

𝑆𝑂𝐻 =
𝐶𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
𝐶𝑁𝑜𝑚𝑖𝑛𝑎𝑙

× 100%, (1)

where 𝐶𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 denotes the available capacity of the battery and
𝐶𝑁𝑜𝑚𝑖𝑛𝑎𝑙 refers to the nominal capacity, typically the capacity of the
battery at its beginning of life (BOL). It should be noted that there can
be differences between the nominal capacity and the capacity at the
BOL, and this difference can be relevant when modelling degradation.
Other definitions of SOH based on capacity reflect that 𝑆𝑂𝐻 = 0%
when the available capacity is less than a certain level, typically 70%–
80% of nominal capacity. Alternatively, State of Health can be defined
as the increase in internal resistance or impedance in the battery
relative to the resistance in a new battery. For example, an alternative
definition of SOH based on internal resistance can be [6]

𝑆𝑂𝐻𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 =
(

𝑅𝐸 − 𝑅
𝑅𝐸 − 𝑅𝐼

)

× 100%

=
(

2 − 𝑅
𝑅𝐼

)

× 100%,
(2)

where 𝑅 is the internal resistance of the battery, 𝑅𝐼 is the initial
internal resistance of the battery at 100% SOH and 𝑅𝐸 is the internal
resistance of the battery at EOL, that is at 0% SOH. Assuming that SOH
= 0% corresponds to an internal resistance of twice the initial internal
resistance (i.e., 𝑅𝐸 = 2𝑅𝐼 ), one arrives at the second alternative ex-
pression. Some definitions of SOH combine both capacity and internal
resistance in order to more fully describe the battery SOH compared to
considering each individually [7].

The Coulombic efficiency (CE) is an important battery parameter
that is highly related to the loss of lithium inventory [8]. It is defined
as the ratio between delivered capacity during discharge and stored
capacity during charge, and is closely related to the battery degrada-
tion. Lithium-ion batteries are known to have an initial high Coulombic
efficiency, often exceeding 99%.

Condition monitoring systems typically include diagnostics and
prognostics. Within such a framework, SOH estimation would corre-
spond to the diagnostics part where reliable estimation of SOH reflects
the energy storage capacity of the battery at any given time. This
would be influenced by the operating history of the battery system.
Prognostics in this context would amount to predicting the remaining
useful life (RUL) of the battery or the time until the battery needs to
be replaced or repaired. One often distinguishes between data-driven
and model based diagnostics and prognostics. Whereas a model based
approach relies on a physical model for the mechanisms at play and
the relationship between relevant variables, a data-driven approach
is based on relevant data to learn the correlations between relevant
variables. A hybrid model can draw from both approaches where first
principles can be used to establish a model for the degradation of the
batteries, but where parameters and important relationships can be
learnt from data. In this paper, the focus is on data-driven methods for
SOH estimation and RUL prediction, and the overall goal is to identify
reliable models that can estimate SOH and predict RUL based on sensor
measurements from a maritime battery system in operation without
requiring periodic capacity tests.

Modern batteries are equipped with a battery management system
(BMS), which is important for the safe operation of the battery, and
also for optimizing the use of the battery [9]. A BMS should monitor
the state of a battery at all times and protect the battery from oper-
ating outside its safe operating area (SOA), e.g. in terms of limits to
charge/discharge currents, voltage limits and temperature limits, to

prevent accidents such as explosion or thermal runaway. It collects
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sensor measurements of basic parameters such as voltage, current and
temperature and uses these to calculate and monitor various derived
parameters and quantities such as SOC and SOH. It controls the bat-
tery’s environment, e.g. the temperature by regulating the flow of
coolants, balances the battery and reports important data about the
battery. Typically, data used for data-driven modelling of battery SOH
are gathered from the BMS and include both sensor measurements and
derived parameters. However, it may be difficult to get access to data
directly from the BMS and data collected at string, module or system
level will often be the data that are available.

The remainder of this paper is organized as follows: First, some
important factors influencing the degradation of batteries are discussed,
prevailing classification rules for electric ships are briefly introduced,
and some particularities of maritime batteries and the motivation for
this paper is given to conclude this introduction section. Then, Section 2
provides a brief meta-review of relevant previous review papers. Sec-
tion 3 presents a comprehensive review of literature on SOH modelling,
and groups different approaches in a few categories, useful for further
evaluation. The main focus is on data-driven methods, but other ap-
proaches that may not be regarded as purely data-driven, but rely on
data to make estimates of SOH, will also be covered. Section 4 presents
some reflections and discussions on important aspects to consider and
evaluates the appropriateness of different approaches for maritime
battery systems. Finally, A summary is given in Section 5 with some
final remarks and conclusions regarding SOH estimation methods for
maritime battery systems.

1.1. Factors that may influence battery degradation

Some factors that influence the degradation of a battery are well
known, even though the degradation mechanisms may be different
for different battery types and chemistries. There are different ageing
mechanisms affecting different elements of a single battery, and various
independent ageing effects take place in cathodes, anodes, electrolytes,
separators and any other component of a battery [10].

The cycle component of battery degradation is highly influenced by
how the battery has been operated, and temperature is an important
factor [11–13]. Moreover, very deep cycles typically increases the rate
of degradation. That is, larger variations in SOC may result in more
rapid degradation compared to more shallow cycling, although this
may not always be true. Furthermore, higher levels of current will
normally accelerate degradation, so charging/discharging the battery at
higher C-rates are believed to accelerate degradation [14,15]. However,
a recent study indicates that cyclic ageing is not directly dependent on
current rate, if the temperature of the battery can be controlled and if
high/low levels of SOC and voltages are avoided [16].

It has been demonstrated that battery cells may recover some
capacity during prolonged rest periods after being cycled [17–19].
Hence, if battery capacity is measured immediately after a cycle or
after the battery has been allowed to rest for a period, the results will
be different. This is a particular important issue for accelerated ageing
testing, where test data are obtained to model degradation and battery
lifetimes, and may be a source of biases for such tests compared to
batteries in normal operations. Experiments reported in [19] indicate
that the cycle life of a battery cell may be almost doubled if a 2 day
rest period is allowed every 50th cycle. However, [17] shows that
rest periods shorter than around 2 h does not give notable capacity
recovery. The SOC during rest periods also influences the capacity
recovery, and whereas [17] suggests rest periods at 0% SOC (fully
discharged) are better than 10% and 20% SOC, [19] reports significant
capacity recovery at rest periods with 100% SOC (fully charged).

An overview of important battery degradation mechanisms as well
as their causes and effects are given in e.g. [10,20], and Fig. 1 provides
an illustration of these (reproduced from [20]). As can be seen from this
illustration, there are many different causes of battery degradation and
3

the combined effect on various stress factors on the capacity and power
fade is not straightforward.

The temperatures and loads may not be evenly distributed within
a battery system consisting of several modules and battery cells, and
the different cells may experience different degradation trends. How
the SOH of the individual cells influences the SOH of the entire battery
system may not be obvious and will depend on the battery design (see
e.g. [21,22]). Moreover, differences in the manufacturing process may
give different degradation rates even for batteries with similar design.
For used batteries, possible repairs or replacements of individual cells
or battery components may influence the capacity of the battery system
in ways that are hard to predict.

For maritime batteries, the duty cycle will vary according to type
of operation and also the environmental conditions under which it is
operated will vary. It is not obvious to what extent exposure to the
marine environment will influence battery degradation, e.g. humid and
saline environments, ship motions such as pitch, heave and roll or
orientation of the batteries due to list or trim.

One important aspect to keep in mind when modelling battery
degradation is that the degradation may not be similar in the BOL
and when approaching EOL. For example, a change in the dominant
degradation mode could result in sudden capacity drops. Typically, one
expects to observe a so-called knee-point in the degradation curves,
where a sudden change from relatively moderate degradation to a more
aggressive degradation occurs towards the EOL. Hence, it might not be
appropriate to train degradation models on data collected at BOL and
apply them to predict degradation towards EOL. Moreover, maritime
batteries should typically be replaced before a knee-point occurs in
the degradation curves, to avoid swiftly deteriorating battery capacities
during operation.

1.2. Classification rules for electric ships

Ocean going ships are subject to classification rules [23], and DNV
has an additional class notation, BATTERY, for battery powered ves-
sels [24], both all-electric and hybrid vessels that use electrical energy
storage (EES) on board, built to DNV class. The Battery(Power) class
notation is required for all ships – all-electric or hybrid – that relies on
battery power for propulsion and the Battery(Safety) notation applies
to all vessels with lithium-ion battery systems with an aggregated rated
capacity of more than 20 kWh and not having the Battery(Power)
notation. Other class societies also have rules and guidance notes on
battery systems, see e.g. [25–27].

The Battery(Safety) class notation includes basic requirements to
ensure the safety of the battery systems with regards to arrangement,
ventilation, off-gas detection, cooling, fire safety, system design and
operation and maintenance. In addition, the Battery(Power) notation
should ensure that the battery system is able to deliver the necessary
power needed for safe operation of the vessel at all times, also in case of
a worst case failure (e.g., loss of a main power source). Hence, the focus
is on ensuring sufficient capacity, and requirements cover the need for
redundancy, an energy management system and operation and main-
tenance requirements. In particular, it is stated that the SOC and SOH
of the batteries should be monitored and available to the operator and
that the energy management system shall provide a reliable measure
of the available energy and power at all times, taking into account
the battery systems SOC and SOH. It is required that the following
parameters shall be calculated, when applicable, and monitored from
the navigating bridge:

• Available energy (AE)
• Available power (AP)
• Remaining time for seagoing operation
• Remaining time for seagoing operation after worst case single

failure
• Remaining time for powering emergency consumers
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Fig. 1. Degradation mechanisms and degradation modes and their cause and effect [20].
Moreover, warnings and alarms shall be given when the EES system
reaches minimum capacity as required for the intended operation or
voyage, as based on the remaining time for seagoing operations af-
ter worst case single failure, or as required for powering emergency
consumers.

Acknowledging the fact that the above is highly dependent on the
SOH of the battery system and on accurately estimating this, a test
is required to verify that the battery SOH is consistent with the SOH
calculated for all the EES systems. Deviations larger than ± 5% yields
an adjustment of the values in the EES system. Moreover, charging
and discharging capabilities should be tested to verify maximum C-rate
as specified for the intended operation of the vessel. Typically, actual
capacity can be verified by Coulomb counting during a complete charge
or discharge of the battery. This is normally done in an annual capacity
test, which means that the vessel must be taken out of service in order
to undergo controlled deep reference charge and discharge cycles with
periods of rest in between. For ships with Battery(Power) notation, it
should be verified during the annual survey that such a test has been
performed within the last 12 months [28].

The main motivation for the work presented in this paper is to
review state of the art and prepare to develop an alternative indepen-
dent verification approach for SOH based on online measurements. This
is supported by the rules that generally accepts alternatives to class
requirements provided that an equivalent level of safety and reliability
can be demonstrated. This review represents a first step in giving an
overview of different modelling approaches and reflecting on which
ones seem most suitable for maritime battery systems.

1.3. Maritime battery systems

There are particularities of maritime battery systems that makes
them different from batteries in e.g. electrical vehicles, consumer elec-
tronics and grid applications. These are related to differences in battery
size and designs, different operational environments and loading pro-
files, different safety aspects and regulatory regimes and different
market mechanisms. Nevertheless, it is believed that the overall degra-
dation mechanisms are similar and that lessons can be learned from
other application areas.

This paper aims at presenting state-of-the-art in data-driven models
for SOH of maritime battery systems. However, the literature specifi-
cally on maritime battery systems is scarce and not much have been
4

reported on SOH estimation methods particularly for maritime batter-
ies. Hence, this literature review covers SOH modelling from different
battery application areas. The amount of literature on this topic is
enormous and it seems an impossible task to cover all relevant papers
and reports in the academic and engineering literature in detail, and
even though it is believed that the selection is fair and unbiased, it
cannot be guaranteed that important contributions to this field have not
been unintentionally overlooked. Notwithstanding, the literature sur-
vey presented herein are believed to give a fair overview of approaches
to data-driven modelling of the condition of batteries, with an emphasis
on the more recent literature.

2. Meta-review of previous review papers

State of health of a battery is all about ageing and degradation
mechanisms that reduce the performance and capacity of the battery
over time. Some recent review papers on ageing mechanisms have been
presented in e.g. [29–32]. A review of degradation mechanisms in the
different components of the battery, such as the positive and negative
electrodes and the separator are presented in [30]. Degradation mecha-
nisms over the life cycle of the battery are discussed in [31], including
the influence of design, production and operation. Different methods
for estimating SOH are listed in [32], including methods based on
internal resistance, Coulomb counting, Kalman filtering and extensions,
fuzzy logic, support vector regression and a least squares (LS) approach
to account for noisy measurements.

A range of methods for describing battery degradation are sum-
marized in [29], categorized into five different approaches; electro-
chemical models, equivalent circuit based models (ECM), performance
based models, analytical models and statistical models. The first one
includes detailed models of the chemistry occurring in the battery and
the second employs a simplified model where the battery is modelled
by an equivalent circuit [33]. Performance based models use simple
correlations between stress factors and capacity fade, which are in-
duced from ageing tests under different conditions. Typically, calendar
and cyclic ageing are modelled independently and added together.
Another approach in this category is a damage-accumulation model
such as the Palmgren–Miner rule model (fatigue model). The last types
of approaches are referred to as analytical models with empirical data
fitting and statistical methods, including techniques from time-series
modelling and survival models, both requiring extensive data. Accord-
ing to [29], electrochemical and equivalent circuit models perform
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well, but may not be able to model all degradation mechanisms at play.
Moreover, different models must be established for specific batteries.
The same is true for performance models. Statistical models, on the
other hand are more generic and can be used for different batteries,
but requires a large amount of data collected over a long time to be
effective. Overall, [29] concludes that only equivalent circuit models
and statistical methods are appropriate candidates for online methods
estimating SOH in real time and states that models that meet all
performance criteria do not yet exist. A review of different empirical
and semi-empirical lifetime degradation models are given in [34],
relating capacity loss to various stress factors such as temperature,
C-rate, charge throughput, DOD etc.

Methods for monitoring a range of different state variables of bat-
teries, including capacity, SOH and remaining useful life, are reviewed
in [35]. Methods for capacity estimation are classified into methods
based on the relationship between ampere-hours charged or discharged
from the battery and voltage difference before and after this charging
and methods based on incremental capacity analysis (ICA) and differen-
tial voltage analysis (DVA) techniques. They also state that estimation
of SOH can generally be reduced to the estimation of capacity and resis-
tance of the battery. An overview of available techniques for on-board
capacity estimation as well as a discussion of strength and weaknesses
are given in [36]. They divide methods for capacity estimation into
four categories: Voltage based estimation methods (mostly relying on
ECMs), electrochemical model-based methods, ICA/DVA methods and
ageing prediction methods. A challenge with the two first approaches
is the need for underlying equivalent circuit or electrochemical models.
A challenge with ICA/DVA is that results are sensitive to the conditions
during charging and discharging; it typically requires the battery to be
charged and discharged with a constant current and temperature over
the entire voltage range. Finally, ageing prediction methods rely on
data from lifetime tests, which are generally very time consuming to
obtain. Notwithstanding the many approaches being reviewed, reliable
capacity estimation over the battery lifetime remains a challenge and
no one approach could be singled out as most suitable. A similar
categorization of non-invasive diagnosis techniques is made in [37],
and a total of 14 evaluation metrics are defined to compare methods.
However, a common limitation with all methods is that testing requires
specific conditions, corresponding to synthetic profiles, and may not
perform well under more realistic operating conditions.

A review presented in [38] categorizes SOH estimation methods
in a similar way, based on estimating capacity or estimating inter-
nal resistance as two overall approaches for SOH estimation. Model-
based techniques such as electrochemical or equivalent circuit mod-
els are combined with so-called observes (e.g. Kalman filters with
various extensions or a sliding mode observer) and inference-based
approaches include fuzzy logic and neural networks with various in-
put variables. Other approaches include measuring during specific
charging and discharging operations, such as the constant current
constant voltage (CCCV) approach and pulsed discharge approach.
Various curve fitting approaches try to fit a curve to experimental
data from repeated charging and discharging. Estimation techniques for
the internal resistance include electrochemical impedance spectroscopy
(EIS) and model-based observers. Notwithstanding all the available
methods for estimating SOH, they are all found to have limitations.
According to [38], model-based approaches are either too complex
for real-time applications or too simplified for accurate estimation.
Moreover, inference-based methods are not able to adapt to changing
environmental conditions and require extensive training. Specific mea-
surements such as CCCV and pulse discharge are too time consuming
to perform and curve fitting techniques are too restrictive to particular
battery and operation. The EIS technique is expensive and requires the
battery to be at rest before being tested. In conclusion, [38] suggests
that SOH should be based on more indices than just capacity and in-
5

ternal resistance and that a comprehensive relationship between these
indices and SOH of the battery must be established, also taking account
of partial charging and discharging of the battery.

A thorough review of over 200 papers on estimation of various
aspects of batteries, including SOH estimation, is presented in [39].
They classify existing methodologies for both lead acid and lithium ion
batteries into model based approaches and various methodologies such
as genetic algorithm, fuzzy logic, neural networks, extended Kalman
filters and dynamic Bayesian networks, as well as a dynamic impedance
technique.

A review of SOH estimation methods, which classify methods in
specific groups, i.e. experimental techniques and adaptive models, and
discusses strength and weaknesses for online use as well as accuracy
and precision is presented in [40]. The experimental techniques include
direct measurements of voltage, current and temperature to determine
the internal resistance or impedance, for example using current pulses
and models based on measurements such as data fitting or data maps,
probabilistic methods, Coulomb counting, regression methods such as
support vector regression (SVR) using support vector machines (SVM),
parity relation, failure detection, sample entropy and big data methods.
Many of these methods depend on offline test data for model training.
Destructive methods are also discussed, but these are obviously not
relevant for SOH-verification of marine battery systems. The classifica-
tion into experimental techniques and adaptive models are not entirely
clear or obvious, but the authors note that experimental techniques
are based on storing lifetime data and previous knowledge of the
battery, whereas adaptive models calculate model parameters that are
sensitive to degradation. The advantages of experimental techniques
are low computational effort that allows implementation in a BMS, but
they typically have low accuracy. On the other hand, adaptive models
have high accuracy but high computational cost and are difficult to
implement in a BMS. Moreover, experimental techniques are not suited
for in-situ estimation, according to [40]. A review of degradation
mechanism detection methods are also presented, e.g. using differ-
ential voltage and incremental capacity curves. It is found that such
approaches can be very useful for SOH estimation and prediction, for
example in combination with big data methodologies. It is concluded
that, at the time of writing, there were no unique perfect solution for
SOH estimation.

Another structured review of state of the art models and algorithms
for SOH and RUL of batteries are presented in [41]. First, it reviews
various battery models often used to model batteries and calculate
various parameters, and classifies such models in four categories: (1)
Electrical models (ECM), (2) electrochemical models, (3) mathemat-
ical models and (4) lifecycle models. The latter types of models are
different than the others in that they require extensive offline tests
for SOH prediction. Then, various SOH estimation methods are ex-
plained including Coulomb counting, open circuit voltage (OCV)-based
methods, impedance spectroscopy method, Kalman filtering, machine
learning/SVM, particle filtering and fuzzy logic methods. Finally, some
evaluation metrics are proposed and the estimation methods are eval-
uated with respect to battery chemistry, computational complexity,
data processing modes (online/offline methods), estimation result (SOH
and/or RUL), processing time and estimation precision. They conclude
that it is a large number of methods that are very heterogeneous. More
complex methods are generally more accurate than simple ones, and
challenges are related to estimating battery states under highly varying
operating conditions.

A total of 134 papers on SOH estimation were reviewed in [42]
and SOH prediction methods are classified in a similar way into model-
based methods and data-driven methods. Data-driven methods include
AI-based methods (e.g. ANN, SVM, RVM, etc.), filtering-based methods,
statistical methods and time-series methods. In the conclusion, they
suggest a hybrid method utilizing data-driven methods in combination
with ICA, see e.g. [43]. The review of SOH monitoring methods in [44]
classifies methods into experimental methods and model-based esti-

mation methods. Different types of data-driven methods are reviewed,
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including empirical fitting methods, optimization algorithms, machine
learning (ML) methods and sample entropy approaches. Finally, a
multi-model fusion system is proposed as the way forward, combining
various approaches, although the description of this proposed solution
is not very specific. State of health estimation for lithium ion batteries
in photovoltaic (PV) systems are reviewed in [45]. They state that
most methods are based on voltage characterizations to extract health
indicators (HIs) but also review SOH methods based on other signals,
such as temperature, ultrasound and expansive forces. However, the
latter may not be suited for non-stationary battery systems onboard
ships.

250 scientific papers were chosen for review, from an initial set of
500 papers, of SOH and RUL estimation methods for lithium ion bat-
teries in [46]. They distinguish between a direct assessment approach
(including Coulomb counting, open circuit voltage and impedance
spectroscopy), adaptive approaches (including Kalman filters and par-
ticle filters) and data-driven approaches (including fuzzy logic, neural
networks and support vector machines). They continue to highlight
some challenges and solutions related to accurate estimation of SOH
and RUL. These include internal issues such as the influence of vari-
ous battery materials, possible thermal runaway, capacity and power
fade, possible over-charge and under-discharge, temperature range,
hysteresis, ageing and charge–discharge rate and the need for a good
battery model, and external issues related to charging method, safety
and protection and others. Notwithstanding the large number of papers
being reviewed, the final recommendations do not seem to be directly
relevant for SOH estimation.

A more focused review on data-driven health estimation methods
for lithium-ion batteries is presented in [47], which focuses on SOH de-
fined in terms of capacity. They distinguish between methods based on
differential analysis, i.e. where features are identified from differential
curves of the electrical, chemical or mechanical parameters collected
during battery cycling and correlated with capacity fade, and machine
learning methods. Differential analysis includes ICA/DVA, differential
thermal voltammetry and differential mechanical parameter analysis.

The review in [47] distinguishes between model fitted features
that depend on an underlying state space model to obtain features
such as internal resistance, capacitance and SOC, processed external
features, for example extracted from incremental capacity/differential
voltage curves and voltage gradient curves, and direct external fea-
tures which are measured directly by sensors, e.g. terminal voltage,
current and temperature. One challenge related to relying on model
fitted features are the need for a complex model and processed exter-
nal features typically require constant currents. Hence, [47] suggest
that models based on the measured variables directly may be more
suitable. However, crucial to all such approaches is that data are
collected also for the response variable, that is, data for SOH need to
be available in the training data in order to model the relationship
with the features. The review presented in [47] continues with an
overview of prognostic techniques for estimating RUL, all of which are
dependent on the model for SOH estimation. These include analytical
models (empirical and semi-empirical) and ML-based models. Finally,
some advantages and disadvantages of the proposed approaches are
discussed. They state that advantages of DA-methods are that they
are easily implemented, are a mature technology and requires low
computational effort. The disadvantages are that they require a con-
trolled charging/discharging process, that temperature variations will
affect accuracy and that noise filtering is required. On the other hand,
ML methods have the advantages of good estimation accuracy, being
applicable to dynamic operation conditions and that they do not require
an underlying physics-based model. Their disadvantages are high com-
putational cost and high sensitivity to the quality and amount of data
available for training. Hence, it is suggested that ML-based approaches
may be preferable for situations with complex operating conditions.

A review of self-adaptive battery ageing models presented in [48]
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points out the limitations of training data-driven models on laboratory
test data that do not reproduce realistic operating profiles and focuses
on self-adapting models that may be updated based on data collected
during actual operation. The idea is that this will minimize the need
for time-consuming and costly lab experiments and give more accurate
predictions. They classify models into parametric and non-parametric
models, and classify updating methods into re-training and filtering
techniques. Re-training, also referred to as online training, corresponds
to updating a regression-type model for the relationship between op-
erating conditions and ageing data and is further divided into batch
training – where new data are combined with the initial training
data and the model is re-trained – and incremental training—which
does not consider the whole available dataset to update the model.
It further proposes assessment criteria in terms of model accuracy,
including ability to deal with non-linearities, uncertainty management
and robustness, and computational cost. However, these models assume
that SOH estimates are collected from an SOH algorithm and are used
to train the degradation models. For the purpose of verifying SOH esti-
mates from such algorithms, however, independent verification cannot
be achieved if the SOH estimates are used to train the models, so it is
not obvious that such models are relevant for maritime battery systems.
Furthermore, [48] states that self-adaptive degradation modelling is
still immature and not yet ready for actual industrial applications.

3. Models for SOH estimation

In the following, a review of recent papers on the topic will be
presented, focusing mostly on the past 5–6 years. An effort is made
to group models in a few main categories, although some proposals
may include elements from various categories. Typically, methods are
grouped into experimental methods such as various forms of measure-
ments, model-based methods relying on electrochemical or equivalent
circuit models and pure data-driven methods. However, the distinction
is not always crisp, and a combination of techniques will typically be
employed. For example, direct measurements collect data that may
need to be post-processed and analysed, hence combining measure-
ments and data-driven methods, and model-based approaches typically
use observers such as Kalman filters to estimate the state of the batter-
ies, hence combining model-based and data-driven approaches. In for
example [49] a combination of all three groups of methods are utilized;
an equivalent circuit model is assumed, and electrochemical impedance
spectroscopy is performed in order to estimate model parameters. Then,
a recurrent neural network is trained on power cycling test data to
model performance degradation due to ageing. It is noted that not all
the methods reviewed in this paper is purely data-driven. However, all
methods rely on data, routinely collected by sensors during all oper-
ations, or specifically collected by specific tests, in order to infer the
SOH. Hence, also data-informed methods that may not be considered
purely data-driven will be discussed. The categorization of the various
approaches used in this review is illustrated in Fig. 2.

3.1. Direct measurement techniques

Different approaches for more or less direct measurements of SOH
exist and are proposed for online SOH estimation. Some of these can
be based on continuous measurements recorded by the BMS such as
time series of currents, voltages and temperatures, whereas others
are based on measurements collected during particular experiments or
procedures. For example, the annual test currently required for mar-
itime battery systems used for propulsion utilizes a Coulomb counting
technique and a controlled charging/discharging procedure. This is
one approach to SOH verification, but the need for specific charging
and discharging cycles under controlled environments, with constant
temperature and C-rate, means that normal operations need to be
disrupted for a period of time. Nevertheless, some approaches to SOH

estimation based on more or less direct measurements will be reviewed
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Fig. 2. Categorization of SOH modelling approaches.
in the following. According to [13] these include Coulomb count-
ing, Hybrid pulse power characterization (HPPC) and electrochemical
impedance spectroscopy (EIS), and ICA and DVA. Other measurement
techniques also exist, see e.g. a more comprehensive overview in [50].
Ideally, methods that can be used based on continuous measurements
of variables that are collected by the BMS under normal operations
without the need for specific instrumentation or procedures would be
preferable.

3.1.1. Coulomb counting
Coulomb counting, also referred to as current integration method,

integrates the current to or from the battery during a full cycle to
determine the capacity directly, according to the basic relation

𝑄 = ∫

𝑡1

𝑡0
𝐼(𝜏)𝑑𝜏, (3)

where 𝑄 is the capacity, 𝐼(𝑡) is the current at time 𝑡 and 𝑡0 and 𝑡1 refers
to the times of SOC = 0% and SOC = 100%, respectively. That is, the
current is integrated over a full cycle from full to empty (or from empty
to full) to count how much electric charge the battery can store. Often,
the equation above can be modified by also including the Coulombic
efficiency, which is tacitly assumed to be unity in Eq. (3). One practical
problem with this approach is that it requires a full charge/discharge
cycle to be able to estimate the maximum capacity and this is hardly
ever experienced in actual normal operations. Moreover, the measure-
ments need to be performed under controlled conditions, with constant,
typically low, C-rate and a specific ambient temperature and is there-
fore not directly applicable as an online method. In addition, subjecting
the battery to full cycles between 0% and 100% may contribute to
accelerated degradation and such tests risk shortening the lifetime of
the battery.

Capacity estimation can be based on Coulomb counting of deep
cycles (not necessarily full), at reasonably homogeneous conditions
with respect to C-rates and temperatures. The relationship between
total capacity, 𝑄, and SOC at times 𝑡1 and 𝑡2 is as follows, where also
the Coulombic efficiency 𝜂, is included:

𝛥𝑆𝑂𝐶 = 𝑆𝑂𝐶(𝑡2) − 𝑆𝑂𝐶(𝑡1) =
1
𝑄 ∫

𝑡2

𝑡1
𝜂𝐼(𝜏)𝑑𝜏 (4)

Note, however, that for this approach to be useful there is a need
for accurate and reliable SOC estimates, a task which in itself is
challenging.

An approach to estimate SOH based on Coulomb counting of partial
cycles, i.e. over a reduced voltage interval during charging, is proposed
in [51], see also [52]. This study indicated that the reduced voltage
range measurements are likely to underestimate the capacity fade.
Coulomb counting are also often proposed to be used together with
other data-driven or model-based techniques. A Coulomb counting
method for partial charging voltage profiles, where the optimal voltage
ranges are identified, for single and multiple ranges, using a grid search
technique and genetic algorithm, respectively, is proposed in [53].
7

It is possible to include a current correction term in the Coulomb
counting procedure to account for the fact that capacity generally
decreases as discharge current (C-rate) increases [54]. The Peukert
equation describes the relationship between the discharge current (𝐼)
and the discharge time (𝑡) by stating that 𝐼𝑘𝑡 is a constant, where 𝑘 is
the Peukert coefficient [55,56]. However, this requires the battery to
be discharged at a constant C-rate throughout the cycle [55], and also
at constant temperature.

The Coulomb counting method is extended and used in combination
with the OCV–SOC relationship for online SOH estimation in [57],
using measurements of current, voltage and temperature. It addresses
shortcomings with traditional Coulomb counting methods related to ac-
cumulation of errors in calculating transferred charge over time and the
dependence of the method on initial SOC actual capacity estimation. A
compensation factor is introduced in the current integration process to
account for variations in conditions as the ratio between the capacity
at the reference condition (current and temperature) and the actual
operating condition. The compensation factor is assumed to be constant
and is estimated at BOL of the battery. Furthermore, a temperature
dependent OCV–SOC relationship is used during rest periods to obtain
the SOC. The actual capacity is then estimated based on the partial
capacity between two known SOC levels during normal operations of
the battery. It is stated that the accuracy of this method is dependent
on the depth of the cycle and on the measurement error of the partial
charge estimation. A recursive least squares filter with a forgetting
factor is applied to minimize the errors.

3.1.2. HPPC and EIS
Hybrid pulse power characterization and electrochemical

impedance spectroscopy are methods to measure the electrochemical
response of certain inputs. HHPC measures the cell voltage response
to short high-current charge/discharge pulses and EIS measures the
frequency response of the battery by measuring the impedance over
a range of AC input at different frequencies. It yields an impedance
spectrum from which it is possible to estimate various battery char-
acteristics, such as charge transfer resistance, capacitance and ohmic
resistance, as different frequencies are associated with different mech-
anisms in the battery, and to relate this to SOH [58,59]. However, the
battery impedance is highly sensitive to temperature and EIS may be
challenging to implement as an online tool since it requires stable con-
ditions and specific hardware implementations. A passive impedance
measurement technique is proposed in [60] to alleviate this, allowing
the impedance spectrum to be estimated from arbitrary excitation
signals by way of digital filters to be used as an online monitoring
tool. See also [61] for an example of online EIS measurements. An
extension of the EIS to study also higher order harmonics and nonlinear
responses is proposed in [62], i.e. a nonlinear frequency response
analysis (NFRA), and the method is used to study the effect of battery
ageing. Some advantages of this method, as reported in [63] are that
it does not require steady-state analysis and that it can be used for a
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specific frequency range and it is proposed that NFRA-data might be
suitable for reliable SOH identification.

For EIS measurements to be used for SOH estimation, it may need to
be used together with model-based or data-driven approaches, and the
capacity or SOH cannot be read directly. However, equivalent circuit
models for a battery can be established based on EIS measurements,
as shown in e.g. [49,64], and repeated online measurements can be
used to update battery model parameters to reflect the battery’s internal
conditions [65]. The charge transfer resistance of a battery is obtained
in [66] by fitting the impedance spectroscopy with an equivalent
impedance model to estimate SOH. The effects of temperature and SOC
are accounted for by an analytical model. The parameters of the analyti-
cal model are based on fitting the model to data obtained by impedance
measurements. EIS measurements are used as input to a Gaussian
processes regression model in [67] to predict SOH and RUL, utilizing a
large dataset of impedance spectra to train the model. Fractional order
models have been used together with electrochemical impedance spec-
troscopy for battery characterization and SOH estimation, as presented
in e.g. [68–70].

3.1.3. ICA and DVA
Incremental capacity analysis and differential voltage analysis mea-

sure the change in charge (Q) and voltages (V) during charging/
discharging and estimates the gradient curves, 𝑑𝑄∕𝑑𝑉 and 𝑑𝑉 ∕𝑑𝑄,
espectively, to determine changes in electrochemical properties. Such
urves will typically exhibit features like plateaus and peaks that can
e associated with different mechanisms and phases in the battery and
hanges in these features can be ascribed to battery degradation. It is
lso possible to apply this method for partial charging curves, which is a
uge advantage for online monitoring. However, two major challenges
ith this approach for online monitoring are that a constant and low

urrent is typically needed in order to acquire accurate curves, and the
ifferentiation of noisy, discrete data to obtain the IC (𝑑𝑄∕𝑑𝑉 ) and DV
𝑑𝑉 ∕𝑑𝑄) curves [71].

Different ways of estimating such curves are compared in [72],
ncluding a point counting method, polynomial curve fitting and neural
etworks. One may also assume parametric models for the voltage as a
unction of charge and fit the parameters from voltage measurements,
s e.g. shown in [73], and [74] applies a Gaussian filter to smooth
he curves and reduce the noise, before a regression model is used
o relate the features of the IC curves to battery capacity. A revised
orentzian voltage–capacity model was assumed in [75] to fit voltage–
apacity curves and to extract features of interest to estimate SOH. The
elected features are then used to establish a linear model between
he features and SOH in order to estimate SOH. A previous study on
itting Lorentzian functions to voltage–capacity data is reported in [76].

voltage window method was adopted in [77] due to its simplicity
ompared to moving average and Gaussian filters. A hybrid model
ombining grey relational analysis and the entropy weight method
s then used to extract features from the filtered IC curves for SOH
stimation. A method based on the Kalman filter is used to obtain
mooth IC curves in [78], see also [79], and cubic smoothing splines are
sed in [80]. The level evaluation analysis (LEAN) method is proposed
n [71] as a general approach to differentiating discrete-sampled data
or the purpose of obtaining incremental capacity curves for battery
iagnostics. It is proposed as a benchmark method that is not prone to
ver- or under-fitting.

SVR is used to model SOH from ICA in [81]. The area under the
eaks of the IC-curve are used to estimate SOH in [82] under different
perating conditions, i.e. with different DOD, temperature and C-rates.
hree features from IC curves and DV curves are selected and used
or capacity estimation in [43]. Three other features of IC curves are
sed to estimate capacity in [78], where linear models are established
or each feature and the estimated capacity is the weighted average
f the three estimates from each individual feature. Moreover, the
8

oefficients of one of the linear models are modified by another linear R
odel to account for the differences in initial charging SOC. A current
nterrupt technique is introduced to evaluate the cell resistance in order
o account for the effect of different C-rates in ICA in [83]. Peak shift
orrections are applied to the IC curves and allows ICA to be performed
t higher C-rates, i.e. allowing for less time-consuming ICA.

An example of a charge–voltage curve and the corresponding IC
𝑑𝑄∕𝑑𝑉 ) curve is shown in Fig. 3, illustrating that flat parts of the
harge–voltage curve appears as peaks in the 𝑑𝑄∕𝑑𝑉 curve. Even
hough direct measurements of currents and voltages can be used to
btain such IC curves, there is still a need for post-processing the
ata in order to get smooth curves, and data-driven methods must
e used to extract features and relate those to SOH and degradation
echanisms. Moreover, different model-based approaches are often
sed to determine the open circuit voltage from the terminal voltage
n order to construct OCV–SOC curves as the basis for ICA/DVA, see
.g. [84,85].

A somewhat similar method based on charge and discharge data es-
imates the probability density function of voltages during a discharge
ycle by way of kernel density fitting of discrete voltage measure-
ents [86]. This method is referred to as the pdf-method and is
simplified variant of ICA where the need to fit a curve to the

harge/discharge data is eliminated. The probability density function
ill exhibit clear peaks around voltage plateaus, that is, voltages that
ccur more frequently during a charge or discharge cycle, and the idea
s that the state of the battery can be inferred by these peaks which
epresent lithium intercalation/de-intercalation at the electrodes. As
he battery degrades and the capacity fades, the magnitude of some of
he peaks in the probability density function will decrease, and this can
e used to estimate SOH, for example by integrating the probabilities
ver a range of voltages corresponding to relevant peaks.

A fusion of Coulomb counting and DVA is proposed in [87] as a
odel-free approach to obtain SOH estimation from constant current
ischarge data.

.1.4. Other direct measurement techniques
Various other direct measurements techniques have been proposed

n the literature. A differential thermal voltammetry approach is pro-
osed in [88], where voltage and temperature measurements in gal-
anostatic operations are used to model SOH. This allows shorter
easurement time than slow rate cyclic voltammetry analysis [89,90].
differential heat analysis based on measuring gradient heat flux and

emperature after discharge is proposed for SOH estimation in [91].
tate of health estimation based on the Ampere-hour throughput–
oltage curve and fitting a parametric curve to these is proposed
n [92].

.2. State-space models with observers

A different approach to battery modelling relies on models that
pproximate the battery dynamics. Typically, these may be referred to
s state-space models where sensor data can be used to estimate model
arameters corresponding to underlying unobservable states using so-
alled observers such as variants of the Kalman filter or particle filters.
wo main classes of such models are equivalent circuit models and
lectrochemical models.

.2.1. Equivalent circuit models
ECMs describe the voltage–current characteristics of a battery by a

odel of an electrical circuit with different elements such as resistors
nd capacitors in different series- and parallel configurations. One type
f such models is the so-called nRC models where the batteries are
odelled with a number n of resistor–capacitor circuits elements in

eries and/or parallel configurations. A simple example of such a model
s shown in Fig. 4, with 𝑛 = 2. Such models are often referred to as
he Thevenin battery model [93]. Another type of simple ECMs is the
andle’s circuit model [94]. More complicated models can be made by
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Fig. 3. A simple example of an incremental capacity curve. Plateaus in the charge–voltage curve correspond to peaks in the IC curve.
introducing additional RC circuits or other elements such as resistors,
capacitors, inductors or constant phase elements. However, the chosen
model will be a trade-off between accuracy, computational complexity
and reliability, and often quite simple models are used.

Having established a ECM for the battery, the state of the battery
is described by the battery model parameters. These are typically
unobserved, but may be estimated based on measurements using vari-
ous optimization techniques such as different variants of least squares
methods. Various forms of constrained and regularized optimization
may be employed to avoid unreasonable parameter estimates [93] and
forgetting factors can be used to avoid saturation problems by giving
less weight to previous data compared to more recent ones [95]. Model
parameters are typically changing dynamically over time and observers
such as Kalman filter and particle filters can be used to dynamically
update model parameters and unobserved model states. Extensions of
the Kalman filter to handle non-linear state transition and observation
models include the extended Kalman filter and the unscented Kalman
filter (see e.g. [96–98]). The effect of temperature may be included in
such models by coupling the ECM with an energy balance or thermal
model, see e.g. [13,99].

There are different ways equivalent circuit models can be extended
from single cells to model battery modules and packs. One alternative
is to connect one ECM per cell into a larger model, but the complexity
of such a model will grow as the number of cells increase, involving a
large number of parameters. This will be computationally heavier and
requires much more training data. Alternatively, one may establish a
single ECM for a set of connected cells that may be more manageable,
but then it will not be able to capture variability between cells.

The SOH is estimated based on an ECM (the Thevenin model) with
model parameters estimated by recursive least squares and assuming
a linear relationship between ohmic internal resistance and capacity
in [95,100]. The ohmic resistance is identified from the ECM based
on internal resistance measurements (e.g. EIS) and the capacity is
measured in capacity tests. Internal resistance of a battery is also
estimated by an ECM in [101] which is used to determine a degradation
index on the form of the ratio between actual and initial internal
resistance. A similar model was assumed for electric ship applications
in [2] where parameters were identified by recursive least squares and
then a linear Kalman filter was used to estimate SOC and a least square
approach to estimate capacity by fitting a linear relationship between
capacity and a range of SOC. A 1RC model was assumed in [102], and
9

model parameters determined by discrete time least squares are used
to define a current time constant variable that are modelled to have a
linear relationship to capacity which is used for online SOH estimation.
1RC models have been used in many other applications due to their
simplicity and low computational cost [54,85,103].

A 2RC equivalent circuit model is assumed and battery states are
estimated by a dual Kalman filter in [7]. The dual filter is a combi-
nation of a linear Kalman filter and an unscented Kalman filter and
is introduced to estimate different parameters of the battery model.
This reduces computational efforts since two filters of lower dimension
are faster than one higher dimensional one. The first linear filter is
used to estimate over-voltages and ohmic resistance and this is fed
into the second filter that estimates SOC and polarization and diffusion
resistances. The output from the second filter is then again used as input
to the first filter for the next time-step.

A simple equivalent circuit model of lithium-ion batteries is used
to represent the constant current charging profiles in [104] and to
establish a mathematical expression for the voltage–time curve. The
parameters of these curves can be estimated numerically and one of
them is related to SOH. The same ECM was adopted in [105], and
combined with an ICA based capacity model to yield a model for
capacity based on the peaks of IC curves. Both the ECM and the ICA
based models are generic and the approach can reportedly be applied
to different types of lithium-ion batteries.

An equivalent circuit model with an additional hysteresis loop is
used in [56] to account for different open circuit voltages in charge
and discharge conditions. The dual adaptive extended Kalman filter is
applied to determine model parameters and SOC. However, due to a
flat plateau in the OCV–SOC curve at some levels of SOC, the Coulomb
counting method with a current correction is used to estimate SOC in
the 40%–70% range of SOC combined with the dual AEKF method for
other SOC ranges. A least-squares SVM is used to predict the available
capacity, based on a set of features including temperature, resistances
estimated from the ECM, voltage change and voltage.

A linear parameter-varying electrical model is suggested for lithium-
ion batteries in [106] where the system description is linear in different
operating conditions, but where the behaviour can change according
to a scheduling signal. In this way, the non-linear effects of varying
temperatures and ageing can be taken into account, and an internal-
resistance based SOH is determined. Parameter and state estimation is
performed by a central difference Kalman filter, in order to estimate

SOH and SOC from continuous on-board measurements.
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Fig. 4. A simple 2RC equivalent circuit model of a battery.
A number of more advanced observers and filter methods have
been proposed to estimate model parameters and states in state-space
models. An unscented particle filter is proposed in [107]. An im-
proved particle filter, the linear optimization resampling particle filter
is combined with the sliding-window grey model in [108]. Improved
unscented particle filters based on Marco chain Monte Carlo (MCMC)
methods [109] and combined with linear optimizing combination re-
sampling [110] have also been proposed. Other filter based approaches
include a heuristic Kalman algorithm in combination with particle fil-
tering [111], the interacting multiple model particle filter [112], parti-
cle filters with partial stratified resampling [113] and a Gauss–Hermite
particle filter [103]. A cascaded observer based on local Kalman filters
and a fuzzy observer is used in [114] to determine SOC and SOH, where
a state-space model based on a local model network is assumed as the
battery model. A particle filter combined with support vector regression
is used for SOH monitoring and RUL prediction in [115].

3.2.2. Electrochemical models
Electrochemical models typically consist of a simplified set of elec-

trochemical equations that model the transport of charge between
the positive and negative electrode in the battery cells based on the
underlying physics. They describe the charge flows through the elec-
trolyte and voltage drops at the cathode, anode and separator of
the battery cells and typically include a set of differential equations,
several model parameters, model states and some measurable model
output. The model parameters are typically identified from battery
dimensions and chemistry or are estimated based on data. Exam-
ples of such electrochemical models are given in [116–119]. Battery
ageing and degradation can be modelled by changes in model param-
eters describing e.g. the internal resistance and charge capacity of the
battery.

Again, having established an electrochemical model for the battery
cell, various observers can be used to estimate and predict unobserved
states based on measurements of observable model output. An un-
scented Kalman filter was applied in [116] to update internal states
and capacity estimates for an electrochemical model, and thus track
age-dependent changes in capacity.

3.3. Regression type models

Regression models range from simple linear regression models,
which assume a linear relationship between a set of explanatory vari-
ables and a response variable, to complex machine-learning regression
models for more complicated and non-linear relationships. One ad-
vantage of complicated models is that more accurate models may be
constructed when accounting for non-linearities. However, a parsimo-
nious model can also be preferred as it will be less likely to overfit
training data and be more easily interpreted. In general, in order to use
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regression type models there is a need for representative training data
so that the model can learn the relationship between the input variables
and the response. For batteries, this means that battery test data are
needed, where both the explanatory variables and the response is
measured, typically based on laboratory tests. However, it is uncertain
how representative the typical lab test data are for the degradation
caused by more random duty cycles experienced in the field.

3.3.1. Linear regression models
A simple linear regression model is proposed in [15], where the

discharge capacity is modelled as a linear function of discharge current
and number of cycles, with an interaction term. The model parame-
ters are estimated recursively by reformulating the linear model as a
state-space model and using a Kalman filter. An additional model is
introduced to model the capacity fade as a function of temperature, and
a double-exponential model is proposed. The reason for the state-space
formulation is the need for modelling a specific battery unit rather than
a population of batteries as obtained from the experiments. Hence, the
state-space formulation allows the models to be implemented as an
online tool based on online measurements from a single battery.

Different regression models for SOH based on polynomial functions
of cycle number as the only variable and polynomial and exponential
functions of fully discharged voltage and internal resistance are com-
pared in [120]. Yet another linear regression model for SOH assumes
a linear relationship between SOH and the reciprocal of the unit time
voltage drop, 1∕𝑉 ′ = 𝛥𝑡∕𝛥𝑉 , for given SOC and includes a modification
factor on the form of a third-order polynomial of SOC to account
for different levels of SOC [121]. A kernel ridge regression model
is suggested for SOH estimation in [122], which also employs semi-
supervised transfer learning to transform unlabelled data into training
data that can be used as model input. Six features extracted from charg-
ing, discharging and incremental capacity curves are used as model
input. A naive Bayes classifier is used for regression and prediction of
remaining useful life of lithium-ion batteries in [123], under different
operating conditions and ambient temperatures.

The relationship between capacity, accumulated charge and ranges
of SOC during cycling expressed in Eq. (4) is formulated as a regression
problem in [124], where the total capacity is a regression coefficient
between measured changes in SOC (predictor) and accumulated charge
obtained by Coulomb counting (response). The regression problem is
solved by an approximate weighted total least squares method, that
accounts for both noise in predictor and response variables. Results
on simulated data indicate that the method performs well, and it
yields uncertainty estimates for the total capacity. This is deemed as
a very attractive feature of this approach. It is noted that the approach
outlined in [124] is also suggested for SOH estimation of a maritime
battery system in [2]. A similar approach framing maximum capacity
estimation as a total least square problem is taken in [125], where
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a Rayleigh quotient-based algorithm is employed to estimate capacity
recursively.

A linear regression model for SOH estimation based on regional
capacity is presented in [79], where the regional capacity is defined
as the capacity change within a symmetric voltage region around
the terminal voltage corresponding to the incremental capacity peak.
This is presented as an alternative to more conventional incremental
capacity analysis, where results are less sensitive to signal noise, since
the regional capacity corresponds to an integral of the current mea-
surement over time. It is demonstrated that with a sufficiently large
voltage region, the relationship between the regional capacity and SOH
is strongly linear so that a simple linear model performs well.

3.3.2. Machine learning regression
While the statistical approach has an emphasis on the validity of

the models, which enables inference and prediction, the priority of the
machine learning approach is the prediction itself: the ML models are
predictive instruments which are valid insofar as they provide accurate
predictions, without need of model diagnostics or specific assumptions.
As a consequence, they often are complex ‘‘black box’’ models which
provide unintelligible, though often highly accurate, results.

Various machine learning types of regression models have been
used in capacity and SOH estimation of batteries. These are able to
model complicated, non-linear relationships between the explanatory
variables and the response, but are typically more difficult to inter-
pret than simpler statistical regression models. Notwithstanding, as
predictive power is generally more important for SOH estimation than
interpretability, this is not seen as a major concern. Three data-driven
methods for SOH estimation are compared in [126], i.e. a linear regres-
sion model based on ordinary least squares, a multilayer perceptron
neural network and a support vector machine, all using features from
incremental capacity and differential voltage curves of partial charging
and discharging. The results indicate that all three models perform
reasonably well and can estimate SOH within reasonable accuracy, for
different features selected from IC and/or DV curves. However, it is
emphasized that the linear model is more comprehensible but that the
neural network provides slightly more robust results.

A support vector machine (SVM) is a supervised learning method
initially used for classification problems, but that may also be used
for regression. It is based on so-called support vectors and looks for
hyperplanes in a higher-dimensional space that correspond to large
separation distances between data points in the training data, see
e.g. [127,128]. Several approaches involving support vector machines
for SOH estimation of lithium-ion batteries are found in the literature.

A SVM is used to model the effect of ageing on the maximum
available capacity and energy in [54], based on input features related
to temperature, voltage and voltage changes and impedance factors
obtained by assuming a Thévenin battery model. A similar battery
model is used in [129], where a particle swarm optimization (PSO)
algorithm is used together with support vector regression to estimate
SOH. A SVM based model is proposed in [130] that estimates SOH
based solely on variables typically available from operating batteries,
such as battery current, voltage and temperature. A SVM is used in [81]
to estimate capacity based on ICA for partial charging data. Incremental
capacity curves found by polynomial curve fitting over relevant voltage
ranges are found to be highly sensitive to the voltage range, and it
is proposed to rather use support vector regression to fit the reverse
charging curve, that is, the relationship between measured voltage and
charged capacity. The capacity fade of the battery can then be found
from the correlation with the IC peak value.

SVR is used together with partial incremental capacity curves in a
different way in [131]. IC curves are obtained by various filtering and
smoothing techniques, and three features of the IC curves are extracted
and used as input for a support vector regression model to estimate
SOH, i.e. the peak position, peak height and area under the peaks. [132]
11

combines support vector regression with particle filters and possibilistic
clustering classification for describing battery degradation and estimat-
ing remaining useful life. The geometrical area under the charging
current curve during the constant voltage step of CCCV charging modes
is used as feature in [133], and support vector regression is used to
estimate battery capacity based on this. Another SVM, with a mixed
kernel function, is presented in [134], which estimates SOH based on
features extracted from a charging curve. The features are extracted
from incomplete voltage charging curves, but an extreme learning
machine (ELM) is trained to predict the whole voltage response from
random and discontinuous charging data so that the method can work
with only short-term charging data.

Other sets of features extracted from charging curves are used
to estimate SOH using support vector regression in [135,136]. Two
battery health indicators are proposed in [137], i.e. the time interval
of an equal charging voltage difference and the time interval of an
equal discharging voltage difference (see [138]), and support vector
regression is used to model the SOH based on these features. Features
of the terminal voltage response of a lithium-ion battery from a short-
term current pulse test are used as input to train a SVM to estimate SOH
in [139]. The idea is that the voltage response under the current pulse
test, performed at the same battery SOC during the ageing process,
will change as the battery degrades. This is used to train a SVM
for SOH estimation. A support vector regression-based degradation
model is proposed in [63] where features are extracted from nonlinear
frequency response analysis [62] to train the model. The most rele-
vant frequency range for battery degradation is determined based on
correlation analysis, and features within this range are selected. The
sample entropy of discharge voltage time series are used as features for
support vector regression in [140]. The sample entropy is a measure of
the regularity of a data sequence and the idea is that the discharging
curve for fresh batteries are smoother than that of aged batteries so
that the sample entropy will change as the battery degrades and can
be used as an indicator for SOH [141]. SVR is combined with fuzzy
information granulation of the data in [142], where the health indicator
(time interval of equal charging current difference) and the SOH are
converted to ranges rather than specific values.

The capacity of batteries is not measured directly by sensors and is
therefore not available for each cycle in online battery data. If available
at all, capacities will only be available for limited cycles. This raises
the need for semi-supervised learning, as addressed in [143]. Here, a
locally linear reconstruction method is used to determine the capacity
distributions for unlabelled data based on four features extracted from
the charging profiles. Then, a support vector regression method is
applied to predict capacity fade and estimate the remaining useful life
of the batteries.

The relevance vector machine (RVM), a technique that is similar
to SVM but provides probabilistic output, is used for SOH estimation
in [144]. A number of health indicators are extracted from charging
voltage, charging current and temperatures and the most relevant
features are determined by grey relational analysis. The dimension
of the extracted features are then reduced by principal component
analysis (PCA) and used to train a relevance vector machine to estimate
capacity. RVM is proposed for RUL estimation of lithium-ion batteries
in [145]. Relevance vector regression is also used in [146] to determine
physico-chemical battery parameters from EIS that can be used to mon-
itor ageing. Other approaches to SOH estimation utilizing relevance
vector machines are reported in e.g. [140,147].

Artificial neural networks (ANN) are machine learning models
known as universal approximators in that they may represent a wide
range of continuous functions given a suitable number of nodes and
hidden layers. They are often used in regression problems due to this
flexibility and their ability to represent highly nonlinear functional
relationships between explanatory variables and responses. However,
neural networks typically require quite large datasets for model train-
ing, especially for deep nets with many layers. A brief introduction to

neural networks is included in e.g. [127]. Various versions of neural
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networks are commonly used for estimating SOH based on sensor data.
The trivariate joint distribution of current, voltage and temperature
is used as input to train a neural network model in [148]. A K-
means clustering technique is used to identify subregions and the
data are represented by density values in each subregion, i.e. as a K-
dimensional vector corresponding to the experienced conditions. The
accumulated capacity from selected voltage ranges is used as features
to train a neural network for SOH estimation in [149], and features
extracted from partial incremental capacity curves are used as input
to a neural network model in [150]. A feedforward neural network
is used in [151] to predict SOH one step ahead, with the following
input variables extracted from discharge data: temperature, starting
SOC, DOD, discharge rate, charge throughput and present SOH. An
artificial neural network based on incremental voltage differences is
presented in [152].

A neural network based on radial basis functions is trained in [153]
to model the relationship between time and terminal voltage during
discharge, and to predict the end of discharge for the discharge cycle.
The model parameters are estimated sequentially in a Bayesian frame-
work using particle filters. This approach is further extended in [154]
to estimate what they call state-of-life of the battery. They also include
an anomaly detection module that should be able to flag an alarm
when changes in the degradation process are observed, e.g. related to
sudden accelerated degradation. The input data in this approach are the
number of cycles, and the output is the capacity associated with that
cycle. Hence, in order to apply such a model, there is a need for data
containing capacity measurements at each cycle, which will typically
not be available for maritime battery systems. Moreover, the model
is applied to data gathered in controlled laboratory experiments, with
constant temperature and current, and hence may not be well suited to
model realistic duty cycles.

Extreme learning machines are single hidden layer feed forward
neural networks with random initialization of the input weights and
biases. Such an extreme learning machine is used in [155] to estimate
capacity degradation based on ohmic internal resistance and polarized
internal resistance health indicators, and thereby estimate SOH. It
is noted that the health indicators are determined using an equiva-
lent circuit model, and that the extreme learning machine reportedly
outperforms a traditional backpropagation neural network. Extreme
learning machines are also used for capacity estimation in [156,157]
and in [158,159] for predicting battery life at short and long prediction
horizons by one-step and multi-step ahead predictions of capacity.

Recurrent neural networks are a class of artificial neural networks
which may also account for temporal sequences and dependencies in
the data. The various nodes of the network are organized in connected
successive layers to represent time, so that internal states or output
from the previous time step can be used as input for the subsequent
time steps. Several applications of different types of recurrent neural
networks have been used for modelling of battery degradation. A
dynamically driven recurrent neural network is used to simultaneously
estimate a battery’s SOC and SOH in [160]. Model input are battery
voltage, current and ambient temperature without the need for a bat-
tery model. Battery degradation and remaining useful life are predicted
using a combination of multiple linear regression and recurrent neural
networks in [161]. The independently recurrent neural network (In-
dRNN) [162] is used for state-of-health estimation of publicly available
battery data in [163]. The data consist of a sequence of randomized
cycles followed by reference cycles at regular intervals where the capac-
ity is calculated by Coulomb counting. The model then estimates SOH
based on features extracted from the random cycles, including voltages,
currents and temperatures, time elapsed in the random and reference
cycles, time spent in various current loads and capacity calculated
during the previous reference cycle. However, it appears that one of
the input variables is actually the same as the response variable. Hence,
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these results are not realistic and further analysis where these variables
are removed from the input-data are required to evaluate how such
models perform.

A recurrent neural network (RNN) is trained to estimate and predict
both capacity and internal resistance in [49], which may be used to
estimate SOH. A series of accelerated ageing tests consisting of power
cycling tests and periodic characterization protocols were performed
to collect the training and test data. The RNN utilizes the current,
temperature and range of SOC of a cycle as input as well as time
histories of resistance and capacity, respectively, to predict resistance
and capacity 𝑁 steps ahead. Results show good agreement between
predicted capacity/resistance and values observed in the tests. Gated
recurrent unit neural networks are used to model SOH in [164].

The long short-term memory (LSTM) networks are special types of
recurrent neural networks. Different types of LSTMs and other ML-
techniques to estimate SOH and RUL are compared in [165] based on
measurements of temperature, current, voltage, time and corresponding
capacity during the discharge process of 28 batteries. They report that
a variant of the LSTM – the AST LSTM – performs best overall on the
different batteries that are tested. A hybrid model combining LSTM
and Elman neural networks is used to predict capacity and estimate
RUL in [166] based on capacity measurements. The capacity time
series are decomposed into high- and low-frequency parts by empirical
mode decomposition. The various high-frequency parts are modelled
by the Elman NN whereas the low frequency component – the residual
value – is represented by the LSTM. The empirical mode decompo-
sition is repeated iteratively until the residual time series become a
monotonic function. Another hybrid model, combining convolutional
NN and LSTM is presented in [167]. This approach also employs a
false nearest neighbour algorithm to determine the sliding window size
for determining the training and test data sets. In these settings, the
recurrent neural networks are used as time series models to model the
evolution of the battery capacity rather than regression models that
estimate capacity based on other measurements.

Deep learning and deep neural networks are based on artificial
neural networks with many hidden layers between the input and out-
put layers. They have performed remarkably well on a number of
supervised learning applications but, due to the high number of nodes
associated with the many layers, typically require massive amount of
data to be trained well. Several applications of deep learning methods
have been reported for capacity modelling of batteries.

A deep neural network is used to estimate SOH in [168] based
on currents and voltages measured during charging and discharging.
Estimation results are compared to other methods such as k-nearest
neighbours, linear regression, support vector machines and shallow
artificial NNs and reported to overall perform better. A hybrid gate-
recurrent unit–deep convolutional NN model is presented in [169]
to estimate SOH from charging curves obtained by CCCV charging
of lithium-ion batteries. Estimation results from this model are com-
pared with results obtained from support vector regression, Gaussian
processes regression as well as separate gate recurrent and deep con-
volutional NNs (not hybridized), suggesting that the proposed hybrid
model performs best on two publicly available battery data sets.

A deep convolutional neural network is used for cell-level capacity
estimation based on discretized values of voltage, current and charge
capacity measured during partial charge cycles in [170]. It is reported
that the deep convolutional NN model performs better on the available
data compared to traditional ANN and SVM methods. However, it is
stressed that the effect of temperature variations are not accounted
for as the data were obtained at constant temperatures. The effect of
the amount of training data on the prediction error is also illustrated,
showing that the accuracy improves for increasing amount of training
data, but converges when the amount is sufficiently large. A deep
long short-term memory network is used for online capacity estimation
in [171], using voltage–time data from partial charging curves as input.

In order to address the problem of insufficient training data to

achieve accurate capacity estimation, the deep convolutional NNs for
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capacity estimation are extended to incorporate concepts of transfer
learning and ensemble learning as outlined in [172]. Transfer learn-
ing essentially allows for transferring learnings from a source task to
improve the learning in a related but different target task. Ensemble
learning combines predictions from several algorithms in order to
reduce the risk of choosing one algorithm that performs poorly. In
the study presented in [172], eight different deep convolutional NNs
are pre-trained on one large battery dataset, and then transferred to
be re-trained on a smaller dataset. These models are then integrated
to build an ensemble model. Results were compared to different ML-
methods, including random forest, Gaussian processes, as well as deep
convolutional NNs trained from scratch on the target data (no source
pre-training), as well as deep convolutional NNs with pre-training
(only transfer learning) and an ensemble of deep convolutional NNs
without any pre-training (only ensemble learning). Results indicate that
the deep convolutional NN with both transfer and ensemble learning
performs best overall.

Regression trees or random forests are somewhat different ML re-
gression techniques that rather than trying to establish a functional
relationship between the input variables and the responses, divide the
input space into different regions and perform simple local regression
within each region (see e.g. [127]). Such methods often perform well,
but are known to be prone to overfitting. State of health estimation
of lithium-ion batteries based on random forest are presented in [173].
Input variables are voltages and currents measured during CCCV charg-
ing. Another random forest regression model for capacity estimation
is outlined in [174], based on partial charging voltage–capacity data.
Other examples of applications of random forests are found in e.g. [175,
176]. The XGBoost algorithm is used for SOH estimation in [177].

3.3.3. Probabilistic machine learning
Probabilistic neural networks are variants of artificial neural net-

works that can give probabilistic output, i.e. probability densities,
rather than point estimates, which represents useful information. A
probabilistic neural network for estimating SOH of batteries is pre-
sented in [178], which takes times spent in constant current charge
phase, initial voltage drop at start of discharge phase and the open
circuit voltage as input variables.

Gaussian processes (GP) regression is a non-parametric probabilistic
machine learning technique that can be used for probabilistic predic-
tions. Various approaches to battery SOH and capacity estimation using
Gaussian processes have been reported in the literature. A Gaussian
process model is used in [179] where different points on voltage–
time curves with known capacities are used to train the model. This
approach is said to overcome the problem with ICA and DVA that
they need voltage measurements within a specific range, and voltaic
measurements can be collected over very short periods – down to
10 s – of galvanostatic operation (maintaining constant current). The
method relies on collecting training data offline, consisting of a set of
galvanostatic charging voltage curves with known cell capacities, to
be used for regression modelling based on online galvanostatic voltage
measurements over a short time period during charging for cells with
unknown capacity.

Another Gaussian process model is used to model capacity fade with
selected features extracted from load patterns, such as time elapsed
during the load pattern, charge throughput, overall time since start
and possibly others related to time elapsed under certain conditions,
as presented in [180]. Gaussian processes regression on different time-
domain and frequency domain health indicators extracted from voltage
time series to estimate SOH is proposed in [181].

Gaussian processes models aiming specifically at estimating cal-
endar ageing during storage operations are proposed in [182,183].
Capacity is modelled with time, temperature and storage SOC in [182]
and the Gaussian processes regression model is used to predict capacity
one and multiple steps ahead. The model proposed in [183] is re-
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trained with data from operating conditions progressively observed,
and illustrates how both accuracy and confidence of the model can
improve after employment in such a setting. However, in order for the
model to learn from operational conditions, there is a need for repeated
capacity measurements, which cannot be expected to be available for
maritime battery systems, especially if the annual test requirements can
be relaxed. A similar Gaussian processes regression model for cycling
ageing is proposed in [184], which uses throughput (Ah), temperature,
DOD, average SOC, and charging and discharging C-rates as input
variables to model capacity loss in each cycle. Again, it is stressed that
the Gaussian process regression model is able to continuously learn
from data collected during operation, something that puts less emphasis
on laboratory test data and that allows training of new operating
conditions. However, in order to continuously train the model, there is
a need for the corresponding capacity value associated with the stress
factors, meaning that periodic characterization tests are performed, or
that capacity is measured by other means. This will probably not be the
case for maritime battery systems.

A Gaussian processes (GP) regression model trained on a large
dataset of electrochemical impedance spectra of lithium-ion batteries
of varying SOH is used to predict SOH and RUL in [67]. The complete
spectra are used as input, without any further feature extraction, and
it is reported that the model automatically detects the spectral features
important for predicting degradation. In fact, results indicate that only
a few features are highly relevant for capacity prediction, and two
salient frequencies in the low-frequency region carry almost all the
weight in the model. It is noted that only EIS measurements from
the current cycle is necessary to estimate the capacity, without any
measurements from previous cycles. Moreover, upon comparison with
other features extracted from discharge curves, the EIS-based features
are found to give more accurate results. However, the cells used in this
study have been cycled at constant charge- and discharge rates and
further research is needed in order to extend the model to account for
constantly changing temperatures and C-rates over time. A significantly
extended dataset will then presumably be required. Gaussian processes
regression is also proposed in [185], where four specific features are ex-
tracted from charging curves and used to estimate SOH. The relevance
of these features for determining SOH is analysed using the grey re-
lational analysis method. The Gaussian process model was trained and
tested on battery data with variable loads provided by NASA [116,186]
and found to perform reasonably well, with a maximum estimation
error about 6%.

Multi-scale Gaussian process regression modelling of battery SOH
is proposed in [187,188] in order to both estimate one-step ahead
SOH for reliable SOC estimation and for multi-step-ahead prediction of
SOH for trend analysis and prognostics. A discrete wavelet transform is
performed in [187] to decompose the raw SOH time series into several
signals with different scales. Gaussian processes regression models are
used to separately estimate SOH based on each signal, and a final
prediction is obtained by aggregating the predictions from individual
models. In [188], significant features are extracted from studying the
partial incremental capacity curves and used to estimate SOH. Features
from ICA are also used as input to Gaussian processes regression models
in [189] to estimate SOH.

Gaussian processes have also been used to forecast SOH to predict
end of useful life in a prognostics setting, e.g. based on number of
cycles in [190], using a mixture of Gaussian process models [191] and
combined with particle filters as in [192], using combination Gaussian
process functional regression [193] and with a deep Gaussian process
algorithm as in [194]. The deep Gaussian process model in [194]
consists of two layers, where features extracted from discharge profile
data (a sequence of time, voltage and temperature extracted from a
randomly selected start and end time of a discharge profile) are input
to the first layer, the output from the first layer serves as input to the
second layer, and the output from the second layer is the estimated

capacity.
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3.4. Time-series models

Time-series models represent a different approach to modelling
capacity fade. Rather than estimating capacity and SOH by regressing
on some explanatory variables, time-series models estimate capacity
based on previously observed capacities and model the serial depen-
dence in observed capacities. Hence, based on a history of capacity
measurements, current and future capacity values can be estimated.
Typically, time-series models can be used for forecasting and predicting
remaining useful life of batteries.

An autoregressive integrated moving average (ARIMA) model is
used to model SOH utilizing empirical model decomposition to decou-
ple global trends from more local behaviour such as capacity regener-
ation from the raw SOH series in [195]. ARIMA models are commonly
used for time-series analysis and is a combination of autoregressive
(AR), differencing (I) and moving average (MA) series, and predictions
are linear combinations of the series own history. A nonlinear degrada-
tion autoregressive (AR) model is proposed for battery RUL prediction
in [196], where an accelerated degradation factor is used to supplement
a linear AR model. An autoregressive model is used for prognostics
of lithium-ion batteries in [197], where particle swarm optimization
is utilized to determine the optimal order of the AR model based on
the prediction root mean square error. Moreover, the model order is
updated adaptively through metabolism as new observations are made.

A multiple-change-point linear model is proposed in [198], where
an autoregressive model with covariates is used to model the slopes
of the linear segments and a survival regression model is used for the
lengths of the piecewise linear segments. Such a combined model is
then used to model a full battery degradation path based on histor-
ical paths. This model is also used for prognostics and estimation of
RUL and can provide uncertainty estimates by applying parametric
bootstrap.

The impact of capacity regeneration after longer periods of rest are
also included in the modelling presented in [199], where a model based
on the Wiener process is outlined. The life cycle of a lithium-ion battery
is divided into three parts, i.e., the overall degradation process, the
capacity regeneration during the rest period and the degradation of
the regenerated capacity after the end of the rest period. These three
parts are modelled as three piecewise processes by a linear Wiener
process, as a power law function of rest time with Gaussian noise and
as a nonlinear Wiener process, respectively. This combined model is
then used for one-step and multi-step ahead estimation of SOH. A two-
stage nonlinear Wiener process is proposed in [200] to model capacity
degradation under variable discharge currents. The two stages reflect a
slow degradation and fast degradation regime, respectively, where fast
degradation occurs at a later stage of the cycle life after an inflection
point.

3.5. Survival type models

Survival and event history modelling is a separate branch of statis-
tics that is used to model time-to-event data. If for example a battery’s
EOL is regarded as the event to be modelled, one could construct
probabilistic models for the time until this event, determined by a set
of covariates. However, one prerequisite for establishing such models
is the availability of sufficient run-to-failure data, where the time
until EOL is observed for a number of batteries or battery cells. Such
data could typically be collected from similar batteries in operations
to reflect realistic load profiles. For an introduction to such models,
reference is made to textbooks such as [201].

Survival analysis modelling is applied to lithium-ion batteries for
end-of-performance modelling in [202]. A trend-renewal process is
used on accelerated testing data to predict end of performance. Results
are compared to results from a linear regression model with time-series
errors and other well known models including an exponential model, a
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second-order polynomial model, an exponential and polynomial model t
and a simple linear regression model, and the accelerated trend renewal
process model is found to compare well in obtaining robust estimates
of end of performance. However, this model relies on observed capac-
ity ratios, which will typically not be available for maritime battery
systems, for projecting capacity fade and estimate end of performance.

3.6. Cumulative damage models

Cumulative damage models are often used for modelling of struc-
tural fatigue, where the structural deterioration is modelled as a cumu-
lative sum of different load cycles. Fatigue life of a structure is typically
given in terms of number of stress cycles of a specific amplitude.
For structural components exposed to a complex, random sequence of
loads, the fatigue damage can be estimated by reducing the complex
loading to a series of simple cyclic loadings using techniques such as
rainflow counting [203] and then form a fatigue damage spectrum as
a histogram of cyclic stresses. The effect of individual cycle contribu-
tions can be combined using the Miner’s rule under a linear damage
hypothesis,
𝑘
∑

𝑖=1

𝑛𝑖
𝑁𝑖

= 𝐶, (5)

where 𝑘 denotes the number of different stress magnitudes in the
spectrum, 𝑛𝑖 is the number of experienced stress cycles of magnitude
𝑖, 𝑁𝑖 is the number of stress cycles of magnitude 𝑖 that would lead
to failure and 𝐶 is the cumulative fatigue damage. Hence, in order
to apply such an approach, there is a need for counting the number
of equivalent stress cycles from a complex loading profile, 𝑛𝑖, and to
determine the number of cycles until failure for each stress amplitude,
𝑁𝑖. The former is often found by rainflow counting, and the latter is
ypically obtained from an S–N curve, where the cyclic stress amplitude
S) is plotted against number of cycles to failure (N). Such curves are
ypically established based on tests of samples of the material counting
he number of cycles until failure and will typically be declining curves
ith lower stress amplitudes for increasing number of cycles until

ailure. Often, simple parametric functions can be fitted to the test data
o allow interpolation on the S–N curve.

More elaborate methods can be used to extend this simple rule in
rder to account for the effect of different loading sequences as well as
he effect of temperature, loading frequency and mean stress. However,
he underlying idea of cumulative damage models is appealing, i.e. that
ne may assume an additive contribution to fatigue damage from
ndividual cycles of loading. For battery cells, if one is able to construct
urves or surfaces similar to S–N curves that determine the contribu-
ion to battery degradation from individual charge/discharge cycles of
pecified DOD/SOC range, temperature and C-rate, this could be used
o calculate SOH based on experienced load profiles and some form of
ycle counting such as rainflow counting. However, an extensive set of
aboratory tests would presumably be needed, where run-to-failure tests
ould need to be performed for a number of different cycle amplitudes
nd conditions.

The rainflow counting technique is used on SOC time-series in [204]
o generate rainflow load collectives from operational profiles. Addi-
ional load collectives for temperature/current and SOC/temperature
re generated from the data. These are used as features to train a
upport vector regression model for the relationship between the load
he battery has experienced and the corresponding capacity fade. SOH
stimation based on such load collectives is compared to a similar
VR model based on more conventional features (e.g. throughput,
OC, temperature, . . . ) and found to perform better, with lower mean
quared training error and a significantly lower mean squared testing
rror. In addition, prognostics can be performed by assuming previous
oad history as representative for future battery loads. An extension
f the load collectives approach using nested collectives is proposed
n [205], where also a relevance vector machine is applied in order

o obtain uncertainty estimates. A similar approach presented in [148]
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uses the joint distribution of current, voltage and temperature and
divides this into a number of subregions using a clustering technique for
generating features to train a neural network model to estimate SOH.

Another cumulative damage model is proposed in [206], where an
empirical model is established that combines models for calendar and
cycle ageing described by number of cycles, SOC, DOD, cell temper-
ature and elapsed time. The rainflow counting technique is used to
extract cycles from irregular operational data profiles with correspond-
ing cycle amplitudes, mean values and start/end times and the cycles
are converted into the various stress factors that are used in the model.
Specific experiments are needed to estimate the model parameters.

A rainflow cycle counting algorithm is applied to batteries in [207]
and a cycles to failure profile versus DOD is established based on
experimental data. This curve is extended to also account for crate
and a cycles-to-failure surface over DOD and crate is established. A
battery ageing factor for a cycle 𝑘, 𝜂(𝑘), is defined as the reciprocal
of the cycles-to-failure associated with a specific cycle, and a total
battery ageing index is defined as the sum of this factor over all
experienced cycles. In analogue with the Miner’s rule for fatigue, when
the value of this index approaches 1, the battery approaches its EOL.
Based on the battery ageing index model and a rainflow cycle counting
algorithm, the battery degradation state information is determined for
collected battery operational data. This labelled battery operation data
are then analysed by a Deep Stacked Denoising Auto Encoder (DSDAE)
algorithm to deeply excavate the degradation features and improve the
accuracy of the battery model considering terminal voltage, current,
SOC and temperature. Finally, the total battery ageing index is used
in an ageing considered battery model to model the battery terminal
voltage and SOC.

3.7. Empirical/analytical models

Some methods for SOH estimation are based on fitting empirical
models to various measurement data. The aim of such models is to cap-
ture relationships between battery SOH and various stress factors, such
as operation time, temperature and operational loads. These models are
typically based on test data and the empirical relationships can be used
during operation to model SOH and capacity loss of the battery.

One such approach, reported in [208], is based on measuring the
current over time during the constant voltage phase of a CCCV charging
process and to model the current as a function of time during this phase
as a parametric exponential function on the form 𝐼(𝑡) = 𝐴𝑒−𝐵𝑡 + 𝐶,
where 𝐴, 𝐵 and 𝐶 are model parameters that change as the battery
egrades. It is observed that the 𝐵 parameter has a linear relationship
ith capacity loss and it is proposed to use this for SOH estimation.
ne attractive feature of this approach is that it is only based on the
harging phase, in particular on the CV part of the charging, and one
an assume that charging during normal operations is more controlled
han discharging with respect to constant or known temperatures.
ence, in cases where a CV charging phase, just before the battery is

ully charged, occurs often, this is a promising method. The method was
emonstrated to work well for NMC, NCA and LMO cells, and an even
ore simplified method was found sufficient for LFP cells, involving

nly the duration of the CV step of the CCCV charging phase.
Also focusing on the constant-voltage charging phase, [102] pro-

oses to model the capacity as a function of a current time constant,
𝐼 , that is determined from a set of battery model parameters estimated
y assuming a first order equivalent circuit model (1RC model). The
ormalized capacity is then found to exhibit a linear relationship with
he 𝜏𝐼 , where slope and intercept can be determined by curve fitting.
ne advantage of this method is that it does not require a full constant-
oltage charging phase to be completed, and it can estimate the current
ime constant also from partial CV charging data.

Simple empirical models for capacity fade based on number of
ycles/time have been proposed in different forms: i.e. linear age-
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ng [209], square-root ageing [210], power-law ageing [211,212],
exponential ageing [109,213] and polynomial ageing [214], or a com-
bination of these [215]. The sum of two exponential functions is
proposed in [216] to model capacity degradation and a sigmoid func-
tion is suggested in [217]. Various factors such as temperature and
SOC can be accounted for by letting model parameters vary. A simple
linear model for SOH estimation based on the fitting of a curve to
data of voltage at the beginning of discharge and cycle number is
presented in [218]. A model for SOH estimation based on measuring
internal resistance and establishing an exponential function for the
relationship between SOH and number of complete cycles, taking the
effect of temperature, DOD and discharge rate is proposed in [219]. A
semi-empirical model for SOH taking number of cycles and discharging
current as input is proposed in [220], where different coefficients
depending on operating conditions such as temperature and C-rate are
included. An empirical model for combined calendar and cycle ageing
is proposed in [206] based on rainflow cycle counting.

A migration scheme is proposed in [213,221] to establish an accel-
erated ageing model based on accelerated testing data and then migrate
it as a new model to describe normal-speed ageing behaviour. The
base method assumes an exponential function of number of cycles, and
the migration factors are estimated by Bayesian Monte Carlo methods.
This approach is extended with a migration neural network in [222] to
enhance the model’s nonlinear transfer capability. An empirical model
for capacity fade based on moved charge, 𝑞 (in Ah), is proposed in [16],
where capacity fade is modelled as the sum of a square root, a linear
and a quadratic function of 𝑞.

A number of parametric models for OCV as a function of SOC
are reviewed in [85], which could be used to estimate IC/DV curves
and inform about battery degradation. However, a model based on a
Gaussian function mixture is proposed and found to perform better than
the other alternatives. Such a model is characterized by parameters
corresponding to the amplitude, location and steepness of peaks on
the IC curve, and changes in these parameters over time correspond to
changes in the peaks of the IC curve. Hence, the variation of some of
these parameters are used to build the relationship with SOH and hence
to estimate SOH, assuming a linear relationship. A 1RC equivalent
circuit model is assumed to determine the open circuit voltage and the
OCV curves used for fitting the parametric OCV model.

State of health monitoring based on measuring the battery open-
circuit voltage after a brief relaxation time (30 min) after full charge
and then assuming a linear relationship between this measure and SOH
is presented in [223]. The linear model has two parameters that can
be estimated and calibrated from accelerated ageing tests. Typically,
the parameters will vary by battery technology and chemistry and
also by load profile and temperature. Different relationships between
characteristics of the Ah–V curve and capacity or usable energy are
established in [92] and used for estimating SOH.

An analytical model for actual capacity taking both calendar and
cyclic ageing into account is proposed in [7] as a function of time,
𝑡 and throughput, 𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (in Ampere-hours), as follows: 𝐶𝑎𝑐𝑡𝑢𝑎𝑙 =
𝐶𝐵𝑂𝐿

(

100 − 𝛼𝑡𝛽 − 𝜂𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
)

. The model parameters, 𝛼, 𝛽 and 𝜂 are
determined using a support vector machine and experimental data. A
model for capacity fade as a function of Ampere-hour throughput, DOD
and number of cycles is used in [224].

A semi-empirical model for battery capacity, which models calendar
and cyclic ageing separately, is presented in [225]. The calendar ageing
is modelled as the square root of time, with a stress factor that is
dependent on temperature and SOC. The pure cycle ageing is modelled
by first subtracting the calendar ageing and then using a superposition
of three models for high temperature, low temperature and low temper-
ature/high SOC, respectively. The high and low temperature models are
functions of the square root of charge throughputs, with stress factors
dependent on temperature and (for the low temperature part) charge
current. Finally, the low temperature/high SOC part is modelled as a
linear function of charge throughput, with a stress factor depending

on temperature and charge current, if SOC is above a fixed SOC limit.
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See also combined empirical modelling of calendar and cyclic ageing
as a superposition of separate models in [226,227]. Empirical capacity
fade models for both calendar and cyclic ageing are proposed in [228],
where SOC and temperature are stress factors in the calendar ageing
model with a power law function of time, and temperature and current
are stress factors in the cycle ageing model with a power law function
of throughput. They also suggest to switch between the calendar and
ageing models during operation to account for what kind of ageing is
taking place and uses a threshold on the current to determine which
ageing model to apply.

A semi-empirical model for calendar ageing based on the Eyring law
is presented in [229], where the capacity loss over time is modelled to
follow the Lambert W function dependent on temperature, time and
available capacity.

The coulombic efficiency (CE) is used to establish a model for
actual reversible capacity in [210]. It is assumed that the coulombic
efficiency describes the decrease in reversible capacity in successive
cycles, 𝐶𝑘 = 𝐶𝑘−1𝐶𝐸𝑘, where 𝐶𝑖 denotes the reversible capacity at
ycle 𝑖 and 𝐶𝐸𝑖 is the coulombic efficiency of cycle 𝑖. Then, assuming
hat the coulombic efficiency is constant over cycles, one arrives at
he following, by iterating over cycles since the initial capacity 𝐶0:
𝑘 = 𝐶0

(

𝐶𝐸1𝐶𝐸2 ⋯𝐶𝐸𝑘
)

≈ 𝐶0𝐶𝐸𝑘, see also [94]. Hence, they propose
the following parametric model for reversible capacity:

𝐶𝑘 = 𝛼0𝐶𝐸𝑘 + 𝛼1, (6)

where 𝛼0 and 𝛼1 are considered model parameters, and also 𝐶𝐸 is
regarded as a model parameter, reflecting that it is difficult to measure
𝐶𝐸 accurately. This model is compared to a simple empirical model
based only on cycle number, 𝐶𝑘 = 𝛽0

√

𝑘 + 𝛽1, and is found to perform
better. In order to apply the method as an online application, the
model is formulated as a state-space model and a particle filter is used
to update state parameters. The effects of ambient temperature and
DOD are not accounted for, and this is an important topic for further
research. Furthermore, it has been shown that coulombic efficiency
is influenced by the C-rate, with higher efficiency for lower current
rates [230]. An extension of the model above that also takes into
account the capacity increase that can be observed during rest periods
between cycles is proposed in [94], and the parameters are estimated
using particle filter with resampling.

Relationships from a simple equivalent circuit model are combined
with a polynomial-based relationship between OCV and SOC in order
to obtain a function of voltage with only charged capacity as variable
in [99]. The parameters of this model, only one of which is temperature
dependent, can be fitted to a defined voltage window of the charg-
ing/discharging profiles at different levels of ageing in order to estimate
the present maximum capacity and hence the SOH. It is indicated that a
polynomial of order three can be suitable for some battery chemistries,
whereas for example LFP requires a polynomial of order greater than
10. Hence, the generality and adaptability of such methods across
different chemistries is a drawback with this approach.

A cycle life model for LFP batteries is proposed in [231], where
different empirical models are fitted to describe the dependencies
between cycle life and working temperature (third-order polynomial
model), discharge current rates (exponential model), DOD (exponential
model) and charge current rates (exponential model).

3.8. Other approaches

Some other approaches to SOH estimation that do not directly
belong to any of the categories above have been suggested in the
literature. A discrete wavelet transform (DWT) based approach is pro-
posed in [232], where the SOH is related to the standard deviation
of the approximation component and the detail components of the
transformed voltage signals. Discrete wavelet transform has also been
used for battery SOH estimation in [233] (for lead–acid batteries) and
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in [234] (employing a fast discrete wavelet transform and combined
with a cross D-Markov machine).

A geometrical approach to lithium-ion battery capacity estimation
is presented in [235], which can reflect the intrinsic degradation of
the batteries. Four geometrical features that are sensitive to changes in
the degradation of batteries are extracted from current curves during
charging and voltage curves during discharging. Next, the Laplacian
eigenmap method is applied to establish an intrinsic manifold where
geodesic distances are calculated and used as a metric for the estimated
capacity.

Rather than training a data-driven model to estimate SOH based on
sensor data, a multidimensional look-up table is introduced in [236],
where several features of interest are extracted from incremental ca-
pacity curves, and their evolution along the battery degradation paths
is used to construct a look-up table for capacity estimation under any
operational scenario. The idea is that this can be used very efficiently
when IC curves corresponding to batteries in operation are collected.

A visual cognition approach to battery capacity estimation is pro-
posed in [237]. With this approach, charging current and discharge
voltage data for each cycle are arranged to form a two-dimensional
image, which is then decomposed into multiple spatial-frequency chan-
nels with a set of orientation subbands, imitating the human visual
system. Several indicators are then extracted to form an initial high-
dimensional feature vector and manifold learning is used to construct
a low-dimensional intrinsic manifold that can reveal the capacity degra-
dation in the extracted features. Finally, battery capacity degradation
is estimated using the geodesic distance on the manifold between the
initial and the most recent features.

Data-driven SOH estimation methods will be an important ingredi-
ent in battery digital twins. Battery data, models, control, and diag-
nostics tools are fused with battery knowledge and emerging machine
learning techniques towards creating battery digital twins where SOH
and capacity estimation models are essential. The building components
of battery digital twins are reviewed in [238], and [239] discusses
the applications of battery digital twins in manufacturing and pro-
duction phase and the operation stage. In this direction, cloud-based
battery management systems were considered in [240] through cloud
computing using combinations of diagnostic algorithms and digital
twins built using Internet of Things (IoT). SOC and SOH estimation
algorithms are developed using respectively H-infinity and particle
swarm optimization techniques based on equivalent circuit models
and measurement data. Using empirical capacity and resistance ageing
models, [241] develops a deep deterministic policy gradient approach
for a cloud-based energy management system in a hybrid high-energy
and high-power battery pack to increase electrical and thermal safety
and reduce energy losses and ageing costs.

4. Discussion

4.1. Data availability and requirements

Data-driven models need training data to learn relationships be-
tween input variables and responses, and the availability of data de-
termines both what types of models can be used and the accuracy of
the model predictions. Often, training data are gathered by laboratory
experiments and used to train a model that can be used in an opera-
tional setting, and it is not obvious how representative such data are.
However, if a sufficient amount of operational data is available, it may
also be possible to train models based on such data without requiring
extensive laboratory testing, as suggested by e.g. [183,184]. The origin
of the training data notwithstanding, available training data needs
to be of sufficient quality and quantity, sufficiently representative,
sufficiently complete and sufficiently relevant in order to train usable
data-driven models, and the availability of such data is a crucial prereq-
uisite for relying on data-driven models for battery capacity estimation.
A recent review of publicly available battery data is presented in [242].
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The type of data that are available will determine what types of
data-driven methods can be developed, and the extent of requiring col-
lection of specific data for the purpose of model training. For example,
if cell-specific training data are needed to train the models it may be
a requirement that specific accelerated testing are carried out prior to,
or in parallel with, starting up operation of the actual battery system.
On the other hand, if more generic training data are sufficient, it may
be possible to train models based on previous tests on similar battery
cells. However, different types of models may not need prior training,
so the training data requirements needs to be assessed based on what
models will be used and what data are available.

Also, it will be important to understand what type of operational
data will be available throughout the lifetime of the battery system.
What are the resolution at cell, module and pack level and which
features will be available. One may not necessarily assume that data
collected routinely by the BMS will be available for the SOH algorithms,
such as various current, voltage and temperature measurements, and
temporal and spatial resolution may vary. Furthermore, the reliability
and accuracy of derived quantities such as the SOC will need to be
assured. It remains to be determined whether the data automatically
collected are sufficient, or if additional specific measurements are
required, e.g. periodic tests with set load patterns and fixed conditions
with respect to C-rate, temperature and SOC range where one can
perform Coulomb counting, or particular tests such as pulse tests and
impedance or resistance measurements. From a practical point of view,
it may be desirable to only rely on continuously measured data streams,
but results could be improved if additional tests are carried out.

Moreover, it is important to consider how to handle missing data
and the extent and effect of this on the SOH diagnostics. For example,
for models such as cumulative damage models where the complete op-
erational history is needed in order to estimate SOH, missing data and
data interruptions may not be tolerated, but other approaches based
on snapshots of the batteries, for example regression models relating
features of the charge/discharge curves to SOH, would not suffer much
from missing data. Imputation techniques could also be explored to
remedy the problem of missing data [159]. These considerations need
to be taken when selecting a data-driven approach for SOH modelling.
Another aspect of missing data is that data streams will typically not
contain capacity or SOH for all data points. Hence, models that can
be applied with no or limited labelled data may be needed, indicating
that methods from unsupervised or semi-supervised learning could be
relevant [143].

The data quality is a crucial issue for data-driven methods, and
results can only be as good as the data allow. Many of the continuous
variables will most likely be discretized in both time and measurement
value, and additional measurement noise will always be present. This
could influence results in different degrees, and some denoising and
preprocessing of the data will probably be needed. For example, meth-
ods based on ICA/DVA relying on the differentiation of discrete signals
will certainly need some type of smoothing to perform well. Hence,
proper approaches to preprocessing and denoising of the data signals
will need to be considered as well as the actual data-driven models.

Moreover, additional factors that may be relevant for maritime
batteries have not been well studied in the literature, such as the effect
of humidity, airborne salinity, vibrations and the constant movement
of the ship. Such information may not be available and it should be
investigated to what extent such factors influence battery degradation.

As mentioned above, some data-driven methods require extensive
amount of training data in order to train the models properly. Possibly,
specific tests may be required for the particular battery cells in each
case, or test results from similar cells could be exploited. A combined
approach utilizing transfer learning could also be envisioned [172],
where models are pre-trained on publicly available data before they are
re-trained more specifically for the application in question. A method-
ology for synthetically generated battery data for big data training are
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discussed in [243].
4.2. Synthetic and realistic load profiles

Some approaches to SOH modelling assume that batteries are used
in a controlled way, at near-constant temperatures, with constant
charge and discharge C-rates and systematically cycled between min-
imum and maximum SOC. Indeed, training data obtained from labo-
ratory tests will often be collected under such controlled situations.
However, for maritime battery systems, this is hardly the case and
batteries are typically cycled only partially and under highly variable
loads and environments [148]. This must be taken into account, and
methods that are able to account for these variations are needed.
For example, proper calibration of SOC estimates may be difficult
for batteries that rarely experience fully charged or fully discharged
conditions, but are partially cycled around an uncertain SOC level. This
may cause SOC estimates to drift over time which may again influence
SOH and capacity estimates. A methodology for generating synthetic
training data by simulation is presented in [243], and such approaches
could be useful to expand available training data.

For data-driven methods that have been trained using laboratory
test data or synthetic data, it will also be important to have data
from dynamically varying loading tests, where the effect of varying
temperature and C-rates are included. As noted in [244], there is no
guarantee that data-driven methods that are perfected for constant
loading profiles perform well on variable loading cases. However, sev-
eral authors have noted that the charging process of batteries in actual
operation tend to be less variable than the discharging process. Often,
charging is performed with a constant current constant voltage pro-
cedure, with deterministic rather than stochastic current and voltage
profiles in the different steps [76,102,134,135]. Hence, methods that
consider features from charging profiles may be preferred to methods
relying on discharge features. However, typical charging patterns may
vary and extensive use of partial fast-charging may deviate from normal
charging routines under very similar conditions.

The fact that realistic load profiles expectedly will exhibit only
partial charging and discharging cycles means that methods that rely on
e.g. Coulomb counting through a complete cycle will not be accurate,
as these situations hardly ever occur in actual operation of the battery.
Hence, methods based on partial charging/discharging information are
more attractive. This review has shown that several approaches are
proposed that extracts features from partial charging curves, including
incremental capacity information from specific voltage ranges, infor-
mation extracted from the constant voltage step of a CCCV charging
process and information related to battery response to short-term cur-
rent pulse tests, and use these to estimate battery degradation and
SOH. Hence, such features are believed to be useful and could be used
to estimate SOH for maritime battery systems. However, the effect
of dynamically varying temperatures and currents must be taken into
account also for features based on partial cycling data, and this may
not be straightforward.

4.3. Statistical and machine learning models

One often distinguishes between statistical models and machine
learning models, and different types of models have been reviewed
in this paper. In regression problems such models are used to estab-
lish a relationship between a response variable, in this case the SOH
or capacity of the batteries, and one or more explanatory variables.
In this context, statistical models are often referring to more simple
models, where linear or simple functional relationships are fitted to
the data, whereas machine learning models yield more complicated
relationships.

Some aspects to consider when selecting a statistical or a ma-
chine learning model are predictability and interpretability. Typically,
more advanced machine learning models are more flexible and can
accommodate complicated relationships between the input and output

variables and may have higher predictive power. However, such models



Journal of Energy Storage 43 (2021) 103158E. Vanem et al.

t
p

are often referred to as black box models in the sense that it is difficult
to understand the predictions and difficult to interpret the relationship.
On the other hand, simple statistical models are more interpretable
and intuitive, but may have slightly poorer predictive performance.
Furthermore, complicated models may fail to generalize and are more
prone to overfitting than more simplistic models.

Another aspect is to what extent uncertainty is taken into account
and whereas some models provide predictive distributions, most ma-
chine learning model only give point estimates. Obviously, estimation
of the uncertainty can be useful but often comes at a computational
cost [245]. Uncertainties can also be accounted for by an ensemble of
point predictions from different models, and ensemble models may also
increase the robustness of the data-driven models. Hence, selecting a
statistical or a machine learning model for SOH estimation is a trade-off
between accuracy, generalizability, interpretability and computational
cost.

Notwithstanding, for the purpose of developing data-driven models
for SOH verification, it is believed that other aspects of the data-driven
methodologies are more important than the exact type of regression
model, i.e. related to selection of features, data pre-processing and the
overall modelling approach. It is also mentioned that the required ac-
curacy may depend on the usage of the data-driven models. Typically,
OEM may require higher accuracy than the classification society, who
only need independent modelling to verify the SOH estimates from the
BMS in order to validate that the battery systems is fit for further use.

4.4. Feature extraction and selection

There are different definitions of SOH, and two common approaches
are to consider SOH in terms of the actual capacity of the battery
and the internal resistance of the battery [6]. In this paper, it is
assumed that the capacity-based SOH is the most important one, and
this obviously influences the modelling choice.

Different modelling techniques require different types of features to
explain battery degradation and different training data. For models to
be useful it is also important that the selected features will be collected
during operation. Hence, there is typically a need for features that can
be extracted from data readily available from the battery management
system, such as current, voltage and temperature measurements. From
such raw data, derived features such as SOC, number of cycles and rest
time at different SOC/voltage level can also be extracted. This review
has showed that there are countless approaches to extract features,
sometimes referred to as health indicators, for SOH modelling, and
which features are used to train the data-driven models may typically
be more important than the actual type of statistical/ML model to
employ.

Feature extraction for SOH estimation is addressed in [135] and
it is proposed that six features that can be extracted from charging
profiles are informative on SOH, i.e. time intervals, charging capacities
and temperatures in CC and CV steps of a CCCV charging process, re-
spectively. Moreover, they propose to validate the relevance of features
using grey relational analysis (GRA) and possibly remove features that
are found to have low relational grade. An optimized feature extraction
method based on a genetic algorithm (GA) is proposed in [136]. It uses
the charging time for a fixed voltage range from partial charging data
to determine SOH and optimizes the charging voltage range to be used
as features to achieve best accuracy at the lowest computational cost.

4.5. Models based on complete loading history vs. snapshot methods

Some of the models reviewed in this paper rely on the whole operat-
ing history of the battery cells in order to estimate SOH, whereas others
estimate SOH based on brief snapshots. Cumulative damage models
and empirical/semi-empirical models relating SOH to number of cycles
and other stress factors such as temperature, C-rate and SOC swing are
examples of the former. Regression models on features extracted from
18

c

partial charging curves or incremental capacity curves are examples of
the latter. Both approaches have some advantages and disadvantages.

Cumulative damage models are attractive, since they can be used
to model the accumulated degradation effect from the experienced
operational profile. In essence, such models establish a relationship
between the load profile or individual cycle and the change in SOH,
the 𝛥SOH. The actual SOH after 𝑛 cycles can then easily be estimated
as 𝑆𝑂𝐻𝑛 = 𝑆𝑂𝐻0 +

∑𝑛
𝑖=1 𝛥𝑆𝑂𝐻𝑖, where 𝑆𝑂𝐻0 is the initial capacity,

typically 100%.2 Moreover, if a future duty cycle can be assumed, such
an SOH estimation model can also be used for prognostics and RUL
prediction. However, one disadvantage of this approach is that the
complete operational profile is needed. Periods of missing data will
effectively render such models inaccurate. Possible remedies could be
to impute values for missing data, but this is probably only possible for
relatively short periods of missing data. Some situations where longer
period of missing data for maritime battery systems can be envisioned,
e.g. short- or long-term system down-time of interrupted data transfer
capabilities, periods when the vessel is temporarily laid up and the
battery system has not been in use (although not in use, calendar ageing
continues and will typically be dependent on SOC, temperature, etc...),
and if the ship changes owner or class society with possibly lost access
to previous operational data. Such approaches would presumably also
be vulnerable to deliberate data tampering and it would be possible to
remove data from unintended periods of abusive conditions.

On the other hand, methods based on regular snapshots of the data
streams are very attractive in the sense that it does not require access
to continuous data streams, or alternatively, accumulated data in the
form of histograms or collectives representing the complete operation
history. With such models, it would suffice to get batches of data at
certain intervals, and if the models are able to reliably extract battery
capacity and SOH from such snapshots, the cumulative effect since the
previous batch would implicitly be estimated. Thus, if such models are
found to perform well enough, they may be the preferred approach for
SOH verification of marine battery systems.

Possibly, a hybrid approach could also be envisioned, where for
example a crude cumulative damage or empirical type of model runs
on system level, supplemented by snapshot-type models on cell level at
regular or irregular intervals. Notwithstanding, the choice of modelling
approach will have implications on the data requirement and this
aspect need to be considered.

4.6. SOH estimation and RUL prediction

Estimation of SOH and prediction of RUL of batteries can be consid-
ered as two sides of the same coin. SOH estimation aims at describing
the current degradation state of the battery, whereas RUL predictions
projects future degradation of the battery until it reaches its EOL.
Hence, both depend on a method for describing ageing as a function
of various factors such as calendar time, cycle time and operating
conditions related to temperature, C-rate and SOC levels. However,
for RUL there is the additional need of predicting future conditions
and usage patterns. For battery systems operating under variable loads,
this may be challenging and some additional assumptions need to be
made. Another issue is that inherent uncertainties exist, which get com-
pounded and can easily grow out of control when predicting many steps
ahead, making RUL prediction less accurate than SOH estimation [244].

Some of the methods described above for SOH estimation cannot
easily be adopted to predict RUL, and all methods based on direct
measurements such as Coulomb counting, electrochemical impedance
spectroscopy and ICA will be difficult to apply in a prognostics set-
ting. However, other methods will typically be more relevant for RUL

2 An initial capacity test will be relevant for ships in order to verify that
he battery is working as it should, and even in a future class framework
erspective where annual test requirements can be waived such initial tests
ould be required.
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prediction than for SOH estimation, for example different time series
models and survival models. Cumulative damage type of approaches,
where degradation is modelled based on cumulative effects of the load
histories, on the other hand, could presumably be adopted and used
also for RUL prediction, under some assumed future loading conditions.
Also, many of the empirical capacity fade models could in principle
be extended to predict remaining useful life of batteries, i.e. to predict
when capacity crosses a predefined threshold.

The duty cycles and operating conditions of maritime battery sys-
tems will typically be varying and unpredictable, and depend on fac-
tors such as weather and sea state conditions, loading conditions and
possibly different voyage lengths and routes or different operations.
However, one plausible assumption could be that past operating history
is representative for the future. Hence, one solution is to merely repeat
historical usage patterns into the future to predict RUL based on a
degradation model. This approach was suggested in [204].

4.7. Cell vs. module vs. pack level

When establishing diagnostics methods for SOH estimation one
needs to consider whether to apply these on cell, module or pack
(string) level. Both approaches may be useful, but the choice of level
might influence the modelling choice. For maritime battery systems in
particular, which are large-scale installations consisting of numerous
cells, SOH at system level is highly relevant. The heterogeneity of
the different cells within a module or a pack is a challenge, and
even though the BMS tries to balance the cells, some imbalance and
differences between the cells seem unavoidable [246]. Moreover, there
are different balancing approaches, e.g. active and passive balancing,
and the heterogeneity will be design-dependent. This will influence the
degradation and cells within a battery system will typically not degrade
uniformly. Hence, methods to identify cell differences are relevant.
There will also be varying temperatures between cells in a module and
from module to module. Variations will typically depend heavily on
design aspects such as the cooling system, and e.g. air cooled systems
may be expected to entail larger variations than liquid cooling systems.
A classification approach to determine relative self-discharge rates in a
battery system is presented in [247]. An approach to evaluate cell-to-
cell variations for batteries in electric vehicles based on charging data
stored in the cloud is proposed in [248].

It is suggested in [249] that the capacity of a battery pack connected
in series is determined by the two worst cells, i.e. the cell that first
reaches fully charge state during charging and the cell that first reaches
fully discharge state during discharge. Hence, given SOC and capacity
for all cells in the pack, the capacity of the pack, 𝐶𝑝𝑎𝑐𝑘, can be found
from

𝐶𝑝𝑎𝑐𝑘 = min
1≤𝑖≤𝑛

{

𝑆𝑂𝐶𝑖 × 𝐶𝑖
}

+ min
1≤𝑖≤𝑛

{

(1 − 𝑆𝑂𝐶𝑖) × 𝐶𝑖
}

, (7)

where 𝐶𝑖 and 𝑆𝑂𝐶𝑖 are the capacity and SOC, respectively, for cell
𝑖, 𝑖 = 1,… , 𝑛, and 𝑛 is the number of cells connected in series in
the pack. A so-called capacity–quantity diagram is introduced as a
graphical illustration of this relationship that can be used to estimate
the capacity of the battery pack. Moreover, it is demonstrated that the
estimation error of pack capacity is influenced more by estimation error
of the individual cell’s SOC than the estimation error of individual cells
capacities. However, as pointed out in [250], this approach needs to be
extended to account for variations in C-rate and temperature.

In principle, one could assume that SOH estimation at cell level
are easily aggregated to pack level. For example, for cells connected
in series with passive equalization, the available capacity of the entire
string will be determined by the capacity of the single cell with the
minimum capacity, and for series-connected cells with active equal-
ization, the available pack capacity is given by the average of the
cell capacities [251]. For parallel-connected cells the available ca-
pacity will be given by the average cell capacity times the number
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of cells. However, earlier studies have shown that battery pack lives
are typically shorter than single cell life due to other degradation
mechanisms [21]. Moreover, individual cells may not be monitored
and for example measurements of the current going through individual
cells may not be available. Compared to degradation of individual
cells, the degradation of battery modules and packs are influenced by
additional factors such as battery topology, inhomogeneity and cell
balancing approach. Whereas most papers study capacity modelling at
cell level, there are some studies that addresses capacity estimation at
pack level [22,252–256].

An incremental capacity peak tracking approach is proposed in [22]
for online SOH monitoring of battery modules consisting of cells in
parallel with different ageing histories. They demonstrate that ICA
methods developed for single cell capacity may also be used for mod-
ules with cells connected in parallel, even considering non-uniformity
of the cells, and based on terminal measurements only. Their results
indicate that correlations between the peak of the IC curve and capacity
obtained from single-cell data are generalizable to battery modules, and
may be used to model module capacity and for health monitoring. A
similar approach was validated for a battery pack with cells in series
in [254], even though they employ a strategy where SOH is estimated
on each cell in order to detect the weakest cell in the module.

State of health estimation for battery packs based on a simplified
equivalent circuit model is proposed in [253]. They propose a simpli-
fied ECM in order to reduce complexity, but this introduces a significant
amount of noise and errors. In order to deal with this noise, a state-
space model is developed based on the simplified ECM and a genetic
resampling particle filter is applied to estimate SOH. A serial-connected
battery pack model based on a second-order equivalent circuit model
is proposed together with a multi-time scale extended Kalman filter
in [255] to estimate all the cell’s capacity. A ‘‘special and difference’’
model is employed where one of the cells in the pack is selected as a
special cell, and the difference between the remaining cells in the pack
and this special cell is modelled in order to estimate the battery pack
output. An ECM is also used for battery pack modelling in [257].

System-level SOH of battery packs are assessed based on knowledge
of individual cell SOH, pack topology and a voltage equalization ap-
proach in [251]. A battery pack model is constructed based on three
interconnected submodels, composed by electrical, thermal and ageing
models for individual cells. A similar set of models are used in [258]
to model individual cell capacity fade as well as cell-to-cell variations
within a battery system. They conclude that estimation considering
the cell-to-cell variation within a battery system is more accurate than
assuming identical behaviour of all cells. In [259] a battery pack
model is constructed based on a series of ECMs for individual cells
in series, and a nonlinear predictive filter is used to estimate the
states of both individual cells and the battery pack and to estimate
capacity and power SOH. The energy SOH of a battery pack is proposed
in [252] as an alternative to SOH definitions based solely on capacity
or internal resistance. It is defined as the ratio between the current
maximum available energy (MAE) in the battery pack and the rated
total energy of the battery pack. They assume an equivalent circuit
model and estimate the MAE considering the inhomogeneous capacities
and internal resistances of the cells in the pack.

Techniques from systems reliability analysis have been used to
analyse the reliability of battery systems as a series or parallel sys-
tem of individual cells as components in a system in e.g. [260,261].
Degradation tests for cell and pack level, for a selection of simplified
pack configurations, are presented in [261] and it is suggested to model
the dependencies among cells degradation using copulas. Degradation
tests for battery packs with similar configurations are also presented
in [262], where the Pearson correlation coefficient is used to evaluate
the dependence between different cells in the pack and between the
cells and the overall pack.

Although several papers have been published that deal with SOH
estimation at battery pack level, generic and robust estimation of

battery SOH remains a challenge. Many of the approaches discussed
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above rely on complicated equivalent circuit models. It is questionable
how generic these are and to what extent a model constructed for one
battery system can be applied to others. The approach based on ICA on
pack level is interesting, but it is dependent on charging/discharging in
controlled environments and typically with constant and low C-rates.
Moreover, the availability of data on cell or pack level will be important
to consider for deciding whether to estimate SOH on cell or pack level.
This relates both to the availability of test data for model training,
which is typically obtained for single cells only, and the operational
data that may typically only be available on module or pack level.

Whether one opts for a modelling based on a complete loading
history or a snapshot method may also influence, and to require high-
resolution data on cell level corresponds to requiring vast amounts
of data. If a snapshot method is used, detailed data on cell level
might be feasible, whereas if data for the complete loading history are
needed, then low-resolution data on module or pack level might be the
only realistic option from the perspective of amount of data required.
Possibly, hybrid methods could be developed, where high-level data on
system level approximates system SOH based on complete operational
data, whereas snapshot methods are applied at cell level at regular
intervals.

4.8. Generalization

The idea of identical cells is important for modelling SOH, and
one may typically assume cells to be identical if they have the same
chemistry and belong to the same production line. Moreover, different
cells may be assumed to be similar, if they share some common
features, such as the same type of chemistry, the same cathode or
anode materials, the same form factor or the same producer. One
important question that is relevant both for the modelling of battery
packs consisting of several cells believed to be identical, and also to
the applicability of basing SOH monitoring on operating cells based
on laboratory test data for identical cells, is to what extent results
obtained from one cell are generalizable to other similar or thought-
to-be identical cells. A study on four different cells presented in [121]
reports that a model built using data from one single cell was able
to simultaneously estimate SOC and SOH of the three other cells with
reasonable error.

However, several studies have demonstrated that the variability in
degradation and capacity fade is large even for nominally identical
cells [263]. Furthermore, identical cells in one battery pack may ex-
perience significant cell-to-cell variations in experienced temperatures,
currents and voltages, which will influence degradation [258]. Such
cell-to-cell variation may be important and adds to the uncertainty of
battery degradation modelling. Furthermore, it may limit the extent to
which results obtained for a specific cell can be generalized to other
similar or even identical cells. A cells-in-series approach is proposed
in [264] to detect cell-to-cell variation with high precision, based on
voltage measurements only, since cells in series experience the same
current. A logistic regression classifier was used in [265] in order to
quickly, during a few early cycles, dichotomize cells into low-lifetime
and high-lifetime groups of cells.

One issue that has been raised as a major challenge in battery ca-
pacity and SOH estimation is the effect of varying operating conditions.
More specifically, degradation rates of batteries are known to be highly
sensitive to variations in temperature, C-rates and range and levels of
SOC during cycling and storage. If models are trained on laboratory
data that do not exhibit the same variation in operational conditions as
what could be expected during operation, it is an open question how
the model generalizes to predict actual capacity under typical loading.
Hence, the effect of such varying loading and operational conditions
is an important aspect that needs to be considered when developing
20

data-driven methods.
4.9. Effect of battery chemistry and degradation mechanisms

In this review of data-driven methods for battery SOH estima-
tion, modelling approaches for a range of different battery types and
chemistries have been reviewed, without a lot of emphasis on what
type of batteries the various methods have been applied to. It has
tacitly been assumed that the data-driven methods are agnostic to
battery chemistry, in most cases, and that different chemistries can
be handled by changing the model parameters or re-training models
with appropriate training data. However, it should be noted that some
methods may not be easily transferred to other battery chemistries,
so care should be taken when selecting a modelling approach for a
particular battery type. For example, it is generally known that LFP
batteries exhibit a flat plateau in the SOC–OCV curve that renders
voltage-based algorithms and ICA difficult to apply to such types of
batteries [56]. Such considerations have not been made in the generic
review presented in this paper, but obviously need to be made carefully
in an actual application.

It is also known that different battery chemistries can have very
different degradation mechanisms and that the degradation response
to various abuse factors vary significantly across battery chemistries,
and even between batteries with the same or similar chemistries from
different production lines [266].

When adopting a data-driven approach to degradation modelling,
it is implicitly assumed that detailed knowledge of the various degra-
dation mechanisms are not needed beyond what is implicit in the
data. Hence, this paper does not review the degradation mechanisms
in detail, but it should be kept in mind that different batteries degrade
differently and that this needs to be accounted for in the models.
Some of the most important causes of battery degradation are loss of
active material at the electrodes, SEI growth, electrolyte degradation,
lithium plating at the anode, increase of internal resistance and possible
dendrite formation, but the rate of degradation varies significantly.

Another issue that should be taken into account is that some degra-
dation mechanisms may not be completely irreversible and some ca-
pacity recovery can occur, for example after extended periods of rest.

4.10. Verification and validation

One important question for data-driven SOH estimation methods is
to what extent they can be verified and validated to perform satisfac-
torily for the intended battery system. This question is at the core of
the objective of this review, where one of the main goals is to provide
means for an independent verification of the SOH estimates provided
by the battery management system (BMS). One obvious approach is to
establish an independent SOH estimator that can run in parallel to the
BMS to provide a real-time second opinion on SOH, and report large
discrepancies. Another option could be to have an off-line model that
can run on batches of data at regular intervals and compare with the
estimates obtained from the BMS. Notwithstanding, there will still be a
need for verification and validation of the independent SOH estimation
method. This may require a standardized platform and extensive testing
data from actual degrading batteries.

The preferred solution would be to have a generic SOH estimation
approach that could be adopted and used for all types of battery
systems; for all common chemistries, for all battery sizes, for all oper-
ational profiles (e.g. fully electric, peak shaving, spinning reserve, . . . )
and in all environments. However, even with such a generic approach,
there would still be a need to adjust the model and possibly re-train
it on a case-by-case manner. Hence, verification and validation of the
model may not be possible once and for all, and it would need to be,
somehow, verified and validated particularly for each case.

It is noted that some particular methods may be prone to systematic
under- or overestimation of actual capacity. For example, as indicated
in [51], SOH estimation based on Coulomb counting of partial cycles –

a technique that is utilized for maritime battery systems today – is likely



Journal of Energy Storage 43 (2021) 103158E. Vanem et al.

r

m
v
C
A

to underestimate the capacity fade and thereby overestimate the actual
capacity. It is important to understand and account for such systematic
biases for specific approaches, in order to obtain reliable estimates of
SOH and capacity.

Some publicly available battery data are available for the pur-
pose of providing a benchmark for battery diagnostics and prognostics
approaches, and these may be utilized, to the extent that they are
found relevant, for testing different SOH estimation methods. One
example is the data available at the NASA Arnes Prognostic Data
Repository [186]. However, it is questionable if such data are sufficient
for a full verification of SOH estimation methods for maritime battery
systems.

The literature survey presented in this paper has reviewed a number
of different modelling approaches, and results in the reviewed papers
are often accompanied with some measure of accuracy or uncertainty,
e.g. in terms of root mean square error or similar metrics. Hence, in
principle one should be able to compare and rank various approaches
based on reported performances. However, since the different models
are applied to different datasets, such comparison is futile, and it is
deemed difficult, if not entirely impossible, to verify claims of accuracy
reported in the literature and use this to rank models. In order to do this
in any sensible way, a comparative analysis where different approaches
are explored on the same dataset would need to be performed. This is
out of scope of this state of the art survey, but will be important in
future work.

5. Summary and conclusions

The main objective of this paper is to understand the various
approaches one could take on SOH estimation of maritime battery
systems, and to guide the selection of promising methods and models
to explore further. The focus has been on capacity-based SOH.

Data-driven methods for SOH modelling can be categorized into a
few groups of approaches, i.e. direct measurement techniques, state-
space models with observers, regression type models, time-series mod-
els, survival type models, cumulative damage models and empiri-
cal/analytical models. However, the distinction is not crisp, and several
types of approaches are often combined. Notwithstanding, based on
the review presented in this report, it is assumed that some of these
approaches are more relevant for maritime battery systems than others.
One desired feature of the selected modelling technique is that it
only needs information contained in operational data. For example,
time-series models and survival type models are not believed to be
optimal. Time-series models typically describe the temporal evolution
of a variable, such as the SOH and capacity and require time-series
of capacity measurements that will not be available. However, such
approaches may be interesting in a later stage, for prognostics based on
time-series of accurate SOH estimation. Also, survival type models need
extensive lifetime data that cannot be expected to be available. Hence,
it is believed that a combination of direct measurement techniques,
regression models, empirical models and cumulative damage models
will be most relevant for further study.

State-space models, either electrochemical models or equivalent
circuit models require a battery specific model which may be difficult to
validate. However, it is noted that current battery management systems
for maritime battery systems typically rely on a battery model such as
an ECM for battery monitoring and capacity estimation. Hence, such
models are highly relevant. Nevertheless, from a class perspective the
aim is to develop means for independent verification of capacity/SOH
estimation made by the BMS, and it may therefore be advisable to
consider alternative modelling approaches.

Direct measurement techniques include some approaches that re-
quire particular hardware and might not be suitable for verification
of SOH estimation. Moreover, direct capacity estimation based on
Coulomb counting requires specific reference charge and discharge cy-
cles between fully charged and fully discharged batteries, under specific
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conditions (e.g. temperature and C-rate) which will not be observed
during normal operations. However, techniques based on partial charge
or discharge information could be useful and will be explored further.

A large number of regression type models, ranging from simple
linear regression, to empirical/analytical models, to highly complex
machine learning models have been proposed, establishing a rela-
tionship between capacity and different features extracted from the
data. Perhaps more important than what type of regression model to
use is the selection of features to use. Two fundamentally different
approaches can be taken, herein referred to as snapshot and cumulative
approaches. The cumulative approaches establish a relationship be-
tween various stress factors (temperature, C-rate, SOC, DOD, etc.) and
capacity degradation, 𝛥𝐶, whereas the snapshot approach establishes a
elationship between observed features and actual capacity, 𝐶. They

both have their advantages and it is recommended to explore both
approaches in further work.

One disadvantage of the cumulative models is the need for the full
operating history of the batteries. Even if a perfect model were able
to estimate the capacity degradation under various stress-factors, if
parts of the history are missing it would not be possible to estimate
actual capacity at a particular time. On the other hand, such models
may be sufficiently accurate and may not require very high temporal
resolution data. Another possible disadvantage of this approach is the
need for extensive training data and possibly such models would be
accompanied by requirements of laboratory degradation testing prior
to the actual operation phase.

A huge advantage of snapshot models is that capacity can be es-
timated based on parts of the continuous data-stream only. This is
believed to be a very promising feature for a method employed for reg-
ular verification of online capacity estimation. However, such methods
may require higher temporal resolution in the data in order to extract
the necessary features. If such models can be established reliably, SOH
can be verified based on regular batches of data. However, it remains
to be seen if reliable and accurate models can be established without
the need for reference operation under specific conditions. Possibly,
information collected from partial charging processes can be used to
estimate capacity via a suitable regression model. Presumably, charging
operations will be less susceptible to highly variable conditions com-
pared to discharge and there are several suggestions in the literature
about how information from partial charging curves can be used to
estimate capacity. However, challenges remain with respect to how the
influence of temperature, variations in SOC etc. can be incorporated in
the models. Moreover, such models also need training data in order to
estimate the relationship between the actual capacity and the features.

Another approach presented in [124], where capacity is estimated
as the regression coefficient between integrated current and differences
in SOC, is believed to be interesting and will be explored further. This
approach has the advantage of not requiring training data, but it needs
reliable and continuous current measurements and SOC estimates.

Other aspects of capacity estimation need to be further explored
in future work, such as whether to model capacity on cell level or
system level and the effect of different battery chemistries or differences
in the battery production line. Possibly, a hybrid approach can be
taken, where different models are used on cell-, modular- and system
level, and where a set of models can be applied to different groups
of chemistries. Notwithstanding, the available data (what variables are
measured, data quality, resolution, etc...) will determine what types of
models can be exploited.
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