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Abstract
The Standard Model (SM) of particle physics has proven to be a very successful framework
for describing the interactions of elementary particles. So far, no significant deviations have
been measured from its predictions. However, some open questions remain about nature,
that the SM in its current form cannot answer. What is the nature of dark matter? Can
a quantum theory of gravity be constructed? Do the SM interactions all originate from a
common unified interaction? Numerous extensions to the SM have been proposed, aiming
to solve these questions and others. Extensions to the SM may give different predictions
about nature than the SM itself. Physicists look for evidence of such new physics by
finding discrepancies in measurements from the SM predictions, for example in particle
collision experiments.

This thesis presents two searches for new physics in dilepton final states, analysing 139
fb−1 of proton-proton collisions collected at

√
s = 13 TeV using the ATLAS detector at

the Large Hadron Collider. The first search is for a resonant dielectron or dimuon signal
of invariant mass between 250 GeV and 6,000 GeV. A functional form is used to model
the SM background. No significant deviation from the background is observed. The upper
limit on the cross-section of a model-independent resonance is set, and lower mass limits
are set at 5.1 TeV, 4.5 TeV, and 4.8 TeV for the Z′

SSM, Z′
ψ, and Z′

χ benchmark heavy boson
models, respectively.

The second search is for non-resonant excesses at high dilepton invariant mass. A novel
method is used for estimating the SM background, in which a functional form is fitted to
the data at low invariant mass, and extrapolated into a high invariant mass signal region
where the search is carried out as a single bin counting experiment. No significant deviation
from the background is observed. Upper limits are set on the model independent number
of signal events. The results are also interpreted in terms of lower limits on the string
scale parameter MS of the Arkani-Hamed, Dimopoulos, and Dvali (ADD) model of large
extra dimensions. The lower limit on MS is set to 6.6 TeV in the dielectron channel, and
6.5 TeV in the dimuon channel, using the Giudice, Rattazzi, and Wells (GRW) convention
for summing over Kaluza-Klein (KK) excitations. These limits are the first ADD model
limits set by the ATLAS Collaboration in dilepton final states using the full Run 2 data
set.
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Introduction
The Standard Model (SM) of particle physics has proven to be an extremely accurate
framework for classifying the elementary particles of the universe and their interactions.
Yet, some phenomena, such as the nature of dark matter or the non-zero mass of neutri-
nos, are not currently explained in the SM. In Chapter 1 of this thesis, I briefly outline
the mathematical framework of the SM, as well as some of its shortcomings. Chapter 1
also introduces some possible extensions to the SM that could possibly rectify some of
these issues. Emphasis is placed on theories predicting enhanced production of dilepton
(dielectrons or dimuons of opposite electric charge) final states in particle collisions, which
is the main focus of this thesis. One such class of models are grand unification theory
(GUT) models based on the E6 symmetry group, predicting the existence of at least one
heavy neutral boson, Z′, at low energy scales.

The Large Hadron Collider (LHC), located at the European Organization for Nuclear
Research (CERN) in Switzerland, delivered 139 fb−1 of proton-proton collision data, at
a centre of mass (COM) collision energy of

√
s = 13 TeV, to the ATLAS (A Toroidal

LHC ApparatuS) experiment during its Run 2 collision campaign. In this thesis, I present
two analyses of the Run 2 data set, searching for new physics in dilepton final states.
The so-called dilepton channel has a long history of discovering new physics in particle
collider experiments, with the discovery of the J/Ψ meson in 1974 [1, 2], the Υ meson
in 1977 [3], and the Z boson in 1983 [4, 5]. Therefore, the search for new physics in the
dilepton channel is considered one of the "flagship" analyses of the ATLAS Collaboration.
The LHC and the ATLAS detector are described in Chapter 2, with an emphasis on how
electrons and muons are measured and reconstructed in ATLAS.

The SM processes that form the background to the new physics searched for in the
analysis, as well as the tools and methods we use to describe them, are described in Chap-
ter 3. We generate Monte Carlo (MC) samples for all relevant SM dilepton backgrounds.
However, in our two analyses, the SM background is modelled using parametric fits to the
data. The MC background samples are used for validation of the data-driven background
modelling, and for calculating systematic uncertainties in the analyses. The object defini-
tions and event selection criteria for constructing the dilepton data set used in the analyses
are given in Chapter 4.

Chapter 5 presents a search for resonant new physics phenomena in dilepton final states
in the full Run 2 dilepton dataset. The analysis uses a parametric fit to the dilepton
invariant mass distribution to describe the SM background in the search, and a generic
parametric signal shape, based on a non-relativistic Breit-Wigner distribution, to describe
the new physics signal. We consider pole mass hypotheses of the new signal between 250
GeV and 6 TeV, and widths of the signal between 0% and 10% of the resonance pole
mass. Upper limits are set on the cross-section of the generic dilepton signal, as well as for
three benchmark Z′ models. A sliding window fit (SWiFt) method is considered for the
background estimation in the analysis. More information about the SWiFt method, and
its comparison to the global fit method used in the analysis can be found in Appendix A.
The results from the search are published in Ref. [6].
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INTRODUCTION

Chapter 6 details a search for new phenomena manifesting as broad, non-resonant,
deviations at high dilepton invariant masses. This analysis is a reinterpretation of the
search for contact interaction (CI) processes presented in Ref. [7] into lower limits on the
string scale parameter of the Arkani-Hamed, Dimopoulos, and Dvali (ADD) theory of large
extra dimensions [8]. A novel method for estimating the SM background is used in the
analysis, in which a parametric background function is fitted to the data in a low invariant
mass control region, and then extrapolated into the high invariant mass signal regions.
String scale limits are produced in the Giudice, Rattazzi, and Wells (GRW), Hewett, and
Han, Lykken, and Zhang (HLZ) conventions for summing Kaluza-Klein (KK) modes. The
results of the analysis are presented in Ref. [9], a so-called ATLAS public note.

During my time as a PhD student at the University of Oslo, I have been working in the
ATLAS exotic dilepton analysis group. I joined the group in the closing stages of a search
for new physics in 36 fb−1 of Run 2 ATLAS data [10]. I contributed to this analysis by
calculating p-values for the discovery of a new physics signal. In 2017, the dilepton group
started working on an analysis of the full Run 2 ATLAS dataset, searching for resonant
signals above the SM prediction in dilepton final states. The results from this search
are presented in Chapter 5. I had an active role in the analysis team throughout this
period. The emphasis of my work in the analysis was the development and testing of the
SWiFt method for performing background fits, as well as the production of data samples
and figures for the publication. I also developed a system based on machine learning for
tagging events originating from top quark decays. The idea being that this system could
reduce the top quark contribution to the overall SM background. However, this system
was not used in the final analysis. In 2019, after publishing our results from the resonant
analysis, focus shifted in the working group to exotic non-resonant dilepton signatures. In
the resulting analysis, presented in Chapter 6, I was responsible for the interpretation of
the search in the context of large extra dimensions in the framework of an ADD model.
Unfortunately, due to time constraints, my results were not published with the rest of the
analysis, in Ref. [7], but rather as a stand-alone ATLAS public note [9].

During my time at the University of Oslo, I have also worked on some projects outside
of particle physics searches. To qualify for an ATLAS authorship, I made an anomaly
detection system, using machine learning methods, for file transfers on the Worldwide
LHC Computing Grid (Grid). A report from this project is included in Appendix C.
While working as a teaching assistant in an experimental physics course at the university,
I was inspired to write several articles demonstrating how a modern smartphone can be
used as a physics laboratory. These articles are included in Appendix D.
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1. The Standard Model and Beyond

1.1. The Standard Model of Particle Physics
The ancient Greek philosopher Democritus is credited with the invention of the atomic
theory; the idea that all matter is made up of some indivisible constituents of nature.
Democritus named these fundamental quantities atoms.1 Later it has become clear that
atoms are not elementary building blocks of nature, but are themselves composite objects.

Today, we talk of elementary particles as being the fundamental constituents of nature.
Particle physics is the study of these elementary particles. The Standard Model (SM) is
the mathematical framework used to describe the elementary particles and their interac-
tions. Or rather some of their interactions, as a quantum theory of gravity has yet to be
described. This section presents a cursory review of the SM elementary particle content
and mathematical framework.

1.1.1. The Particle Zoo
Spin is an intrinsic property of elementary particles, somewhat comparable to angular
momentum. However, the elementary particles of the SM are point particles, and as such
cannot rotate around their own axes. Therefore, this macroscopic analogy breaks down,
and spin must be considered a purely quantum mechanical property of particles. Spin
is quantised, and may take half-integer or integer values, in units of the reduced Planck
constant ~. The particles of the SM are divided into two classes based on their spin:
fermions, with half-integer spin, and integer spin bosons.

Fermions are matter particles, making up all the visible matter in the universe. The
fermions come in 12 flavours, split into two categories based on their properties: six leptons
and six quarks.

Three of the leptons carry electric charge: the electron e, the muon µ, and the tau lepton
τ. Each charged lepton has an electrically neutral companion particle called a neutrino.
These are the electron neutrino νe, the muon neutrino νµ, and the tau neutrino ντ. Each
charged and uncharged lepton pair is said to belong to a family or generation, ordered by
increasing mass of the charged leptons. This grouping is shown in Table 1.1.

Neutrinos are very feebly interacting particles, and are usually assumed to be massless
in the SM. However, neutrino oscillation experiments have shown that neutrinos do in
fact have a small, but non-zero, mass. Neutrino oscillation is a phenomenon in which
neutrinos change flavour after being produced as a particular flavour, and is a consequence
of the fact that the interaction quantum states of the neutrinos are different from their
propagating mass quantum states. The masses of the three neutrino flavours, νe, νµ, and
ντ, are therefore determined by linear combinations of three neutrino mass states ν1 , ν2,
and ν3. Direct measurements of the neutrino masses are difficult. Current upper limits
for the individual neutrino masses are shown in Table 1.1. In addition to the laboratory

1From the Greek atomos, meaning "indivisible".
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CHAPTER 1. THE STANDARD MODEL AND BEYOND

measurements of neutrino masses, cosmological measurements put the upper limit on the
sum of the three neutrino masses to be mtot

ν < 0.26 eV [11].
The six quarks are arranged in the same way as the leptons, in three generations ranked

by increasing mass. Each quark generation consists of an up-type and a down-type quark.
The up-type quarks are, in order of increasing mass: the up quark, the charm quark, and
the top quark. The down-type quarks are: the down quark, the strange quark, and the
bottom quark. The quarks all have fractional electric charge in units of the elementary
charge: up-type quarks have charge 2/3e, while the down-type quarks have charge −1/3e.

Quarks form bound states, called hadrons. The proton, for example, is made up of two
up quarks and a down quark. Similarly, the neutron is made up of two down quarks and one
up quark. The fractional electric charges of the quarks add up to give the proton charge
e, and make the neutron electrically neutral. In fact, all hadrons have integer electric
charge, despite the fractional charge of the quarks themselves. Protons and neutrons
are collectively known as nucleons. Different numbers and configurations of protons and
neutrons are all that is needed to make the nuclei of all atoms. Protons and neutrons are
just two examples of so-called baryons, bound states of three quarks, although many more
exist. Two quarks, more precisely a quark-anti-quark pair, may also go together to form
mesons.

Fermions obey the Pauli exclusion principle, which states that two identical fermions may
not occupy the same quantum state. With the discoveries of the first baryons consisting of
three same-flavour quarks, such as the 1964 discovery of the Ω− baryon, which consists of
three strange quarks [12], it became clear that a new quark quantum number was needed.
Two same-flavour spin-1/2 fermions may occupy the same state by different ordering of
their spin projections (+1/2 and −1/2), but it is impossible to introduce a third fermion
without violating the Pauli exclusion principle, unless one introduces a new quantum
number. In addition to the quantum numbers electric charge and spin, quarks also carry
so-called colour charge. A colour charged elementary particle interacts through the strong
force. The strong force is what binds quarks together to form hadrons. The three colour
charges are called red, green and blue. Colour charge is so named for its analogy to the
primary colours of light. Like a mixture of red, green, and blue light mixes to make
white light, the colour charges red, green and blue add to form a colour neutral state.
All composite particles are "white", or colour singlets. The three valence quarks2 of a
baryon will therefore always be charged blue, green and red (or anti-blue, anti-green, and
anti-red for anti-quarks). Similarly, mesons consist of a two-quark colour singlet system.
This effect, that no colour charged particles is observed in nature, is called confinement,
as quarks and gluons seem to be confined to the interior of hadrons.

In particle physics, a force acting is taken to mean the exchange of a force mediating
boson between two particles charged under said interaction. Bosons are the second main
class of elementary particles. Bosons have integer spin, and unlike fermions they do not
obey the Pauli exclusion principle. Each fundamental force of the SM has one or more
associated mediator particles. These force mediating particles are bosons. The massless
photon is responsible for communicating the electromagnetic force between electrically
charged particles. The strong force is mediated by eight gluons, which are also massless.
Unlike the electrically neutral photon, the gluons themselves carry colour charge. There-

2The image presented thus far, that a baryon consists of only three quarks is somewhat simplistic. The
three quarks that determine the quantum numbers of the baryon are called valence quarks, but the
baryon also consists of a so-called sea of virtual quarks, anti-quarks, and gluons. These virtual particles
may carry a significant fraction of the total momentum of the baryon.
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Table 1.1.: The fermions of the Standard Model.

Class Charge [e] Generation
I II III

Quarks

2/3
m = 2.16 MeV m = 1.27 GeV m = 172.9 GeV
u c t
Up Quark Charm Quark Top Quark

-1/3
m = 4.67 MeV m = 93 MeV m = 4.18 GeV

d s b
Down Quark Strange Quark Bottom Quark

Leptons

0
m < 1.1 eV m < 0.19 MeV m < 18.2 MeV
νe νµ ντ
Electron Neutrino Muon Neutrino Tau Neutrino

-1
m = 511 keV m = 105.6 MeV m = 1,777 GeVe µ τ
Electron Muon Tau

fore, gluons self-interact. This property is what leads to the property known as colour
confinement, which is covered in more detail in Section 1.1.3.

Three massive bosons carry the weak force. The neutral Z0 carry neutral current weak
interactions, while the W+ and W− bosons carry charged current weak interactions. Weak
interactions, those involving W bosons specifically, are unique in that they are the only
interactions capable of changing fermion flavour. This property is necessary, for example,
in beta decay, in which a down quark in a neutron is transformed into an up quark
through the exchange of a W boson, turning the neutron into a proton and emitting an
electron and an anti-electron neutrino. Unlike the photon and gluon, the weak bosons are
massive particles. The Z0 has a mass of 91.2 GeV and the W bosons each have a mass of
80.4 GeV [11]. Historically, this high mass made the weak bosons hard to produce in a
laboratory. As a result, the Z and W bosons were not directly discovered until 1983 [13].
The force-carrying bosons of the SM are listed in Table 1.2.

Gravity is not included in the SM, but the hypothesised mediator boson of the grav-
itational interaction is known as the graviton. Graviton excitations are covered in more
detail in Section 1.2.2.

Mesons are also bosons. The strong nuclear force, responsible for binding nucleons in
nuclei, can be expressed as an effective theory of meson exchange.

Each fundamental force has a range. This range of interaction is determined by the
Compton wavelength of the boson mediating it [14]. The Compton wavelength of a particle
is the wavelength of a photon if this photon had the same energy as the rest mass of the
particle in question. This means that heavier force mediators lead to shorter interaction
lengths. The forces communicated by massless bosons have infinite range. This is not the
case for the strong force. Although gluons are massless, the range of the strong interaction
is effectively limited to 10−15 m by confinement. The large mass of the Z and W bosons

5
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Table 1.2.: The force mediating bosons of the Standard Model.
Force Boson Charge [e] Mass [GeV] Colour Charge Weak Isospin

Electromagnetism γ 0 0 0 0Photon

Weak Force

W±
± 1 80.4 0 ∓1

2W Bosons

Z0
0 91.2 0 0Z Boson

Strong Force g 0 0 r,g,b 0
Gluon

give the weak interaction an effective range of the order of 10-18 m or less. At low energies,
well below the mass of the weak bosons, the weak interaction can be considered a zero
distance contact interaction. In fact, in the first proposal for a theoretical explanation of
beta decay by Fermi in 1933, what came to be known as the weak interaction was assumed
to be a four fermion contact interaction [15].

The spin-0 Higgs boson is the latest addition to the SM particle menagerie. It is named
after Peter Higgs, one of the scientists behind the theory of its existence. The Higgs
boson is not a force mediator like the other bosons of the SM. Instead, it is needed in
the SM mathematical framework to spontaneously break the electroweak symmetry. This
mechanism, which is responsible for giving mass to the fermions and the weak bosons,
is explained in more detail in Section 1.1.4. The so-called Brout-Englert-Higgs (BEH)
mechanism was developed in the 1960s. The discovery of the weak bosons at masses
predicted by spontaneous symmetry breaking was a strong indicator for the existence of
the so-called Higgs field, but it was not until 2012 that a 125 GeV resonance consistent
with the Higgs boson was discovered [16, 17].

Most elementary particles have anti-particle partners. Anti-particles have the same
mass as their ordinary matter counterparts, but with opposite-sign charges. Truly neutral
particles are particles with no anti-particle counterparts. Rather, they are regarded as
their own anti-particles. The photon, the Z0 boson, and the Higgs boson are truly neutral
particles. The postulation of the positron, the antimatter counterpart of the electron, is
attributed to Paul Dirac, as an attempt to explain the issue of negative energy solutions
to his famous Dirac equation.

1.1.2. Standard Model Mathematical Formalism
The elementary particles of the Standard Model (SM) are represented by quantum fields.
Quantum field theory (QFT) can be considered a successful union of Einstein’s theory
of special relativity and quantum mechanics. Einstein demonstrated through his famous
equation E = mc2 that energy and mass are interchangeable quantities. An important
consequence of this is that matter can be created from energy. Quantum mechanics on its
own is ill-equipped to handle such systems with a variable number of particles. The infinite
degrees of freedom in a quantum field does not have such limitations. Even at energies too
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

low for particle anti-particle pair creation, intermediate multi-particle states are allowed
and necessary in higher-order perturbation theory of elementary particle interactions [18].

Lagrangian mechanics is the language of QFT. The core component of Lagrangian me-
chanics is the action S, which is the time integral of the Lagrangian L. The Lagrangian of
a system is defined as L = T − V , where T and V are the system’s kinetic and potential
energy, respectively. In a local theory, such as QFT, rather than using L, it is often con-
ducive to use the Lagrangian density L. In high energy physics, L is often referred to as
simply the Lagrangian. This text will also adhere to this convention.

For one or more fields φi(x), L is dependent on the fields themselves and their derivatives
∂µφi(x). When using L, S becomes the integral

S =

∫
Ω

d4xL(φ, ∂µφ) , (1.1)

over the space-time volume Ω. From this point we suppress the indices and dependencies
of φ to aid readability.

Hamilton’s principle of least action states that the trajectory of a mechanical system
is such that the action is stationary. For this trajectory, an infinitesimal variation of the
action will vanish, δS = 0. By differentiation of the Lagrangian, this becomes

δS =

∫
Ω

d4x

{
∂L
∂φ
δφ+

∂L
∂ (∂µφ)

δ (∂µφ)

}
= 0 . (1.2)

Using the product rule of differentiation, we see that

∂µ

(
∂L

∂(∂µφ)
δφ

)
= ∂µ

(
∂L

∂(∂µφ)

)
δφ+

∂L
∂(∂µφ)

δ(∂µφ) . (1.3)

In the last term we use the fact that ∂µ(δφ) = δ(∂µφ). Inserting Equation (1.3) into
Equation (1.2) yields

δS =

∫
Ω

d4x

{
∂L
∂φ
δφ− ∂µ

(
∂L

∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)}
= 0 . (1.4)

Using Gauss’ divergence theorem the final term of this integral can be written as a surface
integral over the boundary of Ω, and shown to disappear. We see that to satisfy the
Hamiltonian principle, the following equation must hold:

∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)
= 0 . (1.5)

This is the Euler-Lagrange equation [14]. For a system described by a Lagrangian L, the
Euler-Lagrange equation defines the system’s equations of motion.

As an example, take the Lagrangian of a spin-0 scalar field φ:

L =
1

2

(
∂µφ∂

µφ−m2φ2
)
. (1.6)

It should be noted that two or more Lagrangians may lead to the same equations of
motion. The choice of this particular Lagrangian is motivated by the classical Lagrangian
of a harmonic oscillator. Applying the Euler-Lagrange equation to this Lagrangian, the
first term becomes

∂L
∂φ

= −m2φ . (1.7)

7
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Differentiating L with respect to ∂µφ gives

∂L
∂(∂µφ)

=
∂

∂(∂µφ)

1

2
(∂νφ∂

νφ) =
1

2

∂

∂(∂µφ)
(∂νφg

να∂αφ)

=
1

2
gνα
{(

∂

∂(∂µφ)
∂νφ

)
∂αφ+ ∂νφ

(
∂

∂(∂µφ)
∂αφ

)}
=

1

2
gνα (δµν∂αφ+ ∂νφδ

µ
α) =

1

2
(∂µφ+ ∂µφ)

= ∂µφ .

(1.8)

Here we introduce the dummy variables ν and α, and use the metric tensor gνα to lower
the index of ∂ν . The second term of the Euler-Lagrange equation now becomes −∂µ∂µφ.
Putting this together with the result from Equation (1.7) yields the Klein-Gordon equation(

∂µ∂
µ +m2

)
φ = 0 . (1.9)

Similarly, we can start with the Lagrangian of a spin-1/2 fermionic field ψ,

L = ψ (iγµ∂µ −m)ψ , (1.10)

where ψ is the adjoint field, defined as ψ = ψ†γ0. Applying the Euler-Lagrange equation
yields the Dirac equation

(iγµ∂µ −m)ψ = 0 . (1.11)
The analogue of momentum for a field φ is known as the conjugate momentum field π,

and is defined as
π =

∂L
∂φ̇

. (1.12)

Here, φ̇ denotes the partial time derivative of φ. Having defined the conjugate field, we
can now define the Hamiltonian density H of a field φ

H = πφ̇− L(φ, ∂µφ) . (1.13)

which defines the local energy density of the field.
So far the fields described in this section have been classical. Quantisation of the fields

is achieved by promoting the fields themselves to operators and imposing certain commu-
tation and anti-commutation relations on them. For a scalar field and its conjugate field,
the following same-time relations must hold:

[φ(x, t), π(x′, t)] = iδ(x− x′) ,

[φ(x, t), φ(x′, t)] = [π(x, t), π(x′, t)] = 0 .
(1.14)

Fermionic fields have similar requirements hoisted upon them when promoted to oper-
ators. But rather than commuting, these fields are required to anti-commute:

{ψ(x, t), ψ†(x′, t} = δ(x− x′) ,

{ψ(x, t), ψ(x′, t} = {ψ†(x, t), ψ†(x′, t)} = 0 .
(1.15)

Here we use that the conjugate field of ψ is π = iψ†. The commutation relations of
equations (1.14) and (1.15) restrict the possible values of certain observables of the fields
to discrete, quantised, steps.
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1.1.3. The Interactions of the Standard Model
In the previous section, we introduced free fields and their equations of motion. Next, we
would like to include the fundamental interactions of nature to our model.

Symmetries are important in the SM. A symmetry is a feature or characteristic of some
system that is unchanged, or invariant, under some mathematical transformation of the
system. In QFT, symmetries are understood as operations performed on fields that leave
their Lagrangian invariant.

Noether’s theorem states that for every continuous symmetry of the Lagrangian L, there
exists a conserved quantity, or more accurately a conserved current jµ. A spatial transla-
tion, for example, leaves the Lagrangian invariant. Momentum is the conserved quantity
resulting from this symmetry. Similarly, invariance of the Lagrangian in time leads to the
conservation of energy. Rotational symmetry leads to spin conservation. These symme-
tries, based on transformations of the space-time coordinates of the fields, are known as
external symmetries of the Lagrangian.

Group theory provides a useful mathematical tool when describing symmetries, since
continuous symmetries can be expressed using Lie groups. The external symmetries men-
tioned above belong to the so-called Poincaré group. In addition to these external symme-
tries, the SM also contains three internal symmetries, based on the groups U(1), SU(2),
and SU(3). The unitary group of n dimensions, U(n), is the group of unitary n×n matrices
with matrix multiplication being its so-called group operation. The special unitary group
SU(n) is the subgroup of U(n) where its component matrices have determinant 1. Inter-
nal symmetries are based on local symmetries, meaning transformations with space-time
dependence.

Quantum Electrodynamics

Quantum electrodynamics (QED) is a quantum field theory of the electromagnetic inter-
action, based on a local U(1) symmetry. A U(1) transformation of a field ψ is a rotation
of the field in the complex plane, and can be written as

ψ(x) → ψ′(x) = ψ(x)eiqf(x) ,

ψ(x) → ψ
′
(x) = ψ(x)e−iqf(x) ,

(1.16)

where q is electric charge and f(x) is any sufficiently well-behaved space-time dependent
function. We see that this transformation will not leave the Dirac Lagrangian, introduced
in the previous section, invariant since

∂µψ
′ = eiqf(x)∂µψ + iq∂µf(x)eiqf(x)ψ . (1.17)

Invariance of the Lagrangian can be recovered by replacing the differentiation operator ∂µ
with the covariant derivative

Dµ = ∂µ + iqAµ , (1.18)
where we introduce a new electromagnetic field Aµ, also known as the photon field. The
substitution from ∂µ to Dµ is known as minimal substitution. The covariant derivative of
the field ψ undergoing a U(1) transformation, becomes

Dµψ
′ = (∂µ + iqAµ)ψeiqf(x) = eiqf(x) [∂µ + iq∂µf(x) + iqAµ]ψ . (1.19)

We see that if we also require that the new field Aµ transforms as

Aµ → A′
µ = Aµ − ∂µf(x) , (1.20)

9
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the Lagrangian remains invariant. The transformation introduced in Equation (1.20) is
known as a coupled transformation.

The free fermion Lagrangian we started with now becomes

L = ψ(i/D −m)ψ − 1

4
FµνF

µν . (1.21)

Here we have used /D = γµDµ, so-called Feynman slash notation. Also included in this
equation is the kinetic term describing the propagation of the free photon field. The
electromagnetic field strength tensor Fµν is defined as

Fµν = ∂µAν − ∂νAµ . (1.22)

It may not be immediately clear from looking at the Lagrangian in Equation (1.21) that
this now includes a description of the electromagnetic interaction. However, by substitut-
ing the full equation of the covariant derivative into Equation (1.21),

L = ψ(i/∂ −m)ψ − qψ /Aψ − 1

4
FµνF

µν

= LFermion + LInteraction + LPhoton ,
(1.23)

it becomes clear that a new term Linteraction has appeared in the Lagrangian, in addition to
the terms for the free fermion and photon fields. This new term describes the interaction
between charged fermions and photons.

The transformation of the field Aµ given in Equation (1.20) is identical to the gauge
freedom of Maxwell’s equations of classical electromagnetism, where the electromagnetic
potential can be modified by the derivative of some arbitrary function f(x) without altering
the observable electric and magnetic fields E and B. In fact, we can show that by starting
from the QED Lagrangian and applying the Euler-Lagrange equation with respect to the
field Aµ, we re-derive the inhomogeneous Maxwell equations

∂νF
νµ = −qψγµψ = Jµ . (1.24)

Jµ is the so-called charge-current density. Having imposed a continuous U(1) symmetry
on the Lagrangian, by Noether’s theorem there must exist some conserved current due to
the symmetry. It can be shown that Jµ is exactly this conserved current. The conserved
quantity associated with this current is electric charge q. A particle having an electric
charge means that the particle interacts electromagnetically.

QED is a very successful theory. The measured value of the electron anomalous magnetic
moment g − 2 agrees with QED predictions to within one part in a trillion [19].

Feynman Rules

A physical theory on its own is useless if it cannot be tested. We need to use the QED
Lagrangian, arrived at in Equation (1.21), to make some predictions about nature. These
predictions can then be compared to observation. In the field of high energy physics, this
typically means calculating cross-sections3 of scattering and annihilation processes.

No interacting quantum field theory is exactly solvable. Instead, perturbation theory
must be employed. Here, the Hamiltonian of the theory is divided into a free term gov-
erning the free propagating fields, and an interaction term. This interaction term is then

3The cross-section of a process is closely related to the probability that said process will take place in a
particle collision. See Section 2.1.
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treated as a perturbation. This approach is justified if the interaction is sufficiently weak,
which is the case for QED, where the strength of interactions at the atomic scale is char-
acterised by the fine structure constant α ≈ 1/137.

The S-matrix S, also known as the scattering matrix, contains the probability amplitudes
of every possible transition between an initial and a final state of particles. The transition
amplitude from some given initial state |i〉 to some final state |f〉 is defined as Sfi =
〈f |S |i〉. The Dyson expansion of S, expressed in terms of the interaction Hamiltonian
densities H is

S =
∞∑
n=0

(−i)n
n!

∫
· · ·
∫

d4x1d4x2 . . . d4xnT{H (x1)H (x2) . . .H (xn)} . (1.25)

Here, T{} indicates time-ordering, such that later times are ordered to the left of earlier
times in the product of Hamiltonian densities. Calculating S exactly is impossible, the
sum must be truncated at some order n. Calculating cross-sections from Equation (1.25)
directly is impractical, and physical interpretation of the underlying physical process of
scattering is obfuscated by multiple complicated integrals. Therefore, when calculating
cross-sections in high energy physics, it is common to use Feynman diagrams and Feynman
rules.

Feynman diagrams, also known as Feynman graphs, are used to depict S -matrix elements
of some order n in a graphical way. From equations (1.13) and (1.23) we see that the
interaction Hamiltonian density of QED is

H = −q : ψ /Aψ : . (1.26)

Here, the :: notation indicate normal ordering, meaning that creation operators are to be
placed to the left of annihilation operators in the products. We saw earlier that during
quantisation, fields are promoted to operators. A field operator ψ can be decomposed
into the sum of a creation ψ+ and an annihilation operator ψ−, responsible as the name
suggest for creating and annihilating particles in the field. The interaction Hamiltonian
density can then be written as

H = −q :
(
ψ

+
+ ψ

−
)(

/A
+
+ /A

−
) (
ψ+ + ψ−) : . (1.27)

This Hamiltonian density has eight terms, representing eight different permutations of a
fermion, an anti-fermion, and a photon being created or annihilated in a point. One of
these eight cases is drawn as a Feynman diagram in Figure 1.1. In a Feynman diagram, the
horizontal axis indicates the flow of time from left to right, while the vertical axis denotes
spatial movement. Photons are drawn as sinusoidal lines, while fermions are drawn as
arrowed solid lines. Fermion arrows point towards increasing time, while anti-fermion
lines point towards decreasing time. This is accordant with the Feynman-Stückelberg
interpretation of an anti-particle as a particle running backwards in time. The point
where the lines of a Feynman diagram meet is called a vertex. The number of vertices in
a Feynman diagram exactly equals the order in perturbation theory of its corresponding
S -matrix element.

The lowest order QED vertex shown in Figure 1.1 and its eight permutations are the
building blocks for every higher-order Feynman diagram. Higher-order diagrams are con-
structed by joining the fermion or photon lines of two or more of the basic vertex. In this
case, fermion lines must be connected to anti-fermion lines and vice versa, in such a way
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Figure 1.1: The fundamen-
tal QED interaction ver-
tex.

γ

f

f

that only lines that "point" in the same direction meet; a fermion line cannot suddenly
become an anti-fermion line between vertices.

In QED, the lowest order vertices, like the one shown in Figure 1.1 do not correspond to
any real physical processes, as they would all violate energy and momentum conservation.
Real physical processes must instead be constructed using diagrams with two vertices
or more, such as the one drawn in Figure 1.2. In this process, an electron-positron pair
annihilates into a photon, which in turn creates a muon-anti-muon pair. This diagram also
illustrates the physical interpretation of the photon as the mediator of the electromagnetic
interaction.

Figure 1.2: A Feynman
diagram of the process
e+e− → µ+µ−.

γ

e−

e+ µ+

µ−

Feynman diagrams have become the industry standard for visualising particle interac-
tions, but they are also useful beyond their illustrative purpose. Feynman rules are math-
ematical tools, used for calculating cross-sections, based on Feynman diagrams. Feynman
rules are used to calculate the Feynman amplitude M of a process, whose absolute square
|M|2 is proportional to the cross-section of said process. The Feynman rules of QED will
not be given here4, but in essence, they assign a factor to the term for M for each line
and vertex in a Feynman diagram. So, to calculate M of some process to a certain order
of perturbation theory, first, write down every possible topologically distinct Feynman
diagram of the chosen order and lower. Next, use the Feynman rules to calculate M for
each diagram, add the terms, and take the absolute square.

Quantum Chromodynamics

We learnt in Section 1.1.1 that hadrons, bound states of two or three quarks, are held
together by the strong force. Quantum chromodynamics (QCD) is a quantum field theory
of the strong interaction, somewhat analogous to QED. Whereas electromagnetism only
has one electric charge, the strong interaction contains three colour charges. The field of
each colour charge can be combined into a three-component field

Ψ =

ψr
ψg
ψb

 . (1.28)

4See for example in Appendix B of [14]
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The free Dirac Lagrangian can then be written

L = Ψ
f
(iγµ∂µ −m)Ψf . (1.29)

The index f indicates the quark flavour of the field.
The theory of the strong interaction is arrived at in much the same way as QED, only

now the Lagrangian is required to be invariant under local SU(3) transformations of the
field Ψ:

Ψ(x) → Ψ′(x) = eigsαi(x)λ
i/2Ψ(x) , (1.30)

where αi(x) are eight arbitrary real space-time dependent angles, and λi are the eight Gell-
Mann matrices, the generators of the SU(3) symmetry group. The covariant derivative is
defined analogously to the one in Equation (1.18),

Dµ = ∂µ + igs

2
λiAiµ . (1.31)

only now there are eight new gluon fields Aiµ instead of the single photon field in QED. The
transformations of Aiµ themselves are complicated somewhat, due to the fact that SU(3)
is a non-Abelian symmetry group, meaning that its group elements do not commute. For
small αi, Aiµ transforms as

Aiµ → A′
iµ = Aiµ − ∂µαi − gsfijkα

jAkµ , (1.32)

where fijk are totally anti-symmetric so-called structure constants. We see here that a new
term −gsfijkαjAkµ has appeared, which has no QED analogue. The full QCD Lagrangian
now becomes

L = Ψ
(
i/D −m

)
Ψ− 1

4
GiµνG

µν
i . (1.33)

Gµν
i is the gluon field strength tensor, defined as

Giµν ≡ ∂µAiν − ∂νAiµ − gsfijkA
j
µA

k
ν . (1.34)

The final term in this expression is needed to make the Lagrangian invariant, due to the
new term added in the transformation of the gluon fields in Equation (1.32). When the
dust has settled after imposing a local SU(3) symmetry to the theory, we can see that
three new terms have appeared in the Lagrangian that can be interpreted as interaction
terms:

LInteraction = −gs

2
Ψλi /A

i
Ψ+

gs

2
f ijk (∂µAνi − ∂νAµi )A

j
µA

k
ν −

g2s
4
f ijkfilmA

µ
jA

ν
kA

l
µA

m
ν . (1.35)

The first of these terms is a quark-gluon interaction term analogous to the QED interaction,
while the other two are gluon self-interaction terms. These interaction terms are illustrated
as Feynman graphs in Figure 1.3. The gluon self-interaction terms are a consequence of
the non-Abelian nature of SU(3). Gluon self-interaction means that the gluons themselves
must carry colour charge. In fact, each gluon carries two units of colour charge, one colour-
and one anti-colour charge.

The strong interaction is an asymptotically free theory. This means that the strength
of the interaction grows with increasing length scales. This is directly opposite to QED,
where the interaction wanes with distance, and is a direct result of the gluons carrying
colour charge. If one tries to rip apart the quark-anti-quark pair in a meson into a free
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Figure 1.3.: The fundamental QCD vertices.

quark and anti-quark, the force required to separate the quarks increases like in a rubber
band. At some point this rubber band "snaps" as it becomes more energetically favourable
to spontaneously create a quark-anti-quark pair from the vacuum, to pair up the colour
charges in the meson. This effect, known as colour confinement, is the reason why no
colour charged objects are seen in nature. It should be pointed out here that although
asymptotic freedom is a predicted trait of QCD, colour confinement is not. Instead, colour
charge is observed in experiments to be confined to hadrons.

The Weak Interaction

The weak interaction is the third fundamental interaction described in the SM mathemat-
ical framework. The weak interaction was first postulated in the 1930s by Enrico Fermi to
explain the process of beta decay. In a beta decay, a down quark is transformed into an up
quark, an electron, and an anti-electron neutrino. A new interaction theory is necessary
to explain these flavour changing properties, as they cannot occur in strong or electromag-
netic interactions. A new fermion also has to be introduced to the SM, the neutrino, to
explain the apparent missing energy in beta decays.

Before presenting the theory of weak interactions, we have to introduce the concept
of particle handedness. The helicity of a particle is the projection of its spin onto the
direction of its momentum. A particle is said to be of right-handed helicity if this spin
projection is parallel with its direction of motion, and of left-handed helicity if the spin
projection is anti-parallel with its direction of motion. The chirality of a particle is a
more abstract property, and is an intrinsic property of particles like their spin or their
mass. A particle that transforms in a left- or right-handed representation of the Poincaré
group is said to be left- or right-handed, respectively. The Poincaré group is the symmetry
group of special relativity, ensuring Lorentz invariance under translations, rotations and
boosts. The chirality and helicity of a massless particle coincide. The helicity of a massive
particle, on the other hand, is dependent on the frame of the observer. However, for an
ultra-relativistic particle, helicity and chirality can be treated as equal.

Charged weak interactions only couple to left-handed fermions. The left-handed ψL and
right-handed ψR components of a fermion field ψ can be projected out using the chirality
operators L and R, defined as

ψL = Lψ
ψR = Rψ

}
=

1∓ γ5

2
ψ . (1.36)

The matrix γ5 is defined, using the Dirac gamma matrices, as γ5 = iγ0γ1γ2γ3. The
left- and right-handed fermion fields must be treated differently in the theory of weak
interactions. A new quantum number is given to left-handed fermions, known as weak
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isospin I. Left-handed fermions are paired in weak isospin doublets, while right-handed
fermions form isospin singlets of I = 0. The left-handed charged lepton and neutrino pair
of each lepton generation, for example, form the weak isospin doublet

ΨL
l =

(
ψL
νl

ψL
l

)
, Ψ

L
l =

(
ψ

L
νl
ψ

L
l

)
, (1.37)

where the index l indicates the lepton flavour. The value of the third component of isospin,
I3, is +1/2 for the neutrino field ψL

νl
and -1/2 for the charged lepton field ψL

l . The weak
isospin doublets are analogous to the strong colour triplets introduced in Section 1.1.3.
Weak isospin doublets also exist for left-handed quark fields.

The free Lagrangian of the left- and right-handed lepton fields can now be written

L = ΨL
l i/∂ΨL

l + ψR
l i/∂ψR

l + ψR
νl

i/∂ψR
νl
. (1.38)

Like for QED and QCD, we arrive at the weak interaction by first imposing a local
transformation on the weak isospin doublet. This time we require our Lagrangian to be
invariant under an SU(2) transformation

ΨL(x) → ΨL′
(x) = eigωi(x)σi/2ΨL(x) . (1.39)

Here, g is the weak coupling constant, ωi are three arbitrary real functions, and σi are the
three Pauli matrices. SU(2) transformations when applied to the weak isospin doublets
are often denoted with a subscript L as SU(2)L. Right-handed fermion fields ψR do not
transform under this transformation, these fields are so-called SU(2)L singlets.

There are no mass terms in the free Lagrangian given in Equation (1.38). Any such
terms, of the form −mψψ would mix fields of left- and right-handed chirality, and as these
fields transform differently under SU(2)L, such terms would not be invariant.

As before, the Lagrangian can be made invariant under these new transformations by
substituting the covariant derivative

Dµ = ∂µ + ig
2
ωiWiµ , (1.40)

where Wiµ are three new gauge fields, required to transform as

Wiµ → W ′
iµ = Wiµ − ∂µωi − gεijkω

jW k
µ , (1.41)

for small ωi.
The fields associated with the physical charged weak bosons W+ and W− are found by

combining the fields W1µ and W2µ as

W±
µ =

1√
2
(W1µ ∓ iW2µ) (1.42)

One could be forgiven for assuming then, that the third field W3µ is associated with the
neutral weak boson Z0. However, things are not quite as simple, as we shall see in the
next section.

For leptons, disregarding flavour changing neutrino oscillations, weak interactions only
involve one of the three lepton families at a time. For quarks, however, weak interactions
may be flavour changing. A W− boson may, for example, decay to an anti-down quark
and a charm quark, both belonging to different quark families. This is due to the fact that
weak interaction quark states are not equal to the physical quark states. The relationship
between the interaction states and physical mass states of the quarks is given by the
Cabbibo-Kobayashi-Maskawa (CKM) matrix. Flavour changing weak interactions are only
seen in interactions of the charged weak bosons.
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Electroweak Unification

Requiring invariance of the free Lagrangian in Equation (1.37) under SU(2)L transforma-
tions, yields the conserved weak isospin current

Jµi =
1

2
ΨLγµσiΨ

L . (1.43)

The third component Jµ3 of this current, which is an electrically neutral current, takes the
form

Jµ3 =
1

2
ΨLγµσ3Ψ

L = −1

2

[
ψL
l γ

µψL
l − ψL

νl
γµψL

νl

]
. (1.44)

Save for a factor e, the elementary electric charge, Jµ3 resembles the conserved current for
charged leptons,

JµEM = −eψlγµψl . (1.45)
This motivates the idea that the electromagnetic and weak forces can be described in
a common mathematical framework. A modification to the weak interaction theory is
further necessitated by the fact that the weak boson Z0, unlike its charged cousins W±,
can couple to right-handed fermions. Combining electromagnetism and the weak force
into a common framework, aptly named the electroweak interaction, was first proposed by
Glashow in 1961, and later expanded by Weinberg and Salam [20–22].

Combining Jµ3 and JµEM, dividing out the factor e, yields the hypercharge current

JµY ≡ JµEM/e− Jµ3 = −1

2
ΨLγµΨL − ψR

l γ
µψR

l . (1.46)

The conserved charge corresponding to this current is called hypercharge Y , and is found
by taking Y =

∫
d3xJ0

Y . Since electric charge Q and the third component of weak isospin
I3 are both individually conserved, hypercharge Y must also be a conserved quantity.
Hypercharge can be calculated using the Gell-Mann-Nishijima formula

Y

2
=
Q

e
− I3 . (1.47)

To marry the existing electromagnetic interaction with the weak interaction we exchange
the local U(1)EM symmetry introduced in Section 1.1.3 with a new local hypercharge U(1)Y
transformation

ψ(x) → ψ′(x) = eig′Y f(x)/2ψ(x) . (1.48)
Here, ψ can be both a left-handed weak isospin doublet ΨL or a right-handed fermion field
ψR. Once again the covariant derivative Dµ and a field Bµ must be introduced to ensure
invariance of the Lagrangian. The field Bµ transforms analogously to the photon field Aµ
of QED

Bµ → B′
µ = Bµ + ∂µf(x) . (1.49)

The fields Aµ and Zµ, associated with the physical photon and Z0 particles, are linear
combinations of Bµ and W3µ,

Aµ = Bµ cos θW +W 3
µ sin θW ,

Zµ = −Bµ sin θW +W 3
µ cos θW .

(1.50)

Here, θW is the weak mixing angle, also known as the Weinberg angle. The weak mixing
angle can be defined both as a ratio of weak boson masses

cos θW =
mW

mZ
, (1.51)
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or using the coupling constants g and g′

cos θW =
g√

g2 + g′2
. (1.52)

The total symmetry group of the electroweak interaction, then, is SU(2)L ⊗ U(1)Y. We
can now write down the full interacting electroweak Lagrangian

LEW = ΨL
l i/DΨL

l + ψR
l i/DψR

l − 1

4
BµνB

µν − 1

4
WiµνW

µν
i . (1.53)

The gauge field tensors Bµν and Wµν are analogous to those given in equations (1.22) and
(1.34), respectively. The form of the covariant derivative Dµ is dependent on what field it
operates on:

DµΨ
L
l =

[
∂µ + ig

2
σiWiµ − ig

′

2
Bµ

]
ΨL
l ,

Dµψ
R
l = [∂µ − ig′Bµ]ψ

R
l .

(1.54)

There is a factor-2 difference in the Bµ-terms due to the difference in hypercharge between
left- and right-handed fermions.

There are no right-handed neutrino fields in the electroweak Lagrangian given in Equa-
tion (1.53). From Equation (1.47) we see that right-handed neutrinos have Y = 0. Having
neither hypercharge, weak isospin, electric charge, or colour charge, right-handed neutri-
nos do not partake in any of the SM interactions. They are therefore omitted from the
Lagrangian.

The basic interaction vertices of the electroweak interaction are shown as Feynman
graphs in Figure 1.4 and Figure 1.5. Figure 1.4 shows the possible interactions between
fermions and electroweak bosons, while Figure 1.5 shows the possible electroweak boson
self-interactions.

Z0/γ

l+, νl, q

l−, νl, q

(a)

W+

l+, qd

νl, qu

(b)

W−

νl, qu

l−, qd

(c)

Figure 1.4.: The fundamental electroweak fermion interaction vertices. Note that for dia-
gram (a), only the Z0 boson may annihilate into a neutrino-anti-neutrino pair.

One glaring issue remains: electromagnetism and the weak interaction are manifestly
different interactions. Constructing the electroweak theory, all fermions and bosons are
assumed to be massless. In nature, fermions and the weak bosons have mass. The uni-
fication of electromagnetism and the weak interaction is only occurring at high energy
scales. In physics parlance, SU(2)L ⊗ U(1)Y must be a broken symmetry. The mechanism
for breaking electroweak symmetry and introducing particle masses is covered in the next
section.
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Z0/γ

W±

W∓

(a)

γ/Z0, W±

γ/Z0, W∓

W±

W∓

(b)

Figure 1.5.: The fundamental electroweak self-interaction vertices.

1.1.4. Electroweak Symmetry Breaking
Consider a system described by some Lagrangian, invariant under some symmetry trans-
formation. If the lowest energy state of the system is degenerate, there is no unique
eigenstate to represent the ground state of the system. If one of the degenerate states is
chosen to represent the ground state, this ground state is no longer invariant under the
symmetry transformation. This phenomenon is known as spontaneous symmetry breaking
(SSB). A spinning top is a simple example of a spontaneously broken symmetry. As long
as the top is spinning, it has a spatial rotational symmetry; it looks the same from all
directions. When the spinning top reaches its ground state, meaning when it loses its
momentum and falls down, it comes to rest on the table pointing in a random direction.
The rotational symmetry is now lost, or broken.

In QFT, the ground state of the Lagrangian is called the vacuum. If the electroweak
symmetry is spontaneously broken, the lowest energy state of the SM Lagrangian must be
degenerate. The vacuum is found by selecting one of these lowest energy states.

The Goldstone Model

A model exhibiting SSB is the Goldstone model, which is described by the Lagrangian

L = ∂µφ∗∂µφ− µ2|φ|2 − λ|φ|4 . (1.55)

Here, φ is a complex scalar field, while µ and λ are arbitrary model parameters. This
Lagrangian is invariant under a global U(1) symmetry transformation φ→ φ′ = φeiα. The
Goldstone potential is given by V = µ2|φ|2 + λ|φ|4. To ensure that V is bounded from
below, meaning that its ground state is a stable minimum, we require λ to be positive. If
µ2 is positive, the vacuum is unique at φ = 0, prohibiting SSB. If µ2 is negative, however,
a local maximum occurs when φ = 0, and the ground state of the Lagrangian, φ0, is a ring
of degenerate states in the complex plane of φ,

φ0 =

√
−µ2

2λ
eiθ =

v√
2

eiθ , 0 < θ < 2π , (1.56)

where θ is the angle of the minimum in this complex plane. This choice of µ2 < 0 and
λ > 0 is drawn in Figure 1.6. Due to its shape, this potential is sometimes known as the
Mexican hat- or wine bottle potential.

We can now select a value of θ in Equation (1.56) to represent the vacuum. For simplicity,
take θ = 0. The field φ can now be rewritten in terms of deviations from the chosen
vacuum, as

φ(x) =
1√
2
[v + σ(x) + iη(x)] , (1.57)
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Figure 1.6: The Goldstone poten-
tial [23].

where σ and η are two real fields. The Goldstone Lagrangian now becomes

L =
1

2
[∂µσ∂µσ] +

1

2
[∂µη∂µη]− λv2σ2 − λvσ

[
σ2 + η2

]
− 1

4
λ
[
σ2 + η2

]2
, (1.58)

omitting an irrelevant constant term. This Lagrangian is no longer invariant under global
U(1) transformations of the field φ, due to the term −λvσ [σ2 + η2].

In the Goldstone theory, the fields σ and η can be quantised and associated with physical
scalar spin-0 particles σ and η. The mass of σ is

√
2λv2, while η is massless. Such massless

particles are known as Goldstone bosons. No such particles have been observed in nature.
Goldstone’s theorem states that for any spontaneously broken global continuous symmetry,
the theory must contain at least one massless particle [24]. However, in the next section, we
shall see how we can avoid unphysical particles appearing in the theory after spontaneous
symmetry breaking.

The Brout-Englert-Higgs Mechanism

We start once again with the Goldstone Lagrangian in Equation (1.55), with the constraints
µ2 < 0 and λ > 0. Having chosen the real vacuum θ = 0 in Equation (1.56), the field φ
can again be expressed as a variation around the vacuum:

φ(x) =
1√
2
[v +H(x)] eiα(x) , (1.59)

where H and α are real scalar fields. Here, we have used polar coordinates rather than
Cartesian coordinates like in Equation (1.57), to simplify the following calculation.

Rather than having it be invariant under global U(1) transformations, we now impose
local U(1) transformations to the theory, meaning that the complex field φ transforms as
φ → φ′ = φeif(x). To achieve this we proceed in the same manner as for QED in Section
1.1.3, by promoting the derivative ∂µ to the covariant derivative Dµ = ∂µ + iqAµ, and
adding a gauge field Aµ that transforms as Aµ → A′

µ = Aµ + ∂µf(x).
The field φ can be made entirely real in every space-time point by requiring that the U(1)

transformation function f(x) takes the form f(x) = −α(x). This procedure of choosing a
form of f(x) like this is known as gauge fixing. The gauge chosen here is called the unitary
gauge. The field Aµ now transforms as Aµ → A′

µ = Aµ − ∂µα(x).
Dropping all constant and inconsequential terms, the Lagrangian of the transformed

field φ′, which we will relabel φ for simplicity, now becomes

L =
1

2
∂µH∂µH − 1

2
(2λv2)H2 − 1

4
FµνF

µν +
1

2
(qv2)AµA

µ

− λvH3 − 1

4
λH4 +

1

2
q2AµA

µ(2vH +H2) .
(1.60)
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Here, the first line describes the free, non-interacting, Lagrangian, while the bottom line
contains interaction terms. Mass terms have appeared in the Lagrangian for both fields H
and Aµ.

Unlike the Lagrangian of Equation (1.58), Equation (1.60) contains no massless Gold-
stone bosons. The α degree of freedom has not simply vanished. Rather, it has been
absorbed by the gauge field Aµ as a longitudinal mode of polarisation. The number of
degrees of freedom in the theory has not changed. The process outlined here, where we
start with a complex scalar field and a massless gauge field and end up with a real scalar
field and a massive gauge field is known as the Brout-Englert-Higgs (BEH) mechanism.
The massive spin-0 scalar particle associated with the field H is called a Higgs boson.

Spontaneous breaking of SU(2)L ⊗ U(1)Y through the BEH mechanism is called elec-
troweak symmetry breaking (EWSB), and is analogous to the U(1) breaking introduced
above. First, promote the field φ to a weak isospin doublet

Φ =

(
φ+

φ0

)
, (1.61)

where φ+ and φ0 are complex scalar fields. The Goldstone Lagrangian for a weak isospin
doublet field becomes

L = DµΦ†DµΦ− µ2Φ†Φ− λ(Φ†Φ)2 . (1.62)

The covariant derivative for a weak isospin doublet is given in Equation (1.54)5. This
Goldstone Lagrangian is then added to the preexisting electroweak Lagrangian of Equation
(1.53).

By requiring that µ2 < 0 and λ > 0, the ground state of the theory is once again
degenerate. Selecting a value for the vacuum,

Φ0 =
1√
2

(
0
v

)
, (1.63)

allows us to write Φ as variations around this ground state:

Φ =
1√
2

(
φ+
1 + iφ+

2

v +H + iφ0
2

)
. (1.64)

Selecting the unitary gauge, Φ becomes

Φ =
1√
2

(
0

v +H

)
. (1.65)

Once again a massive scalar particle H appears in the theory. The fields φ+
1 , φ+

2 , and φ0
2

have not disappeared completely; the total number of degrees of freedom in the fields of
the electroweak theory does not change before and after EWSB. Table 1.3 illustrates this
migration of degrees of freedom from the Higgs weak isospin doublet Φ to the gauge fields
Wiµ.

After EWSB, mass terms for the W± and Z0 bosons have appeared in the Lagrangian,
while the photon γ remains massless. Interaction terms for the new Higgs boson have
also appeared in the Lagrangian. The term DµΦ†DµΦ contains interactions between the
Higgs boson and the weak bosons, while the Goldstone potential µ2Φ†Φ−λ(Φ†Φ)2 contains
Higgs boson self-interaction vertices. The basic interaction vertices of these interactions
are shown in Figures 1.7 and 1.8.
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Table 1.3.: Counting degrees of freedom in the electroweak and Higgs fields before and
after electroweak symmetry breaking. The absolute number of degrees of freedom is the
same before and after symmetry breaking.

(a) Before EWSB

Fields Bosons Type DoF
W 1, W 2 W+, W− Massless 4
W 3, B0 Z0, γ Massless 4
φ+
1 ,φ+

2 φ+
1 ,φ+

2 Scalar 2
φ0
1 ,φ0

2 φ0
1 ,φ0

2 Scalar 2
Total 12

(b) After EWSB

Fields Bosons Type DoF
W 1,2, φ+

1,2 W+, W− Massive 6
W 3, φ0

2 Z0 Massive 3
W 3, B0 γ Massless 2
H H0 Scalar 1

Total 12

H0

Z0, W±

Z0, W∓

(a)

H0

H0

Z0, W±

Z0, W∓

(b)

Figure 1.7.: The fundamental vertices of Higgs boson interactions with the electroweak
bosons.

H0

H0

H0

(a)

H0

H0

H0

H0

(b)

Figure 1.8.: The fundamental Higgs boson self-interaction vertices.

21



CHAPTER 1. THE STANDARD MODEL AND BEYOND

So far, the weak bosons have acquired mass terms in the Lagrangian, but the fermions
remain massless. Fermion mass terms enter the SM Lagrangian through so-called Yukawa
terms. For charged leptons, for example, the Yukawa terms take the form

LYuk
l = −glΨL

l Φψ
R
l − glψ

R
l Φ

†ΨL
l , (1.66)

where the indices l run over the three lepton flavours, and gl are free model parameters.
The second term is the Hermitian conjugate (h.c.) of the first term. The Yukawa terms are
invariant under SU(2)L⊗U(1)Y transformations. After EWSB, the Yukawa terms become

LYuk
l =

−glv√
2
ψL
l ψ

R
l − glψ

L
l ψ

R
l H + h.c. . (1.67)

The first of these terms is a mass term for the charged lepton l. The mass of the charged
leptons is given by ml = glv/

√
2. The second term of Equation (1.67) is an interaction

term between the charged lepton field ψl and the massive scalar Higgs field H. We see that
since the Yukawa coupling parameter gl appears in both terms of Equation (1.67), the
strength of this interaction is directly proportional to the mass of the charged lepton. The
fundamental vertex of the Higgs interactions to fermions is shown as a Feynman graph in
Figure 1.9.

Yukawa terms for down-type quarks can be written in the same form as the term in
Equation (1.66). For up-type quarks we have to make a slight modification to the form
of the Yukawa terms. Up-type quarks have weak isospin +1/2, but we chose in Equation
(1.63) to place our vacuum expectation value for the Higgs weak isospin doublet in the
isospin −1/2 position. The +1/2 and −1/2 positions of the Higgs weak isospin doublet
can be rotated into each other by the transformation Φ̃ = iσ2Φ, where σ2 is the second
Pauli matrix. The SM Yukawa terms for up-type quarks then become

LYuk
u = −guΨL

q iσ2ΦψR
q + h.c. . (1.68)

Since right-handed neutrino fields ψR
νl

have been dropped from the theory, no Yukawa
terms exist for neutrinos. Neutrinos are therefore assumed to be massless in the SM.

Figure 1.9: The fundamen-
tal Higgs-fermion interac-
tion vertex.

H0

f

f

1.2. Physics Beyond the Standard Model
The SM is in excellent agreement with experimental results across a range of observables.
Nonetheless, the SM has its shortcomings. Some experimental results are in tension with
SM predictions. We mentioned in Section 1.1.3 that the observed anomalous magnetic
moment g − 2 of the electron agrees with its SM prediction to very high precision. The
muon anomalous magnetic moment on the other hand, which has also been measured to

5Equation (1.54) shows the covariant derivative of the weak isospin doublet of a lepton, which has
opposite hypercharge to Φ.
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very high precision, shows a discrepancy of 3.3 standard deviations, or 3.3 "sigma", between
theory and observation [11].

In electroweak theory, the strength of the coupling of the weak bosons to leptons does
not distinguish between lepton flavours. This phenomenon is known as lepton universality.
Therefore, the branching ratios of the decay processes B+ → K+e+e− and B+ → K+µ+µ−

are predicted to be equal in the SM. However, a recent measurement of these branching
ratios by the LHCb Collaboration shows a 3.1 sigma disagreement with theory [25].

The aforementioned experimental results could be due to statistical fluctuations, but
they hint at the possibility that the SM is an incomplete theory. In fact, we know that the
SM cannot be a complete model of the interactions of elementary particles. Such a theory
would of course have to include the fourth fundamental interaction, gravity. We assume
that the SM is valid up to some energy scale, at which it can no longer make accurate
predictions. The scale at which the quantum effects of gravity can no longer be ignored is
called the Planck Scale EP ≈ 1019 GeV. Such energies are well beyond the reach of particle
colliders.

In addition to the experimental disparities mentioned above, some physical phenomena
are not described by the SM at all. Listed below are some outstanding theoretical issues
of the SM.

Neutrino Mass

This problem was hinted at in the previous section. Neutrinos are assumed to be massless
in the SM, but this assumption is wrong. Neutrinos are shown to flavour-oscillate, a
feature not possible without mixing between the interaction- and mass eigenstates of the
neutrinos, and non-zero neutrino mass. Technically, there is nothing keeping us from
adding the right-handed sterile neutrino fields back into the SM and adding neutrino mass
terms to the SM Lagrangian through the Higgs mechanism. However, in doing so the issue
of neutrino lightness, why is the mass of the neutrinos so small compared to the other SM
particles, would remain.

A possible solution to the neutrino mass conundrum is found in the seesaw mechanism.
By introducing a very heavy right-handed neutrino of mass MR, the mass of the left-handed
SM neutrinos can be shown in the seesaw theory to be of the order mνl ≈ m2

l /MR [26]. We
see that if the mass of the heavy right-handed neutrino grows, the mass of the left-handed
neutrino decreases, like the two sides of a playground seesaw. A requirement of the seesaw
theory is for neutrinos to be Majorana particles. In other words, that they are their own
anti-particles. Being electrically neutral, the neutrinos are the only fermions that could
satisfy this requirement. However, no experimental evidence that neutrinos are Majorana
particles has so far been observed.

The Hierarchy Problem

Higher-order calculations in QFT involve loop diagrams. These loops introduce divergent
four-momentum integrals. Finite calculations are only achieved after renormalisation of
the theory. The divergent integrals are regularised by introducing a regularisation param-
eter, often denoted as Λ. This dimensionful parameter can be regarded as the energy scale
at which the theory (i.e. the SM) loses its validity. We often set this parameter to be
equal to the Planck scale.

The bare Higgs mass is given in Equation (1.60) as m0,H = v
√
2λ. The observable

Higgs mass has been measured at the LHC to be 125 GeV. This mass is given as m2
H =
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m2
0,H + ∆m2

H. Here, ∆m2
H denotes a correction to the Higgs mass from loop diagrams,

exemplified in Figure 1.10. Every elementary particle interacting with the Higgs boson
adds to these corrections. Whereas most SM loop corrections are of the order O(ln(Λ)),
corrections to the Higgs mass are of the order O(Λ2). This means that for a regularisation
parameter Λ set to the value of the Planck scale, ∆m2

H becomes huge. The contribution
to the Higgs mass from loop corrections are orders of magnitude greater than the Higgs
mass itself. Achieving almost perfect cancellation between the bare Higgs mass and the
loop corrections requires extreme fine tuning of the SM particle masses.

f

f

H H

(a)

W∓,Z0

W±,Z0

H H

(b)

Figure 1.10.: Higgs correction diagrams from fermion (a) and boson (b) loops.

Baryon Asymmetry

There does not seem to be enough antimatter in the universe. In the Big Bang, baryons
and anti-baryons, which is to say matter and antimatter, will have been produced in equal
quantities. Why is it then, that today the universe only seems to consist of ordinary mat-
ter? We say that there is a baryon asymmetry in the universe. The SM does not conserve
CP-symmetry, which is to say that the probability of a transition from a matter particle
to an antimatter particle is not necessarily the same as the probability of the reverse pro-
cess. CP-violation in the SM has been observed in matter-antimatter oscillations between
neutral kaons, and B0- and D0-mesons. CP-violation in the SM can account for parts of
the matter-antimatter asymmetry in the universe, but it cannot account for all of it. We
do not know the mechanism through which ordinary matter "won out" over antimatter in
the early universe.

Dark Matter

In the 1930s, Fritz Zwicky calculated that the luminous matter in the Coma galaxy cluster
was only about 1 per cent of the mass needed to bind the galaxies to the cluster by
gravitation. Zwiky’s calculation has later turned out to be off by about an order of
magnitude, but his observation is still valid: there seems to be more gravitational matter
in the Coma cluster than there is luminous matter [27]. Later, in the 1970s, Vera Rubin and
W. Kent Ford faced a similar conundrum when observing the rotation curves of galaxies;
the luminous matter in the galaxies they observed were only a fraction of that required
to keep the stars in the galaxies in their orbits [28]. The leading theory explaining these
phenomena is that a new kind of matter, meaning a new class of elementary particle or
particles, exist in the universe in addition to baryonic matter. This new matter is called
dark matter, as it does not appear to interact through the electromagnetic interaction, and
therefore emits no light. Dark matter is so far not explained by the SM. Neutrinos are
ruled out as dark matter candidates, as their tiny mass cannot account for the abundance
of dark matter in the universe. If dark matter does turn out to be a particle, and the dark
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matter particles interact through any of the SM interactions, then we should expect to be
able to create dark matter particles in particle collision experiments such as at the LHC.

Grand Unification

The coupling parameters of the SM interactions are not constant, but energy scale depen-
dent. This is caused by contributions from higher-order loop effects in elementary particle
interactions. At higher energy transfers, loop corrections become more influential, altering
the observed coupling strengths of the strong, weak, and electromagnetic interactions. In
the case of the strong and weak force, the self-interaction of gluons and weak bosons lead
to a so-called anti-screening effect on the couplings. This means that the strong and weak
couplings both decrease as a function of energy scale. Photons do not self-interact. Rather
than anti-screening, screening is seen in the electromagnetic interaction. The electromag-
netic coupling strength increases as a function of energy scale.

Figure 1.11.: The inverse coupling strengths of the strong-, weak-, and electromagnetic
interactions as a function of interaction energy. The couplings are extrapolated, from
values measured in experiments at lower energies, to high energies, where their curves
intersect [29].

If we extrapolate the strong, weak, and electromagnetic coupling strengths, as measured
at energies attainable at colliders, to higher energies, the couplings are almost seen to meet
in a single point. This is shown in Figure 1.11. The not-quite crossing point of the three
coupling strengths happens at an energy scale of about O(1015) GeV, far beyond the current
reach of particle colliders. The apparent convergence of the coupling strengths hints at
the possibility of unifying the three forces into a single combined interaction, analogous
to the electroweak unification. This concept is known as grand unification. Grand unified
theories (GUTs) are usually built around a common symmetry group including all three
SM forces. A common example of a GUT symmetry group is SU(5). This symmetry must
then be broken for us to be left with the SM symmetry groups at low energy scales. The
SU(5) symmetry group is excluded as a GUT candidate by proton lifetime experiments
and by precision measurements of the Weinberg angle.
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1.2.1. Heavy Neutral Bosons
Beyond standard model (BSM) is the field of study seeking to extend and ameliorate the
SM. This section, and the next, will cover some BSM models that may predict increased
production of dilepton events in collider experiments.

The SM is based on the symmetry SU(3)C ⊗ SU(2)L ⊗ U(1)Y. Adding a new U(1)
symmetry to the SM predicts the existence of a new neutral gauge boson. This boson is
often called Z′, named for its similarity to the SM Z boson. No additional U(1) symmetries
are observed in experiments, so any such additional new symmetry must be broken at low
energy.

Perhaps the simplest extension to the SM is in the form of an additional U(1) symmetry
where the couplings of the predicted Z′ boson are identical to those of the SM Z boson [30].
This model is known as the Sequential Standard Model (SSM). The SSM model cannot
be realised in nature in this fundamental form, as it is non-renormalisable. However, it is
still commonly used as a benchmark model.

In the SM, left-handed fermion fields are grouped together in SU(2)L isospin doublets.
This means that only left-handed fields carry weak isospin. In a left-right symmetric
model nature does not distinguish between left- and right-handed fermions. Such a left-
right symmetry occurs for example in the GUT based on the SO(10) symmetry group [30].
This symmetry may be broken as SO(10) → SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L.
Here, right-handed fermions are also grouped together in SU(2)R isospin doublets. The
electroweak symmetry group is now extended to become SU(2)L ⊗ SU(2)R ⊗ U(1)B−L.
In certain left-right symmetric models, hypercharge Y is no longer needed to determine
electromagnetic charge Q. Instead, Q becomes a function of baryon and lepton numbers
B and L, as

Q = IL
3 + IR

3 +
B − L

2
, (1.69)

instead of the familiar Gell-Mann-Nishijima formula of Equation (1.47).
The new symmetry group SU(2)R introduces three new gauge bosons: a neutral boson

Z′, and two charged bosons W′±
R. No symmetry SU(2)R has been observed in nature,

meaning that if it exists at all, the left-right symmetry must be a broken symmetry. Left-
right symmetry breaking happens in a mechanism analogous to the electroweak symmetry
breaking of the SM, covered in Section 1.1.4. The Higgs sector of left-right symmetric
models must be more complex than the SM Higgs model, containing for example charged
Higgs bosons. During symmetry breaking, the left-right symmetric symmetry group is first
broken to produce the electroweak symmetry group, as SU(2)L ⊗ SU(2)R ⊗ U(1)B−L →
SU(2)L ⊗ U(1)Y. This symmetry breaking step gives mass to the "primed" gauge bosons
of the right-handed symmetry group. These masses must necessarily be greater than the
electroweak scale. Next, the electroweak symmetry group is broken through the Higgs
mechanism, as explained in Section 1.1.4.

Another class of Z′ models is based on GUTs involving the E6 symmetry group [30, 31].
An interesting feature of these theories is that they predict the existence of at least one
additional heavy neutral boson at low energies. In many models, the E6 symmetry group is
first broken to a SO(10) ⊗ U(1)ψ symmetry. The SO(10) symmetry group is further broken
down, yielding a SU(5) ⊗ U(1)χ symmetry. The SM symmetry groups are produced by
symmetry breaking of the SU(5) symmetry. All three aforementioned symmetry breaking
steps happen around the GUT scale. The U(1)ψ and U(1)χ symmetries give rise to two
new neutral bosons, Z′

ψ and Z′
χ. These bosons are usually allowed to mix, leading to a

26



1.2. PHYSICS BEYOND THE STANDARD MODEL

single observable Z′ state, given as

Z′ = Z′
ψ cos θE6 + Z′

χ sin θE6 , (1.70)

where 0 < θE6 < π. The value of the mixing angle θE6 determines the coupling strength
of the Z′ boson to SM fermions, as well as the width of its resonance. The SSM model Z′

has an intrinsic width of around 3% of its mass. The E6 model Z′ is narrower, depending
on the choice of θE6 . A pure Z′

ψ (θE6 = 0) has a width of 0.5%, while a pure Z′
χ (θE6 =

π/2) has a width of 1.2%. These two models bookend the possible decay widths of the E6
Z′ resonance.

Three Z′ benchmark models are considered in the search for resonant dilepton phenom-
ena covered in Chapter 5: Z′

ψ, Z′
χ, and Z′

SSM.
In a heavy vector triplet (HVT) theory, the SM is extended by a triplet in the so-called

adjoint representation of SU(2)L [32]. Such triplets appear for example in composite- or
little Higgs models, and in certain GUT theories. The HVT triplet contains a neutral
Z′

HVT boson and two W′±
HVT bosons. The new bosons are mass degenerate, and have zero

hyper- and colour charges. HVT theory contains three free model parameters: gl, gq, and
gH, the coupling of the HVT triplet to leptons, quarks, and the Higgs boson, respectively.
The coupling to fermions is usually taken to be universal, or gf = gl = gq.

So far, we have only considered BSM theories predicting spin-1 bosons, but the SM
may also be extended by spin-0 and spin-2 bosons. Spin-2 theories will be covered in the
next section. New bosons of spin-0, so-called scalar bosons, may arise for example in the
minimal supersymmetric standard model (MSSM) [33].

1.2.2. Large Extra Dimensions
Perhaps the largest issue facing the SM is that it is not a theory of the gravitational
interaction. Another conundrum facing physicists is the question of why gravity is so
feeble compared to the other fundamental forces. This question is sometimes referred to
as the big hierarchy problem. A possible solution to this issue is the existence of one or
more extra spatial dimensions. The spread of gravity into these additional dimensions
could explain its apparent weakness in the four observable space-time dimensions [34].

To be consistent with observations, the new dimensions are considered to be small. The
process of folding dimensions in on themselves is known as compactification. A scalar field
in a higher-dimensional room will manifest in ordinary space-time as an infinite collection of
massive scalar fields. These fields can be considered quantised four-dimensional excitations
of the higher-dimensional scalar field’s momentum. This is known as a Kaluza-Klein (KK)
tower of excitations. The mass spacing of the KK modes is determined by the size of the
compact extra dimensions. The KK tower can be interpreted as space-time excitations of
a massive spin-2 graviton.

The Randall-Sundrum 1 (RS1) model introduces one new spatial dimension [35]. In
RS1, five-dimensional space-time, also known as the bulk, is warped. The added spatial
dimension is compactified on a so-called S1/Z2 orbifold. Two four-dimensional "surfaces",
so-called 3-branes, on the bulk are connected by this orbifold, the SM brane and the UV
or Planck brane. The SM is located on the SM brane, while gravity is located at or near
the Planck brane. Only the gravitational field propagates in the bulk, all other fields are
restricted to the SM brane.

In Arkani-Hamed, Dimopoulos, and Dvali (ADD) theory, ordinary space-time is ex-
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tended by two or more flat spatial dimensions6 [8]. The n extra dimensions are compacti-
fied on an n-dimensional torus. The size parameter of the torus is R. As in the RS1 theory,
the SM fields are located on a four-dimensional hypersurface of the 4-n-dimensional bulk,
while gravity is allowed to propagate in the bulk itself. The fundamental Planck scale in
4+n dimensions MD is related to the Planck scale MPl through Gauss’ law

M2
Pl ≈Mn+2

D Rn . (1.71)

For sufficiently large values of R, the fundamental scale of gravity can be as low as a few
TeV [36], which could lead to a solution of the hierarchy problem. For this reason, the
new spatial dimensions introduced in the ADD model are sometimes referred to as "large"
extra dimensions.

Compactifying the extra dimensions in ADD theory leads to a discrete set of KK graviton
excitation states. The mass of the i-th individual excitation is given by

m2
i =

i2

R2
. (1.72)

In the ADD model, R is large. So large in fact, that the spacing between neighbouring
KK modes can be considered negligible. In ADD theory, therefore, the graviton spectrum
can be considered continuous and non-resonant. In the RS1 model, on the other hand, the
graviton spectrum is expected to be more discrete, with definite resonances at each KK
mode.

The sum of all KK modes must be regulated, so as not to run to infinity. This is done
with a UV cutoff at some energy scale. This cutoff is set on the string scale MS of the
theory, given by [37]

MS = 2
√
π
[
Γ
(n
2

)]1/(n+2)

MD , (1.73)

where Γ is the gamma function.
The total cross-section σTot for the process qq → l+l− in the ADD model can be described

by modifying the SM Drell-Yan (DY) cross-section σDY of the process:

σTot
ADD = σDY + F

FInt

M4
S
+ F 2 FG

M8
S
. (1.74)

The cross-section signal contribution is divided into an interference term and a pure
graviton term, represented by FInt and FG, respectively. Giudice, Rattazzi, and Wells
(GRW) [38], Hewett [39] and Han, Lykken, and Zhang (HLZ) [40] define the following
conventions for calculating the form factor F :

F = 1 (GRW) .

F =
2λ

π
=

±2

π
(Hewett) .

F = log

(
M2

S
s

)
for n = 2 (HLZ) .

F =
2

n− 2
for n > 2 (HLZ) .

(1.75)

Only the Hewett convention allows for a negative sign (destructive) interference term with
the SM. However, for practical reasons, only the positive sign convention will be considered
in the analysis of Chapter 6.

6The ADD case of exactly one extra spatial dimension is excluded by observations. The existence of such
a theory predicts modified Newtonian gravity on the solar system scale
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1.2.3. Contact Interactions
The ADD model is not the only model predicting non-resonant high-mass dilepton signa-
tures. Contact interactions (CIs) are examples of effective field theories (EFTs). An EFT
can be considered a low energy approximation of a more fundamental, or "full", quantum
theory [41]. An advantage of EFTs is that they allow us to ignore, or "integrate out",
any new degrees of freedom introduced by a high-energy fundamental theory, and rather
construct a theory using only SM fields.

Assume that the SM is only valid up to some energy scale Λ, above which new physics is
needed to accurately describe nature. New interactions can be constructed with coefficients
proportional to the inverse power of Λ. A general effective Lagrangian can be written

L = LSM +
∞∑
i=1

ci
Λi

Oi . (1.76)

Here, ci are dimensionless coefficients, and the operators Oi are functions of SM fields. The
above expansion may be calculated to any order in Λ−1, but the lowest order operators will
be dominant. We see that the SM is recovered when taking the limit Λ → ∞. The action S
of a Lagrangian is a dimensionless quantity. To satisfy this condition, every SM operator
has dimension [OSM] = E4. We say that they are dimension four operators. For S to
remain dimensionless, the new operators added in Equation (1.76) must have dimensions
[O] = E4+i. The effective theory is only valid at energies far below the Λ scale [42]. The
most dominant new interactions are the lowest order terms of Equation (1.76). In this
work, we will only consider dimension six operators. One gauge-invariant dimension five
operator can be constructed, the so-called Weinberg operator. However, this operator does
not give rise to four-fermion contact interactions, and will therefore be ignored.

Perhaps the most famous example of an effective field theory is Fermi’s model of beta
decay [15]. In the 1930s, when Fermi developed his theory, the energy reach of particle
physics experiments was far lower than that required to produce weak bosons. Fermi
was able to model the weak interaction, not through the exchange of W or Z bosons,
but as a four fermion contact interaction. Fermi’s model is an effective theory of the weak
interaction at energy scales far less than the mass of the weak bosons. This model-building
approach can be used today, in the search for new heavy bosons like the ones mentioned
in Section 1.2.1. If a Z′ boson exists with a mass beyond the reach of modern colliders,
we would not be able to observe this particle directly, but we could observe new CIs. A
Feynman diagram of a CI scattering process is shown in Figure 1.12.

q

q

l

l

Figure 1.12: Feynman dia-
gram of a four fermion con-
tact interaction, where a
quark pair annihilates to a
lepton final state in a single
point.

Another high-energy theory that could manifest itself through CIs at lower energies is
the theory of quark and lepton compositeness; the idea that quarks and leptons are not
elementary particles, but are made up of preons. In this theory, quarks and leptons are
preons bound together by some force, analogous to the strong force [43].

Fermion fields have mass dimension 3/2, so a four fermion interaction has to be repre-
sented by a dimension six operator. 63 dimension six operators can be constructed from
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fermion fields [44]. The number of operators reduces to 59 if baryon number conservation
is imposed in the interaction. In the analysis presented in Chapter 6, we only consider the
operator

Olq = (qγµq)
(
lγµl

)
, (1.77)

which may appear in quark- and lepton compositeness scenarios. When separating the left
and right components of the quark and lepton fields, this operator leads to the following
Lagrangian for the CI:

LCI =
g2

Λ2
[ηLL(qLγµqL)(lLγ

µlL)

+ηRR(qRγµqR)(lRγ
µlR)

+ηLR(qLγµqL)(lRγ
µlR)

+ηRL(qRγµqR)(lLγ
µlL) ] .

(1.78)

Here, the chosen convention for the coupling g is g2/4π = 1 [45]. qL (qR) and lL (lR) are
left-handed (right-handed) quark- and lepton fields, respectively. The chiral structure of
the new interaction is determined by ηij, which can take the values -1, 0, or 1. In the
analysis of Chapter 6, each term in Equation (1.78) is considered separately, setting the
remaining three terms to zero.

The total cross-section for the process qq → l+l− is found by adding terms for the CI
and its interference with the SM to the SM Drell-Yan cross-section:

σTot
CI = σDY + ηij

FInt

Λ2
+
FCI

Λ4
. (1.79)

The sign of ηij determines the interference of the CI with the SM; a negative sign gives
negative interference, while a positive sign gives positive interference. FInt and FCI are
functions of invariant mass mll, and represent the interference- and "pure CI" terms, re-
spectively.
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2. Experimental Setup

2.1. Introduction to Particle Collider Experiments
Particle colliders are the main tools by which physicists study the properties of subatomic
particles. Only a few subatomic particles are stable in nature: electrons, photons, neu-
trinos, protons and neutrons (when bound inside nuclei). All other particles will decay,
when produced, into stable decay products. To study such transient particles, they must
be produced in a laboratory by colliders, or in atmospheric cosmic ray showers.

Particle colliders create particles by exploiting the mass-energy equivalence principle
E = mc2. A consequence of this principle is that the energy of two particles colliding can
be converted to mass in the form of new particles. The mass of the produced particles is
limited by the energy of the initial colliding particles. More specifically, only the energy
in the COM frame of reference of the colliding particle system is available to produce
new particle states. This has implications for particle collider design. For a so-called
fixed-target collider, in which a single beam of particles impacts a stationary target, the
collision energy in the COM system of the particle collisions is proportional to the square
root of the energy of the beam. For a colliding beam accelerator, on the other hand,
the COM energy grows linearly with the beam energy. Two proton beams of 21.6 GeV
colliding have the same COM collision energy as a single 1 TeV proton beam striking a
fixed-target [26].

Colliding beam experiments benefit from having circular accelerators. When two particle
beams collide, only a small fraction of the particles contained in the beams interact. The
rest of the beam, the so-called beam remnants, continue past the collision point unaffected.
In a linear collider experiment these beam remnants, and the energy spent to accelerate
these particles, would be wasted. In a circular collider, on the other hand, the beam
remnants of one particle collision can be recovered and brought back around the ring
to participate in new collisions. This has the added benefit that the particle beams in
a circular accelerator do not have to be accelerated to their target energies in one pass
around the detector.

The most common circular accelerator design in use today is the so-called synchrotron.
In a synchrotron, the particle beams are held in circular orbits by magnetic fields. Accel-
eration is achieved by electric fields oscillating in so-called radiofrequency cavities. The
oscillation of these electric fields is synchronised (hence the name synchrotron) to the orbit
of the particle beams in such a way that the force they exert on the beams is always in
the same direction, accelerating the particles. A consequence of this setup is that the par-
ticle beams cannot be continuous streams of particles, but have to be grouped in so-called
bunches. If this was not the case then some particles would inevitably experience a brak-
ing force and not an accelerating force when the electric field in the accelerator cavities
changes direction. The recycling of the beams means that only a section of the accelerator
ring needs to be dedicated to acceleration.

Circular colliders also have their limitations. For one, in colliding beam experiments,
the rate of interaction between the particles in the colliding beams is small, compared
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to interaction rates in fixed-target experiments. This necessitates high beam intensities,
which means adding more particles to the beams or focusing the beams into smaller areas
before the collisions. The particles in a circular collider are also constantly accelerating
inwards due to the bending magnets keeping the particles in their circular orbits. According
to the laws of electrodynamics, this means that they radiate energy. The power radiated by
one particle can be found using Liénard’s relativistic generalisation of the Larmor formula

P =
µ0q

2γ6

6πc

(
a2 −

∣∣∣∣v × a

c

∣∣∣∣2
)
, (2.1)

where µ0 is the vacuum permeability, q is the electric charge of the particle, and γ is
the relativistic Lorentz factor γ ≡ 1/

√
1− v2/c2 [46]. When the acceleration experienced

by the particle is normal to the direction of motion, this formula becomes

P =
µ0q

2γ4a2

6πc
. (2.2)

The acceleration of the particles in a circular accelerator is given by a = v2/r, where
r is the radius of the accelerator. The energy of the particle in the laboratory reference
frame is E = γmc2. For ultra-relativistic particles v ≈ c. Using these relations, Equation
(2.2) may be written

P =
µ0q

2

6πc5r2

(
E

m

)4

. (2.3)

This type of radiation is known as synchrotron radiation. We see that the power of this
radiation depends strongly on the beam energy E. This means that for a fixed radius r of a
circular accelerator, the beam energy cannot be made arbitrarily large. At some point, the
energy loss to synchrotron radiation becomes greater than the energy put in to accelerate
the particles in the beams. To get around this limitation, and reach higher beam energies,
one can either decrease the curvature of the accelerator, or increase the mass m of the
particles being accelerated. The factor m−4 in Equation (2.3) means that light particles
lose far more energy to synchrotron radiation than heavy particles.

The general rule when constructing accelerators is to make them as compact as possible
to minimise material costs. This introduces another limitation on the beam energy, namely
the strength of the bending magnets keeping the particles in orbit around the accelerator.
A smaller accelerator means a shorter radius of curvature for the particles, and having a
shorter radius of curvature means having a stronger magnetic field in the bending magnets.

In addition to beam energy, luminosity L is an important figure of merit for a particle
collider. Luminosity is closely related, but not equal, to the particle collision rate of the
collider. Rather, it is a measure of the number of particles colliding per area per second.
Luminosity integrated over time is also a much-used quantity in particle physics, and is
often simply called luminosity L. The symbol L is sometimes used for both instantaneous
and time-integrated luminosity, exacerbating the chance of confusion. In this text, lumi-
nosity will be referred to as instantaneous luminosity, while time-integrated luminosity
will be called luminosity or integrated luminosity.

The reason for using luminosity is closely related to the measure known as cross-section
σ, which is a measure of the probability that a given process will occur in a particle collision.
Cross-section is defined as having unit area. On the macroscopic scale, for example for
two balls being tossed in the air towards each other, the probability of a collision occurring
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between the balls depends on their size. More precisely, it depends on an area transverse
to the relative direction of motion of the balls. If the areas of the projections of the two
balls onto the plane perpendicular to the relative direction of motion overlap, the balls
will collide. For two balls of equal radius r, the cross-section becomes σ = 4πr2. When we
move to the microscopic world of subatomic physics, this analogy of hard spheres colliding
breaks down somewhat. For example, cross-sections on the microscopic scale may be
energy dependent. In the macroscopic example of flying balls, this would be analogous
to the balls growing or shrinking depending on their kinetic energy. A useful property of
cross-sections is that they are independent of beam conditions, such as the intensity and
focus of the beams. A cross-section obtained at one experiment can therefore be directly
compared to theory and other experiments. When given the instantaneous luminosity of
a beam experiment, and the cross-section of some scattering process, the production rate
n in the experiment of said process is simply found by multiplying these two values:

n = σL. (2.4)

Similarly, finding the total number of events N occurring for the process of interest in a
certain data-taking period of the experiment, is found by multiplying the cross-section of
the process and the integrated luminosity:

N = σL. (2.5)

The unit of cross-section most commonly used in high energy physics is barn b. 1 b =
10−24 cm2 = 100 fm2. Luminosity is often given in inverse barn b−1.

2.2. CERN and the Large Hadron Collider
The European Organization for Nuclear Research (CERN) is a multi-national organisation
for particle and nuclear physics research. The organisation operates the world’s largest
particle physics laboratory, situated just outside of Geneva, Switzerland, on the French-
Swiss border. CERN was founded in 1954 and has been instrumental in many physics
discoveries since. A few examples are the discovery of the W and Z bosons at the Super
Proton-Antiproton Synchrotron (Spp̄S) in 1983, the first synthesis of anti-hydrogen in the
Low Energy Antiproton Ring (LEAR) in 1995, and the discovery of a 125 GeV neutral
boson consistent with the Higgs boson at the LHC in 2012.

The Large Hadron Collider (LHC) is a circular hadron collider located at the CERN
site. It is the current world record holder for beam energy in an accelerator. The collider
is located in an approximately 27 kilometre long tunnel, around 100 metres underground,
originally dug to house the Large Electron Positron Collider (LEP). The LHC is set up for
both proton-proton (pp) collisions, and for collisions of heavier nuclei, but this text will
only consider results from pp collisions. 1,232, 8 tesla superconducting dipole magnets bend
the proton beams to their circular orbits. Before being brought to collide in four points
along the accelerator ring, the beams of the LHC are focused and squeezed by thousands
of quadrupole magnets and magnetic fields of higher order still. Some important design
specifications of the LHC are listed in Table 2.1.

The LHC is not capable of accelerating protons from a standstill. The proton beams
already have an energy of 450 GeV when injected into the LHC. Ramping up the beams to
this energy takes place in stages, in accelerators from CERNs earlier history. The so-called
LHC injector chain begins in an unassuming canister of hydrogen gas. The hydrogen gas
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is ionised and the protons are accelerated to 50 MeV in the Linac2 linear accelerator. From
Linac2, the protons are injected into the Proton Synchrotron Booster (PSB), known simply
as the Booster. The PSB consists of four individual beam pipes, stacked vertically, which
means that it can accelerate four proton bunches in parallel. In the Booster the proton
bunches are accelerated to 1.4 GeV before being injected into the Proton Synchrotron
(PS). Next, when the energy of the beams reach 25 GeV, they are injected into the Super
Proton Synchrotron (SPS). This is is the final stage of ramp-up of the beams, where the
beams are accelerated to the required 450 GeV for the LHC [47]. Filling each beam of the
LHC and accelerating them to collision energies takes of the order of one hour. One fill
of the machine can produce particle collisions for several tens of hours. When not tasked
with filling the LHC, the injector accelerators provide particle beams for other CERN
experiments.

Table 2.1.: Design specifications of the LHC beams [48]. Also included in the table is the
maximum achieved values for the same parameters during the LHC Run 2 data-taking
campaign [49].
Feature Design (Nominal) Run 2 Delivered (Max)

Peak instantaneous luminosity [1034cm−2s-1] 1.0 2.1
Beam energy [GeV] 7,000 6,500
Bunches per beam 2,808 2,556
Protons per bunch [1011] 1.15 1.25

The LHC started up in 2008, but had to be shut down for 14 months for repairs after an
accident caused by a defective electrical connection. Between 2010 and 2013 the machine
delivered proton and heavy ion collisions to its experiments before being shut down for
upgrades and maintenance. This period of data-taking was named Run 1. The LHC
started back up in 2015 and ran until 2018. Run 2 is the label given to data collected in
this period. During Run 2 the LHC delivered over 150 fb-1 integrated luminosity to its main
experiments, exceeding projected goals for the period. Table 2.1 also lists the maximum
values delivered in Run 2 for some important accelerator parameters. The searches covered
in Chapters 5 and 6 are performed on pp data collected during Run 2.

2.3. The ATLAS Detector
Creating high-energy particle collisions in the LHC is only half the story. For the collisions
to have any kind of scientific benefit, we need some way of observing them. For this we
need particle detectors. ATLAS (A Toroidal LHC ApparatuS) is one the four main physics
experiments at the LHC. A general-purpose detector, ATLAS is designed to study a broad
swath of phenomena, from precision measurements of the SM to searches for BSM physics
in a wide range of final states. ATLAS is a so-called hermetic detector, aiming to have as
close to a perfect solid angle acceptance of 4π steradians as possible.

The integrated luminosity recorded in Run 2 by the ATLAS detector is shown as a
function of time in Figure 2.2. Although the LHC delivered over 150 fb-1 of collision
events during this time, some of this data is not usable, for various reasons such as detector
downtime or beam quality issues. The amount of Run 2 ATLAS data deemed "good for
physics" is around 140 fb-1.
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2.3.1. The ATLAS Detector Coordinate System
The origin of the ATLAS coordinate system is at the collision point of the LHC beams, also
known as the interaction point, at the centre of the detector. Using the standard Cartesian
coordinate system, the x-axis is defined to point towards the centre of the LHC ring, the y-
axis points straight up, and the z-axis is parallel to the LHC beams in the counterclockwise
direction [52]. Spherical coordinates are also utilised, where the azimuthal angle φ lies in
the x,y coordinate plane, and the polar angle θ gives the angle of the position vector to
the z-axis. Instead of the polar angle θ, it is common to use the so-called pseudorapidity

η = − ln tan
θ

2
. (2.6)

Position vectors perpendicular to the beam direction have η = 0. Pseudorapidity grows
exponentially with decreasing θ, becoming infinite when the position vector is parallel
to the LHC beamline, at θ = 0. One reason for this convention is that differences in
pseudorapidity η1 − η2 are approximately invariant under Lorentz boosts along the beam
direction, for ultra-relativistic particles.

The x,y-coordinate plane is referred to as the transverse plane, because any vector in
this plane is normal to the LHC beams. The transverse plane is important in the collider
experiments. In proton collisions it is not the protons themselves that collide. Rather,
it is the partons that make up the colliding protons that interact. This has the effect
that we cannot know the momentum of the colliding particles, since the partons only
carry a fraction of the total proton momentum. What we do know, however, is that the
momentum of the colliding partons is zero in the transverse plane. This means that the
sum of the transverse momenta of the final state particles, the particles being created in
the collision, must also be zero in the transverse plane. The presence of particles invisible
to the detector, such as neutrinos, in the final state of the proton collisions is inferred by
observing a deficit in the sum of the transverse momenta of all the final state particles.
In the SM, only neutrinos manifest in the detector as missing energy, but many BSM
models predict feebly interacting particles with missing energy signatures similar to that
of neutrinos.
∆R is an often used parameter in ATLAS, defined as angular distance in the space of

the azimuthal angle and pseudorapidity: ∆R =
√

∆η2 +∆φ2.

2.3.2. ATLAS Detector Layout
Like most modern particle detector experiments, ATLAS consists of several subdetector
systems. These systems are tasked with measuring different properties of the particles
created in the proton collisions delivered by the LHC in the centre of the detector. The
subdetectors are arranged in layers around the interaction point, and are generally arranged
in such a way as to minimise the amount of material having to be traversed by the incoming
particles: particles being deflected or absorbed by the material in the detector leads to
measurement inefficiencies and inaccuracies. A three-dimensional schematic of the ATLAS
detector can be seen in Figure 2.3. The design resolution and pseudorapidity range of the
ATLAS detector subsystems are summarised in Table 2.2.

ATLAS can be divided into three main components: the cylindrical central barrel, cover-
ing a pseudorapidity range of around |η| < 1.37, bookended by two end-caps, extending the
pseudorapidity range of the detector to around |η| < 2.5. The transition region between
the barrel and end-caps is sometimes called the crack region. For the electromagnetic
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Table 2.2.: Design resolution and pseudorapidity coverage of the ATLAS subdetector sys-
tems [53].
Subdetector Resolution Coverage

Inner Detector σpT/pT = 0.05%× pT/(1 GeV)⊕ 1% |η| < 2.5

EM Calorimeter σE/E = 10%/
√

E/(1 GeV)⊕ 0.7% |η| < 3.2 (trigger: |η| < 2.5)
Hadronic Calorimeter

Barrel and End-Cap σE/E = 50%/
√

E/(1 GeV)⊕ 3% |η| < 3.2

Forward Region σE/E = 100%/
√

E/(1 GeV)⊕ 10% 3.1 < |η| < 4.9
Muon Spectrometer σpT/pT = 10% at pT = 1 TeV |η| < 2.7 (trigger: |η| < 2.4)

calorimeter, described below, this region occurs around 1.37 < |η| < 1.52. This region of
the detector suffers lower detection efficiency, due to the small gaps between the barrel
and end-cap subdetectors.

Figure 2.3.: A three-dimensional schematic of the ATLAS detector. A wedge shaped piece
is cut away to reveal the inner layers of the detector [54].

Inner Detector

The three innermost detector systems of the ATLAS detector, closest to the interaction
point, are the Pixel Detector, the SemiConductor Tracker (SCT) and the Transition Radi-
ation Tracker (TRT). These detector systems are collectively known as the Inner Detector.
The main purpose of the Inner Detector is to track the path of charged particles as they
flow from the interaction point, and use these so-called tracks to determine the vertices,
meaning the collision points, of the proton collisions. The point in space where two protons
from the LHC collide is known as a primary vertex. Any vertices stemming from the sub-
sequent decay of particles produced in these central interactions are known as secondary
vertices. Schematics of the inner detector can be seen in Figures 2.4 and 2.5.

The innermost layer of the ATLAS detector is the Pixel Detector [55]. It consists of
four layers of silicon-based semiconductor sensors segmented into small two-dimensional
portions called pixels, analogous to the pixels in a digital camera. The four layers are
arranged as concentric cylinders in the barrel, and as parallel disks in the two end-caps.
The pixels vary in size, but most have dimensions 50 µm times 400 µm. Pixel detectors
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give excellent spatial resolution, but they are very costly, which is why the Pixel Detector
only makes up the innermost part of the ATLAS detector. In total there are some 80
million pixels in the ATLAS Pixel Detector, covering a total area of around 1.7 m2.

In 2014, during the shutdown of the LHC between Run 1 and Run 2, a new smaller
radius beam pipe was fitted in the ATLAS detector. This allowed for the installation of
a new barrel layer of pixel detectors, the so-called Insertable B-Layer (IBL) [56]. This
new layer of pixel sensors is located very close to the interaction point, at an average
radius of only 33 mm. This proximity to the interaction point gives good resolution when
placing vertices. Pinpointing vertices is in turn important for identifying, or tagging,
particle showers originating from bottom quarks. Bottom quark hadrons have lifetimes of
order picoseconds. This is short enough for the b-hadrons to decay within the beam pipe
after being produced, but long enough for the secondary vertices from their decay to be
measurably displaced from the primary vertex.

The layer succeeding the pixel detector is the SCT. Like the pixel detector, the SCT is a
silicon-based semiconductor detector. But, instead of consisting of pixels, the SCT sensors
are shaped like long thin microstrips. Each strip is 80 µm wide and 12 cm long. The SCT is
made up of four cylindrical layers of microstrip sensors in the barrel of the Inner Detector,
and 18 end-cap disk stations, constructed in such a way that any track will intersect at least
four stations, giving four spatial measurements [57]. In principle, the silicon microstrip
sensors can only determine the position of a track in one dimension, perpendicular to the
length of the strip; it is impossible to determine where along its 12 cm length a hit has
occurred. To solve this problem, each SCT station consists of two overlapping microstrip
layers, mounted back to back, rotated by a 40 mrad stereo angle. This 40 mrad angle,
although small, enables the 2D position of each track to be determined at each SCT station.
One advantage of having such a small angle separating the two microstrip layers compared
to, say, a 90° rotation, is that it reduces the density of so-called ghost hits. Ghosts hits
are ambiguous hit positions and may stem from simultaneous close proximity hits in the
sensor [58]. Furthermore, in the barrel region, both microstrip layers are approximately
parallel to the beamline. This maximises resolution in the transverse plane, where charged
particles are bent by a magnetic field to measure their momenta.

The outermost subsystem of the Inner Detector is the TRT. The TRT consists of around
300,000 hollow kapton tubes, or "straws". The straws have a diameter of 4 mm. A 31 µm
radius gold plated tungsten wire runs down the centre of each straw. The straws are
kept at a −1.5 kV voltage with respect to the grounded central wire. The straws are
filled by a mixture of xenon or argon (70%), carbon dioxide (27%) and molecular oxygen
(3%) [59]. The straws operate as drift chambers; when ionising radiation traverses the
straws, it ionises the gas mixture contained in the straws. The freed electrons drift to the
central electrode where an electrical signal is registered. The strong electric field close to
the central wire causes the drifting electrons to further ionise the gas, liberating yet more
charge in so-called cascades. This effect further amplifies the signal.

In the barrel portion of the Inner Detector, the TRT straws are arranged in 36 layers,
parallel to the beam axis. In the Inner Detector end-caps, the straws are mounted radially,
perpendicular to the beam axis. The central wires of the straw tubes in the barrel section
are separated in the middle by a section of glass wire and each end of the straws are read
out independently. This is done to better cope with high occupancy rates in the detector.
The area between straws is filled with polypropylene. The task of this material is to induce
transition radiation in the TRT. This radiation is then later used for particle identification,
a topic covered in Section 2.3.4.
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The spatial resolution for each measurement in the TRT is low compared to the semi-
conductor detectors in the Inner Detector. But where the pixel and microstrip detectors
typically have three and four measurements per track, respectively, the TRT performs
36 measurements. As a result of this, no individual measurement from the three Inner
Detector subsystems dominates the position measurement of the charged tracks.

Figure 2.4.: A radial cross-sectional view of the ATLAS Inner Detector, showing the Pixel
Detector and IBL closest to the beamline, followed by the SCT, and finally the TRT [60].
The view in the schematic is from the centre of the barrel, where semiconductor modules
and TRT straws are mounted parallel with the beamline.

Figure 2.5.: A plan of the inner detector, seen in the r-z plane [59]. Here, we see that
sensor modules are mounted parallel to the beam pipe in the central region of the barrel.
Further out in the barrel, sensors are mounted radially. Also visible here is the ATLAS
Central Solenoid magnet, which will be covered in the next section.

ATLAS Magnet Systems

The reason for putting a magnet inside a particle detector is to enable momentum mea-
surement of charged particles. A charged particle travelling through a magnetic field is
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deflected by the Lorentz force:

F = qv ×B. (2.7)
If the particle is moving perpendicular to the magnetic field, and if it is not acted upon
by any other forces, it follows a circular trajectory of radius r. Using the expression for
the acceleration of a body in a constant circular motion, a = v2/r, the momentum of the
particle can be expressed as

p = |q|Br. (2.8)
This means that if the strength of the magnetic field and charge of the particle is known,
the momentum of the particle can be inferred from measuring the radius of its path.

It is usually only possible to measure a short arc of the circular trajectory of the charged
particles. Instead of measuring the radius of the tracks in the detector, it is more common
to use the sagitta of the tracks through the detector. The sagitta s of an arc is defined
as the distance from the centre of the arc to the centre of its baseline L (see Figure 2.6).
The sagitta is therefore a measure of how far the curved trajectory is from being a straight
line. The shortest distance h from the origin of the arc to L, can be written, using the
Pythagorean theorem, as

h2 = r2 − L2

4
.

h = r

√
1− L2

4r2

= r

(
1− 1

2

L2

4r2
+ ...

)
≈ r

(
1− L2

8r2

)
,

(2.9)

where the final approximation holds when L� r. The sagitta then becomes

s = r − h =
L2

8r
. (2.10)

Substituting the sagitta for the radius in Equation (2.8) now yields

p =
L2|q|B
8s

. (2.11)

Momentum smearing from particles interacting with detector material, as well as im-
perfections in the magnetic field of the detector, makes momentum calculation in ATLAS
a bit more involved than simply applying Equation (2.11) directly. However, the principle
remains the same.

In ATLAS, the bending of charged particles for momentum measurement is done by four
separate magnet systems: one solenoid magnet around the inner detector and three toroidal
magnets further out from the interaction point. The four magnets are all superconducting,
with an operating temperature of 4.6 K [53].

The Central Solenoid surrounds the Inner Detector. It is a 2.3 m diameter, 5.3 m long
solenoid magnet with an average field strength of 2 T, parallel to the beam axis [61]. The
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Figure 2.6.: A geometric representation of a circular arc of radius r and baseline L. The
sagitta s of the arc is the distance from the centre of the arc to the baseline. The height
h is the shortest distance from the origin to L.

Central Solenoid is designed to be as thin as possible. This is done to minimise the amount
of material in the detector, thereby decreasing the risk of particles scattering off of, or being
absorbed by, the detector material. The Central Solenoid has an average thickness of 0.66
radiation lengths. One radiation length in a material is the mean free path traversed in the
material by a high-energy photon before annihilating into an electron-positron pair [11].

Further out radially from the Central Solenoid, ATLAS contains three toroidal magnets:
one magnet mounted in the barrel portion of the detector, and one in each of the end-
caps. Each of these three magnets consists of 8 air core superconducting coils, arranged in
a discrete azimuthal symmetry around the beam axis (see Figure 2.7). This configuration
of the magnetic coils results in a magnetic field tangential to a circle in the transverse
plane of the detector. The barrel toroid and end-cap toroids have an average magnetic
flux density of 0.5 T and 1 T, respectively. The task of the toroidal magnets is to provide
a magnetic field to the Muon Spectrometer, which is described below.

Calorimeters

In high energy physics, the main task of a calorimeter is to measure the energy of a particle
by stopping it and absorbing its energy. Calorimeters are also used for position measure-
ment, although they usually lack the spatial resolution of dedicated tracking detectors.

Calorimeters are separated into two main classes: electromagnetic (EM) and hadronic
calorimeters. EM calorimeters measure the energy of particles that lose most of their
energy through the electromagnetic interaction, mainly electrons and photons. An average
high-energy photon will traverse one radiation length of material before annihilating into
an electron-positron pair. After traversing another radiation length of detector material
each of these particles in turn create a new photon through bremsstrahlung. This means
that after traversing n radiation lengths of material, 2n new particles are created. This
cascading process is known as a shower, and continues until ionisation becomes the primary
mode of energy loss rather than pair production and bremsstrahlung [26]. High-energy
hadrons, on the other hand, lose their energy through nuclear interactions in collisions with
atomic nuclei. Despite the different mechanisms for energy loss, hadrons travelling through
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Figure 2.7.: Schematic of the ATLAS toroid magnet system. The calorimeter system is
also shown [53].

matter also create particle showers. Hadronic showers usually take longer to develop
than electromagnetic showers and need denser and thicker material. Hadrons typically
travel unimpeded through EM calorimeters and hadronic calorimeters are therefore usually
placed outside of EM calorimeters.

The ATLAS calorimeters are sampling calorimeters. A sampling calorimeter consists
of alternating layers of active and passive material. The passive layers are usually made
up of some dense material tasked with braking the incoming particles, inciting cascades
of secondary particles. The energy of the incoming particle is inferred by measuring the
particle activity in the active layers. Spatial resolution in the calorimeters is achieved by
dividing the active calorimeter material into cells or towers in η, φ and r. Each of these
cells can then be read out separately.

The ATLAS EM calorimeter is made up of lead absorber plates arranged in an accordion
structure. The space between the lead plates, the active layer, is filled with liquid argon.
Kapton electrodes measure ionisation in the argon, analogously to the gas-filled straw tubes
of the Transition Radiation Tracker. The EM calorimeter is made up of three segments:
one barrel section and two end-cap sections. To save material in the detector, the Central
Solenoid magnet is housed in the cryostat of the barrel EM calorimeter. A thin liquid
argon layer is placed in front of the central solenoid to account for energy lost by the
particles traversing the magnet. The thickness of the EM calorimeter is greater than 22
radiation lengths in the barrel and greater than 24 radiation lengths in the end-caps.

The ATLAS hadronic calorimeter is located immediately outside of the EM calorimeter.
The hadronic calorimeter is made up of three subsystems: A barrel tile calorimeter (|η| <
1.7), a liquid argon end-cap calorimeter (1.5 < |η| < 3.2), and a liquid argon forward
calorimeter (3.1 < |η| < 4.9). The overlap in pseudorapidity between these calorimeter
subsystems ensures coverage in the transition regions between them. The tile calorimeter
is made up of plastic scintillators sandwiched between steel absorber plates. Fibre optic
cables carry the scintillation light from the scintillators to photomultiplier tubes mounted
on the outside of the calorimeter. The steel of the tile calorimeter acts as a return yoke
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for the Central Solenoid magnetic field. Liquid argon is used instead of plastic in the
end-cap and forward calorimeters. This is due to the intrinsic radiation hardness of liquid
argon. Copper plates are used as passive material in the end-cap hadronic calorimeters.
The copper plates are mounted in a parallel stack, perpendicular to the beam axis. The
forward liquid argon calorimeter is built in a rod-in-cylinder geometry embedded in a solid
metal matrix. The forward calorimeter is separated into three sections. The innermost
section is made from copper material, and is designed for electromagnetic measurements.
The outermost two sections are made from tungsten and are intended for hadronic mea-
surements. Hadronic calorimeter thickness is usually measured in interaction lengths λ,
rather than in radiation lengths. The interaction length of a medium is the mean path
length required to reduce the number of relativistic charged particles traversing it to 1/e.
The ATLAS hadronic calorimeter has a thickness of 9.7 λ in the barrel section, and 10 λ
in the end-caps.

Muon Spectrometer

The muon has a lifetime of 2.2 µs, making it a relatively long-lived particle. Also, at
the energies typical in the ATLAS detector, muons are near minimum ionising particles,
meaning that their energy loss from interactions with detector material is close to the
minimum. Muons are over 200 times heavier than electrons and therefore lose much less
energy due to bremsstrahlung. These properties give muons a distinct detector signature.
Muons interact with all detector subsystems, but are not absorbed by the calorimeters. For
this reason, the ATLAS Muon Spectrometer (MS), tasked with identifying and tracking
muons, is the outermost detector subsystem of the ATLAS detector. The MS utilises
four different detector types: Monitored drift tubes (MDTs) and Cathode strip chambers
(CSCs) are used for precision position measurement of the muon tracks, while resistive
plate chambers (RPCs) and thin gap chambers (TGCs) are used for triggering muon
events.

The MS detectors are located in and around the barrel and end-cap toroid magnets. The
toroidal magnetic field bends the muon trajectories, enabling measurement of the muon
momenta, in the same way as in the Inner Detector. The Muon Spectrometer’s ability to
measure the momentum spectrum of muons is what gives it its name. In addition to the
detectors embedded in the toroid magnet systems, two large muon detector "wheels" are
situated outside each end-cap of the detector. These wheels can be seen in Figure 2.3.

2.3.3. Triggers and Data Acquisition
When operating with a bunch spacing of 25 ns, the peak bunch crossing frequency of the
LHC is 40 MHz. Each proton bunch contains of the order of a hundred billion protons
(see Table 2.1). The probability of two individual protons colliding at each bunch crossing
is exceedingly small, but due to the high number of protons in each bunch, each bunch
crossing usually sees a few tens of hard proton collisions. Having more than one concurrent
scattering event happening at a time in the detector is known as pileup. The integrated
luminosity recorded as a function of the mean number of interactions per bunch crossings
is shown, for each year of Run 2, in Figure 2.8. From the figure we see that the mean
number of collisions per bunch crossing is just under 34 events.

Given a mean number of interactions per bunch crossing of 34, the event rate in the
ATLAS detector is in excess of 1 GHz. Although the storage needed to record a single event
is quite modest, on the order of 1 MB, it would be physically impossible to store every
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Figure 2.8.: Recoded luminosity in ATLAS during Run 2 as a function of pileup [51].

event for physics analysis. And we would not necessarily want to. Proton collisions are
not created equal in the eyes of a physicist; some events are simply not interesting to the
searches or measurements being performed by the ATLAS Collaboration. To select only
the most interesting collision events and to reduce the event rate down to a manageable
size to be read out, ATLAS uses a system of triggers. Triggers are hardware and software
systems designed to quickly recognise noteworthy events, and mark them for storage and
later physics analysis. During Run 1, the ATLAS trigger system consisted of three stages:
the Level 1 trigger, the Level 2 trigger, and the Event Filter. For Run 2, a new two-stage
trigger system was implemented, consisting of a hardware level trigger, still known as the
Level 1 trigger, and a software trigger, known as the High-Level trigger [62]. A diagram
of the current ATLAS trigger system is shown in Figure 2.9.

The Level 1 trigger is a hardware trigger using information from the Muon Spectrometer
and calorimeters. The RPCs and TGCs in the MS have good timing characteristics. These
detectors are used to identify high-pT muons. High-ET photons, electrons, and jets, as
well as events with large missing transverse energy, are identified using reduced granularity
information from the calorimeters. Information from the Level 1 trigger is used to define
η − φ Regions of Interest (ROIs) in the detector. While the Level 1 trigger processes an
event, the output signals from the detector are stored in pipeline memories. The Level 1
trigger decides to keep or discard an event within 2.5 µs, and reduces the rate of candidate
collision events to around 100 kHz.

The High-Level trigger is a software trigger, housed in a dedicated computer farm at the
ATLAS site at CERN. This trigger is seeded by the ROIs defined by the Level 1 trigger,
but also has access to the full detector readout, including information from the Inner
Detector. The High-Level trigger has enough time to make a decision to perform track
and vertex reconstruction, and fully reconstruct events with algorithms similar to those
employed in offline analyses, without events accumulating in the queue to be processed.
The High-Level trigger also has access to alignment information and magnetic field maps
of the detector. Events selected by the High-Level trigger are written to mass storage
for later analysis. The output rate of the High-Level trigger is on average 1.2 kHz. This
means that about three events in every 100,000 bunch crossings are kept for analysis.
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Figure 2.9.: Schematic of the ATLAS data readout and trigger system [62].
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2.3.4. Event Reconstruction and Particle Identification
The ATLAS detector does not measure particles directly. Instead, the various subdetectors
register electric signals and energy depositions as particles traverse the detector. The
existence of physical particles and their properties must be inferred from these signals
during event reconstruction. First, charge and energy depositions in the detector are
identified as particle hits in the subdetectors. Next, these hits are used to construct
objects such as charged tracks, collision vertices, and calorimeter clusters. These objects
are then used to construct physical objects like particles and jets. In the final physics
analyses performed on the data, physical objects are organised in events. An event is a
time-independent snapshot of a particle collision, analogous to a long exposure photograph
of a fireworks explosion, where one can see both the initial explosion and the tracks of the
firework all in the same photo.

Track reconstruction in the Inner Detector takes place in two stages: First, using a so-
called inside-out algorithm, and then an outside-in algorithm [63]. The inside-out method
starts by identifying track seeds made up of three hits in different stations of the pixel and
SCT detectors. Pixel and SCT hits that loosely fall in line with the curve extended by the
seed hits are added to the candidate track. Various quality criteria are used to remove bad
track candidates. Overlapping tracks are vetoed against each other using an ambiguity
solver algorithm. The candidate tracks are extended into the TRT to check if there is a
valid set of hits matching the track there. Finally, accepted tracks are fitted utilising all
available information.

The outside-in method for track reconstruction uses a Hough transform to identify track
segments in the TRT. Tracks already found in the inside-out procedure are removed in this
step to improve efficiency. Track candidates are extended towards the interaction point to
test whether they match any hits in the silicon subdetectors. The outside-in algorithm can
identify tracks from converted photons, which the inside-out algorithm may miss. Photon
conversion is explained in Chapter 3.

Track reconstruction in the MS also relies on a Hough transform to reconstruct tracks [64].
In certain areas of the MS, straight-line fits are constructed from hits in individual MDT
and CSC stations. These local straight-line segments are then used as seeds for the full
track finding algorithm.

When locating the primary collision vertices of an event, only the highest quality charged
tracks are used. An iterative vertex finding algorithm is used. The steps of this algorithm
are outlined below [65]:

• A seed vertex position is constructed. The x- and y-coordinates of the vertex seed
are chosen to be in the centre of the luminous collision region, also called the beam
spot. The z-coordinate of the vertex seed is the mode of the z-coordinate of closest
approach to the beam spot of all the charged tracks used in the vertex finding process.

• The charged tracks and vertex seed are used to find the best vertex position in an
iterative fit. Before each iteration of the fit, less compatible tracks are weighted
down.

• After the vertex position has been determined, tracks that are incompatible with the
vertex by more than seven standard deviations are disassociated with the vertex. A
valid vertex candidate must retain at least two charged tracks in this procedure.

• The procedure is repeated. Any charged track not associated with a vertex is used
in the next iteration.

46



2.3. THE ATLAS DETECTOR

Bare quarks and gluons cannot be observed in nature due to confinement. When quarks,
anti-quarks and gluons are produced in a collider, more quarks and anti-quarks are pro-
duced, through gluon radiation, to form colour neutral objects. The resulting particle
cascades in the detector are known as jets. Jets typically manifest in the detector as
collimated tracks in the inner detector pointing to broad energy depositions in the electro-
magnetic and hadronic calorimeters. The main jet identification algorithm used in ATLAS
event reconstruction is the so-called anti-kt algorithm [66]. The inputs for the algorithm
are calorimeter depositions, Inner Detector tracks, or a combination of both. Energy de-
positions in neighbouring calorimeter cells are grouped by a clustering algorithm before
being fed into the jet reconstruction algorithm.

Missing transverse momentum Emiss
T is reconstructed as the negative vector sum of the

transverse momenta of the visible particles and objects in a collision. There are two main
contributions to this calculation, hard terms and soft terms. Hard terms stem from the
reconstructed objects in the event: lepton, jets, etc. Soft terms stem from charged tracks
or calorimeter activity that are not associated with any of the reconstructed hard objects.
Different techniques are used in ATLAS to calculate the soft terms, but the most common
algorithm relies on track information.

Having found the hard objects and soft terms in an event, the missing transverse mo-
mentum components Emiss

x(y) are calculated as [67]

Emiss
x(y) = −

∑
hard objects

px(y) −
∑

soft terms

px(y) . (2.12)

The magnitude of the transverse missing momentum is given by Emiss
T =

√
Emiss,2
x + Emiss,2

y .
The reconstructed momenta going into the Emiss

T are largely taken from calorimeter energy
measurements. Therefore, Emiss

T is often called missing transverse energy. For relativistic
particles, energies and momenta are approximately equal.

Particle properties, such as mass and electric charge, lead to the particles interacting
differently in the different subdetectors. This is used to distinguish and identify particles
in events. Charged particles leave tracks in, and are bent by the magnetic fields of, the
Inner Detector and the Muon Spectrometer. Most particles, regardless of electric charge,
leave depositions in the calorimeters. Photons and electrons will deposit most of their
energy in the electromagnetic calorimeter, while hadrons, like protons and neutrons, will
deposit their energy in the hadronic calorimeter. Pions are an exception to this. They
are hadrons, but being very light they will deposit their energy in the electromagnetic
calorimeters. Muons tend to traverse the whole detector volume, interacting with every
subdetector along the way, though not depositing a lot of energy in the calorimeters.
Neutrinos are too feebly interacting to be detected, and will therefore manifest as missing
transverse energy in events. A schematic of how different particles interact with ATLAS
detector material is depicted in Figure 2.10.

Misidentification of particles does occur. To name some examples: photons may interact
with detector material, annihilating to a collimated electron-positron pair; calorimeter
depositions from neutral particles may falsely be associated with a charged track; or two
particle classes may have similar detector signatures, making it difficult to accurately label
them in event reconstruction. Identifying charged pions as electrons is an example of the
latter.

Electrons and muons are the most important particles in this work. The reconstruction
and identification of these objects in ATLAS is covered in more detail in the sections below.
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Figure 2.10.: Stylised radial cross-section of the ATLAS detector, with the detector signa-
tures of various common particles [68]. A dotted line in the figure signifies that the particle
does not interact with the detector, while a solid line signifies that it does interact.

Electron Reconstruction and Identification

Electron reconstruction in ATLAS is based on matching "clusters" of energy deposition in
the electromagnetic calorimeter with tracks in the Inner Detector. Electrons are identified
using a likelihood-based method, utilising a set of cluster-shape and track variables [69].
Four different identification working points are defined using the likelihood discriminant:
Very Loose, Loose, Medium and Tight. Looser working points accept more electron can-
didates, at the cost of higher probability of jets being identified as electrons. This will be
discussed in Section 3.4. The efficiencies of accepting a 40 GeV ET electron are 93%, 88%,
and 80% for the Loose, Medium, and Tight working points, respectively [69].

The ratio of an electron’s energy and momentum E/p, measured by the calorimeter and
tracker, respectively, should be close to 1 due to its low mass. This trait can be used to
separate electrons from heavier objects, such as jets. Separating electrons from charged
pions is helped by information from the TRT. Transition radiation is produced when
relativistic charged particles traverse a boundary between two media of different dielectric
constants. The space between the kapton tubes of the TRT is filled with a multi-layer
radiator to induce transition radiation. The amount of transition radiation produced by
a particle in the TRT radiator grows with the particle’s Lorentz factor γ, with a turn-on
of γ between 103 and 104. At the same momentum, electrons will have a larger Lorentz
factor than charged pions. The increased photon activity of electrons in the TRT can be
measured, and used to discriminate against pions. The TRT has a pion rejection efficiency
of >90% [70].

Muon Reconstruction and Identification

There are several methods employed in ATLAS to reconstruct and identify muons. A
"stand-alone muon" is reconstructed from a reconstructed track from the Muon Spectrom-
eter alone. A "combined muon" is reconstructed from an Inner Detector track combined
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and refitted with a track in the MS. A "segment-tagged muon" is like a combined muon,
but only requiring a partial track from the MS. Similarly, "calorimeter-tagged muons" are
identified by extrapolating an Inner Detector track into the calorimeters, and finding a
deposit consistent with a minimum ionising particle. However, unlike combined muons,
the tracks of segment-tagged and calorimeter-tagged muons are not refitted. Instead, the
kinematics of these muons are taken from their Inner Detector tracks.

The High-pT working point requires candidate muons to be combined muons, with reg-
istered "precision hits" in at least three stations of the Muon Spectrometer [71]. Here, a
precision hit is defined as one registered in one of the two high-precision tracking systems
of the Muon Spectrometer, namely the MDT or CSC detector systems. This requirement
increases the muon invariant mass resolution at high pT, at a cost of muon selection ef-
ficiency. The High-pT working point has been optimised for high invariant mass searches
such as the searches carried out in this work.
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3. Dilepton Standard Model
Backgrounds

When considering a single particle collision event on its own, we can never be sure whether
the particles we are observing stem from some new physics process, from a known SM
interaction, or simply from measurement errors. It is only by statistical analysis, comparing
detector measurements against SM predictions that we claim discoveries. Events that
mimic the signal being searched for in an analysis are called background events. Background
events can be due to SM processes with the same final state as the proposed new physics
signal, or from detector effects such as particle misidentification.

To increase the chance of discovery of a potential new physics signal, particle physicists
try to select events such as to maximise the signal-to-background ratio of their analyses.
Backgrounds that can be removed this way are known as reducible backgrounds. However,
some background processes will have identical signatures to the signals being tested. Such
backgrounds cannot be removed by making clever cuts and selections, and are called
irreducible backgrounds.

A Monte Carlo (MC) algorithm is any mathematical method that relies on random num-
ber sampling to solve a problem. Particle scattering processes are inherently stochastic;
one can never calculate exact scattering angles or final state momenta of single elementary
particle interactions, only the probability distributions of these properties. MC generators
are used to create large sets of simulated particle collision events from SM calculations
of differential cross-sections to some order of perturbation theory, usually leading order
(LO) or next-to-leading order (NLO). These MC samples can then be compared to data
recorded by detectors to test SM predictions. Several event generator software packages
exist on the market, each with its strengths and weaknesses. In addition to simulating
hard scattering processes, parton shower generators can also handle hadronisation and
other non-perturbative effects.

If we know the momentum of two colliding quarks or gluons, we can in principle calculate
the cross-section of some SM process to arbitrary orders of perturbation theory. However,
in proton collisions, like at the LHC, the momentum distributions of the partons inside
the protons cannot be calculated from first principles. These properties must instead be
measured in experiments. The parton density function (PDF) fi(x,Q2) is given as the
number density of partons of flavour i and momentum fraction x in a proton. In the
Breit reference frame, also known as the "brick wall" frame1, x is the fraction of the total
proton momentum carried by the parton. Q2 is the square of the momentum transfer in
the collision. PDFs are Q2-dependent. In the field of microscopy, optical resolution grows
with decreasing wavelength. Smaller length scales can be probed by increasing photon
energy. The same principle holds in deep inelastic proton collisions. At low Q2, meaning
low scattering energies, only the dominant proton structures are visible, and the PDFs are
dominated by the valence quarks of the proton. At higher momentum transfers, on the

1The Breit frame is boosted such that in a collision between particles A and B, the momentum of particle
A is reversed as if bouncing off a brick wall.
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other hand, the proton resolution increases, and the sea quarks and gluons become more
prominent.

PDF sets may vary from one provider to the next based on the data set, theory assump-
tions, and error treatment used to infer it. The order of perturbation used in the theory
calculations will also affect the results. The uncertainty of PDF values tends to grow as a
function of x, making it an important systematic uncertainty of high-mass searches such
as in this thesis.

It is not feasible to calculate SM cross-sections to arbitrarily high orders of perturbation
theory. With each added term in the expansion of the coupling α, the complexity of
the calculation grows exponentially. Most event generators calculate cross-sections to
LO or NLO. Sometimes, however, higher-order terms contribute non-negligibly to the
cross-section being calculated. In this case, we can apply so-called K-factors, short for
knowledge-factors, to each event to compensate for higher-order loop corrections. K-factors
are dependent on the choice of PDF set used by the generator.

Before a set of MC events can be compared to real data, measured in a detector, the
response of the detector itself must be simulated, modelling how the generated particles
interact with the detector material. In ATLAS, a complete computer-simulated model of
the detector is constructed using the Geant4 toolkit [72]. Using this model, each particle
created by a MC generator is propagated through the detector, modelling its interaction
with the detector material. These interactions model desired particle-detector interac-
tions, such as calorimeter showers or hits in the semiconductor detector material, and also
undesired effects and inefficiencies in the detector, such as particles being deflected or ab-
sorbed by passive detector material. An example of such a process is photon conversion,
in which a photon reacts with detector material, and annihilates into an electron-positron
pair before reaching the electromagnetic calorimeter. Therefore, what should have been
recorded as a photon in the reconstruction of the event, instead looks like a dielectron
event. In the cases where both converted electrons are reconstructed, their invariant mass
will be close to zero, because the mass of the photon is zero. Such cases are of no concern
to our analyses. However, sometimes only one of the electrons is reconstructed. The sec-
ond electron may for example be too soft to be reconstructed. This single reconstructed
electron may then be paired with an electron from another process, such as a pileup event,
another converted photon, or a from a decaying W boson, to form a high invariant mass
dielectron pair.

The detector simulation step described above models the energy deposition in the de-
tector in a simulated particle collision event. Next in the ATLAS MC production chain
comes the so-called digitisation step. Here, the energy deposits from the Geant4 simu-
lation is converted into detector response information, in the same form as the raw data
measured by the detector when taking real data. This detector response information now
goes through the same event reconstruction as real data, where the identity and kinematics
of physical objects are inferred.

Performing the full Geant4 detector simulation as described above is very costly in terms
of computing resources. Modelling calorimeter response is particularly time consuming.
Processing one event in this way takes of the order of ten minutes. Such time constraints
limit the number of background events that can be produced to model a background
process, increasing the statistical fluctuations of background samples. Therefore, methods
exist that model detector energy deposition without going through the complete Geant4
detector simulation, to speed up the MC production. One such tool is Atlfast-II, which
models tracking in the Inner Detector and Muon Spectrometer using Geant4, while using
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a parametric description of calorimeter response [73]. Another technique for simulating
detector response uses analytic parameterisations to model detector resolution. Not just
in the calorimeter like Atlfast-II, but in the whole detector. This method, which in this
work will be referred to as transfer functions (TFs), is used to create sufficiently large MC
samples used in the analyses of this thesis. TFs are covered in more detail in Section 3.6

This chapter covers the most relevant background processes for the resonant and non-
resonant dilepton searches performed in this thesis, and the production of MC samples
for said processes. These MC samples are not used to estimate the SM background in
the analyses, but rather to validate and optimise the data-driven background estimation,
which is based on parametric fits to the data. MC samples are also used to estimate the
spurious signal uncertainty associated with the parametric fits employed in the analyses.

3.1. Drell-Yan
The Drell-Yan (DY) process is an electroweak interaction in which a quark-anti-quark pair
from colliding protons annihilate into a virtual photon or Z0 boson, subsequently decaying
into a fermion-anti-fermion pair. The case where these fermion pairs are electron-positron-
or muon-anti-muon pairs, is the dominant background process for high invariant mass
dilepton searches for new physics at the LHC. The tree-level Feynman diagram of the DY
process is shown in Figure 3.1. While the DY dilepton invariant mass spectrum has a
sharp peak at 91.2 GeV, the Z0 boson mass, DY events are created at any invariant mass.
Therefore, DY is an irreducible background.

Z0/γ

q

q l+

l−

Figure 3.1: Feynman diagram of the
DY process.

In this work, DY samples are generated using the POWHEG-BOX [74] event gener-
ator, applying the CT10NLO [75] PDF set. The POWHEG-BOX generator calculates
the DY cross-section to NLO in QCD. A mass-dependent K-factor is applied to the DY
samples to account for higher-order loop effects from NLO electroweak and next-to-next-
to-leading order (NNLO) QCD. QCD corrections are calculated using VRAP 0.9 [76],
while MCSANC [77] is used to calculate electroweak corrections. The CT14 NNLO PDF
set [78] is used in both cases. Final state photon radiation is modelled by the Photos [79]
event generator. The DY samples are generated in separate ranges in dilepton invariant
mass. This is done to enhance production, and thus lower statistical fluctuations, in the
high invariant mass region.

In our analyses, we aim for the statistical uncertainty on the MC background to be as
small as possible. In a previous analysis published by the ATLAS exotic dilepton working
group, using 36 fb−1 of 2015 and 2016 LHC data, the desired level of MC statistical
uncertainty was set to be no larger than 10% of the statistical uncertainty in the data [10].
Due to the computational cost of generating MC events, this requirement was not met. The
problem of generating large enough MC samples is even more challenging when analysing
the full LHC Run 2 data set, corresponding to 139 fb−1 of data. This limitation is one of
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the main reasons the ATLAS exotics dilepton working group opted to use a data-driven
method for estimating the background over a MC simulation-based background estimation.

No conventional ATLAS detector simulation is performed on the DY MC samples. In-
stead, TFs are used to model detector effects on the dilepton invariant mass resolution.
The TF method is detailed in Section 3.6. Skipping the computationally intensive detec-
tor simulation step allows for more events to be generated. The number of generated DY
events is equivalent to at least 8,000 fb−1 of LHC data.

3.2. Top Quark
The top quark is, with its 173 GeV mass, the heaviest known elementary particle. It is
maybe not surprising then, that top quark signatures show up as background in high-mass
analyses. SM processes producing a top quark, or a pair of top quarks, are the second most
important background category in our dilepton searches. When produced, the top quark
decays predominantly into a W+ boson and a bottom quark. In the cases where these
W+ bosons decay leptonically, top quark events may show up as background in lepton
analyses. The branching ratios of leptonic W boson decays are about 11% per lepton
generation. Both the top quark and the W bosons have mean lifetimes of the order of
10−25 s, meaning that they do not travel any significant distance before decaying. This
means that any lepton tracks stemming from top events originate in the primary vertex of
the event.

The top background is separated into two main categories: single top quark production
and top-anti-top quark pair production (tt). tt events are produced predominantly through
the strong interaction, either through quark-anti-quark annihilation or gluon-gluon fusion.
These two production modes are shown as tree-level Feynman diagrams in Figure 3.2.
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Figure 3.2.: Three example top-anti-top quark pair production mechanisms: a gluon-gluon
fusion process (a), a quark scattering processes (b), and a t-channel top-quark exchange
process (c).

Single-top quark production, on the other hand, is only possible through weak interac-
tions. As a result, single-top quark events are less common than tt events. In these events,
a top or anti-top quark is produced in association with a down- or anti-down-type quark,
through the exchange of a W boson; or vice versa, in association with a W boson through
the exchange of a down- or anti-down-type quark. Example tree-level Feynman diagrams
for down-type associated top quark production and Wt production are shown in Figures
3.3 and 3.4, respectively.

The top quark background MC samples used in this work were generated using the
POWHEG-BOX event generator, calculated at NLO and applying the NNPDF3.0 [80]
PDF set. The MadSpin [81] event generator is used to account for the effect of top quark
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Figure 3.3.: Two production mechanisms for single-top quark production in association
with a bottom quark, through the exchange of a W boson: an s-channel process (a) and a
t-channel process (b).
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Figure 3.4.: Two production mechanisms for single-top quark production in association
with a W boson, through quark exchange: an s-channel process (a) and a t-channel process
(b).

spin correlation. For the single top quark samples, ATLAS detector resolution effects
are modelled using the full Geant4 detector simulation. TFs are used to model detector
resolution in the tt samples. A static K-factor, calculated using Top++ 2.0 [82], is applied
to the top quark background samples to normalise to NNLO QCD predictions.

3.3. Diboson
Two weak bosons, a ZZ-, WZ-, or WW-boson pair, may be produced in the proton-proton
collisions at the LHC. These bosons may then decay leptonically, sometimes resulting
in two or more electrons or muons. Such events form the so-called diboson background
category, the third most important background to the dilepton searches presented here.
Two LO diboson production Feynman diagrams are shown in Figure 3.5.

The Sherpa [83] event generator, applying the CT10 NLO PDF set, is used to produce
the diboson MC samples. Diboson cross-sections are calculated to NLO. The samples are
generated in separate ranges of dilepton invariant mass. This procedure, identical to the
one used in the DY production, is performed to increase the size of the diboson MC sample
in the high dilepton invariant mass region.

Not all events are created equally. Event generators assign a weight to each event. The
event weights of most events in the diboson MC sample are of the order 1, but a few have
event weights of the order 106. Events with event weights higher than 103 are removed
from the sample. This does not change the overall shape of the dilepton invariant mass
distribution significantly, but removes some unphysical single bin peaks.
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Figure 3.5.: Example diboson production mechanisms. Drell-Yan production of a W boson
pair (a), and t-channel production of a Z or W boson pair through quark exchange (b).

3.4. Fake Electrons
As previously mentioned, the ATLAS detector does not detect particles directly. Rather,
it registers hits and energy depositions in its detector subsystems. Physical objects are
identified later, during event reconstruction. From time to time, the reconstruction algo-
rithms fail to correctly identify a particle. Jets, for example, are sometimes identified as
leptons. Such mislabelled jets are called fake leptons or fakes, colloquially. The electron
misidentification rate in ATLAS is high enough for fake electrons and positrons to show
up as background in analyses. In this section, electrons and positrons are both referred to
as electrons.

We use the matrix method to estimate the fake electron background. We cannot measure
the number of fake electrons in our data directly. What we can count is how many electrons
pass the event selection requirements of our analysis. These requirements are listed in
Section 4.2.1 and will be referred to here as the "tight" selection. We can also loosen these
requirements, which will accept more fake electrons into the selected data set. In our
case, a "loose" selection is defined by loosening the electron identification requirement, and
removing the electron isolation requirement.

The number of electrons passing the loose selection is written here as NL. The subset of
NL that also pass the tight selection requirement is written NT. The number of electrons
passing the loose selection, but failing the tight selection, is denoted as NT.

The real efficiency r and the fake efficiency f are defined as

r =
N real

T
N real

L
, f =

N fake
T

N fake
L

. (3.1)

The real efficiency is measured as the fraction of real electrons that, after having passed
the loose selection, also pass the tight selection. The fake efficiency is similarly defined
for fake electrons. We measure r using MC simulations, while f is measured using data in
a fake-enhanced control region. Both r and f are functions of transverse momentum and
pseudorapidity of the fake-candidate electron.

The real and fake efficiencies can be used to build a set of equations relating the number
of real and fake electrons in our data to the number of electrons passing or failing the tight
selection requirements: 

NTT
NTT
NTT
NTT

 =M


NRR
NRF
NFR
NFF

 , (3.2)
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where

M =


r1r2 r1f2 f1r2 f1f2

r1(1− r2) r1(1− f2) f1(1− r2) f1(1− f2)
(1− r1)r2 (1− r1)f2 (1− f1)r2 (1− f1)f2

(1− r1)(1− r2) (1− r1)(1− f2) (1− f1)(1− r2) (1− f1)(1− f2)

 . (3.3)

Here, we are looking at the two-lepton case. The first index of N in these equations, as
well as the efficiencies r1 and f1, are associated with the leading transverse energy electron.
The second index of N and the efficiencies r2 and f2 are associated with the subleading
transverse energy electron. The indices R and F indicate whether the electrons are real
or fake, respectively.

We want to know the number of electron pairs passing the tight selection, where one or
both electrons are fake. This is given by the equation

N fake
TT = r1f2NRF + f1r2NFR + f1f2NFF . (3.4)

The numbers NRF, NFR, and NFF are not measurable. However, these numbers can be
calculated in terms of NTT, NTT, NTT, and NTT by inverting the matrix M. This is how
the matrix method gets its name.

The above procedure is sometimes referred to as the standard matrix method. This
method has its limitations. The estimated number of fake electrons may sometimes become
negative, which is hard to interpret physically. The method can also become numerically
unstable if r and f take similar values. To circumvent these issues we use a modified
version of the matrix method, known as the likelihood matrix method [84]. Rather than
inverting the matrix M, the likelihood matrix method finds the number of fake electrons
using a maximum likelihood fit. The likelihood function used,

L = Pois(NTT, N
pred
TT )Pois(NTT, N

pred
TT )Pois(NTT, N

pred
TT )Pois(NTT, N

pred
TT ) , (3.5)

contains four Poisson terms, Pois(). The values Npred
TT , Npred

TT , Npred
TT , and Npred

TT are calcu-
lated as functions of of NRR, NRF, NFR, and NFF in Equation (3.2). The values of NRR,
NRF, NFR, and NFF are chosen such as to maximise the likelihood function.

The fake electron invariant mass distribution is smoothed using a parametric function.
The function found to best represent the shape of the fake electron background is given
by

y(x) = (1− x1/3)p1xp2 log(x) , (3.6)

where x = m/
√
s is the dielectron invariant mass divided by the collision energy.

The fake electron background distribution obtained using the method described here,
using the likelihood matrix method and smoothing using a functional fit, was only used
in the non-resonant dilepton analysis described in Chapter 6. For the resonant dilepton
analysis described in Chapter 5, the fake electron background sample used was the same as
that obtained in Ref. [10], scaled up to the Run 2 luminosity. This sample was generated
using the standard matrix method. A functional fit to the fake electron invariant mass
distribution was used to accurately model the high and low invariant mass range.

A muon is identified in ATLAS by matching a track in the Inner Detector with one in
the Muon Spectrometer. The misidentification rate of muons is much smaller than that
of electrons. The contribution from fake muons to the dimuon background, at the high
invariant masses considered in this work, was found to be negligible [85].
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3.5. Monte Carlo Background Samples
For the background MC samples using the full Geant4-based detector simulation, the
effect of pileup is taken into account in the simulation. Dedicated simulations of pileup
is generated using Pythia 8 [86] with the NNPDF2.3 [87] LO PDF set. These pileup
samples are weighted to replicate the average number of pileup events during data-taking.
For Run 2, the average number of collisions per bunch crossing in ATLAS was around
34 [51]. The generated pileup events are passed through the Geant4 detector simulation.
The fully simulated pileup samples are then added to the hard scattering samples to
simulate real Run 2 data-taking conditions in ATLAS.

In addition to the aforementioned pileup re-weighting procedure, the events in the MC
samples are multiplied by weights to account for observed discrepancies between data and
MC simulation. Lepton calibration scale factors account for discrepancies between data
and simulation in lepton reconstruction, and lepton trigger-, identification-, and isolation
efficiencies. Calibration corrections are also added to the scale and resolution of electron
energies and muon momenta.

For every MC simulated background category except the diboson background, the
Pythia 8 and EvtGen [88] event generators are used to model hadronisation and other
non-perturbative effects after the central hard scattering process. EvtGen is used for
charm- and bottom quark decays, specifically.

When using the Sherpa event generator, there is no need for a dedicated treatment of
non-perturbative effects. Sherpa handles the full event generation, from hard scattering
down to final state particles.

A summary of the event generators and PDF sets used to generate the MC background
samples for this work is shown in Table 3.1.

Table 3.1.: List of MC event generators used in the production of background samples.
Process Hard Scattering Process with PDFs Parton Shower, Non-Perturbative Effects with PDFs
Drell-Yan POWHEG-BOX [74] [89], CT10NLO [75], Photos [79] Pythia v8.186 [90], CTEQ6L1 [91] [92], EvtGen 1.2.0 [88]
tt POWHEG-BOX, NNPDF3.0NLO [80] Pythia v8.230 [86], NNPDF23LO [87], EvtGen 1.6.0
Wt POWHEG-BOX, NNPDF3.0NLO Pythia v8.230, NNPDF23LO, EvtGen 1.6.0
Single t POWHEG-BOX, NNPDF3.04fNLO,MadSpin [81] Pythia v8.230, NNPDF23LO, EvtGen 1.6.0
Diboson Sherpa 2.1.1 [83], CT10NLO Sherpa 2.1.1, CT10

3.6. Transfer Functions
Transfer functions (TFs) are functional parameterisations of the dilepton invariant mass
resolution. The TFs determine the probability density of finding a dilepton event of recon-
structed invariant mass m, given a generated invariant mass of mt. The transfer functions
are parameterised with a Gaussian function convoluted with a Crystal Ball function, to-
talling 7 free parameters. This function fits the invariant mass detector resolution simul-
taneously in 200 different NLO Drell-Yan MC samples. These MC samples are generated
at fixed points of dilepton invariant mass, spaced logarithmically between 130 GeV and
6,000 GeV. The detector resolution in the MC samples is modelled using the full Geant4
detector simulation. To obtain the reconstructed invariant mass distribution S(m) of a
generator-level invariant mass spectrum St(mt), the generator-level spectrum is first mul-
tiplied with the function of dilepton acceptance and efficiency in the detector before being
convoluted with the TFs. More information on the TF method can be found in Ref. [93].
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The TFs are used to model the detector resolution of the Drell-Yan and tt MC simulated
backgrounds. TFs are also used to make a generic signal model shape for the resonant
dilepton analysis; If the width of the resonant signal is less than the detector mass resolu-
tion, a so-called zero-width signal, the signal shape can be described by the TFs. For signal
hypotheses of non-negligible width, the TFs must also be convoluted with the truth-level
signal shape.

Once the TFs have been constrained, the dilepton invariant mass resolution is obtained
by adding the width parameters of the Gaussian and Crystal Ball functions, with their
respective weights, in quadrature. The relative dilepton invariant mass resolutions, σm/m,
in both the electron and muon channels are shown in Figure 3.6. The muon resolution
is seen to degrade with increasing invariant mass, while the electron resolution is seen
to improve. The momentum of a muon is inferred from the curvature of its track in the
detector. Higher momentum muons are bent less by the magnetic field of the detector, and
as a result have straighter tracks. The radius of a near straight track is harder to measure
than a sharper curve. Therefore, muon momentum is seen to degrade with increasing
momentum. This effect is reflected in the invariant mass resolution, as high invariant
mass dilepton events inevitably involve higher momentum muons. The dielectron mass
resolution, on the other hand, is driven by the energy resolution of the electromagnetic
calorimeter of the detector. This resolution improves as electron momentum increases.
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Figure 3.6.: Relative invariant mass dilepton resolution, extracted from TFs.
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4. Event Selection for Dilepton
Analyses

4.1. Data Set
As mentioned in Section 2.2, the analyses of this work use the full pp collision data set
collected in ATLAS during the Run 2 data-taking period of the LHC. The amount of
integrated luminosity recorded by the ATLAS detector in each year of Run 2 is shown in
Table 4.1. The total luminosity recorded is measured to be 139.0±2.4 fb−1. The luminosity
is determined using a method similar to that detailed in Ref. [94], using measurements
from the LUCID-2 detector [95].

Table 4.1.: Total integrated luminosity collected each year in ATLAS during Run 2.
Year

∫
L dt [fb−1]

2015 3.2
2016 33.0
2017 44.3
2018 58.5

Total 139.0

4.2. Object Selection
The only physical objects of interest in the searches carried out in this thesis are electrons
and positrons, and muons and anti-muons. To stay sensitive to as wide a range of new
physics signals as possible, we make as few assumptions as possible on the properties of
the events selected for the analysis; no selection is made on non-leptonic activity in the
events, such as the missing transverse energy or jet activity. We call such an event selection
strategy an inclusive dilepton selection.

An event is required to have at least one reconstructed proton-proton interaction vertex.
If more than one vertex is reconstructed in the event, the primary vertex is defined as
the one where the squared sum of the transverse momenta of all tracks with transverse
momentum over 0.5 GeV is the largest. All electron and muon candidates must originate
from the primary vertex. Deciding whether or not a track is consistent with the primary
vertex is done by imposing requirements on the impact parameters, d0 and z0, of the lepton
tracks.

Reconstructed primary vertices in ATLAS are positioned on the beamline, or z-coordinate
axis of the detector, by construction. This is justified by the fact that the beam spot is
much smaller than the vertex position resolution. The longitudinal impact parameter z0,
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is the z-coordinate of the closest approach of a track to the beamline. The difference in z
between z0 and the primary vertex position is denoted as ∆z0. The shortest distance from
the track to the primary vertex is then |∆z0 sin θ|. The transverse impact parameter d0
is defined as the distance of closest approach of a track to the beamline in the transverse
plane of the detector. The d0 significance d0(σ) is defined as the length of d0 expressed
in terms of its measurement uncertainty. For our analyses, electron and muon candidates
are required to satisfy |∆z0 sin θ| < 0.5 mm. Electron (muon) candidates must also satisfy
d0(σ) < 5 (3).

4.2.1. Electrons
The main electron selection uses the Medium electron identification working point. The
LooseAndBLayer identification is also used when estimating the fake electron background
using the matrix method, as described in Section 3.4. The LooseAndBLayer working point
is identical to the Loose working point, but requires the reconstructed electron track to
have a registered hit in the Insertable B-Layer in the Inner Detector.

A particle being isolated, loosely means that the particle is separated from other particle
activity in the detector. Determining the isolation of a particle involves drawing a cone in
∆R around the trajectory of the particle, and requiring that the particle activity in the
cone be below some threshold. Electron candidates in our analyses are required to pass the
Gradient isolation working point, as defined in Ref. [69]. This isolation requirement has an
energy-dependent variable threshold on the transverse energy and momentum of calorime-
ter and track activity in a ∆R = 0.2 cone around the electron candidate. This threshold
is designed to yield an isolation efficiency of εiso = (92.14 + 0.1143× pT/(1 GeV))%.

Electrons are required to have transverse energy ET greater than 30 GeV, and pseudo-
rapidity less than 2.47. Electrons falling in the transition region between the barrel and
end-cap of the electromagnetic calorimeter, 1.37 < |η| < 1.52, are excluded.

The above electron selection criteria are summarised in Table 4.2.

Table 4.2.: Electron object selection criteria.
Feature Criteria

Pseudorapidity |η| < 2.47 and not 1.37 < |η| < 1.52
Transverse Energy ET > 30 GeV

Vertex Quality |d0(σ)| < 5
|∆z0 sin θ | < 0.5 mm

Identification LooseAndBLayer (matrix method), Medium (main selection)
Isolation Gradient working point

4.2.2. Muons
Muon candidates are required to pass the High-pT identification working point, and are
required to pass the FixedCutTightTrackOnly isolation working point [96]. This isolation
criterion requires the summed pT of tracks, excluding the muon track itself, in a cone of
variable size in ∆R around the muon, to be less than 6% of the muon pT.

Muons are required to have transverse momentum pT greater than 30 GeV, and pseudo-
rapidity less than 2.5. The reason for loosening the pseudorapidity requirement somewhat
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for muons, compared to the electron selection, and for muons to be accepted in the crack
region of the detector, is due to the different methods in which electrons and muons are
reconstructed and identified. Electron reconstruction relies on information from the elec-
tromagnetic calorimeter, which suffers from decreased efficiency in the transition from the
barrel calorimeter to the end-cap calorimeter. Combined muons use calorimeter infor-
mation to account for energy lost in transit between the Inner Detector and the Muon
Spectrometer, but are not critically affected by the crack region calorimeter inefficiency.

The uncertainty of the charge-to-momentum ratio q/p is required to be less than a pT-
dependent threshold. This requirement removes muons from the tail end of the σpT/pT
distribution. Muons passing this selection are known as "good muons". The muon selection
criteria are summarised in Table 4.3.

Table 4.3.: Muon object selection criteria.
Feature Criteria
Pseudorapidity |η| < 2.5
Transverse Momentum pT > 30 GeV

Vertex Quality |d0(σ)| < 3
|∆z0 sin θ | < 0.5 mm

Identification High-pT working point
Isolation FixedCutTightTrackOnly working point
Quality Good muons

4.3. Calibration and Corrections
Previously, we described how simulated pileup MC samples are added to the background
MC samples to accurately model additional proton-proton collisions taking place, in ad-
dition to the triggered hard scattering collision of interest, at each LHC bunch crossing.
Usually, MC samples are produced at the same time as, or even before, data are recorded
in the detector. The pileup MC samples added to the background are generated using
a best estimate of the actual pileup conditions in the data. More or fewer pileup events
lead to more or less activity in the detector, which affects detection efficiencies. Using the
wrong estimate for the pileup in simulations will lead to mismodelling between the data
and the MC samples. In the analyses presented in this thesis, we apply a weight to each
MC event to re-weight the pileup conditions in the sample to that of the data.

Additional scale factors are used to account for discrepancies between data and MC
samples. For electrons, trigger efficiency-, reconstruction efficiency-, isolation efficiency-,
and identification efficiency scale factors are applied on an event-by-event basis. Differences
in the electron energy scale and resolution between data and simulations are also corrected.
The corrections are independent of electron transverse energy and are derived using the
method described in Ref. [97]. Here, the absolute electron energy scale is determined using
a large dedicated sample of Z boson decays into electron-positron pairs.

For muons, trigger efficiency-, reconstruction efficiency-, isolation efficiency-, and track-
to-vertex association (TTVA) efficiency scale factors are applied. The differences in muon
pT scale and resolution between data and simulations are also corrected. These corrections
are calculated as a function of pT for pT < 300 GeV, using the method described in
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Ref. [96]. Here, a large sample of J/ψ and Z boson decays to muon-anti-muon pairs are
used to determine the scale and resolution of ATLAS muon momentum measurements.
For transverse momenta over 300 GeV, the correction factors are determined in muon
alignment studies.

4.4. Object Overlap Removal
Sometimes, reconstructed particles in the detector are built using the same detector ob-
jects. For example, a muon candidate may share the same Inner Detector track as an
electron candidate, or two different clusters in the electromagnetic calorimeter may both
be combined with the same Inner Detector track to form two electron objects. For our
analyses, we perform "overlap removal", where we veto overlapping objects against each
other to resolve such reconstruction ambiguities.

The overlap removal criteria are as follows:

1. If two or more electrons share an Inner Detector track, the higher-ET electron is
kept.

2. If a muon and an electron share an Inner Detector track, the muon is kept.

3. If a lepton and a jet share an Inner Detector track, the lepton is kept. However, such
leptons are not likely to survive the isolation selection criteria.

As previously mentioned, only combined muons, with tracks both in the Inner Detector
and the Muon Spectrometer, are considered for this work. For a muon and electron sharing
the same Inner Detector track, one of two things may have occurred: either the electron
"punched through" the calorimeter system to appear as a track in the Muon Spectrometer;
or the muon caused sufficient activity in the electromagnetic calorimeter to be identified
as an electron before entering the Muon Spectrometer, for example by radiating a photon
through bremsstrahlung. The second case is much more likely and is why we keep muons
over electrons.

Muons do not need to be vetoed against muons in the same way as electrons against
electrons or muons. Such overlap removal occurs explicitly in the muon reconstruction.
Therefore, no two reconstructed muon objects share Inner Detector or Muon Spectrometer
tracks.

4.5. Event Cleaning
We require stable LHC beams; that all magnets are on and at full magnetic field strength,
and that all detector subsystems be operational, during data-taking. To ensure this,
the ATLAS data-taking is separated into 1-2 minute "luminosity blocks". Each luminosity
block where the above requirements are met is added to a so-called Good Runs List (GRL).
Only luminosity blocks in a GRL are accepted for our analyses.

Events recorded during noise bursts in the liquid Argon calorimeter are removed, as are
incomplete or corrupted events.
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4.6. Triggers
Electron events are recorded using a dielectron trigger, discriminating on electron trans-
verse energy. The trigger threshold in ET is varied from 12 GeV in the 2015 LHC data-
taking period, to 17 GeV in 2016, and finally 24 GeV in 2017 and 2018. The electron
trigger accepts events passing the loose identification working point in 2015, and the very
loose identification working point in the remaining years of the Run 2 campaign.

Muon events are selected using two different single-muon triggers, both with a lower
threshold on muon transverse momentum. One muon trigger only requires a muon with a
pT of at least 50 GeV. The second muon trigger lowers this pT threshold to 26 GeV, but
with an added requirement that the muon is sufficiently isolated.

4.7. Event Selection
Candidate dilepton events in the analyses are required to contain at least two same-
generation leptons. We divide the event selection into two orthogonal categories, or chan-
nels, according to the lepton flavour of the selected dilepton pair: the electron channel,
containing two electrons and/or positrons, and the muon channel, containing a muon-anti-
muon pair.

Similarly to the previously described object overlap procedure, events are kept from
being counted in both channels. In events with more than two same flavour leptons
passing the object selection, the two electrons with the highest transverse energy ET is
kept, or the muon pair with the highest transverse momentum pT. The most energetic
lepton of a particular flavour in an event is known as the leading lepton of that particular
flavour. Similarly, the subleading lepton is the second most energetic. In events containing
a candidate pair of both electrons and muons, the electron pair is kept due to the higher
efficiency and resolution for electrons. This last step removes only a tiny fraction of dimuon
events.

Two selected muons are required to be of opposite electric charge. Although such a
requirement is physically motivated, as the postulated Z′ boson is an electrically neu-
tral particle, no such requirement is made in the electron channel. The rate of charge
misidentification is large for high-ET electrons. Imposing an opposite charge requirement
will significantly impact the electron selection efficiency, and not increase the signal-to-
background ratio significantly.

The invariant mass of the selected dilepton pair can be no less than 130 GeV. Neither
the resonant nor the non-resonant analyses covered in this work considered the region in
invariant mass below 250 GeV. Nevertheless, this low mass region is still used to validate
the shape and normalisation of the MC background samples used in the analyses.

4.8. Data and Monte Carlo Comparison Plots
Figures 4.1 and 4.2 show the dilepton invariant mass distributions of the data and MC
simulated background1 samples after event selection, in the electron and muon channel,
respectively. Signal shape templates for four different choices of Z′

χ mass are overlaid in

1Except for the background due to fake electrons in the electron channel, which is derived using a
data-driven method.
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the figures. The production of these signal histograms will be described in Section 5.1.1.
The MC samples are scaled to 139 fb−1 to match the measured luminosity in data.

Bear in mind that the MC templates shown here are not used in any statistical analysis
directly. Instead, the MC samples are used to optimise the functional fits used to model
the SM background, and to calculate the background modelling uncertainty in the form
of spurious signal. The figures shown in this section are not using TFs to model detector
resolution in the MC background samples. Instead, detector resolution is modelled using
Geant4.

Figure 4.1.: Invariant mass data-to-background comparison in the electron channel. The
ratio between the two distributions is shown in the lower panel. Data points are drawn
with error bars. The relative statistical uncertainty on the total background template is
drawn as a shaded grey band in the lower panel. Red arrows indicate data points falling
outside the range of the lower panel.

Figures 4.3 and 4.4, and show the comparison between the data and the MC simulated
background for the transverse momentum and pseudorapidity, respectively, of the leading
and subleading electrons or positrons in the electron channel. Note that the plots do not
include the fake electron background category. Figures 4.5 and 4.6 show the comparison
between the data and the MC simulated background for the transverse momentum and
pseudorapidity, respectively, of the leading and subleading muon or anti-muon in the muon
channel. Only a rough agreement between the data and the background is expected, as
no systematic variations are applied to the MC background.

4.9. Highest Dilepton Invariant Mass Event Displays
Figures 4.7 and 4.8 show the so-called ATLAS event displays of the highest invariant mass
dielectron and dimuon event in the Run 2 data, respectively. An event display is a graphical
representation of a recorded ATLAS event. In these event displays, the barrel section of
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Figure 4.2.: Invariant mass data-to-background comparison in the muon channel. The
ratio between the two distributions is shown in the lower panel. Data points are drawn
with error bars showing their statistical uncertainty. The relative statistical uncertainty
on the total background template is drawn as a shaded grey band in the lower panel.

(a) (b)

Figure 4.3.: Data-to-background comparison of the transverse momentum of the leading
(a) and subleading (b) electrons or positrons in the electron channel.
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(a) (b)

Figure 4.4.: Data-to-background comparison of the pseudorapidity of the leading (a) and
subleading (b) electrons or positrons in the electron channel.

(a) (b)

Figure 4.5.: Data-to-background comparison of the transverse momentum of the leading
(a) and subleading (b) muon or anti-muon in the muon channel.
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(a) (b)

Figure 4.6.: Data-to-background comparison of the pseudorapidity of the leading (a) and
subleading (b) muon or anti-muon in the muon channel.

the ATLAS detector is projected onto the transverse (x-y) plane. The event displays
also contain a view of the full detector, as well as a zoomed in view of the interaction
region, in the longitudinal (z-y) plane. The electromagnetic and hadronic calorimeters are
marked in green and red, respectively, while the components of the Muon Spectrometer
are shown in blue. In the event displays we see tracks emanating from multiple vertices in
the interaction region, a nice demonstration of the concept of pileup.
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Figure 4.7.: ATLAS event display of the highest invariant mass dielectron event recorded
in Run 2, with mee = 4.06 TeV. The leading transverse energy electron has ET = 2.01
TeV, η = 0.47 and φ = −0.78. The subleading transverse energy electron has ET = 1.92
TeV, η = −0.03 and φ = 2.37. The trajectories, and deposited calorimeter energy, of the
electrons show up in the display as light red lines.
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Figure 4.8.: ATLAS event display of the highest invariant mass dimuon event recorded in
Run 2, with mµµ = 2.75 TeV. The leading transverse momentum muon has pT = 1.82 TeV,
η = −0.52 and φ = −0.56. The subleading transverse momentum muon has pT = 1.04
TeV, η = −0.67 and φ = 2.53. The trajectories of the muons show up in the display as
thin dark red lines. The calorimeter activity overlapping the muon trajectories have pT <
50 GeV, consistent with having been induced by the muons themselves.
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5. Resonant Dilepton Analysis
This chapter describes a search for resonant new physics phenomena in dilepton final
states. Our analysis strategy is to search for a model-independent signal shape, making
no assumptions on the spin, width, or mass of any potential new physics models. The
results obtained on this generic model can then be reinterpreted into several benchmark
physics models, by this or other searches. The discriminating variable of the analysis is
the reconstructed dilepton invariant mass, finely binned to allow for a shape analysis. The
search is performed for pole masses of a new resonant signal between 250 GeV and 6 TeV.
This invariant mass interval is the "search range" of the analysis. We do not know where
in this search range to expect a signal, nor the shape the signal might take. Therefore,
we "scan" across signal mass hypotheses in steps of one GeV, and across signal width
hypotheses, relative to the Z′ pole mass, from 0% to 10% in steps of 0.5%, searching for a
signal. The one GeV step size is smaller than the invariant mass resolution of the detector.
The results presented in this chapter are published in Ref. [6].

5.1. Modelling Exotic Dilepton Resonances
The search strategy in the resonant analysis is to fit the dilepton invariant mass spectrum
with a smooth, exponentially falling function and a generic signal shape. In the cases where
a BSM dilepton resonance has a decay width Γ much less than the dilepton invariant mass
resolution of the ATLAS detector, the shape of its reconstructed signal will be the same as
the shape of the invariant mass detector resolution functions, or transfer functions (TFs),
described in Section 3.6. Such signatures are referred to as "zero-width" signals in this
text. Zero-width signal shapes for three different values of BSM resonance pole mass are
shown in Figure 5.1.

For "wide signals", signatures of non-negligible resonance width, we use a non-relativistic
Breit-Wigner function to describe the true underlying shape of the signal invariant mass
distribution. This function is given as a function of invariant mass m, as

fBW(m) =
ΓZ′

(mZ′ −m)2 + Γ2
Z′

, (5.1)

where mZ′ and ΓZ′ are the pole mass and width of the resonance, respectively. This choice
of signal shape is motivated by the shape of the SM Z boson, which can be described by
a Breit-Wigner function. For wider signals, a relativistic Breit-Wigner function would be
a more realistic model.

The total signal shape of the wide signals are found by taking the convolution integral
of the non-relativistic Breit-Wigner function with the detector resolution TF. This con-
volution models how the truth level signal shape is modified by detector resolution. The
convolution integral for the Breit-Wigner and detector resolution TF is given as

fwide(m) =

∫ ∞

−∞
fBW(x)fTF(m− x)dx . (5.2)
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(a) (b)

Figure 5.1.: Zero-width signal probability density functions (PDFs) at pole masses 3.5, 4,
and 4.5 TeV in the electron (a) and muon (b) channels. The area under each signal curve
has the same arbitrary normalisation.

For the resulting wide signal function to be centred around the pole mass of the Breit-
Wigner function, either the Breit-Wigner or the TF must be translated to be centred
around zero before calculating the above integral.

The Breit-Wigner width ΓZ′ is expressed as a percentage of the pole mass mZ′ . This
is referred to here as the relative width of the signal. Relative signal widths between
0% and 10% are considered in the search. Figures 5.2 and 5.3 show the convolution of a
2.5% width Breit-Wigner function with the detector resolution function to obtain the total
signal shape for wide signals. The figures also show how the total signal shape changes
with the increasing width of the Breit-Wigner functions.

We generate signal MC samples to be able to calculate cross-sections and selection
efficiencies for different spin-0, spin-1, and spin-2 BSM models predicting resonant dilepton
signatures. Spin-1 LO DY samples are generated and then re-weighted to model different
Z′ benchmark models. The re-weighting procedure is explained briefly in Section 5.1.1.
The DY samples are generated using Pythia 8, in separate ranges of invariant dilepton
mass to enhance production in the high invariant mass region. Detector response to the
DY samples is simulated using full Geant4 detector simulation.

Spin-2 RS1 model MC dilepton samples are generated using Pythia 8, for values of
graviton G∗ mass between 750 GeV and 5,000 GeV. Samples are generated for three dif-
ferent values of the warping parameter k of the extra dimension introduced by the RS1
model: k/mPl = 0.1, 0.2, and 0.3, where mPl is the reduced Planck mass. MC samples of
a spin-0 MSSM Higgs boson decaying to a dilepton pair are generated using Sherpa, for
values of Higgs boson pole masses between 400 GeV and 1,000 GeV, and for values of the
relative resonance widths between 0% and 20%. The detector response to the generated
RS1 graviton- and MSSM Higgs MC samples are modelled using Atlfast-II.

A summary of the event generators and PDF sets used to generate the signal MC
samples is shown in Table 5.1. In this work, the generated RS1- and Higgs boson samples
are only used to calculate the acceptance and efficiency in the analysis for spin-0 and spin-2
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(a) (b)

Figure 5.2.: A 2.5% relative width Breit-Wigner distribution, centred at 1 TeV, convoluted
with the zero-width detector response function for electrons (a). The total electron signal
shape PDFs for five signal hypotheses with pole mass mZ′ = 1 TeV, and relative widths
between 0% and 10% (b). In (b), The area under each signal curve has the same arbitrary
normalisation.

(a) (b)

Figure 5.3.: A 2.5% relative width Breit-Wigner distribution, centred at 1 TeV, convoluted
with the zero-width detector response function for muons (a). The total muon signal shape
PDFs for five signal hypotheses between 0% and 10% relative width (b). In (b), the area
under each signal curve has the same arbitrary normalisation.
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resonant dilepton signals.

Table 5.1.: List of MC generators used in signal sample production.
Process Hard Scattering Process with PDFs Parton Shower, Non-Perturbative Effects with PDFs
Drell-Yan Pythia v8.186, NNPDF23LO Pythia v8.186, NNPDF23LO, EvtGen 1.2.0
Randall-Sundrum G∗ → ll Pythia v8.210, NNPDF23LO Pythia v8.210, NNPDF23LO, EvtGen 1.2.0
MSSM gg → H → ll Sherpa 2.1.1, CT10 Pythia v8.212, CTEQ6L1, EvtGen 1.2.0

To reduce the effect of SM interference and off-shell effects in the signal samples, a
fiducial selection is applied to each signal sample event. Each electron (muon) candidate
is required to pass |η| < 2.5, ET(pT) > 30 GeV, and mt > mZ′ − 2ΓZ′ . Here, mt refers to
the dilepton invariant mass of the MC sample at generator level, or the "true" mass of the
dilepton pair, which, due to detector resolution effects, may be different from the invariant
mass mll found in event reconstruction. Interference effects may change the low mass tail of
the signal distribution, having a large effect on the cross-section without altering the shape
of the peak of the distribution considerably. Removing the low mass tails of the signal
distributions is done to remove cross-section model dependence. The fiducial selection
defined above is the same as the one used in the previous resonant search performed by
the ATLAS exotic dilepton working group, using 36 fb−1 of Run 2 proton-proton collision
data [10], with one exception: Instead of removing just the low mass tail of the signal
distribution, Ref. [10] employs a two sided mass cut at twice the width of the resonance,
mZ′ −2ΓZ′ < mt < mZ′ +2ΓZ′ . We find that the cross-section model dependence is smaller
in the high-mass tail of the signal distributions under consideration, so this requirement
is removed in the analysis.

5.1.1. Signal Re-Weighting

Spin-1 signal model samples at arbitrary pole mass values are generated by matrix element
re-weighting the DY samples listed in Table 5.1. This allows us to create distributions
for spin-1 Z′ models at arbitrary pole mass, without the need for dedicated MC sample
production. Each event in the DY sample is re-weighted by a factor w. This weight is given
by the ratio of the differential cross-section of the BSM process over the corresponding SM
differential cross-section, as

w =
dσ/dt̂

(
qq → γ∗/Z/Z′ → ll

)
dσ/dt̂

(
qq → γ∗/Z → ll

) , (5.3)

where t̂ is the kinematic Mandelstam variable representing the squared difference of the
initial state quark q and final state lepton l four-momenta.

We create signal distributions for the E6 models Z′
χ and Z′

ψ. The relative resonance
widths of Z ′

χ and Z ′
ψ are 0.5% and 1.2%, respectively. Signal distribution templates are

also created for the Sequential Standard Model (SSM) Z′ model. The couplings of the
Z′

SSM boson are equal to the SM Z boson in all respects, but the resonance pole mass of
Z′

SSM is larger than the mass of the Z boson. Lastly, we create signal samples for three
choices of resonance pole mass, mZ′ = 3, 4, and 5 TeV, in the HVT theory Z ′

HVT model.
More information about these spin-1 BSM models can be found in Section 1.2.1.
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5.2. Determining Acceptance Times Efficiency
The acceptance A of a detector is defined as its solid angle coverage. If the trajectory of
a particle in the ATLAS detector falls outside of the solid angle covered by the detector
volume, the particle cannot be detected. Moreover, the ATLAS detector sensors are not
perfectly efficient. Nor are the ATLAS trigger-, particle reconstruction-, and particle
identification systems. Some number of particles will not be observed, despite hitting the
active volume of the detector. The fraction of particles passing the acceptance requirement
that is actually recorded is referred to as the efficiency ε of the detector. However, every
event recorded by the ATLAS detector is not necessarily used in physics analyses. Particles
are trimmed further from the ATLAS data by the event selections. Therefore it is useful
to instead define detector efficiency as the fraction of events created in the detector that,
passing detector acceptance, ends up in the final data set of an analysis. If so, then the
product of the acceptance multiplied by the efficiency, Aε, is equal to the probability, for
an event produced in the detector, of ending up in the analysis data set.

Knowing the acceptance times efficiency of the event selection in the analysis is neces-
sary to calculate the production cross-section of a signal. For a new physics signal with
production cross-section σ, the expected number of signal events in the analysis data set
is given by

Nsig = LAεσBr , (5.4)

where L is the integrated luminosity of the data set, and Br is the branching ratio of the
process into a dielectron or dimuon final state.

The acceptance and efficiency of zero-width resonances are determined using the 200
NLO DY MC samples used to model the detector resolution TFs. These samples are
generated in narrow slices of dilepton invariant mass. Aε as a function of generator level
invariant mass mt is found by dividing the number of events in the reconstructed sample
passing the analysis event selection, by the number of generated events in the sample:

Aε(mt) =
Events passing selection
Events in MC sample

∣∣∣∣
mt in slice

. (5.5)

To interpolate values of acceptance and efficiency between the points in mt covered by the
MC samples, polynomial functions are fitted to the calculated dielectron and dimuon Aε
values. The acceptance and efficiency calculated here is extracted from DY samples and
therefore assume the signal to be spin-1. We test the spin-dependence of the acceptance
and efficiency by calculating Aε, using Equation (5.5), for the spin-0 and spin-2 samples
shown in Table 5.1. The continuous spin-1 Aε functions, as well as the single point spin-0
and spin-2 Aε values, are shown in Figure 5.4. In the muon channel, the Aε values for
spin-0, spin-1, and spin-2 signals agree to within 1%. In the electron channel, on the other
hand, the spin-0 and spin-2 Aε values are higher than the spin-1 values by as much as
4%. Part of this discrepancy can be explained by the different methods used to model
detector resolution in the MC samples. MC samples in which detector response is modelled
using Atlfast-II, are seen to have a slightly higher acceptance times efficiency compared
to samples using the full Geant4 detector simulation. However, the main source of this
discrepancy is thought to be due to the fact that the spin-0 and spin-2 processes in the
signal MC samples are more central in pseudorapidity than the spin-1 sample. A larger
number of the spin-0 and spin-2 events pass the |η| < 2.5 requirement of the event selection
than events in the spin-1 sample.
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For wide signals, the mt of the signal events are no longer all the same value, but are
spread out around the pole mass mZ′ . In this case the Equation (5.5) cannot be used,
as Aε may change as a function of mt. We have to take into account the fact that the
acceptance and efficiency of the signal changes from one end of the distribution to the
other. For the generator level distribution SZ′

t of a wide signal, in this case a Breit-Wigner
distribution, the acceptance and efficiency is found by integrating the product of the wide
signal distribution and the zero-width Aε given in Equation (5.5) as a function of mt,
normalised by the integral of the wide signal shape:

Aε(mZ′) =

∫
SZ′

t (mt)Aε(mt)dmt∫
SZ′

t (mt)dmt
. (5.6)

The acceptance times efficiency values vary between 62% (54%) at 225 GeV and 74%
(38%) at 6 TeV for zero-width signals in the electron (muon) channel. The difference in
Aε between a zero-width signal and a signal of relative width 10% is less than 0.5% across
most of the pole mass range; this difference grows as large as 2% above 5 TeV in the muon
channel. In the spin-0 and spin-2 samples, acceptance times efficiency varies by less than
1% across all signal width variations.

Figure 5.4.: Acceptance times efficiency as a function of resonance pole mass for physics
processes of spin-0, spin-1, and spin-2. Zero width signals are used to produce the spin-1
values. The spin-0 and spin-2 values are averaged over all choices of signal width [6].

5.3. Data-Driven Background Estimation
In the 36 fb−1 analysis presented in Ref. [10], which is the previous result from the AT-
LAS exotic dilepton working group, the SM background is estimated using MC samples.
The SM background in this search is estimated using a data-driven method, by fitting a
functional form to the data separately in the electron and muon channels.

We explore two methods of fitting the background: a global fit method, where the
full invariant mass search range is fitted with a single function, and a sliding window fit
(SWiFt) method, where consecutive fits are performed in restricted invariant mass intervals
around the pole mass hypotheses of the search.
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The sliding window fit method is named for the apparent "sliding" motion of these
windows, as it scans across invariant mass subranges, searching for deviations from the SM
hypothesis. The main strength of the SWiFt method is that the parametric fit functions
used to describe the SM background can be kept simple; in this work we only consider
functions of one and two free parameters, not counting the normalisation of the functions.
The SWiFt method is not constrained in the high invariant mass region in the same way
as the global fit method. The SWiFt method is therefore more likely to suffer from fit
instabilities in this region due to high statistical uncertainty. Care must also be taken
to not make the fit windows too narrow compared to the width of the signal hypothesis
under consideration. If the sideband-, or signal-free, region of the fit is too narrow, the
sensitivity to the signal can be reduced. Examples of high energy physics analyses using
the SWiFt method can be seen for an ATLAS dijet search in Ref. [98], and for a Compact
Muon Solenoid (CMS) Collaboration diphoton search in Ref. [99].

There are two main ways of using sliding windows for data-driven background estima-
tion. The first technique is to build a so-called SWiFt background template. This his-
togram is constructed by scanning over pole masses, fitting the chosen parametric signal
and background functions in each sliding window. Next, the background template is made
by "stitching together" the background normalisation in the central bin of each window.
Due to the large overlap between windows, neighbouring bins in the background template
are strongly correlated, resulting in a smooth background shape. The SWiFt background
template can then take the place of the SM background estimate in the subsequent data
analysis. We do not use the SWiFt background template in the statistical analysis.

The second alternative of the SWiFt background method is the so-called true SWiFt
method. Here, the signal and background components are fitted in each window indi-
vidually, calculating the significance of the signal and setting upper limits on the signal
strength, before sliding the windows to the next pole mass signal hypothesis. This ap-
proach is the method used in this work.

The global fit method is presented in this chapter, while the SWiFt method, and a
comparison between the two methods, is presented in more detail in Appendix A. The
SWiFt approach is found to be a viable option for doing data-driven background estima-
tion, producing similar results to those obtained using the global fit approach. However,
the method introduces a lot of complexity, particularly in the optimisation of the sliding
windows. Therefore, the global fit method is selected for this search. In the future, at
Run 3 and beyond, as data set sizes continue to grow, it may become impractical, or even
impossible, to use the global fit approach. At this point, the SWiFt method could prove
a viable option for doing data-driven background estimation.

5.3.1. Spurious Signal
When performing a data-driven background estimation there are always uncertainties tied
to the choice of fit function; how do we know that the chosen mathematical function
accurately models the SM? Including more free parameters in the functional form increases
the flexibility of the fit. A polynomial of arbitrarily large order will conform perfectly to
any distribution. This is not wanted, as this would hide any potential new physics signal
in the background estimate. Instead, we want the function to conform to the broad,
unlocalised, behaviour of the SM background, while leaving any narrow resonances in the
data to be fit by the signal shape functions introduced in Section 5.1. Choosing the correct
fit function, therefore, becomes an optimisation procedure, balancing the bias and power
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of the function.
If a discrepancy is observed between the background fit and the data itself, we have a

potential observation of new physics. However, we need a way of determining whether or
not this discrepancy is due to a new physics signal, or simply due to bias in the fit function.
If the chosen fit function poorly describes the data, it may under- or overestimate the
background shape. Then, when adding a signal component to the fit, the signal shape
may compensate for the error in the background fit. This leads to a non-zero signal
contribution, not from any new physics signal, but as a result of background mismodelling.
Such false signals are known as spurious signals. This effect is illustrated in Figure 5.5 (a)
and (b). Here, a linear function is a poor choice to describe the toy background function.
The background function is perfectly smooth, containing no localised resonances. And
yet, when a Gaussian signal hypothesis is included in the fit model, a significant signal is
found. It should be pointed out here that a signal contribution arising from a statistical
fluctuation of the data is not a spurious signal. Particle collision data are stochastic by
nature, and will always contain statistical fluctuations.
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Figure 5.5.: Illustrating the concept of spurious signal. A signal-free toy background dis-
tribution, generated here by a second-order polynomial, is poorly described by a linear
background hypothesis (a). This mismodelling leads to a Gaussian signal being extracted
where none should be found (b). In (c), we see that when a spurious signal term is added
to the background shape, the correct signal normalisation is extracted. Without spurious
signal treatment, the signal is greatly overestimated.
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To quantify the expected spurious signal of a background function, we fit the func-
tion, along with the function describing the signal shape, to the smooth background MC
template described in Chapter 3. Seeing as we do not expect to see any signal in the
background MC template, the number of signal events extracted from the signal shape is
taken to be the expected spurious signal bias of the background function. We want the
spurious signal to be as low as possible. However, the absolute value of the spurious signal
is not a good measure of the performance of the fit function. At low invariant mass the
number of events in the data is much greater than at higher mass (see Figures 4.1 and
4.2). A spurious signal of 10 events could be insignificant compared to the expected size
of an observable signal at low mass, but devastatingly large at high mass. Instead, we
want the spurious signal to be low compared to the statistical uncertainty in the data.
Therefore, we use the the spurious signal significance ZSS, given as the ratio of spurious
signal events to the uncertainty on the spurious signal yield, NSS/σSS. The spurious signal
uncertainty σSS is driven by the statistical uncertainty in the data. The MC background
template is normalised to the integrated luminosity of the Run 2 proton-proton data set.
This means that the extracted uncertainty on the spurious signal in the fit is equivalent to
the statistical uncertainty of a real signal measurement on the data. Using the spurious
signal significance we define a so-called spurious signal test to assess candidate background
functions. If ZSS � 1, then the spurious signal is not expected to have a significant in-
fluence on the statistical analysis. If ZSS is less than some threshold value less than one,
for all invariant mass points in the signal scan range, then the function passes the test.
The threshold value chosen for this analysis is ZSS < 0.5. In addition to using spurious
signal to discriminate background fit functions, we also use spurious signal to account
for the background mismodelling uncertainty in the statistical analysis. This is done by
adding a spurious signal term in the signal normalisation parameter in the signal PDF,
essentially allowing the background model to flex or bend as the signal shape. This as-
sumption, that the background mismodelling has the same form as the signal hypothesis,
is the worst-case scenario. The size of the spurious signal normalisation is determined by
a Gaussian constraint in the statistical model, covered in more detail in Section 5.6. This
way, if a signal is observed, we can be sure that it is not a spurious signal. This concept
is illustrated in Figure 5.5 (c). Here, a Gaussian signal has been injected over the smooth
background shown in Figures 5.5 (a) and (b). Without the spurious signal term in the
signal normalisation, the size of the extracted signal is considerably overestimated, due
to the background mismodelling. However, by adding a spurious signal component to the
signal normalisation, equal to the spurious signal found in the signal plus background fit on
the signal-free background (shown Figure 5.5 (b)), the extracted signal strength becomes
consistent with the injected signal.

5.3.2. Standard Model Background Estimation
The global fit method is the name given to one approach for doing the data-driven back-
ground estimation, where the entire invariant mass search range is fitted using a single
parametric function. With its large fit range, the global fit method is well suited for fitting
broad signal resonances. The method also has the benefit of the low mass, high-statistics,
region constraining the background fit in the high-mass, low-statistics, region. However,
finding a suitable function to fit the background, balancing the opposing needs of minimis-
ing bias and maximising expected significance, can be challenging. The global fit method
used in this analysis is similar to the high invariant mass diphoton resonance searches of
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Refs. [100] and [101].
The optimal choice of fit function for the global fit method is determined using a spurious

signal test, as described in Section 5.3.1: the candidate background fit functions must
satisfy ZSS < 0.5 for any pole mass when scanning over the signal-free MC background
template. If more than one function satisfy this requirement, then the function with the
least free parameters is chosen. Functions of fewer parameters are less "flexible", and thus
less likely to conform to, and hide, a real signal present in the data. The function found
to best describe the dilepton SM background is

fll(m) = fZ(m)(1− xC)bx
∑3

i=0 pi log(x)
i

, (5.7)

where x = m/
√
s, where

√
s = 13 TeV is the COM collision energy of the LHC during

Run 2, and fZ(m) is the non-relativistic Breit-Wigner shape presented in Equation (5.1),
with the Z boson mass and width used in place of those of the Z′. The term (1 − xC)b

in Equation (5.7) is physically motivated, as it tends to zero as m approaches
√
s; it is

impossible in a collider to observe collision events more energetic than the available COM
collision energy. The parameter C is not a free parameter in the background fits, but a
constant, set to C = 1 in the electron channel, and C = 1/3 in the muon channel. The
value of C is chosen so as to optimise the fit to the smooth background template. The
spurious signal significance of Equation (5.7) is found to be around 0.3 or less for any
pole mass in a spurious signal test for a zero-width signal. For a 10% relative signal, the
spurious signal significance grows, but remains less than the 0.5 threshold.

Alternate values for the constant C in Equation (5.7), as well as setting b = 0, are
tested, without increasing the performance in the spurious signal test. To test that the
chosen function have an appropriate number of free parameters we perform a test where
an extra degree of freedom is added to Equation (5.7) in the form of the factor xp4 log(x)4 .
This extended function is kept if it improves the likelihood value of a background-only
fit by 2σ compared to the non-extended function. This requirement is not met, and the
non-extended function is kept. The stability of the chosen global fit function is tested by
injecting a signal of varying strength into the smooth MC template at selected pole masses
and widths across the full scan range, and testing that the extracted signal yields match
those injected.

5.4. Parameterising the Spurious Signal Uncertainty
The size of the spurious signal is measured using signal plus background fits to the signal-
free SM background template in a spurious signal test. There is a risk that random
fluctuations in the MC background sample will lead to an underestimation of the spurious
signal for some signal hypotheses. The underestimation of the size of the spurious signal
may lead to overestimation of the sensitivity to new physics signals. Therefore, we make
a conservative estimate of the spurious signal by fitting a parameterised function to the
local maxima of the spurious signal values from the spurious signal test.

The function chosen to describe the spurious signal envelope is

fspur(x) = (1− x1/3)ax
∑4

i=1 pi log(x)
i

, (5.8)

where once again, x = m/
√
s. This function is almost identical to the muon channel

background function of Equation (5.7), except for a small difference in the exponential
logarithmic polynomial, which here includes terms of the first to the fourth degree. The
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spurious signals extracted for a zero-width signal in the global fit approach is shown in
Figures 5.6. These figures also show the best fit of fspur to the local maxima of the spurious
signal distributions. The spurious signal scan and envelope fit are performed for all signal
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Figure 5.6.: Spurious signal yields extracted in a scan for a zero-width signal on the smooth
MC template in the electron (a) and muon (b) channels [93]. The best fits of the param-
eterisation functions fspur to the ensemble of spurious signal maxima are also shown.

width assumptions, from 0% to 10% in steps of 0.5% signal width.

5.5. Systematic Uncertainties
All background shape uncertainties are propagated into the spurious signal uncertainty.
The background uncertainties under consideration are choice and shape uncertainty in
generator PDFs and shape and normalisation uncertainties on the top quark and fake
electron backgrounds. These uncertainties are handled by producing smooth dilepton
invariant mass templates, using the TF method described in Chapter 3, shifted up and
down by one standard deviation of the shape systematic uncertainties. The spurious signal
yield is extracted for each shifted template, at every pole mass hypothesis in the scan range.
The maximum spurious signal yield at each pole mass of any of the MC templates, nominal
or shifted by systematic uncertainty, is taken to be the final spurious signal estimate used
in the analysis.

Systematic uncertainties on the signal can be divided into two categories: signal normal-
isation uncertainties and signal shape uncertainties. Sources of uncertainty are assumed
to only belong to one of these two categories. The signal normalisation uncertainties
considered in the statistical analysis are lepton identification and isolation uncertainties,
uncertainty on the luminosity, and uncertainty on the "good muon" selection requirement.
Only systematic uncertainties seen to affect the signal normalisation by more than 0.5% are
considered. All the signal normalisation uncertainties are assumed to be fully uncorrelated
between the lepton channels. One exception of this is the luminosity scale uncertainty,
which is taken to be fully correlated between the electron and muon channels.

Determining the signal shape uncertainties require a refit of the detector response TFs
for the up- and down variation of the 200 zero-width NLO Drell-Yan MC samples by
each systematic uncertainty. Energy and momentum scale and resolution uncertainties
are the only uncertainties that alter the detector response shape. The scale and resolution
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uncertainties alter the mean and width, respectively, of the Gaussian and Crystal Ball
functions that make up the TFs. These effects are visualised in exaggerated form in
Figure 5.7.
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Figure 5.7.: Exaggerated impact on the nominal detector resolution functions in the elec-
tron channel of up- and down variations of the energy resolution- (a) and scale (b) uncer-
tainties [93]. The dashed lines show the Crystal Ball component of the TFs.

Smooth parameterisations of the systematic uncertainties as a function of dilepton in-
variant mass are obtained using the TF framework, introduced in Section 3.6, developed to
model detector response. Parameterisations of the impact of the shape systematic uncer-
tainties on the mean and width parameters of the TFs are obtained for zero-width signals,
and for signals of widths between 0% and 10% in steps of 0.5%. We see no significant
difference between the nominal zero-width parameterisations and the parameterisations
obtained for wider signals. Therefore, only the zero-width parameterisations are kept and
used for all signal width hypotheses.

The relative impact on the signal yield of the systematic uncertainties can be seen, for
two pole-mass points, in Table 5.2. Spurious signals are the largest source of uncertainty
at low pole masses. At high pole-masses, the electron channel uncertainty is dominated
by the electron identification efficiency. In the muon channel, the uncertainty in the high
pole-mass region is also dominated by the uncertainty associated with the Good Muon
selection requirement.

Systematic uncertainties are included in the statistical analysis as nuisance parameters
with log-normal or Gaussian constraints in the statistical model, which will be presented
below. Log-normal constraints are used for uncertainties on the resolution, identification
and isolation of leptons, as well as on the luminosity scale uncertainty. Gaussian constraints
are used for energy and momentum scale uncertainties, and the spurious signal uncertainty.

The signal normalisation at any given pole mass, including nuisance parameters, becomes

NSig,ee = L× σZ′→ee × Aee × εee × κLumi × κIso,ee × κIdent,ee +NSS,ee × θSS,ee , (5.9)
and

NSig,µµ =L× σZ′→µµ × Aµµ × εµµ × κLumi × κIso,µµ × κIdent(stat),µµ

× κIdent(syst),µµ × κGoodMuon,µµ +NSS,µµ × θSS,µµ ,
(5.10)

in the electron and muon channel, respectively. Here, L is the integrated luminosity of
the data sample and All × εll is the acceptance times efficiency of the event selection at
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Table 5.2.: Relative impact, in per cent, on the number of extracted signal events from a
±1σ shift of the systematic uncertainties included in the analysis. The shifts are shown
for a zero-width (10% relative width) signal at two example pole masses.

Electron Channel Muon Channel
Pole mass [GeV] 300 5,000 300 5,000
Spurious signal ±12.5 (12.0) ±0.1 (1.0) ±11.7 (11.0) ±2.1 (2.2)
Identification ±1.6 (1.6) ±5.6 (5.6) ±1.8 (1.8) +25

−20

(
+25
−20

)
Isolation ±0.3 (0.3) ±1.1 (1.1) ±0.4 (0.4) ±0.4 (0.5)
Luminosity ±1.7 (1.7) ±1.7 (1.7) ±1.7 (1.7) ±1.7 (1.7)
Electron energy scale +1.7

−4.0

(
+1.0
−1.8

)
+0.1
−0.4

(±0.8) - -
Electron energy resolution +7.9

−8.3

(
+1.1
−0.9

)
+0.4
−0.9

(±0.1) - -
Muon ID resolution - - +0.8

−2.3

(
+0.3
−0.8

)
+0.6
−0.4

(
+0.5
−0.3

)
Muon MS resolution - - +2.8

−3.8

(
+1.0
−1.3

)
±2.4 (2.1)

Good Muon requirement - - ± 0.6 (0.6) +55
−35

(
+55
−35

)
the pole mass in question. The fiducial cross-section times branching ratio of a potential
new signal, σZ′→ll, is determined by fitting the signal and background PDFs to the data.
The value of the spurious signal nuisance parameter θSS,ll, is also determined in this fit.
NSS,ll is the spurious signal normalisation, determined in Section 5.4. The factors κi,ll
control remaining signal normalisation nuisance parameters. The nominal values of these
parameters are set to one.

5.6. Statistical Analysis
The RooFit [102] and RooStats [103] data analysis tools are used to perform the statis-
tical analysis, which is based on a frequentist interpretation of statistics and probability.
Previous iterations of ATLAS exotic dilepton analyses have employed Bayesian statistics.
No discernible difference is expected between the two methodologies.

The statistical analysis takes place in two steps: the discovery step and the exclusion
or limit setting step. In the discovery step, we check the validity of the SM given the
observations. If no discrepancy with the SM is seen, we move on to the exclusion step.
Here, we quantify the upper limit on the parameter of interest: the cross-section times
branching ratio of a new dilepton (e+e−, µ+µ−) resonance.

5.6.1. Discovery
To claim the discovery of a new physics signal, the standard model must be shown to
be inconsistent with experimental results. The SM in this case can be referred to as the
background or null hypothesis, H0, of the analysis.

For a set of observables x and model parameters Θ, the likelihood L(Θ|x) of Θ, given
the outcome x, is equal to the probability P (x|Θ) of observing the outcome x, given the
values of Θ. In this search we have one parameter of interest, µ, and a set of nuisance
parameters θ. The signal strength parameter µ is used here to symbolise the cross-section
times branching ratio σZ′→ll of Equations (5.9) and (5.10). The symbol µ is kept to stay
consistent with literature. The nuisance parameters are related to the uncertainties on
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the scale of the luminosity, the spurious signal uncertainty, etc. The likelihood of a set of
values of µ and θ, given the binned data n, is given as a product of the individual bins in
the dilepton invariant mass histograms, as

L(µ,θ|n) =
bins∏
i

Pois(ni|µSi(θ) +Bi(θ))×
∏
j

Cj(θj|µθj , σj) . (5.11)

Here, ni, Si(θ), and Bi(θ) are the event yield of each bin for the data, the signal function,
and the background function, respectively. Pois() is the probability mass function of
a Poisson distribution, giving the probability of drawing ni from a Poisson distribution
of mean µSi(θ) + Bi(θ). The constraint terms for θ, Cj, are either Gaussian or log-
normal probability density functions of mean µθj and standard deviation σj, where σj is
the systematic uncertainty associated with the nuisance parameter θj.

A test statistic is a variable quantifying how well measured data match a given hypoth-
esis. A likelihood ratio test, also known as a Wilks test, is used in the analysis. The
logarithmic likelihood-ratio test statistic is given as

q0 =

+2 log
[
L(0,θ̂0)

L(µ̂,θ̂)

]
µ̂ < 0 ,

−2 log
[
L(0,θ̂0)

L(µ̂,θ̂)

]
µ̂ > 0 .

(5.12)

Here, θ̂0 and θ̂ are the nuisance parameter values that maximise the likelihood, given
a signal strength value of 0 or µ̂, respectively. Likewise, µ̂ is itself chosen to maximise
the likelihood. Note that we omit the measurements n from the likelihood expression for
clarity. The signal strength parameter is allowed to be both positive and negative, allowing
us to test both upward and downward fluctuations of the data.

We can calculate the value of q0 on an ensemble of toy distributions drawn under the
null hypothesis and make a probability density function f(q0|H0). The resulting PDF will
look something like the distribution shown on Figure 5.8. The probability p0 that the
background fluctuates to yield a signal-like excess equal to or larger than the observed
value qobs

0 , can be calculated using the f(q0|H0) distribution as

p0 = P (q0 > qobs
0 |H0) =

∫ ∞

qobs
0

f(q0|H0)dq0 . (5.13)

p0 is also known as the p-value of the experiment. It is common to express p0 as a
significance Z, which has units of standard deviations σ of a unit Gaussian distribution.
The p-value can be converted to a significance using the inverse of a cumulative unit
Gaussian Φ−1, as

Z = Φ−1(1− p0) . (5.14)
Small p-values, less than 0.5, correspond to positive values of µ̂, and p-values greater than
0.5 correspond to negative values of µ̂. It is customary in the field of high energy physics
to only claim discovery if the p-value is smaller than 2.87× 10−7, which is equivalent to a
significance of 5σ [104].

Wilks’ theorem states that in the so-called asymptotic limit, when sample size ap-
proaches infinity, the distribution f(q0|H0) approaches a χ2 distribution for one degree
of freedom [106]. In the cases where this condition is met, such as in the example test
statistic distribution of Figure 5.8, p0 can be calculated without the need for drawing toy
distributions. This can greatly improve the computation speed when calculating p-values.
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Figure 5.8.: Example test statistic distribution (red) for null hypothesis toy data sets [105].
Also shown (blue) is a χ2 distribution for one degree of freedom. The test statistic distri-
bution is seen to be consistent with Wilks’ theorem.

The asymptotic formula for calculating the p-value from the test statistic directly is given
as [107]

p0 = 1− Φ(
√
q0) , (5.15)

and similarly, the significance can be calculated as

Z =
√
q0 . (5.16)

For negative values of q0, corresponding to negative values of µ̂, the negative sign must be
brought outside of the square root in Equations (5.15) and (5.16).

In this analysis, we do not calculate only one p-value. Instead, we scan across the
dilepton invariant mass histogram, calculating the p-value at every one GeV step. For
each new p-value checked, the probability grows that a random background fluctuation
will mimic a signal. This is known as the look-elsewhere effect. The p-values found at
each individual pole mass scan point are known as local p-values. A global p-value is the
probability for the background to fluctuate to yield a signal-like excess equal to or larger
than what is observed, at any of the tested invariant mass points in the scan, taking into
account the look-elsewhere effect.

Global p-values can be found by throwing background hypothesis toy distributions,
performing a scan on them for local p-values, and then noting the frequency at which
certain p-values show up. The local significances found in the scan on data can then be
mapped to global significance values using these frequencies.

An asymptotic approximation, valid for local significances above 2σ, can be used to
avoid drawing toy distributions. First, choose a reference significance level Zref, usually
0σ. Next, count the number of times Nup the local significance curve crosses this threshold
in the upward direction. A local p-value can now be converted to a global p-value using
the equation [108]

pglob
0 = ploc

0 +Nupe− 1
2
(Z2

loc−Z
2
ref) . (5.17)

The statistical uncertainty on this global p-value can be found by varying Nup by ±
√
Nup

and repeating the above calculation. To increase the precision of the procedure, the value
of Nup measured on the data can be replaced by the mean number of upward crossings
found in an ensemble of background-only toys. Note that this does not require drawing as
many pseudoexperiments as the non-asymptotic procedure.
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5.6.2. Exclusion
The exclusion step can also be referred to as the limit setting step of the statistical analysis.
If we are unable to reject the null hypothesis in the discovery step, then we want to
determine how large the parameter of interest µ could be while remaining undetected in
the experiment. In other words, we want to set a reasonable upper limit on the cross-section
of a generic resonant dilepton signal. The competing hypothesis to the null hypothesis, the
alternative hypothesis H1, is that such a generic signal exists, with some non-zero value of
the cross-section σZ′→ll.

When setting limits we use a slightly modified test statistic from the one used in the
discovery step. The exclusion test statistic qµ takes the form

qµ =


−2 log

[
L(µ,θ̂µ)

L(0,θ̂0)

]
µ̂ < 0 ,

−2 log
[
L(µ,θ̂µ)

L(µ̂,θ̂)

]
0 6 µ̂ 6 µ ,

0 µ̂ > µ .

(5.18)

Here, µ is the value of the signal strength parameter associated with the chosen H1 hypoth-
esis. At this value of µ, θ̂µ are the maximum likelihood values of the nuisance parameters.
Note that since this analysis step aims to set upper limits on the new signal cross-section,
we are no longer interested in negative values of signal strength µ. When the maximum
likelihood value of µ̂ becomes negative, µ̂ = 0 enters the qµ likelihood ratio calculation.
Similarly, qµ is set to zero in cases where µ̂ > µ, to ensure that these do not count as
evidence against the alternative hypothesis.

Like in the discovery step, probability density functions can be created for the test
statistic qµ by drawing toy distributions under the null and alternative hypotheses. An
example of two such distributions can be seen in Figure 5.9. Similar to the probability p0 of
Equation (5.13), we can now define a probability pµ, which is the probability of observing
a value qµ as large as, or larger than, that observed:

pµ = P (qµ > qobs
µ |H1) =

∫ ∞

qobs
µ

f(qµ|H1)dqµ . (5.19)

Just like a small value p0 is evidence that the data is inconsistent with the null hypothesis,
a small value pµ means that the data is inconsistent with the alternative hypothesis. Again,
in the asymptotic limit, Equation (5.15) can be used in place of Equation (5.19).
pµ is known as as the confidence level CLs+b of the signal hypothesis. Similarly, the p-

value p0µ is known as the confidence level CLb of the background. This p-value is calculated
by substituting in the null hypothesis in place of the alternative hypothesis in Equation
(5.19). For a chosen hypothesis H1, if CLs+b is less than some predetermined threshold α,
we say that the hypothesis is excluded with a (1− α) confidence level. It is customary in
high energy physics to choose α = 0.05 for exclusion. We say that α is the false exclusion
rate of the experiment. This means that if we were able to repeat the experiment several
times, the H1 hypothesis would be falsely excluded in one out of twenty experiments.

CLs+b has an undesirable feature. If the null and alternative hypotheses are not well
separated, a downward fluctuation of the data may lead to a false exclusion of a signal
the analysis should not be sensitive to. A common solution to this problem is to use the
so-called modified frequentist or CLs method [109]. CLs is not a confidence level, but a
ratio of confidence levels, given as

CLs =
CLs+b

CLb
=
pµ
p0µ
. (5.20)
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Figure 5.9.: Example exclusion test statistic distributions for toy data sets drawn from the
null- (blue) and alternative (red) hypotheses [105].

Finding the upper limit on the parameter of interest, µup, at 95% CL is an iterative process.
We stepwise increase µ, calculating pµ and p0µ at each step. pµ and p0µ are used to calculate
CLs using Equation (5.20). µup is the value for which CLs crosses the α, or 0.05, threshold.

In the asymptotic approximation, CLs can be calculated using qµ directly. Now, instead
of drawing an ensemble of toy distributions, we can use the so-called Asimov data set to
calculate the limits. The Asimov set is a data set where all observable parameters are set
to their expected values. In the asymptotic limit, CLs becomes

CLs =
1− Φ(

√
qµ)

Φ(
√
qµ,A −√

qµ)
. (5.21)

Here, qµ,A is the test statistic calculated for the Asimov set [110].
To find the expected upper limit on the parameter of interest, given that there is no

signal present in the data, generate toy experiments under the null hypothesis. For each of
these pseudoexperiments, find the 95% CL upper limit on µ using the CLs method outlined
above and draw the resulting µup distribution. The expected limit on µ is the median of
this distribution. The ±1(2)σ uncertainty bands on the expected limit are defined by the
16 (2.3)% and 84 (97.7)% quantiles of the distribution. The expected limit µexp is found
using the Asimov data in place of the data and finding the value of µ where CLs = 0.05.
The Nσ error bands on the expected limit are then calculated as

µexp
N =

µexp
√
qµ,A

(Φ−1(1− 0.05Φ(N)) +N) . (5.22)

The validity of the asymptotic approximation in the high invariant mass, low statistics,
region of the analysis is checked using toy experiments. The limits obtained with the
asymptotic formulae are seen to be stronger than those found using toy distributions above
3 TeV. The impact on the Z′ pole mass limit from using the asymptotic approximation is
found to be less than 100 GeV for the benchmark models considered in the analysis.

5.7. Results
The best-fit background shapes are drawn with the data in Figure 5.10. Note that the data
in these plots are not as finely binned as the data on which the analysis is performed. The
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best-fit parameters of the background fit function in the electron channel are b = 1.5±1.0,
p0 = −12.38±0.09, p1 = −4.295±0.014, p2 = −0.9191±0.0027, and p3 = −0.0845±0.0005,
with a background normalisation of Nbgr = 178, 000± 400, in a background-only fit to the
data. In the muon channel, the equivalent best-fit background-only parameters are Nbgr =
138, 700±400, b = 11.8±0.5, p0 = −7.38±0.12, p1 = −4.132±0.017, p2 = −1.0637±0.0029,
and p3 = −0.1022±0.0005. No deviations from the background hypothesis can be seen by
eye. We scan the search range, 250 GeV to 6 TeV, in steps of 1 GeV, and widths between

(a) (b)

Figure 5.10.: Dielectron (a) and dimuon (b) invariant mass distributions with the best-fit
background PDFs. Three generic zero-width signals are also included in the plots at pole
masses 1.34, 2 and 3 TeV. For added readability, the signal cross-sections are scaled by 20
times their upper limit values [6].

zero-width and 10% relative width in steps of 0.5%, searching for a signal. The 1 GeV steps
are smaller than the mass resolution in both channels. Results are produced separately in
the electron and muon channels and combined under the assumption of lepton universality.
The local significance values from the scans are shown for a zero-width and a 10% relative
width generic signal in Figure 5.11. Local significances are drawn in two dimensions as a

(a) (b)

Figure 5.11.: Significance of a zero-width (a) and a 10% relative width (b) signal as a
function of pole mass in the electron, muon, and combined channels [6].

function of pole mass and signal width in Figure 5.12. To aid readability of the plots in
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Figure 5.12, only positive significances are drawn, with negative significances being set to
zero. The global significance of the largest local significance points found in the scan is

(a) (b)

(c)

Figure 5.12.: Positive significance as a function of pole mass and signal hypothesis width
in the electron (a), muon (b), and combined (c) search channels [6].

calculated using the method outlined in the previous section. For a zero-width signal, the
largest deviations from the background hypothesis are seen at 774 GeV, 267 GeV and 264
GeV, with local significances 2.9 σ, 2.4 σ, and 2.3 σ in the electron, muon, and combined
channels, respectively. In the same channels, the number of upwards crossings of the
reference significance threshold, Nup, with uncertainty, are found to be 26± 5, 7± 3, and
26± 5. This means that the global significances of the most locally significant scan points
are 0.1 σ, 0.3 σ and 0.0 σ in the electron, muon, and combined channels, respectively. For
a 10% relative width signal, the highest significance points for the electron, muon, and
combined channels are found at 771 GeV, 267 GeV and 2,390 GeV, with local significances
2.5 σ, 2.2 σ, and 1.4 σ, and global significances of 0.5 σ, 0.0 σ and 0.0 σ. Here, the values
of Nup, with uncertainty, are 7± 5, 5± 2, and 10± 3 for the three channels. The largest
local significance excesses and deficits for any signal width assumptions are shown in Table
5.3. From these results we conclude that no significant deviation from the SM is seen.

The upper limit on the fiducial cross-section at each pole mass, with the added re-
striction that the signal decays to a dilepton final state, is found using the asymptotic
approximation presented in the previous section. The observed limits, as a function of
pole mass, for a zero-width signal is compared to the expected limit with ±1σ and ±2σ
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Table 5.3.: Each dilepton channel’s most locally significant excess and deficit at any signal
width hypothesis.

Channel Excess Deficit
mZ′ [GeV] ΓZ′/mZ′ [%] Z [σ] mZ′ [GeV] ΓZ′/mZ′ [%] Z [σ]

ee 773 2.5 3.0 1,957 4.0 −3.2
µµ 268 2.5 2.5 349 8.5 −2.8
ll 264 0 2.3 1,958 3.0 −2.9

error bands in Figure 5.13. This figure only shows limits up to pole masses of 2 TeV. Above
this threshold, the expected limit error bands obtained in the asymptotic approximation
becomes considerably wider than those obtained by toy-based methods.

Upper limit curves on the fiducial cross-section times branching ratio for zero-width
signals and relative signal width assumptions 0.5%, 1.2%, 3%, 6% and 10% are shown in
Figures 5.14, 5.15, and 5.16, for the electron, muon and combined channel, respectively.
Expected limit error bands are omitted from these figures. We see that the zero-width and
10% relative width signal hypotheses bookend the upper limit values of the intermediate
signal widths. The observed limits range from 3.6 (13.1) fb at 250 GeV, to 0.014 (0.018) fb
at 6 TeV for zero-width (10% relative width) signals in the combined channel. Systematic
uncertainties are seen to have a small impact on the limits. The limits are between 4%
and 7% weaker when including systematic uncertainties, depending on the channel and
pole mass value.

In Figures 5.14, 5.15, and 5.16, theoretical fiducial cross-section curves are drawn for the
exotic heavy boson models Z′

SSM, Z′
ψ, and Z′

χ. Uncertainties on the Z′
SSM cross-section, due

to choice and variations of PDFs, are shown in the limit figures for illustration purposes.
From Section 1.2.1 we know that the relative resonance widths of these three models are
3%, 0.5% and 1.2%, respectively. Therefore, the lower mass limits on the Z′ in these
models, can be calculated as the intersection between the theoretical cross-section curve
and the observed and expected limit curves of corresponding signal width. The resulting
mass limits are summarised in Table 5.4. These mass limits improve previous ATLAS
results for the same models by between 500 GeV and 800 GeV [10].

Table 5.4.: Lower limits on the Z′ mass, in TeV, for the models Z′
SSM, Z′

ψ, and Z′
χ.

Model ee µµ ll
Expected Observed Expected Observed Expected Observed

Z′
SSM 4.9 4.9 4.5 4.5 5.1 5.1

Z′
ψ 4.3 4.1 4.0 4.0 4.5 4.5

Z′
χ 4.6 4.6 4.2 4.2 4.8 4.8
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(a) (b)

(c)

Figure 5.13.: Upper limits at 95% confidence level on the fiducial cross-section times
branching ratio for zero-width signals in the electron (a), muon (b), and combined (c)
channels [6].

(a) (b)

Figure 5.14.: Upper limits at 95% confidence level on the fiducial cross-section times
branching ratio for tested signal widths of zero, 3%, and 10% relative width (a), and
0.5%, 1.2%, and 6% relative width (b), in the electron channel. Also included are pre-
dicted fiducial cross-section values for the heavy boson benchmark models Z′

SSM (a), and
Z′
ψ and Z′

χ (b) [6].
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(a) (b)

Figure 5.15.: Upper limits at 95% confidence level on the fiducial cross-section times
branching ratio for tested signal widths of zero, 3%, and 10% relative width (a), and
0.5%, 1.2%, and 6% relative width (b), in the muon channel. Also included are predicted
fiducial cross-section values for the heavy boson benchmark models Z′

SSM (a), and Z′
ψ and

Z′
χ (b) [6].

(a) (b)

Figure 5.16.: Upper limits at 95% confidence level on the fiducial cross-section times
branching ratio for tested signal widths of zero, 3%, and 10% relative width (a), and
0.5%, 1.2%, and 6% relative width (b), in the combined channel. Also included are pre-
dicted fiducial cross-section values for the heavy boson benchmark models Z′

SSM (a), and
Z′
ψ and Z′

χ (b) [6].
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6. Non-Resonant Dilepton Analysis
In the previous chapter, we presented a search for localised resonant new physics phenom-
ena. For theories such as the quark compositeness and large extra dimensions, presented in
Chapter 1, dilepton final state signals are predicted to manifest as broad deviations from
the SM predictions in the high invariant mass range. The background estimation method
used in the resonant analysis is less suited in such searches, as the broad nature of the
signal in a low statistics region in data risks biasing the background fit. After publishing
the results from the resonant analysis, the ATLAS exotic dilepton working group shifted
its focus to the search for non-resonant signals, using the same full Run 2 dataset, and
the same object definition and event selection scheme, as the resonant analysis. In the
non-resonant analysis, a model-independent search was carried out for high invariant mass
dilepton excesses, as well as a search for signatures of contact interactions (CIs) and gravi-
tons originating from the ADD model of large extra dimensions. Due to time constraints,
the part of the analysis interpreting the results in the framework of the ADD model, which
is my main contribution, was not published with the CI result of the search, in Ref. [7], but
as a so-called ATLAS public note, in Ref. [9]. The contact interaction analysis sets a lower
limit on the energy scale parameter Λ of an effective field theory (EFT) contact interaction
(CI) model. CI processes with both constructive and destructive interference with the SM
are considered in a single bin counting experiment on the invariant mass variable. This
chapter focuses on the results from the search for non-resonant ADD model graviton pro-
duction, aiming to set a lower limit on the string scale parameter MS of the ADD theory
of gravity in large extra dimensions. The dilepton invariant mass distributions for three
ADD model hypotheses of MS are shown with the Run 2 data and the smooth background
MC histogram estimate in Figure 6.1.

6.1. Background Estimation
This analysis employs a data-driven method to estimate the SM background to the po-
tential new physics signal. Unlike in the resonant analysis, where we can make no prior
predictions as to the pole mass of a potential new signal, for the models considered in the
non-resonant case, the signal is known to be located at high dilepton invariant mass, as
broad deviations from the SM prediction. We can therefore use the low invariant mass
region to constrain the background fit.

The background fit procedure is as follows: First, a parametric function is fitted in a low
invariant mass control region (CR). The best-fit parameters of the background function are
only determined in this CR. Next, the background function is extrapolated into a single
bin, high-invariant mass signal region (SR). A schematic of the extrapolation procedure is
shown in Figure 6.2, using example values for the CR and SR ranges. The figure shows the
invariant mass distribution of a CI signal which destructively interferes with the SM. In
the figure, the signal hypothesis predicts fewer events than the background prediction for
invariant mass values between 1 and 2 TeV. To avoid having this negative signal prediction

95



CHAPTER 6. NON-RESONANT DILEPTON ANALYSIS

Data

*γZ/

Top quarks

Diboson

Multi-jet & W+jets

 = 4 TeV (GRW)SM

 = 6 TeV (GRW)SM

 = 8 TeV (GRW)SM

 PreliminaryATLAS
-1 = 13 TeV, 139 fbs

ee channel

3−10

2−10

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s

210×2 310 310×2
 [GeV]eem

0.6
0.8

1
1.2
1.4

D
at

a/
B

kg

(a)

Data

*γZ/

Top quarks

Diboson

 = 4 TeV (GRW)SM

 = 6 TeV (GRW)SM

 = 8 TeV (GRW)SM

 PreliminaryATLAS
-1 = 13 TeV, 139 fbs

 channelµµ

3−10

2−10

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s

210×2 310 310×2
 [GeV]µµm

0.6
0.8

1
1.2
1.4

D
at

a/
B

kg
(b)

Figure 6.1.: Data-to-background comparison in the electron (a) and muon (b) channels,
along with the predicted invariant mass distributions of three string scale hypothesis ADD
models in the GRW convention [9].

cancel any potential positive signal yield in the SR, the control and signal regions may be
separated by a gap in invariant mass.

Figure 6.2.: Schematic of the background estimation extrapolation procedure [7].

Around 50 parametric functions are considered for the background fit. Each function
candidate is fitted to the smooth background template described in Chapter 3 in a set of
15 provisional CR and SR configurations. The residual of the background fit with regards
to the smooth background template is used to evaluate the candidate functions. For a
function to be considered, the relative residual between the fit and the template in each
bin is required to be less than three in both the CR and SR. Five parametric functions
pass this requirement, one of which is the function chosen to model the background in
the resonant analysis, presented in the previous chapter. This function, given in Equation
(5.7), is again chosen to model the SM background of the analysis. However, the parameter
b, previously a free parameter determined in the fit, is now fixed. The optimal choice of b
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is determined by fitting the background function, given in Equation (5.7), to the smooth
MC template. The fixed parameter C is determined in the same way.

Once the background parametric function has been determined, the choice of CR and SR
is optimised separately for a CI signal with constructive and destructive interference with
the SM. The interference of a CI model is determined by the sign of ηij in Equation (1.79),
given in Chapter 1. The optimised choices for the control and signal regions are given in
Table 6.1. Destructive interference models are seen to prefer a separation of around 1.3
TeV between the control and signal regions, while constructive interference models prefer
adjoining regions. The optimal choices of CRs and SRs are not dependent on the chirality
of the CI models. Therefore, only one set of CRs and SRs is used in the constructive and
destructive case, for the four possible combinations of left- and right-handed fermion fields
present in the Lagrangian presented in Equation (1.78). These will be referred to in this
text as the constructive and destructive SRs.

Table 6.1.: Control region and signal region definitions, in units GeV. SRmax = 6,000 GeV
for each signal region.

Channel Constructive Interference Destructive Interference
CRmin CRmax SRmin CRmin CRmax SRmin

ee 280 2,200 2,200 310 1,450 2,770
µµ 310 2,070 2,070 320 1,250 2,570

6.2. Processing ADD Theory Signal Samples
We produce MC signal samples for seven ADD string scale hypotheses: 3 TeV, 4 TeV, 5
TeV, 6 TeV, 7 TeV, 8 TeV, and 50 TeV. Details about the signal sample production are
presented in Appendix B. After passing the event selection step, presented in Chapter 4,
the signal samples are scaled to the 139 fb−1 luminosity of the Run 2 ATLAS dataset, and
then binned in invariant mass like the dilepton dataset. The matrix element of the signal
samples is calculated at NLO precision. The invariant mass signal templates are scaled by
an invariant mass-dependent K-factor, to account for higher-order QCD corrections to the
ADD cross-section. The K-factor is calculated using VRAP 0.9 [111] and the CT14NNLO
PDF set [78]. The K-factor, plotted as a function of dilepton invariant mass in Figure 6.3, is
the same K-factor used to scale our DY background MC samples, introduced in Section 3.1
of Chapter 3. Having applied the K-factor, the ADD model MC samples now correspond
to samples generated with the CT14NNLO PDF set. The K-factor is derived on MC
samples generated using the POWHEG-BOX and Pythia8 event generators, while the
ADD model MC samples are generated using the Sherpa event generator. After a side
by side comparison between a DY sample generated using POWHEG-BOX+Pythia8
and CT10NLO, and the 50 TeV signal sample, generated using Sherpa and CT10NLO,
we conclude that the K-factor can be applied to the ADD signal samples. Applying the
K-factor to the ADD samples is shown to have less than a 1% impact on the limits set on
the string scale parameter of the ADD theory.

The matrix element of the Sherpa generator used to generate the signal samples con-
tains a SM DY component that cannot be disentangled at the generator level. A fraction
of the dilepton data set is made up of DY events. The DY component of the signal samples
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Figure 6.3.: The K-factor used to account for higher-order cross-section corrections in the
ADD theory signal samples, plotted as a function of dilepton invariant mass.

must therefore be removed to avoid double-counting events in the final statistical analysis.
When setting the string scale parameter to 50 TeV, the resulting MC sample is virtually
entirely made up of DY events, as the signal is moved beyond the energy reach of the LHC.
We therefore call the MS = 50 TeV sample the "signal-free" sample. The DY component in
the signal samples is removed by subtracting the shape of the invariant mass distribution
of the signal-free MC sample from each signal sample. The remaining events should be
purely due to KK production of graviton excitations. The invariant mass distributions of
the ADD model signal samples, before and after the DY subtraction step, are shown for
the electron channel in Figure 6.4, and for the muon channel in Figure 6.5.
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Figure 6.4.: Electron channel invariant mass distributions before (a) and after (b) DY
subtraction, for all ADD theory string scale hypotheses. The signal histograms are drawn
with a 100 GeV bin width.

The signal event yield in the constructive and destructive SRs, for each of the six string
scale hypotheses, are given in Table 6.2. Naively, the SR event yield is expected to fall
with increasing string scale. However, in the electron channel, more events are seen when
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Figure 6.5.: Muon channel invariant mass distributions before (a) and after (b) DY sub-
traction, for all ADD theory string scale hypotheses. The signal histograms are drawn
with a 100 GeV bin width.

integrating the MS = 4 TeV sample in the destructive SR, than for the 3 TeV sample.
Calculating the cross-section of the signal samples involves a sum over many KK modes.
This sum must be cut off at some value so as not to become infinite. Therefore, the
samples have a kinematic cutoff at the string scale hypothesis. The ADD model is not
valid above this cutoff. The starting point of the destructive SR is close to the kinematic
edge of the 3 TeV signal sample. As a result, a large portion of the events in the 3 TeV
sample falls below the destructive SR interval. The MS = 3 TeV signal sample is not used
in the statistical analysis for this reason.

Table 6.2.: Event yield in the constructive and destructive SRs, for the six string scale
hypotheses considered in this search. The cross-sections of the ADD samples are calculated
using the GRW convention of summing over KK states.

String Scale [GeV] Electron Channel Muon Channel
Const. SR Dest. SR Const. SR Dest. SR

3,000 868.1 125.4 618.9 232.9
4,000 233.0 136.5 148.5 97.2
5,000 55.5 38.7 33.1 24.8
6,000 14.5 10.9 10.5 6.5
7,000 4.1 3.1 3.1 2.0
8,000 1.3 1.0 1.8 0.6

6.2.1. Kaluza-Klein Formalism Conversion
The ADD model signal MC samples are generated in the GRW convention for summing
over KK states. We also want to be able to express the results of the search in the Hewett
and HLZ conventions, without having to produce a dedicated set of signal MC samples
for each convention. The total ADD model production cross-section is given in Equation
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(1.74) in Chapter 1. After removing the DY component, this cross-section becomes

σADD = F
FInt

M4
S
+ F 2 FG

M8
S
. (6.1)

The first term in this equation is referred to as the "interference" term, of the ADD cross-
section. This term controls the amount of interference between the KK graviton and the
SM term. The second term is known as the "pure graviton" term. The value of F , given
in Equation (1.75) in Section 1.2.2, is determined by the chosen KK convention.

The interference and pure graviton terms both contribute to the events in the ADD
signal production, but the ratio between the terms is unknown. Therefore, we cannot
convert the number of events predicted in the GRW convention to that predicted in the
Hewett and HLZ conventions directly. This would require separating the contribution
to the cross-section from the interference and pure graviton terms. Instead, two cases
are considered: one where the cross-section scales "interference-like" between the GRW
convention and the other convention, and one where the cross-section scales "graviton-
like". To obtain the Hewett and HLZ signal template in the interference cross-section
scheme, we scale the GRW invariant mass signal histograms by their respective F values.
Similarly, to convert the signal templates in the pure graviton scheme, we scale the GRW
histograms by F 2. The true value of the Hewett and HLZ cross-sections are bookended
by their respective interference- and pure graviton cross-sections. Note that when n = 4,
F = 1 in the HLZ convention, and the cross-section becomes identical to that in the GRW
convention.

Signal templates for some KK conventions cannot be created using the method described
here. In the Hewett convention, if the model parameter λ = −1, the scaling factor F
becomes negative in the interference cross-section scheme. The same thing happens in the
HLZ convention when the number of extra dimensions n is equal to two. These conventions
are therefore dropped from the analysis. Astronomical observations rule out n = 1, as this
would modify Newton’s law of gravitation at solar system distance scales [11].

6.3. Systematic Uncertainties
6.3.1. Background Uncertainties
The statistical uncertainty on the extrapolated background shape is determined by draw-
ing pseudo-data sets from the nominal background fit to the data. Each of these toy
distributions is refitted in the CR and extrapolated into the SR. The mean of the SR yield
distribution of the pseudoexperiments are confirmed to be centred on the nominal back-
ground expectation, and the standard deviation of the toy background distribution in the
SR is taken as the statistical uncertainty. In the electron channel, the relative statistical
uncertainty is found to be 14% in the constructive SR and 35% in the destructive signal
region. In the muon channel, the relative statistical uncertainty is 21% in the constructive
SR and 58% in the destructive SR.

Like in the resonant search presented in Chapter 5, we run the risk of observing a spu-
rious signal, not due to any real signal being present in the data, but due to background
mismodelling. The spurious signal uncertainty is quantified and included in the statistical
analysis. An ensemble of 10,000 background templates is constructed from a linear combi-
nation of the nominal background and all its variations by systematic uncertainties. The
systematic uncertainties are the same as for the resonant search presented in Chapter 5.
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The weight of each non-nominal variation in the linear combination is drawn between -1
and 1 from a normal distribution centred at zero, with a standard deviation of one. Each
pseudo-background template is fitted using the parametric background function in the CR
and extrapolated into the SR. The difference in SR events between the pseudo-background
template and the fit is taken as the spurious signal. The mean and standard deviation of
the spurious signal distribution for all pseudo-background templates are added in quadra-
ture. This quadratic sum is taken to be the spurious signal uncertainty on the background.
The mean of the pseudo-background spurious signal distribution is included to take into
account any systematic shift in the spurious signal distribution.

The presence of a signal in the data may bias the background fit in the CR. A CR bias
uncertainty is measured by taking the difference in the SR between a fit to data in the
CR of the background function alone, and a fit to data using the background function
with an added signal CI signal component. The resulting relative uncertainty is less than
4% in both the electron and muon channels, and for both constructive and destructive
interference CI signal hypotheses. More information about the background uncertainties
used in the analysis can be found in Refs. [112] and [113].

6.3.2. Signal Uncertainties
Uncertainties on the signal event yield are divided into two categories: experimental un-
certainties and theoretical uncertainties. Experimental uncertainties, in this case, refers
to uncertainties coming from the ATLAS measurements themselves and reconstructing
physics objects. These uncertainties include uncertainty on the measurement of the lumi-
nosity, lepton scale and resolution uncertainties, tracking uncertainty in the Inner Detector
and Muon Spectrometers, reconstruction and isolation uncertainties, etc. Theoretical un-
certainties are uncertainties due to the choice and variation of the PDF set used for the
signal sample event generator. Only experimental signal uncertainties are used in the
analysis. The theoretical PDF uncertainties are calculated and quoted for completeness.

Experimental Uncertainties

The uncertainty on the signal yield is found by taking the sum in quadrature of the dif-
ference between the nominal signal yield and the signal yield obtained in all variations of
the signal template under each category of uncertainty. In the case of CIs, the impact
on the CI signal templates of the experimental uncertainty variations were taken to be
sufficiently similar to their effect on NLO DY MC samples. Therefore, the experimental
signal uncertainties were found by variations of the DY invariant mass distributions. We
assume that this assumption still holds for the ADD model signals, and use the experimen-
tal signal uncertainty found for CIs in the ADD analysis. The dominating experimental
uncertainties in the electron channel are the electron identification and electron energy
scale uncertainties. In the muon channel, muon reconstruction, the "good muon" selection
criterion, and sagitta bias in track reconstruction are the dominant sources of experimental
uncertainty. The relative experimental signal uncertainty in the electron channel is found
to be 8% in both the constructive and destructive SRs. In the muon channel, the relative
experimental signal uncertainty is +20%

−17%
in the constructive SR and +27%

−22%
in the destructive

SR.
The relative background and signal uncertainties are presented in Table 6.3. The un-

certainties are seen to be larger for destructive interference models than for constructive
interference models. The destructive interference CR is shorter than the constructive

101



CHAPTER 6. NON-RESONANT DILEPTON ANALYSIS

CR, leading to a larger background uncertainty. Similarly, the destructive SR starts at a
higher invariant mass threshold than the constructive SR. This means that the integrated
SR event yield is smaller in the destructive SR, leading to a larger relative uncertainty.

Table 6.3.: The relative uncertainty in each SR. Here, σstat.
bgr , σSS

bgr, and σCRB
bgr is the statistical,

spurious signal, and control region bias uncertainties on the background, respectively, while
σexp.

sig denotes the experimental signal uncertainty.
Channel Signal Region σstat.

bgr σSS
bgr σCRB

bgr σexp.
sig

ee Constructive SR 14% 4% 2% 8%
ee Destructive SR 34% 7% 1% 8%
µµ Constructive SR 21% 6% 2% +20%

−17%

µµ Destructive SR 58% 24% 4% +27%
−22%

Theoretical Uncertainties

Next, we want to determine the uncertainty on the signal yield due to PDF uncertainties
in the generated ADD signal MC samples. For the CT14NNLO PDF set, we have an or-
thogonal set of seven PDF eigenvectors with uncertainties, which parameterise the degrees
of freedom in the fit of the PDF to experimental data. Another uncertainty that needs to
be considered is the PDF choice uncertainty. This uncertainty is derived from comparisons
between CT14NNLO and other available NNLO PDF sets. If the nominal prediction of
any other PDF set falls outside of the CT14NNLO 1σ uncertainty band, the deviation
from the CT14NNLO uncertainty envelope is added to the PDF uncertainty. The only
PDF set that contributes to the PDF choice uncertainty is the NNPDF3.0 set, which falls
outside the CT14NNLO uncertainty band above around 4 TeV invariant mass. The total
PDF uncertainty on the ADD signal yield is found by adding in quadrature the relative
deviation in SR event yield from all eigenvector- and choice variations of the CT14NNLO
PDF. The relative uncertainty of each PDF uncertainty, as well as their sum in quadra-
ture, is listed in Table 6.4, and can be seen in Figure 6.6. The relative PDF uncertainty
varies between around 10% at low invariant mass and around 20% at high invariant mass
in both the electron and muon channels. The impact on the destructive SR signal yield
from a 1σ up and down variation of the PDF uncertainty is shown in Figure 6.7. Here,
the PDF uncertainty on the event yield varies between 19 events at MS = 4 TeV and 0.2
events at at MS = 8 TeV in the electron channel, and between 24 events at MS = 3 TeV
and 0.1 events at at MS = 8 TeV in the muon channel.

6.4. Statistical Analysis
Like the resonant analysis of Chapter 5, this search employs a frequentist interpreta-
tion of probability. Two statistical models are considered. The first model compares the
background-only prediction to a generic, model-independent signal hypothesis. In the sec-
ond model, the background-only prediction is measured against the ADD model signal
hypotheses.
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Figure 6.6.: Relative change in the destructive SR event yield for a GRW convention ADD
signal from each PDF egenvector- and choice variation, as well as their sum in quadrature,
in the electron (a) and muon (b) channels. This sum is taken to be the total relative PDF
uncertainty of the ADD signals.
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Figure 6.7.: Absolute impact on the destructive SR event yield from a ±1σ variation of
the PDF uncertainty of a GRW convention ADD signal in the electron (a) and muon (b)
channels.
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Table 6.4.: Relative PDF uncertainty of the ADD model samples, in the destructive SR.
Channel MS [TeV] σPDF

sig

ee 4 13.7%
µµ 12.9%
ee 5 16.3%
µµ 15.3%
ee 6 19.6%
µµ 18.1%
ee 7 20.5%
µµ 18.7%
ee 8 20.7%
µµ 20.6%

6.4.1. Discovery
For a model-independent inference of the signal event yield nsig in the SR, the following
likelihood function is constructed:

L(nsig, θbgr|n) = Pois(n|nsig + (1 + θbgr)nbgr)× Gauss(θbgr|µθbgr, σbgr) . (6.2)

Here, n is the observed number of events in the SR. Pois() is the probability mass func-
tion of a Poisson distribution and Gauss() is the probability density function of a normal
distribution. The expected number of background events in the SR, extracted from the ex-
trapolation procedure outlined in Section 6.1, is denoted by nbgr. The nuisance parameter
θbgr accounts for the relative uncertainty on the background, σbgr. The value of nbgr is a
so-called auxiliary measurement, being completely independent of the main measurement
n. The value of the auxiliary measurement is parameterised using µθbgr, the mean of the
Gaussian nuisance term.

The likelihood function of Equation (6.2) is used in the discovery step, or search phase,
of the analysis. The likelihood ratio test statistic of Equation (5.12) is again used to
quantify the validity of the null hypothesis. In the resonant analysis of Chapter 5, we
use the asymptotic approximation to calculate the local significance at each pole mass
hypothesis. Here, we instead use an ensemble of pseudoexperiments to create the proba-
bility density function f(q0|H0) of the test statistic under the background-only hypothesis.
First, we determine the best-fit value of the background nuisance parameter, θ̂bgr,0, such
that it maximises the likelihood under the null hypothesis, nsig = 0. The background-only
pseudoexperiments are drawn under this assumption for the background nuisance param-
eter. However, there is a subtle issue regarding the treatment of nuisance parameters of
auxiliary measurements when constructing ensembles of pseudoexperiments; one can use
the conditional ensemble, where the auxiliary measurement µθbgr is fixed at θ̂bgr,0 when
calculating the test statistic, or the unconditional ensemble, where µθbgr is drawn from a
Gaussian distribution, centred at θ̂bgr,0 and of width σbgr. Both ensembles are valid con-
structions in frequentist statistics. However, the result of the asymptotic approximation
corresponds to that of the unconditional ensemble. The unconditional ensemble approach
is therefore recommended by the ATLAS Statistics Forum and is what we use to obtain
the results here [110]. We generate 100,000 pseudoexperiments in each of the four SRs,
given in Table 6.1. The p-value of the data is found by integrating f(q0|H0) from the test
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statistic measured on the data, qobs
0 , to infinity, using Equation (5.13). This p-value is

then converted into a significance value using Equation (5.14). If no significant deviation
from the SM is seen in the data in the discovery step outlined above, we move on to the
exclusion step.

6.4.2. Exclusion
A model-independent upper limit on the number of signal events can be obtained using
the likelihood function presented in Equation (6.2). We also aim to set a lower limit on the
value of the string scale parameter of the ADD models. For that, we extend the likelihood
function from Equation (6.2) to include the ADD signal prediction, as

L(MS,θ|n) = Pois(n|(1 + θsig)nsig(MS) + (1 + θbgr)nbgr)

× Gauss(θbgr|µθbgr, σbgr)× Gauss(θsig|µθsig, σsig) .
(6.3)

Here, nsig(MS) is the number of integrated events in the signal region predicted at some
string scale value MS. The new nuisance parameter θsig accounts for the uncertainty on this
signal yield, and is constrained, like the background nuisance parameter, by a Gaussian
factor in the likelihood function.

Calculating nsig(MS) requires a continuous description of the integrated number of signal
events in the SR for arbitrary values of MS. Initially, we only know the value of nsig for the
six values of MS for which we have generated signal template histograms. Intermediate
values of nsig between these points are found by performing a bin-by-bin exponential inter-
polation between neighbouring ADD signal samples. The signal histogram at an arbitrary
string scale MS, is constructed from the signal histograms at MS,a and MS,b, the string
scale values for which we have existing signal sample histograms above and below MS,
respectively. For example, when constructing the histogram for MS = 5.5 TeV, MS,a = 6
TeV and MS,b = 5 TeV. The bin content of each bin hi(MS) is determined by

hi(MS) = exp

(
log(hi(MS,b)) +

log(hi(MS,a))− log(hi(MS,b))

MS,a −MS,b
(MS −MS,b)

)
. (6.4)

Here, hi(MS,a) and hi(MS,b) are the bin contents of the i-th bin in the MS,a and MS,b
histograms, respectively. Finally, nsig(MS) is found by integrating the MS histogram in
the SR.

The kinematic cutoff at MS in the ADD signal samples leads to a possible mismodelling
effect in the histogram morphing procedure outlined above. The simple bin-by-bin inter-
polation is not able to accurately model such a shape effect. The mismodelling will only
affect the integrated SR count of interpolated histograms if the kinematic cutoff of MS,a or
MS,b is below the upper SR cut. To gauge the severity of the mismodelling effect, the SR
integral of the morphed histograms are compared to the SR integral of the generated ADD
signal histograms for MS = 5 TeV and MS = 6 TeV. The MS = 5 TeV and MS = 6 TeV
morphed histograms are morphed between the generated MS = 4 TeV and MS = 6 TeV,
and MS = 5 TeV and MS = 7 TeV histograms, respectively. The morphed and generated
MS = 6 TeV histogram templates are compared in the electron and muon channels in
Figure 6.8. In the figure, the morphed 6 TeV histogram is shown as a solid orange line,
while the MC generated histogram is shown as grey circles. Also included in the figure are
the generated histograms for the string scale values above and below MS = 6 TeV. In the
electron channel, we see that the morphed 6 TeV histogram fails to accurately follow the
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shape of the generated 6 TeV histogram above 5 TeV, the kinematic cutoff of the generated
5 TeV sample. This effect is not as pronounced in the muon channel, where the kinematic
cutoffs of the generated ADD signal samples are smeared out by the lower detector mass
resolution. By eye, the morphed electron channel histogram seems a worse fit than the
muon channel histogram. However, in the electron channel, the SR integrals differ by 0.7%
between the morphed and generated histograms. In the muon channel, the SR integrals
differ by 7.2%. At MS = 5 TeV, the difference in SR integral between the morphed and
generated histograms is 0.2% and 1.2% in the electron and muon channel, respectively. A
7.2% difference in the SR integral may seem like a problematic discrepancy brought on
by the kinematic edge mismodelling effect. However, if we move the low SR edge to 3
TeV, and compare the morphed and generated histogram integrals, the SR integral dis-
crepancy becomes less than 1% for both channels. This suggest that the largest source of
uncertainty in the histogram morphing procedure is low mass statistical uncertainty, and
not mismodelling of the kinematic cutoff. This large statistical uncertainty stems from an
insufficient number of events generated in the low mass region, in combination with the
DY subtraction procedure. Later, when setting limits on MS in different KK convention
schemes, we will see that most of the limits are larger than 6 TeV, where no mismodelling
can occur due to the kinematic cutoffs.

(a) (b)

Figure 6.8.: Exponential histogram interpolation of a MS = 6 TeV signal sample in the
electron (a) and muon (b) channels. Also included in the plots are the MC simulated
MS = 5 TeV, MS = 6 TeV, and MS = 7 TeV signal samples. The samples at 5 TeV and 7
TeV are used to generate the morphed 6 TeV sample, shown as a solid orange line.

To set limits on MS, we use the likelihood function defined in Equation (6.3) and the
qµ likelihood ratio test statistic defined in Equation (5.18) in Chapter 5. Now, MS takes
the place of the signal strength parameter µ. Limits are set at 95% CL using the CLs
method. We use pseudoexperiments to determine the distribution of qµ under the null-
and alternative hypotheses, rather than using the asymptotic approximation. The lower
limit on the string scale, at 95% CL, is taken to be the value MS at which the ratio of
confidence levels CLs becomes 0.05. To find this limit, we vary MS between 4 TeV and
8 TeV in 100 steps. At each step, we draw the pseudoexperiment ensemble and calculate
CLs using Equation (5.20). The lower limit on MS is the value for which CLs crosses the
0.05 threshold.

Drawing pseudoexperiments can use a lot of computing resources, but having a small
pseudoexperiment ensemble may lead to large statistical fluctuations of the calculated
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limit value. We want to determine how many pseudoexperiments we need for the limits to
converge and to remain stable. To do this we calculate and plot theMS limit as a function of
the number of pseudoexperiments drawn in each step of the limit setting procedure. Here,
the limits are calculated in the GRW KK convention. The size of the pseudoexperiment
ensemble is varied in 14 steps between 1,000 and 50,000. A new ensemble is drawn at each
step. The MS limit is plotted as a function of pseudoexperiment ensemble size in Figure
6.9. The limit is seen to converge for ensemble sizes of around 10,000 and above. We
generate 25,000 pseudoexperiments at each step in MS to calculate the limits.

(a) (b)

Figure 6.9.: 95% CL limit on MS as a function of pseudoexperiment ensemble size, in the
electron (a) and muon (b) channels. The limits are calculated for the GRW KK convention.

6.5. Results
The dilepton invariant mass histogram of the full Run 2 data set is shown for both lepton
channels in Figure 6.10. The figures also show the best-fit background estimate in the
destructive control and signal regions, and the predictions of three ADD model string
scale hypotheses, MS = 4 TeV, MS = 6 TeV, and MS = 8 TeV, in the GRW convention.

The best-fit values for the free parameters in the CR background fit is given for the CR
associated with each of the four SRs in Table 6.5. In addition to the parameters floating
in the fit, the optimal value of the fixed parameter b is found to be 6.1 in the electron
channel and 1.3 in the muon channels. In the muon channel, the fixed parameter C is set
to 1/3 in the background fit. This is the same as in the resonant analysis of Chapter 5. In
the electron channel, however, C is set to 1/2, and not to 1 like in the resonant analysis.

Table 6.5.: Best-fit values of the free parameters in the CR background fit [7].
parameter ee Constructive ee Destructive µµ Constructive µµ Destructive
Norm. (6.17±0.02)×10−3 (7.87±0.03)×10−3 (6.90±0.03)×10−6 (4.39±0.02)×10−7

p0 −12.2±0.1 −12.1±0.1 −14.9±0.2 −17.0±0.2
p1 −4.14±0.02 −4.16±0.03 −4.42±0.04 −4.70±0.04
p2 −0.948±0.005 −0.945±0.006 −0.927±0.008 −0.846±0.008
p3 −0.0840±0.0008 −0.082±0.001 −0.081±0.001 −0.064±0.001
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(a) (b)

Figure 6.10.: The dilepton invariant mass distribution of the data, with the best-fit back-
ground shape in the destructive control and signal regions, and three ADD model signal
hypotheses, in the electron (a) and muon (b) channels [9].

Figure 6.11 shows the distributions of the q0 test statistic calculated for 100,000 back-
ground hypothesis pseudoexperiments in the constructive and destructive SRs in the elec-
tron channel. Figure 6.12 shows the corresponding distributions in the muon channel. The
p-value of each observation is calculated as the fraction of pseudoexperiments with test
statistic values larger than or equal to the test statistic observed in the data, q0 > qobs

0 .
The expected and observed number of events in each SR are given, along with the signifi-
cance of the observation, in Table 6.6. No significant excess above the SM expectation is
seen.
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Figure 6.11.: Electron channel test statistic distributions of 100,000 background hypothesis
pseudoexperiments in the constructive (a) and destructive (b) SRs. The red bars show
pseudoexperiments for which q0 > qobs

0 .
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Figure 6.12.: Muon channel test statistic distributions of 100,000 background hypothesis
pseudoexperiments in the constructive (a) and destructive (b) SRs. The red bars show
pseudoexperiments for which q0 > qobs

0 .

Table 6.6.: Expected and observed events in all SRs and the statistical significance of each
observation.
Signal Region Expected Bgr. Events Observed Events Significance [σ]
Electron Constructive 12.4±1.9 19 1.53
Electron Destructive 3.1±1.1 2 −0.50
Muon Constructive 9.6±2.1 6 −1.00
Muon Destructive 1.4±0.9 1 −0.20
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6.6. Setting Limits on the String Scale Parameter
The model-independent upper limit on the number of signal events, nsig is drawn in Figure
6.13. The expected limits, with 1σ and 2σ uncertainty bands1, and the observed limits, in
all four SRs, are listed in Table 6.7.

Table 6.7.: Expected and observed 95% CL upper limits on nsig in all SRs. The first set
of uncertainties on the expected limit values are their ±1σ uncertainties, while the second
set are their ±2σ uncertainties [7].

Signal Region Expected nsig Limit Observed nsig Limit

Electron Constructive 9.3+3.8
−2.5

+8.5
−3.9

16.0
Electron Destructive 5.0+2.0

−1.2
+4.8
−1.9

4.4
Muon Constructive 8.0+3.3

−2.2
+7.5
−3.5

5.8
Muon Destructive 4.0+1.6

−0.8
+3.7
−1.6

3.8

Figure 6.13.: Model-independent upper limits on nsig in all SRs [7].

Next, we want to calculate the lower limit on the MS parameter in each convention of
summing KK states, GRW, Hewett, and HLZ, in both the pure graviton and interference
cross-section schemes. The results of two methods for calculating these limits are presented
in the following sections. First, a method converting the model-independent limit on nsig
into limits on MS using an exponential fit to the SR yield of each generated ADD model
signal sample. The second method is the CLs method outlined in Sections 5.6 and 6.4.

The invariant mass distributions of the ADD model signal samples are harder than those
of the CI model signals. For the ADD model samples, the signal-to-background separation

1The uncertainties on the expected limits are not strictly uncertainties on the limit, but rather represent
the distribution of possible limits under the background-only hypothesis
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is better for a higher SR starting point. This is reflected in the limits on MS, which are all
found to be more stringent in the destructive SR than in the constructive SR, which has a
lower starting point in invariant mass. Therefore, only the limits found in the destructive
signal region are presented here.

6.6.1. Reinterpreting Model-Independent Limits
In addition to the frequentist CLs method for calculating the lower limit on the ADD string
scale parameter, we also calculate the limit from the model-independent upper limit on
nsig. This procedure, referred to from this point as the "conversion" method, was developed
in the early stages of this analysis, before being abandoned in favour of the CLs method.
The limits on MS obtained using the model-independent conversion method are given here
as a cross-check of the final MS limit results, presented in the next section.

To calculate the lower limits on MS in the conversion method, we first calculate the
SR event yield for each of the generated ADD signal histograms, between MS = 4 TeV
and MS = 8 TeV. Next, we interpolate these signal yield values using an exponential
fit. An exponential function is determined by eye to accurately describe the SR yield
distribution as a function of string scale. Two such exponential fits are shown in Figure
6.14 for the signal samples following the GRW KK convention. The intersection of the
signal yield exponential fit and the expected and observed nsig upper limits define the
corresponding lower limits on MS. These intersection points can be seen for the GRW
case in Figure 6.14. Similarly, the error bands on the expected MS limit are defined by
the intersection of the signal yield exponential fit and the expected nsig limit uncertainty
bands. The systematic uncertainty on the signal is added in quadrature to the exponential
fit uncertainty. However, this uncertainty is not considered when converting the limits.

(a) (b)

Figure 6.14.: Conversion method limit intersection for the GRW convention in the electron
(a) and muon (b) channels. Corresponding plots are made for each choice of KK convention
and in both the interference and pure graviton cross-section schemes. These figures are
omitted from the text for brevity.

The above steps are carried out for each KK convention, and in both the interference
and pure graviton cross-section schemes. The resulting expected and observed limits on
MS are listed in Table 6.8 and plotted in Figures 6.15 and 6.16, for the pure graviton and
interference schemes, respectively.
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Table 6.8.: Lower M S limits, in TeV, calculated using the conversion method from the
upper nsig limits in the destructive SR.

Channel Cross-section Term GRW Hewett HLZ
λ = +1 n = 3 n = 4 n = 5 n = 6 n = 7

Exp. ee Interference 6.6 6.3 7.2 6.6 6.3 6.1 5.9
Obs. ee 6.6 6.3 7.2 6.6 6.3 6.1 5.9

Exp. ee Graviton 6.6 5.9 7.7 6.6 6.0 5.5 5.2
Obs. ee 6.6 5.9 7.8 6.6 6.0 5.5 5.2

Exp. µµ Interference 6.4 6.1 7.0 6.4 6.1 5.9 5.7
Obs. µµ 6.5 6.1 7.0 6.5 6.2 6.0 5.8

Exp. µµ Graviton 6.4 5.8 7.5 6.4 5.8 5.4 5.0
Obs. µµ 6.5 5.8 7.5 6.5 5.9 5.4 5.1
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Figure 6.15.: Electron- (a) and muon (b) channel lower MS limits, set using the conversion
method, in the pure graviton cross-section scheme. The error bands on the expected limits
are only due to the uncertainty on the expected nsig limit.
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Figure 6.16.: Electron- (a) and muon (b) channel lower MS limits, set using the conversion
method, in the interference cross-section scheme. The error bands on the expected limits
are only due to the uncertainty on the expected nsig limit.

6.6.2. Direct MS Limits
The main reason for moving away from the conversion method to the CLs method is
the ad hoc exclusion of signal systematic uncertainties. The CLs method, using a profile
likelihood ratio test statistic, is also more in line with recommended statistical practices
in the ATLAS Collaboration and with the statistical analysis performed in the search for
CIs.

Using the frequentist limit setting procedure outlined in Sections 6.4 and 5.6, we set
expected and observed lower limits on MS in both the interference and graviton cross-
section schemes and for all conventions of summing KK states. The limits obtained using
the asymptotic formulae are listed in Table 6.9. The asymptotic limits are used to val-
idate the results obtained using pseudoexperiment ensembles and are presented here for
completeness. The limits obtained using pseudoexperiments are listed in Table 6.10. In
the electron channel, using the GRW KK convention, the expected and observed lower MS
limits are set at 6.5 and 6.6 TeV, respectively. In the muon channel, the corresponding
expected and observed lower MS limits are set at 6.3 and 6.4 TeV.

Table 6.9.: Lower MS limits, in TeV, obtained using the asymptotic approximation.

Channel Cross-section Term GRW Hewett HLZ
λ = +1 n = 3 n = 4 n = 5 n = 6 n = 7

Exp: ee Interference 6.5 6.2 7.0 6.5 6.2 6.0 5.9
Obs: ee 6.7 6.3 7.2 6.7 6.4 6.1 6.0
Exp: ee Graviton 6.5 5.9 7.5 6.5 5.9 5.5 5.1
Obs: ee 6.7 6.0 7.8 6.7 6.0 5.6 5.2
Exp: µµ Interference 6.3 6.0 6.8 6.3 6.0 5.8 5.6
Obs: µµ 6.4 6.1 7.0 6.4 6.1 5.9 5.7
Exp: µµ Graviton 6.3 5.6 7.3 6.3 5.7 5.3 4.9
Obs: µµ 6.4 5.7 7.5 6.4 5.8 5.4 5.0
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Table 6.10.: Lower MS limits, in TeV, obtained using pseudoexperiments.

Channel Cross-section Term GRW Hewett HLZ
λ = +1 n = 3 n = 4 n = 5 n = 6 n = 7

Exp: ee Interference 6.5 6.2 7.0 6.5 6.2 6.0 5.8
Obs: ee 6.6 6.3 7.2 6.6 6.3 6.1 5.9
Exp: ee Graviton 6.5 5.8 7.5 6.5 5.9 5.4 5.1
Obs: ee 6.6 5.9 7.7 6.6 6.0 5.5 5.2
Exp: µµ Interference 6.3 5.9 6.8 6.3 6.0 5.7 5.6
Obs: µµ 6.4 6.0 6.9 6.4 6.1 5.8 5.7
Exp: µµ Graviton 6.3 5.6 7.2 6.3 5.7 5.2 4.9
Obs: µµ 6.4 5.7 7.5 6.4 5.8 5.3 5.0

The expected and observed lower limits on MS are plotted, for all KK conventions, in
the pure graviton cross-section scheme in Figure 6.17 and in the interference cross-section
scheme in Figure 6.18. Also included in the figures are the MS limits obtained by the
ATLAS exotic dilepton working group in 2014, using 20 fb−1 of data collected at

√
s = 8

TeV [114]. The 2014 limits are shown to illustrate how far the string scale limits have
shifted since the previous time a dilepton ADD model analysis result was published by the
ATLAS Collaboration.
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Figure 6.17.: Expected and observed lower MS limits for all KK conventions in the pure
graviton cross-section scheme, in the electron (a) and muon (b) channels.

6.7. Signal Region Re-Optimisation
Although the limits on MS have become more stringent since the corresponding 2014
ATLAS results, when compared to a recent paper put out by the CMS Collaboration,
also using the full Run 2 LHC dataset, the limits presented here are less stringent [115].
The limit discrepancy between the ATLAS and CMS results are almost as large as 1
TeV for certain KK conventions. The difference is larger in the muon channel, which
could be explained by the CMS muon acceptance times efficiency, which is quoted to be
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Figure 6.18.: Expected and observed lower MS limits for all KK conventions in the inter-
ference cross-section scheme, in the electron (a) and muon (b) channels.

considerably higher than that of this analysis, at around 80% for all dimuon invariant
mass values. Another possible explanation is that this analysis does not optimise the SRs
for an ADD signal, whereas the CMS analysis does. In the CMS analysis, the optimal
search region, found to be above 1.8 TeV invariant mass, is divided into 400 GeV bins. We
perform a simple study to quantify the possible gain in sensitivity from re-optimising the
SRs for an ADD signal.

We want to determine if changing the lower edge of the SR bin, SRmin increases the
ability to discover an ADD signal. To achieve this we move SRmin between 2 and 4 TeV in
steps of 50 GeV. At each step, we calculate the expected number of background events in
the SR by integrating the smooth background histogram template introduced in Chapter 3.
The expected number of background events is used to calculate the expected upper limit on
the number of signal events in the SR. Unlike the other statistical calculations performed
in this chapter, this limit calculation uses a Bayesian interpretation of probability. The
expected signal limit in both lepton channels is drawn as a function of SRmin in Figure
6.19. Also included in this figure is the SR event yield of an MS = 7 TeV ADD signal
in the GRW convention. This event yield curve should be monotonically falling, but in
both the electron and muon channels it is seen to increase slightly at low invariant mass.
This behaviour is caused by negative bin counts in the signal histograms, caused by the
DY subtraction procedure. To find the optimal SR starting point for this 7 TeV signal,
we want to select the SR that puts the strongest expected limit on the number of signal
events, while still accepting as many ADD events as possible. Such a SR would maximise
the chances of discovering this 7 TeV ADD signal. Note that the number of integrated
signal events is always smaller than the expected upper signal event limit. This means
that we would not expect to be able to exclude a MS = 7 TeV signal for any SRmin.

Figure 6.20 shows the fraction of the expected limit to the ADD signal yield as a function
of SR edge. The minimum value of the distribution of this fraction is taken as the optimal
SR starting point. Note that this distribution is quite flat as a function of SRmin, meaning
that we expect the gain in sensitivity from moving SRmin to be small. The optimal values
of SRmin are found to be 3 TeV in the electron channel, and 3.3 TeV in the muon channel.
To estimate the expected MS limit improvement gained when using these optimal SRs,
the expected nsig limit in these SRs are converted to expected limits in MS using the limit
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Figure 6.19.: Expected upper limit on nsig as a function of SRmin, in the electron channel
(a) and muon channel (b). Also included is the SR yield of a MS = 7 TeV signal.
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Figure 6.20.: The expected upper signal event limit, the integrated SR event yield, and
the ratio between the two, for a MS = 7 TeV signal sample, as a function of SRmin, in the
electron channel (a) and muon channel (b). The minimum of this ratio curve defines the
optimal choice of SRmin. The label on the y-axis applies only to the limit and event yield
numbers, and not to the ratio.
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conversion method introduced in Section 6.6.1. The expected limit on MS becomes 180
GeV higher in the electron channel, and 120 GeV higher in the muon channel, than the
expected MS limit set in the destructive SR. Note that the conversion method uses the
SR integrals of the ADD signal model histograms in the destructive SR, meaning that
the conversion is only a rough estimate of what the expected limit on MS would be in
the new optimised SRs. This means that the expected limits calculated in this section
are too optimistic, and hence we expect to slightly overestimate the potential gain from
re-optimising the SRs.
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7. Conclusions and Outlook
This thesis presents two analyses searching for increased production of dielectron and
dimuon events in 139 fb−1 of pp collision data collected by the ATLAS detector. The
analyses make use of all the data delivered to the ATLAS detector by the LHC, at a
collision energy

√
s = 13 TeV, during the Run 2 data-taking campaign that took place

between 2015 and 2018.
Chapter 5 details a search for a resonant dilepton signature above 250 GeV. A data-

driven method is used to estimate the SM background to the dilepton invariant mass
distribution, by fitting a functional form to the data. Care is taken to avoid a spurious
signal due to background mismodelling. A sliding window method for estimating the
background is explored. A generic signal shape, of relative width between 0% and 10%,
is used to model the new physics resonance hypotheses. No significant excess above the
SM prediction is observed. Limits are set at 95% CL on the fiducial cross-section times
branching ratio of a generic signal, as well as on the pole mass of three benchmark Z′

boson models, two of which are based on the E6 symmetry group. The analysis puts the
most stringent lower mass limit, 5.1 TeV, on the SSM Z′ boson to date. The Z′ mass
limits set in the analysis are more stringent than previous results put out by the ATLAS
exotic dilepton working group by between 500 GeV and 800 GeV [10]. Figure 7.1 shows
the cross-section limit of a generic dilepton resonance found in this and previous ATLAS
dilepton searches. In the figure, the cross-section is expressed as a function of pole mass,
in units of the SSM Z′ boson cross-section.
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Figure 7.1.: Limits on the generic cross-section of a dilepton resonance, as a function of
resonance pole mass, in units of the SSM Z′ boson cross-section, for six ATLAS dilepton
analyses.

Chapter 6 presents the search for non-resonant high invariant dilepton mass excesses,
consistent with the ADD model of large extra dimensions. The analysis uses a novel
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method for estimating the SM background, in which a functional background form is
fitted to the data in a low invariant mass control region, and extrapolated into the high
invariant mass signal region. No excess is observed, in terms of events recorded in the
signal region, above the SM prediction. Using the CLs method we set lower limits at 95%
CL on the string scale parameter of the ADD theory for three conventions for summing
KK graviton modes, the GRW, Hewett, and HLZ conventions. In the GRW convention,
the observed (expected) lower MS limit is set to 6.6 (6.5) TeV in the electron channel, and
6.4 (6.3) TeV in the muon channel. The limits are the first ADD model limits set by the
ATLAS Collaboration in dilepton final states using the Run 2 data set.

During the previous dilepton analysis undertaken by the ATLAS exotics dilepton work-
ing group, analysing 36 fb−1 of data [10], concerns were brought up by the analysis team,
about the production of MC simulated data sets not being able to keep up with the data
being delivered to the ATLAS detector by the LHC. In a physics analysis using MC sam-
ples to model the SM background, it is important for the statistical uncertainty on the
MC background to be negligible compared to the statistical uncertainty in the data. For
this reason, instead of purely relying on MC samples, the analyses presented in this thesis
have used data-driven methods to estimate the SM background. In Run 3, and in the
planned High-Luminosity Large Hadron Collider (HL-HLC), the issue of producing suffi-
ciently large MC data sets is expected to get worse. There is reason to assume, therefore,
that data-driven methods for background estimation in physics analysis will become even
more commonplace in the LHC experiments in the future. This necessitates the develop-
ment of efficient tools and methods for data-driven fits. However, as was the case in the
searches presented in this work, MC data sets of high statistical precision are still needed
in data-driven analyses.

A common problem facing data-driven analyses is the trade-off between bias and sen-
sitivity. If the background function is too constrained, it may not model the background
accurately, leading to a spurious signal. On the other hand, if the chosen parametric func-
tion contains too many free parameters, it may fit away a signal, leading to low sensitivity
in the analysis. In this work, we address this issue by quantifying and including a spu-
rious signal uncertainty in the statistical analyses. Other solutions are available, such as
the discrete profiling method, which is favoured in the CMS Collaboration [116]. In the
discrete profiling method, instead of using a spurious signal uncertainty, the uncertainty
on the choice of function is considered a separate nuisance parameter in the statistical
analysis.

Another issue facing data-driven physics analyses is that as the size of the data set being
analysed increases, its statistical uncertainty decreases. As a result, the functional form
used to fit the data must increase in complexity. When faced with a larger data set, as
will be the case in ATLAS in Run 3 and beyond, it may be hard when using a global
fit method, such as in our resonant analysis, to find a parametric function to accurately
model the background across the whole range of the chosen discriminant variable. The
sliding window fit method, described in Appendix A, may offer a solution to this issue in
the future. Functional decomposition [117] and Gaussian process regression [118] are also
promising methods, but are not considered in this thesis.
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A. Testing the Sliding Window Fit
Method

As the size of the LHC data set, recorded by ATLAS, increases, the statistical uncertainty
on said data decreases. For a data-driven search such as the one described in Chapter
5, this means that to accurately describe the shape of the SM background the chosen
background fit function must increase in complexity. One might reach a point where it
becomes hard to find a global fit function with acceptable performance across the full
invariant search mass range. In this appendix, we explore an alternative method of data-
driven background estimation, in which the dilepton invariant mass distribution can be
fitted using a fit function with a small number of free parameters, by fitting the distribution
more than once in shorter invariant mass subranges.

A.1. The Sliding Window Fit Method
In the global fit method, the dilepton invariant mass distribution is fitted in the whole
invariant mass scan range, regardless of the pole mass hypothesis being tested. An alter-
native to this is to only fit a limited mass region, or "window", around each resonance pole
mass. This approach is known as the sliding window fit (SWiFt) method.

First, some nomenclature. A window is a range in invariant mass, usually a subrange
of the full global fit range. Since we are performing fits to binned data, the width of each
window is some integer number of bins in the data histogram. The central bin of a window
is the bin of the window centred at the pole mass hypothesis when searching for a signal.
It is important to point out here that the central bin is not necessarily equivalent to the
geometric centre of the window: a window may be asymmetric around the central bin.
The low- and high-mass limits of each window are called the left edge mL and right edge
mR of the window, respectively.

A.2. Optimising the Sliding Window Fit Method
The main obstacle in the global fit approach is finding a suitable fit function to describe
the SM prediction. In the SWiFt approach, in addition to the choice of function, we must
also determine a sensible shape of the sliding windows.

The SWiFt windows may be constant in width, or have more complex shapes defined
as functions of pole mass. Seeing as the dilepton mass resolution changes with increasing
invariant mass, it is perhaps reasonable to assume that the optimal choice of window width
is proportional to the dilepton invariant mass resolution. Based on this assumption we
define the window parameterisation we call "resolution windows". In the resolution window
scheme, the left and right window edges are defined using the dilepton invariant mass
resolution, measured at the central bin. The window size is defined using the parameter
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N. The right, high invariant mass, edge of each sliding window is defined as

mR = mZ′ +N × Res(mZ′) , (A.1)

where Res(m) are the electron or muon mass resolution functions described in Section
3.6. The left window edge in the resolution scheme cannot be defined analogous to the
right edge. Due to the large dimuon resolution at high mass, the term N × Res(mZ′)
quickly becomes large at high mass in the muon channel. A left edge definition like that
of Equation (A.1) would quickly lead to window widths of global fit size, even for modest
values of N. Instead, the resolution window left edge is defined in an iterative way. Instead
of finding the edge as some multiple of the resolution at the pole mass, the edge is found
by "stepping down" from the pole mass in N iterations, updating the resolution at each
step. Now, the resolution window left edge is found using the relations

m0
L = mZ′ − Res(mZ′) ,

mi
L = mi−1

L − Res(mi−1
L ) ,

mL = mN
L .

(A.2)

The shape of the windows are determined by the resolution window parameter N alone.
Due to the difference in the left- and right edge definitions of Equations (A.1) and (A.2),
resolution windows are wider on the right side of the central bin than they are on the left
side. An alternate method of defining the shape of the sliding windows is to add a second
window shape parameter, in addition to one controlling the window width, namely one
controlling the centrality of the windows. We call this window parameterisation scheme
Width and Centrality (WC) windows. WC windows may be set perfectly symmetrical, or
they can be made longer on one side than the other. It is reasonable, perhaps, to assume
that high pole-mass windows perform better with a longer side towards the high statistics
region at low mass, than would symmetrical windows. Given the width and centrality
parameters w and c, the left- and right edges of WC windows are given as

mL = mZ′ − w(1− c)/2 ,

mR = mZ′ + w(1 + c)/2 .
(A.3)

The centrality of a window controls the distance from the geometric centre of the window
to the central bin of the window. A window of centrality c = 0 is perfectly symmetrical. In
a window of centrality -1 or 1, the central bin falls on the right or left edge of the window,
respectively. In general, w and c may be functions of pole mass.

If the number of events in data within each sliding window becomes too low, background
and signal fit stability may begin to suffer. There is a risk of this occurring, especially in
the low statistics, high invariant mass, region if the width of the sliding windows become
too narrow. Ensuring that windows are always wide enough to contain enough events can
be achieved by defining sufficiently wide windows, or by employing a so-called "anchor
point". An anchor point is an upper limit on the value of the left window edge. When
employing the anchor point, if the window left edge, as calculated by Equations (A.2) or
(A.3), is greater than the anchor point value, then the left edge is instead set to the value
of the anchor point. An example of anchor point usage can be seen in Figure A.1. Here,
an anchor point is set to 1 TeV for all windows.
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A.2.1. Function Choice Optimisation for Sliding Window Fits
We want to determine a good choice of SWiFt fit function to describe the SM background
in the resonant dilepton analysis. Candidate fit functions are evaluated using a spurious
signal test. The ensemble of one- and two parameter1 fit functions considered in the
analysis are listed in Tables A.1 and A.2.

Table A.1.: One-parameter functions considered in the SWiFt function optimisation study.
The function names are chosen to describe their mathematical form. The free parameter
is a, and the dimensionless parameter x is defined as x = m/

√
s.

Function Name Expression

Exp eax
Pow xa

Log |log(x)|a
PowPoly1 xax

PowPolyLog1 xa log(x)

Resolution windows of N = 10 are used in the SWiFt function optimisation procedure,
with an added anchor point set at 1 TeV, limiting the upper value of the window left
edges. The signal strength parameter µ is restricted to positive values for pole masses
above 1.5 TeV. In this study, windows are not allowed to extend outside of the scan range.
A plot of the chosen resolution windows as a function of pole mass is shown in Figure A.1.
The window shape parameterisation of the SWiFt method is further optimised in Section
A.2.2.

(a) (b)

Figure A.1.: Electron (a) and muon (b) channel window configurations used for the function
choice optimisation procedure, as a function of pole mass. Each coloured line in the plot is
a separate window. Black markers indicate the position of the central bins in each window.
The effect on window size of the anchor point at 1 TeV is clearly seen, most notably in
the electron channel.

1One extra free parameter must be counted if one also considers the background normalisation parameter
Nbgr.
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Table A.2.: Two-parameter functions considered in SWiFt optimisation. Some function
names are chosen based on their mathematical form, while other have names chosen for
historical reasons. The free parameters in the functions are a and b, while the dimensionless
parameter x is again defined as x = m/

√
s.

Function Name Expression

ExPow eaxxb

ExPolyLog2 ea log(x)2+b log(x)
DiJet (1− x)axb

CutoffExp (1− x)aebx
CutoffLog (1− x)a |log(x)|b

CutoffExpSq (1− x)aebx2

CutoffPowPoly1 (1− x)axbx

CutoffPowPolyLog1 (1− x)axb log(x)

MultiJet5 (1− x)a(1 + x)bx

MultiJet6 (1− x)a(1 + x)b log(x)

MultiJet7 (1− x)a−b log(x)x−1

MultiJet8 (1− x)a−b log(x)x−2

MultiJet9 (1− x1/3)axbx

MultiJet10 (1− x1/3)axb log(x)

PowSPF (1− log(exa))b
ExPoly2 eax2+bx

PowPolyLog2 xa log(x)
2+b log(x)

DiBoson eax + ebx
Laurent ax−4 + bx−5
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Each candidate background function is used in a spurious signal test on the signal-
free background MC template. The spurious signal significance is extracted at pole mass
hypotheses spaced linearly at 5 GeV intervals between 250 GeV and 6 TeV. The maximum
and mean value of the absolute spurious signal significance is shown for each candidate
function in Table A.3. We want to choose a function which minimises these quantities.
The mean- and maximum expected significance of each function is also tested. No function
is seen to obtain low values of spurious signal at the expense of the power of the function.
How we calculate expected significance is detailed in the next section.

The three best performing candidate functions are ExPolyLog2, ExPow, and Multi-
Jet9. The spurious signal significance as a function of pole mass for these three functions
is shown in Figure A.2. The three chosen function candidates are used in the window
parameterisation optimisation study detailed in the next section.
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Figure A.2.: Spurious signal significance in the electron channel (a) and muon channel (b),
for the three best performing fit functions of the function optimisation study.

A.2.2. Window Shape Optimisation for Sliding Window Fits
The ideal choice of window shape may not be the same at every pole mass hypothesis.
The decreasing number of events in the data in the high pole-mass region suggests that
windows should widen as a function of pole mass. In this section, we will optimise the
window shape parameters for discovering a new physics signal.

The figure of merit in the window optimisation test is the expected significance of a
zero-width signal. The expected significance is calculated for a zero-width signal injected
on an Asimov data set, where all observables are set to be identical to their expected
values. The number of injected signal events is proportional to the square of the number
of events in the background Asimov data in a resolution window of size N = 4 around the
central bin of the window. The absolute size of the injected signal is not important, as long
as it stays constant at each pole mass for different choices of window parameterisation.
Similarly, the absolute value of the expected significance is not important. We are only
interested in the relative significance between different candidate window configurations.

A spurious signal systematic uncertainty is added to the signal and background fits to
the generated Asimov data set. If no such uncertainty is added, the "preferred" window
size will always be as wide as possible, due to the additional constraining power of wider
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A.2. OPTIMISING THE SLIDING WINDOW FIT METHOD

sideband regions. The spurious signal yield grows with increasing window width. At some
point, the sensitivity gained by increasing the window width is offset by the sensitivity loss
due to spurious signal. The aim in the window optimisation study is to find this point.

The test is performed using WC windows. The window width is varied in steps of 50
GeV, between 100 GeV and 2 TeV. The window centrality is varied in steps of 0.1 between
-0.8 and 0.8. For each pole mass, in steps of 3 GeV, between 250 GeV and 1 TeV, each
choice of window configuration is tested using the following three steps:

1. Perform a background plus signal fit on the smooth MC background template. Ex-
tract the size of the spurious signal constraint parameter.

2. Construct a smooth Asimov data set from the background PDF and inject a signal.

3. Calculate the significance of the signal injected in Step (2), with the added spurious
signal constraint measured in Step (1).

The MC background template, described in Chapter 3, is smooth, but not entirely void of
statistical fluctuations. Fluctuations in the template may lead to over- or underestimating
the true value of the spurious signal for a chosen background model. We assume that the
effects of such fluctuations will impact the different choices of window parameterisation
more or less equally. Overall, over- and underestimation of the spurious signal at individual
pole mass hypotheses should average out. This procedure bypasses the procedure outlined
in Section 5.4, where the spurious signal is estimated using the envelope of local spurious
signal maxima. This simplification of the treatment of the spurious signal uncertainty has
room for improvement.

The expected significance distribution at each mass point is smoothed in the plane
of window width and window centrality. This is done to reduce statistical fluctuations,
allowing the broader trends we are interested in to become more visible. The smoothing
is motivated by the assumption that neighbouring window configurations should have
similar performance. The maximum expected significance at each pole mass, the point
in the plane of width and centrality where the expected significance is at its greatest, is
used to discriminate between the three candidate fit functions. The maximum expected
significance, as a function of pole mass, for the three candidate functions, is shown in
Figure A.3. The three fit functions perform similarly, but the ExPow function has the
highest mean maximum expected significance. This function is therefore kept as the final
choice of background function for the SWiFt method.

The expected significance is drawn, as a function of window width and centrality for
three example pole mass values, 250 GeV, 500 GeV, and 1 TeV, in Figure A.4. The points
of greatest expected significance in the plots are marked with a red star.

In Figures A.5 and A.6 we show the maximum expected significance as a function
of window centrality, optimised with respect to window width, and maximum expected
significance as a function of window width, optimised with respect to window centrality,
for the same three pole mass values shown in Figure A.4, 250 GeV, 500 GeV, and 1
TeV. Looking at these figures, we notice that the window parameterisation can be split
into three regions of pole mass: a low pole mass region, a high pole-mass region, and a
transition region between them. In the low pole mass region, there is a clear preference
for narrow windows (see Figures A.5 (b) and A.6 (b)). In this region there is also a clear
preference for positive centrality windows (see Figures A.5 (a) and A.6 (a)), meaning that
windows skewed to the right, towards higher mass are preferred. With increasing pole
mass, the maximum expected significance windows become wider, but there is no longer
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Figure A.3.: Maximum expected significance, drawn as a function of pole mass, for the
fit functions ExPow, ExPolyLog2, and MultiJet9. The ExPow function has the
highest mean maximum expected significance, and is therefore kept.

a sharp expected significance peak at some value of window width. Instead, the expected
significance is seen to plateau. This means that there is more leeway when setting the
window parameterisation in the high pole-mass region than there is in the low pole mass
region. For a window of central bin 1 TeV (see Figures A.5 (f) and A.6 (f)), a window of
width 1 TeV is expected to perform about as well as a window of width 2 TeV, given the
right definition of window centrality.

Low pole mass windows have a tendency towards asymmetric windows. At higher pole
mass values the window centrality distribution becomes flatter, and more centred around
zero (see Figure A.5 (c) and (e); and Figure A.6 (c) and (e)). The window width and
centrality values corresponding to maximum significance are plotted as functions of pole
mass in Figure A.7.

Based on the observations above, we define the low pole mass region to run from 250
GeV to 300 GeV, and the high pole-mass region to be above 900 GeV. The so-called
intermediate region runs between 300 GeV and 900 GeV. In the low pole mass region, the
window width parameterisation is determined by fitting a constant value to the maximum
expected significance value width distribution, shown in Figure A.7, in this region. In
the intermediate region, the window width parameterisation is determined by a straight
line fit to the maximum expected significance value width distribution in the intermediate
pole mass region. The low edge of this fit is constrained by the value of the low pole
mass region constant fit. The only free parameter in the fit is therefore the slope of
the line. The high pole-mass region window width parameterisation is also a constant
function. This value is not determined by a fit, but is rather set to the value of the
intermediate fit value at the transition between the intermediate and high pole-mass region.
The window centrality window parameterisations are determined similarly. The window
centrality parameterisation in the low pole mass region is determined with a linear fit
to the maximum expected significance value centrality distribution, in this region. For
the centrality, the intermediate and high pole-mass regions are combined. The window
centrality in this region is determined by fitting a constant value to the maximum expected
significance value centrality distribution above 300 GeV. The window width and centrality
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(a) (b)

(c) (d)

(e) (f)

Figure A.4.: Expected significance as a function of sliding window width and centrality in
the electron channel (left) and muon channel (right), for signal pole masses 250 GeV (a)
(b), 500 GeV (c) (d), and 1 TeV (e) (f). The crescent shape in the lower right of the plots
are due to the limited range of the background MC template; Certain window widths are,
depending on their window centrality, too wide to fit inside the template range at some
pole mass points.
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(a) (b)

(c) (d)

(e) (f)

Figure A.5.: Maximum expected significance, as a function of sliding window centrality,
optimised with respect to window width (left), and maximum expected significance as a
function of sliding window width, optimised with respect to window centrality (right), for
signal hypothesis pole masses 250 GeV (a) (b), 500 GeV (c) (d), and 1 TeV (e) (f), in the
electron channel.
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(a) (b)

(c) (d)

(e) (f)

Figure A.6.: Maximum expected significance, as a function of sliding window centrality,
optimised with respect to window width (left), and maximum expected significance as a
function of sliding window width, optimised with respect to window centrality (right), for
signal hypothesis pole masses 250 GeV (a) (b), 500 GeV (c) (d), and 1 TeV (e) (f), in the
muon channel.
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parameterisation functions are drawn in the maximum expected significance plots in Figure
A.7.

(a) (b)

(c) (d)

Figure A.7.: Maximum expected significance sliding window centrality (a) (b) and width
(c) (d) in the electron channel (left) and muon channel (right). The final sliding window
shape parameterisation function are also drawn in the figures.

We see in Figure A.7 that the chosen window parameterisation functions do not always
perfectly fit the maximum expected significance distributions. The performance of the
chosen window parameterisation scheme is tested by comparing the expected significance
at the chosen window parameterisation to the maximum expected significance at each
mass point. The ratio of expected significance at the chosen window to the maximum
expected significance, as a function of pole mass, is shown in Figure A.8. Except for a
region of inefficiency around 300 GeV pole mass in the muon channel, and a single spike
in the electron channel around 600 GeV, the chosen window parameterisation functions
show 90% efficiency or better.

In addition to the window parameterisation described above, an anchor point is set at 1
TeV. This is done to ensure adequate statistics for windows at very high pole-mass. The
shape of the final window parameterisation in both the electron and muon channels are
shown in Figure A.9. Here, the chosen window parameterisations are optimised for zero-
width signals. For wide signal hypotheses, a new parameterisation of window size may be
needed.
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(a) (b)

Figure A.8.: Ratio of expected significance at the chosen SWiFt window parameterisation
to the maximum expected significance in the electron (a) and muon (b) channels, as a
function of signal hypothesis pole mass.

(a) (b)

Figure A.9.: The final SWiFt window parameterisation in the electron channel (left) and
muon channel (right), as a function of signal hypothesis pole mass. Each line in the figure
shows the range of the window. The black markers show where the central bin of each
window falls.
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A.3. Comparing The Global Fit and Sliding Window Fit
Methods

Here, we compare the global fit method used in Chapter 5 to the optimised SWiFt method
from Section A.2.2. In Section 5.4, the spurious signal is parameterised as a function of pole
mass by fitting a parametric function shape to the maxima of the signal yields extracted
in a spurious signal test. For the global fit and SWiFt comparison study performed in
the next section, a simpler approach is taken to obtain a conservative spurious signal
estimate. Here, we draw linear interpolations between neighbouring points of spurious
signal maxima, instead of fitting a parameterised function to these points. The spurious
signal was extracted for a zero-width signal at 500 logarithmically spaced pole mass points
between 250 GeV and 6 TeV. The spurious signal yields, with their linear interpolation
envelopes, for the SWiFt and global fit methods can be seen in Figures A.10 and A.11,
respectively. The spurious signal significances of the SWiFt and global methods can be
seen in Figure A.12. We see that although the two methods for background estimation
have similar spurious signal yields at low pole masses, the SWiFt method seems to be more
susceptible to spurious signal at higher pole masses. It is worth pointing out here that
the chosen sliding window optimisation procedure based on expected significance naturally
leads to a non-negligible spurious signal.

(a) (b)

Figure A.10.: Spurious signal yields extracted in a zero-width spurious signal test using
the SWiFt method in the electron (a) and muon (b) channels. Also shown are the linear
interpolations between neighbouring points of maximum spurious signal yield, used to give
a conservative estimate of the spurious signal systematic uncertainty.

The global fit and SWiFt methods for background estimation are compared by calculat-
ing the significance of a zero-width signal, tested at one thousand logarithmically spaced
pole mass points between 250 GeV and 6 TeV. The tests are performed on the full 139
fb−1 Run 2 data set. The local significances calculated with the two methods are shown
together as a function of pole mass in Figure A.13. These significance calculations only
take into account statistical uncertainty on the background and signal fits. Some noise
spikes can be seen in the significance curve calculated using the SWiFt method, where
the sliding window fits fail or give wrong results. Next, the linearly interpolated spurious
signal estimates from the previous section are included as signal normalisation nuisance
parameters in the fits. The resulting local significance values are shown in Figure A.14.
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(a) (b)

Figure A.11.: Spurious signal yields extracted in a zero-width spurious signal test using
the global fit method in the electron (a) and muon (b) channels. Also shown are the linear
interpolations between neighbouring points of maximum spurious signal yield, used to give
a conservative estimate of the spurious signal systematic uncertainty.

(a) (b)

Figure A.12.: Spurious signal significance in a zero-width spurious signal test using the
SWiFt and global fit methods, in the electron (a) and muon (b) channels.
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Figure A.13.: Comparing significance as a function of pole mass, calculated, only taking
into account statistical uncertainty, using the SWiFt and global fit methods, in the electron
(a) and muon (b) channels.
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Figure A.14.: Comparing significance as a function of pole mass, calculated, with spurious
signal, using the SWiFt and global fit methods, in the electron (a) and muon (b) channels.
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A.4. CONCLUSION

The global fit and SWiFt methods show similar results in the electron channel, with or
without including the constraint of spurious signal uncertainty. In the muon channel, the
SWiFt method yields a higher significance than the global fit method in the very low pole
mass range, while the opposite is the case at intermediate pole masses. The discrepancy in
the low pole mass region can perhaps be explained by the difference in fit range between
the two methods; the global fit window always starts at 250 GeV, at the search range
lower limit, while the SWiFt low mass window edges can extend below this (see Figure
A.9). Some muon channel windows start at around 190 GeV. A study is performed to
investigate the effect of this difference in low mass fit window edge between the competing
fit methods. In this test, the low pole mass edge of the SWiFt method is forced to be 250
GeV in a significance scan of the low pole mass region, only taking into account statistical
uncertainty. The upper edges of the sliding windows are not altered from the optimal
choices found in Section A.2. The resulting significance values are plotted in Figure A.15.
The significance values obtained using the SWiFt method are closer to those obtained using
the global fit method when the low mass fit window edges are set to 250 GeV. However,
some discrepancy remains between the two methods. The muon channel discrepancy in
the intermediate pole mass range cannot be explained by the difference in spurious signal
significance between the global fit and SWiFt methods, as the discrepancy is present with
and without the inclusion of the spurious signal nuisance parameter.

Figure A.15.: Low pole mass significance values in the muon channel, taking into account
only statistical uncertainty on the background, for three background model methods: the
global fit method (green), the SWiFt method with windows optimised per Section A.2
(black), and the SWiFt method with low pole mass window edges set to 250 GeV (red).
The upper edges of the sliding windows are the same in both cases.

A.4. Conclusion
The SWiFt method is a promising method for doing data-driven background estimation
on large data sets. However, in the comparison carried out here, it is outperformed by
the global fit method. Due to the involved optimisation procedure of the SWiFt method,
it would need to outperform the global fit method to be practical. The global fit method
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is therefore chosen for the analysis performed in Chapter 5. There is perhaps room for
improvement in the window shape and function choice optimisation procedures here. It is
also possible that choosing a three-parameter fit function could perform better than the
one and two-parameter functions considered here.

140



B. Auxiliary ADD Model Material
In the ATLAS Collaboration, a dedicated team is in charge of producing MC simula-
tion samples. Whenever an analysis team needs a new MC sample, simulating a SM
background- or new physics process, they put in a request for the samples to be produced
to the ATLAS central production group. Having a dedicated MC production team ensures
consistent and correct use of simulation tools within the Collaboration, minimises the risks
of biased or erroneous samples, and avoids redundant production between analysis teams.

Analysers requesting a new set of MC samples must first produce a set of so-called
validation plots. These are distributions of key kinematic variables of a test sample,
often containing fewer events than the requested final sample size, visualised at the event
generator level. These validation plots are checked to verify the production setup. In our
case, the plots must pass scrutiny by the ATLAS exotics group before being handed over to
ATLAS central production. For the non-resonant limit reinterpretation analysis performed
in Chapter 6, I was responsible for the ADD model signal MC request. Presented here are
the validation plots I prepared for the ADD signal sample request, and technical details
on how the samples are generated. An introduction to the ADD model of large extra
dimensions is given in Section 1.2.2 of Chapter 1.

B.1. Generating ADD Model Signal Samples
Seven ADD model samples are generated for different hypotheses of string scale MS: 3
TeV, 4 TeV, 5 TeV, 6 TeV, 7 TeV, 8 TeV, and 50 GeV. The choice of string scales is
motivated by the string scale limit set, between 3.2 TeV and 5.0 TeV, in the previous
ATLAS search for large extra dimensions [114]. The hard scattering of the ADD model
events is generated, at NLO, using the Sherpa event generator [83]. The cross-sections of
the ADD process are calculated in the GRW convention. The samples are produced in two
separate invariant mass intervals, one ranging from 500 GeV to 2 TeV, and one ranging
from 2 TeV to 6 TeV. This is done to enhance statistical precision in the high invariant
mass region. The CT10NLO PDF distributions are used [75].

The electron channel generator level validation samples each contain ten thousand events
in the low mass interval, and between one thousand and five thousand events in the high-
mass interval, depending on the string scale hypothesis. The muon channel validation
samples each contain five thousand events in the low mass interval and one thousand
events in the high-mass interval. Figure B.1 shows the invariant mass distributions of the
validation samples. Similarly, Figures B.2 and B.3 show the distributions of the transverse
momenta, azimuthal angles, and pseudorapidities of both final state leptons in the electron
and muon channel, respectively. The invariant mass distribution of the ADD samples
follows a DY exponentially falling distribution at low invariant mass. Then, at some point
determined by MS, the KK production enhances the dilepton event production. A similar
effect is seen in the lepton transverse momentum distributions. In Figures B.2 (e) and
(f), and B.3 (e) and (f), the presence of an ADD signal can be seen to enhance lepton
production at central values of pseudorapidity.
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(a) (b)

Figure B.1.: Generator level invariant mass of the ADD signal samples in the electron (a)
and muon (b) channel. The lower panel shows the ratio of each distribution to that of the
MS = 50 TeV sample.

What we refer to in this text as "ADD" MC signal samples, are in reality "SM + ADD"
MC signal samples; in the Sherpa event generator, the matrix element of the ADD model
process contains a SM spin-1 DY component. This DY contribution to the production
cross-section cannot be disentangled at the generator level. In the non-resonant analysis,
the SM DY contribution is already included in the data-driven background estimation
procedure. Therefore, to avoid double-counting in the analysis, the DY component of the
ADD samples is removed. By setting the string scale parameter in the Sherpa data card
sufficiently high during event generation, far beyond the energy reach of the LHC, the
resulting data sample will for all practical purposes be made up of pure DY events. Such
a sample can then be used to remove the DY component from the other signal samples
before analysis. The string scale of the "pure DY" sample is set to 50 TeV. To ensure
that any ADD component is sufficiently suppressed at this string scale, two test samples
are constructed at generator level: one with MS = 50 TeV, and one with MS = 100 TeV.
Because any residual ADD signal is expected to reside at high-mass, both test samples
are only generated in the high invariant mass interval, between 2 TeV and 6 TeV. The two
test samples are generated using the same random number generator seed. This means
that any noticeable difference between the two samples will be due to differences in their
underlying physical properties and not due to statistical fluctuations. The invariant mass
distributions of the two signal-free test samples are shown, along with their ratio, in Figure
B.4. Aside from some minor differences assumed to stem from floating-point rounding,
the two distributions are identical. We conclude that the 50 TeV string scale sample only
contains DY events. This test is only performed in the electron channel. At the generator
level, before detector simulation, and at the invariant masses being generated in the ADD
model signal samples, the kinematic differences between the electron and muon channels
are negligible.

Particle interaction with the ATLAS detector material is modelled for the ADD samples
using Atlfast-II. In the ATLAS Collaboration, MC production occurs in so-called MC
campaigns. In each of these campaigns, MC production and simulation is set up to mimic
the real running conditions of a specific ATLAS data-taking period. The LHC Run 2
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(a) (b)

(c) (d)

(e) (f)

Figure B.2.: Generator level ADD model kinematic distributions for the leading and sub-
leading electrons in the electron channel. Figures (a) and (b) show electron transverse
momentum pT, Figures (c) and (d) show electron azimuthal angle φ, and Figures (e) and
(f) show electron pseudorapidity η. The left plots, (a), (c), and (e), show the kinematic
distributions of the leading electron, while the right plots, (b), (d), and (f), show the kine-
matic distributions of the subleading electrons. The lower panels show the ratio of each
distribution to that of the MS = 50 TeV sample. Note that in (e), the leading electron has
been mislabelled as the subleading electron.
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(a) (b)

(c) (d)

(e) (f)

Figure B.3.: Generator level ADD model kinematic distributions for the leading and sub-
leading muons in the muon channel. Figures (a) and (b) show muon transverse momentum
pT, Figures (c) and (d) show muon azimuthal angle φ, and Figures (e) and (f) show muon
pseudorapidity η. The left plots, (a), (c), and (e), show the kinematic distributions of the
leading muon, while the right plots, (b), (d), and (f), show the kinematic distributions of
the subleading muons. The lower panels show the ratio of each distribution to that of the
MS = 50 TeV sample. Note that in (e), the leading muon has been mislabelled as the
subleading muon.
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Figure B.4.: Generator level dilepton invariant mass of the MS = 50 TeV test sample and
the MS = 100 TeV test sample, in the high invariant mass interval.

data-taking period is divided into three MC production campaigns: mc16a, mc16d, and
mc16e, corresponding to the ATLAS data-taking conditions of the years 2015 and 2016,
2017, and 2018, respectively. Eighty thousand events are generated in each ADD signal
sample, forty thousand each in the low and high-mass interval. The samples are roughly
divided between the three MC production campaigns according to the luminosity of their
corresponding data-taking periods: ten thousand events in mc16a, ten thousand events in
mc16d, and twenty thousand events in mc16e. A list of all the ADD signal samples, with
their cross-sections in the GRW convention and effective luminosities, is given in Table
B.1.
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B.2. KALUZA-KLEIN GRAVITON ANGULAR DISTRIBUTION

B.2. Kaluza-Klein Graviton Angular Distribution
The hypothetical force-mediating boson of gravity, the graviton, is assumed to be a spin-2
particle. Most of the SM background events to the dilepton analyses presented in this
work stem from spin-1 particles. There are measurable angular differences between spin-0,
spin-1, and spin-2 dilepton decay events. This can be seen in Figure B.5. In the figure,
the cosine of the polar angle of each fermion in difermion decays of spin-0, spin-1, and
spin-2 bosons, is measured in the COM frame of the difermion system. This variable is
also known as cos θ∗.

Figure B.5.: Polar angle of difermion decays from bosons, in the COM frame of the
fermions. The black, orange, and yellow lines show the angular distributions of spin-0,
spin-1, and spin-2 bosons, respectively [119].

It should be possible then, in principle, to use the cos θ∗ variable as a discriminant in
a graviton search for spin-2 processes at the LHC. In Figure B.6, the 3 TeV and 50 TeV
string scale test samples are compared in both the high and low invariant mass intervals
in the electron channel. Figure B.7 shows the corresponding distributions in the muon
channel.1 The 50 TeV sample consists purely of spin-1 DY events. In the 3 TeV samples,
on the other hand, the spin-2 process contributes significantly to their cross-sections, at
least in the high invariant mass interval. Here, we see the angular distribution predicted
from Figure B.5 repeated in the dilepton cos θ∗-distribution, albeit with some statistical
fluctuations.

We can distinguish spin-2 boson from spin-1 bosons in dilepton decays using angular
information at the event generator level. However, an angular analysis may not be so
straightforward in reconstructed data. Detector effects will significantly affect the resolu-
tion of any kinematic discriminant. See for example the dilepton invariant mass resolution
in Figure 3.6. Moreover, finding the boost to the COM frame of the reconstructed leptons
in the event is non-trivial in a hadron collider such as the LHC, due to the unknown initial
momenta of the colliding partons. The non-resonant search for ADD model graviton exci-
tations carried out in Chapter 6 does not use angular information in the analysis. Future

1An error when scaling the samples to cross-section means that the distributions differ between the
electron and muon channels. Emphasis should be placed on the kinematic shape of Figures B.6 and
B.7, and not on their scale.
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(a) (b)

Figure B.6.: Comparing the electron channel cos θ∗ distribution between the MS = 3 TeV
test sample and the MS = 50 TeV test sample, in the low (a) and high (b) invariant mass
intervals.

(a) (b)

Figure B.7.: Comparing the muon channel cos θ∗ distribution between the MS = 3 TeV
test sample and the MS = 50 TeV test sample, in the low (a) and high (b) invariant mass
intervals.
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dilepton searches could perhaps benefit from including an angular discriminant along with
invariant mass in their searches.
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C. ATLAS Authorship Qualification
Report

C.1. Introduction
To become an author in the ATLAS Collaboration one has to fulfil certain criteria. One of
these criteria is to spend the equivalent of at least 80 working days on a technical task for
the experiment. This is a report of the technical task I performed to qualify as an ATLAS
author. The project started on 10 October 2016 and ended on 10 October 2017.

I wanted to contribute to the computing operations of ATLAS and was given a project
in the ATLAS Distributed Computing (ADC) analytics group. The project description as
it was recorded into the internal ATLAS authorship database was:

Automating distributed computing operations with machine learn-
ing algorithms
The project delivers a method to automate workflows usually done by human
operators on shift. The goal is to develop a system to classify operational sys-
tem metrics into steady-state and anomalous behaviour, across a wide range of
infrastructures and services. This includes data management, workload man-
agement, databases and networks. With the ATLAS Open Analytics Platform,
we have a data store that collects system metrics, which can be used for corre-
lation and classification. The first part involves manual and algorithm-assisted
inspection of the historic data to obtain insights into the anomalies. The sec-
ond part provides a framework with an integrated feedback loop that learns
the decisions of the shifter, yielding a better classification of events and pro-
posals for notification or automated resolution. A final milestone would be to
automate the recommendations and decisions where statistically a significant
decision can be made.

Large computing infrastructure is required to fulfil the needs of the LHC experiments.
It would be difficult, both financially and in terms of infrastructure, to keep all these
resources in one place. The Worldwide LHC Computing Grid (Grid) is a global network of
computer centres, called sites. Computing tasks, so-called jobs, such as the reconstruction
of physics events or detector modelling for Monte Carlo simulations, are created by CERN
users and submitted to the Grid. These jobs are then distributed to computing sites
where computing resources are available at any given moment. Computing jobs may also
be distributed according to where the data to be processed are located.

The aim of my authorship qualification project was to develop a system for automating
anomaly detection on ATLAS distributed computing operations. The Grid is monitored
around the clock by humans, so-called shifters. Shifters observe the status of the Grid and
take action when anomalies appear. It could free up a not insignificant amount of person-
power if some or all of the tasks currently performed by shifters could be automated. The
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first phase of the project would be to make some algorithm for detecting anomalous states
on the Grid. The final goal of the project would then be to make some kind of automated
system taking over shifter responsibilities.

C.2. File Transfer Anomalies
As a starting point, we chose to focus on file transfers. The ATLAS Collaboration has
a large need for digital storage space, to store measurements from the detector as well
as simulated particle collisions. Digital files are stored at CERN or at one of the other
computing centres around the world that make up the Grid. This method of scattered
data storage is known as distributed data management (DDM). The files stored on the
Grid must often be transferred between storage locations when they are needed by the
ATLAS users. Rucio [120] is the data management system developed and employed by
the ATLAS Collaboration. It tracks the storage location of all ATLAS data sets and files
and provides an interface for moving files between grid sites and ATLAS users.

Every so often, file transfers between storage locations fail. There are a lot of reasons
a transfer may fail. The error may be on the user end, such as attempting to move a
non-existent file, or it may be due to technical errors on the Grid, such as grid sites being
offline. Shifters are monitoring the Grid at all times. If the rate of failed transfers to or
from a Grid site becomes too large over time, the shifter will take action to see to it that
the problem is fixed.

Metadata about each transfer made on the Grid is stored in a database. This data
consists of information such as the source and destination of the transfer, when it was
made, and whether or not it was successful. Another database contains information about
the state of the Grid at any given moment. This includes information about how many
files have been transferred in the last hour and the throughput and latency for transfers
between any two Grid sites. These databases are updated in real-time. Our goal was to
develop some automated system that, based on these transfer metadata and Grid metrics,
could recognise an anomalous state of the Grid or predict file transfer failures.

C.3. Correlating Anomalies and Shifter Tickets
The instructions given to shifters monitoring the DDM system state that shifters should
look for problematic clouds or sites, meaning locations where a large fraction of the trans-
fers made in or out of the system is failing. Shifters are then instructed to monitor these
problematic sites. If the problems persist over time, the shifter is to file a ticket to the
Global Grid User Support (GGUS) ticketing system. GGUS is the primary channel for
users to request support while using the Grid. Tickets entered into GGUS are stored, and
can be viewed and searched for by keyword, even after being resolved. The instructions
given to shifters are vague, not stating a specific rate of file transfer failure or period of
inactivity at a site before action is required. This allows shifters to exercise their expertise
and judgement on a case by case basis, whether or not to file a support ticket.

It sounds feasible to replace the DDM shifters with an automated system. A monitoring
system could be put in place that autonomously files a support ticket if the rate of file
transfer failures to or from a Grid location stays above some predetermined threshold for
some predetermined period of time. It does seem unlikely that one threshold or cutoff
time would suffice for all Grid locations. Some sites may experience a higher failure rate
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than others, without this being symptomatic of an anomalous state. The thresholds may
also vary with time. Certain times of the day or days of the week may be more prone
to errors occurring, for example, due to increased network traffic. A more sophisticated
system should also take into account such factors.

We had the idea to make a monitoring system that would learn how to correctly identify
an anomalous state in the DDM system by observing shifter decisions. The system would
need to learn where to put the thresholds for acceptable file transfer failure rates and
inefficiency periods before filing an automatic support ticket. This would be done by
studying old tickets filed to GGUS in the past, and examining the state of the system at
the Grid sites being mentioned in the ticket, at the time of, and the period leading up to,
submission of the ticket.

As a starting point, to test the feasibility of such a system, we carried out a study to see
if there really was a correlation between extended periods with a high rate of failure for file
transfers between Grid locations, and the timestamps of historical DDM support tickets.
Such a correlation is expected given how the shifter instructions are formulated. If the
fraction of file transfer failures between two grid sites is elevated for an extended period
of time, shifters are directed to file a ticket. For the kind of system outlined here to be
possible, such a correlation would need to be observed. We arbitrarily chose a week of file
transfer metadata from the first week of February 2017 as the basis of the study. Collecting
metadata from longer periods in time would have been possible, but would have increased
the computation time of the scripts used to perform the study. We split the chosen time
period into five-minute intervals. In each interval, we calculated the rate of failed transfers
between each unique pair of source and destination of file transfers. From this point, such
pairs will be referred to as links. When the failure rate of a link stayed above a given
threshold for more than a given number of consecutive five-minute intervals, the testing
script triggered an alarm. The length of time required before triggering an alarm is called
the failure time. For an alarm to be triggered we also required at least ten attempted
transfers across the link in each of the five-minute intervals that triggered the alarm. This
prevented sites with an insignificant number of transfers, or no transfers, showing up as
faulty.

With this testing script in place, we could now vary the thresholds for alarms to be
triggered, and see how that influenced the number of alarms being put out. This is shown
in Figure C.1. For values of failure rate between 10% and 90%, and failure time between
15 minutes and 45 minutes, the number of alarms triggered numbered a few hundred. We
were hoping that by selecting specific values for these variables, the number of alarms
triggered in our tests would be of the same order as the number of tickets filed to GGUS
in the same testing period. Unfortunately, when looking up these tickets, we were only
able to find three. The number of tickets found for any period, not only the week selected
for testing, was of the order 10. This low number of tickets is problematic, not only for
the fact that this is two orders of magnitude lower than the number of alarms triggered
in our study, but also because such a low number of tickets is far fewer than what would
be needed to train an automated system properly. We also looked at which Grid sites
showed up in more alarms. One of the sites in the top five was one mentioned in one of the
three support tickets found. We realised in hindsight that we should not have organised
the transfers by links for this study, but rather on a site by site basis. The failure rate
of file transfers going in and out of each site individually is what shifters are studying.
This would very probably have reduced the number of alarms triggered by my scripts
significantly, as one faulty site may trigger alarms over a large number of links.
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Figure C.1.: The number of alarms triggered in the testing script as a function of file
transfer failure rate and failure time.

Making a system that automatically submits a support ticket when the file transfer
failure rate into or out of a Grid site stays above some critical value over some period
of time would certainly be possible. One would only have to decide on which threshold
values to use for acceptable failure rates and failure times. What we showed was that,
due to the low number of historical shifter tickets, such a system could not be trained in
any meaningful way by observing past shifter decisions. This result led us to abandon the
approach of using support tickets in the project.

C.4. Seasonal Trend Decomposition
As the method of using shifter tickets to train an anomaly system did not pan out, we
shifted our attention towards another method of anomaly detection, namely one based on
seasonal trend decomposition. Seasonal trend decomposition is a tool used in time series
analysis. A time series can be defined as a set of data points sorted by time. The number
of failed or successful transfers to or from a Grid site in some time interval is a good
example of a time series. When using time series analysis for anomaly detection, the aim
is usually to find outliers in the data relative to some expected or regular signal.

Seasonal trend decomposition means splitting the time series into three distinct parts:
The overall trend of the data, the seasonal component, and the randomly fluctuating
residue. This method is useful when the time series displays periodicity or cyclic behaviour.
There are several tools and methods available for performing this decomposition. One is
outlined in Ref. [121]. An example of such a decomposition is shown in Figure C.2. Any
large fluctuation in the residue is labelled as an anomaly.

Seasonal trend decomposition could automatically take into account the fact that what
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Figure C.2.: Seasonal trend decomposition. From top to bottom: Original time series
data, seasonal component, overall trend, and residual. A large deviation from zero in the
residual is classed as an anomaly [122].

constitutes an anomaly may change over time. High network traffic at certain times of day
or on certain days of the week could lead to higher failure rates, without this necessarily
indicating an anomaly in the system. However, when investigating the time series data
of failed and successful file transfers going in and out of all the different Grid storage
locations, it quickly became apparent that this data is too chaotic for such a method to
be practical.

We selected two weeks of file transfer metadata from July 2017 and separated it into
one-hour intervals. For each storage location on the Grid, we plotted the number of failed
and successful transfers, as well as the fraction of failed transfers, being sent to and from
it. Two such plots can be seen in Figure C.3. The plots shown were two of the more
densely populated plots that were made. Although there are thousands of file transfers
taking place on the Grid every hour, on a site by site basis, the data is too sparse for
any trends to appear over the random fluctuations. Plotting the transfers in wider time
intervals could lead to less noisy plots in which cyclical trends could appear. However,
anomalies would need to be detected and resolved as quickly as possible. Any system that
would need more than an hour to detect an error would not be practical. On account
of these results, the approach using seasonal trend decomposition as a tool in anomaly
detection was abandoned.

C.5. Machine Learning Approach
Instead of trying to make a system to identify anomalous states of the DDM system itself,
we had the idea of making a system that could predict whether or not a transfer was
likely to fail before being transferred. To achieve this goal we wanted to employ machine
learning (ML), a branch of computer science and statistics in rapid development. Such a
system could be used to stop transfers before being submitted if the probability of failure,
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(a) (b)

Figure C.3.: All file transfers being transferred from (a) Grid site FZK-LCG2 and to (b)
Grid site CA-MCGILL in the chosen time period. An extended period of high file transfer
failure rate can be seen in (b), starting at around 200 hours.

calculated by the system, became too large. This could help bring down the rate of
failed transfers and thus increase efficiency. The system could also be used as an anomaly
detection system if a large number of file transfers classified as likely to succeed suddenly
started failing.

C.5.1. A Brief Introduction to Machine Learning
Machine Learning is a branch of applied statistics. ML methods are usually employed using
computers, due to the size of the calculations involved. The goal of ML is to build computer
systems that can make decisions or predictions based on experience, rather than having
to be explicitly programmed. A commonly used definition of ML, which encapsulates this
idea in a general form, was given by Tom Mitchell in 1997:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E [123].

It should be pointed out that ML is a deep and complex field of study. ML algorithms
are used to solve a host of problems in society: automatic fraud detection in credit card
transactions, facial recognition software, and self-driving cars are just a few examples. We
will barely be scratching its surface in this text. For a more thorough introduction to the
subject we recommend the book Deep Learning by Goodfellow, Bengio, and Courville [124].

Several tools and methods exist for performing machine learning, but they all contain
the same four basic components: A data set, a model or models, a cost function, and an
optimisation algorithm. The cost function is sometimes called the error function. Using
Mitchell’s definition of ML, the model is the task T that needs to be solved, the data set
provides the experience E, while the loss function gives the performance measure P. The
optimisation procedure is what the model uses to improve performance with experience.
Linear regression is a simple example that falls under this definition of ML. In this case,
the model is simply a linear equation y = θ1x+ θ2. If some data set containing values x,y
is expected to follow a linear distribution, the regression procedure aims to determine the
values of the parameters θi that best fit the data. This is done by minimising the error
function, which is usually the sum of the squared residuals between the model prediction
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and the data set values in each data point. Minimising this loss function in this way is
known as least squares regression. Adding additional points to the data set used in the
regression would lead to a better linear fit with less uncertainty on the fit parameters.
This embodies the ML concept of improving, or learning, with experience.

In ML literature, events or entries in the input data set are often referred to as examples.
The variables, measurements or characteristics belonging to each of these examples are
referred to as features. There are two main types of ML tasks: supervised learning tasks
and unsupervised learning tasks. Supervised learning algorithms aim to map the features
of the input data set x to some output function f(x). This is achieved by providing
the chosen ML algorithm with information about the true or desired value of the output
function for each example in the input data set. The algorithm tries to minimise the
residual between the goal value and chosen value of the output function for each example
in the input data set. This is done during the optimisation or training step. Supervised
learning tasks usually falls into one of two categories: classification tasks or regression
tasks. Classification tasks involve putting one or more labels on the data being analysed.
Image recognition is an example of a classification problem. Regression tasks involve
determining some continuous output function. The example of linear regression given
previously is a simple case of such a task. Unsupervised learning algorithms are not given
any information about the true or desired value of the input. Unsupervised algorithms aim
to deduce the underlying structure of the input data without any human steering. So-called
clustering algorithms are the most common type of unsupervised ML tasks. Clustering
algorithms try to group examples in the input data based on their closeness in the space of
their features. The field of ML is further divided into specific algorithms and tools. In this
text, we will only focus on supervised learning techniques, specifically the method based
on so-called boosted decision trees (BDTs). This method is covered in more detail in the
next section.

The concepts of underfitting and overfitting are important in ML development. Under-
fitting occurs when the chosen ML model fails to conform to the input data. One reason for
underfitting may be the lack of complexity in the chosen model. Take the linear regression
example used above. This straight-line model will never be able to accurately agree to the
input data if the data points are drawn from a non-linear distribution. Underfitting may
also arise if the optimisation or training step is prematurely ended, or if the input data set
is too sparse. Overfitting, on the other hand, occurs when the model starts conforming to
the random fluctuations of the input data, rather than the underlying statistical distribu-
tions of the data. This means that the model will generalise poorly to new data. Using
a model of too high complexity, one having too many tunable parameters, may lead to
overfitting. It is hard to determine whether a model is suffering from over- or underfitting
without testing the model on data not included in the optimisation of the model. For
this reason, it is common to use two or more input data sets instead of just one in the
development of ML models. One of these sets is the so-called training set, used to optimise
the chosen ML model. Another is the so-called testing set. The testing set is not used to
tune the parameters of the model, but rather to check that the model generalises well to
unseen data. A clear sign of overfitting is that the model performance on the training set
is much better than on the testing set. It is crucial that the training and testing data sets
follow the same probability distributions. One way of ensuring that they do is to use the
so-called holdout method. Instead of using two separately collected data sets for optimising
and cross-validation, a random subset of one single input data set is set aside to become
the testing set.
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In addition to BDTs, two other common ML methods were considered for this project:
artificial neural networks (ANNs) and support vector machines (SVMs). ANNs are inspired
by the brain, made up of interconnected artificial "neurons". The neurons are connected
in a graph, typically organised in layers; consisting of an input layer, one or more so-called
hidden layers, and an output layer. Each layer consists of several neurons, and each neuron
takes the information from the neurons in the previous layer, calculates an output, and
transmits it to the next layer of neurons. SVMs are most often used for binary classification
problems. This method aims to find the hyperplane in the feature space of the examples
in the training set that best separates the two classes.

Any parameter of an ML method that is not determined through the training step of the
algorithm is known as a hyperparameter. The number of hidden layers in an ANN or the
number of decision trees used in a BDT algorithm are examples of hyperparameters. The
choice of certain hyperparameters may significantly impact the performance of the ML
model. A common way of determining hyperparameters is to tune them, automatically or
by hand, to maximise the performance of the algorithm on the testing data set. However,
tuning the hyperparameters in this way is sometimes problematic as it may reintroduce
a kind of overfitting. The model may perform well on the testing set, but may fail to
generalise to unseen data. The solution to this problem is often to use a third data
set when building an ML model, along with the training and testing set, the so-called
validation set. The validation set is analogous to the testing set and is used to check that
the model generalises well to new data with the chosen hyperparameters.

Machine Learning algorithms can be very powerful tools, able to find patterns and
higher-order correlations in the input data that simpler methods fail to capture. However,
ML algorithms are often criticised for being "black boxes", meaning that it can be hard
to know or interpret their internal state. ML methods can also be very computationally
expensive.

C.5.2. Boosted Decision Trees
A decision tree is a graph-like structure, often used to solve classification problems. Deci-
sion trees are so named for their loose resemblance to trees, with a single trunk furcating
into branches and leaves. A decision tree is, in essence, a nested list of "if-then-else" state-
ments. Each of the cases being classified starts at the so-called root node of the decision
tree. A decision or cut is made on one of the attributes or features of the case. The root
node is linked to two or more nodes in the tree and the outcome of the decision determines
which of these nodes the case is sent to next. At each node in the tree, a new decision is
made on one of the features of the case, and so on, until the case ends up in a so-called leaf
node. Each leaf node is labelled as belonging to one of the output classes of the classifier.
Every case ending up in a specific leaf node is assigned to the class associated with said
node. A schematic of a simple decision tree is shown in Figure C.4.

Decision trees can be used as-is in ML applications. A decision tree is then constructed,
and the threshold values at each node are optimised such as to maximise performance
on the input training data set. However, such trees tend to generalise poorly to unseen
data. Single decision trees also tend to grow very large, even for relatively simple tasks.
A more robust use of decision trees in ML applications is to pair them with a so-called
boosting procedure. Boosting is a technique that combines several weak models or learners,
with poor discriminatory power, into one strong learner. The power of the individual weak
models can be only slightly better than random guessing, and the ensemble learner can still
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Root

Node

Leaf

S1 S2

S1 S2 S2 S1

a1, a2, a3: Features

S1, S2: Classes
a1

a2 a3

a1 a2

X1 < a1a1 ≤ X1

a2 ≤ X2 X2 < a2 a3 ≤ X3 X3 < a3

a1 ≤ X4 X4 < a1 X5 < a2a2 ≤ X5

Figure C.4.: A short decision tree. The input is allocated into one of two classes, S1 or S2,
based on decisions made at each of the five nodes. The cuts are made on three features,
a1, a2 and a3, of the input data.

achieve good precision. ML methods combining decision trees with boosting are simply
called Boosted Decision Trees BDTs. The weak learners in question may be as simple as
"tree stumps", decision trees consisting of just a single node.

Several algorithms exist for performing some form of boosting. In this text, we will
focus on adaptive boosting (AdaBoost) [125]. As mentioned previously, the basic concept
of boosting is to combine several weak or simple ML models into one powerful model.
AdaBoost achieves this goal in an iterative, sequential manner, where the outcome of the
training or optimisation of one weak model influences the training of the next. First, the
initial model is trained on the training data set. For this first optimisation procedure,
each example in the input data is given equal importance. For the next iteration of the
boosting procedure, examples in the training set that were misclassified by the first model
are weighted up, while correctly classified examples are weighted down. This re-weighting
of the input data is performed after each new model is trained. This procedure of training
and re-weighting is then repeated a predetermined number of times. How many weak
learners to include in the strong model is an important hyperparameter of BDTs. When
all the weak models have been trained, they are combined with a weighted sum into the
strong model. The weight of each weak model in this sum is inversely proportional to the
rate of misclassification of that model. A schematic of an example boosting procedure is
shown in Figure C.5. In this figure the aim is to build a classifier that can separate the
input into two classes, "+" and "−", based on two features. The training set contains ten
examples that have been correctly labelled, making this a supervised learning problem.
The example uses three weak learners, which are simple tree stumps, meaning single splits
in one of the two features. The first tree is trained on the initial distribution, splitting it
in two such as to best separate the input into the correct classes. Some of the examples
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are seen to be misclassified. Before training the next tree, these misclassified examples
are given higher importance or weight than the rest. These examples are circled in the
figure. The next tree is then trained using the same procedure as the first tree. Due to the
re-weighing procedure, the optimal split found by this tree is not the same as that of the
first tree. The re-weighting and retraining is then performed one more time for the third
tree. Finally, the BDT classifier is built from a linear combination of the three tree stumps.
We see that even though each simple tree has some misclassification, the misclassification
rate of the final classifier is zero.

First iteration Second iteration Third iteration

Initial distribution Final classifier

Weight α
1

Weight α
2

Weight α
3

Figure C.5.: Schematic of the boosting procedure. The two dimensions of the boxes rep-
resent the two features of the data. The first two weak classifiers discriminate in the first
feature, while the third classifier discriminates on the second feature. Since the rate of
misclassification (3 examples) is the same for each weak learner, the weights αi will be
equal in this example. Each example in the input data is correctly classified by two out of
three weak classifiers, which means that the final classifier has a 100% success rate.

BDTs have become ubiquitous in the high energy particle physics (HEPP) community.
They are powerful and relatively simple to set up. The AdaBoost algorithm has also
been shown to be resilient against overfitting [126]. However, like other ML algorithms,
BDTs are criticised for their obscurity. It is hard to determine their internal state. This
problem is alleviated somewhat because BDTs allow for the easy extraction of metadata
such as feature importance from the model. Feature importance is a tally of how many
times each feature is used to split the input data at a node in a decision tree. This
means that features with high feature importance scores have more influence on the BDTs
decision-making process.

C.5.3. Collecting File Transfer Metadata
Before the ML algorithm could be constructed, we had to obtain a data set for it to train
on. The goal of the project was to train the algorithm to detect whether a file transfer
on the Grid would fail or be successful. This meant that we needed historical metadata

160



C.5. MACHINE LEARNING APPROACH

of previous file transfers, containing features suspected of being correlated with the file
transfer failure rate. Table C.1 lists the features selected for training. This information
was gathered off the two Grid metadata databases mentioned previously. One database
contains every transfer previously made on the Grid. Whether or not a file transfer was
successful, the size of the file being transferred, and the file transfer protocol used for the
transfer is stored in this database. This database became known in the project as The
CERN Database due to its physical location at CERN. The CERN Database also contains
information about the state of the Grid. The number of file transfers queued, network
throughput, and how many successful file transfers already occurred in the last one or
six hours is stored for every link in the network. This information is updated every five
minutes in the database. The second database tracks the latency and packet loss of each
link in the network. This information is updated every 10 minutes. This database was
referred to as the Chicago Database in the project, due to its physical location at the
University of Chicago. All of the features concerning the state of the Grid are variable
in time except for the so-called network closeness. This feature is static in time, and its
value for each link on the Grid was stored locally in JSON format for easy access.

Table C.1.: A list of the file transfer and Grid state features used for ML training in this
project.

Whether or not the file transfer was successful. This is the target feature of the classifier.
The size of the file being transferred.
The file transfer protocol used to perform the file transfer.
The number of successful file transfers performed on the same link in the last hour.
The number of successful file transfers performed on the same link in the last six hours.
The mean throughput, in MB/s, across the link in the last hour.
The number of files queued for transfer across the link at the time of the file transfer.
The latency across the link.
The packet loss across the link.
The network closeness of the link.

Collecting the file transfer and Grid status data proved non-trivial due to the information
being scattered over several sources. Even the file transfer and Grid status data stored in
the CERN Database were not automatically linked. The data used in this project were
collected in September 2017 and correspond to several days worth of file transfers on the
Grid. First, the information on each file transfer performed in the selected period was
collected by querying The CERN Database. Grid state data for the same period were
collected from the CERN and Chicago databases. For each file transfer, the correct Grid
state features were added to its data set entry by looking up the information in the five- or
ten-minute interval of the Grid state data corresponding to its timestamp. The example
was dropped from the data set in the cases where these look-ups failed. Some complications
arose because of differences in naming conventions of Grid sites between the CERN and
Chicago databases. This problem was solved by making a script mapping the site names
on one database to the corresponding site names on the other. The file transfer protocol
feature is not a numeric value. Each possible file transfer protocol was therefore assigned
an integer number, as most ML tools are only able to read numeric input.

Two features of the transfers were used in testing, but later dropped: whether or not
the file had been retried, meaning that the file attempted to transfer but failed, and the
time elapsed between the file transfer was initiated until it was executed. A file having
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already failed to transfer was shown to be a strong indicator that the transfer would fail
again. These features were not used to train the ML algorithm, as they can only be known
for past file transfers and not when initiating a new transfer. These features may be used
if instead of making some system predicting whether or not a file transfer is going to fail,
we wanted to make some anomaly detection system that monitored file transfers being
made. In this case, the aim of the system would not be to stop transfers with high failure
probability, but rather to throw an alarm if the rate of transfer failure grows larger than
what is being predicted by the system.

After collecting the file transfer examples for the training set, with all the relevant
features, the data were shaped into an N by 10 matrix, where N is the number of file
transfers included in the data set. For the selected period, N was of the order 105. This
matrix is often referred to in statistics and ML as a design matrix. Each row in a design
matrix correspond to a single data point or example, a transfer in this case, while each
column correspond to a feature of the transfers. The so-called target feature, whether
or not the file transfer is successful, is what the ML algorithm will use to optimise its
behaviour.

Some number of duplicate entries, identical rows in the design matrix, emerged when
compiling the data set. These may stem from quickly retried file transfers. Identical
entries in the training set of an ML algorithm may negatively influence its performance,
as it essentially doubles the weight of certain examples in the data set. Therefore, we
removed these entries before training the BDT classifier.

C.5.4. Building the Classifier and Analysing Hyperparameters
As mentioned previously, three ML algorithms were considered for this project: BDTs,
SVMs, and ANNs. The BDT, ANN, and SVM classifiers were all built using scikit-learn,
an open source ML library for the Python programming language [127]. Scikit-learn is
well supported and documented, making it well suited for this project. BDTs performed
better out-of-the-box than both SVM and ANNs in our initial tests, and were therefore
selected for further development. ANNs are powerful tools, but they have a large space of
hyperparameters. Achieving high performance using an ANN often requires a lot of effort
finding and tuning these parameters.

After selecting a BDT method for the project, we researched how the choice of hyper-
parameters influenced the performance of the classifier. We focused on how many trees to
include in the boosting procedure, and the maximum depth of these trees, meaning the
number of allowed layers of nodes in the decision trees. The decision tree in Figure C.4 has
a depth of 3. To determine good choices for these hyperparameters, an AdaBoost BDT
classifier was trained for maximum depths between 1 and 8 and between 1 and 2,000 trees.
Figure C.6 shows the rate of misclassification on the training and testing data sets as a
function of the number of trees for every choice of maximum depth. The important graph
to observe in the figure is the error or misclassification rate on the testing set. Whereas the
error on the training set falls to zero, the error on the testing set approaches some non-zero
value in all the plots. The mode of the misclassification rate on the testing set, meaning
the most frequently occurring value of the graph, is plotted as a red line in the figure. This
value is a makeshift indicator of the smallest possible misclassification rate for unseen data
for the chosen tree depth. The aim should be to minimise this value. We observe that this
value is more or less constant for values of maximum tree depth of three or more. This
means that the classifier does not perform noticeably better by increasing the complexity

162



C.5. MACHINE LEARNING APPROACH

of the individual trees making up the BDT above this number. Based on this finding we
chose to use a maximum tree depth of four in our BDT classifier. In Figure C.6 (d) we see
that for this choice of maximum tree depth, the misclassification rate on the testing set
is flat when the BDT is made up of more than around 500 trees. This means that using
more than 500 trees in the classifier will not lead to any improvement in performance. In
the computationally costly field of ML, such inefficiencies are best avoided. Therefore, we
chose 500 as the number of trees to make up the BDT.

Figure C.6 also illustrates AdaBoost’s tendency to avoid overfitting. In a model dis-
playing overfitting behaviour, the misclassification rate on the testing set would not only
decrease and flatten out towards some minimal value, but would at some point of the op-
timisation start to grow. This behaviour is not observed here; Even long after the training
error has reached zero, the testing error does not seem to rise.

The number of successful transfers in the input data set outnumbered the failed transfers
approximately ten to one, meaning that the global file transfer failure rate on the Grid
is around 10%. We noticed during testing that the BDT algorithm was better able to
correctly classify successful transfers than failed transfers. By balancing the number of
failed and successful examples in the training set, the precision of the classifier on failed
transfers improved to the same level as the precision on successful transfers. We balanced
the training by splitting the original training set into two parts, one containing only failed
transfers, and the other containing only successful transfers. The new training set was
then constructed by drawing half of the desired number of training examples from one
sample at random, and the other half from the second.

A common measure of classifier performance is the area under curve (AUC) of the so-
called receiver operating characteristic (ROC) curve. The ROC curve is a graph of the true
positive rate of the classifier, plotted against the false positive rate, for all possible class
thresholds. The output of a binary classifier, like the one used in this project, is a number
referred to as the score of the classifier. An example receiving a high score means that
the classifier deems the example more like the first class while receiving a low score means
that the classifier deems the example more like the second class. In our case, the two
classes are whether or not the file transfer is going to fail. The class threshold is the score
separating the two classes. Every case receiving a score higher than the class threshold
will be classified as belonging to the positive class, while cases receiving a score lower than
this threshold are classified as negative. The integral of the ROC curve is called the AUC.
Figure C.7 illustrates how the ROC curve emerges when varying the class threshold. The
worst possible binary classifier, one making random guesses will have an AUC of 0.5. A
perfect classifier, on the other hand, one that never misclassifies a single case, will have an
AUC of one.

We wanted to investigate how the size of the training data set influenced the performance
of the classifier. Collecting the training data from the CERN and Chicago databases was
quite time consuming. Therefore, we investigated the amount of data needed to attain a
good performance of the classifier. This test was performed by training the BDT algorithm
several times for different amounts of training data, between 10 file transfers and 5× 105

file transfers. The performance of the algorithm was measured for each of these cases
using the AUC on a testing set containing 5,000 entries. AUC as a function of training
set size is plotted in Figure C.8. The classifier performance can be seen to increase as a
function of training sample size, as expected. However, there are diminishing returns on
the performance gained by adding more training data. Figure C.8 shows the AUC growing
by around 0.2 when increasing the training data sample size from 10 entries to 103 entries,
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Figure C.6.: Training and testing misclassification error as a function of trees used in the
BDT estimators, for eight values of maximum depth of the tree graphs.
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Figure C.7.: Schematic of the construction of the ROC curve [128]. The green arrows
indicate the movement of the curve as the class threshold is varied.

while the gain is much smaller when increasing the training sample size from 103 entries
to 105 entries.
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Figure C.8.: AUC as a function of training data set size.

We neglected to set aside a portion of the input data set for validation after tuning the
hyperparameters of the BDT. There is a slight risk that this may have introduced a bias
during training; rather than the model generalising well to unseen data, the hyperparam-
eters chosen for the BDT may be optimised for the testing set. However, the probability
of this causing issues was deemed low enough to not warrant any action.

C.5.5. Results and Performance
Figure C.9 shows the BDT classifier score distributions of the entries in the training and
testing data sets. The two classes appear well separated in both cases. The ROC curve of
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the testing data classifier scores is shown in Figure C.10. The curve has an AUC of 0.96.
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Figure C.9.: BDT classifier score distributions for the training (top) and testing (bottom)
data sets.
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Figure C.10.: ROC curve of the BDT classifier scores on the testing data set.

We extracted the feature importance distribution of the BDT to study which features
had the largest impact on the classification. This distribution can be seen in Figure C.11.
From this figure, we see that the size of the file being transferred and the network latency
of the link are the two features with the largest discriminatory properties. Packet loss,
the file transfer protocol used for the file transfer, and network closeness were the least
important features.
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Figure C.11.: Feature importance distribution of the BDT classifier.

C.6. Conclusion
The goal of this project was to make a system for automating Grid monitoring jobs cur-
rently being done by human shifters. We focused on the ATLAS DDM system. It seems
feasible to make a system that automatically files a support ticket when the number or
rate of failed file transfers becomes too large. We fear that such a system would be too
simplistic to be practical; what constitutes an anomalous state of the DDM system is not
static in time, but changes with the situation. A hard-coded automated system would not
have the same capability of exercising judgement based on previous experiences. We had
the idea of using past shifter decisions in the form of historical support tickets to construct
a more sophisticated system. The lack of past support tickets made this impractical.

We also investigated building an anomaly detection system for the DDM system using
seasonal trend decomposition. This method was abandoned because the available data
was too noisy for any seasonal component to emerge from the time series of file transfers
being performed over each link in the network.

We demonstrated an ML method, using BDTs, for predicting whether or not a file
transfer on the DDM system was likely to fail, based on the features of the file being sent
and the state of the Grid at the time of transmission. This system could be used to lower
the rate of failed transfers being performed on the grid by stopping transfers with large
probabilities of failing from taking place. It could also be used to construct an anomaly
detection system by throwing an alarm if the rate of failed transfers grows larger than that
predicted by the classifier. The largest obstacle for such a system to be practical, at the
time of the project, was the cumbersome process of collecting file transfer and Grid status
metadata to train the ML algorithm. Due to this issue, the system has so far not been
put to use monitoring the ATLAS DDM system.
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D. Physics Education Projects

D.1. Introduction
During my PhD, my contract at the University of Oslo required me to participate in teach-
ing in addition to my research. I found that I enjoyed teaching, and I became interested
in the didactics of physics. While working as a teaching assistant in a laboratory course at
the department of physics, I started thinking about educational physics experiments that
can be performed with limited laboratory equipment.

Modern smartphones contain a lot of sensors: microphones, cameras, accelerometers,
gyroscopes, etc. Having become so commonplace in society, smartphones can provide
economical alternatives to costly laboratory equipment. I wanted to test out a few different
ways of using a smartphone as a physics laboratory, with the aim of using these methods
when teaching physics laboratory courses.

I performed three different physics measurements using a smartphone. This chapter
contains a summary of these three experiments, as well as copies of the three papers
written by me presenting their results.

D.2. Measuring the Acceleration of Gravity
If the observer of an emitted sound signal is moving with respect to the source of the
sound, the frequency f of the observed signal will be different from the emitted frequency
f0. This phenomenon is known as the Doppler effect. The magnitude of this shift in
frequency can be calculated using Doppler’s equation

f =
c± vO

c± vK
f0 , (D.1)

Where c is the speed of sound in air, while vO and vK are the speeds of the observer and
source respectively, with respect to the air.

If the source is stationary, and the emitted frequency is known, Equation (D.1) can be
used to measure the velocity of the observer. Or, with repeated frequency measurements,
the acceleration of the observer. Such a measurement is what I perform in my article
Measuring the acceleration of gravity g using Doppler Shift, published in Norwegian in
Ref. [129]. The experiment is a recreation of the one described in Ref. [130].

A smartphone is set to record audio. The smartphone is held underneath a speaker
and dropped to the floor. The speaker is sending out a pure 2 kHz sine wave. In the
resulting audio recording, one can clearly hear the recorded frequency being shifted to
lower frequencies as the phone falls.

The audio recording is split into 15 equal intervals. The recorded frequency is assumed
to be constant in each of these intervals. The observed frequency in each interval is
determined using the zero crossing method [131]. The zero crossing method works by
finding the length of time between successive crossings from negative to positive values in
the audio waveform. This procedure is illustrated in Figure 3 in the paper.
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The acceleration of the smartphone is proportional to the slope of the shift in the
observed frequency. The smartphone is free-falling, so its acceleration is equal to the
gravitational acceleration g. The slope of observed frequency values is found by linear
regression. The gravitational constant is measured to be g = 10.1 m/s2, which is within
3% of the current best-fit value of 9.81 m/s2. No attempt was made to calculate the
uncertainty of the measurement.

To calculate the value of g using the method outlined here, the speed of sound in air
must be known. A procedure for measuring the speed of sound in air using a smartphone
is outlined in the next section.

D.3. Measuring the Speed of Sound in Air
In my paper Measuring the Speed of Sound in Air Using a Smartphone and a Cardboard
Tube I measure, as the title suggests, the speed of sound in air [132]. The only piece of
equipment needed for this experiment, in addition to a smartphone, is a tube closed in
one end.

For a pure sine wave of frequency f and wavelength λ, propagating in a medium, the
propagating speed in the medium c is given by

c = fλ . (D.2)

When an audio sine wave travels down the half-closed tube and meets the end, part of the
signal will be reflected back up the tube. For certain frequencies of the incoming wave,
the reflected sine wave will interfere constructively with the incoming sine wave, setting
up a resonance. A microphone placed outside the tube will pick up an increase in recorded
amplitude for these frequencies compared to signals of other arbitrary frequencies. These
standing wave resonances occur when the incoming sine waves have wavelengths equal to
an odd number of acoustic lengths of the tube. Therefore, if the resonance frequency and
the length of the tube are known, the propagating speed c of the wave can be found. This
quantity is also known as the speed of sound in the medium.

I place my smartphone outside the tube. A slow audio sine wave sweep from low to high
frequency is emitted from a signal generator app installed on the phone. The phone is set
to record audio during the sweep. At the resonance frequencies of the tube, the waveform
of the recorded audio spikes. The frequency of the recorded audio is determined using
the zero crossing method described in the previous section. The resonance frequencies
are linearly spaced. I perform a linear regression through the resonance frequencies. The
speed of sound is given by c = 4aL, where a is the slope of the regression, and L is the
acoustic length of the tube.

The speed of sound in air is measured to be c = 335 m/s. This result is within 3% of the
theoretical speed of sound in an ideal gas at the same temperature as air when performing
the experiment, which is cT = 345 m/s.

D.4. Measuring the Strength of Earth’s Magnetic Field
Most modern smartphones have compasses. The compass in a smartphone operates by
measuring the direction of the Earth’s magnetic field using a Hall sensor. Or, more accu-
rately, three Hall sensors, each measuring the magnetic field strength in one of the three
spatial coordinates.
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I was supervising an introductory laboratory course in electromagnetism in the autumn
of 2018. One of the laboratory exercises saw the students measuring the field strength
of the Earth’s magnetic field using a rotating induction coil. To check their results, the
students compared their results to that given by a magnetometer app on their smart-
phones. I noticed that the absolute value of the magnetic field strength as measured by
the smartphones often varied with the orientation of the phone itself. I suspected that
there were either a difference in calibration between the three independent Hall sensors
in the magnetometer, or that the measured values were being offset by internal magnetic
disturbances inside the smartphone itself.

In my paper Measuring Earth’s Magnetic Field Using a Smartphone Magnetometer [133],
I devise a method for eliminating any offsets due to internal magnetic fields in the smart-
phone when measuring magnetic field strength. I then use this method to measure the
magnetic field strength in Oslo.

I perform two magnetic field measurements. For one of these measurements, I rotate
the smartphone 180 degrees. This rotation flips the sign of the measured magnetic field
strength, while the sign of a potential internal offset remains the same. When the two
measurements are subtracted and divided by two the internal offset is cancelled.

This subtraction procedure is performed three times for each individual spatial coordi-
nate. This means that one measurement is performed for each individual Hall sensor in
the smartphone. The average magnetic field strength of the three axes is taken as the
final magnetic field strength measurement. The earth’s magnetic field strength in Oslo is
measured to be Bearth = 50.5± 0.4 µT.
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Målet med dette forsøket er å beskrive eit 
eksperiment der ein kan måle tyngdeak-
selerasjonen g ved hjelp av ein mikrofon 
i fritt fall vekk frå ei lydkjelde. Forsøket 
skal kunne utførast med enkle verktøy og 
forkunnskapar, slik at det skal kunne vere 
mogleg å gjenskape for studentar. 

Når den relative avstanden mellom ei kjelde og ein 
observatør av ein lyd endrar seg med tid, vil fre-
kvensen f som observatøren måler, vere ein annan 
enn den frekvensen f0 kjelda sender ut. Denne effek-
ten kallar me dopplereffekten. Endringa i frekvens 
er avhengig av den relative farten mellom kjelda og 
observatøren og kan bli rekna ut med formelen 

 
f =            f0 , 

der c er lydfarten i mediet som lyden forplantar 
seg i, mens v0 og vK er farten til observatøren og 
kjelda i forhold til mediet. Forteikna i likning 1 
er bestemt av om kjelda og observatøren beveger 
seg mot (+) eller frå (−) einannan. Likninga antek 
òg at rørsla til kjelde og observatør er lineær i 
forhold til einannan. I dette forsøket vil mediet 
lyden forplantar seg i, vere luft. c er difor lydfar-
ten i luft. 

Om ein observatør er i fritt fall vekk frå ei lyd-
kjelde i ro, vil den observerte frekvensen grunna 
dopplerskift vere 

 
f (t) =            f0 = f0 –       t ,

der g er tyngdeakselerasjonen, og t er tida sidan 
observatøren starta å dette. Dette er likninga for 
ei rett linje. Oppførselen til den målte frekvensen 
frå observatøren startar å dette ved tida t0 til hen 

sluttar å dette ved tida t1 er avbilda skjematisk i 
figur 1. 

Ein kan sjå av likning 2 at stigningstalet a til 
den rette linja som oppstår i frekvensutviklinga til 
den dettande observatøren, er proporsjonal med 
tyngdeakselerasjonen som

a = –        .

Eksperiment 
Forsøket som er utført her er ei gjenskaping av det 
som står beskrive i [1]. 

Forsøket vart utført i eit lyddempa rom på 
Fysisk institutt ved Universitetet i Oslo. Det er 
nok ikkje naudsynt for forsøket å ha eit slikt rom 
tilgjengeleg, men ein bør prøve å eliminere bak-
grunnsstøy så mykje som råd. 

Ein høgtalar kopla til ein signalgenerator vart 
plassert i taket på rommet, om lag 2 meter over 
golvet. Høgtalaren vart sett til å sende ut ei kon-
stant sinusbølge på 2000 Hz. 

Ein smarttelefon med ein applikasjon for inn-
speling vart brukt som observatør. Telefonen vart 
sett til å ta opp lyd med ei samplingsfrekvens på 
44100 Hz. Telefonen vart halden like under høg-
talaren før han fekk dette i fritt fall ned til golvet. 
Dette er skjematisk framstilt i figur 2. Lydfilene 
vart lagra i .wav-format. Dette formatet gjer det 
enkelt å analysere innsamla data. I dette førsøket 

vart analysen utført i programmeringsspråket 
Python. På lydopptaket kan ein klart høyre at fre-
kvensen endrar seg på grunn av dopplerskift. 

Lydfarten i lufta vart estimert ved å ta tem-
peraturen i rommet for så å slå opp verdien i ein 
tabell. I dette forsøket vart c = 345,8 m/s brukt. 

Måling av frekvens 
Sidan me vil gjere ei tilpassing til frekvensen 
på lydopptaket, treng me ein metode for å måle 
frekvens. Dette er ikkje så uproblematisk som 
det kanskje synest ved første augekast. Lydfila 
som vart spelt inn på mobilen, inneheld i første 
rekke berre informasjon om utslaget til mikro-
fonmembranen i kvart samplingspunkt. Dette 
må konverterast til frekvensinformasjon. Det viser 
seg at det er umogleg å måle den momentane fre-
kvensen i kvart samplingspunkt. Ein er nøydd til 
å sjå på utviklinga til lyden i eit tidsintervall. Dess 
finare oppløysing ein vil ha på frekvensmålingane, 
dess lengre tidsintervall treng ein. 

I tilfellet der ein har høg signalstyrke over 
bakgrunnen kan ein bruke den såkalla nullkrys-
singsmetoden (zero crossing method). Denne 
metoden går ut på å finne punkta i bølgeforma 
i lydfila der utslaga kryssar frå negative til posi-
tive (eller omvendt) verdiar. Når ein har funne to 
punkt i bølgeforma på kvar side av ei slik kryssing, 
kan ein trekke ei rett linje mellom dei. Punktet der 
denne linja kryssar tidsaksen er ei tilnærming til 
nullpunktet til lydbølga. Avstanden i tid mellom 
eit slikt punkt og neste blir då ei tilnærming til 
perioden til bølga. Dette er framstilt i figur 3. 

I dette forsøket vart lydopptaket av telefonen 
som dett, først skore til slik at kun tida i fritt fall 
er med på opptaket. Deretter vart fila delt inn i 
15 delar. I kvar av desse subseksjonane vart null-

kryssingsmetoden brukt for å finne frekvensen 
ved kvar nullkryssing. Frekvensen i intervallet 
vart tatt som snittet av dei individuelle frekvens-
målingane. 

Resultat 
Frekvensane i dei 15 tidsintervalla er tilpassa med 
ei rett linje. Dette kan ein sjå i figur 4. Stigningstalet 
til denne linja sett inn i likning 3 gir g = 10,1 m/s2. 

Forsøket vart gjentatt fleire gonger. Berre eit 
av resultata (tilfeldig valt) er gjengitt her. Det 
vart ikkje gjort noko estimat av uvisse på den 
målte verdien for g. Både frekvensmålingane og 
verdien for lydfarten vil vere kjelder til uvisse. I 
samanlikning med desse kjeldene til uvisse kan 
luftmotstand reknast å vere neglisjerbar. 

Konklusjon 
I dette forsøket har tyngdeakselerasjonen g vorte 
målt ved hjelp av dopplerskift. Dette kan gjerast 
utan avansert utstyr og med beskjedne pro-
grammeringskunnskapar. Forsøket burde kunne 
gjennomførast av studentar på eit innføringskurs i 
eksperimentalfysikk. Forsøket gir læringsmogleg-
heiter både om dopplerskift, digitalisering av lyd, 
og om programmering. 
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Figur 1. Målt frekvens som funksjon av tid av observatør 
som er i fritt fall vekk frå ei lydkjelde. Observatør startar å 
falle ved tida t0 og stoppar opp ved tida t1.

Figur 2. Telefonen blir halden like under høgtalaren. Han 
blir deretter sleppt og dett fritt ned til golvet. Tidene t0 og t1 
er markert for samanlikning med figur 1.

Måling av tyngde akselerasjonen g ved hjelp av Dopplerskift 

Figur 3. Nullkryssingsmetoden. Den svarte kurva er lyd-
signalet som vert utsendt av kjelda. Dei raude punkta viser 
samplingspunkta som vert gjort av telefonen. Dei gule 
punkta er nullkryssingspunkta som vert brukt til å fastslå 
frekvensen til signalet.

Figur 4. Dei målte frekvensane, bestemt med nullkrys-
singsmetoden, med den rette linja som gir best tilpassing 
til data.
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Målet med dette forsøket er å beskrive eit 
eksperiment der ein kan måle tyngdeak-
selerasjonen g ved hjelp av ein mikrofon 
i fritt fall vekk frå ei lydkjelde. Forsøket 
skal kunne utførast med enkle verktøy og 
forkunnskapar, slik at det skal kunne vere 
mogleg å gjenskape for studentar. 

Når den relative avstanden mellom ei kjelde og ein 
observatør av ein lyd endrar seg med tid, vil fre-
kvensen f som observatøren måler, vere ein annan 
enn den frekvensen f0 kjelda sender ut. Denne effek-
ten kallar me dopplereffekten. Endringa i frekvens 
er avhengig av den relative farten mellom kjelda og 
observatøren og kan bli rekna ut med formelen 

 
f =            f0 , 

der c er lydfarten i mediet som lyden forplantar 
seg i, mens v0 og vK er farten til observatøren og 
kjelda i forhold til mediet. Forteikna i likning 1 
er bestemt av om kjelda og observatøren beveger 
seg mot (+) eller frå (−) einannan. Likninga antek 
òg at rørsla til kjelde og observatør er lineær i 
forhold til einannan. I dette forsøket vil mediet 
lyden forplantar seg i, vere luft. c er difor lydfar-
ten i luft. 

Om ein observatør er i fritt fall vekk frå ei lyd-
kjelde i ro, vil den observerte frekvensen grunna 
dopplerskift vere 

 
f (t) =            f0 = f0 –       t ,

der g er tyngdeakselerasjonen, og t er tida sidan 
observatøren starta å dette. Dette er likninga for 
ei rett linje. Oppførselen til den målte frekvensen 
frå observatøren startar å dette ved tida t0 til hen 

sluttar å dette ved tida t1 er avbilda skjematisk i 
figur 1. 

Ein kan sjå av likning 2 at stigningstalet a til 
den rette linja som oppstår i frekvensutviklinga til 
den dettande observatøren, er proporsjonal med 
tyngdeakselerasjonen som

a = –        .

Eksperiment 
Forsøket som er utført her er ei gjenskaping av det 
som står beskrive i [1]. 

Forsøket vart utført i eit lyddempa rom på 
Fysisk institutt ved Universitetet i Oslo. Det er 
nok ikkje naudsynt for forsøket å ha eit slikt rom 
tilgjengeleg, men ein bør prøve å eliminere bak-
grunnsstøy så mykje som råd. 

Ein høgtalar kopla til ein signalgenerator vart 
plassert i taket på rommet, om lag 2 meter over 
golvet. Høgtalaren vart sett til å sende ut ei kon-
stant sinusbølge på 2000 Hz. 

Ein smarttelefon med ein applikasjon for inn-
speling vart brukt som observatør. Telefonen vart 
sett til å ta opp lyd med ei samplingsfrekvens på 
44100 Hz. Telefonen vart halden like under høg-
talaren før han fekk dette i fritt fall ned til golvet. 
Dette er skjematisk framstilt i figur 2. Lydfilene 
vart lagra i .wav-format. Dette formatet gjer det 
enkelt å analysere innsamla data. I dette førsøket 

vart analysen utført i programmeringsspråket 
Python. På lydopptaket kan ein klart høyre at fre-
kvensen endrar seg på grunn av dopplerskift. 

Lydfarten i lufta vart estimert ved å ta tem-
peraturen i rommet for så å slå opp verdien i ein 
tabell. I dette forsøket vart c = 345,8 m/s brukt. 

Måling av frekvens 
Sidan me vil gjere ei tilpassing til frekvensen 
på lydopptaket, treng me ein metode for å måle 
frekvens. Dette er ikkje så uproblematisk som 
det kanskje synest ved første augekast. Lydfila 
som vart spelt inn på mobilen, inneheld i første 
rekke berre informasjon om utslaget til mikro-
fonmembranen i kvart samplingspunkt. Dette 
må konverterast til frekvensinformasjon. Det viser 
seg at det er umogleg å måle den momentane fre-
kvensen i kvart samplingspunkt. Ein er nøydd til 
å sjå på utviklinga til lyden i eit tidsintervall. Dess 
finare oppløysing ein vil ha på frekvensmålingane, 
dess lengre tidsintervall treng ein. 

I tilfellet der ein har høg signalstyrke over 
bakgrunnen kan ein bruke den såkalla nullkrys-
singsmetoden (zero crossing method). Denne 
metoden går ut på å finne punkta i bølgeforma 
i lydfila der utslaga kryssar frå negative til posi-
tive (eller omvendt) verdiar. Når ein har funne to 
punkt i bølgeforma på kvar side av ei slik kryssing, 
kan ein trekke ei rett linje mellom dei. Punktet der 
denne linja kryssar tidsaksen er ei tilnærming til 
nullpunktet til lydbølga. Avstanden i tid mellom 
eit slikt punkt og neste blir då ei tilnærming til 
perioden til bølga. Dette er framstilt i figur 3. 

I dette forsøket vart lydopptaket av telefonen 
som dett, først skore til slik at kun tida i fritt fall 
er med på opptaket. Deretter vart fila delt inn i 
15 delar. I kvar av desse subseksjonane vart null-

kryssingsmetoden brukt for å finne frekvensen 
ved kvar nullkryssing. Frekvensen i intervallet 
vart tatt som snittet av dei individuelle frekvens-
målingane. 

Resultat 
Frekvensane i dei 15 tidsintervalla er tilpassa med 
ei rett linje. Dette kan ein sjå i figur 4. Stigningstalet 
til denne linja sett inn i likning 3 gir g = 10,1 m/s2. 

Forsøket vart gjentatt fleire gonger. Berre eit 
av resultata (tilfeldig valt) er gjengitt her. Det 
vart ikkje gjort noko estimat av uvisse på den 
målte verdien for g. Både frekvensmålingane og 
verdien for lydfarten vil vere kjelder til uvisse. I 
samanlikning med desse kjeldene til uvisse kan 
luftmotstand reknast å vere neglisjerbar. 

Konklusjon 
I dette forsøket har tyngdeakselerasjonen g vorte 
målt ved hjelp av dopplerskift. Dette kan gjerast 
utan avansert utstyr og med beskjedne pro-
grammeringskunnskapar. Forsøket burde kunne 
gjennomførast av studentar på eit innføringskurs i 
eksperimentalfysikk. Forsøket gir læringsmogleg-
heiter både om dopplerskift, digitalisering av lyd, 
og om programmering. 

Takk 
Ein stor takk til professor Alex Read ved Fysisk 
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utstyr for å gjennomføre forsøket. 
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Introduction
In recent years, smartphones have become packed 
with sensors; microphones, cameras, accelerom-
eters, magnetometers, gyroscopes, thermometers, 
proximity sensors etc. Having become ubiquitous 
in society, smartphones can provide economical 
alternatives to expensive laboratory equipment in 
physics education.

Several papers have examined the use of 
smartphones in acoustic experiments for edu-
cational purposes [1–5]. A common experiment
in physics education is to measure the speed 
of sound c in air, or other gasses, by observing 
standing acoustic waves in a tube. August Kundt 
first described this experiment in 1866 [6]. Such 
an experiment is therefore often referred to as 
Kundt’s tube.

Parolin and Pezzi have shown how the 
experiment can be performed using two smart-
phones [7]. Yavuz has shown how it can be 
done using a single smartphone by partially 
submerging the tube in water [8]. The aim of 
this paper is to attempt to perform the experi-
ment using only a smartphone and a cardboard 
tube, offering an alternative method to the one 
outlined in [8].

Theory
For a sinusoidal wave with constant frequency f  
and wavelength λ, propagating in a medium, the 
speed of sound in said medium is given by:

c = λf . (1)

This means that if we can determine both the 
frequency and wavelength of the wave, we can 
measure the speed of sound in the medium. For 
this experiment, the medium in question is air at 
room temperature and atmospheric pressure.

When an acoustic wave enters through the 
open end of a half-closed tube and hits the closed 
end, part of the wave is reflected back down the 
tube towards the open end. At specific wave-
lengths, the incident and the reflected wave form 
a standing wave. In the antinodes of the stand-
ing wave, the points on the standing wave where 
the amplitude is maximal, the amplitude of the 
standing wave is greater than the amplitude of 
the incident wave alone. The opening of the tube 
will always be a displacement antinode of the 
standing waves. The wavelengths at which the 
standing waves occur are called the resonance 
wavelengths of the tube. For the half-closed tube, 
the resonances occur when the length of the tube 
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equals an odd number of quarter wavelengths of 
the incident wave:

λn =
4L
n

, n = 1, 3, 5, .... (2)

The number n is often referred to as the nth 
harmonic of the tube. L is the length of the tube.

The resonance frequencies fn of the tube, the 
frequencies at which standing waves occur in the 
tube, can be found by combining equations  (1) 
and (2):

fn =
cn
4L

, n = 1, 3, 5, .... (3)

We see that the resonance frequencies as a 
function of n is the equation of a straight line. The 
slope a of this line is given by

a =
c

4L
. (4)

This means that if we can identify the reso-
nance frequencies of the tube and fit a straight line 
to them, we can calculate the speed of sound as

c = 4aL. (5)

It turns out that the acoustic length of the 
tube is slightly longer than its physical length. The 
position of the antinode at the tube’s open end will 
be a small distance outside of the tube. A more 
accurate measurement can therefore be performed 
by adding a correction term δL to the length of the 
tube. Levine and Schwinger found this correction 
term to be δL = 0.61r , where r is the radius of the 
tube [9]. Using this correction to the length of the 
tube, the speed of sound is given by

c = 4a(L + 0.61r). (6)

The theoretical speed of sound in air cT can 
be calculated as

cT =

√
γRT
M

, (7)

where γ  is the adiabatic index of air; R is the 
molar gas constant; T is the temperature of the air 
in Kelvin; and M is its molar mass. Equation (7) 
is only valid for an ideal gas. At room temperature 
and normal atmospheric pressure, air behaves 
close enough to an ideal gas for our purpose.

Setup
The following equipment is used for this experi-
ment: a smartphone with a signal generator app 

and a recording app installed; a cardboard tube, 
closed in one end; a thermometer; a tape measure; 
a computer.

The smartphone used is a Motorola Moto g6 
Plus. There are several apps available both for 
generating audio sine waves and for recording. 
The function generator app must be able to per-
form a sweep over frequencies. The generator 
app used in this experiment is called Function 
Generator and is available in the Google Play 
Store [10]. The recording app must record audio 
with a sampling frequency known to the user. 
The recording app used for this experiment 
is called Smart Recorder, also available in the 
Google Play Store [11]. For users of Apple prod-
ucts, the recording app Voice Recorder Lite: HD 
Audio Recording & Playback [12] and the sig-
nal generator Audio Function Generator [13], 
both available from the Apple App Store, may 
be used.

The cardboard tube used is one intended for 
storing or shipping posters. One end is stopped by 
a plastic plug. The length of the tube is measured, 
using the tape measure, to be 47.6 cm. The inner 
diameter of the tube is measured to be 7.5 cm. The 
tube and the smartphone used in the experiment 
can be seen in figure 1.

The experiment is performed in an ane-
choic chamber at the physics department at the 
University of Oslo. Having access to such a room 
is not critical to the experiment, although one 
should aim to limit background noise as much as 
possible.

The thermometer is not used in the measure-
ment directly but is used to measure the temper-
ature in the room during the experiment. This is 
then used to calculate cT. The temperature in the 
anechoic chamber is measured to be 24 °C.

Procedure
We place the smartphone such that the micro-
phone is located in the opening of the tube. This 
is shown in figure 2. The phone is set to record 
audio with a sampling frequency of 44.1 kHz. 
While the phone is recording, the function gen-
erator app emits a pure sine wave. The sine 
wave sweeps from 50 Hz to 3000 Hz at a rate 
of 1 Hz s−1. The audio recording is stored in 
.wav format. This format makes for easy data 
analysis later.
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Measuring frequency
We need to know the frequencies at which the 
resonances occur. The function generator does 
not store any information on which frequency is 
emitted at which time. Thus, the frequency has to 
be inferred from the recording.

Frequency cannot be instantaneously meas-
ured. The signal must be monitored over some 
period of time to count how many times it oscil-
lates per second.

In this case, where we are trying to identify 
a pure sine wave in a high signal to noise ratio 
environment, we can use the method known as 
the zero crossing method (ZCM) [14]. The ZCM 
works by determining the points in time where the 
waveform of the recording crosses from negative 
to positive values (or vice versa). These points are 
approximated by identifying the points on either 
side of such a crossing and drawing a straight 
line between them. The zero crossing point of the 
signal is approximated as the point at which this 
straight line becomes zero. The distance from one 
such zero crossing point to the next is an approx-
imation of the period of oscillation of the signal. 
The inverse of this period is the frequency of 
the signal. The ZCM procedure is illustrated in 
figure 3.

The samples of the audio recording are split 
into one-second intervals. In each of these inter-
vals, the ZCM is used to find all the zero cross-
ings. The measured frequency in each interval is 
taken to be the mean of all the frequencies meas-
ured from these zero crossings. These frequencies 
are plotted as a function of time in figure 4.

Looking at figure 4, we notice that there are 
a few points where the ZCM clearly fails to iden-
tify the frequency emitted by the function genera-
tor. In our case, these points can be ignored, as 
they are far away from the points where the sound 
intensity of the recording peaks.

The results obtained using the ZCM are 
cross-checked by measuring the frequency in the 
recording using a fast fourier transfer (FFT) in 
each second interval. The most prominent fre-
quency in the FFT spectrogram of each interval 
is taken to be the frequency of the signal. This 
method yields identical results to those obtained 
by the ZCM. However, the FFT method is signifi-
cantly slower and is therefore not used in the final 
analysis.

Data analysis
The start of the audio recording proves too noisy 
to be of use. The low frequencies emitted by the 
function generator are perhaps causing the smart-
phone to vibrate. This region of the recording is 
therefore cut before the analysis.

The data analysis is performed in Python. 
The SciPy python library contains the packages 
needed for reading the .wav file, as well as for 
signal processing and curve fitting [15].

We need to identify the points where the 
sound intensity of the recording is maximal, as 
these maxima will occur at the resonance fre-
quencies of the tube. First, the recording is split 
into the same one-second increments used to 
measure the frequency. The absolute value of the 
digital samples is taken in each of these intervals. 
The peaks in the resulting signal are identified 
using the find_peaks function of the SciPy sig-
nal processing package. The mean height of the 
peaks found in each second increment is taken to 
be the sound amplitude. The resulting distribution 
is shown in figure 5.

Next, the find_peaks function is used once 
more to identify the peaks in the sound ampl-
itude distribution. These peaks are also shown in  
figure 5. The frequencies measured at the times of 

Figure 1. The smartphone and the cardboard tube used 
in the experiment.

L = 47.6 cm

d 
=

 7
.5

 c
m

Microphone

Speaker

Tube Smartphone

Figure 2. Schematic illustrating the placement of the 
tube and smartphone during the experiment.
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these peaks are the resonance frequencies of the 
cardboard tube. These frequencies are recorded in 
table 1 in the results section. It seems one reso-
nance frequency fails to give a peak in the sound 
amplitude distribution. The reason for this is 
unknown. The frequencies at n  =  7 and above are 
therefore shifted up by one.

Results
The resonance frequencies identified in the previ-
ous section  are listen in table  1. A straight line 
is fitted to these frequencies as a function of n 
using the polyfit function of the Python mod-
ule NumPy [16]. The frequencies as well as the 
line of best fit is shown in figure 6. The slope of 
the straight line is used to calculate c using equa-
tion (6). The speed of sound in air at 24 °C is mea-
sured to be c  =  335 m s−1.

Using equation  (7), the theoretical speed of 
sound in an ideal gas at 24 °C is calculated to be 
cT = 345 m s−1. The measured value of c is thus 
within 3% of the theoretical prediction.
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Time

Figure 3. The ZCM illustrated. The black line is the 
pure sine wave signal. The red points are the points 
sampled by the smartphone. The yellow points are the 
zero crossing points used to approximate the frequency 
of the signal.
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Table 1. Frequencies at peak amplitudes.

n Frequency (Hz)

1 544
3 867
5 1130
7 Unknown
9 1865
11 2247
13 2594
15 2906
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Figure 6. Resonance frequencies of the cardboard 
tube with line of best fit.
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Conclusion
In this paper, a method for measuring the speed 
of sound in air has been demonstrated using a 
smartphone and a cardboard tube. The experi-
ment is very economical, and can thus be per-
formed in places with limited access to laboratory 
equipment.

The experiment requires some amount of 
programming. It can provide learning opportuni-
ties for students both in experimental methods as 
well as in data analysis.
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Acronyms and Abbreviations

Acronyms and Abbreviations
AdaBoost Adaptive boosting

ADC ATLAS Distributed Computing

ADD Arkani-Hamed, Dimopoulos, and Dvali

ANN Artificial neural network

ATLAS A Toroidal LHC ApparatuS

AUC Area under curve

BDT Boosted decision tree

BEH Brout-Englert-Higgs

BSM Beyond standard model

CERN The European Organization for Nuclear Research

CI Contact interaction

CMS Compact Muon Solenoid

COM Centre of mass

CR Control region

CSC Cathode strip chamber

DDM Distributed data management

DY Drell-Yan

EFT Effective field theory

EWSB Electroweak symmetry breaking

GGUS Global Grid User Support

Grid Worldwide LHC Computing Grid

GRW Giudice, Rattazzi, and Wells

GUT Grand unification theory

HEPP High energy particle physics
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Acronyms and Abbreviations

HL-HLC High-Luminosity Large Hadron Collider

HLZ Han, Lykken, and Zhang

HVT Heavy vector triplet

IBL Insertable B-Layer

KK Kaluza-Klein

LEAR Low Energy Antiproton Ring

LEP The Large Electron Positron Collider

LHC Large Hadron Collider

LO Leading order

MC Monte Carlo

MDT Monitored drift tube

ML Machine learning

MS Muon Spectrometer

MSSM Minimal supersymmetric standard model

NLO Next-to-leading order

NNLO Next-to-next-to-leading order

PDF Parton density function

PDF Probability density function

pp Proton-proton

PS Proton Synchrotron

PSB Proton Synchrotron Booster

QCD Quantum chromodynamics

QED Quantum electrodynamics

QFT Quantum field theory

ROC Receiver operating characteristic

RPC Resistive plate chamber

RS1 Randall-Sundrum 1
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Acronyms and Abbreviations

SCT SemiConductor Tracker

SM Standard Model

Spp̄S Super Proton-Antiproton Synchrotron

SPS Super Proton Synchrotron

SR Signal region

SSB Spontaneous symmetry breaking

SSM Sequential Standard Model

SVM Support vector machine

SWiFt Sliding window fit

TF Transfer function

TGC Thin gap chamber

TRT Transition Radiation Tracker
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