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Preface

This thesis is submitted in partial fulfilment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo.

The work that comprises this thesis has been performed as part of the EU-
project Algebraic Representations in Computer-Aided Design for complEx Shapes
(ARCADES) from the European Union’s Horizon 2020 Research and Innovation
programme under the Marie Skłodowska-Curie grant agreement No 675789.
The ARCADES Network consists of 14 partners including industrial companies,
research institutes and universities, based throughout Europe. ARCADES
aims at inverting the trend of CAD industry lagging behind mathematical
breakthroughs, by exploiting cutting-edge research in applied mathematics
and algorithm design. Examples of applications ARCADES looks at include
animation and computer graphics, big data, fabrication and manufacturing and
simulation.

The thesis is a collection of six papers, presented in chronological order. The
papers are preceded by an introductory chapter that relates them together and
provides background information and motivation for the work. The first paper
has been written during my stay at the geometry group at SINTEF, under the
supervision of Dr. Oliver J. D. Barrowclough and Dr. Georg Muntingh. Two
papers have been written together with Dr. Silvia Biasotti, during a three-
month research stay at the Department of Applied Mathematics and Information
Technologies of the National Research Council of Italy (CNR-IMATI), located in
Genoa, Italy. The remaining three papers have been finalized while working as
a research fellow at CNR-IMATI, and include authors from different academic
areas.
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Chapter 1

Introduction
It has often been said we are living in the data age. Every single day, staggering
amounts of information are collected, stored, and shared worldwide. A data
deluge, as it has been called by the weekly newspaper “The Economist”. Yet,
much of it remains, totally or partially, unexploited: ironically, “we are drowning
in information, but we starved from knowledge” [37]. In this sea of uncertainty,
geometry represents a very natural tool for representing and analysing massive
amounts of data, in countless applications (e.g., artificial intelligence, machine
learning, big data and knowledge discovery) and for a number of fields (e.g.,
medicine, chemistry, computer science, physics and geoscience).

In many practical situations, information consists of a set of sample
points describing some phenomena. A natural question deals with geometry
reconstruction, i.e., the recovering of the geometry and the topology of such
data points. A lot of research was done in this direction, under the umbrella
term of approximation theory. However, most of these efforts were traditionally
devoted to the case of sampled smooth curves and surfaces, thus curbing the
usage of such approaches to the case of sufficiently clean points. Unfortunately,
in most real-world scenarios, data is indeed affected by noise and potentially
other imperfections (e.g., in the case of geospatial data). Another critical point
is the need to generalize well on unseen data, that is, to capture the underlying
trend of the input points to be able to make accurate predictions (e.g., when
dealing with rainfall fields measurements).

Another issue concerns the automatic analysis and comparison of data. An
example of application, particularly relevant in these days, is the identification
of potential binding sites on molecules. The family of techniques exploiting
geometry for this purpose is often referred to as shape analysis. Compared to
the search of accurate representations that is typical of geometry reconstruction,
the main focus of shape analysis is to describe shapes; as pointed out in [32]:

“an object representation contains enough information to reconstruct
(an approximation to) the object, while a description only contains
enough information to identify an object as a member of some class”.

While the representation of an object is usually more complete than a description,
it does not necessarily disclose any high-level information useful to discriminate
it from other shapes.

This thesis addresses a range of problems in geometry reconstruction and
shape analysis. All the proposed methods are motivated in the light of real-
world applications, ranging from the need to identify geometric relationships
in mechanical engineering to the recognition of proteins from an ensemble of
geometries in structural biology. Despite geometry being its undisputed star,
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1. Introduction

this thesis combines data, concepts, perspectives and techniques from different
scientific disciplines, making it inherently interdisciplinary. All the papers
here presented include simulation on real data and, in most cases, consider
benchmarking to unveil strengths and weakness of different approaches.

The thesis is organized as follows. The remainder of this chapter provides some
relevant background information to the problems of geometry reconstruction
(Section 1.1), shape analysis (Section 1.2) and benchmarking (Section 1.3).
Chapter 2 provides a summary of the papers included in this thesis, in the light
of such problems. In these two chapters, things will be often kept conceptual,
to allow readers from different backgrounds to grasp the type of problems this
thesis deals with; the technical details, as well as the complete references, are
left to the papers.

1.1 Geometry reconstruction

Reconstructing geometric shapes from sets of sampled points has blossomed
during the last decades, partly because of the massive proliferations of commodity
real-time scanners such as the Microsoft Kinect. Despite its apparent simplicity,
geometry reconstruction is a multifaceted problem, because of the many variables
involved and the difficulty of inferring connectivity information from a set of
disconnected points.

Traditionally, the attention was mostly turned towards the approximation
of sufficiently regular functions with simpler functions (e.g., polynomials or
piecewise polynomials). However, acquisition methods tend to produce data
affected by a variety of properties and imperfections, such as nonuniform or low
sampling density, noise, outliers, misalignment and missing data. The presence
of point cloud artefacts poses significant challenges in approximation theory.
One example of a situation where data imperfection cannot simply be ignored
is the patient-specific, computer-aided estimation of physiological parameters
based on biomedical images, such as in [51].

Another challenge arises when the purpose is not limited to the minimization
of some loss functions over the input points but, instead, the shape has to provide
good predictions on independent data. To put it differently, the inferred shape
must be descriptive of the whole phenomenon under study and not only of the
samples that have been acquired. Modelling rainfall fields in environmental
applications [40] is just an example of areas where geometry and inference go
hand in hand.

Besides their quality, input points can be structured or unstructured, that is,
can be accompanied by connectivity information or not. The use of dense datasets
helps recovering such information that, when missing, can lead to unwanted
holes or other topological errors; however, this comes at the cost of much higher
computational times and a larger memory usage, which is detrimental in most
applications. Moreover, it is not always feasible to increase the sampling density
at will (e.g., when modelling biological macromolecules and cells [55]).

2



Geometry reconstruction

This section is devoted to the introduction of three families of methods, each
of which is a mainstay to address some specific problems dealing with geometry
reconstruction:

• Approximate implicitization (see Section 1.1.1) was originally introduced
in the Computer Aided Geometric Design (CAGD) community in 1997 as
a way to pass from rational parametric representations to implicit ones [19].
The method was later generalized to approximate implicit representations
starting from an input point cloud: experiments using industrial data were
proposed in 2006 [47], while the theory behind the cases where the point
cloud is sampled from a rational curve/surface was proposed in 2012 [2].
Paper I applies this technique to extract geometric information out of CAD
models.

• Quasi-interpolation (see Section 1.1.2) is a popular tool in approximation
theory and its applications, because of its inherent computational efficiency:
function approximation is performed without requiring the solution of any
large-scale system of equations but, instead, makes use of direct formulas
using discrete function values based on the local properties of the basis
functions. Papers II and III introduce a quasi-interpolation scheme to
compute local approximations, in the form of explicit representations, of
perturbed point clouds.

• Regression analysis (see Section 1.1.3) combines different branches
of mathematics, such as geometry and measure theory, to infer the
relationships between a set of given variables and predict one or more
output variables. It is popular among different communities, including
statistics, probability theory, data science and artificial intelligence. Paper
II interprets the quasi-interpolation scheme there introduced in light of
nonparametric regression.

1.1.1 Approximate implicitization

Despite the variety of alternative shape representations, implicit and parametric
representations still play a fundamental role in modelling geometric objects. The
reasons are not only historic, but rather rely on the complementarity of their
properties. For example, it is easy to determine whether a point is on (or inside
or outside) an implicit curve or surface, but this determination is generally not
as painless when dealing with parametric representations. On the other hand,
parametric representations are best suited for point generation. Having both
representations available makes it possible to address a wide range of problems
(e.g., intersection problems).

Several methods to pass from one representation to the other have been
introduced over the years, with a history that dates back at least as far as the
early part of the nineteenth century. In this section we focus on the computation
of implicit representations from parametric ones, a process known under the
name of implicitization.
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1. Introduction

In elimination theory (see, for example, [28]), the problem of implicitization is
solved by the elimination of the parameter variables, by considering a systematic
method based on linear algebra. The result is a (hyper)surface represented, in
general, by a single polynomial. One approach to solving the elimination problem
makes use of resultants [12, 52], which can be thought of as a mathematical
tool to verify whether a set of polynomials share any common roots; resultants
can be computed, for example, by exploiting Sylvester and Bezóut matrices
[16]. A more recent method is related to Gröbner bases, introduced by Bruno
Buchberger in 1965 [10]: a Gröbner basis is a set of multivariate polynomials that
has desirable algorithmic properties, which can be used in many computational
tasks; example of computations dealing with this concept include elimination
theory and computing cohomology [22]. Despite their mathematical elegance, the
practical use of these algorithms is limited by several computational challenges,
such as:

• Additional solutions. Implicit polynomials obtained by resultant computa-
tion happen to contain additional factors that are not part of the implicit
equation of the (hyper)surface itself. Numerically, this undesired effect
may be unsolvable: small perturbations in the coefficients of a reducible
polynomial can indeed render it irreducible.

• High polynomial degrees. Exact implicit representations of rational
parametric forms can have undesirably high algebraic degrees, making
computations expensive and contributing to numerical instability.

• Self-intersections and unwanted branches. This problem is not directly
connected to the use of a specific technique of implicitization, but to the
use of exact implicit forms themselves.

To address these problems, numerical methods were introduced in the
literature. Approximate implicitization [18, 19] opened up the possibility to
approximate a parametrically represented manifold by an algebraic hypersurface
of chosen total degree m ≥ 1. A feature of the method is that, when the total
degree is high enough and exact precision arithmetic is used, the method provides
exact implicitizations. Let:

• p : Ω ⊂ Rn−1 → Rn be a rational parametric hypersurface of (multi)degree
n, where Ω is the Cartesian product of closed intervals.

• qb(x) = q(x)Tb be a family of n-variate implicit polynomials of total
degree m, where

q(x) := (q1(x), · · · , qN (x))T

is a vector containing a set of basis functions for qb(x), being

N :=
(
m+ n

n

)
their number, and where b is the corresponding vector of coefficients.
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The composition qb(p(s)) can be factorized as

qb(p(s)) = (Db)Tα(s), (1.1)

where:

• α(s) is a basis for the polynomials of (multi)degree at most mn.

• D is a matrix that expresses such a composition in term of the basis α(s)
and the coefficients in b.

Approximate implicitization methods aim at minimizing the algebraic error
to the parametric hypersurface while keeping the total degree low; in other
words, the purpose is to find a polynomial qb̄ which minimizes (in some sense)
|qb(p(s))| for s ∈ Ω. The choice of considering the algebraic error rather that the
geometric error lies in the fact that minimizing the latter is a computationally
intractable problem, while the former can provide a good approximation away
from singularities [19]. From the factorization given by Equation 1.1, it follows
that

max
s∈Ω
|qb(p(s))| = max

s∈Ω
|(Db)Tα(s)| ≤

≤ ||Db||2 max
s∈Ω
||α(s)||2 ≤ ||Db||2,

(1.2)

where the last inequality holds when considering a basis α(s) that is a non-
negative partition of unity within the domain of interest. This inequality tells us
that the choice of coefficients b controls the quality of the final approximation.
Notice that if we can find a coefficient vector b 6= 0 that satisfies Db = 0,
then we have found an exact implicitization of p(s). We apply singular value
decomposition on D and select the vector with unit normal bmin corresponding
to the smallest singular value σmin; from Equation 1.2, it follows that

|qbmin(p(s))| ≤ σmin, (1.3)

i.e., the smallest singular value bounds the pointwise error of approximation.
One of the simplest and fastest numerical implementation of approximate

implementation is based on a least squares approximation of a point cloud
sampled from the (parametric) hypersurface, as introduced in [2]. Given a basis
Π := {π1, · · · , πM} for the space of n-variate implicit polynomials of total degree
at most m and a finite sequence of points {P1, · · · , PN} ⊂ Rn:

• Form the collocation matrix

D := (πi(Pj))i=1,··· ,M
j=1,··· ,N

.

• Compute the singular value decomposition D = USVT.

5



1. Introduction

• The vector bmin = (bmin
1 , · · · , bmin

M )T corresponding to the smallest singular
value σmin of D identifies the approximate implicit representation

q :=
∑
i

bmin
i · πi.

By further assuming that the points are sampled from a parametric representation,
i.e., Pi = p(si) for any i, this is equivalent to considering the α-basis to be
the Lagrange basis at the given nodes; note that the Lagrange basis provides a
partition of unity, but it is not non-negative on the region of interest. Analogously
to Equation 1.3, we can bound the algebraic error as

|qbmin(p(s))| ≤ Λ(α)σmin,

where Λ(α) is the Lebesgue constant from interpolation theory defined as
Λ(α) := maxs∈Ω ||α(s)||1.

1.1.2 Quasi-interpolation

Quasi-interpolation is very useful in approximation theory and its applications,
as it allows to compute approximations without the need to solve any linear
system of equations [13, 45]. Quasi-interpolants (QIs) can be defined as linear
operators of the form

Qf :=
∑
j∈J

µj(f)gj , (1.4)

where f : Ω ⊂ Rn → R is a function being approximated, µj(f) are linear
functionals, gj : Ω ⊂ Rn → R are functions at our disposal. The coefficients µj(f)
are, in general, one of the following types: linear combinations of given values of
the function f to be approximated (discrete type); linear combinations of values
of derivatives of f , of order at most d (differential type); linear combinations of
weighted mean values of f (integral type). Equation 1.4 can be interpreted as a
“reconstruction” formula: given some input data sampled from the true function
f , it creates a tentative reconstruction Qf . In this thesis, we will assume the
functions gj to be (polynomial) spline functions, thus restricting our attention
to spline quasi-interpolants; however, for the sake of conciseness, we will omit
the word “spline” when not risking a misunderstanding.

The earliest case of quasi-interpolation is often traced back to Bernstein’s
approximation, which builds a quasi-interpolation of a univariate continuous
function f : [0, 1]→ R as

Qnf :=
n∑
j=0

f(xj)gj ,

where xj = j/n and where

gj(x) =
(
n

i

)
xi(1− x)n−i

6



Geometry reconstruction

are the n+ 1 Bernstein polynomials of degree n. The sequence Qnf is proved to
converge uniformly to f [8].

A rather straightforward generalization of this quasi-interpolant, which
considers B-splines rather than Bernstein polynomials, is known as the Variation
Diminishing Spline Approximation (VDSA). The reader who is not familiar
with B-splines is referred to Appendix 1.A. Given a (p+ 1)-regular knot vector
τ = [τ1, · · · , τn+p+1] with τ1 = a and τn+p+1 = b, VDSA approximates any
continuous function f : [a, b] ⊂ R→ R by the expression

V f :=
n∑
j=1

f(τ∗j )gj ,

where τ∗j := (τj+1 + · · · , τj+p)/p are the knot averages and where gj := B[τ (j)]
is the B-spline of degree p over the (local) knot vector τ j := [τj , · · · , τj+p+1].
When all knots occur p+ 1 times, then Qnf interpolates the n points sampled on
f . Besides its simplicity, the VDSA owes its popularity to its shape preserving
properties:

• Preservation of bounds on a function. The VDSA is bounded by the
minimum and maximum values of f , i.e.,

min
[a,b]

f(x) ≤ V f ≤ max
[a,b]

f(x).

• Preservation of monotonicity. If f is increasing (resp. decreasing) then
V f is also increasing (resp. decreasing).

• Preservation of convexity. If f is convex (resp. concave) then V f is also
convex (resp. concave).

It should be noted that these shape preserving properties are a direct consequence
of B-spline properties and of the relationship between a spline and its control
polygon (see, for example, [34]). Another point to note is that VDSA is a
local method, i.e., the approximation at a point x only depends on the function
samples near x.

Several quasi-interpolants have been introduced in the last decades, for
example to handle local refinements for spline spaces. However, most of the
theory has developed under the assumption that the data being modelled are
sampled from a sufficiently regular function, thus in the absence of any point
cloud artefacts.

1.1.3 Regression analysis

The term regression analysis refers to a set of mathematical methods for
quantifying the dependencies between a set of explanatory variables, also known
as predictors, and one or more response variables. For the sake of simplicity, we
will restrict to the case of simple regression, i.e., regression problems where there
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is only one response variable. Most (simple) regression methods are written in
the additive form

Y = f(X1, · · · , Xp;β1, · · · , βq) + ε, (1.5)

where:

• Y names the response variable.

• X1, · · · , Xp denote the explanatory variables, which are commonly assumed
to be deterministic.

• β1, · · · , βq are the unknown parameters to be estimated.

• ε is the random error, which is not directly observed in data.

As a further restriction, we will assume that the unknown parameters have
some hidden true values, thus adopting the frequentist approach; the Bayesian
description of probability would have assumed the unknown parameters to be
random variables themselves, turning the search for an accurate approximation
of the true parameters into the search for an accurate approximation of the
posterior probability.

1.1.3.1 Parametric vs nonparametric regression

Regression models are often dychotomized into parametric regression methods
versus nonparametric regression methods. Parametric regression assumes that
any observation Y = y is the realization of an unknown but predetermined
probability distribution (e.g., the normal distribution with unknown expectation
and variance); the goal is to estimate such a distribution by computing an
estimation of its unknown parameters. Conversely, nonparametric regression
only assumes that such a density exists, without choosing any specific family in
advance.

A classical example of parametric regression is given by linear models, which
remain among the mainstays of modern scientific research despite their simplicity.
Univariate linear regression models assume that the response variable can be
written as

Y = β0 +
p∑
j=1

Xjβj + ε.

For n independent observations Y = (Y1, · · · , Yn)T, an alternative matrix
formulation is

Y = Xβ + ε,

where:

• X = (xi,j) denotes the n × (p + 1) model matrix, with xi,j the value of
explanatory variable Xj for observation i and with X0 set to 1.

• β denotes the (p+ 1)× 1 parameter vector.

8
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• Xβ is the linear predictor, geometrically consisting of a (hyper)plane.

• ε denotes the n× 1 error vector.

Having chosen the model, the standard approach to obtain parameter estimates
β̂ and fitted values ŷ := Xβ̂ uses the least squares loss; such β̂ is known as
the ordinary least squares estimator (OLS). While estimating the coefficients
merely requires choosing a loss function, drawing inferences is commonly handled
by assuming that predictors are deterministic and that Y follows a normal
distribution. The reasons behind the popularity of linear regression models are
multifaceted: in addition to their easy interpretation and computability, they
have proven to work well in many situations. Moreover, the OLS estimator is
shown to be the Best (i.e., minimum-variance) Linear Unbiased Estimator (BLUE,
also known as Gauss-Markov theorem; see, for example, [27]). Several extensions
to (parametric) linear regression have been proposed since its introduction. One
of the most famous is that of generalized linear models (GLMs, [39]). GLMs
allow the response variable to have a distribution within the exponential family,
a large class of probability distributions that includes normal, binomial, Poisson
and gamma distributions, among others; moreover, they allow the response to
be a nonlinear function of Xβ.

Parametric models usually give more information but, at the same time,
can also lead to significantly biased conclusions if the wrong distribution is
chosen (e.g., in hypothesis testing). On the contrary, nonparametric statistics
require fewer assumptions about the data and, consequently, can better face
those situations where the true distribution is unknown or cannot easily be
approximated by a probability distribution. Nonparametric methods include
kernel smoothing and local polynomials [23], regression and smoothing splines
[15, 54], reproducing kernel Hilbert spaces [6] and wavelets [38]. We conclude
this section by briefly focusing on kernel methods, as they are the most relevant
class of approaches for this thesis.

Kernel methods can be seen as a generalization of the k-nearest neighbour
average which, in the case of one predictor, is defined as

f̂(x) = 1
k

∑
(xi,yi)∈Nk(x)

yi,

whereNk(x) denotes the set of the k points whose abscissa is the closest to x in the
L2 distance, among a set of input points. Being the k-nearest neighbor average
discontinuous (and piecewise constant), it is not well-suited for applications
where the geometry of the approximation is relevant; on the other hand, what
makes it special is it being an estimate of the conditional expectation E(Y |X = x)
which require little training. Instead of giving all the points in the neighbourhood
equal weight, the Nadaraya-Watson kernel-weighted average assigns weights that
die off smoothly with distance from the target point; its expression is given by

f̂(x) :=
∑N
i=1Kλ(x, xi)yi∑N
i=1Kλ(x, xi)

,

9
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where
Kλ(x, xi) = D

(
|x− xi|
hλ(x)

)
(1.6)

is a predefined kernel with window width hλ(x), indexed by some unknown
parameter λ. In practice, the width of the local neighborhood has to be
determined by fixing λ; this is performed by trading-off bias and variance,
as will be detailed in Section 1.1.3.2. Examples of popular kernels, determined
by the functions in Table 1.1, are shown in Figure 1.1.

Table 1.1: Examples of common kernels. Here, 1 denotes the indicator function.

Kernel Function D

Rectangular D(u) = 1
21[−1,1](u)

Epanechnikov D(u) = 3
4(1− u2)1[−1,1](u)

Tri-cube D(u) = (1− |u|3)3
1[−1,1](u)

Gaussian D(u) = 1√
2π

exp
(
−u

2

2

)

1.1.3.2 Model assessment and selection

As regression analysis is interested in maximizing the prediction capability on
independent test data rather than just minimizing a functional over some input
points, the assessment of the generalization performance is extremely important.
Indeed, it guides the choice of the regression method or model, in addition to
quantifying the quality of the model that is ultimately chosen.

Let us consider the general additive formulation given in Equation 1.5, again
considering only one predictor for readibility and visual appeal. We further
assume that E[ε] = 0 and Var(ε) = σ2

ε . Given some input (training) data D, the
(squared) expected prediction error (EPE) of the regression fit f̂ at an input
point X = x, i.e.,

EPE
(
Y, f̂(x)

)
:= EY |X,D

[
(Y − f̂(X))2

∣∣∣X = x
]
,

can be decomposed as the sum of three quantities

EPE
(
Y, f̂(x)

)
= Bias2[f̂(x)] + Var[f̂(x)] + σ2

ε ,

where:
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Figure 1.1: Examples of common kernels, determined by the functions given
in Table 1.1. Each kernel is here centered around the origin, and calibrated to
integrate to 1.

• The bias
Bias2[f̂(x)] :=

(
ED
[
f̂(x)

]
− f(x)

)2

measures the error coming from erroneous assumptions made by the
regression method to make the target function f easier to learn (e.g.,
when the model does not incorporate all the necessary variables, or when
the form of the relationship is too simple). Models with high bias tend to
oversimplify f , commonly leading to high error on both training and test
data.

• The variance

Var[f̂(x)] := ED
[(
f̂(x)− ED

[
f̂(x)

])2
]

quantifies the model sensitivity to small fluctuation in the input data. A
regression method with high variance has paid a lot of attention to the
input but does not generalize well on data which has not been seen before.

• The irreducible error σ2
ε , also called Bayes error, is the variance of the

target around its true mean, and cannot be avoided no matter how well
we make the estimation.

In statistical learning, the concepts of bias and variance are often accompanied
by those of underfitting and overfitting. Underfitting refers to the scenario
where the fitted model is unable to capture the underlying pattern of the data;
underfitted models have usually high bias and low variance; underfitting occurs,
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1. Introduction

for example, when trying to model a very complex pattern with a linear model.
Conversely, overfitting happens when the fitted model relies too much on the
input, thus capturing the noise along with the underlying trend of the training
data; overfitted model usually have low bias but high variance; overfitting can
originate from very complex models, such as decision trees. Figure 1.2 illustrates
these issues.
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Figure 1.2: Generalization performance. In case of underfitting, the model is
unable to capture the underlying pattern of the data, thus resulting in low
performance on input data as well as on unseen data. A model suffering from
overfitting does not succeed in capturing the trend of the input while avoiding
point cloud artefacts such as noise or outliers; this results in a poor generalization
capability. An optimal balance between bias and variance allows to alleviate
these problems.

1.2 Shape analysis

The description and analysis of the geometrical properties of a given object is of
tremendous importance in applied fields. Examples of applications include the
processing and comparison of mechanical parts in Computer-Aided Design and
Manufacturing [33], the identification of protein binding regions in biochemistry
[57], the retrieval and classification of archeological finds in cultural heritage [44],
and the identification of anomalies for medical purposes [24].

Unlike for geometry reconstruction, a key point to note when dealing with
shape analysis is that the analysis of shapes in 2D is radically different from that
of shapes in 3D. For example, 2D images can be easily thought as a set of pixels,
although the perspective projection might cause gaps due to occlusions or to
lighting conditions. On the other hand, 3D geometric models are much more
complex to handle, but provide a complete representation of the object shape:
as a result, they do not contain projections, reflections, shadows or occlusions.

The core problems in 3D shape analysis may be classified in different ways,
according to various criteria. We here adopt the categorization proposed in [9,
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30].

• Segmentation. In shape analysis, the term refers to the process of
partitioning an input object (e.g., a point cloud, a triangle mesh) into
multiple and meaningful segments (e.g., subsets of points, sub-meshes).
Segmentation often assists other tasks, such as parametrization, texture
mapping, compression and shape matching.

• Semantic labeling. Also known as annotation, semantic labeling is
the task of assigning labels to a model or parts of it. For example, by
studying the geometry and topology of carpal bones in the human body,
one can assign tags such as “scaphoid”,“lunate”, “triquetrum”, “pisiform”,
“trapezium”,“trapezoid”, “capitate” and “hamate”; in this case, annotation
can support diagnosis and follow-up analysis of musculoskeletal pathologies.

• Feature detection and shape description. A feature is, broadly speak-
ing, any piece of measurable information about a phenomenon. Among
the desirable properties of a feature there are: conciseness, identifiability,
invariance to rigid transformations, noise resistance, occlusion invariance.
Moreover, when considering more than a single feature, statistical in-
dependence is usually required. Feature detection can be considered a
fundamental step in the definition of concise yet informative signatures
of shape models, also known as shape descriptors or descriptions, thus
enabling subsequent shape analysis problems such as matching, retrieval
and classification.

• Registration. The identification of meaningful correspondences between
discrete sets of points on different models is a problem that arises in many
domains of science. Examples of applications include manufacturing (e.g.,
finding possible defects on a product given a model) and medicine (e.g.,
finding correspondences between 3D MRI scans of the same person or of
different people).

• Matching. Pure mathematicians typically define shape in term of class
equivalence under a group of transformations. Although theoretically sound,
this view turns out being incomplete when dealing with applications. Many
contexts, such as computational chemistry, require in fact more than just
knowing when two shapes are exactly the same. Matching deals with the
definition and evaluation of shape similarity; thus, similarity measures are
at the core of every shape matching algorithm.

• Retrieval, classification and clustering. In shape analysis, retrieval is
the problem of identifying all models in a set that are similar to a query
object, on the basis of some properties. By classification we instead mean
the problem of partitioning an input set into a number of preset classes,
possibly to determine to which of these classes a new object belongs. When
classes are not predefined, the process of grouping input instances takes
the name of clustering.
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The remainder of this section deepens the discussion on shape analysis, by
focusing on two of the just-introduced applications:

• Shape description via the Hough transform technique, see Section 1.2.1.
Papers IV and V apply the algebraic Hough transform to a twofold
problem: the segmentation of CAD point clouds, and the definition of
shape descriptors for further aggregating such segments on the basis of
different correlation queries.

• Retrieval, classification and clustering, see Section 1.2.2. Paper VI deals
with the retrieval of classification of protein surfaces on the basis of their
geometry and of some physicochemical properties. Papers IV and V focus
on the problem of point classification when segmenting CAD point clouds.
Finally, papers I and IV apply hierarchical clustering to infer geometric
information from CAD models and point clouds.

1.2.1 Shape description via the Hough transform technique

Introduced in 1962 by P. V. C. Hough in the form of a patent [26], the Hough
transform (or transformation) is one of the most known feature extraction
techniques in image analysis, computer vision, and digital image processing.

The Hough transform (HT) was originally presented for detecting and plotting
straight lines, corresponding to the tracks of subatomic particles in bubble
chamber photographs. The idea is to turn the problem of line detection in the
image space into a voting procedure in the parameter space. More precisely, given
a set of points (x1, y1), · · · , (xN , yN ) sampled from a straight line y = āx + b̄,
the lines yi = axi + b in the parameter space (a, b) all intersect exactly in one
point, which uniquely identifies the original straight line in the image space. The
discretization of the parameter space into small cells allows to count the number
of lines passing through a specific cell; the slope-intercept pair characterizing
the input point cloud corresponds to the pair identified by the most voted cell.

Since its inception, the definition of the Hough transform has been constantly
modified to be able to recognize other shapes and, just as importantly, to do
it in more computationally affordable ways [36]. To eliminate the issue of the
unboundedness of the parameter space (a, b), Duda and Hart [20] proposed the
use of the Hesse normal form of straight lines. In the same paper, they also
extended the method to handle circles and ellipses in a 3D or 4D parameter
space, respectively. In the generalized Hough transform [1], pre-computed look-
up tables are used to recognize arbitrary profiles in images. Several authors have
developed probabilistic approaches to speed up the HT by choosing a subset of
data points, e.g., with fuzzy and Bayesian versions of the method [41, 56].

Very recently, formal results on algebraic geometry have contributed to lay
the foundations of a general theory which extends the Hough transform to
algebraic objects of codimension greater than (or equal to) one [5, 43], as for the
case of space curves.
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1.2.1.1 A gentle introduction to the algebraic Hough transform

For the sake of brevity and clarity, we will introduce the Hough transform for the
simplest case of hypersurfaces in their implicit form. However, the formulation
can be generalized to algebraic objects of codimension greater than one, possibly
in their parametric form.

Most of the results in this section hold over an infinite integral ring K. For
applications, however, it is sufficient to assume K := R.

Let F (x,Λ) ∈ R[x,Λ] be a real polynomial in the two sets of variables
x := (x1, · · · , xn) and Λ := (Λ1, · · · ,Λt). Let Anx and AtΛ be real affine spaces
of coordinates x and Λ, which will be referred to as image space and parameter
space, respectively. For every t-tuple of parameters λ := (λ1, . . . , λt) ∈ Rt, we
consider the polynomial fλ(x) := F (x,λ) ∈ R[x] and its locus

Γλ(F ) := {x : fλ(x) = 0} ⊂ Anx,

which are commonly assumed to be irreducible hypersurfaces. Similarly, every
xP := (x1,P , · · · , xn,P ) gives rise to the polynomial fxP (Λ) := f(xp,Λ) ∈ R[Λ],
where its locus

ΓxP (F ) := {Λ : fxP (Λ) = 0} ⊂ AtΛ
is called the Hough transform of xP with respect to F .

Under the assumption that the polynomials fλ(x) are irreducible in R[x],
the following general statements hold true:

1. Let λ ∈ Rt. For any xP ∈ Γλ(F ), the Hough transform ΓxP (F ) passes
through λ.

2. Let λ, λ′ ∈ Rt such that λ 6= λ′. Assume that, for any xP ∈ Γλ(F ), the
Hough transform ΓxP (F ) passes through λ′. Then the two hypersurfaces
Γλ(F ) and Γλ′(F ) coincide.

3. The following conditions are equivalent:

• For any hypersurfaces Γλ(F ) = Γλ′(F ), it follows that λ = λ′.
• For any λ, one has ⋂

xP∈Γλ(F )

ΓxP (F ) = {λ}.

A family of hypersurfaces ΓΛ(F ) in Anx that meets the above equivalent conditions
is said to be Hough regular. The hypersurfaces of a Hough-regular family are
uniquely identified by their parameters; in some sense, they behave similarly
to straight lines as in the original definition of the Hough transform (see
Section 1.2.1), making the identified coefficients characteristic of the shape.
The parameters of a Hough regular family can thus be used as shape descriptors:
while not necessarily providing the best approximation of the whole input point
cloud, the Hough transform can indeed recognize patterns and further allow
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comparisons on the base of the identified parameters. For example, [35] applies
the Hough transform to two problems: (1) the identification, in clinical X-ray
tomography (CT) slices, of bone profiles in different skeleton districts such as
the lumbar vertebrae and the spinal canal, with the goal to explore bone and
spinal marrow pathophysiology; (2) the detection of solar eruption fronts from
high resolution images, to monitor the solar activity and study its connection
with space weather and invasive phenomena in the geosphere.

Figure 1.3 reports four examples of algebraic plane curves, whose families
are particularly popular because of their characteristic shapes:

• Kepler egg:
(x2 + y2)2 − a1x

3 = 0

• Lemniscate of Bernoulli curve:

(x2 + y2)2 − 2a1(x2 − y2) = 0

• Lamet curve:
a2x

m + a1y
m − am1 a2 = 0

• Citrus curve:
a4

1a
2
2y

2 +
(
x− a1

2

)3 (
x+ a1

2

)3
= 0

egg lemniscate Lamet citrus

Figure 1.3: A set of algebraic plane curves.

1.2.1.2 The Hough transform in practice

Given an input point cloud D in the image space Anx, representing some profiles
of interest, the aim is to detect a hypersurface from a family ΓΛ(F ) in Anx that
best fits the input data.

While in theory it is sufficient to compute the intersection of at least two
Hough transforms, such an intersection is generally empty in practice: this
occurs, for example, because of numerical reasons or for the presence of point
cloud artefacts in the input data (e.g., noise, outliers). To overcome this issue,
the following voting strategy is commonly adopted:
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1. Region detection and discretization. Find a suitable bounded region in the
parameter space for the input profile, then discretize it into cells.

2. Accumulator function and voting procedure. Initialize an accumulator
matrix1, i.e., a matrix such that its entries are in a 1-1 correspondence with
the cells of the discretized region. The value of an entry in the accumulator
matrix corresponds to the number of Hough transforms, computed over the
input data, that intersect the corresponding cell in the discretized region.

3. Parameter identification. Once the accumulator matrix has been computed,
the parameters corresponding to its maximum entry are taken as
representative of the best fit of the input data.

The detection of a region of interest in an unbounded parameter space can
be performed in several ways. When the parameters have geometric meaning
(e.g., the number of convexities in a m-convexity curve, the radius of a circular
cylinder), estimates can be more easily computed (e.g., by considering the
minimal bounding box of the input point cloud). Recently, the use of the
Moore-Penrose pseudoinverse has been proposed to compute an estimate of the
parameters when the polynomial F (x,Λ) is linear with respect to the set of
variables Λ [4].

1.2.1.3 Strengths and limitations

The Hough transform has been widely used as a pattern recognition technique,
mostly because of two considerable advantages. Firstly, the adoption of a voting
strategy makes it fairly robust to most point clouds artefacts (i.e., low or uneven
sampling density, noise, outliers, misalignment and missing data). Secondly, when
the Hough-regularity property holds, it naturally provides geometric descriptors
that can be used for shape comparison.

On the other hand, the HT paradigm suffers from the following drawbacks:

• Lack of dictionaries. The use of mathematical representations for shapes is
a guarantee of theoretical strength but, at the same time, it represents one
of the Achille’s heels. While the literature is relatively rich in examples of
plane curves (see, for example, [48]), the case space curves and surfaces
is limited. In the case of digital images, a solution to this problem
considers a piecewise-defined Hough transform, which computes a sequence
of polynomials connected C0 at cusps, G1 otherwise [14].

• Large memory requirement. The accumulator matrix used in the HT can
be interpreted as an unnormalized histogram; the problem of finding a/the
peak can thus be seen as the search for a/the maximum likelihood estimate
in the density distribution corresponding to such an histogram. As the
number of parameters increases, the adoption of tensor-product grids causes

1The term tensor would be mathematically preferable than that of “matrix”. However, the
latter is used for historical reasons.
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the number of bins and the memory cost to scale exponentially; moreover,
the number of Hough transforms required to define a peak will surge, due
to the curse of dimensionality [3].

• Computational complexity. The increase in the memory requirement is
accompanied by that of the computational complexity. Indeed, if we denote
by M the number of cells in the discretized parameter space and by S the
number of points at which the Hough transform must be computed, then
O(MS) checks are expected.

1.2.2 Retrieval, classification and clustering

Similarly to other types of multimedia information such as text documents
or audio files, the increasing availability of acquisition devices has led to an
exponential growth of data repositories. To name a few: the Protein Data
Bank [7], which contains over 175,000 3D shapes of proteins, nucleic acids, and
complex assemblies; the Princeton Shape Database [21], which stores about
36,000 polygonal surface models of everyday objects collected from the World
Wide Web; and the National Design Repository [42], which counts tens of
thousands of mechanical parts from 3D CAD models. Users, whether experts or
beginners, can considerably benefit from search engines that are able to retrieve,
classify or cluster the members of an unstructured repository.

To allow such tasks, one should first extract a signature (or shape decription)
of each member, for example, by applying the Hough transform technique seen in
Section 1.2.1. The aim is to discard all unnecessary information while preserving
salient properties, thus enabling a more efficient and effective computational
handling of the repository. Obviously, different problems can potentially require
different shape descriptions. Then, it is necessary to define some distances or
dissimilarities, to compare the descriptions instead of the original members.
This is sufficient, in theory, to deal with the retrieval and classification of a
given repository. To perform clustering, one should also specify an additional
ingredient: how the repository is supposed to be partitioned, starting from the
just-computed distances (or dissimilarities).

However, commonly to other types of multimedia data, shape variability can
complicate things: when some classes have a larger intra-class shape variability
than others, or have very heterogeneous sizes, predictive performance of a
retrieval or a classification method is usually negatively affected. Despite the
apparent similarity with 2D images, the analysis of 3D models presents additional
challenges:

• Invariance by rigid and nonrigid transformations. Depending on the final
purpose, a method could be required to identify similarities up to rigid (i.e.,
translations, rotations, reflections and their combinations) and non-rigid
(e.g., obtained by bending and stretching) transformations.

• Geometric and topological noise. 3D models, especially when obtained
by using laser scanning or approximations based on ray casting, are
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often affected by geometric and topological noise. This makes subsequent
processing such as remeshing and parametrization a lot harder. In the
example of Figure 1.4, the model exhibits artificial holes which result in a
change of the overall topology.

• Partial data. In applications such as cultural heritage, it is common
to handle models prominently affected by missing data. In these cases,
one must be able to gather together 3D models even when consisting of
fragments of a larger object.

Figure 1.4: Three artificial holes (a-c, left) in a triangle mesh, as a result of
topological noise in the scanned point cloud. In (a-c, right), the three holes are
filled by making use of topological persistence, see [17]. Pictures courtesy of
Professor Tamal Krishna Dey.

1.3 Benchmarking, aka unveiling a method’s perks (and
flaws)

Benchmarking allows developers and researchers to compare the strengths of
different algorithms, as well as to expose their limitations, by considering a set
of standard tools and procedures in a standard way. Benchmarks are usually
required to be available online, to be free of charge and without copyright issues,
so that anyone can use them for scientific publications. A benchmark comes in
the form of three ingredients:

• A dataset. Generally speaking, it consists of a collection of data referring
to some specific task (e.g., classification of digital surfaces with similar
geometric reliefs). A number of issues need to be addressed to create a
benchmark dataset. As minimum requirements, the collection must be
representative of the problem of interest, have a reasonable number of
models, and have certain generalization ability to evaluate new methods.
In the absence of these characteristics, any final outcome is suspect of
biases and wrong conclusions.
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• A ground truth. Once the data has been acquired, a collection of
information which is assumed to be correct and which is relevant for
that specific context has to be collected (e.g., the true classifications
of the digital surfaces from the previous point). Unfortunately, many
practical situations have no automatic way to determine the ground truth.
For example, in the segmentation of medical images, the ground truth
has to be created manually by domain experts, without the support of
automatic software segmentation; indeed, clinical experts usually interpret
anatomical structures more precisely than a standardized algorithm or
software program.

• A set of evaluation measures. Depending on the dataset, the context and
the ground truth, the way to evaluate the performance of a method
can significantly change. Examples of popular measures in shape
retrieval are: Nearest Neighbour (NN), first and second tiers; e-Measures
(eM); Discounted Cumulated Gain (DCG) and Normalized Discounted
Cumulated Gain (NDCG); precision-recall curves; Average Precision (AP)
and mean Average Precision (mAP) [49]. In shape classification, several
evaluation measures are derived from confusion matrices, a special kind
of contingency table: for example, true positive and negative rates, false
positive and negative rates, positive and negative predictive values, accuracy
and the Fisher scores [29]. To evaluate the efficiency of an algorithm, it is
common to exhibit both the execution times over the whole dataset (or
some statistics of it) and its computational complexity; while the former
is more intuitive and easily obtainable, the latter can be easily used for
comparisons when the algorithms to be compared have not been run on
the same machine.

Compared to repositories, such as those mentioned in Section 1.2.2,
benchmarks are not simple datasets, but contain all the information to assess
the performance of an algorithm targeting some specific problem.

In shape analysis, one of the most established venues for benchmarking
new and existing methods is the 3D SHape REtrieval Contest (SHREC, [53]),
launched in 2006 in collaboration with the Eurographics Workshop on 3D Object
Retrieval (3DOR) and now at its sixteenth edition. Over the years, SHREC has
provided benchmarks to evaluate and compare methods in several domains of
science, including language technology [11], cultural heritage [50], medicine [25],
biology and chemistry [31].
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B-splines

Appendix 1.A B-splines

This appendix introduces univariate B-splines. For a more complete and
comprehensive exposition, the reader is referred to [46].

Definition 1.1 (Univariate B-splines). Let τ = [τ1, . . . , τp+2] be any non-
decreasing sequence, commonly referred to as local knot vector. A (univariate)
B-spline B[τ ] : R→ R of degree p ≥ 0 is the function recursively defined by

B[τ ](x) := x− τ1
τp+1 − τ1

B[τ1, . . . , τp+1](x) + τp+2 − x
τp+2 − τ2

B[τ2, . . . , τp+2](x), (1.7)

where

B[τi, τi+1](x) :=
{

1, if x ∈ [τi, τi+1)
0, elsewhere

, i = 1, . . . , p+ 1.

Here, the convention is assumed that “0/0 = 0”.

By denoting
ωi,p(x) := x− τi

τp+i − τi
,

we can rewrite the recursive equation as

B[τ ](x) = ω1,p(x)B[τ1, . . . , τp+1](x) + (1− ω2,p(x))B[τ2, . . . , τp+2](x),

and by repeating the recurrence relation we obtain

B[τ ](x) = ω1,p(x)ω1,p−1(x)B[τ1, . . . , τp](x)+
+ ω1,p(x)(1− ω2,p−1(x))B[τ2, . . . , τp+1](x)+
+ (1− ω2,p(x))ω2,p−1(x)B[τ2, . . . , τp+1](x)+
+ (1− ω2,p(x))(1− ω3,p−1(x))B[τ3, . . . , τp+2](x) =
= · · · =

=
p−1∏
i=0

ω1,p−i(x)B[τ1, τ2](x) + · · ·+
p−1∏
i=0

(1− ωi+2,p−i(x))B[τp+1, τp+2](x)

The above expansion allows to derive the following fundamental properties:

• Piecewise structure. B[τ ] is a polynomial of degree p in any non-empty
interval [τi, τi+1).

• Positivity. B[τ ] ≥ 0, and B[τ ](x) > 0 for any x ∈ (τ1, τp+2).

• Compact support. The support of B[τ ], i.e., the closure of the subset of
the domain where B[τ ] is non-zero, is the compact interval [τ1, τp+2].

Definition 1.2 (Univariate spline space). Given a global knot vector τ =
[τ1, . . . , τn+p+1], the spline space Sp,τ is the linear space defined by

Sp,τ := span
{
B[τ (1)], . . . , B[τ (n)]

}
,
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where τ (j) := [τj , . . . , τj+p+1] for any j = 1, . . . , n. An element f ∈ Sp,τ is called
a spline function, or just a spline, of degree p with knots τ .

Lemma 1.1 (Marsden’s identity). Let the global knot vector τ = [τ1, . . . , τn+p+1]
be given. Then we have

(x− t)p−m

(p−m)! =
n∑
i=1

(−1)m

p!
dmψi,p(t)

dtm B[τi, · · · , τi+p+1](x),

for any x ∈ [τ1, τn+p+1] and 0 ≤ m ≤ p, and where

ψi,0(t) := 1, ψi,p(t) = (τi+1 − t) · · · (τi+p − t).

The result in Lemma 1.1 leads to the following properties:

• (Local) representation of polynomials. By using the Taylor expansion, we
have that any polynomial q of degree p can be written in terms of B-splines
of the same degree. That is to say,

q(x) =
n∑
i=1

Λi,p(q)B[τi, · · · , τi+p+1](x), (1.8)

for any x ∈ [τ1, τn+p+1] and where

Λi,p(q) :=
p∑

m=0

(−1)m

p!
dmψi,p(t)

dtm
dp−mq(t)
dtp−m , t ∈ R.

• (Local) partition of unity. When setting q(x) = 1, Equation 1.8 gives

1 =
n∑
i=1

B[τi, · · · , τi+p+1](x), x ∈ [τ1, τn+p+1].

Theorem 1.A.1 (Curry-Schoenberg). Let the global knot vector τ =
[τ1, . . . , τn+p+1] be given, so that no knot occurs more than p+ 1 times. Then,{
B[τ (j)]

}n
j=1 is a basis for Sp,τ .

Lastly, we define a class of knot vectors, relevant for the definition of Variation
Diminishing Spline Approximations (see Section 1.1.2).

Definition 1.3. A knot vector τ = [τ1, . . . , τn+p+1] is said to be (p+ 1)-regular if

1. n ≥ p+ 1,

2. τ1 = τp+1 and τn+1 = τn+p+1,

3. τj < τj+p+1 for j = 1, . . . , n.
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Chapter 2

Summary of Papers
In this section we give a summary of the papers included in the thesis. For
each paper, we outline the main contribution, specify what kind of numerical
simulation has been performed and which programming languages were employed.
Table 2.1 further contextualizes the papers with respect to the three main topics
outlined in the introduction (see Sections 1.1—1.3).

Paper I introduces an algorithm to extract geometric information from CAD
models, mainly for reverse engineering purposes. More specifically, given a
set of non-overlapping rational parametrized patches, the aim is to partition
such patches into subsets corresponding to the underlying primitive shape
they originate from. Since the algorithm is intended for CAD applications,
the most relevant cases are those of two- and three-dimensional patches
(i.e., curve and surface patches); nevertheless, it can be trivially extended
to any dimension. Performance in terms of robustness and computational
efficiency is evaluated both theoretically and numerically. A Python
implementation of the algorithm for curves has been made available online.
Since no similar method was present in the CAD domain, the paper fills a
gap in the literature.

Paper II defines a family of quasi-interpolation methods to handle various types
of data imperfections. The paper proves the family’s numerical properties
and gives an interpretation in terms of nonparametric regression, by
studying bias and variance of the corresponding parameter estimators. The
simulation on real data shows how this quasi-interpolant can successfully
deal with applications such as curve fitting, surface reconstruction, and
rainfall approximation and forecasting. A Python implementation of the
method for the approximation of rainfall fields has been set online. The
paper fills a gap in the literature, as it firstly extend a quasi-interpolation
method to address perturbed point clouds.

Paper III provides a data-driven implementation of the quasi-interpolant scheme
from Paper II, based on the supervised learning paradigm. The numerical
study is here further deepened, by comparing with a number of well-known
approximation methods and a set of performance indicators. In contrast to
the naive implementation presented in Paper II, the use of a data-driven
paradigm allows a full shift from the problem of approximation to that of
prediction. All testing has been performed in Python and C. The paper
shows that our method has a prediction capability that is comparable with
that of other well-known methods on clean data, while exhibits a better
performance on noisy data.
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2. Summary of Papers

Paper IV focuses on the problem of point cloud segmentation for CAD
applications. The paper combines the Hough transform technique with
hierarchical clustering. The purpose of applying the Hough transform is
twofold: to break the input point cloud into meaningful segments, either
simple (planes, spheres, circular cylinders and cones) or more complex
ones (e.g., general cylinders and cones, convex combination of curves),
and to aggregate further such segments (e.g., to find all segments lying on
the same cylinder, possibly up to some rigid transformation). Numerical
simulation on synthetic and industrial data has been performed in Matlab.
The advantages over previous segmentation (and fitting) methods are
many: the use of the Hough transform allows to work with data affected by
various point cloud artifacts (e.g., noise, outliers, uneven sampling), and is
able to provide mathematical representations – at least theoretically – of
segments sampled by any family of parametric or implicit representations.
Compared to other implementations of the Hough transform, the use of
initial estimates makes it possible to speed up the search for optimal
solutions, by localizing its search in a dimensionally-reduced parameter
space.

Paper V introduces Fit4CAD, a benchmark for fitting simple geometric
primitives in CAD objects. The dataset is composed of 225 point clouds,
obtained by sampling CAD objects and possibly perturbed by simulating
missing data. The dataset is already split into a training set and a test set,
to allow the testing of learning-based methods. To evaluate the performance
of a candidate segmentation algorithm, a set of classification measures and
quality indicators is introduced. Finally, the benchmark is used to compare
two methods: the Hough-based approach from Paper IV and a clustering
method based on a primitive growing framework. The benchmark has
been made available online, with the aim of helping other researchers in
evaluating and comparing their methods. The main contributions of the
paper include the benchmark creation and its use to study the Hough-based
segmentation method.

Paper VI applies shape analysis to structural biology. The aim is to evaluate
the performance of different algorithms to classify and retrieve protein
surfaces. A dataset of approximately 5, 000 protein surfaces and some
corresponding physicochemical properties was created. Each model is given
in the form of an OFF file and a TXT file: the former contains the triangle
mesh representing the protein surface; the latter gives the physicochemical
properties at the mesh vertices. The performance of the algorithms is
evaluated by considering a set of classification and retrieval measures.
The benchmark has been made available online. Its creation, as well as
the methods’ evaluation, has been carried out on C++, R and Matlab.
Similarly to Paper V, the benchmark itself is one of the main contributions;
in addition, the paper tests how physicochemical properties affect methods
in computational geometry, which is of interest in application domains
outside (applied) mathematics and computer science (e.g., in biochemistry).
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Papers Geometry reconstruction Shape analysis Benchmarking Coding

Paper I approximate implicitization clustering 7∗ Python

Paper II quasi-interpolation,
nonparametric regression - 7∗ Python

Paper III quasi-interpolation,
nonparametric regression - 3 Python, C

Paper IV - shape descriptors,
segmentation 3 Matlab

Paper V -
shape descriptors,
segmentation,
classification

3 Matlab

Paper VI -
shape descriptors,

retrieval,
classification

3
C++, R,
Matlab

Table 2.1: Classification table for the six papers included in this thesis. Asterisks
indicate that the paper has not used a benchmark, but has performed numerical
simulation on real data.

Independent contributions to the papers

As independent contributions, the Ph.D. candidate has:

Paper I

• Investigated the combinability of approximate implicitization and
cluster analysis.

• Designed a semi-automatic algorithm that, through the estimation
of relevant parameters, can cluster patches w.r.t. the underlying
primitive shape.

• Addressed the theoretical proofs behind the method.
• Proposed and studied the numerical stability of approximate implicit-

ization, as well as identified the method shortcomings.
• Tested the algorithm on synthetic data and on a 3D model.

Paper II

• Proposed the use of the quasi-interpolation paradigm for efficient
approximaton of point clouds affected by noise and outliers.

• Generalized a simple quasi-interpolation method and studied its
geometric and probabilist properties.

• Taken care of the numerical simulation on the data provided by the
co-author.
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Paper III

• Proposed and implemented a data-driven method, based on the
supervised learning paradigm.

• Identified a number of methods, among the popular ones with an
implementation freely-available, for comparison purposes.

• Performed a structured comparison w.r.t. data from different sources
and on the basis of different metrics.

Paper IV

• Investigated the use of the Hough Transform technique in CAD
applications, to address shortcomings of traditional CAGD methods
(e.g., approximate implicitazion).

• Tested adaptive methods for the speeding up of the search of optimal
parameters in voting-based approaches.

• Selected CAD models for testing purposes and pre-processed them.
• Defined the equations of helical surfaces and helical strips, as

generalization of simpler surfaces/curves.
• Analysed the output of the Hough Transform via cluster analysis.
• Taken care of data visualization for Figures IV.3-IV.11 and the tables.

Paper V

• Pre-processed part of the ABC dataset, to filter some of the files
through bash scripts and recover missing information (e.g., implicit
representations).

• Used Onshape to create CAD models and, from those, extract point
clouds and ground truth representations.

• Simulated missing parts through CloudCompare.
• Split the dataset into a training set and a test set.
• Selected the classification measures and interpreted the results of the

two studied methods w.r.t. them.
• Interpreted the results of the approximation measures.
• Taken care of data visualization for Figures V.2, V.3, V.9 and V.10,

and Tables V.2 and V.3.

Paper VI

• Got acquainted with NanoShaper and Delphi for the approximation
of molecular surfaces and of the electrostatic potential at the mesh
vertices.

• Downloaded 5, 854 PDB files from the Protein Data bank repository,
starting from a list of PDB codes, and preprocessed them.
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• Generated the triangle meshes approximating the corresponding SES
surfaces; studied and approximated hydrophobicity and presence of
electron donors and acceptors at the mesh vertices.

• Identified a set of classification and retrieval measures that could
provide a rich description of the performance of computational
methods, and used it to evaluate all methods submitted to the SHREC
track; discussed pros and cons w.r.t. the classification measures.

• Taken care of data visualization for all figures and tables.
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Paper I

Reverse engineering of CAD
models via clustering and
approximate implicitization

Andrea Raffo, Oliver Barrowclough, Georg Muntingh
Published in Computer Aided Geometric Design, June 2020, volume 80, DOI:
10.1016/j.cagd.2020.101876.

I

Abstract

In applications like computer aided design, geometric models are often
represented numerically as polynomial splines or NURBS, even when they
originate from primitive geometry. For purposes such as redesign and
isogeometric analysis, it is of interest to extract information about the
underlying geometry through reverse engineering. In this work we develop
a novel method to determine these primitive shapes by combining cluster-
ing analysis with approximate implicitization. The proposed method is
automatic and can recover algebraic hypersurfaces of any degree in any
dimension. In exact arithmetic, the algorithm returns exact results. All
the required parameters, such as the implicit degree of the patches and the
number of clusters of the model, are inferred using numerical approaches
in order to obtain an algorithm that requires as little manual input as pos-
sible. The effectiveness, efficiency and robustness of the method are shown
both in a theoretical analysis and in numerical examples implemented in
Python.
Keywords: reverse engineering, clustering, statistical learning, approxi-
mate implicitization.
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I. Reverse engineering of CAD models via clustering and approximate
implicitization

I.1 Introduction

Reverse engineering, also known as back engineering, denotes a family of
techniques moving from the physical instantiation of a model to its abstraction, by
extracting knowledge that can be used for the reconstruction or the enhancement
of the model itself [3]. Such methods are widely used in applications to obtain
CAD models, for instance from point clouds acquired by scanning an existing
physical model. Among the various reasons behind this interest are the speed-up
of manufacturing and analysis processes, together with the description of parts
no longer manufactured or for which only real-scale prototypes are available. In
mechanical part design, high accuracy models of manufactured parts are needed
to model parts of larger objects that should be assembled together precisely.
Industrial design and jewelry reproduction often use reverse engineered CAD
models, which are usually easier to obtain than by directly designing complex
free-form shapes with CAD systems. Medicine applies reverse engineering directly
to the human body, such as in the creation of bone pieces for orthopedic surgery
and prosthetic parts. Finally, reverse engineering is often exploited in animation
to create animated sequences of pre-existing models.

In the field of isogeometric analysis (IGA), volumetric (trivariate) CAD
models based on B-splines are used both for design and analysis. One major
step in supporting IGA in industry is to provide backwards compatibility with
today’s boundary represented (B-rep) CAD models. Conversion from bivariate
surface models to trivariate volume models is a challenging, and as yet unsolved
problem. Methods for constructing such models include block structuring [19] and
volumetric trimming [7], or a hybrid of the two. In all cases, information about
the underlying surfaces in the model is of key importance. This problem was
the original motivation behind the work in this paper. However, the method can
also be utilized for many of the applications outlined above in the description of
reverse engineering. In particular, redesign of models is an interesting application.
As CAD models are typically represented as discrete patches, modifying them
individually becomes a cumbersome job when the number of patches is large.
Our method clusters all patches belonging to the same primitives together. This
could be a key tool in better supporting parametric design in CAD systems that
are based on direct modelling.

The first step of a reverse engineering process is digitalization, i.e., the
acquisition of 2-D or 3-D data point clouds. Once the acquisition is completed,
model features are identified from the point clouds using segmentation techniques.
Edge-based approaches to segmentation aim to find boundaries in the point data
representing edges between surfaces. Faced-based segmentation proceeds in the
opposite order, trying to partition a given point cloud according to the underlying
primitive shapes [21]. We refer the reader to [10, 15, 16, 18, 20, 22] for further
strategies of feature detection in CA(G)D. Finally, surface modelling techniques
are applied to represent points in each of the detected regions. Some of the
most used representations are point clouds, meshes (e.g. polygons or triangles),
boundary representations (e.g. NURBS or B-spline patches), constructive solid
geometry (CSG) models, spatial partitioning models, and feature-based and
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constraint-based models [8]. An example of relevant problem related to the
just-obtained representations is part-in-whole retrieval (PWR), where a part is
given as a query model and all models containing such a query part are retrieved
(see, for example, [23] and [14]).

In this paper the geometry is reconstructed using implicit algebraic surfaces.
According to a survey reported in [17], “99 percent of mechanical parts can
be modelled exactly if one combines natural quadrics with the possibility of
representing fillets and blends.” Hence algebraic surfaces of low degree naturally
provide global representations and are thus well suited to our application
of detecting which patches belong to the same underlying geometry. The
formal problem statement that we solve is as follows: given a set of non-
overlapping rational parametrized patches in Rn, partition the patches into
subsets corresponding to the underlying primitive shape they originate from.

The main contributions of this paper are:

• The introduction of a novel algorithm to group patches of a given CAD
model with respect to the underlying primitive geometry.

• A theoretical study of the stability and the computational complexity of
the method.

• The validation of the method on both synthetic and real data.

The paper is organized as follows. In Section I.2 we introduce the main tools
of our method, presenting basic definitions and existing results that will be used
later on. In Section I.3, the core of our paper, we present the building blocks and
mathematical results forming the foundation of the detection method. In Section
I.4 we formalize these results into an explicit algorithm. In Section I.5 we present
a theoretical analysis of the robustness of the method. In Section I.6 we present
several examples of the application of our method, based on an implementation
of the algorithm in Python that is available online1. Section I.7 concludes the
main part of the paper, discussing encountered challenges and directions for
future research. Finally, in Appendix I.A we report some of the proofs regarding
the mathematical theory behind the algorithm.

I.2 Background

I.2.1 Clustering methods

Clustering is a well-established unsupervised statistical learning technique,
gathering a group of objects into a certain number of classes (or clusters)
based on a flexible and non-parametric approach (see [11] and its references).
The grouping is performed so as to ensure that objects in the same class are
more similar to each other than to elements of other classes. The problem can
be traced back to ancient Greece and has extensively been studied over the

1https://github.com/georgmuntingh/ImplicitClustering
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centuries for its various applications in medicine, natural sciences, psychology,
economics and other fields. As a consequence, the literature on the topic is vast
and heterogeneous with the yearly Classification Literature Automated Search
Service listing dozens of books and hundreds of papers published on the topic.

Mathematically, clustering refers to a family of methods aiming to partition
a set X = {x1, . . . ,xN} such that all elements of a cluster share the same or
closely related properties. In the context of statistics, any coordinate of a (data)
point xi = (xi1, . . . , xin)T ∈ Rn is the realization of a feature or attribute.

The grouping is performed by defining a notion of dissimilarity between
elements of X.

Definition I.1 (Dissimilarity). A dissimilarity on a setX is a function d : X×X →
R such that for all x,y ∈ X:

1. d(x,y) = d(y,x) (symmetry);

2. d(x,y) ≥ 0 (positive definiteness);

3. d(x,y) = 0 iff x = y (identity of indiscernibles).

The concept of dissimilarity is more general than the notion of distance,
where in addition to the three properties in Definition I.1 we take in account
also the triangular inequality:

Definition I.2 (Distance). A distance on a set X is a dissimilarity d : X×X → R
such that:

4. d(x,y) ≤ d(x, z) + d(z,y) ∀x,y, z ∈ X (triangular inequality).

The choice of the dissimilarity (or distance) strongly depends on the problem
of interest, since it allows one to determine which elements are closer to each
other by giving a greater importance to certain properties compared to other
unfavourable ones. From a geometrical viewpoint, the use of a dissimilarity
rather than a distance leads to a generalized metric space [12].

Example I.1. A traditional way to measure distances in a Euclidean space Rn is
a Minkowski distance, i.e., a member of the family of metrics:

dP (x,y) :=
(

n∑
i=1
|xi − yi|p

)1/p

, p ≥ 1.

Common choices in this family are the Manhattan, Euclidean and Chebyshev
distances (respectively: p = 1, 2 and ∞).

Once the dissimilarity d between elements has been chosen, it is necessary
to define a generalization of d to compare subsets of X. In this context
generalization means that if two clusters are singletons, then their dissimilarity
corresponds to the original dissimilarity between the respective elements. Clearly
the generalization of d is not uniquely determined and must be chosen on a
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case-by-case basis. Finally, an algorithm for grouping the data is designed via
the defined d so as to reach a faithful clustering after a finite number of steps.

Conventional clustering algorithms can be classified into two categories:
hierarchical and partitional algorithms. There are two families of hierarchical
algorithms:

• Agglomerative hierarchical algorithms start with singletons as clusters and
proceed by merging the clusters that are closest step by step.

• Divisive hierarchical algorithms work the other way around, starting with
a single cluster containing all the elements and proceeding with a sequence
of partitioning steps.

In this work we follow the agglomerative hierarchical approach in order to
minimize the a priori knowledge that is required, consisting in general of only
the number of clusters. Partitional algorithms require further information. In
our method we propose an approach to infer this parameter, in order to keep the
algorithm automatic. We emphasize that the result of different clustering
methods highly depends on the considered dissimilarity, which is both an
advantage and a disadvantage since it requires an additional choice to be made.
For further details we refer the reader to [9] and references therein.

I.2.2 Approximate implicitization

Implicitization is the process of computing an implicit representation of a
parametric hypersurface. In algebraic geometry, traditional approaches to
implicitization are based on Gröbner bases, resultants and moving curves and
surfaces [13]. These methods present different computational challenges, such
as the presence of additional solutions and a low numerical stability. Over the
last decades several alternatives have been introduced in CAGD to reach an
acceptable trade-off between accuracy of representation and numerical stability.

Approximate implicitization (see [1, 6]) defines a family of algorithms for
“accurate” single polynomial approximations. Approximate implicitization can
be performed piecewise by dividing the model into smooth components. This
approach is of interest in applications from computer graphics, where the models
are rarely described by a single polynomial. To simplify our presentation, we
will restrict our attention to hypersurfaces in Rn (varieties of codimension 1),
even though the classical theory can be applied to varieties of any codimension.
In order to avoid degenerate parametric hypersurfaces, we assume their domains
Ω ⊂ Rn−1 to be (Cartesian products of) closed intervals.

Definition I.3 (Exact implicitization of a parametric hypersurface). Let p : Ω ⊂
Rn−1 → Rn be a hypersurface in Rn. An exact implicitization of p is any nonzero
n-variate polynomial q such that:

q(p(s)) = 0, s ∈ Ω
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Definition I.4 (Approximate implicitization of a parametric hypersurface).
Let p : Ω ⊂ Rn−1 → Rn be a parametric hypersurface. An approximate
implicitization of p within the tolerance ε ≥ 0 is any nonzero n-variate polynomial
q, for which there exists a continuous direction function g : Ω→ Sn, with Sn ⊂ Rn
the unit sphere, and a continuous error function η : Ω→ (−ε, ε), such that:

q(p(s) + η(s)g(s)) = 0, s ∈ Ω

Lemma I.1 (Dokken [6]). Let q(x) = 0 define an algebraic hypersurface of degree
m and p = p(s) be a (polynomial or) rational parametrization of (multi)degree
n expressed in a given basis. Then it follows that the composition q

(
p(s)

)
can

be expressed in a basis α(s) for the polynomials of (multi)degree at most mn.
Explicitly,

q
(
p(s)

)
= (Db)Tα(s),

where

• D is a matrix built from products of the coordinate functions of p(s);

• b is a column vector containing the unknown coefficients of q with respect
to a chosen basis for the polynomials of total degree at most m.

Note that, if b 6= 0 is in the nullspace of D, then q
(
p(s)

)
= 0 and b contains

the coefficients of an exact implicitization of p(s). If the kernel of D is trivial we
look for an approximate implicit representation of p by minimizing the algebraic
error ||q ◦ p||∞.

Proposition I.1 (Dokken [6]). Let q(x) = 0 be an algebraic hypersurface of degree
m and p = p(s) be a polynomial or rational parametrization of (multi)degree n
expressed in a given basis. Then

min
‖b‖2=1

max
s∈Ω
|q
(
p(s)

)
| ≤ max

s∈Ω
||α(s)||2σmin,

where σmin is the smallest singular value of the matrix D defined in Lemma I.1.

Proof. Applying the Cauchy-Schwarz inequality,

min
‖b‖2=1

max
s∈Ω
|q
(
p(s)

)
| = min

‖b‖2=1
max
s∈Ω
|(Db)Tα(s)|

≤ max
s∈Ω
||α(s)||2 min

‖b‖2=1
||Db||2

= max
s∈Ω
||α(s)||2σmin,

where we used that the smallest singular value σmin of D takes the form

σmin = min
‖b‖2=1

||Db||2.

�
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Notice that the upper bound on the maximal algebraic error depends on the
choice of the basis α. If the basis forms a non-negative partition of unity, then

min
‖b‖2=1

max
s∈Ω
|q
(
p(s)

)
| ≤ σmin.

Denoting by bi the singular vector corresponding to the singular value σi of D
and with qi the algebraic hypersurface identified by bi, we have

|qi
(
p(s)

)
| ≤ max

s∈Ω
||α(s)||2σi. (I.1)

Thus the singular value σi is a measure of how accurately qi(x) = 0 approximates
p(s).

I.2.2.1 Discrete approximate implicitization

One of the fastest and simplest numerical implementations of approximate
implicitization is based on a discrete least squares approximation of a point
cloud P = {p(si)}Ni=1 sampled from the parametric manifold. The choice of
using a point cloud sampled in parameter space is equivalent to choosing α to
be a Lagrange basis. This approach considers a collocation matrix D, expressed
elementwise in terms of a basis {πj}Mj=1 of the set of n-variate polynomials of
total degree at most m as

Di,j = πj
(
p(si)

)
, i = 1, . . . , N, j = 1, . . . ,M. (I.2)

Analogously to Proposition I.1, we can bound the algebraic error as

min
‖b‖2=1

max
s∈Ω
|q(p(s))| ≤ max

s∈Ω
‖α(s)‖2σmin ≤ Λ(α)σmin,

where

• Λ(α) is the Lebesgue constant from interpolation theory defined by
Λ(α) := maxs∈Ω‖α(s)‖1.

• σmin is the smallest singular value of D. This singular value depends
on the point cloud P, the total degree m and the basis {πj}Mj=1. Thus,
a more correct notation is σ(m)

min(P, {πj}Mj=1). For the sake of simplicity,
the dependence on the point cloud P, the total degree m and the basis
{πj}Mj=1 are omitted when not risking a misunderstanding.

We summarize the procedure to compute a discrete approximate implicitiza-
tion as follows:

Algorithm I.1. Given a point cloud P := {p(s1), . . . ,p(sN )} sampled from a
parametric hypersurface p and a degree m for the implicit polynomial.

1. Construct the collocation matrix D by evaluating the polynomial basis
{πj}j at each point of P as in (I.2).
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2. Compute the singular value decomposition D = UΣVT .

3. Select b = vTmin the right singular vector corresponding to the smallest
singular value σ(m)

min
(
P, {πj}Mj=1

)
.

I.3 The algorithm

CAD models can nowadays include millions of patches and billions of control
points, making it necessary to develop algorithms that can process a huge
amount of data. The novel approach we present combines flexibility, a controlled
computational complexity and a high robustness to work in floating-point
arithmetic. In exact arithmetic, the algorithm returns exact results. Our
method does not require knowledge of the degree of the patches or the number
of primitive shapes from which a certain model originates. Our idea is to infer
these parameters using numerical approaches, to keep the algorithm automatic
when they are not a priori available.

In this section the individual parts of the proposed reverse engineering
algorithm are described in detail. We start with a pre-processing step aimed at
dividing the set of all components in subsets according to their degree. Next, we
describe a strategy for grouping the patches according to the primitive shapes
they originate from, followed by description of how the free parameters are set.
We end the section with a sketch of the complete algorithm.

I.3.1 Calibration and pre-processing

Let X be the set of all the patches composing the model in Rn (here: n = 2, 3).
The pre-processing step consists of the partitioning X = ∪iXi of the patches
according to the suspected degree of their implicit form. The following lemma
shows that we can use approximate implicitization to achieve our purpose.

Lemma I.2. Let τ be a non-trivial polynomial or rational patch in Rn. Then the
implicit degree of τ can be written as

m := min
{
m̄ ∈ N∗ s.t. σ(m̄)

min = 0
}
, (I.3)

where σ(m̄)
min is the shorthand notation for the smallest singular value of Algorithm

I.1. Here, P is a point cloud sampled on τ and {πj}Mj=1 is any basis of total
degree m̄.

Proof. From Proposition I.1 it follows that

• Approximate implicitization of degree m̄ < m provides the coefficients
of an approximate implicit representation, together with strictly positive
smallest singular value that measures the accuracy of the approximation.

• Approximate implicitization of degree m̄ = m provides the coefficients
of the exact implicit representation, and the smallest singular value is
zero. �
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Remark I.1. Let Nmin be the minimum number of samples guaranteeing a
unique exact implicitization (e.g. Nmin = m2 + 1 for a non-degenerate rational
parametric planar curve of implicit degree m). Lemma I.2 can be extended to
consider discrete approximate implicitization if at least Nmin unique samples are
considered (see [1] for details).

Remark I.2. Trimmed surfaces introduce a few additional complexities, but can
be dealt with in a similar way. Given that trimming curves are often irregular,
it is in general not possible to achieve a regular sampling that conforms to the
boundaries of the model. In general we may say that if the underlying surface
belongs to a certain primitive, then so will any trimmed region of that surface.
Conversely, although it is possible that the trimmed region of a surface belongs
to a certain primitive while the underlying surface does not, such cases are
pathological. We can thus deal with trimmed surfaces in two ways. The first
approach is to simply sample the underlying surface regularly, disregarding the
trimming region. Another approach is to perform random oversampling of points
within the trimmed region to ensure that enough samples are taken. The latter
approach is also robust to pathological examples.

Equation (I.3) is useful to determine the implicit degree of a patch. This
characterization for the implicit degree fails when we work in floating-point
arithmetic, due to the approximations adopted in the computation. A possible
modification is the relaxation of (I.3) by the weaker criterion

m := min
{
m̄ ∈ N∗ s.t. σ(m̄)

min < ξ(m̄)
}
, (I.4)

where the threshold ξ(m̄) is introduced to take into account the rounding-off
error of floating point arithmetic and other possible sources of uncertainty. Note
that this parameter depends on the implicit degree chosen in the computation
of discrete approximate implicitization.

Suppose that we want to distinguish the patches of degree m from those of
greater degree. A statistical approach to infer such thresholds is the following.

Algorithm I.2. Given the implicit degree of interest m.

1. Generate:

• Q1 � 1 random patches of implicit degree m;
• Q2 � 1 random patches of implicit degree m+ 1.

2. For each of these two sets, average the smallest singular values computed
by applying discrete approximate implicitization of degree m on each patch.
Denote these two values with ξ1 and ξ2.

3. Finally, compute ξ(m) as the geometric mean of ξ1 and ξ2, i.e.,

ξ(m) =
√
ξ1ξ2.
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The use of a geometric mean allows computation of a value whose exponent
in the scientific form is intermediate to the ones of ξ1 and ξ2. Notice that in
applications such as CAD, curves and surfaces have often low implicit degree
(e.g. degree 1 and 2 for natural quadrics). As we will see in Section I.5, the
estimation of the implicit degree can fail in floating-point arithmetic.

I.3.2 An agglomerative approach

As previously mentioned, hierarchical algorithms are subdivided into agglomer-
ative and divisive hierarchical algorithms. The agglomerative approach starts
with each object belonging to a separate cluster. Then a sequence of irreversible
steps is taken to construct a hierarchy of clusters.

In our case, X is the set of patches to cluster. We want to reach a partition
where patches in the same cluster are the only ones originating from the same
primitive shape. We propose to derive the dissimilarity measure from discrete
approximate implicitization. Since we have already partitioned X = ∪iXi

according to the suspected implicit degree of the patches, we can assume that
all the patches in X have same degree m. Starting from each patch in a single
cluster, at each step the two clusters with smallest dissimilarity are merged.

As a first step to define a dissimilarity on X, we identify each patch with
a point cloud of N points sampled on its parametrization, where N ≥ Nmin
and Nmin is the constant of Remark I.1. Typically a uniform sampling scheme
is chosen. This assumption will guarantee the minimum number of samples
for a unique exact implicitization when considering a pair of patches lying on
the same primitive shape. Let Ẍ be the set of such point clouds, following the
indexing and partitioning of X. Notice that the points can be chosen such that
the patches in X are in 1-1 correspondence to the point clouds of Ẍ, i.e.,

X 3 τ 1−1←−→ τ̈ := {P τ1 , . . . , P τN} ∈ Ẍ.

Definition I.5 (Family of candidate dissimilarities dλ). Let λ ≥ 0. For each pair
of patches τ1 and τ2 in X, let τ̈1 and τ̈2 be their respective point clouds in Ẍ.
We define

dλ(τ1, τ2) := σ
(m)
min (τ̈1 ∪ τ̈2) + λ||rCM(τ̈1)− rCM(τ̈2)||2,

where

• λ is a regularization parameter.

• σ
(m)
min (τ̈1 ∪ τ̈2) is the smallest singular value computed by applying discrete

approximate implicitization of degree m to the point cloud τ̈1 ∪ τ̈2.

• ||rCM(τ̈1) − rCM(τ̈2)||2 is the Euclidean distance between the center of
masses of the two point clouds.

Lemma I.3. Let X be a set of patches such that the centers of masses of the
elements of X are distinct. Let dλ be the map defined in Definition I.5. Then:
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1. The map dλ is a dissimilarity ⇐⇒ λ > 0.

2. There exists λ∗ > 0 such that dλ is a distance ⇐⇒ λ ≥ λ∗.

Proof.

1. It is obvious that dλ is non-negative and symmetric for any λ ≥ 0. Let’s
then prove the identity of indiscernibles. Let τ1, τ2 be a pair of patches in
X. Then

dλ(τ1, τ2) = 0 ⇐⇒ σ
(m)
min (τ̈1 ∪ τ̈2) + λ||rCM(τ̈1)− rCM(τ̈2)||2 = 0

⇐⇒

{
σ

(m)
min (τ̈1 ∪ τ̈2) = 0
λ||rCM(τ̈1)− rCM(τ̈2)||2 = 0

,

where the last equivalence arises from the non-negativity of the two terms.
Notice that:

• The smallest singular value σ is zero iff τ1 and τ2 lie on the same
hypersurface of degree m.

• λ||rCM(τ̈1)− rCM(τ̈2)||2 = 0 iff the patches have the same center of
mass or λ = 0. Since the first case is excluded by hypothesis, the
lemma is proved.

2. Let τ1, τ2, τ3 be three patches in X. Then d(τ1, τ2) ≤ d(τ1, τ3) + d(τ1, τ2)
iff

λ ≥ σ
(m)
min (τ̈1 ∪ τ̈2)− σ(m)

min (τ̈1 ∪ τ̈3)− σ(m)
min (τ̈2 ∪ τ̈3)∑2

i=1 ||rCM(τ̈i)− rCM(τ̈3)||2 − ||rCM(τ̈1)− rCM(τ̈2)||2
=: λτ1,τ2,τ3 ,

which is well-defined by the triangle inequality for the Euclidean distance
and since distinct patches have distinct center of masses by assumption.
Hence, it follows that the triangular inequality holds (only) for dλ with

λ ≥ λ∗ := max
τ1,τ2,τ3∈X

λτ1,τ2,τ3 .

�

Remark I.3. Notice that:

1. Any pair of patches τ1 and τ2 belongs to the same primitive shape iff
σ

(m)
min (τ̈1 ∪ τ̈2) = 0 or, equivalently, iff d0(τ1, τ2) = 0.

2. A parameter λ > 0 is required to exploit the theory of clustering analysis.
On the other hand, λ should penalize the term ||rCM(τ̈1)− rCM(τ̈2)||2 in
order to preserve the behavior of d0 described i). We can choose λ ≈ 0,
e.g. λ = 10−10, to approximate d0 by a dissimilarity. We remark that this
constant is typically much smaller than λ∗.
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3. The assumption in Lemma I.3 is reasonable for applications such as CAD,
where patches do not overlap.

The dissimilarities between pairs of patches are stored in the |X|×|X| matrix
DX , known as the dissimilarity matrix.

Now that we have defined a dissimilarity between elements, we extend it to
clusters by defining the map Dλ : 2X × 2X → [0,+∞) using a complete-linkage
approach:

Dλ(Ci, Cj) := max
τk∈Ci,τl∈Cj

dλ(τk, τl).

The main reason for choosing complete-linkage is its relatively low computational
cost, since the dissimilarity matrix at step k is just a submatrix of DX . In
addition numerical results show that it works well in practice.

Finally, starting from each patch in a separate cluster, we merge at each step
the pair of clusters with smallest dissimilarity Dλ. The merging continues until
the correct number of primitive shapes is detected, using the stopping criterion
described in the next section.

I.3.3 Stopping criterion for the agglomerative approach

How should one estimate the final number of clusters? We propose to define a
stopping criterion considering the map d0 as follows:

• At each iteration k we compute, for each cluster, the maximum value
of d0 for pairs of patches. From a numerical viewpoint, it corresponds
to an empirical estimation of the maximum error in the approximate
implicitization of the patches.

• We consider then the maximum of the maxima and denote it by e(k). We
will refer to e(k) as the representation error at iteration k.

Suppose L is the number of underlying primitives and let P := |X| be the
number of patches. Then:

• In exact arithmetic, e(k) = 0 for k = 1, . . . , P − L and e(k) > 0 for
k = P − L + 1, . . . , N − 1. Therefore the number of iterations can be
defined as the maximum index k such that e(k) = 0, i.e.,

k̄ := max{k|e(k) = 0}. (I.5)

• In floating-point arithmetic, Equation I.5 does not, in general, return any
integer. We thus aim at designing a stopping criterion that can handle
round-off error. We propose to estimate the number of iterations k̄ as the
index where the representation error jumps significantly for the first time,
i.e.,

k̄ := min{k|e(k) > η}.

One way to choose the stopping tolerance η is to proceed similarly to
Algorithm I.2:
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Algorithm I.3. Given the maximum implicit degree of interest mmax:

1. Generate P3 � 1 sets {Di}Mi=1 of random patches of implicit degree between
1 and mmax.

2. Compute the number of iterations k̄i for an exact clustering of each Di,
considering that the number of clusters for training sets is known.

3. Compute, for each Di, the respective representation error ei at iteration
k̄i;

4. Define η := (min ei)2.

Such an empirical threshold η lies between 0 and the smallest representation
error of an incorrect representation. Whenever e(k) is smaller than η, the
algorithm will proceed by joining the clusters having this smallest dissimilarity.
Otherwise, the algorithm will stop.

As an alternative to this stopping criterion based on absolutes, one may
prefer the following relative stopping criterion.

Algorithm I.4. Given a sequence e(k), k = 1, . . . , P − 1, of representation errors:

1. Set e(0) := e(1).

2. Define ẽ(k) := e(k)/e(k−1), for k = 1, . . . , N − 1.

3. Define k̄ :=
(
arg maxk ẽ(k))− 1.

Additional details on the use of these two criteria are provided in Section I.6.
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I.4 Sketch of the algorithm for the detection of primitive
shapes

We now present a sketch of the complete detection algorithm described earlier
in this section. The input consists of a finite set of patches X lying on differ-
ent manifolds and having different centers of mass. As output, the algorithm
returns the partition of X corresponding to the manifolds the patches come from.

First, we partition X according to the implicit degree of the patches as
described in Section I.3.1. The tuning parameters {ξ(m)} are computed using
Algorithm I.2. The maximum implicit degree of the patches mmax is returned as
a result of this first step.

Input: The set of polynomial patches X.
Output: The partition X1, . . . , Xmmax according to the implicit degree.

1 Set m := 0 (degree for discrete approximate implicitization);
2 while |X| > 0 do
3 Set m := m+ 1 (increment the degree for approximate

implicitization);
4 Compute ξ(m) as defined in Algorithm I.2;
5 Set Xm := ∅;
6 for τ ∈ X do
7 if σ(m)

min(τ) < ξ(m) then
8 Set Xm := Xm ∪ {τ};
9 Set X := X\{τ};

10 end
11 end
12 end
13 Set mmax := m;
14 return X1, . . . , Xmmax

Algorithm I.5: Partition of the set of patches X according to their
implicit degrees.

Finally, we apply the agglomerative clustering approach described in Section
I.3.2 to each of the subsets Xi. We will denote with Xi = ∪jX(k)

i,j the partition
of the cluster Xi into the clusters X(k)

i,j at step k, and with Xi = ∪jXi,j the final
partition corresponding to the primitive shapes.

The tolerance η is assumed to be previously computed as in Section I.3.3.
We recall that in the agglomerative approach each patch constitutes a single
cluster at the initial step.
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Input:
∣∣∣∣ X = ∪iXi the initial partition according to the implicit degree.
η the threshold for the stopping criterion.

Output: The final partition X = ∪i,jXi,j according to the underlying
primitive shapes.

1 for i = 1 : mmax do
2 Set Pi := |Xi| (number of clusters at step 0);
3 if Pi > 1 then

Initial step:
4 Set DX := 0Pi×Pi (dissimilarity matrix at step 0);
5 for j1 = 1 : Pi do
6 for j2 = j1 + 1 : Pi do
7 Set DX(j1, j2) := dλ (τj1 , τj2).
8 end
9 end

10 DX := DX + DT
X ;

11 Define the partition Xi = ∪Pij=1X
(0)
i,j , where each cluster X(0)

i,j

contains one and only one patch (agglomerative approach);
Agglomerative process:

12 Set k := 0 and e(0) := 0;
13 while e(k) < η do
14 Set P ki := |Xi| (number of clusters at step k);
15 if k = 0 then
16 Set D0

X := DX (dissimilarity matrix at step 0);
17 else
18 Set Dk

X := 0Pk
i
×Pk

i
(dissimilarity matrix at step k);

19 for j1 = 1 : P ki do
20 for j2 = j1 + 1 : P ki do
21 Set Dk

X(j1, j2) := Dλ(X(k)
i,j1
, X

(k)
i,j2

);
22 end
23 end
24 Dk

X := Dk
X +

(
Dk
X

)T ;
25 Find the pair of clusters X(k)

i,j̄1
and X(k)

i,j̄2
minimizing Dλ;

26 Set the partition for step k + 1 by merging X(k)
i,j̄1

and X(k)
i,j̄2

;
27 Compute e(k+1) as described in Section I.3.3;
28 Set k := k + 1;
29 end
30 end
31 end
32 return X = ∪X(k−1)

i,j

Algorithm I.6: Partition of the set of patches X corresponding to the
underlying primitive shapes.
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I.4.1 Computational complexity

In this section we analyze the computational complexity of the proposed algorithm
in the case of curves and using approximate implicitization with total degree at
most m.

I.4.1.1 Complexity of approximate implicitization

We start by determining the computational complexity for approximate
implicitization. For curves in R2, the collocation matrix D (I.2) has the form
(πj(pi))N,Mi=1,j=1, involving:

• N points p1, . . . ,pN sampled from one or more segments.

• M polynomials π1, . . . , πM spanning the space Rm[x, y] of bivariate
polynomials of total degree at most m. In particular,

M := dimRm[x, y] = (m+ 1)(m+ 2)
2 . (I.6)

The computational complexity of approximate implicitization is the result of
two contributions:

• For the monomial basis considered in this paper, using a triangular scheme
to assemble the entries of D reduces the computational complexity to
O(Nm2).

• The singular value decomposition of an N ×M matrix has computational
complexity O(min(NM2, N2M)) [2]. In our setting, this yields

O(min(NM2, N2M)) = O(min(Nm4, N2m2))

In case of points lying exactly on parametric curves, we can (without loss
of generality) set N := Nmin, where Nmin is the minimum number of samples
that guarantees a unique exact implicitization. By assuming the parametric
planar curve to be rational non-degenerate, Nmin = m2 + 1 (see Remark I.1),
which leads to a total computational cost of O(m6). Although approximate
implicitization exhibits high complexity with respect to patch degree, we are
mainly concerned with low degree patches in this work, as motivated in the
introduction. Due to this, the total computational time is dominated by the
number of patches P =

∑mmax
m=1 Pm, to be clustered.

I.4.1.2 Estimating the degree of the patches

Algorithm I.5 runs approximate implicitization of degree m a total of
P −

∑m−1
k=0 Pk times, where we set P0 := 0 and where m = 1, . . . ,mmax. Thus

the routine for estimation of degree has O(P ) complexity in the number of
patches. This result is independent of the dimension of the hypersurfaces to be
clustered.
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I.4.1.3 Assembling the dissimilarity matrix

Considering the degree of the patches to be constant (e.g. mmax in the worst
case), the complexity of assembling the dissimilarity matrix is proportional to the
number of elements in the matrix, that is O(P 2), regardless of the dimension of
the hypersurfaces to be clustered. It may be noted, moreover, that each element
of the dissimilarity matrix can be computed independently, implying that the
matrix assembly is highly parallelizable (embarrassingly parallel).

I.4.1.4 Clustering procedure

The naive implementation of agglomerative hierarchical clustering requires O(P 3)
operations [4]. However, even with this implementation, for all cases we have
encountered so far, the assembly of the dissimilarity matrix requires most of the
computational time. The dominance of the assembly procedure is even more
prominent for surfaces in R3. Thus, in practice, the number of patches required
before the clustering step becomes dominant is excessively high. If the clustering
of such a large number of patches is required, it is also possible to exploit the
complete-linkage approach to implement the clustering procedure with O(P 2)
complexity [5].

I.5 Theoretical analysis

In this section we state three propositions on the stability and robustness of
discrete approximate implicitization under scaling, translation and rotation when
the monomial basis is considered. The proofs are given in the appendix. These
results of the study are generalizable to hypersurfaces of Rn.

Proposition I.2 (Scaling and smallest singular value). Let

pa(t) =
(
a1x(t), a2y(t)

)
, t ∈ [a, b] ⊂ R,

be a family of scaled polynomial or rational parametric segments, where a =
(a1, a2) ∈ R2 with a1, a2 > 0. Let Pa := {pa(tj)}j be a family of uniformly
sampled point clouds. Then

lim
(a1,a2)→(0,0)

σ
(m)
min (Pa) = 0.

Proposition I.3 (Translations and smallest singular value). Let

pa(t) =
(
x(t) + a1, y(t) + a2

)
, t ∈ [a, b] ⊂ R,

be a family of translated polynomial or rational parametric segments, where
a := (a1, a2) ∈ R2. Let Pa := {pa(tj)}j be a family of uniformly sampled point
clouds. Then

lim
ak→∞

σ
(m)
min (Pa) = 0, k = 1, 2.
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Proposition I.4 (Rotation and smallest singular value). Let

pθ(t) =
(
x(t) y(t)

)(cos θ − sin θ
sin θ cos θ

)
, t ∈ [a, b] ⊂ R,

be a family of polynomial or rational parametric segments rotated about the origin,
where θ ∈ [0, 2π]. Let Pθ := {pθ(tj)}j be a family of uniformly sampled point
clouds. Then there exists α, β ∈ R>0 such that

α ≤ σ(m)
min (Pθ) ≤ β.

These propositions imply that the algorithm is not guaranteed correct in
floating-point arithmetic, since the smallest singular value can be small enough
that the weak condition (I.4) or the stopping criterion of Section I.3.3 fail.
However, these issues can be mitigated by performing further preprocessing on
the data (rescaling to a fixed size, calibrating, etc.). The next section shows that
the algorithm works well in practice.

I.6 Experimental results

Our algorithm has been tested on two- and three-dimensional examples. We
first describe its behavior for segments originating from lines and conics in a
plane, then we study its correctness, robustness and efficiency when applied to
line segments and Bézier approximations of circular segments, and finally we
test its correctness on a real-world industrial example of a 3D CAD model.

I.6.1 Straight lines and conics

Let Fc = {Ci}Li=1 be a family of L curves, where the type of each curve
(e.g. straight line, parabola, ellipse, hyperbola) is randomly chosen with equal
probability. Each curve Ci is obtained as follows: random parameters are sampled
to define a rotation about the origin, a dilation and a translation of the canonical
curve chosen as representative of the type of Ci. A family of Pi continuous
subsegments is sampled. The extracted segments are gathered in the set X. The
method is tested on the set X, which, after a suitable rescaling, is contained in
the region [−1, 1]× [−1, 1]. An example is shown in Figure I.1.

We consider the stopping tolerance presented in Algorithm I.3, as it has
experimentally shown to work well with data affected by the only round-off
error. The algorithm is run 105 times to compute the average misclassification
rate of the approach. This index is given by the ratio between the number of
misclassified segments and the total number of segments, averaged over the
number of times the algorithm is run. The average misclassification rate is
2.14 · 10−2. Equivalently, the 97.86% of the segments are on average correctly
classified. Notice that the inaccuracy can be explained by the randomness of the
dataset, where some of the dilations can compromise the degree estimation or
the stopping criteria (see Section I.5 for details about the robustness of discrete
approximate implicitization).
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Figure I.1: Initial (left) and corresponding classified dataset (right), with
segments colored by cluster.

I.6.2 Cubic Bézier curve approximations to circular segments

Let X be the set of segments of the two-dimensional gear in Figure I.2. The
gear is built as follows:

• Three concentric circles with radii 1, 1.5 and 2 are approximated by means
of cubic Bézier curves. Notice that the segments do not lie exactly on the
underlying primitives.

• Concentric line segments are used to connect inner and outer arcs to form
the teeth.

Again, we apply the algorithm in order to detect the primitive shapes underlying
the model. We here use the stopping criteria introduced in Algorithm I.4,
because experimentally more robust when working with polynomial Bézier
approximations. The resulting output shows the correct detection of the clusters.
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Figure I.2: Initial gear (left) and corresponding classified gear (right), with
segments coloured by cluster.

I.6.2.1 Increasing number of teeth

The algorithm is applied to gears with increasing numbers of teeth and run on a
2019 MacBook pro with 2.4 GHz 8-cores Intel®CoreTM i9-processor, resulting
in the CPU times shown in Table I.1. Although these times suggest that
both the dissimilarity matrix assembly and the clustering procedure in the
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implementation2 have O(P 2) complexity, a further breakdown of the CPU
times shows that, in the naive implementation, repeatedly locating the smallest
singular value in the clustering procedure yields O(P 3) complexity. However,
for P ≤ 16384 patches, this term is dominated by the O(P 2) complexity of the
remainder of the algorithm.

# teeth 4 8 16 32 64 128
# segments 17 33 65 129 257 513
tassembly 0.006 0.021 0.071 0.256 1.095 4.025
oassembly - 1.708 1.778 1.843 2.096 1.879
tclustering 0.002 0.003 0.008 0.042 0.115 0.405
oclustering - 0.980 1.339 2.352 1.436 1.823
ttotal 0.009 0.025 0.081 0.300 1.211 4.433
ototal - 1.483 1.681 1.888 2.015 1.872

Table I.1: A breakdown of the CPU times ti (seconds) and complexity order
oi := log2(ti+1/ti) when applied to gears with exponentially increasing number
of teeth/segments.

I.6.2.2 Increasing Gaussian noise

Table I.2 displays the results of running the algorithm on an 8-tooth gear
with addition of synthetic Gaussian noise. Here, the mean is set to 0 while
the standard deviation is increased until the algorithm fails. This experiment
suggests that, although well-suited for parametrically defined patches affected
by round-off error, this method may require additional information when the
input is perturbed by a significant amount of noise.

I.6.3 Surface patches from a real-world industrial example

In this example we utilize industrial data provided by the high-tech engineering
firm STAM, based in Genoa, Italy. The data, from STAM’s Nugear model,
consists of 133 trimmed B-spline patches where the underlying geometry comes
from planes, cylinders and cones. The individual patches are coloured randomly
in Figure I.3 (left). In order to deal with the trimmed patches in this example, we
opt for a random oversampling approach, where we extract a random subsample
of 64 points from oversampled surface data, c.f. Remark I.2. This approach is
robust as we can always increase the density of the oversampling until we obtain
64 points within the trimmed region. Moreover, 64 points is always sufficient for

2https://github.com/georgmuntingh/ImplicitClustering
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σ 10−5 10−4 10−3 10−2

result 3 3∗ 3∗ 7

Table I.2: Sensitivity of the method when an 8-tooth gear is perturbed by
Gaussian noise of fixed mean µ = 0 and increasing standard deviation σ in each
direction. Here, 3 and 7 mean, respectively, a correct and an incorrect clustering
of the patches. The asterisk signifies that the stopping criterion of Algorithm I.4
fails, but the method yields the correct result via a user-defined threshold (or
when the number of clusters is known).

dealing with patches of algebraic degree less than or equal to two, which are the
targeted primitives of this example. The samples are generated using the same
tessellation code that is used for visualization purposes.

The algorithm for surfaces in R3 proceeds in exactly the same way as the
version for curves in R2, with the exception that we must apply approximate
implicitization to surfaces in R3 rather than curves in R2. The algorithm correctly
classifies all surfaces that should be classified together. The rest of the patches,
dark-colored in Figure I.3 (right), should all be clustered individually. However,
an empirical user-defined threshold was required in order to avoid some of these
surfaces being classified together incorrectly. The issue arises in that some of the
bicubic spline surfaces are very close to planar, but not exactly. These surfaces
are each classified as quadrics in the first step of the algorithm, but due to
the almost linear nature of the surfaces, pairs of them also fit well to quadric
surfaces. Thus, it is difficult to choose a threshold that stops the algorithm at
the appropriate point.

Figure I.3: Initial unclassified (left) and corresponding classified (right) Nugear
model provided by STAM, with patches coloured by cluster.
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I.7 Conclusion

This paper presents a novel method for clustering patches of a CAD model with
respect to the underlying surface they originate from, based on approximate
implicitization. The method has been tested on both synthetic and real world
industrial data, and some theoretical results are presented to show the properties
of the method. The results show that the approach is computationally feasible
and can handle thousands of patches in a matter of seconds.

Our core idea is conceptually quite simple: reverse engineering of CAD patches
into their underlying primitives, by using their low-degree implicit representation
consistently throughout the algorithm as a basis for establishing similarity in a
clustering procedure. However, several modifications were necessary to make this
work in practice. Clustering proceeds on local patches, and the goodness of fit of
approximate implicitization depends on the scale and position of the coordinate
system (e.g., locally a circle looks like a line). This was addressed by introducing
an initial tuning step to adapt tolerances to the provided data, and by adding a
term to the dissimilarity metric measuring the distance between patches. The
latter change also makes our dissimilarity satisfy the formal definition of a
dissimilarity for the types of patches considered in this paper.

For future work, we intend to extend the method to other contexts. For
example, reverse engineering of physical models could also be done in this way,
although work would be required on stabilizing the algorithm in the case of
noisy data. The algorithm could also be applied to tessellated models, both for
the purposes of redesign and upsampling of the tessellation resolution. In that
case, the challenge would be segmenting which parts of the tessellation belong
to different ‘patches’ of the model. Finally, we aim at designing a more robust
version that can be used to treat data affected by noise and outliers.
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Appendix I.A On the numerical stability of discrete
approximate implicitization

In this appendix we provide the proofs left out of Section I.5, for discrete
approximate implicitization of degree d = 1, 2 to point clouds with sufficiently
many points sampled from curves of at least this degree. In this case the
collocation matrix D has full rank.

Proof of Proposition I.2. Equipping the basis with the lexicographic order, we
can express the collocation matrix of the scaled curve pa1,a2 as

Da1,a2 = D1,1 · Sa1,a2 , Sa1,a2 := diag([1, a1, a2, a
2
1, a1a2, a

2
2, . . . ]),

with D1,1 := D. Notice that:

• The smallest singular value σ(m)
min (Pa) of Da1,a2 is the reciprocal of the

largest singular value of

D†a1,a2
= S−1

a1,a2
·D†1,1,

where † denotes the Moore-Penrose inverse.

• The largest singular value of D†a1,a2
is the square root of the largest

eigenvalue of D†a1,a2
(D†a1,a2

)T .

Therefore
σ

(m)
min (Pa) =

[
λmax (B)

]−1/2
,

where
B = S−1

a1,a2
·C · S−1

a1,a2
, C := D†1,1 ·D

†
1,1

T
.

Suppose B has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Then

tr (B) =
n∑
i=1

λi = c11 + c22
1
a2

1
+ c33

1
a2

2
+ . . .
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where ci,i is the square of the Euclidean norm of the i-th row of D†a1,a2
. Since

D†a1,a2
has full rank whenever a1, a2 6= 0, then tr (B) (and consequently λ1)

approaches +∞ when a1 or a2 approaches zero. It follows that σ(m)
min (Pa)

approaches zero when a1 or a2 approaches zero. �

Proof of Proposition I.3. The collocation matrix Da1,a2 has the form

Da1,a2 = D0,0Ta1,a2 , Ta1,a2 :=


1 a1 a2 a2

1 a1a2 a2
2

0 1 0 2a1 a2 0
0 0 1 0 a1 2a2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

and D0,0 := D. Notice that, since discrete approximate implicitization of degree 2
is applied to a curve of implicit degree greater than 2, we can assume that the
collocation matrix has full rank. Notice also that:

• The smallest singular value of Da1,a2 is the reciprocal of the largest singular
value of

D†a1,a2
= T−a1,−a2 ·D

†
0,0.

• The largest singular value of D†a1,a2
is the square root of the largest

eigenvalue of B := D†a1,a2
(D†a1,a2

)T .

Therefore
σ

(m)
min (Pa) =

[
λmax (B)

]−1/2
,

where
B := T−a1,−a2CTT

−a1,−a2
, C := D†0,0

(
D†0,0

)T
.

Suppose B has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Then

tr (B) =
n∑
i=1

λi =
∑

0≤i+j≤4
αi,ja

i
1a
j
2, (I.7)

for some αi,j ∈ R. Notice that α0,4 > 0, since it is the square of the Euclidean
norm of the 4-th row of the full-rank matrix D†0,0. A similar argument holds for
α4,0. It follow that tr (B) (and consequently λ1) approaches +∞ when either a1

or a2 approaches ∞, and consequently σ(m)
min (Pa) approaches zero when either

a1 or a2 approaches ∞. �

Proof of Proposition I.4. We treat separately the following cases:
Discrete approximate implicitization of degree 1. The collocation matrix Dθ

can be expressed as

Dθ = D0 ·Rθ, Rθ :=

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,
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with D0 := D. It follows that the SVD of Dθ is

Dθ = D0Rθ = UΣVTRθ = UΣṼT .

where Ṽ := RT
θ V is unitary since Rθ and V are unitary. Thus, the smallest

singular value of discrete approximate implicitization of degree 1 is not influenced
by rotations, and it suffices to choose α = β = σ

(m)
min (P0).

Discrete approximate implicitization of degree greater than 1. The collocation
matrix Dθ can be expressed as

Dθ = D0 ·Rθ,

where Rθ is the block diagonal matrix

Rθ =



1 0 0 0 0 0 · · ·
0 cos θ sin θ 0 0 0 · · ·
0 − sin θ cos θ 0 0 0 · · ·
0 0 0 cos2 θ sin θ cos θ sin2 θ · · ·
0 0 0 −2 sin θ cos θ cos2 θ − sin2 θ 2 sin θ cos θ · · ·
0 0 0 sin2 θ − sin θ cos θ cos2 θ · · ·
...

...
...

...
...

...
. . .


The case of degree greater than 1 differs since the matrix Rθ is not unitary. The
smallest singular value of Dθ is the square root of the smallest eigenvalue of
DT
θ Dθ. The eigenvalues of DT

θ Dθ are continuous functions in θ. Since θ ∈ [0, 2π]
lies in a compact space, we conclude by the extreme value theorem that each of
these eigenvalues has a compact and connected range. Since Dθ has full rank,
we conclude that the range does not contain 0. �
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II

Abstract

Continuous representations are fundamental for modeling sampled data
and performing computations and numerical simulations directly on
the model or its elements. To effectively and efficiently address the
approximation of point clouds we propose the Weighted Quasi Interpolant
Spline Approximation method (wQISA). We provide global and local
bounds of the method and discuss how it still preserves the shape properties
of the classical quasi-interpolation scheme. This approach is particularly
useful when the data noise can be represented as a probabilistic distribution:
from the point of view of nonparametric regression, the wQISA estimator
is robust to random perturbations, such as noise and outliers. Finally, we
show the effectiveness of the method with several numerical simulations
on real data, including curve fitting on images, surface approximation and
simulation of rainfall precipitations.
Keywords: spline methods, quasi-interpolation nonparametric regression,
point clouds, noise.
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II. Weighted quasi-interpolant spline approximations: Properties and
applications

II.1 Introduction

Modelling sampled data with a continuous representation is essential in many
applications such as, for instance, image resampling [8], geometric modelling [19],
isogeometric analysis (IgA) [30] and the numerical solution of PDE boundary
problems [4].

Spline interpolation is largely adopted to approximate data from a function
or a physical object because of the simplicity of its construction, its ease and
accuracy of evaluation, and its capacity to approximate complex shapes through
mathematical element fitting and interactive design [48]. It is often preferred
to polynomial interpolation because it yields visually effective results even
when using low degree polynomials, while avoiding the Runge’s phenomenon for
higher degrees [28]. B-splines represent a popular way for dealing with spline
interpolation and are nowadays the most powerful tool in CAGD [9]. Several
generalizations to non-polynomial splines are possible, such as generalized splines
[7], which admit also trigonometric or exponential bases, or non-uniform rational
B-splines (NURBS) [45]. The B-spline extension to higher dimensions consists of
multivariate spline functions based on a tensor product approach. Unfortunately,
classical tensor product splines lack local refinement, which is often fundamental
in those applications dealing with large amounts of data. For this reason several
alternative structures that support local refinement have been introduced in
the last decades; for instance, in the context of a tensor-product paradigm,
T-splines [49], hierarchical B-splines [20], locally refined (LR) B-splines [18] and
(truncated) Hierarchical B-splines (THB) [26].

When dealing with real data – for instance, acquired by laser scanners,
photogrammetry and diagnostic devices – there are many source of uncertainty,
such as resolution, precision, occlusions and reflections. Furthermore, digital
models often undergo post-processing stages after acquisition, and these may
introduce additional geometric and/or numerical artefacts [13]. Most of the
existing inverse approximation techniques are executed as a deterministic problem
and the parameters involved in the model are treated as unambiguous values.
Despite the recent introduction of uncertainty-based inverse analysis tools such
as evidence-theory, fuzzy and interval uncertainties [38], at the best of our
knowledge, only few modelling approaches identify uncertainty theories as a
good solution for explicitly modelling data uncertainty, adopting, for instance,
interproximation [15] or fuzzy numbers [2]. Unfortunately, these efforts were quite
isolated and their computational complexity prevented their massive adoption.

In this scenario, we aim at preserving the use of B-spline bases because of
their simplicity, their approximation capability and accuracy. To effectively and
efficiently approximate raw data and point clouds possibly affected by noise
and outliers, we propose the adoption of a novel quasi-interpolation scheme.
Quasi-interpolation is a well known technique [5, 47] that does not require to
solve any linear system, unlike the traditional spline approaches, and therefore
it allows to define more efficient algorithms. Whilst there are works on the
use of quasi-interpolant methods for function approximation [5, 10, 11, 32,
44, 51], to the best of our knowledge, less efforts have been devoted to define

62



Weighted quasi-interpolant spline approximation for point clouds

quasi-interpolant schemes for point clouds [1, 3, 6, 25].
As working assumptions, we assume the point cloud to be embedded in an

Euclidean space Rd+1 and locally represented as a height field y = f(x1, . . . , xd).
We obtain a method which is not only robust, but also has a reduced
computational complexity thanks to the adopted quasi-interpolation scheme.
The method properties, presented in detail for the uni- and bivariate cases
for simplicity of notation, can be easily extended to consider data of arbitrary
dimension. We also discuss how the shape properties of monotonicity and
convexity derive from classical spline theory. Since we aim at addressing data
affected by noise, we provide a probabilistic interpretation of the method. We
illustrate its properties over a number of examples, ranging from curve fitting to
the approximation of scalar fields defined on surfaces. In summary, the main
contributions of this work are:

• The introduction of a novel quasi-interpolation scheme to approximate
point clouds, possibly affected by noise and outliers, together with a
theoretical study of its numerical properties (Section II.2).

• The interpretation of our approach in terms of the nonparametric regression
scheme, together with the theoretical study of bias and variance of the
wQISA estimator (Section II.3).

• The validation of the method on real data from different applications,
including curve fitting, surface reconstruction and rainfall approximation
and forecasting (Section II.4).

Finally, concluding remarks are provided in Section II.5.

II.2 Weighted quasi-interpolant spline approximation for
point clouds

In this Section we first summarise some basic notation and definitions on B-splines.
We then formally introduce the weighted quasi-interpolant spline approximations,
provide their global and local bounds and discuss in what sense they preserve
the shape properties.

II.2.1 Basic concepts on spline spaces

From B-splines theory, it is well known that a non-decreasing sequence t =
[t1, . . . , tn+p+1], which is commonly referred to as global knot vector, generates
n B-splines of degree p over t. In practice, the construction of each of these
B-splines requires only a subsequence of p+ 2 consecutive knots, collected in a
local knot vector.

Definition II.1 (Univariate B-spline). Let t := [t1, . . . , tp+2] be a (local) knot
vector. A B-spline B[t] : R→ R of degree p is the function recursively defined
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by

B[t](x) := x− t1
tp+1 − t1

B[t1, . . . , tp+1](x) + tp+2 − x
tp+2 − t2

B[t2, . . . , tp+2](x), (II.1)

where

B[ti, ti+1](x) :=
{

1, if x ∈ [ti, ti+1)
0, elsewhere

, i = 1, . . . , p+ 1.

Here, the convention is assumed that “0/0 = 0”.

By assuming t1 < tp+2, it follows that B[t] is a piecewise polynomial of
degree p. The continuity at each unique knot is p−m, where m is the number
of times the knot is repeated. B[t] is smooth in each open subinterval (ti, ti+1),
where i = 1, . . . , p + 1, and is non-negative over R. The support of B[t], i.e.,
the closure of the subset of the domain where B[t] is non-zero, is the compact
interval supp(B[t]) = [t1, tp+2].

Definition II.2 (Univariate spline space). Given a global knot vector t =
[t1, . . . , tn+p+1], the spline space Sp,t is the linear space defined by

Sp,t := span
{
B[t(1)], . . . , B[t(n)]

}
,

where t(i) := [ti, . . . , ti+p+1] for any i = 1, . . . , n. An element f ∈ Sp,t is called a
spline function, or just a spline, of degree p with knots t.

By assuming that no knot occurs more than p + 1 times, it follows that{
B[t(i)]

}n
i=1 is a basis for Sp,t. A B-spline basis forms a partition of unity over

[t1, tn+p+1]. We can refine a spline curve f =
∑n
i=1 biB[t(i)] by inserting new

knots in t and then computing the coefficients of f in the augmented spline
space. An efficient way to perform this process is the Oslo algorithm [16].

Lastly, we specify the type of knot vectors we will consider in the next
sections, as they allow to define B-spline bases that interpolate the boundaries.

Definition II.3. A knot vector t = [t1, . . . , tn+p+1] is said to be (p+ 1)-regular if

1. n ≥ p+ 1,

2. t1 = tp+1 and tn+1 = tn+p+1,

3. tj < tj+p+1 for j = 1, . . . , n.

Definition II.4 (Tensor product B-spline). A tensor product B-spline of multi-
degree p := (p1, . . . , pd) ∈ Nd is a separable function B : Rd → R defined
as

B[t1, . . . , td](x) :=
d∏
k=1

B[tk](xk), (II.2)

where x = (x1, . . . , xd) and tk = [tk,1, . . . , tk,pk+2] ∈ Rpk+2 is the local knot
vector along xk, for any k = 1, . . . , d.
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By assuming that tk,1 < tk,pk+2 for any k = 1, . . . , d, it follows that
B[t1, . . . , td] is a piecewise polynomial of multi-degree p.

Definition II.5 (Tensor product spline space). A tensor product spline space
Sp,[t1,...,td] is the linear space defined by

Sp,[t1,...,td] :=
d⊗
k=1

Spk,tk = span
{

d∏
k=1

B[t(ik)
k ] s.t. ik = 1, . . . , nk

}
,

where tk ∈ Rnk+pk+1 is a global knot vector for any k = 1, . . . , d. An element
f ∈ Sp,[t1,...,td] is called a tensor product spline function, or just a spline, of
multi-degree p with knot vectors t1, . . . , td.

The tensor product spline representation inherits all the properties (local
support, non-negativity, local smoothness, partition of unity) of the univariate
case. We refer the reader to [48] for a more exhaustive introduction to B-splines.

II.2.2 Weighted Quasi Interpolation Spline Approximation

We introduce our method for the general case of a point cloud P ⊂ Rd+1. Again,
we assume that the point cloud can be locally represented by means of a function

y = f(x1, . . . , xd).

Definition II.6. Let P ⊂ Rd+1 be a point cloud and p ∈ Nd a (multi)-degree with
all nonzero components. Let tk ∈ Rnk+pk+1 be a (pk + 1)-regular knot vector
with boundary knots tpk = ak and tnk+1 = bk, for k = 1, . . . , d. The Weighted
Quasi Interpolant Spline Approximation (wQISA) of degree p to the point cloud
P over the knot vectors tk is defined by

fw :=
n1∑
i1=1

. . .

nd∑
id=1

ŷw

(
ξ

(i1)
1 , . . . , ξ

(id)
d

)
·B[t(i1)

1 , . . . , t(id)
d ], (II.3)

where ξ(ik)
k := (tk,ik+1 + . . .+ tk,ik+pk)/pk are the knot averages and

ŷw(u) :=

∑
(x1,...,xd,y)∈P

y · wu(x1, . . . , xd)∑
(x1,...,xd,y)∈P

wu(x1, . . . , xd)
(II.4)

are the control points estimators of weight functions wu : Rd → [0,+∞).

The function wu : Rd → [0,+∞) of Definition II.6 defines a window around
each point u ∈ Rd and is also called a Parzen window. An example is the weight
function:

wu(x) :=
{

1/k, if x ∈ Nk(u)
0, otherwise

, (II.5)
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where k ∈ N∗ and Nk(u) denotes the neighborhood of u defined by the k closest
points of the point cloud. In this case, ŷw defines the k-nearest neighbor (k-NN)
regressor (see figure II.1). Commonly, the function wu depends on a distance,
for examples:

wu(x) = 1||x−u||2≤r (Characteristic) (II.6a)

wu(x) = e−||x−u||2/2σ2
(Gaussian) (II.6b)

wu(x) = e−||x−u||2/
√

2σ (Exponential) (II.6c)
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Figure II.1: Parzen windows and control points estimators. Given a 2D point
cloud (in blue), we compute ŷw at u = 1 (in green) by using the 10 nearest
points (in red).

Note that:

• wu depends on the point u ∈ Rd of interest, and can thus be adapted to
local information (e.g., variable level and/or nature of noise).

• The quality of an approximation strongly depends on the spline space and
the weight functions that are chosen in Definition II.6. As shown in Figure
II.2, a given spline space and weight function is not always able to capture
the relevant trends of a point set.

II.2.3 Properties

We first introduce bounds for the wQISA approximation. We then explain
in what sense shape properties (monotonicity and convexity) are preserved in
case of raw data. While we refer the reader to Appendix II.A for a detailed
introduction of the univariate case, here, we focus our attention on the bivariate
setting, i.e., on representations of the form z = f(x, y). The extension of these
results to higher dimensions is straightforward and just requires a more involved
notation.

For the sake of simplicity, we re-write Equation II.3 as

fw(x, y) :=
nx∑
i=1

ny∑
j=1

ẑw

(
ξ(i)
x , ξ(j)

y

)
·B[x(i),y(j)](x, y),
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(a) (b) (c)

Figure II.2: wQISA curve approximation of three point clouds. The point
sets (in blue) are sampled from y = sin(πx) in (a), y = sin(2πx) in (b) and
y = sin(3πx) in (c) and then perturbed with Gaussian noise and outliers. Here,
we consider a spline space of dimension 10 over a uniform knot vector and a
Gaussian weight function (see Equation II.6b) of fixed variance, combined with
quartiles to filter the outliers. The figures shows the original functions (in orange)
and the approximations (in red).

where we customize the notation by denoting with ξ(i)
x (resp. ξ(j)

y ) the i-th (resp.
j-th) knot average with respect to the global knot vector x (resp. y) along x
(resp. y).

II.2.3.1 Global and local bounds

Proposition II.1 (Global bounds). Let P ⊂ R3 be a point cloud. Given zmin,
zmax ∈ R that satisfy

zmin ≤ z ≤ zmax, for all (x, y, z) ∈ P,

then the weighted quasi interpolant spline approximation to P from some spline
space Sp,[x,y] and some family of weight functions wu : R2 → [0,+∞) has the
same bounds

zmin ≤ fw(x, y) ≤ zmax, for all (x, y) ∈ R2.

Proof. From the partition of unity of a B-spline basis, it follows that

min
i
ẑw(ξ(i)

x , ξ
(j)
y ) ≤

nx∑
i=1

ny∑
j=1

ẑw(ξ(i)
x , ξ

(j)
y ) ·B[x(i),y(j)] ≤ max

i
ẑw(ξ(i)

x , ξ
(j)
y )

≥

1

=
: ≤

2
zmin fw zmax

(II.7)
where the inequalities 1 and 2 are a direct consequence of defining ẑw by
means of a convex combination. �

The bounds of Proposition II.1 can potentially lead to local bounds, for
example when the weight functions have bounded support. We discuss this
possibility in Corollary II.1.
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Corollary II.1 (Local bounds). Let P ⊂ R3 be a point cloud. Let x ∈ [xµ, xµ+1)
for some µ in the range px + 1 ≤ µ ≤ nx and y ∈ [yν , yν+1) for some ν in the
range py + 1 ≤ ν ≤ ny. Then

α(µ, ν) ≤ fw(x, y) ≤ β(µ, ν)

for some α(µ, ν), β(µ, ν) which belong to [zmin, zmax].

Proof. By using the property of local support for B-splines, it follows that

fw(x, y) =
µ∑

i=µ−px

ν∑
j=ν−py

ẑw(ξ(i)
x , ξ(j)

y )B[x(i),y(j)](x, y).

Hence

min
i=µ−px,...,µ
j=ν−py,...,ν

ẑw(ξ(i)
x , ξ

(j)
y ) ≤ fw(x, y) ≤ max

i=µ−px,...,µ
j=ν−py,...,ν

ẑw(ξ(i)
x , ξ

(j)
y )

≥

3

≤

4

min
{
z s.t. (x, y, z) ∈ Pµ,ν

}
max

{
z s.t. (x, y, z) ∈ Pµ,ν

}

=
:

=
:

α(µ, ν) β(µ, ν)

(II.8)

where
Pµ,ν :=

⋃
i=µ−px,...,µ
j=ν−py,...,ν

supp
(
w(ξ(i)

x ,ξ
(j)
y )

)
∩ P

and where supp denotes the support of a function. The inequalities 3 and 4
are a direct consequence of defining ẑw by means of a convex combination. Note
that the set P∗ of points that are effectively used to compute the approximation,
i.e.,

P∗ :=
⋃

µ=px+1,...,nx
ν=py+1,...,ny

Pµ,ν ,

may be a proper subset of P. �

Note also that the results of Proposition II.1 and Corollary II.1 are
independent from the type of mesh but rather rely on the partition of unity
property. Therefore, a possibility is to consider local refinement strategies in
order to further reduce the computational complexity and gain more flexibility
only where truly needed.

II.2.3.2 Shape preservation

Shape preserving representations are crucial in geometric modeling (e.g., in CAD
and CAM). Many classical quasi-interpolant strategies for function approximation
preserve shape properties, such as the Bernstein approximants, the B-spline
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or multiquadratic (MQ) quasi-interpolants, the Variation Diminishing Spline
Approximation (VDSA) and so on [22, 32, 39, 55].

In case of points clouds with defects, the average dataset trend is more
important than the position of a single point with respect to the others. We
thus introduce a notion of monotonicity and convexity for point clouds that take
this consideration into account. Given a family of weight functions, we say that
a point cloud is w-monotone (resp. w-convex) if the control point estimator ẑw
is monotone (resp. convex) (see Appendix II.A for a formal definition).

Monotonicity and convexity of the individual coordinates are preserved from
w-monotonicity and w-convexity as a direct consequence of the univariate case,
which is detailed in Appendix II.A. More precisely:

• (Monotonicity) Let us suppose that ẑw(·, y0) : R→ R is monotonic for all
y0 ∈ [a2, b2] (or at least it is its restriction to the nodes {ξ(i)

x }nxi=1). Then,
fw is an increasing function of x for each y. This statement is formally
proved in Proposition II.3.

• (Convexity) Let us suppose that ẑw(·, y0) : R → R is convex for all
y0 ∈ [a2, b2] (or at least it is its restriction to the nodes {ξ(i)

x }nxi=1). Then,
fw is a convex function of x for each y. This statement is formally proved
in Proposition II.4.

In the multivariate setting, joint monotonicity and convexity straightforwardly
derive from the control net shape [27, 39], here defined by ẑw. More precisely, a
w-monotone (resp. w-convex) point cloud has a monotone (resp. convex) wQISA
approximation.

II.2.3.3 Computational complexity

The wQISA method takes as input the point cloud P ⊂ Rd+1, the tensor product
spline space Sp,[t1,...,td] defined by a multi-degree and a set of regular knot
vectors, and the Parzen window function w. The approximation defined by
Equation II.3 is computed by evaluating Equation II.4 as many times as the
dimension of the tensor product spline space, i.e., dim(Sp,[t1,...,td]) =

∏d
i=1 ni.

The single control point estimation depends on the function w chosen and,
in particular, on its support (if global or local). In the numerical simulations
proposed in Section II.4, we mainly focus on k-NN and Inverse Distance Weight
(IDW) functions (see Equations II.5 and II.20) and, therefore, we here exhibit
the computational complexity of wQISA for these choices of w. A deepen study
of the computational complexity can be found in [46].

The k-nearest neighbor can be efficiently computed using the k-d tree
algorithm in O(N log(N)) operations [21], where N is the number of points
of the cloud. The k-d tree then spatially stores the data in a structure such
that, at runtime, the evaluation of w costs O(k). Thus, the computation
cost of the wQISA algorithm is given by the maximum of O(N log(N)) and
O(k · dim(Sp,[t1,...,td])).
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The IDW weight is global and thus computes, for a single control point
estimation, the linear combination of N terms. Since computing the weight
of any point is at most as expensive as the inverse of an Euclidean norm, the
computational complexity is O(Nd). The computational cost of the wQISA
algorithm is then O(N · dim(Sp,[t1,...,td]))).

II.3 The wQISA method from a probabilistic perspective

Regression analysis techniques are widely used for prediction and forecasting.
In regression problems, the conditional expectation of a response variable Y
with respect to its predictor variables X1, . . . , Xp is often approximated by its
first-order Taylor expansion. Linearity in the predictors leads to a much easier
interpretability of the model and is very efficient with sparse and small data.
Global and local least square approaches are among the most popular linear
regression methods. Nevertheless, these models need to solve linear systems
of equations, which thus unnecessarily increases computational complexity as
the data size increases. Moreover, linear models often depend on the normal
distribution of the residuals, making them unreliable when the actual distribution
is asymmetric or prone to outliers.

As the assumption of linearity might be too restrictive for real-world
phenomena, various methods for moving beyond it have been introduced.
A popular approach, known as linear basis expansion, considers multiple
transformations of the predictors and then applies linear models in this richer
space. Compared to traditional linear models, polynomial transformations of the
predictors offer a more flexible data representation as they lead to higher-order
Taylor expansions. On the other hand, they suffer a lack of local shape control
due to their global nature. Compared to polynomial bases, piecewise polynomials
allow to combine an increased flexibility with a reduced number of coefficients
to compute. Furthermore, nonparametric regression may be used for a variety
of purposes, such as scatterplot smoothing for pure exploration and interval
estimates for uncertainty examination [29].

As we theoretically and numerically show in Sections II.3 and II.4, the wQISA
method offers a competitive alternative to handle strongly perturbed large point
clouds at a reduced computational cost, even when prone to outliers. In this
Section we interpret the WQISA method as a non parametric regression problem.
Independent ongoing studies on quasi-interpolation from a stochastic perspective
are in [23, 24].

II.3.1 Formulation of the regression problem

Let Y be a univariate response variable. For the sake of simplicity, we restrict
here to two predictor variables X1 and X2. As for the previous sections, the
generalization to the multivariate case is trivial and just requires only a more
involved notation. From now on, we assume that the relationship between
the predictors and the dependent variable can be expressed as the conditional
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expectation:
E(Y |X1 = x1, X2 = x2) = fw(x1, x2).

The approximation fw is here restricted to belong to a subspace of Sp,[x1,x2],
where p ∈ N∗ × N∗ is the (bi)-degree of the spline space over the (global) knot
vectors x1 and x2. More precisely, the relation between the observations Yi and
the independent variables Xi,1 and Xi,2 is formulated as

Yi =
n1∑
j1=1

n2∑
j2=1

cj1,j2B[x(j1)
1 ,x(j2)

2 ](Xi,1, Xi,2) + εi, i = 1, . . . , N, (II.9)

where

• B[x(j1)
1 ,x(j2)

2 ] : R2 → [0, 1] is the (j1, j2)-th tensor product B-spline
function with respect to the global knot vectors x1 and x2 respectively
along X1 and X2.

• εi is the residual or disturbance term – an unobserved random variable
that perturbs the linear relationship between the dependent variable and
regressors.

Relation II.9 can be expressed, up to a reordering of the indexes (j1, j2), in the
matrix form

Y = B · c + ε, (II.10)

where Y ∈ RN×1 3 ε, B ∈ RN×(n1·n2) and c ∈ R(n1·n2)×1.

II.3.2 Definition of the coefficient estimators

There are different methods to fit a linear model to a given dataset. In the
following, we introduce our new estimators for the B-spline coefficients. The
(j1, j2)-th component of ĉ is defined by

ĉj1,j2 :=

N∑
i=1

Yi · w(ξ(j1)
1 ,ξ

(j2)
2 ) (Xi,1, Xi,2)

N∑
i=1

w(ξ(j1)
1 ,ξ

(j2)
2 ) (Xi,1, Xi,2)

, (II.11)

where ξ(j1)
1 and ξ(j2)

2 are the knot averages with respect to the B-spline Bj1,j2

along the two directions. Notice that the weight functions

w(ξ(j1)
1 ,ξ

(j2)
2 ) : R2 → [0,+∞)

act both as a penalty term and as a smoother on the given data.
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II.3.3 Inference for regression purposes: the bias-variance
decomposition

Suppose the data arise from a model Y = f(X1, X2) + ε. For the sake of
simplicity, we assume here that the values of the predictors are fixed in advance,
hence nonrandom. Further, we assume the error terms εi to be independent
identically distributed (i.i.d) with mean µε = 0 and variance σ2

ε .
The generalization performances of a method relies on the simultaneously

minimization of two sources of error:

• The bias measures the difference between the model’s expected predictions
and the true values. High bias means an oversimplification of the model,
i.e., the model does not produce accurate predictions (underfitting). The
bias of a model is formally defined by

Bias2
[
f̂w(X1, X2)

]
:=
(
E
[
f̂w(X1, X2)

]
− f(X1, X2)

)2
. (II.12)

• The variance measures the model’s sensitivity to small fluctuations in the
training set. High variance can result in a model that interpolates the given
data but does not generalize on data which hasn’t seen before (overfitting).
The variance of a model is defined by

Var
[
f̂w(X1, X2)

]
:= E

[(
f̂w(X1, X2)− E

[
f̂w(X1, X2)

])2
]
. (II.13)

II.3.3.1 Bias of a wQISA model

Let (X1, X2) ∈ [x1,µ, x1,µ+1)× [x2,ν , x2,ν+1) for some µ = p1 + 1, . . . , n1 and for
some ν = p2 + 1, . . . , n2. By using the property of local support of B-splines, we
can then express E[f̂w(X1, X2)] as

E[f̂w(X1, X2)] =
µ∑

j1=µ−p1

ν∑
j2=ν−p2

E[ĉj1,j2 ] ·B[x(j1)
1 ,x(j2)

2 ](X1, X2), (II.14)

where

E
[
ĉj1,j2

]
=

N∑
i=1

f(Xi,1, Xi,2) · w(ξ(j1)
1 ,ξ

(j2)
2 ) (Xi,1, Xi,2)

N∑
i=1

w(ξ(j1)
1 ,ξ

(j2)
2 ) (Xi,1, Xi,2)

(II.15)

is a convex combination. Once a spline space and weight functions have
been chosen, Equations II.14 and II.15 can be combined to write down the
exact formula of bias. However, in some cases bounds can simplify its study.
Analogously to Proposition II.1, we can compute the following bounds for
E
[
ĉj1,j2

]
min

i∈Iĉj1,j2

f(Xi,1, Xi,2) ≤ E
[
ĉj1,j2

]
≤ max
i∈Iĉj1,j2

f(Xi,1, Xi,2), (II.16)
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where
Iĉj1,j2

:=
{
i = 1, . . . , N s.t. w(ξ(j1)

1 ,ξ
(j2)
2 ) (Xi,1, Xi,2) 6= 0

}
.

By combining Equations II.14 and II.16, it follows that

min
i∈Iµ,ν

f(Xi,1, Xi,2) ≤
µ∑

j1=µ−p1

ν∑
j2=ν−p2

E
[
ĉj1,j2

]
B[x(j1)

1 ,x(j2)
2 ](X1, X2) ≤ max

i∈Iµ,ν
f(Xi,1, Xi,2)

=
:

=
:

=
:

α(µ, ν) E
[
f̂w(X1, X2)

]
β(µ, ν)

(II.17)
where

Iµ,ν :=
⋃

j1=µ−p1,...,µ
j2=ν−p2,...,ν

Iĉj1,j2

and where α and β denote the lower and upper bounds. We conclude that

Bias2
[
f̂w(X1, X2)

]{≤ (α(µ, ν)− f(X1, X2)
)2
, if E

[
f̂w(X1, X2)

]
≤ f(X1, X2)

≤
(
β(µ, ν)− f(X1, X2)

)2
, if E

[
f̂w(X1, X2)

]
≥ f(X1, X2)

,

(II.18)
where α(µ, ν) and β(µ, ν) denote the minimum of maximum in Equation II.17.

II.3.3.2 Variance of a wQISA model

In the following Lemma we provide an exact formula for the variance while
proving that, in the worst possible case, the variance will still be upper bounded
by σ2

ε . For the sake of simplicity, we consider a reordering of B-splines as in
Equation II.10. This choice allows to substitute the indexes (j1, j2) with a single
index j.

Lemma II.1. The variance of f̂w is upper-bounded by the variance of the error,
i.e.,

Var
[
f̂w(X1, X2)

]
≤ σ2

ε .

Proof.

Var
[
f̂w(X1, X2)

]
= E

[(
f̂w (X1, X2)− E

(
f̂w (X1, X2)

))2
]

=

= E

(∑
i

ĉiBi(X1, X2)−
∑
i

E [ĉi]Bi(X1, X2)
)2
 =

= E

(∑
i

(ĉi − E [ĉi])Bi(X1, X2)
)2
 =

=
∑
i

∑
j

E [(ĉi − E [ĉi]) (ĉj − E [ĉj ])]Bi(X1, X2)Bj(X1, X2) =

=
∑
i

∑
j

Cov (ĉi, ĉj)Bi(X1, X2)Bj(X1, X2),
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where

Cov (ĉi, ĉj) = Cov
(∑

k1
Yk1 · w(ξ(i)

1 ,ξ
(i)
2 ) (Xk1,1, Xk1,2)∑

k1
w(ξ(i)

1 ,ξ
(i)
2 ) (Xk1,1, Xk1,2) ,

∑
k2
Yk2 · w(ξ(j)

1 ,ξ
(j)
2 ) (Xk2,1, Xk2,2)∑

k2
w(ξ(j)

1 ,ξ
(j)
2 ) (Xk2,1, Xk2,2)

)
=

=

∑
k1

∑
k2
w(ξ(i)

1 ,ξ
(i)
2 ) (Xk1,1, Xk1,2) · w(ξ(j)

1 ,ξ
(j)
2 ) (Xk2,1, Xk2,2)Cov (Yk1 , Yk2)∑

k1

∑
k2
w(ξ(i)

1 ,ξ
(i)
2 ) (Xk1,1, Xk1,2) · w(ξ(j)

1 ,ξ
(j)
2 ) (Xk2,1, Xk2,2) =

= σ2
ε

∑
k1
w(ξ(i)

1 ,ξ
(i)
2 ) (Xk1,1, Xk1,2) · w(ξ(j)

1 ,ξ
(j)
2 ) (Xk1,1, Xk1,2)∑

k1

∑
k2
w(ξ(i)

1 ,ξ
(i)
2 ) (Xk1,1, Xk1,2) · w(ξ(j)

1 ,ξ
(j)
2 ) (Xk2,1, Xk2,2) .

Thus

Var
[
f̂w(X1, X2)

]
=
∑
i

∑
j

Cov (ĉi, ĉj)Bi(X1, X2)Bj(X1, X2) =

= σ2
ε

∑
i

∑
j

∑
k1
w(ξ(i)

1 ,ξ
(i)
2 ) (Xk1,1, Xk1,2) · w(ξ(j)

1 ,ξ
(j)
2 ) (Xk1,1, Xk1,2)∑

k1

∑
k2
w(ξ(i)

1 ,ξ
(i)
2 ) (Xk1,1, Xk1,2) · w(ξ(j)

1 ,ξ
(j)
2 ) (Xk2,1, Xk2,2) ·

·Bi(X1, X2)Bj(X1, X2) ≤ σ2
ε ,

where the inequality holds because BiBj has the partition of unity property. �

In Lemma II.1, the exact expression of the variance makes it possible to
compute exact and approximated (pointwise) standard error bands (see Equation
II.19).

II.3.3.3 Bias-variance decomposition for the k-NN weight

Let’s consider an example to show how the results of the section work in practice.
Let w be a k-NN weight function (see Equation II.5). The exact expression of
the bias is found by combining Equation II.12 with the expected value

E[f̂w(X1, X2)] = 1
k

µ∑
j1=µ−p1

ν∑
j2=ν−p2

B[x(j1)
1 ,x(j2)

2 ](X1, X2) ·

·
∑

(Xi,1,Xi,2)∈Nk(ξ(j1)
1 ,ξ

(j2)
2 )

f(Xi,1, Xi,2).

The exact expression of variance is given by

Var
[
f̂w(X1, X2)

]
= σ2

ε

∑
i

∑
j

ki,j
k2 ·Bi(X1, X2)Bj(X1, X2) ≤ σ2

ε

k
,

where ki,j is the number of points in common, if any, among the k-closest to
(ξ(i)

1 , ξ
(i)
2 ) and (ξ(j)

1 , ξ
(j)
2 ).

For small k, the estimate f̂w can potentially adapt itself better to the
underlying f , as it will avoid points further away to the knot averages. Under
the assumption of increasing the point cloud size while keeping the sampling
uniform, the bias for the 1-NN weight function vanishes entirely as the size of
the training set approaches infinity and the mesh is uniformly refined. On the
other hand, larger values of k can decrease the variance.
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II.3.3.4 Numerical interpretation of the bias-variance decomposition

Figure II.3 shows the effect of spline spaces of different dimensions on the simple
example

Y = sin πX + ε,

with X ∼ U [−2, 2] and ε ∼ N(0, σ2). Our dataset consists of N = 300 points
(xi, yi) sampled on the exact curve and then perturbed.

The weighted quasi interpolant spline approximations for three different
uniform knot vectors are shown. For the sake of simplicity, we here considered
a 10-NN weight function. The shaded regions in the figures represent the
(pointwise) standard error band of f̂w, i.e., the region

f̂w(X)± z(1−α) ·
√
V ar

[
f̂w(X)

]
, (II.19)

where z(1−α) is the 1 − α percentile of the normal distribution. The three
approximations displayed in Figures II.3(b-d) give a graphical representation of
the bias-variance trade-off problem with respect to the dimension of the spline
space:

n=5 The spline under-fits the data, with a more dramatic bias in those regions
with a higher curvature

n=15 Compared to the previous case, the fitted function is closer to the true
function. The variance has not increased appreciably yet.

n=30 The spline over-fits the data, which leads to a locally increased width of
the bands.

In practice, the tuning parameters (here: n) can be selected via automatic
procedures, for instance by using the K-fold cross-validation, generalized cross-
validation and the so-called Cp statistic [29]. In Figure II.3(a) we include the
5-fold cross-validation curve

CV (n) = 1
N

N∑
i=1

(
yi − f̂w(xi)

)2
,

where fw depends on n via the spline space.
Figure II.4 shows the approximation of a point cloud affected by the non-

uniform noise ε ∼ N(0, s(X)), defined as follows:

s(X) = e
−

1
4(1 + e4X−2) .

The dataset consists of N = 400 points and is approximated by a spline space
containing n = 15 B-splines over a uniform knot vector.
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Figure II.3: Bias-variance tradeoff. In (a) we show the CV(n) curve for a
realization from the chosen nonlinear additive error model. The minimum is
reached at n = 15. The remaining panels show the data, the true function (in
blue), the weighted quasi interpolant spline approximations (in red) and the
(yellow shaded) bands of Equation II.19, for spline spaces of dimension n = 5
(b), n = 15 (c) and n = 50 (d). The bands corresponds here to an approximate
95% confidence interval.

II.4 Numerical simulations

We draw the effectiveness of our method in a number of real data coming
from different sources and application domains. While [46] focused on the
local approximation of 3D point clouds by wQISA surfaces, this section shows
how the method is able to address the approximation problem for different
dimensions. Indeed, our examples include curve approximation (on images and
3D objects), surface approximation (of 3D point clouds) and simulation of natural
phenomena (like rainfall precipitation) over surfaces. Unless otherwise stated,
we focus here on (bi-)quadratic spline approximations defined over uniform knot
vectors, as they provide a sufficient flexibility for our purposes. Nevertheless,
one can consider (bi-)degrees as additional parameters to assess and perform
knot insertion to increase the degrees of freedom only where they are actually
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Figure II.4: Variable noise approximation. We show the original curve
f(X) = sin (π/2 ·X) (in red) and the spline approximation (in yellow).

needed.

II.4.1 Evaluation criteria

The data acquisition devices and the subsequent post-processing operations
generally introduce geometric and numerical artefacts. Unfortunately, for most
of the data, the information on the quality of the acquisition devices and type of
post-processing operations are lost or not available. Therefore, the hypothesis
that the data to be approximated are exact is often unrealistic. Differently from
other model representations, the peculiarity of wQISA is its capability of dealing
with data affected by noise and outliers. This fact reflects on the measurements
we can adopt to analyse the quality of the data approximation: indeed, it is not
important how much the wQISA interpolates the original data rather it remains
in a reasonable approximation range. To the best of our knowledge, a single
performance measure able to capture such complex information does not exist;
therefore, we will analyse the wQISA output with a number of measures, each
one able to highlight different approximation aspects.

• When N observations Yi are approximated by Ŷi, two popular measures of
the statistical dispersion are the Mean Squared Error (MSE)

MSE = 1
N

N∑
i=1

(Yi − Ŷi)2

and the Mean Absolute Error (MAE)

MAE = 1
N

N∑
i=1
|Yi − Ŷi|.

Although the MSE and MAE quantities are sample dependent and highly
affected by data perturbation, they offer a very intuitive quantification of
how close a point cloud and its approximation are.
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• The Hausdorff distance is a well-known distance between two sets of points
and applies for point clouds in all dimensions. In particular, we consider
the Directed Hausdorff distance [17] from the points a ∈ A ⊂ Rt to the
points b ∈ B ⊂ Rt as follows:

ddHaus(A,B) = max
a∈A

min
b∈B

d(a, b),

with d the Euclidean distance. In order to have a coherent distance
evaluation through models of different size, we normalize ddHaus with
respect to the diameter of the point cloud.

• The Jaccard index (also known as intersection over union) quantitatively
estimates how two sets overlap. It is has been previously adopted to
measure the performance of curve recognition methods for images [52] and
3D models [40]. The Jaccard index between two point sets A and B is
defined as:

Jaccard(A,B) = |A ∩B|
|A ∪B|

,

where | · | denotes here the number of elements. The Jaccard index varies
from 0 to 1, the higher the better. In our context, it can be adapted to
the ratio of elements of the original point cloud that lie on the standard
error bands of Equation II.19.

II.4.2 Curve approximation

We consider a 512× 512 axial X-ray CT slice of a human lumbar vertebra (see
Figure II.5(a)). First, we apply an edge detection technique, to detect the set of
edge points. In this specific example, we adopt the Canny edge detector [12],
others methods could be applied too. We select a bounding box for the point
cloud, which is then partitioned in smaller sub-regions (see Figure II.5(b)). Lastly,
we apply our technique to each sub-region to obtain a global approximation
(see Figure II.5, right). Here, a 1-NN weight is set as the number of points is
relatively small. Uniform knot vectors are considered as they produce reasonable
approximations. The number of B-splines is chosen, in each sub-region, by a
Leave-One-Out cross-validation [29]. Interpolating conditions are imposed at the
boundaries in order to have a more natural C1 continuity (see Figure II.5(c)).
Notice that the shape of the vertebra is correctly preserved in the passage from
the image to the final approximation.

Figure II.6 shows an example of eye contour approximation from 3D models.
We consider a fragment of a votive statue [35] stored in STARC repository1

at The Cyprus Institute and extract the eye contours by filtering the point
cloud through the values of the mean curvature values and clustering [54]. Each
contour is projected onto its regression plane and then locally approximated.
We here test a k-NN weight, with k to be assessed from patch to patch. Knot

1http://public.cyi.ac.cy/starcRepo/
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(a) (b) (c)

Figure II.5: X-ray CT slice. In (a), the original image is shown. Figure (b)
displays the edge points and the chosen partition: V1 in green, V2 in red, V3 in
blue and V4 in light blue. In (c), the piecewise defined curve is superimposed to
an enlargement of the original image.
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Figure II.6: Approximation of the eye contour on a fragment of archaeological
artifact. The statue (a) is first preprocessed to filter the eye contours points (b).
Then, each point cloud is locally approximated. Here the points are clustered
into: LE1 (left eye, light blue), LE2 (left eye, light purple), RE1 (right eye, light
blue), RE2 (right eye, light purple).

vectors are again assumed to be uniform. For each eye profile, two curves are
detected; the extrema knots of the two curves are fixed to be the same and are
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automatically selected as the leftmost and rightmost points of the whole profile.
Notice that with these choices our approach is also able to fill the gaps in a
reasonable way.

Table II.1 reports the values of the parameters n and k that best approximate
the original curve segments and the corresponding error measures for the wQISA
approximations.

Table II.1: Parameters and accuracy measures for the curve fitting examples.
For each cluster of points we report: the sample size, the number of B-splines n,
the tuning parameter k for the k-NN weight, the Mean Absolute Error (MAE),
the Root Mean Squared Error (RMSE), the Jaccard index and the normalized
Hausdorff distance. Parameters with asterisks are set by user.

Lumbar Vertebra Left Eye Right Eye
V1 V2 V3 V4 LE1 LE2 RE1 RE2

sample size 82 38 30 38 422 730 428 638
n 20 6 8 7 12 12 8 12
k 1∗ 1∗ 1∗ 1∗ 5 5 5 5

MAE 0.656 0.3323 0.278 0.292 0.025 0.052 0.025 0.043
RMSE 0.898 0.418 0.378 0.379 0.030 0.074 0.030 0.079
Jaccard 0.988 1.000 1.000 1.000 0.995 1.000 1.000 1.000
Hausdorff 0.014 0.016 0.011 0.012 0.010 0.021 0.017 0.041

II.4.3 Surface approximation

A simulation on terrain data is shown in Figure II.7. The data are part of
the Liguria-LAS dataset adopted as testbed in the iQmulus project [31], and
come from a LIDAR dataset with spatial resolution of one meter. The area
here selected contains 379.831 points. It is located in the Liguria region, in the
north-west of Italy. The Liguria morphology, with several small catchments
and even small rivers, is very challenging for the approximation methods to
capture and preserve the most important and potentially critical characteristics
[43]. The data are obtained with multiple swipes by airplane lidar acquisition.
Some points come from multiple laser positions and therefore the same point can
have multiple elevation values. In addition, since the data were only minimally
post-processed to convert them to .las format, they contain also noise and outliers.
In this example, we choose a C1 (bi-)quadratic spline approximation because it
is smooth enough to represent smooth terrains in a good way. We consider an
Inverse Distance Weight (IDW), defined by:

w(u,v)(x, y) :=


1

||(x, y)− (u, v)||2
, if |C(u,v)| = 0

1
|C(u,v)|

, for all (x, y) = (u, v)

0, else
, if |C(u,v)| 6= 0

(II.20)
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where |C(u,v)| := {(x, y, z) ∈ P s.t. (x, y) = (u, v)}. The IDW assigns greater
influence to the points the closest to the knot averages and hence the most
significant for the terrain approximation. The uniform knot vectors define in
the final approximation 1024 B-splines in both directions and are chosen such
that the MSE for the relative punctual error of each element is lower than 0.05
(which correspond to 0.05% of deviation).

(a) (b)

(c)

Figure II.7: Portofino, Liguria, Italy. A data point cloud from the given region
of interest (a) is approximated via a IDW weight (b). The colors represent the
elevation and vary from blue (low elevation) to red (high elevation). A graphical
representation of the punctual error, normalized by the maximum elevation,
is provided in (c). The statistics for the error are: min=0.0000, max=0.0445,
mean=0.0021, median=0.0017, RMSE=0.0029 and std=0.0019.

The method has been also tested for the approximation of the boundary
of 3D models. As currently stated, wQISA is suitable to approximate surface
portions that can be represented in a local Cartesian coordinate system in the
form z = f(x, y). Therefore, the object surface needs a subdivision into charts,
for instance following the approaches in [42, 50]. Once the charts have been
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obtained, we compute the desired representation adopting as z value the height
value of the chart with respect to its best fitting regression plane [54]. Figure
II.8 visually show some details of two wQISA approximations for 3D points
clouds: the surfaces in the boxes approximate the regions pointed by the (light
blue) lines. These models come from the Visionair Shape Repository, VSR
[53]. Given the low level of noise, a pure 1-NN weight function is here tested.
The approximation shows a correct recovery of the main details of the artefact.
Nevertheless, the feeble details are lost as an effect of the smoothing effect of
this weight function.

(a) (b)

Figure II.8: Examples on two 3D models. For each model we highlight some
details of the wQISA approximation computed by a 1-NN weight function. The
statistics of the relative punctual error are: for the vase, MSE=4.1884e − 06
and std=0.0015; for the curl, MSE=4.1493e− 06 and std=0.0016; for the tress,
MSE=3.7918e− 05 and std=0.0057.

II.4.4 Approximation of surface properties

As a further case study, we propose the approximation of a precipitation event
over the Liguria region. To this purpose we consider an event occurred between
January 16 and 20, 2014, which was responsible of heavy rain for about five days
over all the Liguria region. The data we are considering were gathered from rain
gauges maintained by Regione Liguria. The network is spread over the whole
region, with 143 measure stations. These data come from the use case adopted
for the comparison of six rainfall precipitation methods in [43].

Here, we compare wQISA with k-NN weight functions with two other methods:
radial basis functions (RBF) with Gaussian kernel, as considered in [43], and the
Multilevel B-splines Approximation (MBA) [36]. In the RBF implementation a
global support [14] is adopted (all the 143 rain samples are considered) and a
direct solver is applied to the linear system, which is symmetric and positive-
definite. The MBA approximation is obtained with the default settings of the
implementation of the Geometry Group at SINTEF Digital, which is freely
available at: https://github.com/orochi663/MBA.
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Table II.2: Statistics for the error distribution of the cross validation.

Method
Min
[mm]

Max
[mm]

Mean
[mm]

Median
[mm]

Std
[mm]

MSE
[mm2]

RBF 0.0317 2.9363 1.0903 1.0070 0.7830 1.7973
MBA 0.0341 3.3489 1.1667 1.0243 0.8767 2.1969
wQISA 0.0471 2.8293 0.9883 0.9013 0.6885 1.4657

A quantitative comparison is provided in Table II.2 and computed by
performing 5 times a 5-fold cross-validation on each method. For more details,
we refer once again the reader to [29] (chapter 7). The optimal parameters for a
k-NN wQISA are chosen by minimizing the average MSE and are: k = 9, with
10 inner knots for each direction. In Figure II.9 we sample the precipitation
fields approximated with the three methods in a set of points, representing the
Liguria region. Although our approximation looks smoother and less detailed, it
has in practice a better generalization performance as a learning method – that
is a better prediction capability on independent test data. An implementation
of the wQISA method for rainfall data with the choice of the optimal values for
the k parameter and the cross-validation tests reported in Table II.2 is freely
availale at: https://github.com/rea1991/wQISA.

1 2 3 4 5 6 1 2 3 4 5

(a) (b) (c)

Figure II.9: Rainfall approximation with RBF (a), MBA (b) and wQISA (c).

II.5 Concluding remarks and future perspectives

We defined a novel quasi-interpolant reconstruction technique (wQISA),
specifically designed to handle large and noisy point sets, even when equipped
with outliers. The robustness and the versatility of the method are theoretically
discussed from the point of view of numerical analysis (Sections II.2.3) and
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probability theory (Section II.3). Numerical examples are provided in Section
II.4.

In this work we presented a quasi-interpolant scheme that applies to point
clouds even equipped with noise and outliers. Our definition of the control
point estimators combines computational efficiency with the possibility to work
with different types of noise, as well as a reduced sensitivity to outliers. The
computational complexity is, in fact, comparable to that of a weighted average.
We gave evidence of the approximation effectiveness of the method over a wide
range of real data and application domains.

As a further development of the method, we think it is possible to extend
wQISA to more general refinement schemes, for instance opportunely selecting
the point neighbours [37], such as in the case of LR B-splines or THB-splines
[18, 34]. This is particularly relevant because these locally refining schemes
naturally deal with isogeometric computations and simulation and offers the
valuable perspective to practically adopt this work for Computer Aided Design
and Manufacturing (CAD/CAM), Finite Element Analysis and IsoGeometric
Analysis [26, 33, 41].
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Appendix II.A The univariate case

We will suppose – up to a rotation – that the point cloud P can be locally
represented by a function of the form f : [a, b] ⊂ R→ R.

Definition II.7. Let P ⊂ R2 be a point cloud, p ∈ N∗ and x = [x1, . . . , xn+p+1]
a (p+ 1)-regular (global) knot vector with fixed boundary knots xp+1 = a and
xn+1 = b. The Weighted Quasi Interpolant Spline Approximation of degree p to
the point cloud P over the knot vector x is defined by

fw(x) :=
n∑
i=1

ŷw(ξ(i))B[x(i)](x), (II.21)

where ξ(i) := (xi + . . .+ xi+p)/p are the knot averages and

ŷw(t) :=

∑
(x,y)∈P

y · wt(x)∑
(x,y)∈P

wt(x)

are the control points estimators of weight functions wt : R→ [0,+∞).

II.A.1 Properties

II.A.1.1 Global and local bounds

88



The univariate case

Proposition II.2 (Global bounds). Let P ⊂ R2 be a point cloud. Given
ymin, ymax ∈ R that satisfy

ymin ≤ y ≤ ymax, for all (x, y) ∈ P,

then the weighted quasi interpolant spline approximation to P from some spline
space Sp,x and some weight function w has the same bounds

ymin ≤ fw(x) ≤ ymax, for all x ∈ R.

Proof. From the partition of unity property of a B-spline basis, it follows that

mini ŷw(ξ(i)) ≤
∑n
i=1 ŷw(ξ(i))B[x(i)](x) ≤ maxi ŷw(ξ(i))≥

1

=
: ≤

2
ymin fw(x) ymax

(II.22)

where the inequalities 1 and 2 are a direct consequence of defining ŷw by
means of a convex combination. �

The bounds of Proposition II.2 can potentially lead to local bounds. We
discuss this situation in Corollary II.2.

Corollary II.2 (Local bounds). Let P ⊂ R2 be a point cloud. If x ∈ [xµ, xµ+1)
for some µ in the range p+ 1 ≤ µ ≤ n, then

α(µ) ≤ fw(x) ≤ β(µ),

for some α(µ), β(µ) which belong to [ymin, ymax].

Proof. By using the property of local support for B-splines, it follows that

fw(x) =
µ∑

i=µ−p
ŷw(ξ(i))B[x(i)](x)

over [xµ, xµ+1). Thus, we can re-write the chain of inequalities (??) as

min
i=µ−p,...,µ

ŷw(ξ(i)) ≤ fw(x) ≤ max
i=µ−p,...,µ

ŷw(ξ(i))

≥

3

≤

4

min
{
y s.t. (x, y) ∈

µ⋃
i=µ−p

Pi
}

max
{
y s.t. (x, y) ∈

µ⋃
i=µ−p

Pi
}

=
:

=
:

α(µ) β(µ)
(II.23)

where
Pi :=

⋃
i=µ−p,...,µ

{
supp

(
wξ(i)(·)

)}
∩ P.

�
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Notice that the set of points which are effectively used to compute the
approximation, i.e.,

P∗ :=
⋃

i=p+1,...,n
Pi

may be a proper subset of P.

II.A.1.2 Preservation of monotonicity

Definition II.8 (w-monotonicity). Let wt : R → [0,+∞) be a family of weight
functions, where t ∈ R. A point cloud P ⊂ R2 is said to be w-increasing if for
all x1 ≤ x2, ŷw(x1) ≤ ŷw(x2). P is said to be w-decreasing if for all x1 ≤ x2,
ŷw(x1) ≥ ŷw(x2).
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Figure II.10: w-monotonicity and its preservation. Figure (a) shows an example
of an estimator ŷw : R→ R (in red) for a given point cloud (in blue) with respect
to a 3-NN weight function. Figure (b) graphically compares the original point
cloud (in blue) to its wQISA (in red).

The key ingredient to prove the preservation of monotonicity through our
method is the following lemma.

Lemma II.2. Let p ∈ N∗ and x = [x1, . . . , xn+p+1] be a (p+ 1)-regular (global)
knot vector with fixed boundary knots xp+1 = a and xn+1 = b. In addition, let
f =

∑n
i=1 ciB[x(i)] ∈ Sp,x. If the sequence of coefficients {ci}ni=1 is increasing

(decreasing) then f is increasing (decreasing).

Proof. The Lemma is proven in [39], pp. 114–115. �

Proposition II.3. Let P ⊂ R2 be a point cloud, p ∈ N∗ and x = [x1, . . . , xn+p+1]
be a (p + 1)-regular (global) knot vector with fixed boundary knots xp+1 = a
and xn+1 = b. If P is w-increasing (decreasing) then fw is also increasing
(decreasing).
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Proof. By definition of w-increasing (decreasing) point cloud, the sequence of
control points {ŷw(ξ(i))}ni=1 is increasing (decreasing). By Lemma II.2, this is
sufficient to conclude that fw is increasing (decreasing). �

II.A.1.3 Preservation of convexity

Definition II.9 (w-convexity). Let wt : R → [0,+∞) be a family of weight
functions, where t ∈ R. A point cloud P ⊂ R2 is said to be w-convex if for all
x1 ≤ x2 and for any λ ∈ [0, 1],

ŷw((1− λ)x1 + λx2) ≤ (1− λ)ŷw(x1) + λŷw(x2).

P is said to be w-concave if P− := {(x,−y)|(x, y) ∈ P} is w-convex.
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Figure II.11: w-convexity and its preservation. Figure (a) shows an example of
an estimator ŷw : R→ R (in red) for a given point cloud (in blue) with respect
to a 3-NN weight function. Figure (b) graphically compares the original point
cloud (in blue) to its wQISA (in red).

The preservation of convexity is a consequence of the following lemma.

Lemma II.3. Let p ∈ N∗ and x = [x1, . . . , xn+p+1] be a (p+ 1)-regular (global)
knot vector with fixed boundary knots xp+1 = a and xn+1 = b. Lastly, let
f =

∑n
i=1 ciB[x(i)] ∈ Sp,x. Define ∆ci by

∆ci :=


ci − ci−1

xi+p − xi
, if xi < xi+p

∆ci−1 if xi = xi+p

for i = 2, . . . , n. Then f is convex on [xp+1, xn+1] if it is continuous and if the
sequence {∆ci}ni=2 is increasing.

Proof. See [39], p. 118. �

Proposition II.4. Let P ⊂ R2 be a point cloud, p ∈ N∗ and x = [x1, . . . , xn+p+1]
be a (p+ 1)-regular (global) knot vector with fixed boundary knots xp+1 = a and
xn+1 = b. If P is w-convex (concave) then fw is also convex (concave).
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Proof. Let

∆ci := ŷw(ξ(i))− ŷw(ξ(i−1))
xi+p − xi

= ŷw(ξ(i))− ŷw(ξ(i−1))
(ξ(i) − ξ(i−1))p

with xi < xi+p. Since P is w-convex then these differences must be increasing
and consequently fw is convex by Lemma II.3. �
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Abstract

In this paper we investigate a local surface approximation, the Weighted
Quasi Interpolant Spline Approximation (wQISA), specifically designed
for large and noisy point clouds. We briefly describe the properties of the
wQISA representation and introduce a novel data-driven implementation,
which combines prediction capability and complexity efficiency. We provide
an extended comparative analysis with other continuous approximations
on real data, including different types of surfaces and levels of noise, such
as 3D models, terrain data and digital environmental data.
Keywords: spline methods, quasi-interpolation, point clouds, noise, data-
driven model assessment.
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III.1 Introduction

Due to the recent progress in the acquisition by laser scanners, photogrammetry
and diagnostic devices and the popularity of remote sensing technologies, there
has been an exponential growth in the availability of data and the need of
efficient representations. A good representation model must be, at the same time,
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efficient, that is based on the minimum amount of data, yet effective, that is able
to support conservative conclusions and keep as much information as possible.
To handle large data volumes it is often necessary to adopt approximation
strategies so that a single point becomes representative of a region or a set of
properties [1, 12]. Given a set of measurements (and their spatial locations),
its model approximation has to permit deducing information about the process
that generated those data, even at locations different from those at which the
measurements were obtained. Surface reconstruction, terrain elevation estimation
and the approximation of rainfall and pollution fields over Digital Elevation
Models (DEMs) are all examples of spatial data approximation. Moreover, an
efficient approximation allows the recovery of the digital representation of a
physical shape that commonly contains a variety of properties and defects, such
as: geometric features; noise and outliers; perturbations introduced when the
acquisition conditions are not optimal (low resolution of instruments, motions,
etc.) or different acquisition techniques collect data sets of different resolution
(laser scans or photogrammetry); incomplete data (e.g, in the acquisition of
broken artefacts or scans of objects partially occluded [21]).

Quasi-interpolation schemes [4, 40] are popular for data approximation
because, unlike traditional least squares approximations, they do not require
solving a linear system. We use B-splines as basis functions because they are
computationally convenient, for instance with respect to the common radial basis
functions, as (piecewise) polynomial bases require low-order integration schemes
to be exactly computed. The use of piecewise algebraic approximations makes
our method suitable also to CAD applications, where B-splines and NURBS
are de facto the standard tools. Moreover, the treatment of essential boundary
conditions is more natural for structured approaches like the spline-based ones
than in meshless methods, as it relies on the number of repetition of each knot
value.

The wQISA implementation proposed in this paper is specifically designed
to define powerful prediction methods from low quality points. Starting from
the theoretical wQISA definition given in [38] for a single tensor-product mesh,
in this work we derive a multi-level approximation algorithm and provide an
extended comparative analysis with other methods in the literature. The main
contributions of the paper include: a detailed description of the wQISA method
when used for surface approximation; a multi-level approximation algorithm
based on a data-driven definition of the weight functions; an extensive comparison
of the wQISA outcome with other well-known continuous approximation methods.

The remainder of the paper is organized as follows. Section III.2 overviews
the literature on data approximation focusing on methods related to continuous
surface approximation. Section III.3 overviews the wQISA method and its
properties, together with a multi-level implementation of the method based
on a data-driven mesh refinement strategy. Section III.5 extensively compares
the wQISA outcome on different real use cases, with respect to a number of
well-known approximation methods and a set of performance indicators that are
detailed in Section III.4. Discussions and concluding remarks are provided in
Section III.6.
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III.2 Previous work

The literature on data approximation is vast and we cannot do justice to all
contributions. We limit our review to methods whose output satisfies some
smoothness requirement, either local or global. For a more complete list of
methods related to our use cases, we refer to [3] for a recent survey on surface
reconstruction methods, to [20] for an overview on methods for modelling terrain
data and to [35] for a comparative analysis of methods for approximating rainfall
data.

Meshless methods. Kriging is a geo-statistical approach largely used
to approximate remote sensing measurements [34]. In particular, (ordinary)
Kriging incorporates correlation information into data approximation through
a variogram model. The main limitation of ordinary Kriging is the limited
scalability; indeed, Kriging’s computation scales quadratically with respect to
the number of observations. The Moving Least Square (MLS) approach is largely
adopted for surface reconstruction [2, 14, 43]. The basic idea behind MLS is to
approximate the surface in the neighbour of a point with the tangent plane in
that point. Several variations have been introduced, for instance Feng et al. [13]
devised a model that uses multiple curves/surfaces approximation, that allows
separating mixed scanning points received from a thin-wall object and consists
of a second-order extension of the method in [31]. Other implicit approximation
techniques express the data as linear combination of basis elements. For instance,
radial basis functions (RBFs) are central for scattered data approximation [17].
The quality of the interpolation depends on the choice of the basis function.
Originally introduced as a global method [7, 41], RBFs have been adapted to
compact support [15]. A combination of MLS and RBF is presented in [37].
Wavelets and wavelet transforms [9] have been applied for data compression
and noise reduction by truncating the wavelet decomposition. Among other
techniques, we mention Poisson based methods, which have been applied for
example to surface reconstruction from point sets [28].

Mesh-based methods. Tensor-product spline surfaces (piecewise polyno-
mial or NURBS) are a well established representation for modelling smooth
shapes. Several local refinement methods have been proposed to overcome the
limited mesh adaptivity to the data, such as T-splines [42], locally refined (LR)
B-splines [11, 27] and (truncated) hierarchical B-splines [22]. Forsey and Bartels
use hierarchical B-splines for interpolation and least square approximation of
gridded data [16]. Lee et al. [30] introduce a multi-level quasi-interpolant, the
Multilevel B-spline Approximation (MBA), where the coefficients depends on
values of tensor product B-splines defined on lattices. Greiner and Horman [24]
address approximation and interpolation of data by global least squares over
hierarchical tensor-product spline spaces. Kiss et al [29] adapt this approach to
handle THB-splines. Davydov et al. [10] introduce a two-stage method based on
extended B-splines with focus on curvilinear domains. Skytt et al. propose least
square fitting and MBA of LR B-spline surfaces for the approximation of terrain
[44] and bathymetry data [45]. A comparison between RBFs and LR B-splines
approximations has been performed by Patané et al. [36](Chapter 2). A data
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reduction scheme for model simplification is introduced in [5].

III.3 Weighted Quasi Interpolant Spline Approximations

Quasi-interpolation is a low-cost and accurate procedure in function approxi-
mation theory. The term quasi-interpolation has been interpreted differently
according to the context. We follow the Cheney [8] definition of a quasi inter-
polant as any linear operator L of the form

Lf :=
nx∑
i=1

ny∑
j=1

f(xi, yj)gi,j , (III.1)

where f : Ω ⊂ R2 → R is a function being approximated, nx ∈ N ∪ {+∞} 3 ny,
(xi, yj) are given nodes and gi,j : Ω ⊂ R2 → R are functions at our disposal.
Differently from classic Quasi Interpolation methods that focus to function
approximation, the Weighted Quasi Intepolant Spline Approximation (wQISA,
[38]) aims at point cloud approximation, where the data are assumed to be
affected by noise, outliers or partially missing. In this Section we summarise
the wQISA concept and list its theoretical properties. Then, we sketch a data-
driven implementation of the wQISA algorithm, which allows to deal with both
approximation and prediction problems. Finally, we discuss its computational
complexity.

III.3.1 Preliminary concepts

In a general pipeline for approximation, we envisage that a complex surface is
decomposed in multi-charts, e.g., [33, 46] and then the approximated patches are
stitched together. In this paper we focus on the quality of local approximations,
reserving to future investigations the gluing of multiple patches. From the
mathematical point of view, every surface can be locally projected onto a plane
by using an injective map and, if locally regular, it can be expressed in local
coordinates as (x, y, z(x, y)). Given a degree p, a knot vector is said to be
(p+ 1)-regular if no knot occurs more than p+ 1 times and each boundary knot
occurs exactly p+ 1 times.

Definition III.1. Let P ⊂ R3 be a point cloud and p = (px, py) ∈ N∗ × N∗ be a
bi-degree. Let x be a (px + 1)-regular knot vector with boundary knots xpx = a1
and xnx = b1 and let y be a (py + 1)-regular knot vector with boundary knots
ypy = a2 and xny = b2. The Weighted Quasi Interpolant Spline Approximation
of bi-degree p to the point cloud P over the knot vectors x and y is defined by

fw(x, y) :=
nx∑
i=1

ny∑
j=1

ẑw(x∗i , y∗j ) ·B[xi,yj ](x, y), (III.2)
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where x∗i := (xi + . . .+ xi+px)/px and y∗j := (yj + . . .+ yj+py)/py are the knot
averages, the expression

ẑw(u, v) :=

∑
(x,y,z)∈P

z · w(x, y, u, v)∑
(x,y,z)∈P

w(x, y, u, v) (III.3)

is the control points estimator with weight function w : R2 × R2 → [0,+∞)
and B[xi,yj ] denotes the tensor product B-spline of bi-degree p which is
uniquely determined by the local knot vectors xi = [xi, . . . , xi+px+1] and
yj = [yj , . . . , yj+py+1].

Remark III.1. In Definition III.1, a wQISA depends on the following inputs:
a point cloud, a tensor mesh (uniquely defined by a bi-degree and two knot
vectors) and a weight function.
Remark III.2. The weight function w defines a window around each point (u, v)
and the literature is rich of possible choices, including functions with global and
local support. Very popular examples for the function w are:

• Indicator of radius r > 0:

w(x, y, u, v) := 1||(x−u,y−v)||2≤r, (III.4)

• Gaussian of standard deviation σ:

w(x, y, u, v) := e−||(x−u,y−v)||2/2σ2
, (III.5)

• k-Nearest Neighbors (k-NN):

w(x, y, u, v) :=
{

1/k, if (x, y) ∈ Nk(u, v)
0, otherwise

, (III.6)

where k ∈ N∗ and Nk(u, v) denotes the neighborhood of (u, v) defined by the
k closest points of the point cloud.

• Inverse Distance Weight (IDW):

w(x,y,u,v) :=


1

||(x,y)−(u,v)||2
, if |C(u,v)| = 0{ 1

|C(u,v)|
, ∀(x,y) = (u,v)

0, else
, if |C(u,v)| 6= 0

(III.7)

where
|C(u,v)| := {(x, y, z) ∈ P s.t. (x, y) = (u, v)}.

Details on how to fix the free parameters, if any, are provided in Section III.3.3.3.
Figure III.1 shows the stability of wQISA (until failure) against increasing

amount of noise and outliers. In these simulations, a k-NN weight is filtered
from outliers by using quartiles.
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Figure III.1: Noise and outliers robustness. The input point cloud is represented
in blue, the output approximation is displayed in red. The noise increases from
the left to the right. The outliers increase from top to bottom.

III.3.2 Properties

Similarly to the classical quasi-interpolant schemes [4], the wQISA method
satisfies a number of desirable regularity properties, here briefly recalled. For
more details and for a probabilistic interpretation of the method, we refer the
reader to [38].

Global bounds Let P ⊂ R3 be a point cloud and zmin, zmax ∈ R that satisfy

zmin ≤ z ≤ zmax, for all (x, y, z) ∈ P.

Then the weighted quasi interpolant spline approximation to P from some spline
space Sp,[x,y] and some weight function w has the same (global) bounds

zmin ≤ fw(x, y) ≤ zmax, for all (x, y) ∈ R2. (III.8)

Local bounds Let x ∈ [xµ, xµ+1) for some µ in the range px + 1 ≤ µ ≤ nx
and y ∈ [yν , yν+1) for some ν in the range py + 1 ≤ ν ≤ ny. The global
bounds of Equation III.8 can be refined, by using the B-splines’ property of local
representation, to

min
i=µ−px,...,µ
j=ν−py,...,ν

ẑw(x∗i , y∗j ) ≤ fw(x, y) ≤ max
i=µ−px,...,µ
j=ν−py,...,ν

ẑw(x∗i , y∗j ).

We can simplify these bounds to:

min
(x,y,z)∈Pµ,ν

z ≤ fw(x) ≤ max
(x,y,z)∈Pµ,ν

z, (III.9)
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where
Pµ,ν :=

⋃
i=µ−px,...,µ
j=ν−py,...,ν

{
supp

(
w(·, ·, x∗i , y∗j )

)}
∩ P.

Note that the wQISA bounds depends on the functions w. By choosing
weight functions having compact support, one can control these bounds while
reducing the number of points required for each control point estimation.

Special configurations, shape preservation and rate of convergence From
basic spline theory, it is straightforward that if xi+1 = . . . = xi+px < xi+px+1
and yj+1 = . . . = yj+py < yj+py+1 then wQISA interpolates the control point
estimate ẑ(x∗i , y∗j ). By assuming (1) any knot in x and y to have maximum
multiplicity, (2) w to be a 1-NN weight function and (3) the point cloud to
consist of samplings of a continuous function f : [a1, b1] × [a2, b2] → R at the
knot averages, we have that fw corresponds to the Variation Diminishing Spline
Approximation (VDSA) of f of bi-degree p to the point cloud P over the knot
vectors x and y (see for example [32]). In this perspective, wQISA can be seen
as a generalization of VDSA to perturbed data through a wider family of weight
functions.

There is also another point of view: wQISA corresponds to applying VDSA
to ẑw : R2 → R. As pointed out in [32], VDSA preserves certain shape properties
- such as monotonicity and convexity - of the function being approximated. In
our case, wQISA will preserve the monotonicity and convexity of ẑw, i.e., of the
average trend of the point cloud, with respect to the chosen weight function. In
case of points clouds with defects, the average trend is indeed more important
than the position of a point with respect to the others. By considering this
analogy between VDSA and wQISA, we conclude that the latter is characterized
by a linear convergence (see for example [32] for the rate of convergence of
VDSA).

III.3.3 Data-driven implementation

When dealing with approximation, the quality of a method relies on its prediction
capability over independent samples, i.e., on data that has not been used to “train"
the model. Whilst for function approximation the accuracy of a method can be
quantified by directly comparing the approximation with the original function,
in case of point clouds approximation the estimation of the approximation error
on new samples is not trivial (for instance, it is often impossible to re-sample
the data). Moreover, only a few benchmarks are available. One way to overcome
this problem comes from statistical learning, and is here adopted in the form of
a learning-based implementation of wQISA. Our implementation consists of four
main steps:

Step 1 Data pre-processing. The input point cloud is used to generate a
training, a validation and a test set, each of which has a specific task
in the approximation of the input data. Different strategies are proposed,
depending on the size of the input (see Section III.3.3.1).
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Step 2 wQISA formulation. Given a tensor mesh and a weight function, the
training set is used to define the control point estimator ẑw. Notice that
ẑw may depend on free parameters to be tuned (see Section III.3.3.2).

Step 3 Parameter settings. A prediction error is defined on the validation set, in
order to fix the possible free parameters of the weight functions III.3.3.3).

Step 4 Model assessment. Having obtained an approximation model on the basis
of the previous steps, the test set is used for estimating the generalization
error on new data (see Section III.3.3.5).

While the first and the last steps are done only once, the second and the third
ones are run in a while-loop, by refining the mesh at each iteration (see Section
III.3.3.4).
Remark III.3. The use of different point clouds for Steps 1-3 in our data-driven
implementation is necessary to avoid data overfitting. This is particularly relevant
when looking for a model with a good prediction capability, rather than just
aiming at minimizing the error on a finite set of points (see, for instance, [26,
39]).

We provide a simplified flowchart of the algorithm in Figure III.2 and a
pseudo-algorithm in Algorithm III.1, while referring to Sections III.3.3.1-III.3.3.5
for a detailed description of the implemented procedures.

INPUT POINT CLOUD

Data pre-processing

wQISA formulation

Parameter settings

Model assessment

Mesh refinement

OUTPUT APPROXIMATION

STEP 1

STEP 2

STEP 3

STEP 4

fw does
satisfy the accuracy test

fw does NOT
satisfy the accuracy test

Figure III.2: Flowchart of the data-driven wQISA algorithm.

III.3.3.1 Data pre-processing

The input point cloud P is used to generate three new sets: a training set T , a
validation set V and a test set U . There is no general rule on how to choose the
number of observations in each of the three sets. As suggested in [26], a typical
split for large point clouds might be 50% for training set, and 25% each for
validation and testing sets. The three sets must have similar data distribution
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1: Input: P, x, y, w, ε;
2: Output: fw(x,y) (spline approximation), MSE (generalization error)
3: function DataPreProcess(T , V, U)
4: return T , V, U ;
5: end function
6: function wQISA-Definition(T , x, y, w)
7: Apply Equation III.3 and get fw(x,y, k);
8: return fw(x,y, k);
9: end function
10: function wParameters(V, fw(x, y, k))
11: Find the parameter k that minimizes GMSE;
12: Get fw(x, y) by fixing the optimal parameter k;
13: return [fw(x, y),GMSE];
14: end function
15: function RefineMesh(V,x, y,fw(x,y),ε)
16: Compute LMSE from V and fw(x,y);
17: Check elements where LMSE is above ε;
18: Split those elements by knot refining both x and y;
19: return x and y;
20: end function
21: function GeneralizationError(U ,fw(x,y))
22: return MSE of fw(x,y) over U ;
23: end function
24: function main((P, x, y, w, ε))

/*Split the data*/
25: [T , V, U ]=DataPreprocess(P);

/*Define the family of approximations*/
26: fw(x, y, k)=wQISA-Definition(T , x, y, w);

/*Fix the parameters (here, k)*/
27: [fw(x, y),GMSE]=wParameters(V, fw(x, y, k));

/* While stopping criteria not satisfied*/
28: [x,y] = RefineMesh(V,x, y,fw(x,y),ε);
29: fw(x, y, k)=wQISA-Definition(T , x, y, w);
30: [fw(x, y),GMSE]=wParameters(V, fw(x, y, k));

/*end*/
31: MSE=GeneralizationError(U ,fw(x,y));
32: return [fw(x,y),MSE];
33:end function

Algorithm III.1: wQISA pseudocode for k-NN weight

properties, i.e., the noise distribution and the point sampling of the validation
and test sets must be comparable to the one of the training set. For instance,
the training set T can be easily obtained in Matlab from P by applying the
function pcdownsample with 50% of sampling rate and then, V and U can be
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obtained with the sample procedure applied to the complement of T . Figure
III.3 visually shows a possible data partitioning. In order to achieve even more
robust results, one can consider several splits of the data into training, validation,
and test sets.

(a) (b) (c) (d)

Figure III.3: Point cloud partitioning. (a) The original point cloud P; (b) the
training set T ; (c) the validation set V; (d) the test set U .

In many real-world applications there might be insufficient data to split
the set of measurements into three parts. In these cases, we use, the K-fold
cross-validation: the input point cloud is split into K roughly equal-sized parts
and K − 1 parts are used to train the model, while the remaining one is used to
test it. This process is repeated by changing the part to be used for accuracy
evaluation, and then combining the K estimates of the prediction error. In this
case, the validation and test sets are the same.

III.3.3.2 wQISA formulation

The control point estimator is defined by Equation (III.3). As pointed out in
Remark III.1, the wQISA input consists of:

1. A point cloud. We use the training point cloud computed in Section
III.3.3.1.

2. A tensor product spline space defined by regular knot vectors. At the first
iteration, one can consider a tensor mesh consisting of a single element with
maximum knot multiplicities, with this element being the bounding box of
the input data. The mesh is then (globally) refined, iteration-by-iteration,
where the approximation shows a lower precision (see Section III.3.3.4).
Although the spline bi-degree can be considered as an additional parameter,
we here choose to focus on C1 bi-quadratic spline surfaces as they are
smooth enough to represent data in a good way [44].

3. A weight function. We here decide the weight function to be used on a
case-by-case basis. One could nevertheless consider dictionaries of weight
functions and then choose the more suitable via an opportune validation
error.

Having these inputs fixed, the approximation defined in Equation (III.2) may
still depend on additional parameters to be tuned (see Section III.3.3.3).
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III.3.3.3 Parameter settings

The control point estimator depends on the parameters defining a weight function
(e.g., k in a k-NN weight), if any. Statistical learning fixes the free parameters by
minimizing some prediction error on an independent data set, here represented
by the validation set. The reason for not using the training set for parameter
settings is the need to avoid overfitting, i.e., a model that has good performances
on the input set but has a low prediction capability on new data. We here fix
the parameters by minimizing the Global Mean Squared Error (GMSE), i.e.,
the Mean Squared Error (MSE) over the whole validation point cloud. The
minimization of the chosen loss function can be undertaken via iterative methods
(e.g., stochastic optimization), or by directly evaluating the loss function at a
finite number of parameters (e.g., in case of k-NN weight).

III.3.3.4 Termination criterion

The steps described in the Sections III.3.3.2 and III.3.3.3 are run in a while loop.
The refinement level of a mesh is fixed by considering the last iteration before
the GMSE starts increasing (for instance, this occurs when the model starts
overfitting the data), with a maximum number of iterations (here we set it to
15). At each iteration of the while loop, we compute a local validation error and
use it, together with a user-defined threshold, to decide which elements should
be split by knot insertion. We here insert the knot at the mid-value, in each of
the two coordinate directions.

We here consider the Local Mean Squared Error (LMSE). Given an element
of the mesh, the LMSE on that element is the Mean Squared Error over any
validation point whose projection onto the plane (x, y) falls into that element. If
no projection lies inside that element, the LMSE for that element is set to zero.

III.3.3.5 Model assessment

Once the model has been selected, the test set is used to estimate the
generalization error. In a data-rich situation, validation and test sets are distinct,
and so are in general the validation and test errors. In case the data set was not
large enough to be split into three parts, these validation and test sets are equal.
This leads the validation and test errors to be the same, and results, in general,
in an underestimation of the generalization error (see once more [26]).

III.3.4 Computational complexity

The computational complexity of a single wQISA iteration depends on the
chosen weight function and tensor product spline space. Given the linear space
Sp,[x,y] of tensor product B-splines of bi-degree p over the regular knot vectors
x ∈ Rnx+px+1 and y ∈ Rny+py+1, there are exactly dim(Sp,[x,y]) = nx ·ny control
points to be estimated.

The Gaussian weight is global and thus computes, for a single control point
estimation, the linear combination of N addends. Since the weight of any point is
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at most as expensive as the exponential of an Euclidean norm, the computational
complexity of a control point estimate is O(N). To considerably reduce the
computational complexity, one can recover local support by composing global
weight functions with a k-NN tree (see Equation III.6) or with a weight functions
with local support, such as the indicator weight function (see Equation III.4).
Indeed, in case of a k-NN weight function the time needed to compute all the
coefficients through k-d trees is proportional to O(N log(N)), where N is the
number of points of the cloud [19]. For its efficiency, k-d trees are already
adopted for noise point clouds reconstruction, see for instance [23].

The number of iterations to reach the local minimum of the loss function
depends on the input point cloud, the chosen approximation method, and the loss
function itself (here: the GMSE over the validation point cloud). In these settings,
the use of a method with a high convergence rate can cause an overshooting of
the minimum. Experimental results on the number of iterations of our method
are reported in Section III.5 and show that wQISA converges in a reasonably
low number of iterations.

n the following, we analyze the CPU times to approximate a point cloud
with increasing cardinality, randomly sampled from the mathematical function

z =
√

64− 81
(
(x− 0.5)2 + (y − 0.5)2

)
/(9− 0.5)

over a mesh with an increasing number of knots. We here approximate an IDW
weight function by considering, for each knot average, only the K closest points
(K is set to 500). We have used, for this test, a prototype implementation
developed in Python. These tests run on a 2019 MacBook pro with 2.4 GHz
8-cores Intel®CoreTM i9-processor, resulting in the CPU times shown in the
log-log plot of Figure III.4.
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Figure III.4: CPU times. Log-log plot of the CPU times when increasing the
point cloud cardinality and the number of coefficients.
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III.4 Experimental settings

Despite the popularity of data approximation, we could not find a benchmark
able to address all the use cases we are targeting (surface reconstruction, terrain
modelling and spatial data measurement approximation). For this reason we
propose a new comparative analysis. In this Section we detail the approximation
methods and the performance metrics we adopt in our work.

III.4.1 Approximation methods

We here overview the three popular approximation schemes used as wQISA
counterparts throughout this paper: namely, the implicit approximation
with Radial Basis Functions (RBF), Kriging and the Multilevel B-spline
Approximation (MBA).

III.4.1.1 Implicit approximation with radial basis functions

This implicit approximation has the form

f(x, y) :=
N∑
i=1

wiφ(||(x− xi, y − yi)||2), (III.10)

where the approximating function is represented as a linear combination of radial
basis functions, each associated with a different center (xi, yi) and weighted
by an unknown coefficient wi. The weights wi can be computed by imposing
interpolatory constraints of the data, where the trivial null solution is avoided
by adding normal constraints. Depending on the properties of φ, RBFs can be
locally- or globally-supported. The computational complexity of global and local
approximations is respectively O(N3) and O(N logN). We here consider the
following kernels:

φ(r) := e(r/ε)2
, (Gaussian) (III.11a)

φ(r) :=
√

1 + (r/ε)2, (Multiquadric) (III.11b)

φ(r) := 1√
1 + (r/ε)2

(Inverse multiquadric) (III.11c)

φ(r) := e−
√
r, (Modified Gaussian) (III.11d)

where ε is a shape parameter that here approximates the average distance
between nodes. An additional parameter α ≥ 0 is introduced by performing an
L2-regularization on the interpolation matrix, in order to increase the smoothness
of the approximation (α = 0 is for interpolation). We consider the implementation
from the Python class interpolate.Rbf, contained in the Scipy library.

III.4.1.2 Kriging

Kriging owes its importance to its capability to take into account the correlation
among input data, which may strongly affect the approximation, e.g., when
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unevenly distributed. Kriging is defined by the weighted average

f(x, y) := wtz =
N∑
i=1

wizi, (III.12)

where the weights w ∈ RN are the solution to the linear system Cw = c,
where C is the covariance matrix of the input point cloud and c is the vector
of covariances between the input points and the prediction point (x, y) ∈ R2.
Despite its popularity, Kriging suffers several issues when applied to large data
sets. For each sample, the ordinary kriging estimator needs to solve a linear
system and thus the computational complexity scales quadratically with the
number of input points. We use here the Python package PyKrige.

III.4.1.3 Multilevel B-spline approximation

Multilevel B-spline Approximation (MBA) was originally introduced in [30] for
approximating scattered data by tensor product B-spline surfaces. A peculiarity
of MBA, that makes it analogue to wQISA, is its explicit formulation, which
allows it to compute an approximation without solving any equation system. In
this respect, MBA can be considered as an example of quasi-interpolation method.
At the first step, the tensor product mesh consists of only one element. At each
successive iteration, each element is halved in the two coordinate directions. The
coefficient ck of a B-spline Bk is given by

ck =
∑
iBk(xi,k, yi,k)2φi∑
iBk(xi,k, yi,k)2 ,

where (xi,k, yi,k)i is the set of points within the support of the B-spline Bk and

φi := Bk(xi,k, yi,k)zi∑
lBl(xi,k, yi,k)2 ,

where the sum in the denominator is taken over all B-splines which contains
(xi,k, yi,k) in their support. The computational complexity scales linearly with
the number of input points. We here use the implementation of the Geometry
Group at SINTEF ICT, available at https://github.com/orochi663/MBA.

III.4.2 Evaluation measures

To evaluate the quality of an approximation against the input point cloud, we
need to define some error measures. We here present a comparison with a number
of measures, each one able to highlight different approximation aspects.

III.4.2.1 Punctual error and its statistics

Given an approximation defined on the training point cloud, the absolute punctual
error is computed on the validation point cloud. The absolute punctual error
is studied via measures of central tendency (mean) and of statistical dispersion
(standard deviation and mean square error).
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III.4.2.2 Hausdorff distance and L∞ norm

The Hausdorff distance (or two-sided Hausdorff distance) dHaus between two
non-empty subsets A and B in (Rd, || · ||2) is given by

dHaus(A,B) := max
{

sup
a∈A

inf
b∈B
||a− b||2, sup

b∈B
inf
a∈A
||a− b||2

}
,

where sup represents the supremum and inf the infimum. In our case, A is chosen
to be the validation point cloud, while B is the image of an approximation f
over its domain. In our settings, the sup and inf can be replaced by max and
min respectively. We will use this distance for all sets of points embedded in an
Euclidean space. For data measurements that associate a scalar value to a point
of a grid we will use instead the L∞ norm.

III.5 Experimental simulations

In our experiments we consider real data coming from different use cases. We
classify the data as affected by different levels of noise: low (e.g., 3D point
clouds from high-quality laser scans), average (e.g., terrains from Lidar or sonar
acquisition) and high (e.g., air pollution and rainfall measurements from sensors
and radars). The data size varies from few dozens to hundreds of thousands of
points. All data used in our experiments are provided as additional material.
To provide a fair comparative analysis - and avoid any method to overfit - a
data-driven implementation is used for all the considered techniques. Hence,
the approximation parameters and the model validation are kept distinct and
performed on the same training and validation datasets for all methods. In
addition, the optimal shaping parameter α for the RBF approximations is found
through a constrained trust-region method, while for Kriging we always use the
default package settings (linear variogram model).

In all Tables, we use the following naming convention: Gaussian kernel
(RBF1); multiquadric kernel (RBF2); inverse multiquadric kernel (RBF3);
modified Gaussian kernel (RBF4).

III.5.1 Surface reconstruction

As examples of scattered 3D point clouds, we consider three models from the
Science and Technology in Archaeology Research Center (STARC, [47]) of The
Cyprus Institute, which consist of a digitisation of archaeological fragments. The
complete models are shown in Figure III.5 (left column): the model labelled as
A.1 is part of a vessel; models A.2 and A.3 are parts of votive statues. The models
are acquired via high-quality laser scans. For our experiments, we select a region
of interest in every model (highlighted in red), which is then up-sampled via a
uniform Montecarlo approach; namely, A.1 is sampled with 30, 000 points, A.2
with 47, 642 points and A.3 with 29, 843 points. We here test wQISA with the
Gaussian weight functions of Equation III.5; the standard deviation is σ = 10−4

for the model A.1 and σ = 10−3 for A.2 and A.3.
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A.1

A.2

A.3

Figure III.5: Left sides: the original models (from STARC repository [47]).
Right sides: outcomes of the wQISA method via Gaussian weights for the areas
highlighted in red.

Figure III.5 (right column) depicts the local reconstructions obtained via
wQISA. The approximations show a correct recovery of the main details of the
artefacts, with an accurate shape preservation: in A.1, the symmetry of the
bulge at the center of the spiral is maintained; in A.2, we can notice a faithful
reconstruction even in presence of small geometric variations, such as chiselings
or local reliefs; finally, A.3 shows a reconstruction characterized by circular
patterns. Figure III.6 depicts the iterative process that leads to the final wQISA
approximations and reports the MSE values computed in Step 4 of Algorithm
III.1.

We refer to Table III.1 for a detailed quantitative comparison of the
approximation performances of wQISA, RBFs, Kriging and MBA of the models in
Figure III.5. We highlight in bold the values with the lowest order of magnitude,
which correspond to the best performances. This Table also lists the required
number of iterations. From these experiments we can conclude that wQISA
performs comparatively well with respect to the other methods when the standard
deviation and the Hausdorff distance are considered. This is not surprising
because the idea behind wQISA is to fit the overall data trend rather that
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A.1 The MSE over the test set is 1.47 · 10−6.

A.2 The MSE over the test set is 2.16 · 10−6.

A.3 The MSE over the test set is 6.92 · 10−9.
Figure III.6: Representation step by step of the approximations of the artifacts
in Fig. III.5 via wQISA with Gaussian weight function.

converging to single values. Tables III.2 reports the size of the optimal grid
for wQISAs and MBAs. The optimal smoothing parameters for the RBF
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approximations can be found in Table III.3.

Table III.1: Local approximation of 3D models. The labels A.1, A.2 and A.3
refer to the models in Figure III.5. In bold, we highlight the errors with the
lowest order of magnitude. The single asterisk highlights those cases where the
maximum number of iterations, here set to 15, is reached. Kriging runs in a
single step and no number is displayed.

Punctual error Hausdorff Number
of

Iterationsmean st.d. MSE

A.1

wQISA 4.445·10−5 6.881·10−5 6.723·10−9 9.229·10−4 7
RBF1 1.194·10−5 3.399·10−5 1.305·10−9 9.303·10−4 15∗
RBF2 3.94·10−3 3.052·10−3 2.480·10−5 1.968·10−2 13
RBF3 4.496·10−3 3.635·10−3 3.335·10−5 2.436·10−2 15∗
RBF4 2.760·10−3 2.241·10−3 1.261·10−5 1.425·10−2 15∗
Kriging 2.801·10−5 5.352·10−5 3.650·10−9 9.307·10−4 -
MBA 9.451·10−6 3.137·10−5 1.071·10−9 9.301·10−4 7

A.2

wQISA 7.046·10−4 9.590·10−4 1.420·10−6 6.670·10−2 8
RBF1 9.112 22.504 589.495 1.351·103 15∗
RBF2 8.043·10−5 2.044·10−4 4.826·10−8 6.412·10−2 12
RBF3 1.097·10−2 4.990·10−2 2.61·10−3 2.264 15∗
RBF4 2.199·10−2 2.973·10−2 1.361·10−3 1.154 15∗
Kriging 1.153·10−3 1.301·10−3 3.027·10−6 6.695·10−2 -
MBA 1.214·10−4 2.503·10−4 7.738·10−8 6.695·10−2 13

A.3

wQISA 1.054·10−3 9.926·10−4 2.081·10−6 5.640·10−2 8
RBF1 23.964 98.608 1.030·104 4.342·103 15∗
RBF2 1.440·10−4 2.212·10−4 6.958·10−8 5.552·10−2 12
RBF3 3.008·10−2 4.139·10−2 2.617·10−2 7.891 15∗
RBF4 8.760·10−2 1.189·10−1 2.179·10−2 7.066 15∗
Kriging 1.510·10−4 1.601·10−4 4.845·10−8 5.527·10−2 -
MBA 1.635·10−4 2.185·10−4 7.446·10−8 5.506·10−2 10

Table III.2: Size of the tensor mesh for wQISA and MBA.

Method A.1 A.2 A.3
wQISA 50× 64 128× 128 128× 128
MBA 128× 128 4096× 4096 128× 128

Table III.3: Optimal smoothing parameter α for the RBFs implementations.

Method A.1 A.2 A.3
RBF1 1.27·10−3 1.49·10−1 1.49·10−1

RBF2 2.37·10−1 3.49·10−2 3.43·10−2

RBF3 2.83·10−1 4.54·10−2 2.89·10−1

RBF4 2.86·10−1 1.42·10−1 1.42·10−1
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The robustness of the data-driven implementation to different choices of
the training, validation and test sets (see Section III.3.3.1) is here assessed by
considering ten different data splits for each 3D model. The resulting MSEs over
the respective validation point clouds are graphically represented in the form of
boxplots (see Figure III.7).
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Figure III.7: Robustness to different training, validation, and test sets for the
models in Figure III.5. We show with box-plots the MSE over 10 validation sets.

III.5.2 Terrain data modelling

Acquisition methods such as Lidar, photogrammetry and sonar produce huge
amounts of data that may be perturbed. Methods to efficiently and effectively
handle these point clouds are thus required. Since the Kriging and RBFs
implementations we are considering are not tailored for big data and present
some scalability limitations, here, we limit our attention to the two local methods:
wQISA and MBA.

The first data set comes from the island municipality of Værøy and consists
of many islands. The data are provided by the Norwegian Mapping Authority
Kartverket, and are freely downloadable at https://hoydedata.no/LaserInnsyn/.
The original point cloud is pre-processed to remove the data outside the mainland,
and reduced to 44,529 points. The peculiarity of this terrain is that alternate
regions with high variability and almost flat regions.

The second data set corresponds to submarine sand dunes off the coast of
France. The data were obtained using bathymetric surveys and are detailed in
[18]. The selected part of the data set contains 759,952 points. The difference
in sea depth is about 33.2 m. This terrain was already adopted in [44], it is
relatively large and presents slight ripples on a wide wavefront.

For both models, we consider a wQISA representation with IDW weight
(see Equation III.7). Figures III.8 shows the wQISA representation of the first
terrain, together with the absolute punctual error. The optimal mesh is reached
in 11 iteration (1024× 1024 elements) for wQISA and in 10 iterations (512× 512
elements) for MBA. Similarly, the approximation and the absolute punctual error
of the second terrain are shown in Figure III.9. For this model, the optimal mesh
for wQISA contains 6400× 6400 elements while for MBA it contains 1024× 1024
elements.
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(a) (b)

Figure III.8: Værøy. Figure (a) shows a wQISA of the islands. Figure (b) shows
the absolute punctual error.

(a) (b)

Figure III.9: Sand dunes. In (a): a wQISA of the sand dunes (north is pointing
upwards to the left). In (b): the punctual error.

Table III.4: Terrain data: Værøy (B.1) and sand dunes (B.2).

Punctual error
mean st.d. MSE Hausdorff

B.1 wQISA 0.2158 0.2582 0.1132 9.6266
MBA 0.1513 0.2257 0.0738 13.1604

B.2 wQISA 0.0492 0.0641 0.0065 8.2569
MBA 0.0330 0.0543 0.0040 8.2579

A quantitative comparison of the wQISA and the MBA performances can be
found in Table III.4. MBA provides a better punctual approximation (highlighted
by the MSE measure), but it is again less accurate than wQISA for the overall
fit (as highlighted by the Hausdorff distance).
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III.5.3 Data measurements

We analyse the approximation of strongly perturbed data sets. We consider
two precipitation events, with the aim of deepening the comparisons previously
presented in [35]. Although focusing here on a specific environmental application,
we highlight that these approximation methods do not limit to rainfall field
simulations or to a specific sample size. We propose in the additional material
the study of a rather small data set (just 11 samples) measuring air pollution.
In this case the B-spline approximations rather reduces to linear polynomial
approximations, and thus we can consider it as a limiting case.

The first event occurred on September 29, 2013, and was characterized by
light rain over Liguria with two different thunderstorms that caused local flooding
and landslides. This data set counts only 143 measurements, all acquired by
the rain gauge network maintained by Regione Liguria, which is spread over
the whole region. A quantitative comparison is provided in Table III.5 and is
computed by performing a LOO cross-validation on each method. The optimal
parameters are here listed:

• wQISA with k-NN weight. The optimal number of neighbors k is k = 2,
where we have checked for any k = 1, . . . , 10. The optimal mesh has 8× 8
elements.

• RBF. The optimal smoothing parameter α for the RBF approximations
is computed by minimizing the mean squared error: α = 1.00 for the
Gaussian kernel (RBF1); α = 1.22 for the RBF with multiquadric kernel
(RBF2); α = 1.00 for the RBF with inverse kernel (RBF3); α = 34.31 for
the RBF with modified Gaussian kernel (RBF4).

• MBA. The mean squared error start increasing after the at iteration number
6, with an optimal tensor mesh containing 16× 16 elements.

wQISA has the best generalization performances over the data set with
respect to standard deviation, mean squared error and L∞ norm. This means
that wQISA offers more accurate predictions on independent data.

The second event occurred on January, 2014. The data set contains 19, 187
measurements, gathered from different devices: rain gauges and weather radar.
Besides the 143 rain gauges by Regione Liguria, another 25 measure stations by
Genoa municipality are considered. The remaining points come from raw radar
acquisitions, at first as reflectivity measurements with a range of 400 km. The
frequency of mountains over the whole Ligurian territory affects the quality of
radar acquisitions and a pre-processing step is needed to remove ground clutter
effects; processed data are then combined with observations gathered from rain
gauges, which are more reliable measurements but do not cover the whole region.
The integration of radar data in the interpolation of the precipitation field
makes it possible to extend rainfall fields also to areas surrounding Liguria, and
therefore to have a clearer picture about the temporal evolution of precipitation
events. Since the temporal interval is different for each acquisition device, rainfall
measurements have been cumulated. In this study, a 30 minutes cumulative
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Table III.5: Rainfall fields, statistics for the error distribution for the LOO
cross-validation.

Method
Mean
[mm]

Std
[mm]

MSE
[mm2]

L∞

[mm2]
Numb. of
iterations

wQISA 0.405 0.565 0.483 4.952 4
RBF1 4.058 4.720 38.747 39.957 114
RBF2 0.390 0.587 0.497 5.321 20
RBF3 5.472 4.326 48.659 42.285 132
RBF4 0.790 0.936 1.500 6.400 26
Kriging 0.474 0.613 0.600 5.668 -
MBA 0.412 0.629 0.562 4.983 5

step has been used (240 time samples). This procedure of integrating gauge
and radar data was made to alleviate the well-known error and uncertainty that
characterize radar estimates. Spurious signals may be caused, for example, by
radar failure or by shielding of the radar beam by mountain ranges [25]. However,
various outliers still perturbs the data. The simulation over five time intervals is
given in Table III.6.

Again, wQISA provides the best generalization performances with respect to
standard deviations and mean squared error. The difficulty of handling these
datasets is reflected by the variability of the L∞ norm; because of the presence
of outliers, the maximum of the absolute differences is largely unstable and, for
each dataset, there is a different winner, even if the wQISA is generally one of
the best performing methods also in with respect to this measure. The optimal
parameters for the RBF approximations are provided in Table III.7. The optimal
parameters k for the wQISA with k-NN weight function are: k = 1 (00:30),
k = 2 (01:00), k = 5 (01:30), k = 1 (00:30), k = 5 (02:00) and k = 7 (02:30).

III.6 Concluding remarks

The weighted quasi interpolant spline approximation (wQISA) is a simple and
robust procedure to obtain a spline approximation of point clouds. This paper
presents a data-driven implementation of wQISA [38], inspired to the supervised
learning paradigm. The method has been tested on several real-world data
from different application domains and different levels of noise. Experiments
have shown that wQISA is able to accurately generalize to data different from
those used to define it, i.e. it can effectively describe geometric shapes and
measurements not only at those points where it was defined. In other words,
wQISA can be successfully used also in prediction tasks, as a linear regression
model in supervised learning.

When dealing with data affected by low level of noise, the wQISA method
offers approximations that are comparable with other well-known methods.
However, the experiments show a better adherence of the wQISA surfaces to point
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Table III.6: Rainfall fields, statistics for the error distribution.

Method
Mean
[mm]

Std
[mm]

MSE
[mm2]

L∞

[mm]
Numb. of
iterations

00:30

wQISA 0.321 0.597 0.460 14.578 7
RBF1 6.193 89.241 8 · 103 4.16 · 103 121
RBF2 0.625 0.924 1.244 14.356 80
RBF3 1.549 30.776 949.591 1.55 · 103 6
RBF4 1.135 1.570 3.753 15.600 23
Kriging 0.958 1.248 2.476 14.473 -
MBA 0.675 1.053 1.563 14.238 5

01:00

wQISA 0.270 0.589 0.419 11.125 10
RBF1 130.886 225.675 6.80 · 104 6.94 · 103 122
RBF2 0.362 2.03 4.985 91.068 122
RBF3 144.857 124.710 3.65 · 104 903.952 122
RBF4 0.790 0.936 1.500 6.400 728
Kriging 0.964 1.233 2.245 12.449 -
MBA 0.595 1.009 1.373 12.815 5

01:30

wQISA 0.305 0.647 0.512 10.792 8
RBF1 1.297 3.062 11.055 64.532 6
RBF2 0.302 0.645 0.509 10.822 35
RBF3 0.503 1.254 1.826 20.700 7
RBF4 1.109 1.641 3.363 13.334 24
Kriging 0.474 0.613 0.600 5.668 -
MBA 0.299 0.653 0.516 10.810 8

02:00

wQISA 0.457 1.078 1.370 28.484 7
RBF1 266.258 246.256 1.32 · 105 2.69 · 103 122
RBF2 0.749 4.389 19.822 101.409 122
RBF3 369.316 326.457 2.43 · 105 18.775 137
RBF4 1.283 2.222 6.582 34.145 12
Kriging 1.197 1.892 5.014 33.140 -
MBA 0.916 1.560 3.271 31.4356 5

02:30

wQISA 0.423 0.974 1.127 16.069 9
RBF1 36.954 42.373 3.16 · 103 470.072 124
RBF2 0.432 0.991 1.169 3.22 · 103 90
RBF3 0.850 3.112 10.408 128.381 11
RBF4 1.544 2.933 10.984 23.973 12
Kriging 1.776 2.334 8.600 22.421 -
MBA 0.391 1.058 1.271 31.9741 8

clouds, as reflected by the smaller Hausdorff distance. On these relatively error-
free models, we have experimentally noticed a convergence with less iterations
than the other methods considered. On the one hand, the wQISA method has
linear convergence. On the other hand, this becomes an advantage when dealing
with strongly perturbed data, as it allows to adapt better to the underlying
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Table III.7: Optimal smoothing parameter α for the RBFs implementations.

Method 00:30 01:00 01:30 02:00 02:30
RBF1 0.00 1.00 0.68 1.00 0.00
RBF2 439.64 1.00 0.19 0.99 0.99
RBF3 0.00 1.00 0.00 0.59 0.00
RBF4 104.84 1.00 0.98 0.24 0.23

distribution. Indeed, on very noisy data wQISA shows a very good stability
with respect to standard deviation and mean squared error. In the simulation of
precipitation events, wQISA outperforms meshless methods (RBF and Kriging),
which in [35] showed the best approximation capability. Experiments confirm
that wQISA is able to successfully handle hundreds of thousands of points.

To sum up, two conclusions can be drawn from the comparative analysis. First:
it is difficult and possibly ill-advised to search for an absolute approximation
method, because different approximation techniques can provide better results in
different contexts and using different evaluation metrics. Second: for the studied
point clouds, the experimental results show that data-driven wQISA exhibits a
good prediction capability when it comes to strongly perturbed data.

As a further development of the method, we think it is possible to consider
adaptive refinement schemes, such as in the case of LR B-splines or THB-splines
[6, 11]. This is particularly relevant because these locally refining schemes
naturally deal with isogeometric computations and simulation and offers the
valuable perspective to practically adopt this work for Computer Aided Design
and Manufacturing (CAD/CAM), Finite Element Analysis and IsoGeometric
Analysis [22, 27]. Finally, we intend to extend the comparative analysis to
include other real-world applications, methods, and high dimensional data.
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Appendix III.A Additional material

When dealing with particularly small data sets, wQISA can still be used for single
polynomial approximation. As an example, we consider the 2017 Particulate
Matter (PM10) report for the city of Oslo (Norway), which is freely available at
the municipal data-bank1. Particulates, also known as suspended particulate
matter, are microscopic particles of solid or liquid matter suspended in the air.
They are classified by size, such as for the particles smaller than 10 µm, called
PM10, and the particles less than 2.5µm, called PM2.5. PM10 contains particles
that originate from combustion (e.g., heating) and road dust (e.g., car tyres and
brakes). As particulates are among the most harmful form of air pollution, their
approximation is of great interest.

The data set contains only 11 samples; see in Figure III.10 an Oslo map
with their position. The evaluation results give insight into the approximation
performance in real condition of sparsity and provide an example of a situation
where there is insufficient data to split into three parts.

Figure III.10: The 11 stations monitoring the PM10 concentration, owned by
Oslo kommune and Statens vegvesen.

Given the small size of the data set, a Leave-One-Out cross-validation was
performed to fix the free parameters and compute the statistics for the punctual
error. The optimal parameters were computed by minimizing the mean squared
error:

• wQISA with k-NN weight. Given the low number of points, we fix the
restrict our attention to a degenerate tensor mesh containing just one
element. The optimal number of neighbors k is k = 5, where we have
checked for any k = 1, . . . , 10.

• RBF. The optimal smoothing parameter α for RBF approximations is
computed by minimizing the mean squared error: α = 679.69·10−3 for

1http://statistikkbanken.oslo.kommune.no/webview/
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Gaussian kernel (RBF1) in 53 iterations; α = 190.06·10−3 for RBF with
multiquadric kernel (RBF2) in 51 iterations; α = 25.00·10−6 for RBF
with inverse kernel (RBF3) in 7 iterations; α = 983.44·10−3 for RBF with
modified Gaussian kernel (RBF4) in 51 iterations.

• MBA. The mean squared error start increasing after the first iteration,
thus we adopt a tensor mesh containing just one element as for wQISA.

The results are presented in Table III.8. The three best performances with
respect to the MSE are given by MBA, wQISA and RBF with Gaussian kernel.

Table III.8: Air pollution, statistics for the error distribution for the LOO cross-
validation.

Method
Mean
[mm]

Std
[mm]

MSE
[mm2]

L∞

[mm]

wQISA 3.005 1.984 12.967 7.245
Kriging 3.365 2.020 15.401 7.068
RBF1 7.626 3.346 77.042 16.525
RBF2 3.320 2.260 16.130 7.921
RBF3 3.501 2.531 18.660 7.704
RBF4 14.731 3.714 230.801 21.193
MBA 2.576 2.378 11.775 6.784
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Abstract

The automatic creation of geometric models from point clouds has
numerous applications in CAD (reverse engineering, manufacturing,
assembling) and, in general, in shape modelling and processing. In this
work, we propose the use of the Hough transform (HT) framework to
fit a dense point cloud with geometric primitives. With respect to the
standard Hough approach and the traditional simple geometric primitives
used in CAD, we are able to include also algebraic surfaces and more
complex analytical surfaces. To the best of our knowledge, this is the first
time that this technique is applied to CAD models, thanks to algebraic
geometry concepts. The use of both the HT and a clustering strategy also
permits a further analysis and interpretation of the geometric primitives
found and their aggregation as parts of a unique, more complete primitive
or into characteristics patterns. Experiments performed on a variety of
CAD models reveal the robustness of the primitive fitting method and the
automatic detection of compound primitives.
Keywords: geometric primitives, point clouds, reverse engineering, Hough
transform.
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IV.1 Introduction

3D Computer Aided Design (CAD) models are among the most common medium
to convey dimensional and geometrical information on designed objects or
components. In several situations, unfortunately, the CAD model of an object
is not available, it does not even exist, or no longer corresponds to the real
geometry of the manufactured object itself.

A strategy to retrieve an object digital model, when this is not available, is
to acquire 3D data directly on the object and to use the obtained information
to build a digital representation. The reconstruction of digital models from
measured data has been a long-term goal of engineering and computer science in
general; this process, usually called Reverse Engineering (RE), aims at generating
3D mathematical surfaces and geometric features representing the geometry of
real parts.

There are many methods that address this problem and we refer to these
surveys that group a large part of the approaches presented so far: [8, 18, 34].
The general RE framework can essentially be decomposed into three general
steps: data capture and preprocessing, segmentation and surface fitting, CAD
model creation. These phases are generally common to the vast majority of
techniques available in the literature.

The phase “segmentation and surface fitting” logically divides the original
point set into subsets containing just those points sampled from a particular
natural surface, it decides to what type of surface each subset of points belongs
(e.g., planar, cylindrical) and it finds which surface of the given type is the best
fit to those points in the given subset. No doubt that this step is the most
important of the whole RE framework, as the results obtained may significantly
differ depending on the strategy adopted to perform this task.

In our context, various specific and effective methods have been used,
they exploit the a-priori knowledge of a shape to decompose it into regions
approximated by primitives belonging to a given set. According to [18], these
approaches can be grouped into four families: stochastic, parameter space,
clustering and learning techniques. The first group includes the RANSAC
method [31] and several further optimizations, e.g., [23]. The second family
includes Hough-like voting methods and parameter space clustering, e.g., [24].
The third includes all the other clustering techniques, from primitive-driven
region growing to automatic clustering, to primitive-oblivious segmentation, e.g.,
[1, 20, 39]. Finally, with the growing popularity of deep learning techniques,
supervised fitting methods have been proposed even for multi-class primitives
[22]. We refer to [18] for a detailed taxonomy and overview of methods for simple
primitive fitting.

Many of these approaches have the problem of preprocessing the acquired
data to eliminate noise and outliers and do not deal with point clouds. In
addition, they can extract only simple geometric primitives (planes, cylinders,
cones, spheres, tori or quadrics), without considering more complex basic shapes,
such as helices or generalized cylinders. Most methods for fitting primitives
do not aggregate the primitives they recognise in a single one if they are not
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contiguous. For example, if a pipe is interrupted by another part as in the block
model in Figure IV.5(a), traditional methods recognise the two parts of the pipe
as two distinct primitives.

Our goal is to aggregate the primitives found on the basis of their size and
position, whenever possible. This is particularly important, for instance, when
decomposing patterns that correspond to scans of assembly CAD models, because
it concurs to the recognition of compound primitives and patterns [25]. To do
this, we need a surface primitive recognition method that is particularly robust to
noise and outliers and able to recognise multiple instances of the same primitive.
The Hough transform meets these needs and, in the extended version proposed
in [4], also provides a wide range of primitives to draw on.

Since its introduction, the Hough transform (HT) has gained a large
popularity for its capability of recognising multiple instances of a primitive
function in a set of points. Originally limited to straight lines in an image [17], it
has been generalized and extended in multiple directions, expanding the families
of curves that can be treated within the HT framework, including algebraic
functions [4], surfaces [36] and, in its most generic formulation, hypersurfaces [3,
33]. In practice, a main limitation to the use of the standard HT approach for large
point clouds is the increase of the parameter space size and the computational
cost when the number of parameters augments. Indeed, this fact limited the
use of the standard Hough transform to planes [7, 24], combinations of linear
subspaces [14], spheres [9] and circular cylinders [28]. In the case of cylinders,
there was the need of limiting the five parameters of the cylinder representation
to three: therefore an a-priori estimation of the cylinder axis was performed.
The Generalized Hough transform (GHT) [2] extended the HT to more complex
shapes; in 3D a similar extension has been proposed in [38], using points clouds
from CAD objects as templates. Unfortunately, while permitting the use of
quite complex models, the template shapes used in the GHT are not parametric
nor possess an analytic representation, thus limiting the use of this extension
to detecting primitives for building a geometric model. The recent advances in
the use of the algebraic functions and the potential adaptive sampling of the
parameter space, are paving the road to a larger use of the HT for recognising
more complex families of geometric primitives. Indeed, we generalize to surface
primitives represented either in parametric or implicit form the idea originally
proposed in [4] for plane curves. As far as we know, the unique approach of
identification of a primitive, based on this idea, has been proposed in [3], but
only for the recognition of an ellipsoid in a free-form model.

In this paper, we use the Hough transform systematically for the recognition
of simple and complex surface primitives. To the best of our knowledge, this is
the first time that this technique, based on the theory defined in [4], is applied to
CAD models. In addition, we use a clustering technique to aggregate primitives
that are not aligned (e.g., two misaligned cylinders) or slightly differ (for this
we also provide a measure of difference within the elements of a pattern). In
this regard, we extend the method for aggregating patches defined in [29] to
the aggregation of the surface primitives found by using the HT technique. The
outcome of our method is a set of surface primitives, gathered because they are
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compound and/or belong to the same pattern.
The rest of the paper is organised as follows. Section IV.2 briefly overviews

the basic concepts of the HT, it provides a list of geometric primitives that
can be identified by our method and describes the HT-based recognition
algorithm. Section IV.3 describes the clustering method adopted to group
the geometric primitives recognized by the HT-based algorithm. Section IV.4
provides experimental results of HT-based recognition and clustering of geometric
primitives from point clouds extracted from CAD objects. Discussions and
concluding remarks end the paper.

IV.2 Recognising surface primitives using Hough transforms

In this section, we briefly summarise some basic concepts on the Hough transform,
provide a list of relevant primitives we can recognise, and introduce the main
steps of the HT-based recognition algorithm.

IV.2.1 Background

We denote by A3
x(R) and AnA(R), respectively, the 3-dimensional and the n-

dimensional affine spaces over R, where x := (x, y, z) and A := (A1, . . . , An)
vectors of indeterminates. Given a surface S defined as the zero locus of
a function f , a parameter-dependent family of surfaces can be described by
functions fa as F = {Sa : fa(x) = 0 | a ∈ U}, where U is an open set of the
parameter space AnA(R) and a := (a1, ..., an) is the parameter vector. Then,
given a point P ∈ A3

x(R), the HT of the point P with respect to the family
F is ΓP = {fa(P ) = 0} in AnA(R). For sufficiently general points P ∈ A3

x(R),
it turns out that ΓP are hypersurfaces in AnA(R). If the set of hypersurfaces
ΓP generated by varying P on a given surface meets in one and only one point
ā ∈ U , the family of surfaces F is called Hough-regular. The intersection point
ā of the hypersurfaces ΓP defines the parameters of the best fitting surface Sā.
If the HT regularity is not guaranteed, the point might be non unique and a
solution must be selected among more potential parameters solutions.

The general HT-framework deals with the problem of finding a surface –
within a family F of surfaces – that best approximates a particular shape, given
in the form of a data set ofN points D, whereN >> n. The HT-based method we
propose in this paper can be directly applied to point clouds containing multiple
shapes, and it is able to deal with both implicit and parametric representations
of surfaces. We consider some basic assumptions for each representation: in case
of implicitly-defined surfaces, we assume that the functions fa are analytical
with respect to the Cartesian coordinates x, y, z and the parameter vector
a = (a1, . . . , an), n ≥ 2, as in [33]; in case of parametric surfaces, we assume that
the system defining Sa with respect to the Cartesian coordinates x, y, and z can
be analytically solved with respect to the parameter vector a = (a1, . . . , an).

The common strategy to identify the solution (or a solution), introduced in
[4], is based on the so-called accumulator function; it consists in a voting system
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Table IV.1: Families of simple geometric primitives expressed in both implicit
and parametric form.

(a) (b) (c) (d)
ellipsoid cylinder cone torus

x2

a2 + y2

b2 + z2

c2 − 1 = 0 x2

a2 + y2

b2 − 1 = 0 x2

a2 + y2

a2 − z2

b2 = 0 (a−
√
x2 + y2)2 + z2 − b2 = 0

x = a sin v cosu
y = b sin v sin u
z = c cos v


x = a cosu
y = b sin u
z = v


x = av cosu
y = av sin u
z = bv


x = (a+ b cosu) cos v
y = (a+ b cosu) sin v
z = b sin u

whereby each point in D votes a n-uple a = (a1, . . . , an); the most voted n-uple
corresponds to the most representative surface for the profile. A more detailed
description of how this works in our case is given in Section IV.2.3.

IV.2.2 Families of geometric primitives

In addition to the simple geometric primitives (planes, spheres, ellipsoids,
cylinders, cones and tori, depicted in table IV.1), we are able to extract some
more complex primitives. For the sake of simplicity, some of the surfaces are
here presented in their canonical form or with respect to some specific axes;
nevertheless, one can easily generalise these equations by applying a generic
transformation of the special orthogonal group SO(3).

• General cylinders. A cylinder is a surface traced by a straight line of fixed
direction, the generatrix, while moving along a curve, the directrix. Given
a curve (x(u), y(u), z(u)) := (f1(a, u), f2(a, u), f3(a, u)) and a direction
(l,m, n), the parametric representation of the corresponding cylinder is
given by: 

x = f1(a, u) + lv

y = f2(a, u) +mv

z = f3(a, u) + nv

.

Note that a general cylinder depends on the parameters defining generatrix
and directrix. The dictionary of curves to be considered as diretrix is
extremely rich, see [32]. Table IV.1(b) provides the equations of an elliptic
cylinder, while Table IV.2(a) considers a 5−convexity curve as directrix,
whose equation can be found in [32].

• General cones. A cone is a surface traced by a straight line, the generatrix,
while gliding along a curve, the directrix, and passing through a fixed
point, the vertex. Given a parametrized curve (x(u), y(u), z(u)) :=
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(f1(a, u), f2(a, u), f3(a, u)) and a point V = (xV , yV , zV ), the parametric
representation of the corresponding cone is given by:

x = xV + (f1(a, u)− xV )v
y = yV + (f2(a, u)− yV )v
z = zV + (f3(a, u)− zV )v

.

As in the case of cylinders, we can exploit the dictionary of plane curves to
create families of cones. Then, a general cone depends on the parameters
that define the curve and the components of the vertex. The implicit and
parametric equations of the family of circular cones are presented in Table
IV.1(c). Table IV.2(b) shows a cone generated by a 5−convexity curve.

• Surfaces of revolution. A family of surfaces of revolution can be created
by rotating a family of curves around an axis of rotation. For example,
given the family of plane curves (x(u), y(u), z(u)) := (f1(a, u), 0, f2(a, u))
and the z−axis, we obtain the parametric equations

x = f1(a, u) cos v
y = f1(a, u) sin v
z = f2(a, u)

.

One of the most known examples is the torus; Table IV.1(d) provides
the parametric and implicit equations of a family of tori obtained by
rotating a circle on the plane y = 0 and centred in (a, 0, 0) around the
z−axis. Table IV.2(c) shows an example obtained by rotating the curve
(x(u), y(u), z(u)) := (au, 0, b/u5) around the z−axis.

• Helical surfaces. Table IV.2(d) presents a family of equations obtained by
modifying the parametrization of a circular cylinder. Precisely, the radius
R here varies between [R1, R2], where R1 > 0, by a cosine function; when
the radii are fixed, the slope of the output surface is controlled by the
parameters in z(u, v). Note that the radius variation can be adapted to
other shapes (e.g., the triangle wave function).

• Convex combination of curves. It is possible to define surface primitives
by considering the convex combination of a pair of parametrized curves
(f1(a, u), f2(a, u), f3(a, u)) and (g1(b, u), g2(b, u), g3(b, u)). This family
has the following parametric equations:

x = vf1(a, u) + (1− v)g1(b, u)
y = vf2(a, u) + (1− v)g2(b, u)
z = vf3(a, u) + (1− v)g3(b, u)

,

where v ∈ [0, 1]. Note that the primitive parametrization depends on the
same parameters which define the pair of curves, i.e., a and b. A planar
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example is given by the annulus, i.e., the region bounded by two concentric
circles. A helical strip can be obtained by cutting and bending an annular
strip; this corresponds to consider a convex combination of two helices of
equal slope but different radii. An example of helical strip is provided in
Table IV.2(e).

Table IV.2: Parametrizations of some complex geometric primitives.
(a) (b) (c) (d) (e)

cylinder cone surface of
revolution

helical
surface

helical
strip


x = a cosu

1+b cos(5u)
y = a sinu

1+b cos(5u)
z = v


x = av cosu

1+b cos(5u)
y = av sinu

1+b cos(5u)
z = Av +B


x = au cos v
y = au sin v
z = b

u5


x = R(u) cos v
y = R(u) sin v
z = k1(u+ nv) + k2

,

where

R(u) := R1 + R2 −R1

2 (cosu+ 1),

n ∈ Z


x = R(u) cos v
y = R(u) sin v
z = v

,

where
R(u):=au+(1-u)b

IV.2.3 Algorithm

In this section, we describe a method to fit a dense point cloud with surface
primitives via the HT technique. Our approach takes in input a set of points
PC and a given threshold ε, to assess which points are significant for a specific
primitive, see Algorithm IV.1. This value typically ranges from 1% to 3% of the
diagonal of the minimum bounding box of the PC.

For each type of geometric primitive (e.g., plane, circular cylinder, elliptical
cone) the parameters of the surfaces that best fit some parts of the point cloud
are found through the following procedure:

• Pre-processing. The input point cloud PC is rotated so as to align the sides
of the minimum bounding box with the main axes. Then, it is translated so
as to place the barycenter of the PC in the origin. At this point, the user
can select the families of primitives to be used for recognition, otherwise
the algorithm automatically selects one at a time all the families of simple
primitives.

• Initialization of the HT parameter space and of the accumulator function. A
region T of the parameter space is fixed and is discretized into cells, which
are uniquely identified by the coordinates of their centre. When searching
for primitives in their canonical form, the dimension of the parameter
spaces under study is up to 3, and initial guesses on where to look for
can be obtained by studying the family’s geometric characteristics of the
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family F (e.g., bounding box, radius, diagonal length). For primitives in
their generic position, we assume that one of the following hyphotheses
hold true:

– After detecting primitives in the canonical forms, some of the
remaining segments contains at most one primitive type.

– A segment that contains more than a primitive type is oversegmented
by using a state-of-the-art segmentation method, i.e., a RANSAC
algorithm, so as to fall into the previous case.

For a generic segment, initial estimates can be computed by testing a set
of primitive types as outlined in Appendix IV.A; in addition to localize the
search for maxima in the parameter space, such estimates are exploited to
put the segment into its (inferred) canonical form. Finally, an accumulator
function H, in the discretized form of a matrix, is initialized; the matrix
entries are in a one-to-one correspondence with the cells of the discretization
performed in the previous step.

• Estimation of the accumulator function. An entry of the accumulator
function H is increased by 1 each time the HT of a point intersects the
corresponding cell. The evaluation of the intersections of Hough transforms
with cells changes depending on whether the family of surfaces is described
in implicit or parametric form. For surfaces expressed in implicit form,
we take advantage of the local approximation of the zero loci of a set
of analytic functions in terms of series of Taylor, following the strategy
defined in [33] that exploits the symbolic calculation. In case of surfaces
in parametric form we adapt to surfaces the method devised for curves
in [30]. In particular, if the system of equations defining the family can
be analytically solved with respect to the parameters a, we calculate
automatically a sample of ΓP by exploiting the Moore-Penrose pseudo-
inverse of the matrix that defines the coefficients of a. The evaluation of
the intersection is translated into an inequality between the components
of the sample points of ΓP and the coordinates of the cells endpoints. In
both cases, the families of primitives are considered in a canonical form
(i.e., with centers or vertices in the center of Cartesian coordinates and the
normal or the principal axis aligned to the z axis of the Cartesian axes),
since it limits the number of parameters necessary for the HT.

• Selection of potential fitting primitives. The cells corresponding to the peak
values of the accumulator function H are identified. When the set of points
describes a single surface profile, the HT traditional formulation focuses
on the maximum value of the accumulator function H – there might exist
several maxima. On the contrary, if the input point cloud is composed
of different primitives, the peaks of H identify the potential primitives
that might fit different parts. To select these peaks we observe that the
peaks of the accumulator function corresponding to the identification
of a primitive rise distinctly with respect to their neighbours and are
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well characterised as isolated peaks. In formal terms, we translated this
observation into identifying peaks that have high topological persistence1.
In our implementation, the peaks that correspond to primitives are
automatically recognised by keeping the local maxima with a persistence
higher than 10% of the maximum value of H, using the algorithm for
persistent maxima proposed in [6]. The coordinates of the cell centres of
the maxima or the peaks of the accumulator function correspond to the
parameters of potentially recognised surface primitives. Figure IV.1(b)
shows the accumulator function for a point cloud captured from the gear
of Figure IV.1(a). The height represents the value of the accumulator
function. Three peaks indicate three potential solutions corresponding to
the cylinders shown in Figure IV.1(c): the colours red, green and blue
represent the three cylinders, in descending order with respect to the H
value .

• Evaluation of the approximation accuracy. To measure the recognition
accuracy of a specific primitive, we select the set of input points X closer
to such a primitive than a given threshold and study its density via the
k-Nearest Neighbor algorithm (see, for example, [15]). If X is sparse, the
recognised primitive is considered a false positive; otherwise, for each dense
subset Xi ⊂ X we define the Mean Fitting Error (MFE) as:

E(Xi,P) := 1
|Xi|

∑
x∈Xi

d(x,P)/li, (IV.1)

where P is the current primitive, d is the Euclidean distance, and li is
the diagonal of the minimum bounding box containing Xi. An example of
this quality measure is provided in Figure IV.1(d) for the three identified
cylinders, depicted in red, green, and blue colours. What can happen when
the selected family of primitives does not fit any part of the point cloud?
There are two possibilities:

– The accumulator function is identically zero, with the result that its
persistence is zero; therefore the selection of potential fitting primitives
returns the empty solution.

– The accumulator function H does not present significant peaks,
resulting in false positives which are identifiable by studying the
sparsity of the fitted points. More precisely, given a set of dense points
Xi and two candidate primitives Pi,1 and Pi,2, we first calculate the
fitting errors E(Xi,Pi,1) and Ei(Xi,Pi,2) between each primitive and
Xi; the primitive having lowest error is kept.

1The notion of topological persistence was introduced in [13] for encoding and simplifying
the points of a filtration f by classifying them as either a feature or noise depending on its
lifetime or persistence within the filtration. In practice, given a pair of points p and q, their
persistence is defined as f(p) − f(q). Pairing is defined in terms of topological connection
between the points, for details on topological persistence and saliency, we refer to [12, 13]. In
our case, the domain is represented by the grid of T, the role of filtration is played by the
accumulator function H and we are interested only in the peaks of H.
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(a) (b) (c)

MFE
cylinder 1 0.0039
cylinder 2 0.0032
cylinder 3 0.0062

(d) (e)

Figure IV.1: An example of applications of our recognition algorithm. In (a) an
example of point cloud captured from a gear; in (b) the accumulator function
associated with the search for cylinders and the peaks found by the method for
persistent maxima; in (c) the cylinders corresponding to the three peaks. The
MFEs for the cylinders, as defined in Equation IV.1, are reported in (d). The
outcome of the fitting by 17 segments is shown in (e). To enhance the visibility,
plots in (c) and (e) present an increased point thickness compared to (a).

Finally, we evaluate a global approximation accuracy of a model by
considering the minimum, the maximum and the mean of all the MFEs of
its segments.

Algorithm IV.1 returns the parameters of the geometric primitives and the
corresponding points that possibly fit them. At each step, the points that fit
some primitive are discarded from the recognition process updating the set of
points PC accordingly; then, the algorithm iterates as long as some geometric
primitives are recognised or too few points left. Note that, if more geometric
primitives potentially fit the same region of the point cloud, we select the one
with the minimum approximation accuracy MFE.

The result of this procedure is the decomposition of an input point cloud
into several subsets, called surface segments or simply segments, in such a way
that points of the same segment are well approximated by the same primitive.
Figure IV.1(e) shows an example of this result. In this case, we have divided
the initial point cloud into different types of primitives (cylinders, axis-aligned
planes and non-axis-aligned planes) obtaining a segmentation of 17 segments.
Note that the method is able to group some of the non-adjacent parts, which
belong to the same primitive as in the example of the two external cylinders and
of the axis-aligned planes that form four couples. The approximation accuracy
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Input: A set of points PC, a family of primitives F , a threshold of the
fitting accuracy ε.

Output: The list Sol of parameters of the primitives in F , the
corresponding segments K and the approximation accuracy
MFE.

Variable initialization:
1 {Sol} ← ∅, {K} ← ∅, {MFE}←∅;
2 T =InitParameterSpace(PC);
3 H0=InitAccumulatorFunction(T );

Computation of the accumulator function:
4 H=EstimateAccumulatorFunction(H0,F);

Selection of potential fitting primitives:
5 for m̄ ∈ PersistentMaxima(H) do
6 P ← F(m̄);
7 X ← {x ∈ the whole point cloud such that d(x,P) ≤ ε};

Evaluation of the approximation accuracy:
8 for Xi ⊂ X , Xi dense do
9 MFEi=EvalutateApproximationAccuracy(Xi,P);

10 {Sol} ← m̄, {K} ← Xi, {MFE} ←MFEi;
11 end
12 end
13 return {Sol, K, MFE}

Algorithm IV.1: HT-driven primitive fitting.

is provided in Table IV.3 (first column), listing the minimum, the average and
the maximum value of the MFE for the 17 primitives recognised on the model.

IV.2.4 Computational complexity

The formulation of the HT for surface primitives embedded in R3 simply extends
the HT definition of plane curves in R2. The quantization of the region of the
parameters determines the size of the accumulator function and dominates the
computational space and cost of the Hough transform. Increasing the number of
parameters, the size of the accumulator function increases accordingly; thus, it is
necessary to balance the samples for each parameter and their number. To reduce
the computational cost, the primitives are put in canonical position so that the
number of 3 parameters is not exceeded, see Appendix IV.A. Complementarily,
an adaptive approach as in [21] can be used, to avoid a brute-force tensor-product
split of the parameter space. In summary, denoting M the number of elements
of the space of parameters T , the overall computational complexity is O(ML),
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where L represents the number of elements of the cluster on which we evaluate
the HT accumulator function. However, even sharing the same theoretical
complexity, the HT for surfaces in implicit form uses symbolic computations
that, in practice, could become a computational bottleneck for densely sampled
models.

IV.3 Hierarchical primitive clustering

In this section, we propose the use of cluster analysis to mathematically formulate
queries, by means of which further information can be extracted from the input
data.

IV.3.1 Background

The term cluster analysis (or clustering) identifies a family of well-established
unsupervised statistical learning techniques. Given a set X = {x1, . . . , xN}, the
scope of (hard) clustering is to gather its elements into a certain number of
classes (or clusters), in such a way that all elements of a cluster share the same
(or closely related) properties (see, for example, [16]). A clustering method can
be defined by three main ingredients:

• Firstly, one needs to choose a dissimilarity d : X ×X → [0,+∞), which is
tasked with mathematically encoding which elements are closer to each
other. A dissimilarity gives greater importance to certain properties while
penalizing others; its choice strongly depends on the problem clustering is
applied to. From a mathematical point of view, the use of a dissimilarity
rather than a distance leads to a generalized metric space [37].

• Secondly, the chosen dissimilarity needs to be generalized to D : 2X×2X →
[0,+∞), to compare any pairs of subsets of X; not only are we interested
in comparing elements, but also clusters of elements.

• Lastly, an algorithm for grouping the data through the map D has to be
designed, in order to reach a faithful partition of X after a finite number
of iterations. Hierarchical approaches, for example, build a hierarchy of
clusters which can be easily illustrated by means of a dendrogram; they
are often preferred to other methods, because they presuppose very little
a-priori knowledge (see, for example, [26]).

IV.3.2 Application to CAD geometric primitives

In our settings, we are interested in grouping those surface primitives identified by
the HT with respect to different queries, in order to extract further information.
Some examples of simple interrogations are hereby presented.

• Primitives lying on the same surface. In this case, the purpose is to define
complete primitives. For instance, one can identify all primitives lying on
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the same plane by comparing (normalized) coefficient vectors by means of
the well-known Euclidean distance.

• Primitives lying on the same surface, up to a roto-translation. Unlike
the previous point, we here aim to assess similarity between primitives
regardless of their position in space. We can easily exploit the canonical
representations provided by the HT, ignoring roto-translation terms and
using the Euclidean distance on the remaining coefficients. In this way we
can, for instance, look for holes of the same (or approximately the same)
dimensions in a given model.

• Primitives lying on the same surface, up to other rigid transformations.
The study of any isometries besides roto-translations, such as reflection
symmetries, can be performed by considering O(3)/SO(3).

We here apply a well-known (hierarchical) clustering approach, the complete-
linkage, to compare clusters and build a dendrogram. The method starts with
singletons as clusters, and proceeds by merging, step by step, those clusters that
are the closest with respect to the map

D(Ci, Cj) := max
xk∈Ci,xl∈Cj

d(xk,xl),

where Ci, Cj is a given pair of clusters (of primitives). The use of complete-
linkage is here justified by the need of penalizing chaining effects. As an example,
we post-process the planar primitives from Figure IV.1(e). Figure IV.2(a) shows
the correct identification of all non-axis-aligned complete primitives, resulting in
the final clustering of Figure IV.2(b). By analyzing the dendrogram, one can
quantify to what extent a set of planar primitives should be clustered together or
not, thus revealing possible regions where the point cloud has a lower precision.

Note that cutting the dendrogram with increasing thresholds corresponds to
weaken the conditions imposed as query.

IV.3.3 Computational complexity

Although the dissimilarity-matrix assembly for a set X = {x1, . . . , xN} costs
O(N2), one may note that each entry is computed independently; the task is
therefore embarrassingly parallel.

An agglomerative hierarchical clustering approach requires, in its naive
implementation, O(N3) operations (see, for example, [10]). When it comes to
complete-linkage clustering, one can consider more efficient implementations,
such as the one proposed in [11], which costs O(N2).

IV.4 Experimental results

The Hough-based recognition method is here applied to point clouds from
different CAD repositories (e.g., [5, 19, 35]).
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Figure IV.2: Post-processing applied to the segmented point cloud of the gear of
Figure IV.1(a). In (a), the clusters of segments obtained by applying hierarchical
cluster analysis are highlighted by opaque colours, while semi-transparency is
used for those segments not requiring post-processing. The result of combining
HT and clustering is shown in (b). In (c) an example of dendrogram, whose
leaves are the opaque segments shown in (a), is provided.

First, we validate our recognition method by testing it on models from
the ground truth proposed in [19], which were selected because containing all
common CAD geometric primitives – plane, sphere, cylinder, cone and torus.
A first example is provided in Figure IV.3. The point cloud, corresponding
to the set of vertices of the original triangle mesh, is segmented in 8 surface
segments: 5 cylinders, 2 planes and 1 sphere. The accuracy of our method is
proved by comparing the parameters from the HT with those provided in the
database. The second example is presented in Figure IV.4. Here, the vertices
are segmented into 9 surface segments: 4 cylinders, 1 torus, 3 axis-aligned planes
and 1 cone. Again, we are able to recognise all primitives up to a small error in
the parameters, with respect to those provided in the dataset.

Figure IV.5(a-d) shows point clouds that can be segmented into complete
geometric primitives without the need for the clustering strategy. The first
example, shown in Figure IV.5(a), consists of 11 segments – 3 cylinders and 8
planes – and it highlights the robustness of our segmentation method when it
comes to detecting intersecting cylinders, here arranged similarly to a Steinmetz
solid. Complete geometric primitives, each of which represented by a specific
colour, are automatically detected. Another point cloud, displayed in Figure
IV.5(c), contains 5 segments: 2 tori, 1 cylinder and 2 axis-aligned planes. As
for the previous case, the HT-based recognition successfully detects all the
primitives, even those made up of non-adjacent parts. Figures IV.5(b,d) present
point clouds with parts recognised by complex analytical surfaces. In particular,
in the example of Figure IV.5(b) we identify the yellow segment by a surface
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equation code ground truth HT parameters

x2 + y2 = r2

C1 r = 1.50 r = 1.50
C2 r = 8.00 r = 8.00
C3 r = 4.00 r = 4.00
C4 r = 1.50 r = 1.50
C5 r = 5.00 r = 5.00

z = k
P1 k = 20.00 k = 20.00
P2 k = 35.00 k = 35.00

x2 + y2 + z2 = r2 S r = 5.00 r = 5.05

(a) (b) (c)

Figure IV.3: In (a) a CAD model from the benchmark in [19]; in (b) the vertices
of its triangle mesh segmented into 8 surface segments; in (c), for each primitive,
the HT parameters are compared with those provided by the database

equation code ground truth HT parameters

x2 + y2 = r2

C1 r = 15.01 r = 15.01
C2 r = 3.97 r = 3.97
C3 r = 1.28 r = 1.26
C4 r = 29.25 r = 29.25

z = k
P1 k = 12.00 k = 12.00
P2 k = 9.08 k = 9.08
P3 k = 0.00 k = 0.00

(R−
√
x2 + y2)2 + z2 − r2 = 0 T R = 27.25 R = 27.25

r = 2.00 r = 2.00

x2 + y2 + a(z − b)2 = 0 C a = −2.77 a = −2.81
b = 2.19 b = 2.22

(a) (b) (c)

Figure IV.4: In (a) a CAD model from the benchmark in [19]; in (b) the vertices
of its triangle mesh segmented into 9 surface segments; in (c), for each primitive,
the HT parameters are compared with those provided by the database

of revolution from Table IV.2(c). The remaining points are segmented into 2
cylinders and 2 planes. In the point cloud shown in Figure IV.5(d), we extract
the gold part with a cone having as directrix a 5−convexity curve, while the
blue and the green segments are fitted with cylinders having the same directrix;
the equations of these surfaces can be found in Table IV.2(a,b). These two last
point clouds have been segmented into 5 and 7 clusters, respectively.

Figures (IV.6-IV.11) show point clouds wherein the segments produced
by the HT approach are post-processed by hierarchical clustering. In Figure
IV.6(b), the input point cloud is first segmented into 20 surface primitives via
the HT-recognition algorithm (cylinders and planes), which are then grouped by
clustering. As expected, no pair of primitives lying on the same surface is found.
Despite the presence of imperfections in the original model (see Figure IV.6(a)),
we are able to correctly identify repeating primitives, here in the form of circular
cylinders of equal radii. Figure IV.6(c) highlights the similarities identified by
clustering cylinders: 4 in light blue, 3 in red, 2 in purple and 2 in yellow.

Figure IV.7(a) displays a model which can be accurately described by
combining a portion of helical surface, as introduced in Table IV.2(d), with a
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(a) (b)

(c) (d)

Figure IV.5: Segmentations of CAD objects point clouds. Figures (a-d) present
the segmentation of 4 point clouds, ranging from common CAD primitives to
more complex ones. The identification of complete segments does not require, in
these cases, the application of any clustering algorithm.

pair of planes and a pair of convex combination of helices, see Table IV.2(e).
The result is a segmentation of the point cloud into 6 segments, Figure IV.7(b).
Two of them are then grouped by the clustering since the helical strips have the
same equation up to a translation, as shown in Figure IV.7(c).

Figure IV.8 increases the difficulty by considering a point cloud containing
a higher number of segments, some of which are low-quality as the small holes
highlighted in Figure IV.8(a). In this example, the geometric primitives identified
by the HT algorithm are cylinders, cones and planes. The result is a segmentation
in 28 surface segments, see Figure IV.8(b). Note that the central hole presents
some grooves, i.e., a surface detail that was not present as a geometric feature
in the original CAD model; therefore, we recognise it as a cylinder and the HT
is able to ignore the shallow grooves. A final application of clustering makes
it possible to identify repeating primitives, up to translations. Figure IV.8(c)
illustrates the similarity between 6 cylindrical holes (in green) and between other
6 cylindrical segments (in yellow).

Another example of gear is shown in Figure IV.9(a). Here, the total number
of extracted geometric primitives is 68: 19 cylinders; 2 cones; 47 planes, 5 of
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(a) (b)

(c)

Figure IV.6: A linkage arm. In (a), the original model is shown, together with
a magnification revealing some imperfections. The segments identified by the
HT are shown in (b) by different colours. (c) draws the attention to cylinders,
among which we can recognize segments lying on the same primitive, up to a
translation.

which are axis-aligned. The result is presented in Figure IV.9(b). As highlighted
by the original model, in this prototypical version of NuGear, cylinders are
roughly approximated by a series of planar primitives; in this specific case, we
fit a cylinder instead of many planes, since the former can describe a much
larger area without significantly increasing the error. Unlike the gear shown in
Figure IV.1(e), the surface segments identified by non-axis-aligned planes are not
clustered in pairs; this is because the tooth inclination prevents any alignment.
Clustering identifies here a similarity between the 12 cylindrical holes – up to
translations – and between 2 external cylinders. Figure IV.9(c) shows this result,
colouring the holes in black and the external cylinders in yellow.

Finally, Figure IV.10(a) shows a mechanical part. The HT segmentation
of the input point cloud consists of 50 surface segments, all of which are tori,
cylinders and planes, see Figure IV.10 (b). The clustering method is able
to identify the similarity between 8 red cylindrical holes and between 2 blue
cylindrical segments, up to translations – see Figure IV.10(c). Finally, 2 tori
are clustered together, because they lie on the same surface primitive up to
roto-translations.

Table IV.3 summarises the mean fitting error for all the primitives found in
the point clouds processed.
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(a) (b) (c)

Figure IV.7: A screw-like part. The original model, (a), is sampled. The surface
segments detected via HT are shown in (b) by different colours: a helical surface
(in purple), two planes (in red and magenta), and two helical strips (in orange
and yellow). Although no pair of segments lies on the same parametrized surface,
the 2 helical strips have the same equation up to a translation, as shown in (c).

(a) (b) (c)

Figure IV.8: A carter. In (a), the original model is shown. The surface segments
found by means of the HT approach are depicted in (b), while (c) shows the
result of primitive clustering, when one is interested in identifying the same
primitive up to a translational transformation. Different rows corresponds to
different points of view.

IV.5 Discussion

The use of the HT naturally leads to a robust surface recognition pipeline as
shown in the examples of Figures IV.6, IV.8 and IV.11. In particular, in the
model of Figure IV.11, the HT recognition correctly identifies the cylinder that
fits the central part, without being negatively influenced by the letters in relief –
see the original model in Figure IV.11(a). The point cloud is decomposed into 38
segments: 23 cylinders with different axes, 10 planes, 4 cones, and 1 torus that
automatically identifies the top and bottom of the cylinder with the “GRAYLOC"
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(a) (b) (c)

Figure IV.9: A prototype of the NuGear component, courtesy of STAM S.r.l.
(Genoa, Italy). The original model is shown in (a). The decomposition in
clusters of points produced by the HT approach is given in (b). The output of
the additional clustering procedure is shown in (c), it highlights the similarity
between 12 cylindrical holes (in black) and between two cylinders (in yellow).

(a) (b) (c)

Figure IV.10: A mechanical part. In (a) the original model is shown, while in
(b) the decomposition of the corresponding point cloud into segments produced
by the HT. In (c) the result of the clustering procedure: 8 cylindrical holes, in
red, have a high similarity, up to translations; the same applies for 2 cylindrical
segments, in blue; 2 tori, in orange, identify the same primitive, up to a roto-
translation.

inscription (see Figure IV.11(b)). The application of the hierarchical clustering
allows to group together: 8 grey cylindrical holes (up to roto-translations); 8
purple cylindrical segments; 2 aquamarine circular cylinders; 3 violet circular
cylinders; 2 orange circular cones (up to a reflection); 2 black cones (up to a
reflection). Moreover, the small imperfections of the manufacture on the central
part of the body (recognised by vertical cones, cylinders and tori at the top
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Table IV.3: Statistics of the MFEs for all models presented in the paper.
Being MFE normalized by definition, we can conclude that the maximum
error throughout the paper is 4.48%, which corresponds to the noisy holes in
the carter model of Figure IV.8.

Fig. IV.1(a) Fig. IV.5(a) Fig. IV.5(b) Fig. IV.5(c) Fig. IV.5(d)
min(Ei) 0.0008 0.0009 0.0006 0.0004 0.0020
mean(Ei) 0.0060 0.0024 0.0031 0.0031 0.0053
max(Ei) 0.0226 0.0056 0.0071 0.0059 0.0081

Fig. IV.6 Fig. IV.7 Fig. IV.8 Fig. IV.9 Fig. IV.10
min(Ei) 0.0004 0.0033 0.0013 0.0006 0.0008
mean(Ei) 0.0098 0.0086 0.0107 0.0053 0.0035
max(Ei) 0.0300 0.0154 0.0448 0.0178 0.0057

and bottom) and on the lateral holes do not prevent the clustering technique
to appropriately aggregate the corresponding segments, correctly dealing with
rotations and reflections. However not everything is recognised, mainly in
complex objects such as the object of Figure IV.11. In fact the black dots in
Figure IV.11(b) correspond to points that do not fit to any of the geometric
primitives at our disposal, and originate from irregular elements that act as a
connection between better defined segments.

(a) (b) (c)

Figure IV.11: A clamp connector. In (a) the original model. In (b) the
decomposition of the corresponding point cloud into 38 segments provided by
the HT procedure. In (c), the final grouping obtained by clustering, consisting
of 6 groups of primitives (here, singletons of segments are transparent).

A further example of the robustness of the method to noise is presented in
Figure IV.12 and quantitatively analysed in Table IV.4. In this example, we
perturb the point cloud of Figure IV.5(c) by adding zero-mean Gaussian noise of
standard deviation: 0.01 (a), 0.05 (b), 0.10 (c) and 0.20 (d). The first row shows
the points classified as noise (in black) and the segments found by our method
in the same image, for each level of noise. The second row focuses only on the
points that fit the identified primitives, thus providing a denoised segmentation.
The robustness to noise is quantitatively studied in Table IV.4: the parameters
obtained in the original point cloud are there compared with those found in the
perturbed point clouds.

Figure IV.13 makes a comparison with the RANSAC-based method
introduced in [31] and with the patch aggregation approach in [20]. In this
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(a) (b) (c) (d)

Figure IV.12: The point cloud in Figure IV.5(c) is perturbed by adding zero-
mean Gaussian noise of standard deviation: 0.01 (a), 0.05 (b), 0.10 (c) and 0.20
(d). The first row superimposes the points identified as noise (in black) to the
final segments found by our method; the second row depicts the points that fit
the primitives found and provides a denoised segmentation.

Segment Original Noise (a) Noise (b) Noise (c) Noise (d)
Cylinder r = 1.80 r = 1.79 r = 1.78 r = 1.79 r = 1.78
Plane 1 k = −1.28 k = −1.28 k = −1.29 k = −1.28 k = −1.31
Plane 2 k = 1.28 k = 1.28 k = 1.28 k = 1.28 k = 1.26

Torus 1 R = 1.49 R = 1.49 R = 1.47 R = 1.48 R = 1.56
r = 0.72 r = 0.73 r = 0.70 r = 0.67 r = 0.74

Torus 2 R = 1.05 R = 1.09 R = 1.02 R = 1.17 R = 1.13
r = 0.79 r = 0.78 r = 0.78 r = 0.74 r = 0.80

Table IV.4: Parameter comparison between the original point cloud from Figure
IV.5(c) and the perturbed versions from Figure IV.12.

comparison, we have focused on models that merely present simple primitives, to
show that even on these our approach obtains better results than the others; on
the other hand, the capability to handle more complex primitives is undoubtedly
an added value of our method. Similarly to [20], we use different colours to
represent different primitive typologies. For a simple model like the block
of Figure IV.13(a), all methods provide acceptable segmentations, although
RANSAC [31] misclassifies some primitives. For the remaining more complex
models, our method outperforms the competitors. In Figure IV.13(b), our
approach is the only capable to correctly identify portions of tori, misclassified by
Le and Duan [20] and partly unsegmented by RANSAC [31]. Figures IV.13(c-d)
show a RANSAC [31] tendency to over-segment and misclassify complex models.
While Le and Duan [20] obtain considerably improved results, their algorithm
misses a thin cylinder (see Figure IV.13(c)) and all the torii present in both
models.

Finally, Table IV.5 shows the computational time for the HT based recognition
algorithm, considering both the simple primitives and the complex ones. The
experiments are performed on a laptop equipped with an Intel Core i7 processor
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Schnabel et al. [31]

Le and Duan [20]

Ours

(a) (b) (c) (d)

Figure IV.13: Primitive type recognition: a comparison between our approach,
a RANSAC-based segmentation [31], and the method in [20]. Different colours
correspond to different primitive types: planes (red), cylinders (green), cones
(blue), tori (black), unsegmented (yellow).

(at 1.3 GHz).

Table IV.5: Computational time, in seconds, for the recognition of some typologies
of primitives shown in the examples.

# points # segments planes cylinders spheres cones tori complex total
Fig. IV.1(e) 25, 000 17 0.19 12.48 − − − − 12.67
Fig. IV.3 15, 216 8 0.04 4.2 12.81 − − − 17.05
Fig. IV.4 15, 022 9 0.04 8.22 − 6.64 0.11 − 15.01

Fig. IV.5(a) 25, 000 11 0.22 33.01 − − − 33.23
Fig. IV.5(b) 67, 777 5 0.11 37.88 − − − 8.14 46.13
Fig. IV.5(c) 25, 000 5 0.06 5.70 − − 0.20 − 5.96
Fig. IV.5(d) 25, 000 7 0.23 3.83 − − 0.20 1.13 5.96
Fig. IV.6(b) 50, 000 20 0.29 2.34 − − − − 2.63
Fig. IV.7(b) 25, 000 6 0.15 6.07 − − − 44.56 50.78
Fig. IV.8(b) 50, 000 28 0.11 14.91 − 39.31 − − 54.33
Fig. IV.9(b) 50, 000 68 0.38 15.54 − 0.57 − − 16.49
Fig. IV.10(b) 50, 000 50 0.24 24.41 − − 1.42 − 26.07
Fig. IV.11(b) 50, 000 38 0.13 17.32 − 37.86 0.07 55.38

IV.6 Concluding remarks

The examples in Sections IV.4 and IV.5 highlight the ability of this method to
deal with simple and complex geometric primitives. In addition to the simple
CAD primitives that are typical of the Constructive Solid Geometry (CSG), the
use of the HT in its generalised version provides a larger set of primitives that
includes algebraic surfaces and transcendental or exponential ones, as long as
they possess a parametric or implicit expression.

Moreover, the combination of the HT with a clustering strategy yields the
aggregation of multiple segments; indeed, it permits to recognise as a unique
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segment parts of the same primitive that are non-contiguous and to identify
patterns of repeated segments, even if they slightly differ.

In conclusion, the combination of a primitive fitting strategy based on HT
and a hierarchical clustering is leading to a reliable tool suitable for several CAD
applications, such as reverse engineering and model annotation. As a possible
future development, we foresee to integrate our method with other reasoning,
for instance by adding spatial relationships, e.g., the inclusion between parts,
to characterise more complex assemblies of parts and support automatic model
annotation.
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Appendix IV.A Accelerating the Hough Transform via initial
geometric estimates

As introduced in Chapter 1, the Hough transform is naturally oriented towards
the recognition of a mathematical expression of the primitives. Unfortunately,
the variety of primitives that can be used within the HT framework is limited
by the number of parameters of the primitive itself, if it is considered in its
generic space embedding. To overcome this limitation, we propose a segment
pre-processing step2 that allows us: i) to automatically centre and orient a
segment so that it can be fitted with a primitive in standard form; ii) to estimate
the primitive parameters so as to localize the search for the optimal solution.
Once each segment has been properly roto-translated, we are able to apply the
HT technique for a number of primitives otherwise non affordable in terms of
computational cost and memory space occupied. For the sake of brevity, we
limit the upcoming discussion to the case of simple geometric primitives, i.e,
to cylindrical, conic, spherical and toric segments; similar constructions can be
applied to the more general list of primitives provided in Section IV.2.2.

IV.A.1 Simple geometric primitives and their standard form

We here provide compact parametric equations for the simple geometric primitives
under study.

Spheres The points on the sphere of radius r > 0 and center c ∈ R3 can be
parametrized as

p(u, v) = c + r cos(v) (cos(u)e1 + sin(u)e2) + r sin(v)e3,

where {e1, e2, e3} denotes the standard basis for R3. The standard form is
obtained by setting c = 0.

Cylinders The parametric equations of a cylinder may be written as

p(u, v) = l + r cos(u)v1 + r sin(u)v2 + va,

where: l is the location vector defining the base plane; r is the cylinder radius;
a is a unit vector that gives the direction of the rotational axis; v1 and v2 are
chosen so that {v1,v2,a} forms an orthonormal basis. We define the standard
form by setting l = 0, vi = ei for any i, and a = e3. Note that this choice is
purely individual, as one could impose any of the vectors ei to be the standard
rotational axis.

2The content of this section is extracted from the manuscript “Fitting and recognition
of geometric primitives in segmented 3D point clouds using a localized voting procedure" by
the same authors, which is currently under fast-track review at Computer Aided Geometric
Design.
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Cones Cones can be parametrically represented by

p(u, v) = l + (r + v sin(α)) (cos(u)v1 + sin(u)v2) + v cos(α)a,

with l, vi and a having the same geometric meaning as for the cylinders, while
r denotes the radius of the circle found by intersecting the cone and the base
plane, and α gives the half-angle at the apex of the cone. We call standard form
any parametrization obtained by imposing vi = ei for any i, a = e3, and by
moving the cone vertex to the origin; note that the latter corresponds to set r
to zero (which means that the cone vertex lies on the base plane) and further
impose l = 0.

Tori Tori are parametrized as

p(u, v) = c + (rmax + rmin cos(v)) (cos(u)v1 + sin(u)v2) + rmin sin(v)a,

where rmin and rmax are the minor and the major radii, c is the center of the
torus, a is its rotational axis, and v1 and v2 are the remaining axes of the torus
coordinate system. The standard forms are here expressed by setting c = 0,
vi := ei for any i, and a := e3.

IV.A.2 Segment pre-processing

To (recognize and) fit a surface in a point cloud, it is usually required to have
some good initial estimate of the solution which is then refined. A bad initial
estimate can lead to a fit of poor quality or, in the worst-case scenario, to a
wrong recognition. In our case, initial estimates are fundamental for two reasons.
Firstly, they allow you to put a segment in its standard form, thus reducing
the number of parameters to be handled by the HT technique. Secondly, they
provide a guess to the HT technique of where the optimal solution is, thus solving
the problem of unboundedness of the parameter space. We now describe, for
each family of geometric primitives introduced in Section IV.A.1, how the initial
estimates can be computed.

IV.A.2.1 Segment centering and normal estimation via local HT fits

The steps described in this section are performed independently from the primitive
type; they are preliminary to the computation of our initial estimates and,
subsequently, to our final recognition.

Point cloud centering At first, the input point cloud P is centered, i.e., it
is translated so that its barycenter coincides with the origin of the Cartesian
coordinate system.

Point cloud downsampling The axis-aligned minimum bounding box of P
is split into s equal-sized boxes. Points within the same box j = 1, ..., s will be
replaced (i.e., downsampled) by the point which is closest to their barycenter, so
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as to obtain a uniformly downsampled point cloud. This step is optional, and is
meant to handle very dense point clouds with a lower execution time.

Normal estimation For each pj ∈ P, we select all points within a given
distance D w.r.t. the usual Euclidean metric; we denote this neighbourhood by
Nj := N (pj , D). We then apply the HT technique to Nj and select the most
voted plane π̂j , which gives an approximation of the true tangent plane πj at
pj or, equivalently, of the normal vector nj at the same point. To this end, we
consider the Hesse normal form

x cos θ sinφ+ y sin θ sinφ+ z cosφ− ρ = 0,

where: x, y and z are the Cartesian coordinates of a sample point; θ ∈ [0, 2π) and
φ ∈ [0, π] are the polar coordinates of the normal vector to the plane; ρ ∈ R≥0 is
the distance from the plane to the origin of the coordinate system. The normal
at pj is approximated by the vector n̂j = [cos θ̂j sin φ̂j , sin φ̂j sin θ̂j , cos φ̂j ], being
θ̂j and φ̂j estimates of θj and φj obtained via the Hough transform. More details
on the application of the HT based on this parametrization can be found in [24].

Normal accuracy As a last step, we compute the accuracy of each candidate
tangent plane by using the Mean Fitting Error (MFE), defined as:

MFE(Nj , πj) := 1
|Nj |

∑
x∈Nj

d(x, πj)/lj ,

where d is the Euclidean distance and lj is the diagonal of the minimum bounding
box containing Nj . From here on, we denote MFE(Nj , πj) by MFEj and
MFE := [MFE1,MFE2, . . .].

IV.A.2.2 Initial estimates

Once the candidate tangent planes have been estimated, we specialize the
processing for each type of primitive.

Sphere For each pj ∈ P, we sample a point qj on the (candidate) tangent
plane πj . Then, we consider the plane passing through pj and having normal
vector vj := nj × tj , where tj = pj − qj . A graphical illustration of the three
vectors involved is given in Figure IV.14(c): the blue, green and red vectors
are, respectively, nj , tj and vj . This plane intersects the sphere into a set
of points outlining a circle, which can be recognized through the classical HT
procedure for circles, and whose approximation is evaluated by the Mean Fitting
Error. In exact arithmetic, such a plane passes through the sphere center, which
corresponds to the circle center as well; in floating-point arithmetic (or when
the input segment is perturbed), the center and the radius of the circle give an
estimate of the center and the radius of the sphere. By repeating this procedure
for all points in P – or at least, for a representative subset of points – we obtain
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a set of estimates of the sphere center and radius. By thresholding the MFE,
we can discard low-quality estimates; finally, by averaging over the remaining
centers and radii we obtain the final estimates of the sphere center and radius,
which will be denoted by ĉ and r̂.

normal

estimation

sphere

slicing

center + radius

estimation

(a) (b) (c) (d)

Pre-processing

Figure IV.14: Initial estimates for a sphere. The pre-processing step centers
the point cloud and approximates the normal vectors at a set of points, see (b).
Given a point pj and a point qj on its tangent plane, (c) shows the vectors nj ,
tj and vj in blue, green and red, respectively. Finally, (d) shows the estimate ĉ
of the center.

Cylinder We select the points corresponding to the lowest entries in MFE,
i.e., having the most accurate estimations of the normal vector. Let p1, . . . ,pk
denote such points. For each pair of points pj1 and pj2 , where j1, j2 = 1, . . . , k
and j1 6= j2, we consider the corresponding normal vectors n̂j1 , n̂j2 : their cross
product, denoted âj1,j2 := n̂j1× n̂j2 , is an approximation of the rotational axis of
the cylinder up to a translation. Figure IV.15(c) represents a simplified situation,
where the two normals (in green and blue) and their cross product (colored red)
are positioned so that âj1,j2 determines the rotational axis; note that this choice
is purely illustrative. By iterating over all possible combinations, one can obtain
multiple estimates of the rotational axis; we average over all these estimates and
return the resulting vector, denoted â.

The point cloud P is now rotated so that â is parallel to the z − axis and,
subsequently, projected onto the xy-plane. To estimate the radius r and the
center c of the projected points, which outline (arcs of) a circle if the initial
point cloud originated from a circular cylinder, we detect the most voted circle
by applying HT-based recognition process, see Figure IV.15(d).

Cone Similarly to the previous case, we select the points corresponding to
the lowest entries in MFE; let p1, . . . ,pk denote such points. From basic
geometry we know that, in exact arithmetic, the vertex of a cone can be found
by intersecting (at least) three tangent planes, see Figure IV.16(c); this is
equivalent to solve a linear system Nv = k, where each row of N corresponds to
a normal vector at one of the points pj , while k contains the constant terms. In
floating-point arithmetic, such a solution may not exist; therefore, we apply the
Moore-Penrose pseudo-inverse and write

v̂ = N† · k.
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Figure IV.15: Initial estimates for a circular cylinder. The pre-processing step
centers the point cloud and approximates the normal vectors at a set of points,
see (b). Given two point pj1 and pj2 , (c) shows the corresponding normal
vectors n̂j1 and n̂j2 and, in red, their cross product âj1,j2 . Finally, (d) shows
the estimate r̂ of the radius.

For each pair of points pj1 and pj2 , where j1, j2 = 1, . . . , k and j1 6= j2, we
consider the corresponding normal vectors n̂j1 , n̂j2 and the vectors t̂j1 := pj1− v̂,
t̂j2 := pj2−v̂. We compute the cross products ûj1 = n̂j1×t̂j1 and ûj2 = n̂j2×t̂j2 .
By taking the cross product between ûj1 and ûj2 we obtain an estimate âj1,j2

of the rotational axis of the cone, up to a translation by the cone vertex. A
simplified graphical illustration, where a triplet of vectors n̂j (in blue), t̂j (in
green) and âj1,j2 (in red) are moved to rotational axis, is shown in Figure
IV.16(d). By iterating over all possible combinations, one can obtain multiple
estimates of the rotational axis; we average over all these estimates and return
the resulting vector, denoted â.To put the point cloud P in its canonical form,
we apply a rototranslation so that the vertex v̂ is moved to the origin of the
coordinate axes and â coincides with the z-axis. The estimate α̂ is obtained
by computing the angle between the e3 and the vector [ zmaxrmax

, 0 , 1], where zmax
and rmax are, respectively, the maximum value of the z-coordinates and the
maximum distance from the origin of the projection on the xy-plane of P.

normal
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vertex

estimation

axis

estimation

(a) (b) (c) (d)

Pre-processing

Figure IV.16: Initial estimates for a circular cone. The pre-processing step
centers the point cloud and approximates the normal vectors at a set of points,
see (b). The intersection of the tangent planes estimates the coordinates of the
vertex v̂. Given two points pj1 and pj2 , in (d) the corresponding blue and green
vectors ûj1 and ûj2 and the resulting cross product âj1,j2 in red.

Torus In line with the increase in the number of unknown parameters, this
primitive requires a more complex handling, as summarized in the following four
steps:
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• Upper (or lower) circle recognition. We search for the best fitting plane to
the entire point cloud P which – unless pathological cases (e.g., very small
segments) – intersects the torus in (possibly perturbed arcs of) a circle, as
shown Figure IV.17(c, left). This circle can be recognized by the standard
HT for circles; the parameters found can be used to generate a new dense
set of points, which we will denote by Q; an example is shown in Figure
IV.17(c, right).

• Recognition of small circles. We select a number of points corresponding
to the lowest entries in MFE, and denote them by p1, . . . ,pk. For each of
such points pj , we find its nearest neighbour qj ∈ Q; we then define the
vector vj as the cross product between the estimated normal vector n̂j at
pj and the vector tj := pj − qj . An example is shown in Figure IV.17(d,
left image): the green, blue and red vectors represent, respectively, tj ,
n̂j and vj . The just-computed vector vj identifies a plane – see Figure
IV.17(d, right image) – that intersects P in a set of points outlining two
circles, up to some data perturbation. We apply the standard HT to
recognise such circles and, more importantly, their radii and centers. For
each recognised circle, we compute its Mean Fitting Error and store its
center in C if the MFE is below some given threshold. By averaging the
circle radii, we can get an estimate r̂min of rmin.

• Towards axis estimation. We use HT to find the best fitting plane to C.
The normal vector to this plane is an estimate of the rotational axis of the
torus, up to a translation (see Figure IV.17(e)).

• Recognition of the big circle for center estimation. Finally, we recognize
the circle outlined by the points in C, see Figure IV.17(f). The center of
the torus is approximated by the circle center, which can be also used to
fix the rotational axis. The radius of the circle gives us an estimate r̂max
of rmax.

IV.A.3 Examples on synthetic data

Figure IV.18 illustrates the stability of our procedure for parameter estimation
against an increasing amount of noise. As we move row by row from top to
bottom, we show: a one-eighth portion of a full sphere of radius r = 1.5 and
center c = (0, 0, 0); a small portion of a cylinder of radius r = 1.5 and aligned to
the z−axis; a one-eighth portion of a cone of angle α = 56.24◦, vertex v = (0, 0, 0)
and rotational axis coincident with the z−axis; and a one-eighth portion of a
full torus aligned with the z-axis, with rmin = 1, rmax = 2, c = (0, 0, 0). As we
move from left to right, the progressively increasing in noise corresponds to a
lower precision of the initial estimates: the cylindrical segment in the second row
suggests that the initial estimation can fail when applied to particularly small
segments suffering from strong noise levels.
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Figure IV.17: Initial estimates for a torus. The pre-processing step centers the
point cloud and approximates the normal vectors at a set of points, see (b). In
(c) the upper/lower circle recognition, while (d) shows the a plane that identify
small circles. Given the centers of small circles, in (e) the estimation of the axis
â and in (f) the estimation of center ĉ of the torus.
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Segments with increasing noise
Noise-free U(−0.1, 0.1) U(−0.5, 0.5) U(−1.0, 1.0)

|r − r̂| = 0.00 |r − r̂| = 0.02 |r − r̂| = 0.05 |r − r̂| = 0.03
||c− ĉ||2 = 0.01 ||c− ĉ||2 = 0.02 ||c− ĉ||2 = 0.02 ||c− ĉ||2 = 0.06

|r − r̂| = 0.00 |r − r̂| = 0.00 |r − r̂| = 0.04 |r − r̂| = 0.47
||a − â||2 = 0.00 ||a − â||2 = 0.00 ||a − â||2 = 0.00 ||a − â||2 = 0.44

|α− α̂| = 0.00 |α− α̂| = 0.00 |α− r̂| = 0.01 |α− α̂| = 0.03
||a − â||2 = 0.00 ||a − â||2 = 0.00 ||a − â||2 = 0.19 ||a − â||2 = 0.37
||v− v̂||2 = 0.02 ||v− v̂||2 = 0.02 ||v− v̂||2 = 0.03 ||v− v̂||2 = 0.03

|rmin − r̂min| = 0.00 |rmin − r̂min| = 0.01 |rmin − r̂min| = 0.02 |rmin − r̂min| = 0.09
|rmax − r̂max| = 0.02 |rmax − r̂max| = 0.02 |rmax − r̂max| = 0.04 |rmax − r̂max| = 1.18
||c− ĉ||2 = 0.02 ||c− ĉ||2 = 0.03 ||c− ĉ||2 = 0.04 ||c− ĉ||2 = 0.07
||a − â||2 = 0.00 ||a − â||2 = 0.01 ||a − â||2 = 0.02 ||a − â||2 = 0.07

Figure IV.18: Initial estimates for various segments with increasing noise.
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V

Abstract

We propose Fit4CAD, a benchmark for the evaluation and comparison of
methods for fitting simple geometric primitives in point clouds representing
CAD objects. This benchmark is meant to help both method developers
and those who want to identify the best performing tools. The Fit4CAD
dataset is composed by 225 high quality point clouds, each of which has
been obtained by sampling a CAD object. The way these elements were
created by using existing platforms and datasets makes the benchmark
easily expandable. The dataset is already split into a training set and a test
set. To assess performance and accuracy of the different primitive fitting
methods, various measures are defined. To demonstrate the effective use
of Fit4CAD, we have tested it on two methods belonging to two different
categories of approaches to the primitive fitting problem: a clustering
method based on a primitive growing framework and a parametric method
based on the Hough transform.
Keywords: benchmarking, geometric primitive fitting, CAD objects,
quality measures.
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CAD objects

V.1 Introduction

3D CAD models are among the most common medium to convey dimensional
and geometric information on designed objects or components. However, often
the CAD model of an object is not available, it does not even exist, or no longer
corresponds to the real geometry of the manufactured object itself. One strategy
for retrieving a digital model of an object when not accessible is to acquire
3D data directly on the object and use it to create a digital representation.
The reconstruction of digital models starting from the measured data is a
process, commonly called Reverse Engineering (RE), aiming at reconstructing
3D mathematical surfaces and geometric features that represent the geometry
of real parts. Many methods have been proposed to solve this problem; as a
reference we cite a recent survey that groups a large part of the approaches
presented so far [15].

Given the large number of methods proposed, it becomes important to be
able to evaluate their performance by creating standard datasets with a ground
truth and a “quality label", thus paving the road for a fair evaluation of the
existing technologies and the identification of open research directions not only
in reverse engineering but also in shape retrieval, understanding, compression,
etc., taking inspiration from other approaches proposed for generic classes of
objects, (e.g. [10, 21, 25]).

Here we propose Fit4CAD, a benchmark of point clouds representing CAD
objects aimed at evaluating methods for detecting simple (polynomial) geometric
primitives (i.e., plane, cylinder, cone, sphere, and torus) in 3D point clouds;
by polynomial primitive, we here mean a surface that has an algebraic implicit
representation, i.e., it can be defined as the zero set of a polynomial. The dataset
consists of 225 high quality point clouds, each of which has been obtained
by sampling a CAD object. Each point cloud is equipped of a ground-truth
segmentation and, for each primitive, we provide both implicit and parametric
forms. The way these elements were created by using existing platforms and
datasets makes the benchmark easily expandable. Fit4CAD is designed to be
used also by machine learning methods: in fact, the dataset comes in the form
of a training set and a test set.

We provide a number of performance measures able to evaluate both the
quality of the fitting segments, in term of points correctly recognized as belonging
to a primitive, and the quality of the primitive approximation, evaluating the
distance between the primitive detected and the ideal one.

Fit4CAD satisfies a certain number of necessary requirements, such as the
relevance and representativeness of the elements in the CAD context, the richness
and the completeness of the information associated with each primitive, thus
enabling fair comparisons for a wide range of geometric primitives recognition
algorithms.

The proposed benchmark has been exploited to evaluate and compare two
methods of geometric primitive fitting, belonging to two different categories of
approaches: a clustering method based on a primitive growing framework and
a parametric method based on the Hough transform. By providing an explicit
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representation of the equations of the primitives, for the second method we are
also able to evaluate measures related to the accuracy of the primitives found.

The rest of the paper is organized as follows. Section V.2 examines previous
work related to our topic. Section V.3 describes the characteristics of the
benchmark: dataset, ground truth, and the performance and accuracy measures
chosen to evaluate the identification of primitives. Section V.4 describes the tests
carried out on two methods of recognition and fitting of geometric primitives.
Some concluding remarks end the paper.

V.2 Prior work

Benchmarking involves sharing of resources, metrics, data and so on, so that the
common goals of knowledge creation and furthering the state of the art can be
achieved. The creation of standard datasets reduces the amount of work necessary
for single researchers to assess the quality of their techniques and compare them
with other research groups. The steadily rising participation to contests and
open challenges shows the interest and the need for benchmarks (e.g., TreCVID
[24]), competitive contests (e.g., on Kaggle.com [5] or the 3D Shape Retrieval
Contest (SHREC) [27]) and, more in general, for code sharing (e.g., Graphics
Replicability Stamp Initiative1). So far, benchmarks for 3D object segmentation
[6, 18] have mainly considered generic classes of objects and, therefore, the
methods were evaluated for their general-purpose segmentation rather than on
CAD objects and their capability of recognizing geometric primivites.

Among the datasets containing general 3D shapes (e.g., toys, mechanisms,
jewelry) in the form of triangle meshes it is worth mentioning [28, 29, 30], even
if these methods were specifically designed for different goals, e.g. 3D printing,
computer vision applications and computer graphics applications, respectively.

The most relevant dataset for our work is the ABC dataset [16]; here,
the authors present a massive dataset (over one million models), specifically
developed to train data-driven algorithms for geometric deep learning. Models
are defined by parametric surfaces, possibly accompanied with the information
related to the decomposition into patches, sharp feature annotations, and analytic
differential properties. The models were created by using the interface available
on the online infrastructure Onshape2. All models are stored as triangle meshes,
while the associated files (annotations, features, etc.) are not available for all
models: more precisely, the file may lack the true list of primitives, or their
parametric/implicit representations; this is not a big issue for that specific
dataset, as primitive extraction is not their purpose. Being specifically designed
for data-driven methods, the models are stored with different resolutions (i.e.,
different samplings of the same parametric model) or slight variations. Moreover,
models in [16] do not present any kind of data perturbation. Lastly, the ABC
dataset is not designed for point cloud segmentation, and does not present any
specific quality measures for comparing methods.

1http://www.replicabilitystamp.org
2https://www.onshape.com/en/
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V.3 The benchmark

We here introduce our benchmark, geared towards the following desirable
properties:

• Dataset richness and representativeness. The first and foremost require-
ment for a thorough evaluation is the availability of a data set characterized
by a good sampling of varied shapes: each family of simple geometric prim-
itives (i.e., plane, cylinder, cone, sphere, and torus) should appear in a
sufficient number of point clouds. In addition, we consider different point
cloud densities as well as data integrity (with/without missing data). Each
CAD object is used to generate one and only one point cloud.

• Ease of expansion. An ideal benchmark should be able to develop over
time, in order to test new paradigms and face new challenges; this requires
the capability to generate new data in an easy and efficient way. To satisfy
this basic requirement, Section V.3.1 outlines a general pipeline that can
be used for data generation.

• Availability of both implicit and parametric representations. Modern CAD
systems are based on two complementary representations for surfaces,
according to the manipulation they are involved in: implicit and parametric
representations. Parametrized surfaces are best suited for point generation,
while implicit representations allow to check whether a query point lies or
not on the surface in a more convenient way. Having both representations
makes it possible to answer a wide range of questions (e.g., intersection
problems).

• Completeness of the documentation. All models are equipped with all
and the same information. For each of them, this includes: the files with
primitive segments, implicit and parametric primitive representations; a
preset split of the dataset into training set and test set. Further details
are provided in Section V.3.2.

• Variety of performance indicators and accuracy measures. To evaluate and
compare methods, it is of vital importance to select measures that highlight
strengths and weaknesses. In our case, the problem is twofold: on the one
hand, we want to quantify the capability to produce precise segmentations
into simple geometric primitives (by performance indicators); on the other
hand, we also aim at measuring the fitting accuracy when it comes to
implicit and parametric representation of the same shapes (by accuracy
measures). Section V.3.3 describes the measures selected to evaluate the
detection of simple primitives in CAD objects point clouds.

V.3.1 Dataset

At present, the dataset contains 225 individual high quality point clouds, each
of which has been obtained by sampling a CAD object. The dataset is already
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split into two subsets: a training set, counting 190 point clouds, and a test set,
containing the remaining 35 point clouds. Figure V.1 shows the distribution of
surface types for both training and test sets.
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Figure V.1: Surface type distribution. The two bar charts show the distributions
for the training set (left) and the test set (right).

The dataset generation process, in the most general form, has been carried
out by the following three steps:

1. Model creation. We created part of the models, by using the publicly
available interface hosted by Onshape, while the remaining part was
collected from the ABC dataset [16], which was derived, in turn, from the
Onshape public collection. Models gathered from the ABC dataset have
been filtered by manually correcting the parts presenting minimum flaws
and rejecting low quality models, in order to avoid rare yet bothersome
imperfections, such as overlapping or repeating patches. Some examples of
CAD objects from Onshape are displayed in Figure V.2.

2. Parametric and implicit representations. The generation of B-rep models
was crucial to extract the parametric representation behind each geometric
primitive; in our case, the parametric representations for each patch have
been obtained by processing the STEP files produced by Onshape in GMSH
[12]; nevertheless, we emphasize that other software could be considered
too (e.g., [19]). Several methods to compute the implicit representation
from a parametric form are nowadays available. We here consider the
numerical approach known as approximate implicitization, introduced in
[8] and further delevoped in [1]. One of the advantages of this approach is
that it provides exact implicit representations when the exact total degree
is selected; we remind that a bivariate polynomial has total degree n if all
monomials xiyj are such i+ j ≤ n, and there exists at least one monomial
xiyj such that i+ j = n.

161



V. Fit4CAD: A point cloud benchmark for fitting simple geometric primitives in
CAD objects

3. Point cloud extraction. CAD objects are sampled at different densities, and
optionally manually postprocessed by using CloudCompare3 to simulate
missing data. To give an example, Figure V.3(a) shows a model from
Onshape, which is then sampled and postprocessed in V.3(b-c).

Figure V.2: Example of models obtained using Onshape.

(a) (b) (c)

Figure V.3: Example of point cloud creation. The initial object in (a) is sampled
at a chosen density (b) and then perturbed by simulating missing data (c).

V.3.2 Ground truth

Each model in the ground truth comes in the form of four TXT files. We here
provide a description of each file content for the i-th point cloud.

PCi lists the three-dimensional points forming the point cloud to be segmented.

PCi_primitives contains the list of true primitives. For each primitive, a list
of indices is provided; each index corresponds to a point in “PCi", with
respect to the ordering there introduced. For example,

Primitive6:=[4 9 184 185 186 187 188 189 190 191 192]

3CloudCompare (version 2.10.2), http://www.cloudcompare.org/
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PC 1 PC 2 PC3 PC 4 PC 5 PC6 PC 7

PC 8 PC 9 PC10 PC 11 PC 12 PC13 PC 14

PC 15 PC 16 PC17 PC 18 PC 19 PC20 PC 21

PC 22 PC 23 PC24 PC 25 PC 26 PC27 PC 28

PC 29 PC 30 PC31 PC 32 PC 33 PC34 PC 35

Figure V.4: The 35 point clouds used as a test set. Different colors represent
different primitives, as stored in the CAD models, i.e., our ground truth.

means that the sixth primitive contains points number 4, 9, 184, 185, 186,
187, 188, 189, 190, 191 and 192 (where the ordering is the one in the
corresponding “PCi").

PCi_parametric provides, for each primitive in “PCi_primitives" correspond-
ing to a plane, a cylinder, a cone, a sphere or a torus, its parametric
representation. To give an example,

Primitive6:=[primitive type, v]

where v is the vector that contains the parameters of the parametric
representation (see V.A.1 for further details on the considered ordering).

PCi_implicit provides, for each primitive in “PCi_primitives" corresponding
to a plane, a cylinder, a cone, a sphere or a torus, its implicit representation.
For example,

Primitive6:=[primitive type, w]

where w is the vector that contains the coefficients of the implicit
representation (see V.A.2 for further details on the considered ordering).

The points that do not correspond to any of the simple primitives mentioned
above (i.e., plane, cylinder, cone, sphere or torus) are classified as unsegmented
and not explicitly reported in files PCi_primitives, PCi_parametric and
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PCi_implicit; in the original model, these points usually originate from B-
spline surfaces. We intentionally decided to insert some models with non-
simple geometric primitives to check whether a candidate method can avoid
misclassification.

V.3.3 Quality indicators

To evaluate the detection of simple primitives in CAD objects, we have proposed
quality measures selected from [7, 17] with particular care on what concerns
their performance and approximation accuracy.

V.3.3.1 Performance measures of the point classification

Any primitive in a model is identified by the list of points belonging to it
or, equivalently, by the list of points that do not belong to it. The problem of
primitive detection can therefore be easily written in terms of binary classification
tasks, one per primitive in the ground truth.

Let PB be a a set of points in the benchmark point cloud corresponding to
a specific primitive, and let PS be the primitive in the segmentation to assess
that most overlap with PB . We can define the following quantities:

• True positives, TP: the number of points shared by PB and PS .

• False positives, FP: the number of points in PS that do not belong to
PB .

• False negatives, FN: the number of points in PB that do not belong to
PS .

• True negatives, TN: the number of points that do not belong to either
PB nor PS .

Based on these four quantities, we consider the following measures:

• Sensitivity, also called true positive rate, measures the proportion of
positives which are correctly identified, i.e.,

TPR := TP
TP + FN .

Specificity, or true negative rate, measures the proportion of true negatives
that are correctly identified as such, i.e.,

TNR := TN
TN + FP .

• Positive predictive value is defined as the proportion of predicted positives
which are actual positives, i.e.,

PPV := TP
TP + FP .
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Similarly, negative predictive value is given by

NPV := TN
TN + FN .

• Accuracy is the ratio of correct predictions to total predictions made, i.e.,

ACC := TP + TN
TP + TN + FP + FN .

• Sørensen-Dice index. It is given by

DSC := 2|PB ∩PS |
|PB |+ |PS |

.

In case of binary classification, it is shown to be equivalent to

DSC := 2TP
2TP + FP + FN ,

which is often referred to as F1 score.

For more details, we refer the reader to [17].

V.3.3.2 Approximation accuracy

To measure the recognition accuracy of a specific primitive, we use the
parametric and the implicit representations provided in “PCi_implicit" and
“PCi_parametric". Exploiting the notation provided before, let us consider
a primitive PS to be evaluated, and let S be the surface described by the
corresponding parametric representation. When it comes to the parametric
representation, we use the following two measures to evaluate the approximation
accuracy of primitive PS :

• Mean Fitting Error (MFE):

MFE(PS ,S) := 1
|PS |

∑
x∈PS

d(x,S)/l, (V.1)

where d is the Euclidean distance, and l is the diagonal of the minimum
bounding box containing PS .

• Directed Hausdorff distance:

ddHaus(PS ,S) = max
x∈PS

min
y∈S

d(x,y),

with d the Euclidean distance. To make the measure independent from
the primitive size, we normalize it with respect to the diagonal l of the
minimum bounding box containing PS .
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The fitting accuracy for the implicit representation is evaluated by the following
measure:

• Coefficient distance:
d1(v,v′) = ‖v− v′‖1

where v and v′ are the coefficient vectors for the implicit representations
of the primitives PS and PB, respectively, and where ‖ · ‖1 is the well-
known `1 norm. In order to make this measure consistent, we assume
the coefficient vectors to be normalized, and the first nonzero entry to be
positive (where the ordering is the one provided in V.A.2).

We refer the reader to [7] for further details.

V.4 Test of the benchmark on two methods

The proposed benchmark has been used to evaluate and compare two methods
dealing with primitive fitting. As guiding examples of how the benchmark works,
we have selected two methods that are both available and representative of
two classes of methods according to the taxonomy defined in [15]: a clustering
method based on a primitive growing framework (Section V.4.1) and a parametric
method based on the Hough transform [13] (Section V.4.2). Both methods can
be evaluated according to the measures described in Section V.3.3.1, as they
explicitly provide the list of the points that form any primitive; on the other
hand, the approximation accuracy can be assessed only for methods that can
provide parametric or implicit representations, in our examples the Hough-based
fitting.

V.4.1 PG: a discrete curvature-based method for point cloud
segmentation

As a first approach, we present a curvature-based method based on a primitive
growing framework, on the basis of the method proposed in [22] for triangle
meshes; for the sake of brevity, we will often use the acronym PG as a shorthand
for this method, where PG stands for “Primitive Growing".

The method consists of two main steps: an initial region partitioning process
based on high curvature detection and, then, a region refinement process based
on slippage analysis, as summarized in Figure V.5. These two steps run as
follows:

• Initial region partition. Points that identify sharp edges are characterized
via a point attribute called surface variation, as introduced in [20]. Given
a point p and n neighbouring points, its surface variation is defined as

σn(p) := λ1

λ1 + λ2 + λ3
,
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where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the covariance matrix for
the sample point p and its n neighbouring points; note that λl measures
the variability of the neighborhood of n points along the direction of the
corresponding eigenvector. In our experiments, n is set to 15 as it yields
good results when considering the training set. Points on sharp edges are
characterized by a high surface variation. These points are here selected
by analysing a histogram of the surface variation values, by means of a
threshold η: all points having surface variation above η are labelled as
sharpe edge points; for example, setting η = 0.8 means that the points
whose surface variation is higher than 80% (top 20%) are considered to
belong to a sharp edge. In our implementation, the threshold η is user-
defined and taken in the interval [0.65, 0.95]. Once sharp edges have been
identified, a region growing approach is applied to compute a first coarse
pre-segmentation, along the lines of what detailed in [20]: starting from a
random seed point, its nearest neighbors are progressively located; those
points which does not belong to sharp edges will be labelled and used as
new seed points, until all neighboring points are labelled.

• Region refinement. According to the ISO GPS invariance class [14], “ideal"
features can be categorized into seven invariance classes: planar, cylindrical,
helical, spherical, revolute, prismatic, and complex. The seven invariance
classes are here captured by local slippage analysis [11]. This step aims
at decomposing any coarse segment S from the previous step into simpler
geometric parts. Given a point set P of n points from S, the slippable
motions of P are found as the motion vector [r, t] that, when applied to
P , minimizes the motion along the normal direction at each point

min
[r,t]

n∑
i=1

((r× xi + t) · ni)2, (V.2)

where: r = (rx, ry, rz) is a rotation vector around x, y, and z; t = (tx, ty, tz)
is a translational vector; pi ∈ P are the n samples, and ni are their
respective normals. Equation V.2 is a least-square problem which can
be reduced to the linear system based on the covariance matrix of the
second partial derivatives of the function in V.2 with respect to the rotation
and translation parameters, see [11] for further details. Slippage analysis
permits the detection of 3-, 2-, 1- and 0-slippable motions, see Table
V.1. According to the primitives defined in the benchmark, segments
identified as prismatic, revolute and complex could be undersegmented; to
address this problem, the RANSAC method introduced in [23] is applied;
an example of prismatic segment requiring further processing is shown
in Figure V.6. Finally, points on sharp edges are assigned to the closest
primitives.
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Figure V.5: The framework of the curvature-based surface partitioning method.

ISO GPS Invariance Slippage geometric primitives
planar 3 plane

spherical 3 sphere
cylindrical 2 cylinder
helical 2 -

prismatic 1 undersegmented
revolute 1 cone/torus
complex 0 undersegmented

Table V.1: Relation between ISO GPS invariance class [14] and the simple
geometric primitives in this benchmark. Note that, in this terminology,
prismatic/complex could include include planar, spherical or cylindrical
primitives.

Figure V.6: Example of undersegmented invariance class. On the left, the external
blue primitive is classified as prismatic. On the right, the same primitive is split
into 2 planes and 2 half cylinders.

V.4.1.1 Computational complexity

The characterization of the sharp edges according to surface variation [20] is
done by considering the k-nearest neighbour points with O(n logn) operations,
where n represents the number of points. The growing algorithm for grouping
points inside boundaries costs O(n) operation while the classification of each
point set via slippage analysis is O(m), where m is the number of points in
one surface portion [11]. The further RANSAC based segmentation in case of
point sets with low slippage values (such as revolute, prismatic and complex
primitives) is O(m) [23], where m < n in the most common scenario.

168



Test of the benchmark on two methods

V.4.2 HT: Simple primitive fitting based on Hough transform

Figure V.7: The HT-based paradigm: a visual illustration of how a cylinder
representation Sa is converted by the Hough transform into |Pi| hypersurfaces
ΓPi ; then the intersection of the hypersurfaces ΓPi identifies the parameters (ā, b̄)
that correspond to the red cylinder in the right.

In this section, we consider a method to segment and to fit a point cloud
PC with surface primitives using the Hough Transform (HT) technique. The
general HT-framework deals with the problem of finding a surface Sā – within a
family F = {Sa} of surfaces dependent on a set of parameters a = (a1, ..., an) –
that best approximates a particular shape. The common strategy to identify the
solution (or a solution) consists in a procedure whereby each point in PC votes
a n-uple a in the parameter space; the most voted n-uple ā corresponds to the
most representative surface Sā for a dense subset of PC. Figure V.7 illustrates
how the Hough transform converts the problem of fitting points on a primitive
into the problem of fitting the parameters of a family of primitives into points.

This method is based on the theory related to the extension of the Hough
transform to general algebraic objects [3]. This theory is very broad and can be
used for many types of primitives, for instance in [2] is used for fitting point sets
with ellipsoids and can deal with non-simple primitives, such as helical surfaces.
The families of primitives included in this benchmark are planes, cylinders,
spheres, cones and tori. Once a family of primitives F is selected, the main steps
can be summarized as follows:

• Inizialization and estimation of the accumulator function. Once the family
F is chosen, a region T of the parameter space is selected exploiting the
knowledge of the geometric characteristics of F (e.g., bounding box). Then,
it is discretized into cells, which are uniquely identified by the coordinates
of their centre. This space is associated with an accumulator function H,
discretized as a matrix. Its entries are in a one-to-one correspondence with
the cells of T. An entry of H is increased by 1 each time the HT of a point
P , ΓP , intersects the corresponding cell.

• Selection of potential fitting primitives. In the case the input point
cloud is composed of different primitives, the peaks of H identify the
potential primitives Sāi that might fit different parts Xi ⊆ PC. Then,
the cells corresponding to the peak values of the accumulator function
H are identified by studying its topological persistence (see [9]). In our
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(a) (b) (c) (d)

Figure V.8: HT framework. In (a), an example of input point cloud; in (b), the
accumulator function associated with the search for cylinders and the peaks found
by the method for persistent maxima; in (c), the four cylinders corresponding to
the four peaks (black stands for unclassified points). The final outcome, after
searching for all simple geometric primitives, is shown in (d).

implementation, the peaks that correspond to primitives are automatically
recognised by keeping the local maxima with a persistence higher than 10%
of the maximum value of H, using the algorithm for persistent maxima
proposed in [4]. The coordinates of the cell centres of the maxima or
the peaks of the accumulator function correspond to the parameters of
potentially recognised surface primitives.

Since it can happen that more types of primitives fit the same dense subset Xi
(or a part of it), the Mean Fitting Error (see Equation V.1) is used to evaluate
the approximation accuracy of each primitive. Then, if Sāi,1 and Sāi,2 are
two candidate primitives, the fitting errors MFE(Xi,Sāi,1) and MFE(Xi,Sāi,2)
between each primitive and Xi are calculated; the primitive having lowest error is
kept. The final result is the partitioning of the input point cloud PC into several
subsets in such a way that points of the same segment are well approximated by
the same primitive. Figure V.8 summarizes the HT framework. In particular,
Figure V.8(b) shows an example of accumulator matrix referred to the recognition
of the cylinders, while the four cylinders corresponding to the four peaks are
highlighted on the original point cloud in Figure V.8(c). Finally, Figure V.8(d)
exhibits the resulting segmentation.

V.4.3 Evaluation

We here analyse the performance of the methods outlined in Sections V.4.1
and V.4.2, with the purpose of showing how the benchmark works. Firstly, we
compare the quality of the segments/primitives found against a ground-truth;
the measures involved do not require an explicit representation of the primitive
equation, and thus can be applied to both methods. Secondly, we consider the
accuracy of the parametric/implicit representations: in our case, this comes
down to the analysis of the method introduced in Section V.4.2.
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Performance measures of the point classification

Figures V.11 and V.12 in V.B provide the segmentation results obtained by the
primitive growing (PG) and Hough transform (HT) based approaches, colored as
follows: given a model and an approach, for each primitive in the benchmark we
find the most overlapping segmented primitive; misclassified points are colored
in black, while correct matches follows the 1− 1 primitive-color correspondence
from Figure V.4.

Table V.2 summarizes the performances of the two methods over all the
test set models. Each row correspond to a model; for each model, the table
provides information on the number of true and predicted primitives, as well
as the accuracy measures introduced in Section V.3.3.1. For each metric, two
columns are considered, respectively referring to the PG- and the HT-based
approaches.

To ease the analysis, the metrics are studied via boxplots:

• Figure V.9 compares the two methods over the whole test set. A first
observation of this analysis is that accuracy measures from the HT-approach
have generally a lower variability. At a closer look, one can notice that the
quartiles, as well as the minimum and maximum, always assume higher
values when it comes to the HT-based method; in particular, the second
quartile (i.e., the median) is always above 90%. DSC, TPR and PPV are
the three accuracy measures that varies the most; this highlights that the
two methods have lower performances in identifying the true positives,
compared to true negatives. Both methods exhibit outliers in most of the
boxplots.

• Robustness to missing data is analysed in Figure V.10. The HT-based
method turns out to be hardly affected by such perturbation, as the
inter-quartile range and the whiskers do not significantly vary; the only
noteworthy variation is that of TPR, which points out a slightly decreased
capability in correctly identifying positives. A more prominent variation
can be noted for the PG-method.

Interestingly enough, both methods rarely suffer from oversegmentation, while
it is more likely for them to undersegment. The most dramatic undersegmentation
is that of point cloud 9 (i.e., PC 9 in Table V.2), where the PG-based and the
HT-based methods only manage to detect 43 and 40 primitives, respectively, out
of the 104 there expected; this highlights possible issues when the original model
has thin or small primitives.

Approximation accuracy

Table V.3 reports the performance of the HT-based method evaluated according
to the metrics reported in Section V.3.3.2. Each row corresponds to a segmented
point cloud from Figure V.12; each column represents a different accuracy
measure; for each point cloud, each measure has been obtained by averaging
over all segments.
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1,500
3

3
3

0.811
0.978

0.875
0
.983

0.819
0
.974

0.910
0.983

0.948
0.997

0.901
0.988

PC
34

12
,089

14
13

14
0.788

0.939
0.823

0
.892

0.806
0
.998

0.994
0.998

0.979
0.999

0.976
0.998

PC
35

24
,068

8
15

8
0.866

0.975
0.872

0
.958

0.960
0
.999

0.983
1.000

0.997
0.999

0.984
0.995

Table V.2: Number of fitted primitives and classification performance metrics:
comparison between the PG-based and the HT-based algorithms.
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Figure V.9: Boxplot for the classification metrics presented in Table V.2. All 35
models are here considered.

Figure V.10: Performance of the PG- and HT-based methods, with an eye on
models suffering from missing data. For these boxplots, we have made use of
classification metrics presented in Table V.2.

• Being the MFE normalized by definition, its value can be interpreted as
a percentage. From the numbers provided in the table, we can conclude
that the MFE ranges from a minimum of 0.1% to a maximum of 1.0%.

• The directed Hausdorff distance, in its normalized version, ranges from
0.2% to 1.9%. The generally higher values, compared to those from the
MFE, can be explained by the Hausdorff’s sensitivity to outliers.

• The coefficient distance seems to provide a much more fluid situation. By
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checking the model corresponding to the highest error, we can conclude
that the HT-based method has lower precision when applied to point clouds
containing tori.

Computational time

All tests are performed on a desktop PC equipped with an Intel Core i9 processor
(at 3.6 GHz) and a Windows 10 operating system. The routines have also been
tested on a MacBook Pro equipped with macOS Catalina (version 10.15.7). We
provide here some statistics of the execution times, obtained on the desktop PC:

• The PG-method has minimum, mean and maximum execution time
corresponding to 1.7, 286.0 and 19074.0 seconds, respectively.

• The HT-method has minimum, mean and maximum execution time
corresponding to 2.6, 50.7 and 358.0 seconds, respectively.

We observe that, for small point clouds, the PG-method is generally faster,
while for big point clouds it is slower.

V.5 Conclusions

In this work we have proposed Fit4CAD, a benchmark for the evaluation and
comparison of methods for fitting simple geometric primitives in point clouds
representing CAD objects. The ground truth dataset of point clouds is segmented
in geometric primitives and subdivided into a training set and a test set. In
addition, a set of quality metrics and two fitting methods are given. In this
work, evaluation metrics are used to quantify various performance aspects of
geometric primitive fitting methods. In our intent, these metrics would assist
both comparing with some methods in literature and allowing a parameters
fine-tuning of a new method, in order to optimize it on a sufficiently large set of
CAD models.

We hope the results of our comparison will inspire the development of new
methods for primitive fitting, computational time being the main bottleneck
in practice. In particular, it would be interesting to have a comparison with
methods that use machine learning approaches, such as [26], because the dataset
has been already organized in the form of a training set and a test set.

Regarding the two tested methods, the overall quality of the fitting is
satisfactory for both. A rather unexpected conclusion is that over-segmentation
is quite limited for both methods, while the combination of small and
large primitives is a challenging task that often leads to a significant under-
segmentation, see for instance the outcome on the model PC 9.

In future, we plan to continue to expand the dataset, even if we do not aim
at a large scale dataset, for example by including more complex primitives and
possibly considering specific contexts such as assembly models. Moreover, the
flexibility of Fit4CAD permits the insertion of other available methods to reach
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Table V.3: Approximation accuracy of the HT method.

MFE ddHaus d1
PC 1 0.002 0.005 0.008
PC 2 0.007 0.011 0.149
PC 3 0.002 0.004 0.609
PC 4 0.002 0.003 0.000
PC 5 0.004 0.006 0.082
PC 6 0.003 0.005 0.001
PC 7 0.007 0.011 0.116
PC 8 0.004 0.013 0.001
PC 9 0.003 0.006 0.000
PC 10 0.005 0.019 1.203
PC 11 0.003 0.006 0.165
PC 12 0.002 0.004 0.058
PC 13 0.002 0.005 0.000
PC 14 0.004 0.006 1.264
PC 15 0.001 0.003 0.000
PC 16 0.003 0.004 0.029
PC 17 0.003 0.007 0.000
PC 18 0.003 0.004 0.324
PC 19 0.003 0.006 0.019
PC 20 0.002 0.003 0.001
PC 21 0.004 0.007 0.566
PC 22 0.002 0.005 0.000
PC 23 0.006 0.012 0.002
PC 24 0.001 0.003 0.000
PC 25 0.002 0.003 0.001
PC 26 0.001 0.003 0.000
PC 27 0.003 0.005 0.301
PC 28 0.001 0.002 0.000
PC 29 0.010 0.003 0.119
PC 30 0.002 0.009 0.003
PC 31 0.002 0.003 0.000
PC 32 0.006 0.007 0.000
PC 33 0.003 0.006 0.000
PC 34 0.003 0.005 0.004
PC 35 0.004 0.006 0.000
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a more complete view of the different typologies of approaches for geometric
primitive fitting.

The benchmark is available at https://github.com/chiararomanengo/Fit4CAD.
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Appendix V.A File type description

The geometrical information of the primitives are provided in the files
“PCi_parametric" and “PCi_implicit". Here, we describe in detail the
equations of the parametric and implicit representation that they contain. Notice
that, although the simple primitives shapes considered in this benchmark are
polynomial (i.e., can be written as the zero set of a bivariate polynomial), the
parametric representation we provide for cylinders, cones, spheres and tori are
written in terms of trigonometric functions.

V.A.1 Parametric representations

• Plane: 
x = a1u+ b1v + c1

y = a2u+ b2v + c2

z = a3u+ b3v + c3

The parameters for a plane are stored as follows:

[Plane, [a1 a2 a3 b1 b2 b3 c1 c2 c3]]

• Cylinder: 
x = a1 cos(u) + b1 sin(u) + c1v + d1

y = a2 cos(u) + b2 sin(u) + c2v + d2

z = a3 cos(u) + b3 sin(u) + c3v + d3

The parameters for a cylinder are stored as follows:

[Cylinder, [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3]

• Cone:
x = a1 cos(u) + b1 sin(u) + c1v cos(u) + d1v sin(u) + e1v + f1

y = a2 cos(u) + b2 sin(u) + c2v cos(u) + d2v sin(u) + e2v + f2

z = a3 cos(u) + b3 sin(u) + c3v cos(u) + d3v sin(u) + e3v + f3

The parameters for a cone are stored as follows:
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[Cone, [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 e1 e2 e3 f1 f2
f3]]

• Sphere:
x = a1 cos(u) cos(v) + b1 sin(u) cos(v) + c1 sin(v) + d1

y = a2 cos(u) cos(v) + b2 sin(u) cos(v) + c2 sin(v) + d2

z = a3 cos(u) cos(v) + b3 sin(u) cos(v) + c3 sin(v) + d3

The parameters for a sphere are stored as follows:

[Sphere, [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3]]

• Torus:
x = a1 cos(u) + b1 sin(u) + c1 cos(u) cos(v) + d1 sin(u) cos(v) + e1 sin(v) + f1

y = a2 cos(u) + b2 sin(u) + c2 cos(u) cos(v) + d2 sin(u) cos(v) + e2 sin(v) + f2

z = a3 cos(u) + b3 sin(u) + c3 cos(u) cos(v) + d3 sin(u) cos(v) + e3 sin(v) + f3

The parameters for a torus are stored as follows:

[Torus, [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 e1 e2 e3 f1 f2
f3]]

V.A.2 Implicit representations

• Plane:
ax+ by + cz + d = 0

The coefficients for a plane are stored as follows:

[Plane, [a b c d]]

• Cylinder:

ax2 + by2 + cy2 + 2(dxy + exz + fyz) + 2(gx+ hy + iz) + l = 0

The coefficients for a cylinder are stored as follows:

[Cylinder,[a b c d e f g h i l]]

• Cone:

ax2 + by2 + cy2 + 2(dxy + exz + fyz) + 2(gx+ hy + iz) + l = 0

The coefficients for a cone are stored as follows:
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[Cone, [a b c d e f g h i l]]

• Sphere:

ax2 + by2 + cy2 + 2(dxy + exz + fyz) + 2(gx+ hy + iz) + l = 0

The coefficients for a sphere are stored as follows:

[Sphere, [a b c d e f g h i l]]

• Torus: the coefficients of the implicit representation are provided in the
form of a polynomial of degree 4 in x, y and z; they are stored in reverse
lexicographic order.
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Results of the test set segmentations

Appendix V.B Results of the test set segmentations

PC 1 PC 2 PC3 PC 4 PC 5 PC6 PC 7

PC 8 PC 9 PC10 PC 11 PC 12 PC13 PC 14

PC 15 PC 16 PC17 PC 18 PC 19 PC20 PC 21

PC 22 PC 23 PC24 PC 25 PC 26 PC27 PC 28

PC 29 PC 30 PC31 PC 32 PC 33 PC34 PC 35

Figure V.11: Segmentations obtained via the PG-based method.

PC 1 PC 2 PC3 PC 4 PC 5 PC6 PC 7

PC 8 PC 9 PC10 PC 11 PC 12 PC13 PC 14

PC 15 PC 16 PC17 PC 18 PC 19 PC20 PC 21

PC 22 PC 23 PC24 PC 25 PC 26 PC27 PC 28

PC 29 PC 30 PC31 PC 32 PC 33 PC34 PC 35

Figure V.12: Segmentations obtained via the Hough-based method.
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VI

Abstract

This paper presents the methods that have participated in the SHREC
2021 contest on retrieval and classification of protein surfaces on the basis
of their geometry and physicochemical properties. The goal of the contest
is to assess the capability of different computational approaches to identify
different conformations of the same protein, or the presence of common
sub-parts, starting from a set of molecular surfaces. We addressed two
problems: defining the similarity solely based on the surface geometry or
with the inclusion of physicochemical information, such as electrostatic
potential, amino acid hydrophobicity, and the presence of hydrogen bond
donors and acceptors. Retrieval and classification performances, with
respect to the single protein or the existence of common sub-sequences,
are analysed according to a number of information retrieval indicators.
Keywords: SHREC, protein Surfaces, protein Retrieval, protein Classifi-
cation, 3D shape analysis, 3D shape descriptor.
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VI.1 Introduction

Automatically identifying the different conformations of a given set of proteins,
as well as their interaction with other molecules, is crucial in structural
bioinformatics. The well-established shape-function paradigm for proteins [33]
states that a protein of a given sequence has one main privileged conformation,
which is crucial for its function. However, every protein during its time evolution
explores a much larger part of the conformational space. The most stable
conformations visited by the protein can be experimentally captured by the
NMR technique; this is because the hydrogen atoms are already included in the
atomic model, thus giving less ambiguities in the charge assignment.

Recognising a protein from an ensemble of geometries corresponding to
the different conformations it can assume means capturing the features that
are unique to it and is a fundamental step from the structural bioinformatics
viewpoint. It is preliminary to the definition of a geometry-based notion of
similarity, and, subsequently, complementarity, between proteins. From the
application standpoint, the identification of characteristic features can point to
protein functional regions and to new target sites for blocking the activity of
pathological proteins in the drug discovery field. These features can become more
specific if one adds to the geometry of the molecular surface also the information
related to the main physicochemical descriptors, such as local electrostatic
potential [34], residue hydrophobicity [23], and the location of hydrogen bond
donors and acceptors [21].

The aim of this track is to evaluate the performance of retrieval and
classification of computational methods for protein surfaces characterized by
physicochemical properties. Starting from a set of protein structures in different
conformational states generated via NMR experiments and deposited in the
PDB repository [2], we build their Solvent Excluded Surface (SES) by the
freely available software NanoShaper [9, 10]. Differently from previous SHREC
tracks [24, 25, 26, 38] we enrich the protein SES triangulations with scalar fields
representing physicochemical properties, evaluated at the surface vertices.

The remainder of this paper is organized as follows. Section VI.2 overviews
the previous benchmarks that were aimed at protein shape retrieval aspects.
Then, in Section VI.3 we detail the dataset, the ground truth and the retrieval
and classification metrics used in the contest. The methods submitted for
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evaluation to this SHREC are detailed in Section VI.4, while their retrieval and
classification performances are presented in Section VI.5. Finally, discussions
and concluding remarks are in Section VI.6.

VI.2 Related benchmarks

The interest of recognising proteins and other biomolecules solely based on their
structure is a lively challenge in biology and the scientific literature is seeing the
rise of datasets and methods for surface-based retrieval of proteins. The Protein
Data Bank (PDB) repository [2] is the most widely known public repository
for experimentally determined protein and nucleic acid structures. The PDB
collects over 175, 000 biological macromolecular 3D structures of proteins, nucleic
acids, lipids, and corresponding complex assemblies. A rather small number of
proteins in the PDB dataset are captured with the NMR technique, which is very
favourable for characterizing the protein also with respect to physicochemical
properties. The PDB offers also a number of visualization tools of the contained
structures but is not intended to perform either sequence or structure similarity
tasks.

Previous benchmarks on protein retrieval based on the shape of their molecular
surfaces were provided within the SHape REtrieval Contest (SHREC). In these
cases, the molecular surfaces correspond to the protein solvent-excluded surface
as defined by Lee and Richards [31] and firstly implemented by Connolly [8].
To the best of our knowledge, the first contest on protein shape retrieval solely
based on molecular surfaces was launched in 2017 with 10 query models and a
dataset of 5, 854 proteins [38]. A second contest considered a dataset of 2, 267
protein structures, representing the conformational space of 107 proteins [25].
There, the task was to retrieve for each surface the other conformations of the
same protein from the whole dataset. In 2019, the SHREC track on protein
retrieval [24] envisioned the classification of 5, 298 surfaces representing the
conformational space of 211 individual proteins. The peculiarity of this contest
was in the classification of the dataset, which took into account two levels of
similarity. In addition to the mere retrieval of the different conformers of a
given protein, the evaluation also took into account the retrieval of orthologous
proteins (proteins having the same function in different organisms, e.g., human
and murine haemoglobin protein) based on their surfaces. Finally, in 2020 the
aim of the SHREC track on protein retrieval [26] moved to the retrieval of
related multi-domains protein surfaces. Similarly to the 2019 edition, a 2-level
classification (grouping different conformations of the same protein and grouping
orthologs together) of the dataset was considered; in contrast to previous years,
the 2020 edition included the evaluation of partial similarity, i.e., limited to
sub-regions or domains of the entire molecule, thus moving towards a problem
of partial correspondence between the proteins.

Compared to the 2019 track on protein retrieval, our benchmark differs in
multiple points:

• Our data set does not limit to geometric information, but takes also into
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account physicochemical properties. Moreover, the data set is already split
into a training set and a test set.

• The set of retrieval evaluation measures is considerably extended; a set of
classification measures is also introduced.

• We consider two novel ground truths, based on the domain of bioinformat-
ics.

VI.3 The benchmark

During years, we witness the consolidation of the idea that to have a more
satisfactory answer to the protein shape retrieval problem it is necessary to
combine geometry with patterns of chemical and geometric features [15]. For
this reason, we move from the previous SHREC experiences to build a dataset
equipped of both characteristics.

VI.3.1 The dataset

The dataset proposed for this challenge consists of 209 PDB entries, each
one containing a protein in different conformations experimentally determined
via NMR measurements. This leads to about 5, 000 surfaces, annotated with
physicochemical properties. Some example of proteins in different conformational
states are provided in Figure VI.1.

Figure VI.1: Example of 4 proteins in 4 different conformations (each row
identifies a protein). Visualization obtained by using MeshLab [7].
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Model surfaces were built starting from the PDB files of proteins used
in the 2019 SHREC track [24]. These proteins were experimentally captures
with the NMR technique and contain also orthologous structures thus making
possible to consider multiple levels of similarity. NMR structures natively
include hydrogen atoms, which do not need to be modelled. Importantly, these
structures encompass a number of energetically favourable conformations of the
same protein, representing important regions of the corresponding conformational
space. Each individual conformation structure was first separated into a unique
PDB file. Then, its molecular surface (MS) was calculated and triangulated by
means of the NanoShaper computational tool, choosing the Connolly Solvent
Excluded Surface model [8], and default parameters [9]. The vertices of the
triangulated surfaces were stored in OFF1 format.

Each surface model was accompanied by a file with physicochemical
information, in TXT format. Each row of the TXT file corresponds to a vertex
of the triangulation in the OFF file (in the same order); each row in the TXT file
contains the physicochemical properties evaluated at the corresponding vertex
in the OFF file. An example of protein surface equipped with physicochemical
properties is provided in Figure VI.2: more specifically, Figure VI.2(a) exhibits
the original triangulated surface, while Figures VI.2(b-d) represent the three
provided physicochemical properties as scalar values on the protein surface.

(a) (b) (c) (d)

Figure VI.2: Example of protein surface (a) equipped with different physico-
chemical properties: electrostatic potential (b), hydrophobicity (c) and presence
of hydrogen bond donors and acceptors (d). Visualization obtained by using
MeshLab [7].

The dataset has been subdivided into a training and a test set (in the
proportion of 70%-30%). The distribution of the number of conformations per
PDB through the training set and the test set is shown in Figure VI.3.

To enrich the MS information we used the electrostatic potential, which we
computed by solving the Poisson-Boltzmann equation (PBE) via the DelPhi
finite-differences-based solver [34, 40]. One of the essential ingredients for the
solution of the PBE is a good definition of the MS, which is used to separate the
high (solvent) from the low (solute) dielectric regions. In order to guarantee the
perfect consistency of the approach, we adopted a DelPhi version integrated with
NanoShaper [9], so as that the potential is evaluated on the same exact surface

1https://segeval.cs.princeton.edu/public/off_format.html
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Figure VI.3: Distribution of the number of conformations. The two histograms
show the distributions for the training set (left) and the test set (right).

that separates the solute from the solvent. Other necessary ingredients are atom
radii and partial charges, which have been assigned using the PDB2PQR tool
[20].

A different kind of additional information mapped on the MS was the
hydrophobicity [23] of the residues exposed to the solvent. In our setting,
we assign to each vertex of the MS the hydrophobicity of the residue of the
closest atom, on the basis of the scale given in [23]; this scale ranges from −4.5
(hydrophilic) to 4.5 (hydrophobic).

Lastly, we have computed the location of potential hydrogen bond donors
and acceptors in the MS. Firstly, vertices of the MS whose closest atom is a
polar hydrogen, a nitrogen or an oxygen were identified. Then, a value between
−1 (optimal position for a hydrogen bond acceptor) and 1 (optimal position
for a hydrogen bond donor) was assigned to such vertices depending on the
orientation between the corresponding heavy atoms (see [21]).

VI.3.2 The ground truth

The performances of the methods that participated to this SHREC contest are
evaluated on the basis of two classifications:

• PDB-based classification. In the dataset selected, there is a number of
entries having different PDB codes that contain the structures of the same
protein, possibly interacting with different molecules or having a limited
number of point mutations. In these cases it can be expected that the
specific condition in which the protein system has been observed impacts
on the identified conformations and on the corresponding physicochemical
properties. The first classification rewards the techniques that are
particularly good at spotting minor differences between similar candidates;
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in this classification, a class is made by all the conformations corresponding
to the same PDB code. For reference, we refer to this ground truth as
PDB-based classification.

• BLAST-based classification. Protein sequences fold into unique 3-
dimensional (3D) structures and proteins with similar sequences adopt
similar structures [35]. Therefore, on the basis of the similarity among
the amino acids sequences, we decided to relax the strict relationship that
two surfaces are similar only if they correspond to some conformation of
the same PDB code. This choice is based on observations coming from
the domain of bioinformatics, where a sequence similarity beyond a value
of about 30%, and of sufficient length, has a high likelihood of giving
rise to the same fold [35]. We derive a second classification and name it
BLAST-based classification, since BLASTP is the tool that we used to
perform the sequence alignment and to calculate the sequence similarity [5].
The BLAST-based classification represents a classification less fine than
the PDB-based one, because it is simply based on the similarity between
conformations; in this way, not only the different NMR conformations
found in the same PDB file, but also these of the same protein in different
PDB files or these pertaining to its mutated isoform(s) may be grouped
together. The BLAST-based classification presents four levels. In this
setting, two structures are:

– Extremely similar (similarity level 3), i.e. corresponding to the same
protein or very closely related protein isoforms: when they have a
sequence similarity greater than 95% on at least the 95% of both
sequences.

– Highly related (similarity level 2), i.e. they are expected to have
a similar fold as a whole or in a sub-domain (above what in the
bioinformatics jargon is called the “twilight zone"): when they have a
sequence similarity greater than 35% and at least 50 aligned residuals,
but they do not satisfy the conditions of the previous point.

– Similar (similarity level 1), i.e. loosely related proteins: when they
have a sequence similarity in [28%, 35%] and at least 50 aligned
residuals.

– Dissimilar (similarity level 0), i.e. unrelated proteins: when none of
the previous conditions holds.

To compare the performance of the methods that make use of the
physicochemical properties against the simple geometric models, we asked the
participants to perform two tasks:

Task A: only the OFF files of the models are considered (i.e. only the geometry
is considered);

Task B: in addition to the geometry, the participant is asked to also consider
the TXT files (physicochemical matching).
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For a given query, the goal of this SHREC track is twofold: for each Task (A
and B), to retrieve the most similar objects (retrieval problem) and to classify
the query itself (classification problem). The closeness of the retrieved structures
with the ground truth might be evaluated a-priori on the basis of their PDB
code or of their sequence similarity (4-level BLAST classification) [35].

Retrieval problem Each model is used as a query against the rest of the
dataset, with the goal of retrieving the most relevant surface. For the retrieval
problem, a dissimilarity 1, 543× 1, 543 matrix was required, each element (i, j)
recording the dissimilarity value between models i and j in the whole dataset.
The relevance with respect to the query of a retrieved surface is evaluated with
both the PDB and BLAST classifications previously described.

Classification problem PDB-based and BLAST-based classifications define
on the training and on the test sets a decomposition into subsets (that will be
referred as communities) consisting of conformations grouped together on the
basis of their similarity. The goal of the classification problem is to assign each
query of the test set to the correct community with respect to the decompositions
induced by the PDB-based and the BLAST-based classifications, respectively.

In the case of the PDB-based classification, each community consists of all
the conformations corresponding to the same PDB code.

In the case of the BLAST-based classification, different community decom-
positions are obtained depending on the choice of the previously described
similarity levels. For each level ` (with ` = 0, 1, 2, 3), it is possible to retrieve a
decomposition into communities referred as BLAST-based community decompo-
sition of level `. Independently from the chosen level `, each community of the
BLAST-based decomposition of level ` is an aggregation of communities induced
by the PDB-based classification.

Having fixed a level `, the communities of the BLAST-based decomposition
of level ` are computed as it follows. Let us consider a graph G` for which each
node represents a PDB-based community (i.e. models corresponding to the same
PDB code) and such that there exists an edge (u, v) whenever the structures
u and v have a similarity level greater than or equal to `. Moreover, each
edge (u, v) is endowed with a weight w(u, v) coinciding with the percentage of
sequence similarity between u and v. The clustering technique for retrieving the
BLAST-based decomposition of level ` adopts the following recursive strategy
which has been specifically designed for the considered framework but it is
inspired by classic methods for community detection [14]. Given G`, compute
the connected components of G` obtained after the removal the edge of G` of
minimum weight (and so representing a low similarity score between models). A
connected component C is declared a BLAST-based community of level ` if C is
a complete graph (i.e. given any two of its nodes there is an edge connecting
them). Otherwise, keep removing edges (prioritising the ones with the lowest
weight), compute the connected components and denote them as BLAST-based
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community of level ` whenever they are complete. The procedure ends when all
the nodes have been inserted in a community.

It is worth to be noticed that the completeness condition has been imposed
in order to obtain transitive BLAST-based communities. In this way, we have
the theoretical guarantee that any two structures belonging to the same BLAST-
based community of level ` have necessarily a similarity level greater than or
equal to `. Another relevant aspect to be mentioned is related to the fact that,
for ` = 3, the proposed algorithm does not remove any edge since the connected
components of the graph G` are already complete (see Figure VI.4). Trivially,
the same happens also for ` = 0 since the BLAST-based decomposition of level
0 produces just a unique “giant” community consisting of the entire dataset.
Finally, please notice that, by increasing the value `, one obtains BLAST-based
decompositions consisting of finer communities.

Figure VI.4: The graph G3 associated with the test set. Each node represents
a community induced by the PDB-based classification, while an edge between
two nodes occurs whenever the corresponding structures are extremely similar
(i.e. they have similarity level equal to 3). Since they are all complete graphs,
each connected component of G3 represents a community of the BLAST-based
decomposition of level 3.

Given the PDB and BLAST ground truth for the classification problem, the
classification performance of each run is obtained through the nearest neighbour
(1-NN) classifier derived from the dissimilarity matrices used in the retrieval
problem. For each run, the output consists of two classification arrays for the
test set, with 65 labels/communities for the PDB-based decomposition and with
31 labels/communities for the BLAST-based decomposition of level 3 (see Figure
VI.4). In these arrays, the element i is set to j if i is classified in class j (that is,
the nearest neighbour of the surface i belongs to class j).
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VI.3.3 Evaluation measures

We here presents the retrieval and classification evaluation measures that were
selected for this benchmark.

VI.3.3.1 Retrieval evaluation measures

3D retrieval evaluation has been carried out according to standard measures,
namely precision-recall curves, mean Average Precision (mAP), Nearest
Neighbour (NN), First Tier (1T), Second Tier (2T), Normalized Discounted
Cumulated Gain (NDCG) and Average Dynamic Recall (ADR) [1, 32, 39].

Precision-recall curves and mean average precision Precision and recall
measures are commonly used in information retrieval [32]. Precision is the
fraction of retrieved items that are relevant to the query. Recall is the fraction
of the items relevant to the query that are successfully retrieved. Being A the
set of relevant objects and B the set of retrieved object,

Precision = |A ∩B|
|B|

, Recall = |A ∩B|
|A|

.

Note that the two values always range from 0 to 1. For a visual interpretation of
these quantities we plot a curve in the reference frame recall vs. precision. We
can interpret the result as follows: the larger the area below such a curve, the
better the performance under examination. In particular, the precision-recall
plot of an ideal retrieval system would result in a constant curve equal to 1. As
a compact index of precision vs. recall, we consider the mean Average Precision
(mAP), which is the portion of area under a precision recall-curve: the mAP
value is always smaller or equal to 1.

e-Measure The e-Measure (eM) derives from the precision and recall values
for a pre-defined number of retrieved items (32 in our settings), [32, 37]. Given
the first 32 items for every query, the e-Measure is defined as e = 1

1
P + 1

R

, where
P and R represent the precision and recall values over them.

Nearest Neighbour, First Tier and Second Tier These evaluation measures
aim at checking the fraction of models in the query’s class also appearing
within the top k retrievals. Here, k can be 1, the size of the query’s class, or
the double size of the query’s class. Specifically, for a class with |C| mem-
bers, k = 1 for the Nearest Neighbour (NN), k = |C| − 1 for the First Tier
(1T), and k = 2(|C| − 1) for the Second Tier (2T). Note that all these values
necessarily range from 0 to 1. In our this contest, we estimate the NN, FT,
ST, and e values using the tools provided in the Princeton Shape Benchmark [37].
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Average dynamic recall The idea is to measure how many of the items that
should have appeared before or at a given position in the result list actually have
appeared. The Average Dynamic Recall (ADR) at a given position averages this
measure up to that position. Precisely, we adapt the definition of the ADR to
our four level BLAST classification, slightly modifying the definition used in
previous datasets equipped with a multi-level classification, such as [3, 4]. For a
given query let A be the extremely similar (SR) items, B the set of highly related
(HR) items, and let C be the set of similar (MR) items. Obviously A ⊆ B ⊆ C.
The ADR is computed as:

ADR = 1
|C|

|C|∑
i=1

ri,

where ri is defined as:

ri =


|{SR items in the first i retrieved items}|

i
, if i ≤ |A|;

|{HR items in the first i retrieved items}|
i

, if |A| < i ≤ |B|;
|{MR items in the first i retrieved items}|

i
, if i > |B|.

Normalized discounted cumulated gain For its definition we assume that
items with highest similarity score according to the BLAST classification are
more useful if appearing earlier in a search engine result list (i.e. are first ranked);
and, the higher their level of similarity (extremely similar, highly related, similar
and dissimilar) the higher their contribution, and therefore their gain. As
a preliminary concept we introduce the Discounted Cumulated Gain (DCG).
Precisely, the DCG at a position p is defined as:

DCGp = rel1 +
p∑
i=2

reli
log2(i) ,

with reli the graded relevance of the result at position i. Obviously, the DCG
is query-dependent. To overcome this problem, we normalize the DCG to get
the Normalized Discounted Cumulated Gain (NDCG). This is done by sorting
elements of a retrieval list by relevance, producing the maximum possible DCG
till position p, also called ideal DCG (IDCG) till that position. For a query, the
NDCG is computed as

NDCGp = DCGp
IDCGp

.

It follows that, for an ideal retrieval system, we would have NDCGp = 1 for all
p.

VI.3.3.2 Classification performance measures.

A set of popular performance metrics in statistical classification is derived by
the so-called confusion matrix [22]. A confusion matrix is a square matrix
whose order equals the number of classes in the dataset (in our case, in the test
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set). The diagonal element CM(i, i) gives the number of items (i.e. molecular
surfaces, in our context) which have been correctly predicted as elements of class
i. On the contrary, off-diagonal elements count items that are mislabeled by the
classifier: in other words, CM(i, j), with j 6= i, represents the number of items
wrongly labeled as belonging to class j rather than to class i. The classification
matrix CM of an ideal classification system is a diagonal matrix, so that no
misclassification occurs.

Sensitivity and specificity These statistical measures are among the most
widely used in diagnostic test performance. Sensitivity, also called True Positive
Rate (TPR), measures the proportion of positives which are correctly identified
as such (e.g., the percentage of dogs correctly classified as dogs). Specificity,
or True Negative Rate (TNR), measures the proportion of negatives which are
correctly identified as such (e.g., the percentage of non-dogs correctly classified
as non-dogs). A perfect classifier is 100% sensitive and 100% specific.

Positive and negative predicted values Specificity and sensitivity tell how
well a classifier can identify true positives and negatives. But what is the
likelihood that a test result is a true positive (or true negative) rather than a
false-positive (or a false-negative)? Positive Predictive Rate (TPR) measures
the proportion of true positives among all those items classified as positives.
Similarly, Negative Predictive Rate (NPR) measures the proportion of true
negatives among all those items classified as negatives.

Accuracy This metric measures how often the classifier is correct: it is the
ratio of the total number of correct predictions to the total number of predictions.

F1 score It takes into account both PPV and TPR, by computing their
harmonic mean: this allows to consider both false positive and false negatives.
Therefore, it performs well on an imbalanced dataset.

VI.4 Description of methods

Eight groups from five different countries registered to this track. Five of them
proceeded with the submission of their results. Each participant was allowed
to send us up to three runs for each task, in the form of a dissimilarity matrix
per run. All but one submitted three runs per task; one participant delivered
three runs for Task A and one for Task B. Overall, Task A has gathered 15 runs,
while Task B has 13 runs.

In the following, we will denote the methods proposed by the five participants
as P1, P2, . . . , P5.

194



Description of methods

Specifically,

• method P1 has been proposed by Andrea Giachetti;

• method P2 has been proposed by Tunde Aderinwale, Charles Christoffer,
Woong-Hee Shin, and Daisuke Kihara;

• method P3 has been proposed by Yonghuai Liu, Ekpo Otu, Reyer
Zwiggelaar, and David Hunter;

• method P4 has been proposed by Evangelia I. Zacharaki, Eleftheria Psatha,
Dimitrios Laskos, Gerasimos Arvanitis, and Konstantinos Moustakas;

• method P5 has been proposed by Huu-Nghia Nguyen, Tuan-Duy Nguyen,
Vinh-Thuyen Nguyen-Truong, Danh Le-Thanh, Hai-Dang Nguyen, and
Minh-Triet Tran.

Lastly, Andrea Raffo, Ulderico Fugacci, Silvia Biasotti, and Walter Rocchia have
been the organizers of the SHREC 2021 track on retrieval and classification of
protein surfaces on the basis of their geometry and physicochemical properties.

The remaining part of this section is devoted to describe in detail the five
proposed methods.

VI.4.1 P1: Joint histograms of curvatures, local properties and
area projection transform

VI.4.1.1 Adopted descriptors and overall strategy

The proposed approach is based on the estimation of simple surface- and volume-
based shape descriptors, and on their joining with the local surface properties.
In a previous contest [17], it has been shown that simple joint (2D) histograms of
min/max curvatures (JHC) are extremely effective in characterizing patterns of
elements with approximate spherical symmetry and variable size. On the other
hand, in a past contest on protein retrieval [24], we used a volumetric descriptor
called the Histograms of Area Projection Transform (HAPT) [16] to characterize
radial symmetries at different scales providing good results.

In method P1, we tested both descriptors and their combination to evaluate
the similarity of the shapes included in the test dataset. Furthermore, having
the local information on the physicochemical properties, we can improve the
characterization creating joint (3D) histograms counting elements with selected
properties in a space characterized by 2 curvature axes and a “property”
dimension. Finally, having a labelled dataset, we evaluated the possibility
of applying to the descriptor a trained dimensionality reduction based on Linear
Discriminant Analysis, e.g., projecting the high-dimensional joint histogram
descriptors onto a lower dimensional space maximizing the separation of the
training set classes.

A visual description of the pipeline adopted in method P1 is depicted in
Figure VI.5.
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Figure VI.5: A graphical representation of the strategy adopted by group P1 to
obtain untrained and trained descriptors. Joint histograms are obtained from
the surface-based descriptors, shape only (principal curvature) and attributes
(labels derived from K-means clustering of the provided vectors, K = 50).
Simple histograms are obtained from the volumetric symmetry descriptor (APT).
Histograms are concatenated in different ways to obtain the different descriptors
compared with the Jeffrey Divergence. Trained descriptors are obtained by
estimating LDA mappings of the descriptors of the training set shapes with
known labels. The mappings are used to perform dimensionality reduction on
the test set elements.

VI.4.1.2 Task A

Joint Histograms of Curvature A basic technique to distinguish surfaces
endowed with multiple spherical bumps is to measure curvature values. Minimum
and maximum curvatures have been estimated on the mesh vertices at two
different scales. The ranges of min curvature and max curvature have been
subdivided in 10 bins estimating the joint histogram (size 100). Concatenating
the two joint histograms corresponding to the two smoothing levels a final
descriptor with 200 elements is obtained. Histograms are compared with Jeffrey
divergence [29] to obtain dissimilarity matrices.

Histograms of Area Projection Transform For the mathematical formulation
of the technique please refer to the original paper [16]. In a few words, the
internal part of the shape is discretized on a regular grid and for each voxel
and for a set of discrete radius values r, it is counted how much of the object
surface can be considered approximately part of a sphere of radius r centered in
the voxel. Looking at some example protein shapes, we decided to apply the
technique with voxel size 0.3 and 9 values of r ranging from 0.6 to 3.0 with
step 0.3. Then, we binarized the histograms with 12 bins and concatenated the
histograms computed at the 9 scales. This resulted in a HAPT descriptor with
108 elements which have been finally concatenated into a 308-element shape
descriptor capturing the distribution of curvatures on the surface and radial
symmetry inside the volume. The Jeffrey divergence [29] was used to obtain
from them the dissimilarity matrices.
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Trained descriptors As the data comes with a labelled training set, it is
possible to use it to train the dissimilarity metric to maximally separate
elements with different labels. This has been achieved by using the Fisher’s
Linear Discriminant Analysis [13], projecting the original descriptor onto a
C − 1 dimensional space (where C is the number of classes in the training set)
maximizing the ratio of the variance between the classes to the variance within
the classes. LDA mapping for high-dimensional descriptors has been trained on
the training set and used on the test data to evaluate the effectiveness of the
approach.

For Task A, three different runs adopting method P1 and generated as it
follows have been proposed.

• Run 1 (JHC): generated by the Joint Histograms of Curvature (two
different levels of smoothing) compared with the Jeffrey divergence.

• Run 2 (JHC_HAPT): generated by concatenating Joint Histograms of
Curvature and Histograms of Area Projection Transform compared with
Jeffrey divergence.

• Run 3 (JHC_HAPT_LDA): generated by concatenating JHC and
HAPT descriptors mapped with trained LDA projection.

VI.4.1.3 Task B

In method P1, we did not use any prior related to the knowledge of the meaning
of the attributes associated with the mesh vertices and we just considered them
as generic components of a 3D feature space. The adopted strategy has been to
partition this feature space in a set of regions, and estimating for each model
histograms counting the number of vertices with features falling in each region.
To determine a reasonable partitioning, we just applied K-means clustering
with K = 50 to the all the dataset vertex attributes and extract corresponding
Voronoi cells. Using 50 cells, a 50-elements histogram to describe shape features
is retrieved. Joining the attribute dimension to the two curvature dimensions, a
3D joint histogram per vertex with 10× 10× 50 = 5, 000 elements is obtained.
These Joint Histograms of Curvatures and Attributes JHCA can be directly
compared with the Jeffrey divergence. However, we also tested the combination
of JHCA with HAPT and the LDA-based dimensionality reduction.

For Task B, three different runs adopting method P1 and generated as it
follows have been proposed.

• Run 1 (JHCA): generated by the Joint Histograms of Curvature (single
smoothing level) and Attributes (50 centroids) compared with the Jeffrey
divergence.

• Run 2 (JHCA_HAPT): generated by concatenating Joint Histograms
of Curvature and Attributes and Histograms of Area Projection Transform
compared with Jeffrey divergence.
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• Run 3 (JHCA_HAPT_LDA): generated by concatenating JHCA and
HAPT descriptors mapped with trained LDA projection.

VI.4.1.4 Computational aspects

Experiments have been perfomed on a laptop with an Intel®CoreTM i7-9750H
CPU running Ubuntu Linux 18.04. The estimation of the descriptors JHC and
JHCA took on average 1.5 seconds per model using Matlab code, while the
estimation of the HAPT descriptor took on average 15 seconds. Other required
operations included: the descriptor comparison whose computation time was
negligible; the training of the dissimilarity metric and the LDA mapping both
implemented using Matlab and requiring 1 minute in the worst case and 0.1
seconds, respectively; the partitioning based on K-means clustering whose took
approximately 30 minutes.

VI.4.2 P2: 3D Zernike descriptor

VI.4.2.1 Adopted descriptors and overall strategy

The approach adopted in method P2 is based on the 3D Zernike Descriptor
(3DZD). 3DZD is a rotation-invariant shape descriptor derived from the
coefficients of 3D Zernike-Canterakis polynomials [6].

3DZD descriptors are adopted as input of a neural network which will return
a prediction of the similarity between any pair of proteins. In a nutshell, neural
networks (NN) are a class of tools enabling the estimation of a desired function
(in the current case, the similarity between proteins) inspired by the biology
of a brain. NNs can be are typically represented by a directed weighted
graph consisting of nodes, called neurons and subdivided into layers, and edges
connecting neurons of different layers. In a NN, the leftmost layer consists of the
so-called input neurons, while the rightmost nodes are called output neurons. In
between, there are the hidden layers. In case a NN has at least two hidden layers,
it is called a deep neural network. Each neuron of a layer takes a series of inputs,
depending on the edges pointing to it, and transmits an activation value by the
edges linking the considered node to a different neuron multiplying this value by
the weight of the edge. Input neurons receive the features of the input variables
and pass them to the next layers while, the activation values of output neurons
will form the output of the NN. The desired function is obtained through a
training process of the NN in which the weights are attained minimizing a loss
function.

We trained two types of neural network, visually depicted in Figure VI.6, to
output a score that measures the dissimilarity between a pair of protein shapes,
encoded via the 3DZDs.

• The first framework (Extractor model) was previously used in a SHREC
track on multi-domain protein shape retrieval, see [26]. The network is
structured into multiple layers: an encoder layer, which converts 3DZD
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Figure VI.6: A graphical representation of the two types of neural network
adopted in method P2 to measure the dissimilarity of protein shapes encoded
via the 3DZDs. The Extractor and the EndtoEnd models differ by presence of
the feature comparator layer (depicted inside the blue square brackets).

to a vector of 150 features, has 3 hidden units of size 250, 200, and 150,
respectively; a feature comparator layer that computes the Euclidean
distance, the cosine distance, the element-wise absolute difference, and
product; and a fully connected layer with 2 hidden units of size 100 and
50, respectively. There are multiple hidden units in each layer. The ReLU
activation function is used in all layers, except for the output of the fully
connected layer where the sigmoid activation function has been preferred,
This choice allows to interpret the output as the probability, for any pair
of proteins, to be in the same class.

• The second framework (EndtoEnd model) is similar to the first one, except
for the removal of the feature comparator layer. The output of the encoder
layer directly flows into the fully connected layer and the network is trained
end-to-end.

The network was trained on the training set of 3, 585 protein structures that was
provided by the organizers. The training set was further split into a training
set and a validation set, by using respectively 80% and 20% of data (i.e. 2, 868
conformations for training and the remaining 717 for validation). From the
717× 717 classification matrix of the validation set, 10, 436 protein pairs were
extracted for the purpose of network validation.

A third attempt is made via a simple Euclidean model, where the Euclidean
distance between pairs of proteins has been computed directly from the generated
3DZD of the pairs.

VI.4.2.2 Task A

The performance of the networks on the validation set was used to determine
models to use for inference on the test set. Training for Task A was performed
on the 3DZDs of shape files only.
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For Task A, three different runs adopting method P2 and generated as it
follows have been proposed.

• Run 1 (extractor): generated by the Extractor model.

• Run 2 (extractor_e2e): generated by the average between Extractor
and EndtoEnd models.

• Run 3 (extractor_eucl): generated by the average between Extractor
and Euclidean models.

VI.4.2.3 Task B

As for Task A, model selection was carried out on the validation set. Training
was performed on input files that concatenate 3DZD of shape with 3DZDs of
the three physicochemical properties.

For Task B, three different runs adopting method P2 and generated as it
follows have been proposed.

• Run 1 (extractor): generated by the Extractor model.

• Run 2 (extractor_e2e): generated by the average between Extractor
and EndtoEnd models.

• Run 3 (extractor_e2e_eucl): generated by the average between
Extractor, EndtoEnd, and Euclidean models.

VI.4.2.4 Computational aspects

For each protein in the dataset, we performed some pre-processing step to convert
the OFF and TXT files provided by the organizers. The mesh and property files
were converted to a volumetric skin representation (the Situs file) where points
within 1.7 grid intervals were assigned with values interpolated from the mesh
[36]. For the electrostatic features, the interpolated values were the potentials at
the mesh vertices. For the shape features, a constant value of 1 was assigned to
grids which overlap with the surface. The resulting Situs files were then fed into
the EM-Surfer pipeline [11] to compute 3DZD. It took approximately 12− 13
minutes to pre-process each file. Generating the 3DZD descriptors took averagely
8 seconds for each protein on an Intel®Xeon®CPU E5-2630 0 @ 2.30GHz.

For Task A, training the extractor model took averagely 6 hours and the
EndtoEnd model took about 11 hours. For Task B, training the extractor
model took about 9 hours and approximately 14 hours for the EndtoEnd model.
Training was performed on a Quadro RTX 800 GPU.

The 3DZD model took averagely 0.22 seconds to predict the dissimilarity
between two proteins, using TitanX GPU. The Euclidean model took averagely
0.17 seconds per prediction. Finally, the averaging of the three matrices was
virtually instant and negligible.
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VI.4.3 P3: Hybrid Augmented Point Pair Signatures and Histogram
of Processed Physicochemical Properties of Protein
molecules

VI.4.3.1 Adopted descriptors and overall strategy

Considering the twofold nature of this challenge, in P3 we adopted two separate
retrieval strategies for the two different tasks. For Task A, we used the Hybrid
Augmented Point Pair Signature (HAPPS) [27], a 3D geometric shape descriptor.
For Task B, we adopted the Histogram of Processed Physicochemical Properties of
Protein molecules descriptor following an Exploratory Data Analysis (HP4-EDA).
Both the strategies rely on traditionally hand-crafted feature extraction from
the respective datasets, using the knowledge-based approach (i.e. non-learning
nor data-driven approach).

The goal of the proposed methods (HAPPS and HP4-EDA) is to provide
simple, efficient, robust and compact representations, describing both the 3D
geometry and physicochemical properties of protein surfaces, using statistically-
based descriptors. Visual descriptions of the pipelines adopted in method P3 for
Tasks A and B are depicted in Figures VI.7 and VI.8, respectively.

Figure VI.7: A graphical representation of the strategy adopted in method P3
for Task A.

VI.4.3.2 Task A

Each 3D geometrical protein surface in this challenge contains an average of
35, 000 vertices and 70, 000 triangular faces. The HAPPS method (first introduced
in [27]) involves a combination of local and global descriptors. Specifically, the
Augmented Point Pair Feature Descriptor (APPFD), and the Histogram of Global
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Figure VI.8: A graphical representation of the strategy adopted in method P3
for Task B.

Distances (HoGD). The proposed HAPPS method is particularly interested in
providing a robust, compact, and accurate representation of protein structures
with as low as N points (i.e., [N × 3]) sampled from the triangular mesh surface
of each input protein model, where N = 3, 500 and N = 4, 500.

Histogram of Global Distances (HoGD) This descriptor involves binning a
set of normalized vectors δi = ‖Pc − pi‖ between the centroid Pc of a given 3D
object to all other points, pi on its surface into a 1D histogram with

√
P ≈ 65

bins, normalized to give HoGD, following some pre-processing steps, where
pi ∈ P and P is a 3D point cloud object, with a number of points, N = 3, 500
or N = 4, 500. Such normalized vectors δi are regarded as global features whose
distribution (histogram) is capable of expressing the configuration of the entire
shape relative to its centroid, and is a rich description of the global structure of
the shape. Pre-processing also involves applying uniform scale, S in all direction
to all points in P , such that the root mean square (RMS) distance of each point
to the origin is 1, and centering P on its centroid, i.e. P = pi − Pc.

Augmented Point Pair Feature Descriptor (APPFD) The APPFD describes
the local geometry around a point, pi = [pix, piy, piz] in P . Its computation
involves a 5-step process: (i) pointcloud sampling and normals estimation; (ii)
keypoint, pki determination; (iii) local surface region (i.e. LSP), Pi selection;
(iv) Augmented Point Pair Feature (APPF) extraction per LSP; (v) bucketing
of locally extracted 6-dimensional APPF into a multi-dimensional histogram,
with the number of bins, bAPPFD = 8 in each feature-dimension which is then
flattened and normalised to give 86 = 262, 144-dimensional single local descriptor
(APPFD) per 3D shape.

Finally, HoGD is combined with APPFD to give HAPPS, with a final feature
vector of dimension 262, 144 + 65 = 262, 209 (see Figure VI.7). For more details
regarding the HoGD, APPFD and HAPPS algorithms, the reader is referred
to [26, 27].

The APPFD is characterised by four key parameters, which are r, vs, bAPPFD,
andN . r is the radius value used by the nearest-neighbour algorithm to determine
the number of points in a LSP, and is directly proportional to the size of LSP. The
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voxel-size parameter, vs determines the size (big or small) of an occupied voxel-
grid by the pointcloud down-sampling algorithm [42]. It is inversely proportional
to the number of sub-sampled points (used as keypoints). r and vs influence the
overall performances of the APPFD/HAPPS.

For Task A, three different runs adopting method P3 and generated as it
follows varying the values of r, vs, and N have been proposed.

• Run 1 (HAPPS): generated by choosing r = 0.40, vs = 0.20, and
N = 4, 500.

• Run 2 (HAPPS): generated by choosing r = 0.50, vs = 0.30, and
N = 4, 500.

• Run 3 (HAPPS): generated by choosing r = 0.50, vs = 0.30, and
N = 3, 500.

Parameters bAPPFD = 8 and bHoGD = 65 remained the same for all three
runs. Overall, the Cosine distance metric between final vectors gave good
approximation of the similarity between the HAPPS for Task A datasets.

VI.4.3.3 Task B

The HP4-EDA method involves a descriptive statistics (DS) of the 3-dimensional
physicochemical variables or properties, following exploratory data analysis
(EDA) of each of these properties.

Let the three physicochemical properties of the dataset in Task B be denoted
as f1, f2, and f3, for Electrostatic Potential, Hydrophobicity, and Position of
potential hydrogen bond donors and acceptors, respectively. First, we carried out
an in-depth EDA of the physicochemical properties to investigate their values
distribution, followed by data pre-processing (majorly outliers detection and
removal). Next, we investigated the performances of combining some DS, such as
the mean, variance, first and third interquartile values, and correlation coefficients
between these variables as a final descriptor, including the construction of
histograms of these variables, post-processing (see Figure VI.8).

Outliers detection and removal Considering that the presence of outliers
would adversely affect the performance of any retrieval system, we checked for the
presence of outliers in each of f1, f2, and f3. Unlike f2, the f1 and f3 variables
contain lots of outliers with f3 having almost negligible amount of useful data.
Empirically, the presence of outliers in a distribution may not necessarily make
the observation a “bad data”. For outliers detection and removal, we adopted the
Interquartile Range (IQR) Score, represented by the formula IQR = Q3 −Q1,
which is a measure of statistical dispersion calculated as the difference between
lower (Q1) and upper (Q3) percentiles. Here, any observation that is not in the
range of (Q1 − 1.5IQR) and (Q3 + 1.5IQR) is an outlier, and can be removed.
We further investigated the effect of using Q1 = 10th or 25th, and Q3 = 75th or
90th and recorded better performances with the later option where Q1 = 10th
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and Q3 = 90th for the training set, which parameter settings were also applied
to the test data.

For Task B, three different runs adopting method P3 and generated as
it follows by applying statistical description techniques for the extraction of
statistical features and/or construction of final descriptors from the pre-processed
data have been proposed.

• Run 1 (HP4-EDA): generated by binning each pre-processed physic-
ochemical variable into a 1D histogram (using 150 bins) and combining
the final histograms as the final descriptor for each input physicochemical
surface where matching between two descriptors is done using the Earth
Mover’s Distance (EMD) metric.

• Run 2 (HP4-EDA): generated by binning each of the pre-processed
values of f1, f2, and f3 into a multi-dimensional histogram, with 5 bins
in each feature dimension, where the flattened and normalised histogram
frequencies represent the final descriptor for a single input data and
descriptors are matched using the Kullback Liebner Divergence (KLD)
metric.

• Run 3 (HP4-EDA): generated by first normalizing each of the feature
(variable) dimensions or columns, and selecting their mean, variance,
Q1, Q3, and some correlation coefficient values between f1, f2, and f3
to represent a single input physicochemical surface, with a total of 14-
dimensional feature vector, and combining the outcome of Run 1 to have
a feature vector of dimension 14 + (150 × 3) = 464 as a final descriptor
representing a single input.

VI.4.3.4 Computational aspects

For Task A, the HAPPS method has been implemented in Python 3.6 and all
experiments have been carried out under Windows 7 desktop PC with Intel
Core i7-4790 CPU @ 3.60GHz, 32GB RAM. It took on average, 0.3 and 20.0
seconds to sample point cloud and estimate normals from 3D mesh, and extract
features and compute HAPPS, respectively. Matching 1, 543× 1, 543 testing set
HAPPS descriptors took 3, 212.3 seconds using the Cosine metric, which implies
an average of 2.1 seconds to match any two HAPPS.

For Task B, the HP4-EDA method has been implemented in Python 3.6
and all experimental run have been performed on 64-bit Windows 10 notebook,
Intel Core(TM) i3-5157U CPU @ 2.50GHz, 8GB RAM. The extraction of the
features and the computation of the HP4-EDA descriptors took an average
of 0.01 seconds. Additionally, it took 322.5 seconds to match 1, 543 × 1, 543
HP4-EDA descriptors for the testing dataset with both the EMD and KLD
distance metrics, an average of 0.2 seconds to match two HP4-EDAs.

VI.4.4 P4: Global and Local Feature (GLoFe) fit
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VI.4.4.1 Adopted descriptors and overall strategy

The strategy adopted in method P4 is based on a direct approach. Depending
on the track, a collection of local and global features have been calculated. For
each feature vector f , a dissimilarity matrix df has been computed, while their
weighted combination produced the total dissimilarity matrix. The pipeline of
the adopted strategy is depicted in Figure VI.9.

Figure VI.9: Processing pipeline of the strategy adopted in method P4. It
includes extraction of multiple global and local shape descriptors, non-linear
dimensionality reduction (NL-DR), calculation of pairwise distances, and fusion
of the obtained dissimilarity matrices.

The features used for Task A have been 3D shape descriptors from surface
unfolding, a shape index describing local curvature, the volume of each protein,
and the size of an encompassing bounding box. Differently, the ones taken
into account for Task B have been global histogram characteristics of the three
provided physicochemical properties.

Using the Euclidean distance normalized by the standard deviation, we
calculated the matrices df that indicate the pairwise distance between pairs of
observations, for each geometric or physicochemical feature f . For some of them,
we slightly modified the distance value by examining the inverse consistency
of mapping. Specifically, for each protein structure j, we identified the first
k-Nearest Neighbours, i.e. k ∈ N(j), where N denotes the set of neighbours.
For each k, we examined whether j ∈ N(k). If true, the forward and inverse
retrieval was consistent, thus the certainty in estimation of pairwise similarity
between j and k was considered high. In this case, we increased by a factor,
α, the dissimilarity value in d(j, k). The values used in the experiments were
|N | = 5 for both forward and inverse mapping and α = 0.3. The final distance
matrix d was constructed from a linear combination of the individual dissimilarity
matrices, i.e. d =

∑
wf · df . where wf is a weight determining the contribution
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of each feature f . The weights have been empirically estimated by optimizing
the classification performance on the training set.

The classification performance was assessed on the training set in order to
allow the optimization of the several (hyper)parameters of the methodology.
As evaluation criterion, the percentage of proteins for which the first (or
correspondingly the second) closest neighbour belonged to the same class has
been adopted.

VI.4.4.2 Task A

For Task A, four local and global geometric features have been extracted.

3D shape descriptors from surface unfolding In order to remove translation
and rotation differences across the protein structures, for each data matrix V (j)

associated with protein j, we performed Principal Component Analysis (PCA)
on the mean centered data and replace them by their projection in the principal
component space. This results in globally normalized surface data. Since the
vertex coordinates belong to 2D surfaces lying in the 3D space, a dimensionality
reduction technique to “unfold” the manifold and embed into a 2-dimensional
space has been applied. For this purpose, we used Locality Preserving Projections
(LPP) [18] due to the algorithm’s stability, high performance, and mainly its
capability to preserve local (neighbourhood) structure. The embedded data Y (j)

were calculated as Y (j) = V (j) ·W (j) where W (j) is the transformation matrix
that maps the set of vertices of protein j from R3 to R2. Scores in Y (j) cannot
be directly used for protein retrieval because of their high number and variable
length across structures. Thus, we used as data representation the multi-variate
kernel density estimate, pY (j) ∈ Rb1×b2 , where b1 and b2 are the number of bins
(common for all proteins) for the two columns of Y (j), respectively. Then, since
the obtained kernel density maps were sometimes anti-symmetric, we augmented
the whole dataset by horizontally and vertically flipping pY (j) resulting in 4
replicates for each protein. Finally, the 4 replicates of pY (j) for all proteins were
linearized and concatenated in a big data matrix, in order to learn the manifold
of different proteins and their conformations. The non-linear dimensionality
reduction technique t-distributed Stochastic Neighbour Embedding (t-SNE) [19]
was used to calculate 5 scores that model each protein structure in the lower
dimensional space by retaining data similarity as much as possible. For indexing
purposes, the distance of protein structure j to some other protein structure was
defined as the smallest distance across the 4 replicates.

Shape index The third incorporated geometric feature is the shape index
which was part of the first pre-processing phase of MaSIF [15], a network that
combines geometric and physicochemical properties into a single descriptor. The
shape index describes the shape of the surface around each vertex with respect
to the local curvature, which is calculated in a neighbourhood of geodesic radius
12Å around it. The proposed neighbourhood size was chosen empirically. The
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shape index of vi is defined according to

2
π

tan−1
(k1 + k2

k1 − k2

)
where k1, k2 (with k1 ≥ k2) are the principal curvature values in vi’s
neighbourhood. High shape index values imply that vi’s neighbourhood is
highly convex while lower values indicate that is highly concave.

Volume Since the volume of a protein does not significantly change when
the protein obtains a different conformation, it has been also used as a feature.
Although this feature helps to reduce some possible matches, it has low specificity
because the range of volumes across different protein classes overlaps for many
of them. Moreover, volume cannot be accurately calculated for the very few
protein structures which contain holes.

Global scale In order to characterize global scale of the protein, we fitted a
bounding box on the protein surface defined by 8 vertices in the 3D space. We
used as global scale descriptor the 3 eigenvalues of the square matrix produced
by multiplying the 8× 1 vector by its transpose.

For Task A, three different runs adopting method P4 and generated as it
follows by a linear combination of the individual dissimilarity matrices of four
separate geometric descriptors with weights have been proposed. Specifically, w1,
w2, w3, and w4 refer to unfolded surface, volume, shape index, and bounding
box, respectively.

• Run 1 (GLoFe): generated by choosing w1 = 0.22, w2 = 0.67, w3 = 0.055,
w4 = 0.055.

• Run 2 (GLoFe): generated by choosing w1 = 0.22, w2 = 0.67, w3 = 0.055,
w4 = 0.055 (without using inverse consistency).

• Run 3 (GLoFe): generated by choosing w1 = 0.25, w2 = 0.725, w3 = 0,
w4 = 0.025 (without using inverse consistency).

VI.4.4.3 Task B

For each of the three provided physicochemical properties, we extracted global
histogram characteristics (first order statistics) that included mean intensity,
standard deviation, mode of histogram (i.e. the most frequent intensity value),
kurtosis, skewness, and energy. These six features for each of the three
physicochemical properties provide global information on the distribution of
gray-level intensities. Among these 18 features, the mode for the location of
hydrogen bond donors and acceptors assumes the same value for all proteins and
so it has been discarded. Differently, the remaining features has been merged
into a 17-dimensional vector for each protein.

For Task B, three different runs adopting method P4 and generated as it
follows by a linear combination of the geometric and physicochemical dissimilarity
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matrices with weights have been proposed. Specifically, w5 refers to the
physicochemical dissimilarity matrix and w6 to the geometric dissimilarity matrix
produced by the corresponding run of Task A.

• Run 1 (GLoFe): generated by choosing w5 = 0.065, w6 = 0.935
(geometric dissimilarity matrix produced by Run 1 in Task A).

• Run 2 (GLoFe): generated by choosing w5 = 0.065, w6 = 0.935
(geometric dissimilarity matrix produced by Run 2 in Task A).

• Run 3 (GLoFe): generated by choosing w5 = 0.075, w6 = 0.925
(geometric dissimilarity matrix produced by Run 3 in Task A).

VI.4.4.4 Computational aspects

The experiments on both tracks have been carried out using an AMD Ryzen 7
3700X 8-core Processor @3.59 GHz PC with 16 GB of RAM, except from the
extraction of the surface unfolding and the physicochemical features which have
been carried out using an Intel i5-6402P @2.80 GHz CPU with 8 GB of RAM.
The software has been written in Matlab 2019b.

The total time required for obtaining the results for each task in the test
set is indicated in Table VI.1. In addition, an exhaustive search procedure
(requiring 54 minutes) was followed to optimize the weights for fusion of the
different dissimilarity matrices based on the training set. Notice that the total
inference cost (illustrated in Table VI.1) corresponds to the time aggregated
due to sequential calculation of the different feature sets, whereas with a multi-
threaded implementation it is reasonable to expect that the total computational
time would be significantly decreased.

Table VI.1: Computational times required for Tasks A and B by method P4.
Task Time (mins)

A

Surface unfolding
ntestS = 1, 543 986
ntrainS = 3, 585 2,290
Augment & DR 83

Volume 961
Shape index 85
Global scale 284

Dissimilarity matrix calculation 0.005
Total time 4,689

B
Physicochemical features 1

Dissimilarity matrix calculation 0.001
Total time 4,690

VI.4.5 P5: Message-Passing Graph Convolutional Neural Networks
(MPGCNNs) and PointNet

VI.4.5.1 Adopted descriptors and overall strategy

For the meshes in each 3D model of a protein surface, in method P5 we first
sampled 512 points on the surfaces of the meshes based on the area of the
meshes. Because a sampled point might not be an original vertex in the 3D
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meshes, the original physical and chemical properties are not valid for newly
sampled points. To generate physical and chemical properties for a sampled
point p, trilinear interpolation has been performed from the properties of the
three vertices forming the face that p is on. Then, to re-assign the topological
structures for sampled points, each node has been connected with their k-Nearest
Neighbours based on their original coordinates choosing k = 16.

In method P5, we adopted a deep learning strategy by exploiting the
availability of protein class labels to optimize the representation of protein
surfaces with and without textures. The chosen strategy is based on the use of
graph neural networks (GNNs). GNNs are deep learning based methods that,
unlike classic NNs, operate on a graph domain rather than on Euclidean domains.
Remarkable advancements in NNs can be achieved by including in the network
hidden layers that perform convolutions. In such a case, a neural network will
be called convolutional neural network (CNN) or graph neural network (GNNs)
in the specific considered case. In particular, we designed message-passing graph
convolutional neural networks (MPGCNNs) with the Edge Convolution paradigm
[41]. A visual description of the pipeline adopted in method P5 is depicted in
Figure VI.10.
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Figure VI.10: The summary of the graph neural networks employed in method
P5 optimized over the classification of the training set. The depicted pipelines
are used for the geometry with physicochemical properties tasks, where a graph
has N nodes and each node has 6 initial features. For Task A, there are only 3
initial node features, which are the spatial coordinates of points. After training,
the 256-dimension vector before the fully-connected layer is used for all the tasks.

Edge convolution In the framework of Task A, the initial node features are
the coordinates of sampled points, while in the setting of Task B, the features are
concatenated tuples of coordinates and interpolated physicochemical properties.
Each protein surface is represented by a k-Nearest Neighbours graph generated
in the pre-processing step with 512 vertices. The module that performs the
graph message-passing function is the Edge Convolution (EdgeConv) layer [41].
In the EdgeConv layer, the information of a vertex i after layer l is calculated as
xl+1
i = maxj∈N h(xli, xlj) where N is the neighbouring vertices of vertex i and

h(xli, xlj) = ReLU(MLP (xli ⊕ xlj))
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where ReLU is Rectified Linear Unit (in the implementation, LeakyReLU, a
variant of ReLU, has been used), MLP is a standard multi-layer perceptron
(MLP), ⊕ is the concatenation operator. In the implementation of method P5,
we adopted a dynamic variant of EdgeConv instead of the standard EdgeConv
described above. At each Dynamic EdgeConv layer, the each vertex’s k-Nearest
Neighbours is re-calculated in the feature space produced by the previous layer,
before applying the standard EdgeConv operation. After the graph is recomputed,
standard EdgeConv operation is performed. After the pre-processing phase, the
vertex features first go through 4 layers of Dynamic EdgeConv. The dimensions
of output features for each vertex after these first 4 layers are 64, 64, 128, and
256, respectively. Then, the outputs of these 4 layers are concatenated to become
a 512-dimensional vector for each vertex. This 512-dimensional vector is then
fed through another Dynamic EdgeConv layer, creating the output vector with
512 dimensions v. The feature vector v is pooled using the concatenation of
the outputs of a max-pooling and a mean pooling layer to generate the first
graph-level feature vector. This vector is passed through two MLP blocks with
BatchNorm, Leaky-ReLU, and Dropout layers. The retrieval tasks can then be
performed by exploiting the L2-distances between the output vectors.

PointNet Adopting the same data pre-processing procedure, we also imple-
mented PointNet [30], a well-known graph-based learning strategy for 3D data. In
this network architecture, the vertex features first pass through 2 message-passing
modules. Each messages-passing module contains a MLP block that uses ReLU
as activation function. The module captures spatial information between a node
and its neighbours by performing subtractions between each pair of the center’s
position and its neighbour’s position. After having performed calculation, the
information of a vertex i after layer l is calculated as xl+1

i = maxj∈N h(xlj , pj , pi)
where N is the neighbouring vertices of vertex i and

h(xlj , pj , pi) = ReLU(MLP (xlj ⊕ (pj − pi)))

where pj is the position of the vertex j and pi is the position of the vertex i.
For a MLP block that the vertex features pass through, its output further goes
through a ReLU function. After two MLP blocks, the feature vector is pooled
using a single global max-pooling layer. Then, retrieval tasks can be performed
by the same way as with the Dynamic EdgeConv strategy.

VI.4.5.2 Task A

For Task A, three different runs adopting method P5 and generated as it follows
have been proposed.

• Run 1 (EdgeConv): generated by the Dynamic EdgeConv strategy where
distances between output vectors are L2-distances between embeddings.

• Run 2 (PointNet): generated by the PointNet strategy but choosing the
number of mesh surface sample points as 258 instead of 512.
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• Run 3 (Ensemble): generated by taking the weighted average of
embedding distances from the above Dynamic EdgeConv and PointNet
embedding distances. Specifically, the distances from Dynamic EdgeConv
are empirically weighted by 0.6, while those from PointNet are weighted
by 0.4.

VI.4.5.3 Task B

For Task B, one run adopting method P5 and generated as it follows has been
proposed.

• Run 1 (EdgeConv): generated by the Dynamic EdgeConv strategy where
the concatenation of spatial coordinates and properties made up of initial
vertex features. The distances between output vectors are L2-distances
between embeddings.

VI.4.5.4 Computational aspects

All of the methods have been implemented in Python 3.8, using Pytorch [28]
and Pytorch Geometric [12] libraries. The experiments have been carried out
a machine with an Intel Core i7-8700K 6-core CPU Processor @3.70 GHz PC
with 32 GB of RAM and an NVIDIA TITAN V with 12 GB of VRAM. The
training and test set’s embedding extraction used both the CPU and the GPU,
whose time is represented in Table VI.2. The computation of distance matrix
only used the CPU and it required approximately 15 minutes for Run 3 of Task
A while just approximately 7 minutes for the other runs.

Table VI.2: The (approximated) training and extraction times of employed
strategies in method P5.

Task Strategy Training Test Set Extr.

A PointNet 720 mins 0.5 mins
Dyn. EdgeConv 1,100 mins 3 mins

B Dyn. EdgeConv 1,100 mins 3 mins

VI.5 Comparative analysis

The performances of each run presented in Section VI.4 are here quantitatively
evaluated on the basis of the measures described in Section VI.3.3. We remind
the reader that: Task A refers to the mere use of geometry, while Task B includes
both geometry and physicochemical properties; for any run, the method name
and its specific settings are given in Section VI.4. The performance measures
are presented for both the PDB and BLAST classifications detailed in Section
VI.3.2.
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An additional analysis, reported in the supplementary material in VI.C,
is performed on a 3-level BLAST-based classification: we introduce a further
relaxation by merging the classes containing the same proteins or their isoforms
with structures of proteins that have a significant sequence similarity, according to
what introduced in Section VI.3.2. In this case, the BLAST-based decomposition
of level 2 consists of 25 communities.

VI.5.1 Retrieval evaluation measures

Table VI.3 summarizes the retrieval performances of all the runs submitted for
evaluation with respect to the PDB classification. More specifically, the table
provides the following information: the Nearest Neighbour (NN), the First Tier
(1T), the Second Tier (2T), the e-measure (eM), the Discounted Cumulated
Gain (DCG), and the mean Average Precision (mAP). For each task, method
and retrieval measure, the best performance is highlighted in bold; for each task
and retrieval measure, the best performance among all methods is highlighted
in red. All values are averaged for all queries. Many methods achieve great or
excellent performances. For instance:

• For Task A, 10 out of 15 runs have an NN value above 0.9, i.e. their
classification rate is above 90%.

• For Task B, 11 out of 13 runs have the NN value above 0.9.

The same methods have mAP and DCG values above, respectively, 0.6 and 0.8.
Precision-Recall plots are provided in Figure VI.11.

Table VI.3: Summary of results by method and property type (only geometry
vs. geometry and physicochemical properties) for the PDB classification. Here:
NN = Nearest Neighbour, 1T = First Tier, 2T = Second Tier, eM = e-Measure,
DCG = Discounted Cumulated Gain, mAP = mean Average Precision. For each
task and for each measure, the best value for each method is in bold. The best
among them is highlighted in red.

Geometry Geometry and chemistry
method NN 1T 2T eM DCG mAP method NN 1T 2T eM DCG mAP

P1
run 1 0.837 0.605 0.778 0.504 0.845 0.675 run 1 0.982 0.873 0.951 0.685 0.971 0.921
run 2 0.947 0.815 0.940 0.654 0.947 0.877 run 2 0.989 0.922 0.979 0.714 0.985 0.958
run 3 0.927 0.729 0.884 0.597 0.921 0.806 run 3 0.585 0.364 0.518 0.306 0.670 0.414

P2
run 1 0.914 0.735 0.888 0.607 0.916 0.802 run 1 0.951 0.815 0.938 0.653 0.949 0.874
run 2 0.894 0.723 0.880 0.605 0.908 0.791 run 2 0.947 0.800 0.927 0.649 0.942 0.895
run 3 0.924 0.748 0.889 0.613 0.921 0.813 run 3 0.979 0.839 0.937 0.665 0.962 0.858

P3
run 1 0.920 0.683 0.836 0.562 0.897 0.756 run 1 0.902 0.696 0.848 0.572 0.893 0.764
run 2 0.930 0.711 0.858 0.586 0.911 0.782 run 2 0.923 0.592 0.720 0.486 0.847 0.663
run 3 0.922 0.692 0.846 0.572 0.903 0.767 run 3 0.903 0.683 0.820 0.560 0.887 0.757

P4
run 1 0.927 0.593 0.716 0.493 0.865 0.684 run 1 0.941 0.684 0.791 0.550 0.901 0.761
run 2 0.927 0.586 0.705 0.487 0.862 0.675 run 2 0.941 0.676 0.785 0.544 0.899 0.755
run 3 0.907 0.549 0.672 0.453 0.840 0.634 run 3 0.933 0.653 0.758 0.529 0.888 0.730

P5
run 1 0.755 0.537 0.734 0.468 0.806 0.541 run 1 0.718 0.532 0.731 0.466 0.798 0.751
run 2 0.437 0.300 0.477 0.263 0.633 0.485
run 3 0.713 0.494 0.699 0.435 0.783 0.452
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Figure VI.11: Precision-recall curves for Task A (geometry only) and Task
B (geometry and physicochemical properties), with respect to the PDB
classification.
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For sake of conciseness, we do not list the analogous values of Table VI.3 and
plots in Figure VI.11 for the BLAST classification, rather we focus on multi-level
indicators, such as the ADR values and the NDCG plots. Interpreting the
elements of a query queue in terms identity or isoform, highly related, similar
and dissimilar surfaces with respect to the BLAST classification, Table VI.4
reports the average dynamic recall (ADR) values for the runs of all methods.
All the ADR scores, which range from 0 (worst case) to 1 (ideal performance),
are averaged over all the models in the dataset.

Table VI.4: Summary of average dynamic recalls (ADRs) for the 4-level BLAST
classification. For each task, the best ADR for each method is in bold. The best
among them is highlighted in red.

Geometry Geometry and chemistry
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

run 1 0.640 0.700 0.697 0.681 0.631 run 1 0.809 0.770 0.756 0.719 0.733
run 2 0.721 0.688 0.706 0.676 0.543 run 2 0.755 0.738 0.804 0.715 -
run 3 0.729 0.670 0.699 0.660 0.641 run 3 0.635 0.770 0.751 0.704 -

A more comprehensive analysis of the retrieval queue with respect to the
BLAST classification is provided by the normalized discounted cumulative gain
plots in Figure VI.12. The NDCG measure is represented as a function of the
rank p. The NDCG values for all queries are averaged to obtain a measure of
the average performance for each submitted run. Remind that, for an ideal
run, it would be NDCG ≡ 1. The NDCG measure takes BLAST classification
performances into larger account than PDB one, as all surfaces corresponding to
the same PDB code are the same protein for the BLAST classification.

In VI.C, we include the same multi-level indicators, namely ADR and NDCG
plots, for the 3-level BLAST classification. Since this classification aggregates
communities that are extremely similar and highly related, the ADR scores
slightly increase but the overall relationships between the different methods and
runs are confirmed.

VI.5.2 Classification performance measures

Table VI.5 summarizes the classification performances for both tasks A and B,
when considering the PDB classification; the confusion matrices originating such
values are shown, for the sake of completeness, in Figures VI.13 and VI.14. More
precisely, the table contains the following information: True Positive Rate (TPR),
True Negative Rate (TNR), Positive Predicted Values (PPV), Negative Predicted
Values (NPV), Accuracy (ACC) and F1 score (F1). One fact we can immediately
note is that, maybe not surprisingly, methods that showed robustness when
evaluated with the retrieval measures yet exhibit strong performances when
tested with classification measures. However, we can additionally notice that:

• All methods have TNR higher than TPR, making them more reliable in
correctly finding true negatives rather than true positives.
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Figure VI.12: Normalized discounted cumulated gain (NDCG) for Task A
(geometry only) and Task B (geometry and physicochemical properties), with
respect to the 4-level BLAST classification.
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• All methods have NPV higher than TPV: it is more likely for these methods
to be right when reporting a negative rather than a positive.

• All methods have accuracy over 97.5%, although they are not equally
“accurate" in finding true/false positives/negatives. This a sign – rather
obvious from the nature of the problem – that positives and negatives are
not in equal proportion; methods showing a greater difference between TPR
and TNR (and between PPV and NPV) are more inclined to privilege the
negatives (the predominant class) at the expense of the positives (the minor
class). In our context, accuracy is therefore an overoptimistic estimation.

• F1 score provides a “better” metric than the accuracy, in the sense that it
suffers more from imbalance.

Enriching the protein SES triangulation with physicochemical properties does
not always lead to an improvement. For example, in the third run by P1 it
dramatically decreases the performances. On the other hand, run 2 from the
same method shows a marked improvement to deal with (true) positives.

Table VI.6 summarizes the classification performance for both tasks A and
B, when considering the (4-level) BLAST classification; the confusion matrices
originating such values are shown, for the sake of completeness, in Figures
VI.15 and VI.16. As expected, a decrease in the number of classes leads to an
improvement of the classification measures. However, it is also worth noting
that this improvement is not the same in all methods: by comparing Tables VI.5
and VI.6, one can indeed note changes in the best run per method (and in the
best overall run).

The supplementary material, reported in VI.C, includes classification
measures (see Table VI.7) and the corresponding confusion matrices (see Figures
VI.17 and VI.18) in the case of a 3-level BLAST classification; one can notice that
this latter leads to the same considerations as in the 4-level BLAST classification.

VI.5.3 Discussion

The methods that participated in this SHREC contest are representative of
various types of approaches to the 3D object retrieval problem, ranging from
purely feature-based engineered methods, mainly based on features represented
with histograms (P1, P3, and P4), to the combination of features and dimensional
reduction techniques (P1 Run 3), to deep neural networks (P2) and transfer
learning from deep graph convolutional networks (P5).

On the one hand, the retrieval performances are positive for all methods, in
either the PDB or BLAST classifications. On the other hand, the NDCG and
ADR measures are specifically designed for interpreting a multi-level dataset
classification as in this case, and thus offer a complementary evaluation of the
classical retrieval measures (e.g., NN, FT, ST, precision-recall plots, etc.) and
classification measures (TPR, TNR, PPV, NPV, ACC, confusion matrices, etc.).
These performance indicators show that the highest ADR scores vary from 0.729
(geometric) to 0.809 (geometry and pysico-chemical properties) being 1 the best
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Table VI.5: Summary of statistical measures by method and property type (only
geometry vs. geometry and physicochemical properties) for the PDB-based
community decomposition. Here: TPR = True Positive Rate, TNR = True
Negative Rate, PPV = Positive Predictive Value, NPV = Negative Predictive
Value, ACC = ACCuracy, F1 = F1 score. For each task and for each measure,
the best value for each method is in bold. The best among them is highlighted
in red.

Geometry Geometry and physicochemical properties
method TPR TNR PPV NPV ACC F1 method TPR TNR PPV NPV ACC F1

P1
run 1 0.8373 0.9967 0.8401 0.9973 0.9941 0.8354 run 1 0.9825 0.9997 0.9860 0.9997 0.9994 0.9832
run 2 0.9475 0.9991 0.9489 0.9992 0.9983 0.9467 run 2 0.9890 0.9999 0.9921 0.9999 0.9998 0.9893
run 3 0.9274 0.9990 0.9304 0.9988 0.9974 0.9239 run 3 0.5839 0.9885 0.6086 0.9912 0.9807 0.5727

P2
run 1 0.9145 0.9979 0.9159 0.9984 0.9965 0.9119 run 1 0.9514 0.9989 0.9525 0.9992 0.9981 0.9504
run 2 0.8944 0.9975 0.8977 0.9976 0.9954 0.8931 run 2 0.9469 0.9989 0.9470 0.9991 0.9981 0.9460
run 3 0.9242 0.9983 0.9253 0.9985 0.9969 0.9222 run 3 0.9793 0.9995 0.9819 0.9996 0.9991 0.9791

P3
run 1 0.9196 0.9985 0.9205 0.9986 0.9971 0.9169 run 1 0.9015 0.9977 0.9037 0.9979 0.9957 0.9007
run 2 0.9300 0.9982 0.9333 0.9988 0.9971 0.9276 run 2 0.9216 0.9985 0.9238 0.9987 0.9974 0.9207
run 3 0.9222 0.9982 0.9258 0.9986 0.9969 0.9199 run 3 0.9015 0.9979 0.9005 0.9985 0.9966 0.8987

P4
run 1 0.9274 0.9983 0.9284 0.9987 0.9971 0.9262 run 1 0.9410 0.9987 0.9424 0.9990 0.9978 0.9406
run 2 0.9268 0.9983 0.9277 0.9987 0.9971 0.9252 run 2 0.9410 0.9988 0.9422 0.9990 0.9978 0.9409
run 3 0.9067 0.9979 0.9059 0.9983 0.9963 0.9046 run 3 0.9326 0.9984 0.9336 0.9988 0.9974 0.9323

P5
run 1 0.7537 0.9944 0.7539 0.9943 0.9892 0.7507 run 1 0.7187 0.9937 0.7215 0.9940 0.9886 0.7160
run 2 0.4362 0.9870 0.4412 0.9873 0.9754 0.4328
run 3 0.7123 0.9927 0.7109 0.9930 0.9868 0.7044

Table VI.6: Summary of statistical measures by method and property type (only
geometry vs. geometry and physicochemical properties) for the BLAST-based
community decomposition of level 3. Here: TPR = True Positive Rate, TNR
= True Negative Rate, PPV = Positive Predictive Value, NPV = Negative
Predictive Value, ACC = ACCuracy, F1 = F1 score. For each task and for each
measure, the best value for each method is in bold. The best among them is
highlighted in red.

Geometry Geometry and physicochemical properties
method TPR TNR PPV NPV ACC F1 method TPR TNR PPV NPV ACC F1

P1
run 1 0.9086 0.9949 0.9082 0.9959 0.9917 0.9069 run 1 0.9961 0.9998 0.9962 1.0000 0.9997 0.9960
run 2 0.9890 0.9996 0.9891 0.9996 0.9993 0.9888 run 2 0.9981 1.0000 0.9981 1.0000 1.0000 0.9980
run 3 0.9844 0.9996 0.9869 0.9997 0.9993 0.9840 run 3 0.8529 0.9904 0.8562 0.9931 0.9854 0.8452

P2
run 1 0.9760 0.9992 0.9766 0.9993 0.9985 0.9758 run 1 0.9929 0.9997 0.9930 0.9999 0.9996 0.9928
run 2 0.9728 0.9991 0.9746 0.9991 0.9983 0.9723 run 2 0.9909 0.9998 0.9909 0.9999 0.9997 0.9908
run 3 0.9767 0.9985 0.9770 0.9989 0.9977 0.9764 run 3 0.9987 0.9999 0.9987 1.0000 0.9999 0.9987

P3
run 1 0.9689 0.9981 0.9690 0.9985 0.9970 0.9680 run 1 0.9942 0.9996 0.9943 0.9999 0.9995 0.9942
run 2 0.9747 0.9980 0.9754 0.9989 0.9972 0.9740 run 2 0.9916 0.9997 0.9921 0.9998 0.9996 0.9916
run 3 0.9721 0.9987 0.9738 0.9985 0.9976 0.9716 run 3 0.9806 0.9981 0.9809 0.9994 0.9980 0.9803

P4
run 1 0.9799 0.9987 0.9805 0.9991 0.9980 0.9798 run 1 0.9903 0.9995 0.9909 0.9996 0.9992 0.9904
run 2 0.9793 0.9987 0.9801 0.9990 0.9979 0.9791 run 2 0.9903 0.9995 0.9908 0.9996 0.9991 0.9904
run 3 0.9734 0.9984 0.9738 0.9987 0.9974 0.9732 run 3 0.9870 0.9993 0.9876 0.9994 0.9988 0.9871

P5
run 1 0.9209 0.9953 0.9209 0.9958 0.9923 0.9197 run 1 0.9501 0.9975 0.9506 0.9988 0.9968 0.9491
run 2 0.7168 0.9852 0.7201 0.9853 0.9734 0.7156
run 3 0.9047 0.9944 0.9031 0.9953 0.9910 0.9019

possible value for the ADR: this confirms that these approaches are good but
not optimal. Similarly, the highest possible area under a NDCG curve equals 1,
while the best scores in this contribution are around 0.9 (for the Task B).

In this SHREC contest, a training dataset was explicitly provided having
with the ground truth based on the PDB classification. The surface distribution
in the classes mirrored the distribution of classes in the test set, see Figure VI.3;
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the number of conformations per PDB ranges from 2 to 160. This highlights
one of the difficulties that learning methods have faced, namely the presence of
classes of very heterogeneous size, which makes prediction very difficult. The
severity of the PDB classification is then mitigated by the BLAST one, but this
classification has been used only for the interpretation of the results and not
previously provided to the participants.

A further difficulty for learning methods is the dataset design choice of using
different proteins (and their conformations) between training set and test set.
This was done to investigate the ability of 3D retrieval approaches to reason about
and predict the conformations of a protein, even if not yet “seen" by the training
system. This probably motivates that the best overall performance for the PDB
classification was obtained by a technique based on engineered features. This
fact is further confirmed by the lower prediction ability of the same descriptor
when combined with a dimensional reduction technique as demonstrated by the
method P1 (run 3), which show a particular decrease when the geometry is
enriched with physicochemical properties. Conversely, when we consider the
BLAST classification, i.e. proteins that share fairly long amino acids sequences
are considered similar altogether their conformations, we see that learning-based
methods improve their performance proportionally more than direct methods,
such as the P1 (run 3) method. In our view, this reflects the fact that similarities
between sequences are reflected in similarities of 3D structure, and with this
classification comes greater homogeneity between the features of the “extended”
classes.

Additional considerations can be derived from the geometric-only and mixed
geometry and physicochemical properties comparison. Not surprisingly, we
notice an improvement in the performance of the various approaches when
switching from runs purely geometry-driven (Task A) to runs that consider both
geometry and physicochemical properties (Task B). Nevertheless, the direct
comparison between the proposed runs is not always possible because for some
participants the geometric method may vary between the 2 tasks. We notice
that the most widely adopted solution is the introduction of a histogram for the
physicochemical properties, that is then used as an additional feature vector
whose outcome is combined with the dissimilarity scores given by the geometric
description. Furthermore, from the experiments available to us, we note that the
most significant improvements are seen for methods that are based on learning.
This is particularly reflected in the methods P2 and P5. This suggests that
physicochemical properties play an important role in the characterisation of a
protein but, perhaps, more research is still needed to deeply understand their
role and how best to integrate them into engineered descriptors; for instance,
considering a joint description as currently proposed in P1, that adopts joint 3D
histograms.
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VI.6 Concluding remarks

In this paper, we have provided a detailed analysis and evaluation of state-of-
the-art retrieval and classification algorithms dealing with protein similarity
assessment based on molecular surfaces, which we believe deserve attention from
the research community. The introduction of physicochemical properties into the
benchmark, represents an element of originality in the available benchmarks for
structural biology and provides a more complete representation of the protein.
To enable the participation of learning-based methods, both a training and a
test set were provided for this benchmark dataset. Moreover, we are aware that
in some of the PDB codes we used, the underlying structures may correspond
to mutations of the same protein, or be isoform, or share a common fold; for
this reason, we performed a multi-level performance analysis, comparing the
performance of the proposed methods to both a classification made according
to the protein PDB code and an aggregation between proteins made by using
BLASTP.

Beyond the extensive analysis that has been carried out throughout the paper,
we hope that the experimental results presented here may offer interesting hints
for further investigation. For instance, a better and more informed definition
of similarity can be preliminary to a better and more effective definition of the
complementarity between binding biomolecules.

The benchmark, as well as the dissimilarity matrices that originated the
results described in Section VI.5 and in the appendices, are available at
https://github.com/rea1991/SHREC2021.
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Confusion matrices (PDB-based community decomposition)

Appendix VI.A Confusion matrices (PDB-based community
decomposition)
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Figure VI.13: Confusion matrices for task A (geometry only), with respect to
the PDB-based community decomposition.
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Figure VI.14: Confusion matrices for task B (geometry and physicochemical
properties), with respect to the PDB-based community decomposition.
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Confusion matrices (BLAST-based community decomposition of level 3)

Appendix VI.B Confusion matrices (BLAST-based
community decomposition of level 3)
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Figure VI.15: Confusion matrices for task A (geometry only), with respect to
the BLAST-based community decomposition of level 3.
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Figure VI.16: Confusion matrices for task B (geometry and physicochemical
properties), with respect to the BLAST-based community decomposition of level
3.
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classification

Appendix VI.C Supplementary material: Performances with
respect to a 3-level BLAST classification
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Figure VI.17: Confusion matrices for task A (geometry only), with respect to
the BLAST-based community decomposition of level 2.
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Figure VI.18: Confusion matrices for task B (geometry and physicochemical
properties), with respect to the BLAST-based community decomposition of level
2.
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Figure VI.19: Normalized discounted cumulated gain (NDCG) for Task A
(geometry only) and Task B (geometry and physicochemical properties), with
respect to the 3-level BLAST classification.
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Table VI.7: Summary of statistical measures by method and property type (only
geometry vs. geometry and physicochemical properties) for the BLAST-based
community decomposition of level 2. Here: TPR = True Positive Rate, TNR
= True Negative Rate, PPV = Positive Predictive Value, NPV = Negative
Predictive Value, ACC = ACCuracy, F1 = F1 score. For each task and for each
measure, the best value for each participant is in bold. The best among them is
highlighted in red.

Geometry Geometry and chemistry
method TPR TNR PPV NPV ACC F1 method TPR TNR PPV NPV ACC F1

P1
run 1 0.9125 0.9922 0.9123 0.9940 0.9878 0.9113 run 1 0.9968 0.9996 0.9968 1.0000 0.9996 0.9967
run 2 0.9903 0.9992 0.9904 0.9995 0.9988 0.9902 run 2 0.9993 1.0000 0.9994 1.0000 1.0000 0.9993
run 3 0.9903 0.9990 0.9905 0.9997 0.9989 0.9900 run 3 0.7991 0.9796 0.8081 0.9842 0.9689 0.7953

P2
run 1 0.9663 0.9967 0.9648 0.9978 0.9953 0.9652 run 1 0.9747 0.9974 0.9733 0.9986 0.9966 0.9733
run 2 0.9495 0.9955 0.9484 0.9959 0.9927 0.9485 run 2 0.9780 0.9977 0.9782 0.9981 0.9965 0.9778
run 3 0.9701 0.9967 0.9680 0.9987 0.9960 0.9682 run 3 0.9864 0.9976 0.9863 0.9996 0.9976 0.9854

P3
run 1 0.9592 0.9969 0.9579 0.9977 0.9952 0.9575 run 1 0.9767 0.9977 0.9784 0.9975 0.9960 0.9771
run 2 0.9682 0.9972 0.9675 0.9980 0.9959 0.9671 run 2 0.9825 0.9983 0.9831 0.9986 0.9974 0.9825
run 3 0.9702 0.9974 0.9697 0.9983 0.9963 0.9687 run 3 0.9760 0.9980 0.9774 0.9980 0.9966 0.9763

P4
run 1 0.9682 0.9969 0.9675 0.9981 0.9957 0.9675 run 1 0.9767 0.9974 0.9762 0.9986 0.9966 0.9760
run 2 0.9689 0.9969 0.9679 0.9982 0.9958 0.9678 run 2 0.9786 0.9978 0.9784 0.9984 0.9968 0.9783
run 3 0.9631 0.9966 0.9627 0.9973 0.9948 0.9626 run 3 0.9754 0.9971 0.9750 0.9981 0.9960 0.9748

P5
run 1 0.8996 0.9915 0.8996 0.9916 0.9855 0.8986 run 1 0.9132 0.9906 0.9125 0.9928 0.9861 0.9120
run 2 0.7155 0.9792 0.7250 0.9778 0.9623 0.7175
run 3 0.8983 0.9913 0.8965 0.9918 0.9855 0.8963

Table VI.8: Summary of average dynamic recalls (ADRs) for the 3-level BLAST-
based classification. For each task, the best ADR for each participant is in bold.
The best among them is highlighted in red.

Geometry Geometry and chemistry
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

run 1 0.677 0.735 0.741 0.728 0.686 run 1 0.829 0.800 0.800 0.756 0.779
run 2 0.749 0.728 0.751 0.723 0.608 run 2 0.771 0.768 0.849 0.751 -
run 3 0.755 0.715 0.746 0.708 0.698 run 3 0.674 0.806 0.810 0.742 -
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