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Abstract 
Due to the possibilities in miniaturization and wearability, 

photoplethysmography (PPG) has recently gained a large interest 

not only for heart rate measurement, but also for estimating heart 

rate variability, which is derived from ECG by convention. The 

agreement between PPG and ECG-based HRV has been assessed in 

several studies, but the feasibility of PPG-based HRV estimation is 

still largely unknown for many conditions. In this study, we assess 

the feasibility of HRV estimation based on finger PPG during rest, 

mild physical exercise and mild mental stress. In addition, we 

compare different variants of signal processing methods including 

selection of fiducial point and outlier correction. Based on five 

minutes synchronous recordings of PPG and ECG from 15 healthy 

participants during each of these three conditions, the PPG-based 

HRV estimation was assessed for the SDNN and RMSSD parameters, 

calculated based on two different fiducial points (foot point and 

maximum slope), with and without outlier correction. The results 

show that HRV estimation based on finger PPG is feasible during 

rest and mild mental stress, but can give large errors during mild 

physical exercise. A good estimation is very dependent on outlier 

correction and fiducial point selection, and SDNN seems to be a 

more robust parameter compared to RMSSD for PPG-based HRV 

estimation. 
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Introduction 

PPG is a method that measures the change in volume by 

using light. This method can be used to measure the 

pulsating dilatation of blood vessels, caused by the heart, by 

attaching a PPG sensor to the skin. The PPG sensor transmits 

a light signal which is reflected by or transmitted through the 

blood vessels. The reflected or transmitted light from the 

area covered by the PPG light source provides a pulsating 

signal, which is picked up by a photodiode. The pulsating 

component of the PPG signal is synchronous to the heartbeat 

but has a delay corresponding to the transit time of the 

blood from the heart to the point of measurement [1,2]. In 

this way, the PPG signal can be used to derive the heart rate. 

Heart rate variability (HRV) is related to the interaction 

between the sympathetic and the parasympathetic nervous 

system [3]. ECG has for a long time been used as the 

preferred method for measuring HRV, but in recent years, 

PPG has also been increasingly considered as a method to 

estimate HRV. Perhaps one of the strongest motivations for 

using PPG is to reach out to the consumer market as the PPG 

sensors are simple, low-cost and a comfortable technique 

[4,5]. The technique for measuring heart rate from PPG is 

already widely used in Fitbit devices, smartwatches and 

smartphones [6].  
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Several studies have demonstrated good performance in 

estimation of heart rate based on PPG, even during intensive 

exercise [7], but the potential applicability of PPG for HRV 

estimation under different conditions is not as clear. 

Estimation of heart rate by wearable sensors is generally an 

easier task than estimation of HRV. The temporal changes of 

interest for heart rate is rarely over less than minutes, 

allowing ample time for signal processing and filtering, while 

several methods of HRV calculation uses the variation 

between consecutive beats. Several studies have compared 

HRV derived from PPG with ECG-based HRV as a reference 

[8-10] and good agreement has generally been 

demonstrated for healthy subjects at rest, but moderate 

physical, and sometimes mental stress, tends to diminish the 

agreement [8,11,12]. A study conducted in 2015 found the 

correlation between ECG and finger-PPG derived HRV-

features to decrease when the subjects were doing exercise 

on a stationary bike compared with the same subjects at rest 

[11]. Another study found the correlation between ECG and 

finger-PPG derived HRV-features to diminish at mental stress 

compared to the same subjects at rest [13]. To our extent of 

knowledge only one study has compared the feasibility of 

finger-PPG-based HRV estimation during rest, exercise and 

mental stress in the same study. They compared the 

correlation between ECG and PPG derived frequency-

domain features and found no drastic changes in correlation 

between mental stress and rest, but exercise tended to 

decrease the correlation between ECG and PPG derived HRV 

[12]. However, the difference in correlation between ECG 

and PPG based HRV estimation caused by mental stress and 

exercise has not been thoroughly elucidated and needs 

further research [14]. 

The signal processing of the PPG signal plays an 

important role in comparison to ECG-based HRV. In this 

study, we assess the feasibility of PPG-based HRV estimation 

during rest, mild exercise and mild mental stress. Our 

approach was to record finger PPG and ECG simultaneously 

from healthy volunteers during each of these conditions, 

calculate the most common time-domain HRV parameters 

based on both ECG and PPG, and assess the performance of 

PPG-derived HRV parameters based on statistical analysis. In 

addition, we evaluate different variants of signal processing 

for deriving the inter-beat interval time series used for 

calculating the HRV parameters, including the selection of 

fiducial point and outlier correction.  

This study aimed to assess the agreement between heart 

rate variability derived from finger PPG and ECG during rest, 

mild exercise and mild mental stress and comparing different 

signal processing methods. 

 

Materials and methods 

Equipment 

Two Shimmer3 sensor platforms (Shimmer, Dublin, Ireland), 

with built-in data loggers, were used to collect data from a 

PPG sensor and taking ECG measurements simultaneously. 

The Consensys Pro software (v1.2.0, Shimmer, Dublin, 

Ireland) was used to extract the data and export it to a 

readable format. Consensys Base 6 was connected to 

transfer the data from the wireless Shimmer3 sensor 

platform to the Consensys Pro software. 

The PPG sensor used in this study contains a super bright 

green light-emitting diode (LED) and an ambient light sensor 

that detects the reflected light from the blood vessels. The 

sensor was connected to the Shimmer3 GSR+ sensor 

platform with a 3.5mm jack cable. The voltage created by the 

light sensor was read and converted by the Shimmer ADC to 

a 12-bit number that represents the PPG-signal in mV. 

The electrodes used for ECG measurement was the 

Q00A wet gel electrode from Ambu (Ballerup, Denmark). The 

Shimmer3 ECG unit has an ECG front end which contains an 

electromagnetic interference (EMI) filter that reduces EMI, 

and a configurable gain. We used the default gain setting for 

these measurements (level 6). The Shimmer3 ECG unit also 

have a respiration demodulation function and a lead-off 

detection, but this was not used during this study. Both the 

PPG and ECG signals were sampled at 1kHz. The ECG signal 

from the LL (left leg)-RA (right arm) lead was used for the 

HRV analysis. The placement of the sensors and ECG 

electrodes is shown in Figure 1. 

 

 
Figure 1. Placement of Shimmer3 measurement units (white 

boxes), ECG electrodes (blue circles) and the PPG sensor (green 

box). 

  

Subjects and protocol 

Twenty-one healthy subjects participated in this study. A 

majority of them were male (18) and 3 of them were female. 

The average age of the participants was 26.3 years (SD = 6.2 

years), the average height was 180.8 cm (SD = 9.6 cm) and 

the average weight was 74 kg (SD = 12.4 kg). All participants 

were informed and gave written consent before the test was 

initiated. During the test, the participants wore five 

electrodes to be used for ECG recording. The skin was 

disinfected with an alcohol swab before the electrodes were 
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attached to ensure good conductivity. The electrodes were 

placed according to the five-lead Mason-Likar system with 

the V-lead at V1 [15]. The ECG unit (Shimmer3) was attached 

to the participant with a chest strap, and each electrode was 

connected to the ECG unit with wires. The PPG sensor was 

positioned with a strap around the fingertip of the middle 

finger on one of the participants hands (optional side). The 

sensor was connected, with wire, to the GSR+ Shimmer3, 

attached with a strap to the lower arm of the participant.  

The participants underwent three phases during the 

measurement. In the first phase, the participant sat relaxed 

in a chair and rested for five minutes during measurement. 

In phase two, the participant was asked to cycle with low 

intensity on an ergometer bike for five minutes during the 

measurement. In the final phase, the participant was asked 

to play a game designed to measure the signals during 

mental stress. To give the test subjects a controlled level of 

mild mental stress, the python-based program LARA was 

used [16]. This is a simple game where the players are told 

to look for a specific number in a 6 by 6 matrix and determine 

how many times the numbers occur in the matrix. Each 

round is timed, and the player’s score is improved by quicker 

responding rates. The goal of the game is to complete as 

many matrixes as possible within three minutes.   

 

Signal processing 

Initial inspection of the recordings revealed that saturation 

of the PPG signal would often occur, clipping the signal at 

around 2800 mV amplitude as shown in Figure 2 (blue lines). 

This distortion hampered the possibility to assess the PPG-

based HRV when using the signal peak point as the fiducial 

point in calculating the inter-beat intervals. However, a 

rough estimate of the peak amplitude is useful in the 

separation between systolic and diastolic peaks, as their 

amplitude difference may diminish when the systolic peak is 

clipped. In order to roughly estimate the peak amplitude, 

any clipped signal parts were first identified by signal values 

exceeding 2700 mV. These signal parts were then 

reconstructed by cubic spline interpolation (using the 

spline() function in Matlab) between the clipped endpoints 

as shown in Figure 2.  

 

 
Figure 2. A seven beat PPG sequence showing clipping of the systolic peaks (blue curve) and the spline-based  

interpolation used (orange curve). The two fiducial points assessed is also marked in the figure. 

 

A Savitzky-Golay filtered (5th order, frame length of 51) 

version of the signal was then differentiated in order to 

obtain the first derivative of the PPG signal (dPPG). The dPPG 

was then used to locate negative to positive zero-crossing 

points of the first derivative, representing PPG signal valleys. 

These locations were then filtered by excluding those having 

a too small subsequent PPG wave (the following dPPG peak 

less than 0.5 mV/ms). Further exclusion of false points was 

done by adaptive threshold-based filtering (subsequent 

dPPG peaks had to be larger than a third of the 95% 

percentile of dPPG peaks within the preceding 10s window, 

and the PPG valley to peak amplitude had to be larger than 

75% of the previous one). Comparison of the current PPG 

peak to the previous and next peak was then done, excluding 

points where the PPG peak is lower than 75% of both the 

previous and next PPG peak, as these are more likely 

diastolic peaks.  

The filtered vector of PPG valleys was then used as 

locations of the PPG foot fiducial point, and the locations of 

the subsequent dPPG peak was used as the PPG max slope 

fiducial point (figure 3). The vectors of these fiducial points 

were used to derive inter-beat interval time-series for 

calculation of HRV parameters.  

The ECG-based RR intervals were located by employing 

the Pan-Tompkins algorithm [17] using a publicly available 

Matlab® script [18]. Finally, the time differences between 

neighboring fiducial points of the PPG and ECG time series 

were used to calculate the IBI and RR vectors respectively.   



Singstad et al.: Estimation of heart rate variability. J Electr Bioimp, 12, 89-102, 2021 

92 

 

 
 

Figure 3. Example showing 13 beats of PPG recording together with the detected foot (red crosses) and max slope (black 

crosses) fiducial points. The foot points were located based on identifying negative-to-positive zero-crossing points of the 

first derivative of the signal, and the subsequent peak of the derivative was used to locate the max slope fiducial point. 

 

 

The time-stamp of the recordings had occurrences of 

time steps far larger than that of the sampling rate along 

with signal distortion, and beats belonging to these were 

identified by detection of time step above 100 ms within a 

beat. For both the RR and IBI time-series, these beats were 

replaced by a linear interpolation between the points before 

and after. 

Missing detection or erroneous identification of fiducial 

points will often lead to outliers in the IBI time vector, which 

can possibly be identified and filtered automatically. In order 

to assess the importance of such filtering, an outlier 

correction filter similar to [19] was implemented as follows: 

Using a moving window from ten points before to ten points 

after the current beat, the median and inter-quartile range 

was calculated. The IBI at the current beat was detected as 

an outlier if the IBI was more than three interquartiles away 

from the median IBI, and replaced by linear interpolation 

between the points before and after.   

 

Statistical analysis 

Based on the IBI and RR vectors, the widely used HRV 

parameters SDNN (standard deviation among all beats 

within the interval, representing slow variability) and RMSSD 

(root mean square of successive differences, representing 

beat-to-beat variability) were calculated. These parameters 

were calculated for each participant and every phase, based 

on the RR vectors and both the unfiltered and filtered IBI 

vectors. Agreement with ECG-based HRV in each phase was 

assessed by calculating the median absolute deviation 

(MAD), the median absolute relative deviation (MARD) and 

the root mean square error (RMSE) between PPG-based and 

ECG-based HRV over all subjects. Bland-Altman plots were 

also constructed for each comparison of HRV calculation. In 

addition, and for relevance to heart rate measurement, a 

comparison between the PPG-derived IBI and the ECG-

derived RR intervals was done based on the averages within 

five-second intervals of each recording, presented as MAD, 

MARD and RMSE. These error measures were first calculated 

over all five-second intervals within each recording, and the 

median was then taken over all subjects.   

 

Informed consent 

Informed consent has been obtained from all individuals 

included in this study.  

 

Ethical approval 

The research related to human use has been complied with 

all relevant national regulations, institutional policies and in 

accordance with the tenets of the Helsinki Declaration. 

 

Results 

The average heart rate within each period (figure 4), shows 

that the exercise caused a moderate increase in the heart 

rate (from 75.0 to 109.0 median beats/min), and that the 

mental stress period also caused an elevation in heart rate 

(at 90.5 median beats/min), indicating mild exercise for the 

second period and that a mild level of stress was induced 

during the third period. 
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Figure 4. Average heart rate for all participants during the 

different periods. 
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Initial inspections revealed that one session had missing 

ECG data and five sessions had a malfunctioning acquisition 

of PPG signals in all three phases, and had to be excluded 

from the analysis, resulting in 15 sessions with three 

complete phases used in the analysis. Visual inspection 

indicated that the signal quality of PPG was generally good 

in the resting and mental stress phases, but poor in the 

exercise phase (see examples in figure 5). Even in sessions 

with generally good signal quality, transient signal 

disturbances could cause large deviations in the inter-beat 

intervals. An example of this is shown in figure 6, where a 

PPG signal disturbance causes two outliers, which were 

detected by the filter and replaced by linear interpolation. In 

this example, the SDNN was 66.8 ms with outlier correction 

and 74.8 ms without, while the ECG-based SDNN was 65.2.  

Figures 7 and 8 provide an overview of the PPG-based 

SDNN and RMSSD estimates, respectively. It can be seen that 

the PPG-based approach overestimated the HRV in all cases, 

from a small overestimation during the rest and stress 

phases (when using the max slope fiducial point with outlier 

correction), to a huge overestimation during the exercise 

period. 

 
Figure 5. Example segments from recordings with good PPG 

signal quality (a), during the resting phase, and with poor PPG 

signal quality (b) during the exercise phase.  

 

 

 
Figure 6. A transient disturbance in the PPG signal (upper plot) causing a large deviation in the estimated inter-beat interval 

over two points (blue line in lower plot). The red line shows the IBI time-series after outlier correction. The red and green 

crosses in the upper plot mark the foot and maximum slope fiducial points, respectively. 

 

Table 1 gives a summary of the difference between PPG 

and ECG-derived HRV, depending on the type of activity, 

selection of fiducial point and correction of outliers. Figures 

9 and 10 gives a visual representation of this difference for 

SDNN and RMSSD respectively. Comparing the MAD and 

MARD values, the exercise phase clearly had a much larger 

error than the resting and mental stress phases. There was 

also a large influence of the outlier correction, with large 

errors in PPG-based HRV estimation when outliers were not 

corrected. The average proportions of outlier beats were 

1.09% (resting), 4.24% (exercise) and 1.57% (mental stress) 

when the foot fiducial point was used, and 0.60% (resting), 

5.30% (exercise) and 0.73% (mental stress) when the 

maximum slope fiducial point was used. 
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Figure 7. The spread of SDNN for the 15 participants measured with ECG and PPG with and without outlier correction, broken down by 

the different phases and fiducial points (foot and maxdiff). Outliers are shown in red. 

 

Comparing the fiducial points, the Max slope method 

gave consistently a better agreement than the Foot point. 

Based on the relative deviation (MARD), the PPG-based 

estimates of SDNN were more correct than the RMSSD 

estimates. Taking all cases into account, the best agreement 

for both SDNN and RMSSD was for Max slope based HRV 

estimation with outlier correction during the resting and 

mental stress phases. 
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Figure 8. The spread of RMSSD for the 15 participants measured with ECG and PPG with and without outlier correction,  

broken down by the different phases and fiducial points (foot and maxdiff). Outliers are shown in red. 

 

The agreement between the R-to-R (RR) intervals derived 

from ECG and the inter-beat intervals (IBI) derived from the 

PPG is provided in table 2. This also shows a good agreement 

for the resting and mental stress tasks and a worse 

agreement during exercise, and also a reduction in error with 

the maximum slope fiducial point and from outlier 

correction.  
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Table 1. Summary of agreement between HRV derived from ECG and PPG for each type of activity, depending on PPG fiducial 

point selection with and without correction of outliers. The agreement is represented as median absolute deviation (MAD), 

median absolute relative deviation (MARD) and the root mean square error (RMSE). 
 

Fiducial point Outlier correction HRV Agreement Relaxation Exercise Mental stress 

Foot Yes SDNN MAD 9,83 137,86 10,14 

Max slope Yes SDNN MAD 2,25 78,82 1,19 

Foot No SDNN MAD 28,12 290,49 26,95 

Max slope No SDNN MAD 21,98 272,73 17,6 

Foot Yes RMSSD MAD 27,56 189,3 50,17 

Max slope Yes RMSSD MAD 3,46 114,26 2,27 

Foot No RMSSD MAD 64,21 415,58 72,18 

Max slope No RMSSD MAD 41,31 369,77 27,77 

Foot Yes SDNN MARD 18,00 % 341 % 23,20 % 

Max slope Yes SDNN MARD 3,60 % 239 % 1,80 % 

Foot No SDNN MARD 51,50 % 933 % 53,90 % 

Max slope No SDNN MARD 22,00 % 877 % 28,30 % 

Foot Yes RMSSD MARD 85,00 % 1576 % 156 % 

Max slope Yes RMSSD MARD 8,20 % 647 % 6,40 % 

Foot No RMSSD MARD 152 % 1727 % 216 % 

Max slope No RMSSD MARD 60,00 % 1572 % 79,30 % 

Foot Yes SDNN RMSE 21,41 202,95 27,33 

Max slope Yes SDNN RMSE 14,83 184,50 8,59 

Foot No SDNN RMSE 85,16 403,71 60,56 

Max slope No SDNN RMSE 79,17 395,91 49,43 

Foot Yes RMSSD RMSE 43,17 253,67 66,01 

Max slope Yes RMSSD RMSE 14,98 212,15 22,28 

Foot No RMSSD RMSE 143,70 552,46 126,00 

Max slope No RMSSD RMSE 131,14 533,94 99,57 

 

 

 
Table 2. Summary of agreement between RR derived from ECG and IBI derived from PPG for each type of activity. The 

agreement is presented as median absolute deviation (MAD), median absolute relative deviation (MARD) and the root mean 

square error (RMSE). 
 

Fiducial point Outlier correction Agreement Relaxation Exercise Mental stress 

Foot Yes MAD 3.97 18.93 4.71 

Max slope Yes MAD 2.82 4.34 2.29 

Foot No MAD 4.03 42.40 4.46 

Max slope No MAD 2.93 48.86 2.29 

Foot Yes MARD 0.51% 3.24% 0.69% 

Max slope Yes MARD 0.36% 0.67% 0.35% 

Foot No MARD 0.58% 8.02% 0.62% 

Max slope No MARD 0.38% 9.45% 0.35% 

Foot Yes RMSE 13.02 106.27 12.73 

Max slope Yes RMSE 8.41 99.51 6.98 

Foot No RMSE 34.03 255.14 21.85 

Max slope No RMSE 35.15 262.89 14.22 
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Figure 9. The difference between SDNN values as calculated from PPG and ECG for the 15 participants in the different phases. 

Grouped by fiducial point and outlier correction. Outliers and median values are shown in red. 

 

 

Discussion 

Our results show that HRV estimation based on PPG is 

strongly dependent on the type of activity and the method 

of signal processing.  The maximum slope as a fiducial point 

performed better than the foot point of the PPG signal. 

Outliers due to artifacts gave rise to large errors if 

uncorrected before HRV calculation. When using the 

maximum slope as fiducial point together with outlier 

correction, good agreement was found for both SDNN and 

RMSSD during the resting and mental stress periods.  
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Figure 10. The difference between RMSSD values as calculated from PPG and ECG for the 15 participants in the different phases. 

Grouped by fiducial point and outlier correction. Outliers and median values are shown in red. 

 

 

As shown in Table 1, our HRV calculation based on the 

maximum slope gave a more accurate estimate than the foot 

point, especially for the RMSSD parameter. This is due to 

variation of the PPG signal floor which can cause a less 

defined foot point compared to the unambiguous maximum 

slope of the rising pulse wave in the systolic phase. Examples 

of this can be seen from figure 3 and 6, where the foot point 

location sometimes shifts to the left (around 224s in figure 3 

and 170s in figure 6) due to waveform variation from beat to 

beat. 

The large overestimation of HRV during exercise was due 

to movement artifacts hampering the signal quality by 

including waves that are difficult to discriminate from the 

true waves of pulsation. It has been shown that the 



Singstad et al.: Estimation of heart rate variability. J Electr Bioimp, 12, 89-102, 2021 

99 

 

combined use of an accelerometer signal together with PPG 

can improve heart rate estimation [20], but this is more 

difficult when estimating HRV when the changes from beat 

to beat are of importance. When a continuous disturbance 

(e.g. running) is added to the PPG signal, large portions of the 

time-series may be corrupted, and methods such as 

interpolation may greatly reduce the variability of the inter-

beat intervals. The accelerometer signal can however be 

useful in assessing the quality of PPG signals when used for 

HRV estimation and avoid HRV analysis based on unreliable 

data [21,22].  

As demonstrated in Figure 6, short transient disturbances 

in the PPG signal may cause large erroneous deviations in the 

inter-beat intervals and consequently errors in the HRV 

estimation. Most of these deviations were easy to detect as 

outliers based on a simple distance-to-median rule, but 

become problematic when occurring frequently as during 

exercise. The outlier correction method we employed was 

not able to provide a useful estimation of HRV during 

exercise.  

We used a finger placement of the PPG sensor rather 

than the wrist even though wrist-worn devices are most used 

by commercial wearable manufacturers. However, some 

commercial manufacturers have found it convenient to use a 

ring with a build-in PPG-sensor or a finger cuff with a sensor 

to connect with a smartphone [12,23]. Some studies claim 

that finger PPG signal is cleaner than signals from wrist PPG 

[24]. But to our extent of knowledge, there is only a few 

studies that have assessed the different location of the PPG 

sensor when estimating HRV [25,26]. One of them assessed 

the signal quality and found waveforms from finger PPG to 

have higher quality than waveforms from the wrist. The 

second study compared HRV features derived from finger 

and wrist and compared it with HRV features from ECG. They 

found the performance from wrist and finger PPG to be 

significantly different in favor of finger PPG [25]. Also, the 

Shimmer sensors we used are only compatible with 

measurements on the finger and earlobe. In addition, the 

fingertip placement is relevant to HRV estimation based on 

devices for non-invasive pulse wave or blood pressure 

techniques involving PPG, such as the Finometer® or the 

successors Nexfin® and Clearsight® monitors.  

There were no restrictions on how much the participants 

were allowed to move during this study. This means that 

unnecessary disturbance may have been introduced to the 

PPG measurements. For further research on this topic, the 

earlobe sensor would be interesting to assess for HRV 

estimation. The earlobe sensor is supposed to be less prone 

to motion artifacts and may have lower variability in the skin-

sensor interface. 

We had the technical issue of signal saturation from the 

PPG sensor and due to the PPG sensor signal cutoff, it was 

not possible to assess the PPG-based HRV estimation using 

the PPG peaks as fiducial points. However, other studies have 

found the valley or maximum slope points to be more 

accurate compared to the peak point in HRV estimation 

[4,27], suggesting that the lack of a peak-based PPG analysis 

would not have influenced our findings on the performance 

possibilities of PPG in estimating HRV under different 

conditions.  

It is possible that further improvement of the PPG signal 

processing and fiducial point detection could improve the 

HRV estimation, but we believe that our main findings stand 

pertinent nevertheless: That finger PPG can provide a good 

estimation of HRV during relaxation and mental stress, that 

movement artifacts during exercise can cause large errors, 

and that outlier correction is essential. We are not able to tell 

to which extent our findings are relevant for PPG sensors in 

general or the particular sensor used in this study (Shimmer 

3 GSR+ unit), as both optics and signal conditioning may vary 

from device to device.  

Measurement of heart rate by PPG during exercise is 

already challenging due to motion artifacts, and advanced 

signal processing is needed to provide good estimates [7,28], 

possibly improved by implementing sensor signals from an 

accelerometer [29]. Estimates of HRV during exercise would 

require signal processing for improved fiducial point 

estimation from disturbed signals caused by motion artifacts, 

without rejecting or interpolating too many beats as this 

would reduce the beat-to-beat or high-frequency HRV 

information. If applicable, it would be easier and more 

feasible to measure HRV based on a recording period directly 

after the exercise has ended for studies of HRV using PPG 

sensors.  

 

Conclusion 

Our results clearly show that finger PPG-based HRV 

estimation is feasible during relaxation and mild mental 

stress, but can have large errors even during mild physical 

exercise. The HRV estimation is very sensitive to outliers in 

the time-series of interbeat intervals and produces large 

errors when uncorrected. The maximum slope point of the 

PPG signal may be the most optimal fiducial point for HRV 

estimation. SDNN seems to be more robust for PPG-based 

HRV estimation compared to RMSSD.    
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