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Introduction

This thesis is placed in the field of classical algebraic geometry, with particular
focus on the study of spaces of symmetric tensors, namely the spaces of
homogeneous forms of a fixed degree in a given number of variables.

The problems that will be addressed in the forthcoming chapters revolve
around recurring topics such as reciprocal varieties, apolarity, secant varieties
to Veronese embeddings, resolution of rational maps and generalized notions of
rank for symmetric tensors.

All the chapters in Part I explore these themes with both theoretical and
numerical results: in Chapters 1 and 2, we examine the so-called reciprocal
varieties to spaces of catalecticant matrices associated with forms in two variables
of any degree, and with forms in three variables of degree four, respectively; in
Chapter 3, we study the natural rank and the local cactus rank of general forms
in three variables of any degree.

Part II of the thesis consists solely of Chapter 4, which is concerned with
the study of a certain variety that is naturally associated with general cubic
forms in four variables. Specifically, we consider the image closure of a rational
map defined via the action of the general linear group on cubic surfaces and we
explain the first steps towards its resolution, which in turn provide a way to
compute the degree of the image closure.

The content of Chapter 2 is an adaptation and extension of the published
paper:

Homs, R., Cazzador, E., and Brustenga i Moncusí, L., “Inverting
catalecticants of ternary quartics”, Le Matematiche (Catania),

appearing as a contribution in the Special Issue on Linear Spaces of Symmetric
Matrices, see [33].

The content of Chapter 4 is the published paper:

Cazzador, E. and Skauli, B., “Towards the degree of the PGL(4)-orbit
of a cubic surface”, Le Matematiche (Catania),

appearing as a contribution in the Special Issue on Twenty-Seven Questions
about the Cubic Surface, see [17].

The main definitions, ideas and theorems are presented below, following the
ordering of the chapters. Along with that, we give a bit of context to where
these results appear.

1



Introduction

Reciprocal varieties

To any algebraic subvariety of a space of square matrices, we can naturally
associate a variety in terms of its set of inverse matrices. These varieties, called
reciprocal varieties, have recently aroused interest in the context of algebraic
statistics see e.g. [5, 22, 41, 42, 50, 51, 52, 56] and [16], where linear subspaces
of symmetric matrices (LSSM) are considered.

Explicitly, when L is a LSSM in the space Sm of m×m complex symmetric
matrices, its reciprocal variety L−1 is defined as the Zariski closure of its set of
inverses:

L−1 := {A−1 | A ∈ L, det(A) 6= 0} ⊆ Sm.

When L is defined by real linear equations, the intersection of L−1 with the
cone of positive definite symmetric matrices, is a linear concentration model,
that is, a centered Gaussian statistical model, where the covariance matrices
of normal distributions are defined by linear constraints on the entries of their
inverses, see [51].

Therefore, from a statistical perspective, one reason to study these reciprocal
varieties is to measure how well these models fit the data. This information is
encoded by the maximum likelihood degree (ML-degree), that is the number of
complex solutions to the critical equations of the log-likelihood function, defined
by

A 7→ log det(A)− tr(SA),

where S is a random sample covariance matrix of sample data vectors.
From an algebro-geometric point of view, reciprocal varieties have also their

own interest, especially when the chosen LSSM is associated with classically
known geometric objects, as in the case study of Chapters 1 and 2 of this thesis,
namely, spaces of Hankel/catalecticant matrices. Of these varieties, one typically
would like to know their geometric properties, such as their dimension, degree,
rank stratifications, singularities, etc.

In 2016, Michałek, Sturmfels et al. [42] proved the following proposition:

Proposition 0.1 ([42], Proposition 7.2). The reciprocal variety of the Hankel
space associated with binary forms of degree 2k is projectively equivalent to the
Grassmannian of lines G(2, k + 2) in its Plücker embedding. In particular, it is
smooth of degree 1

k+1
(

2k
k

)
.

The key idea of their proof is based on the fact that inverses of Hankel
matrices are Bézoutian matrices. In Chapter 1, we give an accurate analysis of
the geometry of reciprocal varieties to Hankel spaces, starting from Theorem 1.2.1,
where we provide an alternative proof for Proposition 0.1. This is done by simply
using the fact that, for a fixed degree, Hankel spaces associated with different
orders of contractions have the same ideal of r-minors, see [34].

In the same paper [42, Problem 7.5], the authors point out that not much is
known about reciprocal varieties to catalecticant spaces associated with forms in
more than two variables. The first unknown case is the one of ternary quartics,
which we study in Chapter 2. Here, it is more challenging to obtain the defining
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equations of the reciprocal variety: first, the strategy applied for the binary case
cannot be naturally adapted; second, one could make a more direct attempt
and find the equations that the variety needs to satisfy by saturating a suitable
ideal (as we explain in Proposition 1.3.1), but unfortunately, this procedure is
unfeasible with computer algebra systems.

Giving up finding exact equations, we instead focus on computing the most
relevant quantities following a numerical approach. Specifically, we use tools
implemented in the Julia package HomotopyContinuation.jl [12], and obtain:

Theorem 0.2 (Theorem 2.1.3). The reciprocal variety of the catalecticant space
associated with ternary forms of degree 4 is a 14-dimensional variety of degree
85, containing a 27-dimensional linear space of cubic generators in its defining
ideal.

A bridge between the statistical and the geometrical viewpoint comes from
the interpretation of the ML-degree as the degree of a suitable projection map
defined in terms of the orthogonal space to the LSSM, (cfr. Definition 1.1.21).
With this equivalent definition, it is possible to see that the ML-degree of a linear
concentration model is a lower bound for the degree of the reciprocal variety,
where equality is reached if and only if the intersection between the orthogonal
and the reciprocal variety is empty, see [42, Theorem 5.5].

For a generic LSSM, these two invariants are equal [51, Theorem 1] and in
this sense we may say that Hankel spaces have a general behaviour:

Proposition 0.3 ([42], Proposition 7.4). For the Hankel space of binary forms
of degree 2k, the intersection between the orthogonal and the reciprocal variety is
empty. In particular, the ML-degree of the associated linear concentration model
is 1

k+1
(

2k
k

)
.

As for the previous result, we provide an alternative proof of this fact, see
Proposition 1.4.3. Instead, in the case of ternary quartics, we observe a more
special behaviour, giving the first instance of a catalecticant space for which
degree and ML-degree do not coincide:

Theorem 0.4 (Theorem 2.1.3, Proposition 2.3.8). For the catalecticant space
of ternary quartics, the intersection between the orthogonal and the reciprocal
variety is set-theoretically a Veronese surface ν2(P2). Moreover, the ML-degree
of the associated linear concentration model is 36.

The ML-degree is computed with numerical methods using the Julia package
LinearCovarianceModels.jl, [55], while an explicit description of the intersection
is obtained via a more theoretical approach.

A standard setting for the proofs of the results explained so far, as well as
the more technical ones that are to come, consists of viewing reciprocal varieties
as the image closure of linear projective spaces PL ⊆ PSm via a suitable rational
map between projective spaces of symmetric matrices. Here we consider the
adjugate map, defined by

Adjm : PSm 99K P(∧m−1Sm) [A] 7→ [∧m−1A],
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Introduction

that is, by sending matrices to their cofactor matrices. This map clearly extends
the operation of taking the inverse, and therefore it is birational. In particular,
the reciprocal variety of any LSSM is irreducible of the same dimension of the
original space.

The adjugate map has a base locus, consisting set-theoretically of matrices
of corank at least two. By observing that a pair of degenerate matrices (A,B)
in the graph of the adjugate map satisfies AB = 0, we see that its regularization
sends rank-r matrices to corank-r matrices (cfr. [43, Proposition 12]).

Computing the degree of the reciprocal variety is a priori a considerably
harder problem. Indeed, this would require finding a good compactification for
the definition locus, together with a regularization of the original map, usually by
repeatedly blowing up components in the base locus. Then, computing the degree
would amount to understand the class of this compactification in the intersection
ring of the blow-up. A compactification that has been proven to work in many
examples is the one of complete quadrics (see [40] and the recent preprint [21]),
obtained by subsequently blowing up the loci of symmetric matrices of rank 1, 2,
etc.

For certain classes of LSSMs though, this procedure is not necessary, and
one could as well compute the relevant invariants by exploiting the geometrical
peculiarities of the chosen space.

This is partially the case of our special instance of LSSMs, namely the
spaces of square catalecticant matrices (see Definition 1.1.2). First introduced by
Sylvester in [53], they arise in apolarity theory as matrices associated with linear
maps of contractions, see [34]. Specifically, given a homogeneous form of degree
d in n variables, we have a linear map from the space of operators of order k to
the one of forms of degree d− k, defined by derivations. When d = 2k is even,
catalecticant matrices are square matrices of order ( k+n

n ).
In the binary case, catalecticant matrices are often referred to as Hankel

matrices and they are characterized by having constant skew-diagonals. Linear
spaces of Hankel matrices are also called Hankel spaces.

When studying reciprocal varieties of Hankel spaces and catalecticant spaces
of ternary quartics, there is a crucial property that makes the two cases treatable
and somehow comparable: the locus of matrices of rank at most r coincides with
σr(νd(Pn)), namely the r-secant variety of the d-uple embedding of Pn, when
n = 1 and n = 2, d = 4, see [38]. The dimensions of these secant varieties are
well known, thanks to a theorem of Alexander and Hirschowitz (see [1] for the
original reference and [11] for a modern proof).

This characterization of the rank loci allows us to use Terracini’s Lemma [54]
several times when we need to compute relevant dimensions of objects defined
in terms of rank conditions. For arbitrary values of n and d, the above property
almost never holds (failing already for ternary sextics) giving a partial obstacle
to generalize our theory to any space of catalecticant matrices.

We now continue our presentation of the main results, emphasizing the
comparison between the two cases of study. As we already mentioned, the

4



Introduction

adjugate map has a base locus, so one might wonder how base points (small-rank
matrices) are blown up and what their image via the regularization is.

Equivalently, if we denote by ΓL the graph closure of Adjm|PL in the product
PSm × P(∧m−1Sm), and we let π1, π2 be the two projection maps from this
product, then, for any point A ∈ PL we are interested in studying

FL(A) := π2(π−1
1 (A) ∩ ΓL) ⊆ PL−1,

which we call the reciprocal set of A.
For Hankel matrices, reciprocal sets can be understood recursively by studying

matrices corresponding to points belonging to most-degenerate secant spaces to
rational normal curves, namely hyperosculating spaces. We obtain:

Proposition 0.5 (Proposition 1.4.5). For a degenerate rank-r matrix in the
Hankel space of binary forms of degree 2k, its reciprocal set is projectively
equivalent to a Grassmannian of lines G(2, k − r + 2).

The importance of this proposition is twofold: on the one hand, it constitutes
the starting point for our alternative proof of Proposition 0.3. On the other hand,
it allows to compute the dimension of the rank loci in the reciprocal variety. For
these loci it is also possible to compute the degree. This is done by comparison
with dual varieties to secant varieties of rational normal curves, which are known
to be coincident root loci, see [31] and [39]. These results are summarized in

Theorem 0.6 (Theorem 1.4.8). For the Hankel space of binary forms of degree
2k, the locus of matrices of corank at least r in the reciprocal variety is a variety
of dimension 2k − r, union of Grassmannians G(2, k − r + 2) over the r-secant
variety of ν2k(P1). Its degree is:

2r
k + 1− r

(
2k − r
r

)(
2k − 2r
k − r

)
.

When moving to the case of ternary quartics, we do not have an analogous
description of the rank loci in terms of coincident roots. Nevertheless, we succeed
in fully describing reciprocal sets of points. This time, we reduce to study
matrices corresponding to points in most general secant spaces, and we prove
that their reciprocal sets are linear sections of secant varieties to Grassmannians
of lines. More precisely:

Theorem 0.7 (Theorem 2.2.7). For a degenerate rank-r matrix in the catalecti-
cant space of ternary quartics, its reciprocal set is:

(1) An 11-fold of degree 14 in P14, defined by the cubic Pfaffians of a 7 × 7
skew-symmetric matrix, when r = 1;

(2) A cubic hypersurface in P9, defined by the cubic Pfaffian of a 6× 6 skew-
symmetric matrix, when r = 2;

(3) A linear projective space of dimension 5, when r = 3;
(4) A projective plane, when r = 4;

5
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(5) A single point, when r = 5.

The fact that Pfaffian equations show up establishes a common pattern with
the binary case. One interesting difference though, besides the obvious ones, is
that reciprocal sets of points not only vary depending on their rank r, but also
on the kind of r-secant space they lie on (see Proposition 2.2.10).

By knowing the behaviour of single points, we can both explain the
intersection that happens in the above Theorem 0.4 and use Terracini’s Lemma
to compute the dimension of the rank loci in the reciprocal variety:

Proposition 0.8 (Proposition 2.3.1). For the catalecticant space of ternary
quartics, and for r = 1, . . . , 4, the locus of matrices of corank at least r in
the reciprocal variety is a variety of dimension 2r + 13− dim σr(ν4(P2)). The
locus of matrices of corank at least 5 is the 5-fold ν2(P5).

As we pointed out above, intersection theory on complete quadrics offers
a good setting for computing the degree of the reciprocal variety in terms of
the exceptional divisor classes resulting from the blow-up of the rank loci of
symmetric matrices. In particular, a closed formula can be given as soon as we
can specify the class of the proper transform of the LSSM, intersected with the
exceptional divisors. In this formula, only some classes give actual contibution
to the degree, namely the ones that are not contracted by the regularization of
the adjugate map.

When the LSSM in question is the catalecticant space of ternary quartics,
the above Proposition 0.8 implies that only one of these classes give actual
contribution, namely the one of the blown-up rank-1 locus. Recalling how the
adjugate map affects the rank of points in the image, we deduce:

Theorem 0.9 (Theorem 2.3.4). For the catalecticant space of ternary quartics,
the degree of the reciprocal variety is equal to the degree of its rank-5 locus,
divided by 6.

One final important result that marks the difference between the two study
cases is about singularities.

Theorem 0.10 (Theorem 2.4.1). The reciprocal variety to the catalecticant space
of ternary quartics is singular along its locus of rank at most 2.

The proof of this fact uses a hybrid between geometric and numerical
techniques: for rank-1 points we show that the tangent cones to the reciprocal
variety are too much big (in fact, they span the entire space of symmetric
matrices). For for rank-2 points we use instead a numerical procedure.

Considering all the information gathered from our analysis, especially the
similarities between Proposition 0.5 and Theorem 0.7, we conclude with the
following conjecture:

Conjecture 0.11 (Conjecture 2.4.9). The reciprocal variety to the catalecticant
space of ternary quartics is defined by exactly 27 cubic equations which are
Pfaffians of at least two 7× 7 skew-symmetric matrices.
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Natural rank, local cactus rank

The common thread connecting the first two chapters with Chapter 3 is that of
catalecticant matrices and secant varieties of d-uple embeddings, with a focus on
apolarity and diverse notions of rank for symmetric tensors, namely the natural
rank and the local cactus rank.

To motivate and understand the interest for the study of these invariants, we
take a step back to the more classical notion of tensor rank. For a symmetric
tensor, or equivalently, a homogeneous form F of degree d in n+ 1 variables, its
tensor rank, is the minimal integer r such that we can write

F = ld1 + ld2 + · · ·+ ldr ,

where l1, . . . , lr are linear forms.
Symmetric tensors of rank at most r are parametrized by the r-secant variety

to the d-uple embedding νd(Pn), and the rank of a general symmetric tensor is
the minimal order of secant variety filling up the ambient space. The problem
of determining the dimension of these secant varieties is classical and solved by
Alexander-Hirschowitz’s theorem.

The notion of r-secant variety has been generalized in [15] by the one of
r-cactus variety, defined for any projective variety as the closure of the union of
the linear spaces spanned by its subschemes of length r. The cactus rank of a
point is the minimal length of a subscheme whose linear span contains it. If the
minimum is taken over local subschemes, namely those that are supported at a
single point, we talk about the local cactus rank.

For d-uple embeddings, cactus varieties can be better understood via the
apolarity action (see Definition 1.1.1), that is, the action of polynomial algebras
to their dual algebras, induced by the contractions associated with catalecticant
matrices.

Then, for any given polynomial, its apolar ideal is the annihilator with respect
to the apolarity action, and its apolar schemes are those whose defining ideal
contain the apolar ideal.

The relation between all these notions is explained by Apolarity Lemma [34],
stating that the cactus rank of a homogeneous form is equal to the minimal
length of a zero-dimensional subscheme apolar to it.

For d-uple embeddings of P2, cactus and secant varieties coincide [15, Theorem
1.6], hence for general ternary forms the cactus rank is equal to the rank. Note
that this is not always the case: for forms in more variables, the cactus rank may
be less than the rank [6, Theorem 1] and possibly equal to the local cactus rank.

In Chapter 3, we show that for general ternary forms the local cactus rank is
strictly greater than the rank. Our investigation starts by observing as in [6] that
a natural class of zero-dimensional local apolar schemes to a form is described
by the apolar ideals of its dehomogenizations at different linear forms. We call
natural rank the minimal length of such schemes.

The first question we address is: What is the natural rank of a general form
in a given number of variables and fixed degree?

7



Introduction

For general binary forms of degree d, the natural rank is equal to d. The
proof is straightforward and it is simply based on the fact that zero sets of these
forms consist of distinct points (cfr. Proposition 3.2.1).

For forms in more than two variables, only some partial results are known,
see [32] and Proposition 3.2.2, where the difficulty in generalizing the procedure
leads back to finding normal forms for equations of plane curves.

In this thesis we offer a different approach to the same question, which yields
a definitive answer in the case of ternary forms:

Theorem 0.12 (Theorem 3.3.1). The natural rank of a general ternary form F
of degree d is:

nat(F ) =
⌊
d(d+ 4)

4

⌋
.

When d = 2k + 1 is odd, the natural rank is realized at 3(k+1)(k+2)(3k2+3k+1)
2

linear forms. When d = 2k is even, the natural rank is realized at a curve of
degree 3k(k + 1) in the space of linear forms.

A starting point that allows us to build a good theoretical setup is based
on associating catalecticant block matrices to inhomogeneous forms. More
precisely, for a homogeneous form F ∈ k[x, y, z] of degree d, we may consider
its dehomogenization f ∈ k[x, y] with respect to z. Then, the matrix we are
attaching to f is the square catalecticant matrix of the form zdF , of degree 2d.

Using the correspondence that Macaulay established between polynomials
and Artinian local Gorenstein algebras, the problem of computing the length of
a local apolar scheme translates into to knowing the values of the corresponding
Hilbert function.

With the Key Lemma 3.1.11, we show that these Hilbert functions are
determined by the rank of suitable submatrices of the above catalecticant
block matrix. As a consequence, we can give equations for the varieties of
inhomogeneous polynomials with a given Hilbert function.

To prove Theorem 0.12, we reduce to showing that the dehomogenization
of a general ternary form has Hilbert function of length equal to the maximal,
decreased by one. This in turn allows us to reformulate the problem in terms of
bundle maps that are fiberwise catalecticant.

The count of the linear forms realizing the natural rank is made by computing
classes for the degeneracy loci of these bundle maps via Porteous’ Theorem [45].

Afterwards, we proceed with the question: What is the local cactus rank of a
general form in a given number of variables and a fixed degree? This is inspired
by [7], where the same problem has been solved for quaternary cubics.

Our main result concerns the ternary case, giving a closed formula for small
degrees:

Proposition 0.13 (Proposition 3.4.1). The local cactus rank of a general ternary
form F of degree d ≤ 5 is:

lcr(F ) =
⌈
d(d+ 3)

4

⌉
.
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The complexity of the required computations is a partial obstacle to make
the theory more systematic and generalize the result, but in fact we conjecture
that the above formula holds for any degree, see Conjecture 3.4.15.

A result that comes useful when studying problems of this kind is provided
by [7, Proposition 4]: for a homogeneous form F of degree d, the zero-dimensional
local apolar schemes of minimal length are affine apolar schemes of higher degree
polynomials whose degree ≤ d part (tail) is a dehomogenization of F .

We are particularly interested in the tails coming from polynomials with
unitary Hilbert function, that is, equal to (1, 1, . . . , 1). Indeed, thanks to the
Key Lemma, we can assume without loss of generality that:

Proposition 0.14 (Proposition 3.4.2). The local cactus rank of a homogeneous
form is computed by polynomials with unitary Hilbert function.

This motivates Lemma 3.4.5, which gives recursive explicit equations for
the varieties of polynomials in two variables with unitary Hilbert function and
with a given space of linear partial derivatives. The indeterminates for these
equations are the coefficients of polynomials. Having very manageable equations,
it is immediate to deduce the dimension of these varieties.

Moreover, considering inhomogeneous polynomials in two variables as
dehomogenizations of ternary forms with respect to some linear form, we can
count the choice for this linear forms, as well as the choice for the space of linear
partial derivatives, obtaining:

Proposition 0.15 (Proposition 3.4.7). The variety of homogeneous ternary forms
of degree e admitting a dehomogenization with unitary Hilbert function has
dimension 2e+ 2.

The degree-d tails of polynomials in these varieties are obtained by projecting
them to the space of polynomials of degree d ≤ e. The local cactus rank of a
general ternary form of degree d is therefore the minimal e such that this map is
dominant.

One way to understand whether the projection is dominant or not, is to
consider the recursive explicit equations mentioned above and eliminate all the
indeterminates corresponding to coefficients of higher degree monomials. This
can be reasonably accomplished for small degrees, bringing the following:

Proposition 0.16 (Proposition 3.4.11). When d ≤ e ≤ 10, the variety of
homogeneous ternary forms of degree d admitting as dehomogenization a tail of
a degree-e polynomial with unitary Hilbert function has dimension equal to

min
{(

d+ 2
2

)
− 1, 2e+ 2

}
.

This immediately implies Proposition 0.13. For example, when d = 5, the
minimal value of e for which the map is dominant on the P20 of ternary quintics
is e = 9. The length of the local apolar scheme of a polynomial of degree 9 and
unitary Hilbert function is 10, which is also the number predicted by the closed
formula for the local cactus rank.
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Linear orbits of cubic surfaces

The last chapter of this thesis moves the focus on forms of degree three in four
variables, namely polynomials whose zero sets define cubic surfaces.

The interest in the geometry of these objects has a very long history, especially
since 1849, when Cayley and Salmon proved that every smooth cubic surface in
the complex projective 3-space contains exactly 27 lines.

In the special issue [46], a list of questions on the cubic surface is presented,
aiming to revisit its geometry from a traditional to a more advanced perspective.

The study carried out in Chapter 4 addresses the first of these questions:
"Given a generic homogeneous cubic F in x, y, z, w, what can we say about the
orbit closure PGL(4) · F? What is the degree of this variety in P19? Can we
determine some of its defining polynomial equations?"

The question about determining the degree of the orbit closure of a general
form of degree d in n+ 1 variables was already addressed by Enriques and Fano
in 1897, who solved the problem for n = 1 (points in the projective line) in some
simple cases [25]. Their work was completed later in the 90’s, in a paper from
Aluffi and Faber [2], who next provided an answer also for the case n = 2 (plane
curves), see [4] and [3].

The next interesting case is n = d = 3. For a given cubic surface V (F ), we
consider the map

φ : PHom(C4,C4) 99K PSym3(C4)∗,

which is induced by the action of the linear group and defined by pre-composition.
Its image closure is precisely PGL(4) · F and a way to compute its degree is to
find an explicit resolution of the base locus.

We outline the first steps towards this resolution of φ by adapting the
techniques developed by Aluffi and Faber. Each step consists in successively
describing the support of the base locus and then blowing up its components
obtaining a new induced rational map.

The findings in this chapter quickly become quite technical, so we mention
here only one result, which also makes clear how the role of the 27 lines shows
up in the description of the base locus of φ:

Proposition 0.17 (Proposition 4.3.1). The base locus of φ is supported at the
union of two closed components B and C, with B ' P3×V (F ) and C ' ∪27

i=1Ci,
where the Ci’s are the irreducible components of C and each Ci is isomorphic to
P7.

The problem of computing the degree of the orbit closure of a general cubic
surface was also considered by Brustenga i Moncusí, Timme, and Weinstein [14],
who obtained the number 96120 using numerical techniques.

More recently, in 2021, Deopurkar, Patel and Tseng settled a definitive answer,
confirming the numerically computed number using equivariant geometry [20].
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Chapter 1

Inverting Hankel matrices
In this chapter, we introduce reciprocal varieties and study the case of spaces of
square Hankel matrices. In [42], it is proven that reciprocal varieties of these
spaces are projectively equivalent to Grassmannian of lines. We give a new proof
of this fact (Theorem 1.2.1). We also provide a new proof for the ML-degree
of Hankel spaces (Proposition 1.4.3). This relies on the fact that reciprocal
sets of degenerate points (Definition 1.1.12) are also Grassmannian of lines, of
increasingly smaller dimension, as the rank of the point increases. The relation
with duality of coincident root loci, allows us to give closed formulas for both
dimension and degree of the rank loci in the reciprocal variety (Theorem 1.4.8).

In Section 1.1, we set all the definitions, in Sections 1.2 and 1.3 we study the
reciprocal variety and the reciprocal sets of points for Hankel matrices. Finally,
in Section 1.4 we study the geometry of the rank loci in the reciprocal variety.

1.1 Preliminaries

In this section, we fix all definitions and notation for the rest of the chapter.
First we introduce apolarity and catalecticant matrices, also known as Hankel
matrices when specializing to the case of binary forms. Secondly, we define
reciprocal varieties via rational maps. For points in the base locus, we define
their reciprocal sets by taking their preimage in the graph and projecting to the
second factor. Thirdly, we recall the basic facts about projective duality and use
this to compare the graphs of our rational maps with conormal varieties. Finally,
we define an inner product on symmetric matrices: orthogonal spaces induce
certain projection maps and, in turn, give the geometric definition of ML-degree.

1.1.1 Apolarity and catalecticant matrices

Let V be an (n+ 1)-dimensional vector space over C. We may choose a basis
x0, . . . xn for V and a dual basis ∂0, . . . , ∂n for the dual vector space V ∗. The
graded symmetric algebra S(V ∗) = C[∂0, . . . , ∂n] acts on S(V ) = C[x0, . . . , xn]
via the following action:

Definition 1.1.1. The apolarity action is defined as:

SkV ∗ ⊗ SdV → Sd−kV

(∂α, xβ) 7→ ∂α ◦ xβ :=
{
xβ−α if β ≥ α
0 otherwise,

where ∂ = (∂0, . . . , ∂n), x = (x0, . . . , xn), with multi-indices α = (α0, . . . , αn),
β = (β0, . . . , βn) satisfying

∑n
i=0 αi = k and

∑n
i=0 βi = d.

13



1. Inverting Hankel matrices

Apolarity action, also commonly known as contraction, was first introduced
by Sylvester [53] and it has been widely studied as it is the key tool in the
development of the theory of apolar schemes and tensor decomposition (see [8]
for a nice overview).

When a homogeneous form F ∈ SdV is fixed, the apolarity action induces a
linear map for every k ≤ d, which we call the k-th catalecticant morphism of F :

γk,F : SkV ∗ → Sd−kV
D 7→ D ◦ F .

For every choice of ordered bases B∂,k, Bx,d−k for SkV ∗ and Sd−kV , there is
an associated matrix to γk,F . Once the bases for V and V ∗ are fixed, then their
symmetric powers canonically inherit monomial bases. Our standard choice for
the ordering will be the reverse lexicographical one, that is:

B∂,k = {∂k0 , ∂k−1
0 ∂1, ∂

k−2
0 ∂2, . . . , ∂n−1∂

k−1
n , ∂kn}

Bx,d−k = {xd−k0 , xd−k−1
0 x1, x

d−k−2
0 x2, . . . , xn−1x

d−k−1
n , xd−kn }.

(1.1.1)

Definition 1.1.2. For any homogeneous form F ∈ SdV , its k-th catalecticant
matrix, denoted by Cat(k, F ), is the matrix associated with the catalecticant
morphism γk,F , with respect to the standard bases (1.1.1).

Remark 1.1.3. When F has degree d, its k-th catalecticant matrix has size
m′ ×m, with m = ( k+n

n ) and m′ = ( d−k+n
n ). If we denote with i = (i0, . . . , in)

and j = (j0, . . . , jn) the multiindices for the monomial bases (1.1.1), we see that
the entries of Cat(k, F ) are simply the coefficients of F , arranged so that in
position (i, j) we find the coefficient for the monomial xi0+j0

0 · · ·xin+jn
n . If d

is even, by taking k = d/2, we obtain a square catalecticant matrix, which in
particular is a symmetric matrix.

Example 1.1.4. For the binary cubic form F = x3
0 + 2x2

0x1 − x0x
2
1, the second

catalecticant matrix is

Cat(2, F ) =

 1 2
2 −1
−1 0

 .
♦

Remark 1.1.5. It is also common to define apolarity and catalecticant matrices
in terms of standard differentiation. With this theory, the variety of forms with
rank-1 catalecticant matrix is a Veronese variety and consists of all forms which
are powers of linear forms. Using contraction, we have an equivalent theory,
where the rank-1 locus is still projectively equivalent to a Veronese variety, but
it does not describe powers of linear forms anymore.

From now on, every reasoning about the tensor rank of a form – namely, the
number of summands in its minimal expression as sum of powers of linear forms –
will tacitly imply that we are operating under this identification. This is needed
mainly in Lemma 1.4.6.

14



Preliminaries

Let us now consider a degree-d form in n+ 1 variables with indeterminate
coefficients

F =
∑

i0+···+in=d
a(i0,...,in)x

i0
0 · · ·xinn . (1.1.2)

Then the k-th catalecticant morphism of F is associated with a catalecticant
matrix with indeterminate entries a(i0,...,in), parametrizing the linear space of
all catalecticant matrices in the family F .

Definition 1.1.6. The k-catalecticant space of (n+ 1)-ary forms of degree d is

Cat(k, d− k;n+ 1) := {Cat(k, F ) | F ∈ SdV }.

When d is even and k = d/2, we simply write Cat(k, n + 1) instead of
Cat(k, k;n + 1). This is a linear subspace in the space of m × m symmetric
matrices.

In this exposition, the main focus is on catalecticant matrices of binary forms
of even degree. Their square catalecticants are often also known as Hankel
matrices, characterized as those matrices with constant skew-diagonals. Note
that this characterizarion is correct when chosing the standard bases B∂,k and
Bx,d−k as in (1.1.1). We are going to see that in general, what remains invariant
is the rank filtration of the Hankel space, namely the filtration determined by
its loci of matrices of rank at most r.

Let us denote with Ir+1(Cat(k, d − k;n + 1)) the ideal generated by the
(r+ 1)× (r+ 1) minors of Cat(k, n− k;n+ 1). The following lemma allows us to
compare the rank loci of k-catalecticant matrices associated with binary forms
of a fixed degree d, whenever the size of the matrices is good enough:

Lemma 1.1.7 ([28], Lemma 2.3). Let 2r ≤ d and let u, v be integers which satisfy
r ≤ u ≤ d− u and r ≤ v ≤ d− v. Then

Ir+1Cat(u, d− u; 2) = Ir+1Cat(v, d− v; 2).

In some cases, ideals of minors of catalecticant matrices define secant varieties
of Veronese embeddings. This is certainly the case of Hankel matrices of binary
forms, see Proposition 1.1.8 below (and [38] for a complete account). Here, by
d-th Veronese embedding of Pn, we mean the image of Pn via the map

νd : Pn −→ P( d+n
n )−1

[x0 : · · · :xn] 7−→ [xd0 :xd−1
0 x1 : · · · :xn−1x

d−1
n :xdn].

When n = 1, the image νd(P1) is also referred to as the rational normal curve of
degree d.

For a projective variety X ⊆ PN , its r-secant variety, denoted by σr(X), is
the Zariski closure of the union of all linear spaces spanned by r points lying on
X, in symbols:

σr(X) :=
⋃

x1,...,xr∈X
〈x1, . . . , xr〉 ⊆ PN .

15



1. Inverting Hankel matrices

The following result was already known to Sylvester (see [23, Proposition
1.4.3] for a modern proof):

Proposition 1.1.8. Let C = νd(P1) ⊂ Pd be the rational normal curve of degree
d and let 2r ≤ d. Then Ir+1(Cat(k, d− k; 2)) is the graded ideal of the r-secant
variety σr(C).

Later in the next sections we will study properties related to secant varieties
of rational normal curves. Many times we will reduce to prove the statements
in the case of the most degenerate secant spaces, as they carry a very natural
geometric feature:

Remark 1.1.9. Let C be as above and let S ⊂ Pd an r-secant space to C. If
S ∩ C is supported at a single point P , then S is the r-th osculating space to C
at P .

The following lemma is a classical result due to Terracini [54], and as a key
tool it will be repeatedly referred to throughout this presentation.

Lemma 1.1.10. (Terracini’s Lemma) Let X ⊆ Pn be an irreducible projective
variety and let p1, . . . , pr be general linearly independent points of X. Then for
a general point p ∈ 〈p1, . . . , pr〉 on the secant variety σr(X), we have

Tpσr(X) = 〈Tp1X, . . . , TprX〉.

1.1.2 The reciprocal variety

We use the following compact notation for the linear space of m×m symmetric
matrices and its dual:

Sm := S2(Cm) (Sm)∗ := S2(Cm)∗,

viewed as affine linear spaces of dimension m(m+1)
2 .

For every linear subspace L ⊆ Sm, we would like to describe the Zariski
closure of its set of inverses, namely:

L−1 := {A−1 | A ∈ L,det(A) 6= 0} ⊆ Sm. (1.1.3)

We formulate the problem in a projective setting. We first observe that,
for every invertible matrix A, we have Adj(A) = det(A)A−1, where Adj(A) is
the adjugate matrix of A. In particular, if det(A) 6= 0, the classes [A−1] and
[Adj(A)] represent the same point in the projective space PSm. This motivates
the following definitions:

Definition 1.1.11. For every integer m, the adjugate map of m×m symmetric
matrices is the rational map

Adjm : PSm 99K (PSm)∨

[A] 7→ [∧m−1A].
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The target space (PSm)∨ of the adjugate map is the projective dual of PSm,
see the next section for more details on dual spaces. Its place in Definition 1.1.11
makes sense, since there is a canonical isomorphism P

(
S2(
∧m−1 Cm)

)
' (PSm)∨.

Explicitly, for every i = 0, . . . ,m, we have a pairing∧m−i(Cm)×
∧i(Cm) →

∧m(Cm) ' C
(α, β) 7→ α ∧ β,

(1.1.4)

where the right-hand side isomorphism is determined by the choice of a non-zero
constant. The pairing (1.1.4) is perfect, which means that we have isomorphism
∧m−i(Cm) ' ∧i(C)∗. Taking i = 1 and applying the functor of symmetric
powers, we obtain isomorphism S2(∧m−1Cm) ' S2(Cm)∗, that is canonical
modulo constants.

Note that the adjugate map extends the operation of inverting matrices: it
is well-defined not only for full-rank matrices, but also for corank-1 matrices.
Moreover, for every full rank matrix A, we have Adjm(Adjm(A)) = det(A)m−2A,
so the adjugate map is in fact a birational map. We denote its inverse by

Adj∨m : (PSm)∨ 99K PSm.

For the sake of brevity, from now on we will drop the square brackets in [A]
and we will simply write A for a point in the projective space.

Let PL be a projective linear subspace of PSm. We can define the projective
analogous of (1.1.3) as a subvariety of (PSm)∨:

Definition 1.1.12. let PL be a linear subspace of PSm, with generic element of
rank m. The reciprocal variety of PL is defined to be:

PL−1 := Adjm(PL◦) ⊆ (PSm)∨,

where PL◦ denotes the definition locus of Adjm in PL.

As subvarieties of spaces of matrices, PL and PL−1 inherit a rank filtration.
Let Dr

Sm and Dr
(Sm)∗ denote the determinantal varieties of matrices of rank at

most r in PSm and (PSm)∨ respectively. Studying the geometry of PL−1∩Dr
(Sm)∗

requires a deeper understanding of the fibers in the graph of Adjm. So let us
denote by ΓL the closure of the graph of Adjm|PL in the product PSm × (PSm)∨
and let π1, π2 be the two projection maps from this product. Then, for every
rank-r matrix A ∈ PL, we define the set

FL(A) := π2(π−1
1 (A) ∩ ΓL) ⊆ PL−1,

which is closed since π2 is a closed map. When r = m, then FL(A) = FSm(A) =
Adjm(A) is a point, whose product with A is (proportional to) the identity. More
generally:

Definition 1.1.13. For a closed irreducible subvariety X ⊆ PL, its L-reciprocal
set is defined as:

FL(X) :=
⋃
A∈X

generic rank

FL(A) ⊆ PL−1. (1.1.5)
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1. Inverting Hankel matrices

With this definition we have FL(L) = PL−1.

Remark 1.1.14. As a function of L, the operator FL(X) preserves inclusions:
for every L1 ⊆ L2 and for every X ⊂ L1, we have FL1(X) ⊆ FL2(X), where
equality can possibly hold also when the inclusion of L1 in L2 is strict.

1.1.3 Relation with the conormal variety

Let V be an (n + 1)-dimensional vector space over C and Pn = PV its
associated projective space. Its dual projective space, denoted by (Pn)∨ := PV ∗,
parametrises hyperplanes in Pn and viceversa.

More generally, the linear span of points in (Pn)∨ corresponds by duality to the
intersection of the corresponding hyperplanes of Pn. In particular, the projective
dual of an r-dimensional linear space of Pn is a linear space of dimension n−r−1
in (Pn)∨.

Projective duality is defined more generally for closed irreducible subvarieties
X ⊂ Pn. A hyperplane H ⊂ Pn is said to be tangent to X if there exists a
smooth point x ∈ X such that x ∈ H and we have containment TxH ⊃ TxX of
the corresponding tangent spaces.

Definition 1.1.15. The projective dual variety of X, denoted by X∨ is the Zariski
closure of the set of all points [H] ∈ (Pn)∨ such that H is tangent to X.

Definition 1.1.16. For any closed irreducible variety X ⊂ Pn, its conormal
variety, is defined to be

C(X) := { (x, [H]) ∈ Pn × (Pn)∨ | H is tangent to X at x)}.

If we denote with π1, π2 the two projection maps from Pn× (Pn)∨, then from
Definition 1.1.15, we have π2(C(X)) = X∨.

Projective duality has been studied for the determinantal loci of spaces of
matrices (see [26] for the general case and [43] for the symmetric case).

For symmetric matrices, we clearly have P(Sm)−1 = (PSm)∨, so the graph of
the adjugate map is given by

ΓSm = {(A,B) ∈ PSm × (PSm)∨ | AB = λ · Idm, for some λ ∈ C}. (1.1.6)

The constant of proportionality λ can possibly be zero. For example, when X is
a closed irreducible subvariety of PSm of generic rank r < m, then the matrices
B satisfying the equations in (1.1.6) have rank m− r and the preimage of X in
the graph is given by

π−1
1 (X) ∩ ΓSm = {(A,B) ∈ X ×Dm−r

(Sm)∗ | AB = 0}. (1.1.7)

When X = Dr
Sm , these preimages are conormal varieties:

Proposition 1.1.17 ([43], Proposition 12). For every r < m, the irreducible
variety

{(A,B) ∈ Dr
Sm ×Dm−r

(Sm)∗ | AB = 0}
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coincides with the conormal variety C(Dr
Sm). In particular, the projective dual

variety Dr
Sm
∨ ⊂ (PSm)∨ is isomorphic to Dm−r

Sm .

Remark 1.1.18. Proposition 1.1.17 allows to understand the geometry of the
reciprocal sets FSm(X): if X is a closed irreducible subvariety of PSm of generic
rank r < m, then (1.1.7) implies

FSm(X) = {B ∈ Dm−r
(Sm)∗ | AB = 0 for some A ∈ X}.

Equivalently, FSm(X) is the closure of the set of hyperplanes in PSm tangent to
Dr

Sm at smooth points of X.
If X is a point of rank r, then FSm(X) is a projective linear subspace of

(PSm)∨ of dimension (m−r)(m−r+1)
2 − 1 and generic rank m− r.

If X = Dr
Sm , we have FSm(Dr

Sm) = (Dr
Sm)∨ = Dm−r

(Sm)∗ .

Corollary 1.1.19. For every r = 1, . . . ,m the following set-theoretical equality
holds:

FL(PL ∩Dr
Sm) = PL−1 ∩Dm−r

(Sm)∗ .

Proof. The inclusion from the left to the right-hand side of the equation follows
by the definition given in (1.1.5) and Remark 1.1.18. The other inclusion is a
consequence of Biduality Theorem ([26, Theorem 1.1]). �

1.1.4 Orthogonality

The space of symmetric matrices is equipped with an inner product, defined for
any two matrices X1, X2 ∈ Sm as

X1 •X2 := tr(X1X2).

This is in fact the standard component-wise inner product, after identifying
X1, X2 with two points in Cm2 . The choice of this product fixes an isomorphism
φ : Sm ∼−→ (Sm)∗, so, for every X ∈ Sm and Y ∈ (Sm)∗, we define

X • Y := X • φ−1(Y ).

Then, for every linear subspace PL ⊆ PSm, we can regard its orthogonal space
as a subspace of (PSm)∨:

PL⊥ := {Y ∈ (PSm)∨ | X • Y = 0,∀X ∈ PL}.

With this definition, the orthogonal space PL⊥ ⊆ (PSm)∨ is the projective
dual to PL ⊂ PSm, parametrizing hyperplanes of PSm containing PL. In
particular, if dim(PL) = d, then PL⊥ has codimension d+ 1 in (PSm)∨.

For linear spaces, we will keep using the orthogonal notation PL⊥ to indicate
the projective dual to PL, so that we can distinguish it from the dual projective,
which instead will be denoted by (PL)∨.

Remark 1.1.20. When L is a 1-dimensional linear space, then A = PL is a point
in (PSm)∨, and it is easily seen from the definitions that FSm(A) ⊆ A⊥.
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The inclusion of a (d+ 1)-dimensional linear subspace L ⊂ Sm induces by
duality a canonical isomorphism L∗ ' (Sm)∗/L⊥. We would like to consider the
natural projection map

πL : (PSm)∨ 99K P((Sm)∗/L⊥) ' PL∨, (1.1.8)

which sends hyperplanes of PSm to hyperplane sections of PL. After suitable
identifications, πL can be understood as the projection with center PL⊥ to any
d-dimensional linear subspace of (PSm)∨ disjoint from it.

The map πL is well-defined in the set-theoretical complement (PL⊥)c and by
surjectivity its restriction to PL−1 is generically finite-to-one.

Definition 1.1.21. Given a linear subspace PL ⊆ PSm, its maximum likelihood
degree, denoted by ML-deg(PL), is the degree of the generic fiber of πL restricted
to PL−1 ∩ (PL⊥)c.

The relation with the reciprocal degree is explained in [42] in the more general
context of exponential varieties. In our case, we may say:

Theorem 1.1.22 ([42], Theorem 5.5). For every linear space of symmetric
matrices PL, we have

ML-deg(PL) ≤ deg(PL−1)

and equality holds if and only if PL−1 ∩ PL⊥ = ∅.

Remark 1.1.23. For any linear subspace PL ⊆ PSm, the orthogonal space PL⊥
does not contain any full-rank point of PL−1. Indeed, if B was a matrix of
rank m in PL−1 ∩ PL⊥, then by definition, it would satisfy both the relations
AB = Idm and tr(AB) = 0 for some matrix A ∈ PL of rank r, which is not
possible.

1.2 Grassmannians as reciprocal varieties: a new proof

Our main object of study is the projective space of catalecticant matrices
PCat(m− 1, 2) ⊂ PSm associated with binary forms of degree d = 2m− 2, that
is, forms of the kind

F =
d∑
i=0

a(d−i,i)x
i
0x
d−i
1 .

Reciprocal varieties of these spaces are Grassmannians of lines. This is proven
in [42, Proposition 7.2] using Bézout matrices. We give here an alternative proof
of the same result:

Theorem 1.2.1. The reciprocal variety of PCat(m − 1, 2) is a Grassmannian
G(2,m+ 1) in its Plücker embedding. In particular, its degree is 1

m

( 2m−2
m−1

)
.

Proof. The linear space Cat(m − 1, 2) consists of all the m ×m catalecticant
matrices associated with binary forms of degree d = 2(m− 1). By Lemma 1.1.7,
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Im−1(Cat(m − 1, 2)) = Im−1(Cat(m − 2,m; 2)) so the reciprocal variety of
Cat(m− 1, 2) can be equivalently defined as the image closure of

PCat(m− 2,m; 2) 99K (PSm)∨, A 7→ ∧m−1A.

This defines a d-dimensional irreducible subvariety of the Grassmannian G(m−
1,m+1) in its Plücker embedding, which is also irreducible of dimension d, so they
coincide. The statement follows from identifying G(m− 1,m+ 1) ' G(2,m+ 1)
by duality. The degree formula is classical and due to Schubert [48]. �

Example 1.2.2 (Binary sextics). When m = 4, we have the catalecticant space
Cat(3, 2) associated with binary forms of degree 6. Matrices in this space have
parametric form 

a(6,0) a(5,1) a(4,2) a(3,3)
a(5,1) a(4,2) a(3,3) a(2,4)
a(4,2) a(3,3) a(2,4) a(1,5)
a(3,3) a(2,4) a(1,5) a(0,6)


The reciprocal variety is the image closure of

PCat(3, 2) 99K (PS4)∨, A 7→ ∧3(A),

but since I3(Cat(3, 2)) = I3(Cat(2, 4; 2)), we may equivalently parametrize it
with the 3-minors of:a(6,0) a(5,1) a(4,2) a(3,3) a(2,4)

a(5,1) a(4,2) a(3,3) a(2,4) a(1,5)
a(4,2) a(3,3) a(2,4) a(1,5) a(0,6)

 ,
which means studying the image of

PCat(2, 4; 2) 99K (PS4)∨, A 7→ ∧3(A).

In particular, matrices in Cat(2, 4; 2) have size 3×5, so the above map produces a
subvariety of G(3, 5) in its Plücker embedding. We have two irreducible varieties
of dimension 6, one contained in to the other, so they must be the same. ♦

1.3 Reciprocal sets of points

In this section we collect a series of technical lemmas regarding the reciprocal
sets FL(A) of catalecticant matrices of given rank. The mantra is that most of
the statements can be proved recursively by induction on the size of the matrices.
This applies especially to Proposition 1.4.5, which shows that also the reciprocal
set of a single matrix is a Grassmannian of lines.

For any linear subspace of symmetric matrices, one can obtain the defining
equations for the reciprocal variety via saturation of certain ideals. Although
these operations become soon unfeasible with symbolic computation programs
such as Macaulay2, it is possible to use this result to verify statements on
reciprocal varieties and reciprocal sets of points in small examples (binary
quartics, sextics, octics).

21



1. Inverting Hankel matrices

Proposition 1.3.1. Let PL ⊆ PSm be any linear subspace of matrices whose
generic rank is m. Then

PL−1 = FSm(PL) \Dm−1
(Sm)∗ ,

where FSm(PL) and Dm−1
(Sm)∗ denote the Sm-reciprocal set of PL and the locus of

degenerate matrices in (PSm)∨, respectively.

Before proving the statement, we observe that PL−1 = FL(PL), and that
FSm(PL) can also be identified with the pull-back of PL via the dual map Adj∨m.
If we denote with I = I(PL−1) and J = I(FSm(PL)) the defining ideals of these
two reciprocal sets, and with detS the determinantal polynomial defining Dm−1

(Sm)∗ ,
then Proposition 1.3.1 gives a recipe to compute the equations of PL−1, via
saturation:

I = (J : det∞S ). (1.3.1)

Proof of Proposition 1.3.1. Clearly FL(PL) = FL(PL) \Dm−1
(Sm)∗ and for every

matrix A ∈ PL of rank m, FL(A) = FSm(A). �

The following lemma will be proved later in Chapter 2 (cfr. Lemma 2.2.2).
Its importance is twofold: on the one side, it provides a procedure to obtain
parametrizations for reciprocal sets. On the other side, it explains how Terracini’s
Lemma is involved in the study of reciprocal varieties.

Lemma 1.3.2. For any linear subspace PL ⊂ PSm and every matrix A ∈ PL, we
have

FL(A) = {limt→0 Adjm(A+ tX) | X ∈ PL, det(X) 6= 0} ⊆ (PSm)∨.

Moreover, if L1, . . . Lm are the rank loci of PL and A is a rank-r smooth
point in Lr, the above set of limits only depends on the normal space NALr to
Lr at A. In particular, dimFL(A) ≤ dimNALr − 1.

Note that the limit notation is used a bit freely: what we mean is that, for
any parametric matrix M(t), its limit for t → 0 is a matrix whose entries are
obtained by dividing the entries of M(t) by their greatest common factor, and
then setting t = 0.

It is a classical fact that, when PL is the space PCat(m−1, 2) ⊆ PSm, namely
the space of square catalecticant matrices of binary forms of degree d = 2m− 2,
the locus of matrices of rank at most r is

PCat(m− 1, 2) ∩Dr
Sm = σr(νd(P1)),

namely the r-th secant variety to the d-th Veronese embedding of P1.
There are other instances of spaces of catalecticant matrices whose r-minors

define r-secant varieties, such as quadratic forms – where catalecticant matrices
are simply symmetric matrices and Dr

Sm = σr(ν2(Pm−1)) – and ternary forms of
degree four (treated in Chapter 2). See [38] for an account of the known cases.
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In the binary case, we also know that a matrix is smooth in σr(νd(P1)) if
and only if it has rank equal to r (see [34, Theorem 1.45]). Therefore, for any
catalecticant matrix A ∈ PCat(m− 1, 2) of rank equal to r, the normal space to
the rank-r locus is well-defined, so the bound of Lemma 1.3.2 for the dimension
of FL(A) applies to any such matrix A. In fact, this bound is an equality, as we
will see in Proposition 1.4.5.

Lemma 1.3.3. Let PL = PCat(m− 1, 2) be the space of catalecticant matrices
associated with binary forms of degree d = 2m− 2. For any two distinct general
matrices A1, A2 ∈ PL of rank equal to r < m, the following are equivalent:

(1) FL(A1) = FL(A2);

(2) A1 and A2 belong to the same r-secant space to νd(P1);

(3) There exists a matrix B ∈ FL(A1) ∩ FL(A2) of rank m− r.

Proof. The implication (1) ⇒ (3) is trivial.
Implication (2) ⇒ (1): If A1 and A2 belong to the same r-secant space,

then by Terracini’s Lemma they have the same tangent space (hence the same
normal space) to Cr := σr(νd(P1)). Moreover, by Lemma 1.3.2, the reciprocal
sets FL(A1) and FL(A2) depend only on the normal spaces to Cr at A1 and A2,
respectively.

Implication (3) ⇒ (2): As previously observed in Remark 1.1.18, a matrix
B ∈ FL(A1) ∩ FL(A2) corresponds to a hyperplane HB ⊆ PSm tangent to Dr

Sm
both at A1 and A2. In particular, HB contains both the tangent spaces TA1Cr
and TA2Cr. Moreover, since B has rank exactly m − r, then HB cannot be
tangent to any Dr′

Sm for r′ > r.
If A1 and A2 belong to two different r-secant spaces, then TA1Cr 6= TA2Cr

(see also Remark 1.3.4 below). This implies that, also for the tangent spaces of
rank-r symmetric loci, we have TA1D

r
Sm 6= TA2D

r
Sm , otherwise they would both

intersect νd(P1) in the same r-tuple of points.
Therefore, by Terracini’s Lemma there exists a point P ∈ ν2(Pm−1) = D1

Sm
such that TPD1

Sm 6⊆ TA2D
r
Sm . Then, the linear span 〈TPD1

Sm , TA2D
r
Sm〉 is a

tangent space to Dr+1
Sm at a point of rank r + 1, a contradiction. �

Remark 1.3.4. The last part of the proof of Lemma 1.3.3 uses the fact that, in
the binary case, general symmetric tensors of subgeneric rank are identifiable,
namely they can be written essentially in a unique way as sum of powers of
linear forms. Therefore, by Terracini’s Lemma, the corresponding tangent spaces
to the r-secant varieties must be uniquely determined by the r points (in general
position) on the rational normal curve. For more information on identifiablity of
general symmetric tensors of given rank, see [19].

For catalecticants of binary forms, the reciprocal set of every degenerate
matrix is contained in that of a rank-1 matrix:
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1. Inverting Hankel matrices

Lemma 1.3.5. Let A be any rank-r matrix in PL = PCat(m−1, 2), let d = 2m−2,
and let Sr be any r-secant space to νd(P1) containing A, possibly spanned by r
points that are not in general position. Let P1, . . . , Ps, s ≤ r be the points in the
support of Sr ∩ νd(P1). Then FL(A) ⊆ FL(Pi), for every i = 1, . . . , s.

Proof. Let us denote for short Cr := σr(νd(P1)). The matrix A is a smooth
point of Cr and the points P1, . . . , Ps are on the curve C1. For every i = 1, . . . , s,
we have inclusions of tangent spaces TACr ⊃ TPiC1, hence inclusion of normal
spaces NACr ⊂ NPiC1. Therefore, the statement follows from Lemma 1.3.2. �

Corollary 1.3.6. Let PL be as above and let Cr = σr(νd(P1)) be the r-secant
varietiey of νd(P1). Then, for every r = 2, . . . ,m− 1, we have:

FL(Cr) ⊂ FL(Cr−1).

Before continuing with a more precise analysis of reciprocal sets of points of
Hankel matrices, we observe a useful property that holds for reciprocal points
with respect to any LSSM.

Lemma 1.3.7. For any linear subspace PL ⊆ PSm and for any rank-r matrix
A ∈ PL the reciprocal set FL(A) is projectively equivalent to the reciprocal variety
of a linear subspace of PSm−r.

Proof. Let A ∈ PL be a rank-r matrix. Recall that FL(A) is the Zariski closure of
a set of limits, in the sense of Lemma 1.3.2. Equivalently, we can compute limits
of their translates. More specifically, let H ∈ GL(m) be such that H−1AH = T ,
where T a triangular matrix whose only non-zero entries are in the top left r× r
block. Let X be any matrix in PL of maximal rank m and write X ′ = H−1XH.
We claim that

M := lim
t→0

Adjm[H−1(A+ tX)H] = lim
t→0

Adjm[T + tX ′].

is an m×m matrix whose first r rows and columns are set to zero, while the
remaining entries are the cofactors of the (m − r) × (m − r) submatrix of X ′
obtained by erasing the first r rows and columns. In particular, these cofactors
are linear combination of (m− r − 1)-minors of the original X.

Indeed, Adjm[T + tX ′] is a matrix with polynomial entries in t and the limit
operation consists of dividing these entries by the least common power of t and
then setting t = 0. With computations analogous to the ones in the proof of the
forthcoming Lemma 1.3.8, one sees that such least common power is tm−r and
that the entries in the first r rows and columns are all divisible by tm−r+1.

Taking the translate with respect to H commutes both with the limit and the
adjugate map, so HMH−1 is a symmetric matrix of rank m− r whose non-zero
entries are linear combinations of (m− r − 1)-minors of X. �

Lemma 1.3.8. Let PL = PCat(m− 1, 2), let d = 2m− 2, and let A be a rank-r
degenerate matrix in PL corresponding to a point lying on an r-osculating space to
νd(P1). Then the reciprocal set FL(A) is projectively equivalent to the reciprocal
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Reciprocal sets of points

variety of a Hankel space of (m− r)× (m− r) matrices. In particular, FL(A) is
projectively equivalent to a Grassmannian G(2,m−r+1) and 〈FL(A)〉 = FSm(A).

Proof. We prove that the parametrization is the same. By Lemma 1.3.2, we
know a parametrization for FL(A). This is obtained in three steps: first, we
compute Adjm(A + tX), where X is the generic catalecticant matrix. Then,
since we are working projectively, we divide by the greatest power of t dividing
all the entries of Adjm(A+ tX) and finally we set t = 0.

By hypothesis, the point A belongs to the most degenerate orbit of rank-r
matrices in PCat(m− 1, 2), that is, the orbit of r-tuple of points supported at
one single point of νd(P1). Without loss of generality, we may assume that the
point in the support is P = νd(1 : 0).

By Remark 1.1.9, the secants that we are considering are r-osculating planes
to the rational normal curve. Points in the r-th osculating space to P correspond
to matrices of the form

A =



s1 · · · sr−1 sr 0 · · · 0
s2 · · · sr 0 · · · · · · 0
... ... ... ... ...

sr 0 ... ...

0
... ... ...

...
... ... ...

0 0 · · · · · · · · · · · · 0


.

We focus on the case r = 2, the other cases can be treated similarly. Describing
Adjm(A+ tX) requires to compute the cofactors of the following matrix:

A+ tX =

s1 + ta(2m−2,0) s2 + ta(2m−3,1) ta(2m−4,2) · · · ta(m−1,m−1)

s2 + ta(2m−3,1) ta(2m−4,2) ta(2m−5,3) · · · ta(m−2,m)

ta(2m−4,2) ta(2m−5,3) ta(2m−6,4) · · · ta(m−3,m+1)

...
...

... . . . ...
ta(m−1,m−1) ta(m−2,m) ta(m−3,m+1) · · · ta(0,2m−2)




.

There are three kinds of cofactors: first, the (1, 1)-cofactor is a bihomogenous
polynomial in t and a(2m−2−i,i), of bidegree (m− 1,m− 1):

Cof(1,1) =

∣∣∣∣∣∣∣∣∣
ta(2m−4,2) ta(2m−5,3) · · · ta(m−2,m)
ta(2m−5,3) ta(2m−6,4) · · · ta(m−3,m+1)

...
... . . . ...

ta(m−2,m) ta(m−3,m+1) · · · ta(0,2m−2)

∣∣∣∣∣∣∣∣∣ .
Second, we have (i, j)-cofactors (equivalently, (j, i)-cofactors), with i > 1, j ≤

2. They are sum of two bihomogeneous polynomials of bidegree (m− 1,m− 1)
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1. Inverting Hankel matrices

and (m− 2,m− 2) respectively. For example, the (1, 2)-cofactor is

Cof(1,2) = −

∣∣∣∣∣∣∣∣∣
s2 + ta(2m−3,1) ta(2m−5,3) · · · ta(m−2,m)
ta(2m−4,2) ta(2m−6,4) · · · ta(m−3,m+1)

...
... . . . ...

ta(m−1,m−1) ta(m−3,m+1) · · · ta(0,2m−2)

∣∣∣∣∣∣∣∣∣
and the claim on the bihomogenous terms follows immediately by expanding à
la Laplace.

Similarly, for all the other cofactors we get a sum of 3 polynomials of bidegree
(m− 1,m− 1), (m− 2,m− 2) and (m− 3,m− 3) respectively. For example, the
(3, 3)-cofactor is

Cof(3,3) =

∣∣∣∣∣∣∣∣∣∣∣

s1 + ta(2m−2,0) s2 + ta(2m−3,1) ta(2m−5,3) · · · ta(m−1,m−1)
s2 + ta(2m−3,1) ta(2m−4,2) ta(2m−6,4) · · · ta(m−2,m)
ta(2m−5,3) ta(2m−6,4) ta(2m−7,5) · · · ta(m−3,m+1)

...
...

... . . . ...
ta(m−1,m−1) ta(m−2,m) ta(m−4,m+2) · · · ta(0,2m−2)

∣∣∣∣∣∣∣∣∣∣∣
.

(1.3.2)
In particular, the bihomogenous polynomial of bidegree (m − 3,m − 3) is

the sub-maximal minor of (1.3.2) obtained by erasing the first two rows and the
first two columns.

Altogether, the greatest power of t dividing each cofactor of A+ tX is tm−3.
After dividing by this power of t and setting t = 0, only the (m − 3,m − 3)-
bihomogeous terms survive, so the resulting parametrizing matrix is

0 · · · · · · · · · · · · 0
... 0 · · · · · · · · · 0
...

... Cof(3,3) Cof(3,4) · · · Cof(3,m)
...

...
...

... . . . ...
0 0 Cof(m,3) Cof(m,4) · · · Cof(m,m)


, (1.3.3)

which identifies with the parametrization of the image of (m − 2) × (m − 2)
Hankel matrices of type

a(2m−6,4) a(2m−7,5) · · · a(m−3,m+1)
a(2m−7,5) a(2m−8,6) · · · a(m−3,m+1)

...
... . . . ...

a(m−3,m+1) a(m−4,m+2) · · · a(0,2m−2)

 ,
therefore FL(A) is a Grassmannian G(2,m− r + 1).

Finally, the inclusion 〈FL(A)〉 ⊆ FSm(A) is projectively equivalent to the
linear span of G(2,m−r+1), whose dimension coincides with that of FSm(A). �

Remark 1.3.9. From Lemma 1.3.8 we observe that: when rk(A) = m− 1, then
FL(A) = G(2, 2), that is a point; when rk(A) = m − 2, then FL(A) = G(2, 3),
that is a P2.
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Reciprocal sets of points

Example 1.3.10 (binary quartics). Let PL = PCat(2, 2). The matrices in this
catalecticant space have parametric forma(4,0) a(3,1) a(2,2)

a(3,1) a(2,2) a(1,3)
a(2,2) a(1,3) a(0,4)

 ,
while for the space of 3 × 3 symmetric matrices PS3 and its dual (PS3)∨ we
choose coordinatesy(1,1) y(1,2) y(1,3)

y(1,2) y(2,2) y(2,3)

y(1,3) y(2,3) y(3,3)


y
∗
(1,1) y∗(1,2) y∗(1,3)
y∗(1,2) y∗(2,2) y∗(2,3)
y∗(1,3) y∗(2,3) y∗(3,3)

 ,
so that PL is a hyperplane in PS3 cut out by y(2,2) − y(1,3) = 0. We consider the
adjugate map and its inverse

Adj3 : PS3 99K (PS3)∨ Adj∨3 : (PS3)∨ 99K PS3.

By Proposition 1.3.1, the defining equations of PL−1 are given by saturating
the ideal J of the pull-back of PL via Adj∨3 , with the determinant polynomial of
symmetric matrices in (PS3)∨.

The ideal J is monomial, where the homogeneous generator is obtained by
setting equality between the cofactors Cof(1,3) and Cof(2,2) of the parametric
matrix for (PS3)∨, that is:

y∗(1,3)(y∗(1,3) − y
∗
(2,2)) + y∗(1,2)y

∗
(2,3) − y

∗
(1,1)y

∗
(3,3), (1.3.4)

and it is possible to see that it is already saturated with respect to the determinant.
In fact, the equation in (1.3.4) is a quadric defining a G(2, 4) ⊂ P5 = (PS3)∨.
More precisely, that is the quadratic Pfaffian of the following 4×4 skew-symmetric
matrix: 

0 y∗(1,1) y∗(1,2) y∗(1,3)
−y∗(1,1) 0 y∗(2,2) − y

∗
(1,3) y∗(2,3)

−y∗(1,2) y∗(1,3) − y
∗
(2,2) 0 y∗(3,3)

−y∗(1,3) −y∗(2,3) −y∗(3,3) 0

 .
The adjugate map is well-defined on matrices of rank 2 and 3, while for

a rank-1 matrix A we may consider the set FL(A). For instance, when A is
the matrix corresponding to the form x4

0, then the corresponding FL(A) has
parametric form 0 0 0

0 y∗(2,2) y∗(2,3)
0 y∗(2,3) y∗(3,3)

 ,
which can be identified with a P2 of 2 × 2 symmetric matrices by forgetting
the first row and column. Indeed, recalling Lemma 1.3.8, we need to compute
the reciprocal variety of PCat(1, 2), which in this case already coincides with
PS3. ♦
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1. Inverting Hankel matrices

Example 1.3.11 (Binary sextics). The matrices in the space PCat(3, 2) have
parametric form 

a(6,0) a(5,1) a(4,2) a(3,3)
a(5,1) a(4,2) a(3,3) a(2,4)
a(4,2) a(3,3) a(2,4) a(1,5)
a(3,3) a(2,4) a(1,5) a(0,6)

 ,
while for the space of 4 × 4 symmetric matrices PS4 and its dual (PS4)∨ we
choose coordinates

y(1,1) y(1,2) y(1,3) y(1,4)

y(1,2) y(2,2) y(2,3) y(2,4)

y(1,3) y(2,3) y(3,3) y(3,4)

y(1,4) y(2,4) y(3,4) y(4,4)



y∗(1,1) y∗(1,2) y∗(1,3) y∗(1,4)
y∗(1,2) y∗(2,2) y∗(2,3) y∗(2,4)
y∗(1,3) y∗(2,3) y∗(3,3) y∗(3,4)
y∗(1,4) y∗(2,4) y∗(3,4) y∗(4,4)

 .
The catalecticant space has codimension 3 in PS4 and is defined by the equations

y(2,2) − y(1,3) = 0, y(2,3) − y(1,4) = 0, y(3,3) − y(2,4) = 0 (1.3.5)

The ideal J of the pull-back is generated by the three relations obtained by
setting equality between the cofactors of the parametric matrix for (PS4)∨,
corresponding to the equations in (1.3.5):

Cof(2,2) − Cof(1,3), Cof(2,3) − Cof(1,4), Cof(3,3) − Cof(2,4).

After saturating with the determinant polynomial, we get the equations for the
reciprocal variety PCat(3, 2)−1, and it is easily verified that they are the quadric
Pfaffians of the following 5× 5 skew-symmetric matrix:

0 y∗(1,1) y∗(1,2) y∗(1,3) y∗(1,4)
−y∗(1,1) 0 y∗(2,2) − y

∗
(1,3) y∗(2,3) − y

∗
(1,4) y∗(2,4)

−y∗(1,2) y∗(1,3) − y
∗
(2,2) 0 y∗(3,3) − y

∗
(2,4) y∗(3,4)

−y∗(1,3) y∗(1,4) − y
∗
(2,3) −y∗(3,3) 0 y∗(4,4)

−y∗(1,4) −y∗(2,4) −y∗(3,4) −y∗(4,4) 0

 .

In particular, they define a Grassmannian G(2, 5) ⊂ (PS4)∨.
The adjugate map is well-defined on matrices of rank 4 and 3. Moreover, by

Lemma 1.3.8 we know that for a rank-2 matrix A lying on a tangent line, the
corresponding FL(A) is a P2 and, similarly, when rk(A) = 1 then FL(A) is a
G(2, 4).

As we will see later (cfr. Proposition 1.4.5), also for a rank-2 matrix A on
a proper secant line, we have that FL(A) is a P2. For instance, when A is the
catalecticant associated to the rank-2 form x6

0 + x6
1, then the elements of FL(A)

are of the form 
0 0 0 0
0 y∗(2,2) y∗(2,3) 0
0 y∗(2,3) y∗(3,3) 0
0 0 0 0

 .
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If A is associated with the rank-1 form x6
0, then Lemma 1.3.8 implies that

FL(A) is computed by the adjugate map of 3 × 3 matrices, restricted to a
sub-catalecticant space of PCat(3, 2) obtained by forgetting the first row and
column:

0 0 0 0
0 a(4,2) a(3,3) a(2,4)
0 a(3,3) a(2,4) a(1,5)
0 a(2,4) a(1,5) a(0,6)

 Adj3
9999K


0 0 0 0
0 y∗(2,2) y∗(2,3) y∗(2,4)
0 y∗(2,3) y∗(3,3) y∗(3,4)
0 y∗(2,4) y∗(3,4) y∗(4,4)

 .
We get the reciprocal variety of a PCat(2, 2), which is a G(2, 4) in the space
of 3× 3 symmetric matrices obtained from (PS4)∨ by again forgetting the first
row and column. In other words, FL(A) is defined by the four linear equations
y(1,1) = · · · = y(1,4) = 0 plus the quadric is the Pfaffian of

0 y∗(2,2) y∗(2,3) y∗(2,4)
−y∗(2,2) 0 y∗(3,3) − y

∗
(2,4) y∗(3,4)

−y∗(2,3) y∗(2,4) − y
∗
(3,3) 0 y∗(4,4)

−y∗(2,4) −y∗(3,4) −y∗(4,4) 0

 .
♦

Motivated by the previous examples, we would like to formalize how to find
skew-symmetric matrices whose quadratic Pfaffians define the reciprocal varieties.
We use coordinates y(i,j) for the spaces of symmetric matrices PSm and y∗(i,j) for
its dual (PSm)∨.

Remark 1.3.12. Examples 1.3.10 and 1.3.11 suggest a general procedure to find
skew-symmetric matrices whose quadratic Pfaffians define the reciprocal varietiy
of a given Hankel space.

More precisely, with usual choice of coordinates, when PL = PCat(m− 1, 2),
the reciprocal variety PL−1 is cut out by the quadratic Pfaffians of the
(m+ 1)× (m+ 1) skew-symmetric matrix (Sij)i,j=1,...,m+1 defined by:

Sij =


y∗(1,j−1) i = 1
y∗(i,m) j = m+ 1
y∗(i,j−1) − y

∗
(i−1,j) i < j < m+ 1

0 i = j.

This is in fact a rephrasing of the proof of [42, Proposition 7.2], where a
linear change of coordinates is used to express Plücker coordinates in terms of
the entries of symmetric Bézoutians Σ = (Σij)i,j=1,...,m, where

Σij = Si,j+1, for j ≥ i = 1, . . . ,m,

extended by symmetry for j < i.
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1. Inverting Hankel matrices

1.4 Rank loci in the reciprocal variety

From now on, we will denote by PL the catalecticant space PCat(m − 1, 2)
associated with binary forms of degree d = 2m− 2, while for r = 1, . . . ,m, we
will denote by Cr the locus Dr

Sm ∩ PL, that is, the secant variety σr(νd(P1)).
Recalling that matrices in PL have constant skew-diagonals, it is easy to

see that the orthogonal space PL⊥ is cut out by linear equations l1, . . . , l2m−1,
where lk is the sum of all the entries in the k-th skew diagonal of the generic
matrix (y∗(i,j))i,j=1,...m parametrizing (PSm)∨. Explicitly:

lk =

2
∑k/2
i=1 y

∗
(i,k−i+1) if k is even

y∗( k+1
2 , k+1

2 ) + 2
∑b k2 c
i=1 y

∗
(i,k−i+1) if k is odd.

(1.4.1)

As a consequence of this fact, we see that the intersection between PL⊥ and the
linear spans of reciprocal sets of points is recursively orthogonal to a smaller
catalecticant space:

Lemma 1.4.1. Let A ∈ PL be a rank-r degenerate matrix corresponding to a point
lying on an r-osculating space to νd(P1) and consider the linear isomorphism
FL(A) ∼−→ (PL′)−1, where PL′ is the subspace PCat(m − r − 1, 2) ⊆ PSm−r.
Then, the intersection 〈FL(A)〉 ∩ PL⊥ is sent to (PL′)⊥, which is a linear space
of dimension

(
m−r+1

2
)
− 2(m− r − 1)− 2.

Proof. Without loss of generality, we may assume that A corresponds to νd(1 : 0).
By Lemma 1.3.8, FL(A) is projectively equivalent to the reciprocal variety of a
PL′ = PCat(m− r − 1, 2) and its linear span 〈FL(A)〉 = FSm(A) has dimension(
m−r+1

2
)
− 1 and it is defined by y∗(i,j) = 0 for i ≤ r (cfr. Remark 1.1.18).

The linear system of these latter equations, together with the ones in (1.4.1)
simplifies to the system of linear equations l′1, . . . , l′2(m−r)−1 defining (PL′)⊥. �

Using the explicit description of the defining equations for PL−1 and PL⊥, it
is possible to prove that their intersection is empty. In [42, Proposition 7.4], this
is done by studying linear system of parameters modulo Stanley-Reisner ideals.
Here we give an alternative proof of this fact, based on an inductive argument.

First, we prove that the orthogonal space does not intersect reciprocal sets
of points lying on hyperosculating spaces.

Lemma 1.4.2. Let A ∈ PL be a matrix of rank r < m corresponding to a point
lying on an r-osculating space to νd(P1). Then we have FL(A) ∩ PL⊥ = ∅.

Proof. We prove the statement by induction on m. The base case is m = 3,
binary quartics: here PL⊥ is a point and it easily seen that its coordinates do
not satisfy the defining equations of FL(A) (cfr. Example 1.3.10).

By induction, let us assume that the statement holds for every m′ < m, that
is, for every catalecticant space PCat(m− r, 2), with r = 2, . . . ,m− 2.

Let now PL = PCat(m−1, 2) and assume by contradiction that there exists a
matrix B ∈ FL(A)∩PL⊥, of rank at most m−r. By Lemma 1.3.8, the reciprocal
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set FL(A) is projectively equivalent to (PL′)−1, with L′ = PCat(m− r − 1, 2).
Then,

B ∈ FL(A) ∩ PL⊥ ⊆ FSm(A) ∩ PL⊥ ' (PL′)⊥ ⊆ (PSm−r)∨,

where the latter linear isomorphism is given by Lemma 1.4.1.
Therefore, B can be identified with a (m− r)× (m− r) symmetric matrix

B′ ∈ (PL′)−1 ∩ (PL′)⊥. Recalling Remark 1.1.23, the rank of B′ (hence that of
B) must be strictly smaller than m− r.

But then B′ belongs to the reciprocal set FL′(A′) of a degenerate matrix of
PL′. By Lemma 1.3.5, we may assume that rk(A′) = 1. We have found a matrix

B′ ∈ FL′(A′) ∩ (PL′)⊥,

with A′ a point on the curve ν2(m−r)(P1) (trivially, on its 1-osculating space),
contradicting the induction hypothesis. �

Proposition 1.4.3. We have PL−1 ∩ PL⊥ = ∅. In particular, the restriction of
πL : (PSm)∨ → (PL)∨ to PL−1 is a regular surjective map of degree equal to
degG(2,m+ 1).

Proof. We prove the statement fiberwise, namely that for any matrix A ∈ PL
of rank-r, we have FL(A) ∩ PL⊥ = ∅. The statement is trivial when r = m, by
Remark 1.1.23.

Let now r < m, and let Sr be any r-secant space containing A. Then Sr
corresponds to a point of a certain orbit in the space of r-uples of points on P1,
under the action of PGL(2). The closure of any orbit contains the closed orbit of
the r-fold point, see [2, Proposition 2.1]. Points in this closed orbit correspond
to r-secant spaces that are r-osculating spaces to the rational normal curve.

Now, having intersection with PL⊥ is a closed condition. Therefore, if we had
FL(A)∩ PL⊥ 6= ∅, then the same would hold for rank-r matrices on r-osculating
spaces, which Lemma 1.4.2 does not allow. �

Corollary 1.4.4. The projection map πL, restricted to FL(Cr), is a finite-to-one
surjection to C∨r ⊆ PCat(m− 1, 2)∨.

Proof. Recall, for any A ∈ PL ⊆ PSm, we have FL(A) ⊆ FSm(A). By
Remark 1.1.18, points in FSm(A) are hyperplanes of PSm tangent to Dr

Sm at A,
so it is clear that πL sends these points to hyperplanes of PL tangent to Cr at
A, in symbols: πL(FL(Cr)) ⊆ C∨r .

Now, by Proposition 1.4.3, the reciprocal variety PL−1 is mapped surjectively
to PL∨. Moreover, for a general P ∈ C∨r , the points in the fiber π−1

L|FL(Cr)
(P )

have rank m− r, hence by Lemma 1.3.3 they are contained in a unique FL(A),
for some rank-r matrix A ∈ PL. Therefore, also FL(Cr) is mapped surjectively
to C∨r . �
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1. Inverting Hankel matrices

We can now describe reciprocal sets of arbitrary rank-r degenerate matrices
A ∈ PL = PCat(m− 1, 2), which, as we show below, behave as those lying on
hyperosculating spaces. Explicitly, we have that FL(A) is projectively equivalent
to the reciprocal variety of a Hankel space of (m − r) × (m − r) matrices,
hence FL(A) is projectively equivalent to a Grassmannian G(2,m− r + 1) and
〈FL(A)〉 = FSm(A).

Proposition 1.4.5. Lemma 1.3.8 holds for every rank-r matrix A ∈ PL.

Proof. First, we prove that, for any matrix A ∈ PL of rank r, the dimension of
its reciprocal set FL(A) is the same as that of a matrix on an osculating space,
namely dimG(2,m− r + 1) = 2(m− r − 1). This certainly holds if A is general.
Indeed, by Corollary 1.4.4 the dimension of FL(A) is equal to the dimension of
the space of hyperplanes of PL that are tangent to Cr at A, namely:

dimFL(A) = dimPL − (2r − 1)− 1 = 2(m− r − 1).

Note that this is also the dimension of the normal space dimNACr. For a special
matrix A of rank r, the dimension of FL(A) could only be bigger, compared to
the general one, which the bound in Lemma 1.3.2 does not allow.

Second, the reciprocal sets FL(A) define a fibration over the projective space
Pr ' P(Sr(C2)) of r-tuples of points on P1. In this fibration, all fibers have
the same dimension. Moreover, the fiber over r-fold points are Grassmannians,
which are rigid. Therefore, the fibration is flat, hence all the reciprocal sets of
rank-r matrices are projectively equivalent to G(2,m− r + 1). �

For rational normal curves of degree d, the projective dual to the secant variety
can be described as a coincident root locus. More precisely, let λ = (λ1, . . . , λn)
such that

∑n
i=1 λi = d and let mi, . . . ,mk count the multiplicities for each

occurring integer, namely mj := |{i : λi = j}|.
The coincident root locus ∆λ ⊂ Pd = P(C[x0, x1]d) is the set of binary forms

F of degree d which admit a factorization

F =
n∏
i=1

Lλii ,

for some linear forms Li.
A degree formula for the coincident root loci of binary forms is classical and

due to Hilbert [31]. Duality for ∆λ has been studied in [39]. In particular:

deg(∆λ) = n!
m1!m2! · · ·mk!λ1λ2 · · ·λn. (1.4.2)

Lemma 1.4.6. The variety C∨r ⊆ PL∨ is the coincident root locus ∆(12m−2r−2,2r).
In particular, it has degree

degC∨r = 2r
(

2m− r − 2
r

)
.
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Rank loci in the reciprocal variety

Proof. By [39, Proposition 3.1], we have equality σr(νd(P1)) = (∆λ)∨, with
λ = (1d−2r, 2r). Then the statement follows by applying the Biduality Theorem
(see [26, Theorem 1.1]) and the degree formula (1.4.2). �

A more explicit proof is obtained by observing the relation between duality
and apolarity. Let S = C[x0, x1], S∗ = C[∂0, ∂1], so that PL = P(Sd) and
PL∨ = P(S∗d), where d = 2m− 2.

Alternative proof. Let A ∈ PL be a rank-r matrix associated with the binary
form Ld1 + · · ·+ Ldr , where Li ∈ S1.

For every i = 1, . . . , r, the apolar ideal of Li is generated by two operators,
of degree 1 and d+ 1 respectively. Let Di be the degree-1 apolar operator and
let us complete to bases {Li, L′i} and {Di, D

′
i} for S1 and S∗1 respectively.

Then the tangent space TL1Cr ⊂ PL parametrizes forms of type Ldi +Ld−1
i L′i.

In particular, (D′i)2 is apolar to all such forms. Altogether, for every operator G
in the ideal I = (D′1 · · ·D′r)2 and for every F parametrized by TACr, we have
G ◦ F = 0.

Equivalently, the dual space TAC∨r ⊆ PL∨ parametrizes all homogeneous
binary operators in P(I2

d), namely operators of degree d vanishing at the r roots
of Di with multiplicity 2. As A varies in Cr, we obtain all the degree-d dual
operators with roots of multiplicity (1d−2r, 2r). �

Lemma 1.4.7. The dual variety C∨r is a Ps−1-scroll over Pr, where s is the
fiber dimension of the normal bundle of σr(νd(P1)) in Pd = PCat(m − 1, 2).
The minimal desingularization of this scroll is a projective bundle PE, with
E = OPr (2)⊕s.

Proof. Recalling Lemma 1.4.6 above, we can write

C∨r = {f | f = gh2, deg(g) = d− 2r, deg(h) = r}.

This is a scroll over the Pr of degree-r forms in P1. For the resolution, we need to
find a free bundle PE projecting to C∨r and such that there exist global sections
σi : Pr → PE , i = 1, . . . , s inducing independent maps Pr → C∨r by composition

PE

C∨r Pr
π σi

π◦σi

.

Every form g of degree d− 2r determines a map Pr → C∨r , defined by h 7→ gh2

and factoring through OPr (2). Its image is a Veronese variety

Vg := {f | f = gh2} ' ν2(Pr).

We need to show that, if g1 6= g2 are two generic forms of degree d− 2r, then
Vg1 ∩ Vg2 = ∅. The claim in the lemma will follow since the dimension of the
linear space of degree-(d− 2r) forms is d− 2r + 1 = s.
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1. Inverting Hankel matrices

Let us assume by contradiction that there exists an element η ∈ Vg1 ∩ Vg2 .
Then:

η = g1h
2
1 = g2h

2
2, (1.4.3)

for some h1, h2 ∈ Pr. Without loss of generality, we may assume that (g1, g2) = 1,
hence g2|h1 and g1|h2 and we can write

η = g2
1g

2
2h
′, (1.4.4)

for some h′. Comparing (1.4.3) and (1.4.4), we get

g1g
2
2h
′ = h2

1, g2
1g2h

′ = h2
2,

which are squares. In particular, g1|h′ and g2|h′, so η = g3
1g

3
2h
′′, for some h′′.

Proceeding this way, we can continue until we obtain

η = g
d/2
1 g

d/2
2 = g1(gd/2−1

1 g
d/2
2 ) = g2(gd/21 g

d/2−1
2 ).

But gd/2−1
1 g

d/2
2 and gd/21 g

d/2−1
2 are not squares, contradicting (1.4.3). �

For the following theorem we will work with the projection map πL. We have
seen in Lemma 1.4.1 that 〈FL(A)〉 ∩ PL⊥ = (PL′)⊥ for a smaller catalecticant
space PL′ for which the reciprocal variety is exactly FL(A). This means that we
have equality

πL|FL(A) = πL′|FL(A) , (1.4.5)

or, equivalently, the map πL restricted to FL(A) is identified with a projection
from a smaller projection center (PL′)⊥. In particular, it is again a finite-to-one
map.

Theorem 1.4.8. Let PL be the catalecticant space PCat(m− 1, 2) ⊆ PSm, with
rank loci Cr = Dr

Sm ∩ PL, for r = 1, . . . ,m. When r < m, the reciprocal set
FL(Cr) is the image of the incidence variety

{(A,B) ∈ Cr × (PSm)∨ | B ∈ FL(A)} � FL(Cr) ⊆ (PSm)∨

via its projection to the second factor, where all the fibers are projectively
equivalent to a Grassmannian G(2,m − r + 1) and are distinct if and only
if they come from points on distinct r-secant spaces. In particular, FL(Cr) is a
subvariety of Dm−r

(Sm)∗ of dimension 2m− r − 2 and degree

degFL(Cr) = 2r
m− r

(
2m− r − 2

r

)(
2m− 2r − 2
m− r − 1

)
. (1.4.6)

Proof. First, by Lemma 1.3.2 and Terracini’s Lemma, the operator FL(−) is
constant on secant spaces to the rational normal curve C1. For every r-secant
space S we may take a rank-r matrix AS representing it, so that we can write
FL(Cr) as the union of the FL(AS), where every AS uniquely depends on the
choice of r points (with multiplicity) on C1. From Proposition 1.4.5, each FL(AS)
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Rank loci in the reciprocal variety

is a G(2,m− r + 1), so the first part of the theorem is proved. The dimension
count is justified by Lemma 1.3.3, for which a point in FL(Cr) generically belongs
to only one FL(AS).

Recall from Corollary 1.4.4 that πL, restricted to FL(Cr), is a finite-to-one
map. Then we define

δ := #(π−1
L|FL(Cr)

(P )) = #(π−1
L|FL(A)

(P )),

which is finite as observed after equation (1.4.5).
Recalling Lemma 1.4.7, the projection πL maps FL(Cr) surjectively onto C∨r ,

whose degree is given in Lemma 1.4.6. Hence we have:

degFL(Cr) = δ · deg(C∨r ) = δ · 2r
(

2m− r − 2
r

)
.

Finally, FL(A) is mapped δ : 1 to a linear space of the same dimension (see
Lemma 1.4.1), so

δ = degFL(A) = degG(2,m− r − 1) = 1
m− r

(
2m− 2r − 2
m− r − 1

)
,

which proves (1.4.6). �

Let E = OPr (2)⊕s be as in Lemma 1.4.7 and consider the projecion PE π−→ Pr.
When r and s are small, the degree of PE (hence the degree of C∨r and FL(Cr))
is easily computed by hand, even without assuming Lemma 1.4.6.

If ζ = c1(OPE(1)) ∈ CH(PE) denotes the first Chern class, we have

deg(PE) =
∫
PE
ζs+r−1. (1.4.7)

This can be expressed in terms of the classes ci := ci(E) ∈ CH(Pr). Indeed,
considering the tautological sequence of bundles

0→ S → π∗E → OPE(1)→ 0

and applying Whitney’s formula we obtain

ζs = c1ζ
s−1 − c2ζs−2 + · · · − (−1)rcrζs−r = 0.

With further algebraic manipulations, it is possible to write ζs+r−1 as a product
ζs−1f(ci), for some polynomial f . Substituting into (1.4.7), we get

deg(PE) =
∫
Pr
f(c1, . . . , cr). (1.4.8)

Example 1.4.9 (binary quartics). Let PL = PCat(2, 2) ⊂ PS3. Then:
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1. Inverting Hankel matrices

• FL(C1) is a P2-scroll of degree 6 over P1, and it has empty intersection
with the point PL⊥. Therefore, πL|FL(C1) is a 1 : 1 map onto its image, and
deg(C∨1 ) = deg(FL(C1)). A free resolution for C∨1 is given by PE , with
E = OP1(2)⊕3, so its degree can be equivalently computed as

deg(PE) =
∫
PE
ζ2c1 =

∫
P1
c1 = 3

∫
P1
c1(OP1(2)) = 6.

In the notation of (1.4.8), we have f(c1) = c1.

• FL(C2) is the double embedding of P2. This is PE , with E = OP2(2). Here
f(c1) = c21 and we have deg(FL(C2)) = deg(C∨2 ) = deg(PE) = 4.

♦

Example 1.4.10 (binary sextics). Let PL = PCat(3, 2) ⊂ PS4. Then:

• FL(C1) is a variety of degree 20, union of G(2, 4) over P1. Each G(2, 4)
intersects the plane PL⊥ in a point, therefore π|FL(C1) is a 2 : 1 map onto
its image, so deg(C∨1 ) = deg(FL(C1))

2 = 10. A free resolution for C∨1 is given
by PE , with E = OP1(2)⊕5, so its degree can be equivalently computed as

deg(PE) =
∫
PE
ζ4c1 =

∫
P1
c1 = 5

∫
P1
c1(OP1(2)) = 10.

As in the previous example, we have f(c1) = c1.

• FL(C2) is a P2-scroll of degree 24 on P2, and it has empty intersection with
the orthogonal plane. Therefore, deg(FL(C2)) = deg(C∨2 ). The associated
bundle is E = OP2(2)⊕3 and

deg(PE) =
∫
PE
ζ2(c21 − c2) =

∫
P2

9c21(OP2(2))− c31(OP2(2)) = 24.

Here we have f(c1, c2) = c21 − c2.

• FL(C3) is the double embedding of P3. This is PE , with E = OP3(2). Here
f(c1) = c31 and we have deg(FL(C3)) = deg(C∨3 ) = deg(PE) = 8.

♦
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Chapter 2

Inverting catalecticants of ternary
quartics

The present chapter1 is devoted to study the reciprocal variety to the linear
subspace of symmetric matrices (LSSM) of square catalecticants

Cat(2, 3) =




a(4,0,0) a(3,1,0) a(3,0,1) a(2,2,0) a(2,1,1) a(2,0,2)
a(3,1,0) a(2,2,0) a(2,1,1) a(1,3,0) a(1,2,1) a(1,1,2)
a(3,0,1) a(2,1,1) a(2,0,2) a(1,2,1) a(1,1,2) a(1,0,3)
a(2,2,0) a(1,3,0) a(1,2,1) a(0,4,0) a(0,3,1) a(0,2,2)
a(2,1,1) a(1,2,1) a(1,1,2) a(0,3,1) a(0,2,2) a(0,1,3)
a(2,0,2) a(1,1,2) a(1,0,3) a(0,2,2) a(0,1,3) a(0,0,4)

 : a(i,j,k) ∈ C


(2.0.1)

associated with ternary quartics

a(4,0,0)x
4 + a(3,1,0)x

3y + a(3,0,1)x
3z + a(2,2,0)x

2y2 + a(2,1,1)x
2yz + a(2,0,2)x

2z2

+ a(1,3,0)xy
3 + a(1,2,1)xy

2z + a(1,1,2)xyz
2 + a(1,0,3)xz

3 + a(0,4,0)y
4

+ a(0,3,1)y
3z + a(0,2,2)y

2z2 + a(0,1,3)yz
3 + a(0,0,4)z

4.

In Section 2.1, we explain how to use numerical tools to obtain the degree
of the reciprocal variety of PCat(2, 3), as well as the ML-degree of the linear
concentration model represented by it. These two numbers are computed to be
85 and 36, respectively (Theorem 2.1.3). The fact that these two numbers do
not coincide already marks a difference with the case of binary forms.

On the other hand, some similarities are highligthed in Section 2.2, where
we analyze reciprocal sets of points and show that their defining equations are
Pfaffians (Theorem 2.2.7).

In Section 2.3, we prove that only the rank-1 locus of the catalecticant space,
namely the Veronese surface ν4(P2), contributes to the degree of the reciprocal
variety (Theorem 2.3.4). Moreover, we provide a geometric explanation of why
the two invariants of Theorem 2.1.3 are different. We do this by studying the
intersection between the orthogonal space PCat(2, 3)⊥ and the rank loci of the
reciprocal variety (Proposition 2.3.8).

Finally, in Section 2.4 we show that the reciprocal variety is singular (Theo-
rem 2.4.1).

Throughout this chapter, we shorten the notation for the catalecticant space
Cat(2, 3), using the symbol C instead.

1The content of this chapter is an adaptation and extension of the paper Homs, R.,
Cazzador, E., and Brustenga i Moncusí, L. “Inverting catalecticants of ternary quartics”. In:
Le Matematiche (Catania) vol. 76, no. 2 (2021), pp. 517–533.
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2. Inverting catalecticants of ternary quartics

2.1 A numerical approach

In this section, we present the computation of some invariants by means of
numerical methods which will give some insight in the forthcoming sections: the
degree of PC−1, the number of linearly independent equations for the reciprocal
variety in low degrees and the ML-degree of the linear concentration model
represented by C. The results are summarized in Theorem 2.1.3.

2.1.1 Degree and number of equations

Recall, Proposition 1.3.1 shows a natural approach to obtain the equations for
reciprocal varieties, based on the fact that Adjm ◦ Adj∨m = IdPSm , as rational
maps.

Namely, if we denote with I = I(PC−1) and J = I(FS6(PC)) and with detS
the determinantal polynomial cutting the variety D5

(S6)∗ of degenerate 6 × 6
symmetric matrices, we have

I = (J : det∞S ). (2.1.1)

Computing this saturation turns out to be computationally infeasible for
ternary quartics. Nevertheless, equation (2.1.1) allows us to use the ideal J to
compute the degree of PC−1 by means of numerical methods. Indeed, a general
linear space L ⊆ (PS6)∨ of codimension 14, intersects FS6(PC) in points of full
rank, hence the number of such points is equal to deg(PC−1).

We use the monodromy method, implemented in HomotopyContinuation.jl,
see [12], setting as parameters the coefficients of L and we compute

deg(PC−1) = 85.

Codes for this computation may be found in Appendix A.2.3.
An invariant we may numerically estimate is, for a fixed degree d, the number

H(d) of linearly independent forms of degree d in I. For example, for d = 3,
the space Ω of forms in dim((S6)∗) = 21 variables of degree 3 has dimension( 3+21−1

3
)

= 1771. Given a point B ∈ (PS6)∨, the set of forms F ∈ Ω for which
F (B) = 0 gives rise to a hyperplane HB ⊆ Ω defined by the linear form with
coefficients these 1771 monomials evaluated at B. Thus, for a generic set of
points {B1, . . . , B1771}, we have

1771⋂
i=1

HBi = {pt}.

Instead, for a generic set of points {P1, . . . , P1771} of PC−1, if there are forms of
degree 3 in I, the hyperplanes HPi will exhibit some linear dependence, coming
from the fact that there would be a linear space of positive dimension lying in
the intersection of all of them, hence

H(3) = dim
(1771⋂
i=1

HPi

)
.
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A numerical approach

Therefore, we may compute H(3) as the rank of the 1771 × 1771 matrix of
coefficients of the linear forms defining HPi .

Using Julia, we sampled points in PC−1 as inverses of randomly generated
catalecticant matrices, and we obtained H(d) = 0, 27, 510 for d = 2, 3, 4, see
Appendix A.2.4.

2.1.2 Maximum likelihood degree

In Chapter 1, Section 1.1 we defined the ML-degree of an LSSM L as the degree
of a suitable projection map. An alternative interpretation of it is inspired by
statistics. Let Sm>0 be the cone of real positive definite m×m matrices. When
L is defined by real linear equations, the intersection L−1 ∩ Sm>0 is a centered
Gaussian statistical model. In other words, it encodes a set of multivariate
normal distributions N (0,Σ) where the covariance matrix Σ ⊂ Sm>0 is defined by
linear constrains on the entries of its inverse K = Σ−1. This type of models are
known as linear concentration models, see [51].

Definition 2.1.1. The maximum likelihood degree (ML-degree) of a linear
concentration model is defined as the number of complex solutions to the critical
equations of the log-likelihood function

`(K) = log detK − trace (SK) , (2.1.2)

where S is the sample covariance matrix of sample data vectors, see [22, Definition
2.1.4] for more details and [42, Definition 5.4] for an equivalent algebro-geometric
definition.

Note that (2.1.2) depends on the random data encoded in the sample
covariance matrix S. Nevertheless, this notion of ML-degree is well-defined
because the number of complex solutions to the critical equations is preserved
for general data vectors, see [5, Remark 2.1].

The ML-degree of the linear concentration model represented by an LSSM L
gives a lower bound for the degree of the reciprocal variety L−1 and equality is
reached if and only if L−1 ∩ L⊥ = ∅. The two invariants coincide in the case of
both generic LSSMs and spaces Cat(k, 2) of catalecticant matrices associated to
binary forms, see [51, Theorem 2.3] and Proposition 1.4.3, respectively.

Example 2.1.2. To compute the ML-degree of the model Cat(2, 2) ∩ S3
>0 we

replaceK and S in the log-likelihood function (2.1.2) by the matrix parametrizing
the catalecticant space of binary quartics and the sample covariance matrix
S = 1

3XX
t, where X is a 3× 3 matrix whose columns are random data vectors.

Its critical equations can be computed using the Macaulay2 [27] code below

I=ideal{jacobian(matrix{{det K}})-(det K)*jacobian(matrix{{trace(S*K)}})}

J=saturate(I,det K)

and indeed the degree of the zero-dimensional ideal J coincides with the degree
of PCat(2, 2)−1 = G(2, 4) (which is 2). ♦
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2. Inverting catalecticants of ternary quartics

The symbolic computation of the critical points of (2.1.2) in the case of
catalecticants of ternary quartics has already a too high computational cost in
Macaulay2. Performing it with Magma [9], we obtain2 that the ML-degree of the
model represented by Cat(2, 3) is 36.

Note that, for a sample covariance matrix S associated to general data vectors,
all complex solutions to (2.1.2) are different, i.e. they have multiplicity one,
see [5, Remark 2.1]. Therefore, a numerical approach is possible and it is already
offered by the Julia package LinearCovarianceModels.jl [55]. Note that our
desired value corresponds to the dual ML-degree of L defined in [50].

The code used in Julia to compute ML-degrees of LSSMs of catalecticant
matrices can be found in Appendix A.2.1.

We summarize all the numerical results as follows:

Theorem 2.1.3. For the space PCat(2, 3) of catalecticant matrices associated
with ternary quartics, the reciprocal variety has degree 85, whereas the ML-degree
of the linear concentration model represented by it is 36. Moreover, there is a
a 27-dimensional linear space of cubic generators in the defining ideal of the
reciprocal variety.

Remark 2.1.4. The numerical approach for ternary forms of higher degree is
not feasible for short-time computations. At the level of ternary quartics, the
degree (and ML-degree) of a generic 15-dimensional LSSM of 6 × 6 matrices
is 1016, see [40] and [49] for the general theory and the implementation of the
algorithm to compute the degree of the reciprocal variety of a generic LSSM.
For ternary sextics, the degree of a generic 28-dimensional LSSM of 10 × 10
matrices is 17.429.229.428. The ML-degree of Cat(3, 3) is already lower bounded
by 180.000.

2.2 Reciprocal sets of points

For every r = 1, . . . , 6, let us denote with Cr the locus of matrices of rank at most
r in PC. As for binary forms, the locus Cr has a well-known geometric structure:
it the r-th secant variety of the Veronese surface ν4(P2) (see [47, Theorem 2.3]).

The dimensions of each Cr are known by Alexander-Hirshowitz Theorem
(see [1] for the original reference and [11] for a modern proof) and they equal
to 2, 5, 8, 11, 13 for r = 1, 2, 3, 4, 5, respectively. This already indicates that the
catalecticant space is far from being general: for a generic 14-dimensional linear
subspace of PS6, its rank loci would have dimension −1 (the emptyset), 4, 8, 11
and 13, respectively.

The fact that r-th secant varieties of Veronese embeddings coincide with
rank-r loci of catalecticant spaces does not always hold (cfr. [15] and [38]). These
determinantal varieties may strictly contain secant varieties, and may even be
of bigger dimension (see also [18, Proposition 4.1]). Therefore, this is a partial
obstacle to the generalization of our results to any catalecticant space.

2These computations took an average of 5 days and were performed with Magma V2.25-5
on a Dual Core Intel(R) Xeon(R) (2.20 GHz).
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Reciprocal sets of points

Recalling Chapter 1, we defined reciprocal sets of points and, more generally,
of closed subvarieties X ⊂ PC:

FC(A) = π2(π−1
1 (A) ∩ ΓC) FC(X) =

⋃
A∈X

generic rank

FC(A),

where ΓC is the graph closure of Adj6|PC in PS6 × (PS6)∨ and π1, π2 the two
projection maps from this product.

Remark 2.2.1. The reciprocal set FC(X) can also be understood in the following
way: we may regularize Adj6 by a (finite) sequence of blow-ups along smooth
centers, and consider the strict transform of X by such a sequence of blow-ups.
Its image via the regularized map will coincide with FC(X). In Section 2.3, we
will see that a natural way of resolving the indeterminacy locus of Adj6 is by
blowing-up the locus of rank-1 symmetric matrices, then blowing-up the strict
transform of rank-2 symmetric matrices and so on.

In Chapter 1, Lemma 1.3.2, we described reciprocal sets of points as closures
of sets of limits. For points belonging to smooth loci of rank-r loci, we also gave
a bound for the dimension of their reciprocal sets. We now provide the proof of
that result:

Lemma 2.2.2. For any linear subspace PL ⊂ PSm and every matrix A ∈ PL, we
have

FL(A) = {limt→0 Adjm(A+ tX) | X ∈ PL, detX 6= 0} ⊆ (PSm)∨. (2.2.1)

Moreover, if L1, . . . , Lm are the rank loci of PL and A is a rank-r smooth point
in Lr, the above set of limits only depends on the normal space NALr to Lr at
A. In particular, dimFL(A) ≤ dimNALr − 1.

Proof. By continuity, the points in FL(A) are limits of images of points
approaching A along directions where Adjm is well-defined. For any X ∈ PL with
det(X) 6= 0, and for t small enough, the matrices in the line {A+ tX | t ∈ C} are
also invertible. In particular, their adjugate is well-defined, and we obtain (2.2.1).

By definition, FL(A) = π2(π−1
1 (A) ∩ Γ). Now, recalling Remark 2.2.1, let

us consider the composition of the blow-ups of PSm along its rank-1 locus D1
Sm

and then along the strict transform of the rank-2 locus D2
Sm , and so on until the

strict transform of Dm−1
Sm .

Let us denote by (P̃Sm, π) the blow-ups composition, and by Ãdjm the
regularization of Adjm. Moreover, for every r = 1, . . . ,m−1, let us denote by Er
the exceptional divisor over Dr

Sm . We summarize the notation in the following
diagram:

Er P̃Sm (PSm)∨

Dr
Sm PSm (PSm)∨
π|Er

Ãdjm

π

Adjm

.
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2. Inverting catalecticants of ternary quartics

Let P̃L ⊆ P̃Sm be the proper transform of PL. For any rank-r point A ∈ PL,
we have:

π2(π−1
1 (A) ∩ Γ) = Ãdjm(π−1(A) ∩ P̃L) = Ãdjm(π−1(A) ∩ P̃L ∩ Er).

The intersection P̃L∩Er is isomorphic to the projectivized normal cone of Lr in
PL. When A belongs to the smooth locus of Lr, the fiber of this cone at π−1(A)
is isomorphic to the projectivized normal space P(NALr). In particular, they
have the same dimension, which might drop after composing with Ãdjm. �

2.2.1 Dimension of reciprocal sets of points

The second part of Lemma 2.2.2 holds for smooth points in the rank-r locus.
Determining which points are smooth in the rank loci is in general a hard
problem. For the catalecticant space of ternary quartics, we have:

Lemma 2.2.3. The singular locus of Cr contains Cr−1, and equality holds when
r ≤ 3.

Proof. The inclusion of Cr−1 in the singular locus of Cr is standard (and in fact
it holds more generally for all r-secant varieties to Veronese varieties, see [58,
Corollary 1.8]). Equality for the case r = 3 is [29, Theorems 2.12-2.14], while
the case r = 2 is [36, Theorem 3.3]. �

Note that it is currently not known whether the equality in Lemma 2.2.3 holds
also for r = 4, 5. It certainly does not hold for quaternary quartics: indeed, the
singular locus of σ3(ν4(P3)) has two irreducible components, namely σ2(ν4(P3)),
of dimension 7, and the 8-dimensional variety of binary quartics, given by quartic
surfaces consisting of 4 planes meeting in the same line (see [29, Theorem 2.1]).

Let A ∈ PC be a matrix of rank r and recall that FC(A) ⊆ FS6(A). When A
is a smooth point of Cr, then the bound in Lemma 2.2.2 applies, so:

dimFC(A) ≤ min {dimFS6(A), dimNACr − 1}

= min
{

(6−r)(7−r)
2 − 1, dimNACr − 1

}
.

(2.2.2)

By Lemma 2.2.3, this is always the case when r ≤ 3. When A ∈ PC has rank
equal to 4, we do not know whether it is a smooth point of C4, so we can only
say

dimFC(A) ≤ dimFS6(A) = 2. (2.2.3)

We now proceed with a more precise description of reciprocal sets of points
in PC. First, we compute their dimension; then we give defining equations. The
strategy applied here is slightly different from that of Chapter 1. For the binary
case, we reduced to study rank-r points on most degenerate r-secant spaces.
Here, we do the opposite: we study the most general r-secant spaces, namely
those spanned by r points in general position.
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Reciprocal sets of points

We have two reasons for pursuing this strategy. First, as we will see, for a
rank-r point on a general secant, its reciprocal set is very easy to describe, and
in most cases it is simply a linear space. Second, when r ≤ 4, we can freely move
between any two rank-r points lying on general r-secant spaces. More precisely:

Remark 2.2.4. The natural action of PGL(3) on P2 induces an action on the
Hilbert scheme of points Hilbr(P2), which has an open orbit when r ≤ 4, namely
the orbit of r points in general position.

Moreover, the implication (2) ⇒ (1) of Lemma 1.3.3 holds also for the
catalecticant space PC of ternary quartics, which means that:

Remark 2.2.5. When Sr is a general r-secant space to C1 = ν4(P2) and A1, A2 ∈
Sr are two distinct rank-r matrices, we have: FC(A1) = FC(A2) = FC(Sr).

Lemma 2.2.6. Let A ∈ PC be a catalecticant matrix of rank r = 4 (resp. 3, 2, 1) .
Then FC(A) is projectively equivalent to the reciprocal variety of a linear subspace
PLA ⊂ PS6−r of dimension 2 (resp. 5, 8, 11), whose generic element has rank
m− r.

Proof. By Lemma 1.3.7, we know that FC(A) is projectively equivalent to some
reciprocal variety of a PLA ⊆ PS6−r. We need to determine the dimension and
the generic rank of PLA.

The result follows as soon as it is checked on a particular point on a general
r-secant space. Indeed, as noted in Remark 2.2.5, FC(−) is constant on a secant
space and Remark 2.2.4 implies that the reciprocal sets of any two general
r-secant spaces are projectively equivalent. Moreover, the dimension FC(A) can
only increase at special points, which the bounds (2.2.2) and (2.2.3) do not allow.

We consider the points

P1 = ν4(1 : 0 : 0) P2 = ν4(0 : 0 : 1) P3 = ν4(0 : 1 : 0) P4 = ν4(1 : 1 : 0),

and we denote with Ar the matrix in PC corresponding to
∑r
i=1 Pi for r = 1, . . . , 4,

namely:

A1=

 1 . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .

 A2=

 1 . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . 1

 A3=

 1 . . . . .
. . . . . .
. . . . . .
. . . 1 . .
. . . . . .
. . . . . 1

 A4=

 2 1 . 1 . .
1 1 . 1 . .
. . . . . .
1 1 . 2 . .
. . . . . .
. . . . . 1

, (2.2.4)

where dots are written instead of zero entries for the sake of readability. In
particular, Ar belongs to the proper r-secant space 〈P1, . . . , Pr〉.

A parametrization for FC(Ar) can be obtained as in the proof of Lemma 1.3.8.
More explicitly, let us use coordinates y(i,j) and y∗(i,j) for the spaces of matrices
PS6 and (PS6)∨, and coordinates a(i,j,k) for the catalecticant space PC, as
in (2.0.1).

The reciprocal set FC(A1) is parametrized by the cofactors of the 5×5 matrix
obtaind by erasing the first row and column of the generic catalecticant (2.0.1).
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2. Inverting catalecticants of ternary quartics

This matrix depends on 12 parameters, so we are computing the reciprocal
variety of an 11-dimensional linear subspace of PS5:

· · · · · ·
· a(2,2,0) a(2,1,1) a(1,3,0) a(1,2,1) a(1,1,2)

· a(2,1,1) a(2,0,2) a(1,2,1) a(1,1,2) a(1,0,3)

· a(1,3,0) a(1,2,1) a(0,4,0) a(0,3,1) a(0,2,2)

· a(1,2,1) a(1,1,2) a(0,3,1) a(0,2,2) a(0,1,3)

· a(1,1,2) a(1,0,3) a(0,2,2) a(0,1,3) a(0,0,4)




Adj5
9999K

· · · · · ·
· y∗(2,2) y

∗
(2,3) y

∗
(2,4) y

∗
(2,5) y

∗
(1,6)

· y∗(2,3) y
∗
(3,3) y

∗
(3,4) y

∗
(3,5) y

∗
(2,6)

· y∗(2,4) y
∗
(3,4) y

∗
(4,4) y

∗
(4,5) y

∗
(3,6)

· y∗(2,5) y
∗
(3,5) y

∗
(4,5) y

∗
(5,5) y

∗
(4,6)

· y∗(2,6) y
∗
(3,6) y

∗
(4,6) y

∗
(5,6) y

∗
(6,6)




.

(2.2.5)
Analogously, the parametrization for FC(A2) is given by the cofactors of the

4 × 4 matrix obtained by erasing the first and last row and the first and last
column of the generic catalecticant. This matrix depends on 9 parameters, so we
are computing the reciprocal variety of an 8-dimensional linear subspace of PS4:

· · · · · ·
· a(2,2,0) a(2,1,1) a(1,3,0) a(1,2,1) ·
· a(2,1,1) a(2,0,2) a(1,2,1) a(1,1,2) ·
· a(1,3,0) a(1,2,1) a(0,4,0) a(0,3,1) ·
· a(1,2,1) a(1,1,2) a(0,3,1) a(0,2,2) ·
· · · · · ·




Adj4
9999K

· · · · · ·
· y∗(2,2) y

∗
(2,3) y

∗
(2,4) y

∗
(2,5) ·

· y∗(2,3) y
∗
(3,3) y

∗
(3,4) y

∗
(3,5) ·

· y∗(2,4) y
∗
(3,4) y

∗
(4,4) y

∗
(4,5) ·

· y∗(2,5) y
∗
(3,5) y

∗
(4,5) y

∗
(5,5) ·

· · · · · ·




.

(2.2.6)
The linear subspace associated with FC(A3) is obtained by additionally

erasing the third row and column

· · · · · ·
· a(2,2,0) a(2,1,1) · a(1,2,1) ·
· a(2,1,1) a(2,0,2) · a(1,1,2) ·
· · · · · ·
· a(1,2,1) a(1,1,2) · a(0,2,2) ·
· · · · · ·




Adj3
9999K

· · · · · ·
· y∗(2,2) y

∗
(2,3) · y∗(2,5) ·

· y∗(2,3) y
∗
(3,3) · y∗(3,5) ·

· · · · · ·
· y∗(2,5) y

∗
(3,5) · y∗(5,5) ·

· · · · · ·




,

and finally for FC(A4) we erase also the second row and column:

· · · · · ·
· · · · · ·
· · a(2,0,2) · a(1,1,2) ·
· · · · · ·
· · a(1,1,2) · a(0,2,2) ·
· · · · · ·




Adj2
9999K

· · · · · ·
· · · · · ·
· · y∗(3,3) · y∗(3,5) ·
· · · · · ·
· · y∗(3,5) · y∗(5,5) ·
· · · · · ·




.

�

2.2.2 Defining equations for reciprocal sets of points

The following theorem is the analogous of Proposition 1.4.5 for catalecticants of
ternary quartics. Reciprocal sets of points are not Grassmannians anymore, but
they are still defined by Pfaffians:
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Reciprocal sets of points

Theorem 2.2.7. Let A ∈ PC be any catalecticant matrix of rank r.

• When r ≥ 3, then FC(A) = FS6(A).

• When r = 2, then FC(A) is a cubic hypersuface of FS6(A), defined by the
cubic Pfaffian of a 6× 6 skew-symmetric matrix.

• When r = 1, then FC(A) is an 11-fold of degree 14 in FS6(A), defined by
the cubic Pfaffians of a 7× 7 skew-symmetric matrix.

Proof. The statement is trivial for r = 5, 6.
When r = 3, 4 the inclusion FC(A) ⊆ FS6(A) is an equality, since by

Lemma 2.2.6 the two reciprocal sets have the same dimension.
When r = 1, 2 the above inclusion is strict but, again by Lemma 2.2.6, we

know that FC(A) is projectively equivalent to the reciprocal variety of some
PLA ⊂ PS6−r of dimension 11 and 8 respectively. The defining equations of
PL−1

A can be found using Proposition 1.3.1. Specifically, we saturate the ideal of
the pull-back of PLA with the determinant ideal of (PS6−r)∨.

For r = 1 it is enough to check the statement for a particular rank-1 matrix,
while for r = 2 we need to check it both for a point on a proper secant line and
a point on a tangent line.

We now show the computations, which can be performed with Macaulay2

using the codes in Appendix A.1.3. Let A = A1 be the rank-1 matrix in (2.2.4).
First, FS6(A) is cut out by y∗(1,j) = 0 for j = 1, . . . , 6. Then FC(A) ⊂ FS6(A) is
the reciprocal variety of the 11-dimensional space PLA ⊆ PS5 in (2.2.5). More
precisely, if we use coordinates (y(i,j))i,j=2,...,6 for PS5 and (y∗(i,j))i,j=2,...,6 for
(PS5)∨ = FS6(A), then PLA is defined by

y(2,6) = y(3,5), y(2,5) = y(3,4), y(4,6) = y(5,5),

and the pull-back of PLA via Adj∨5 is defined by the corresponding linear relation
among the cofactors of the generic symmetric matrix in (PS5)∨:

Cof(2,6) = Cof(3,5), Cof(2,5) = Cof(3,5), Cof(4,6) = Cof(5,5),

where Cof(i,j) is the cofactor relative to y∗(i,j). The ideal generated by these three
quartic relations is not saturated with respect to the determinant polynomial of
(PS5)∨. After saturating, we obtain 7 cubics, which are verified to be equal to
the cubics Pfaffians of the following skew-symmetric matrix:

S1 =



0 y∗(6,6) y∗(5,6) y∗(4,6) y∗(3,6) y∗(2,6) 0
−y∗(6,6) 0 −y∗(4,6)+y∗(5,5) y

∗
(4,5) −y

∗
(2,6)+y∗(3,5) y

∗
(2,5) −y

∗
(3,6)

−y∗(5,6) y
∗
(4,6)−y

∗
(5,5) 0 y∗(4,4) −y

∗
(2,5)+y∗(3,4) y

∗
(2,4) −y

∗
(3,5)

−y∗(4,6) −y∗(4,5) −y∗(4,4) 0 −y∗(2,4) 0 −y∗(3,4)
−y∗(3,6) y

∗
(2,6)−y

∗
(3,5) y∗(2,5)−y

∗
(3,4) y∗(2,4) 0 y∗(2,2) −y

∗
(3,3)

−y∗(2,6) −y∗(2,5) −y∗(2,4) 0 −y∗(2,2) 0 −y∗(2,3)
0 y∗(3,6) y∗(3,5) y∗(3,4) y∗(3,3) y∗(2,3) 0

. (2.2.7)

Let now A = A2 be the rank-2 matrix in (2.2.4). Then FS6(A) is defined
by y∗(1,j) = 0 for j = 1, . . . , 6 and y∗(i,6) = 0 for 1 = 1, . . . , 6, and FC(A) is the
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2. Inverting catalecticants of ternary quartics

reciprocal variety of the 8-dimensional space PLA ⊂ PS4 in (2.2.6). If we use
coordinates (y(i,j))i,j=2,...,5 for PS4 and (y∗(i,j))i,j=2,...,5 for (PS4)∨ = FS6(A),
then PLA is the hyperplane defined by y(2,5) = y(3,4) and the pull-back via Adj∨4
is defined by the single relation Cof(2,5) = Cof(3,4) among the cofactors of (PS4)∨.
This defines a monomial ideal, which is already saturated with respect to the
determinant polynomial of (PS4)∨. This is verified to be the cubic Pfaffian of

S2 =


0 0 y∗(2,2) y∗(2,3) y∗(2,4) y

∗
(2,5)

0 0 y∗(2,3) y∗(3,3) y∗(3,4) y
∗
(3,5)

−y∗(2,2) −y
∗
(2,3) 0 y∗(3,4)−y

∗
(2,5) y

∗
(4,4) y

∗
(4,5)

−y∗(2,3) −y
∗
(3,3) y

∗
(2,5)−y

∗
(3,4) 0 y∗(4,5) y

∗
(5,5)

−y∗(2,4) −y
∗
(3,4) −y∗(4,4) −y∗(4,5) 0 0

−y∗(2,5) −y
∗
(3,5) −y∗(4,5) −y∗(5,5) 0 0

. (2.2.8)

Finally, we consider the rank-2 matrix A = A′2 for which a(4,0,0) = a(3,1,0) = 1
and the remaining entries are zero. This corresponds to a point on a tangent line
to ν4(1 : 0 : 0). With analogous computations to the ones above, one shows that
FS6(A) is defined by y∗(i,j) = 0 for i = 1, 2 and j = 1, . . . , 6. Using coordinates
(y(i,j))i,j=3,...,6 for PS4 and (y∗(i,j))i,j=3,...,6 for (PS4)∨ = FS6(A), the hyperplane
PLA is defined by y(3,6) = y(5,5) and the pull-back via Adj∨4 is defined by the
cubic equation Cof(3,6) = Cof(5,5). Again, the corresponding monomial ideal
is saturated with respect to the determinant and it is verified to be the cubic
Pfaffian of

S′2 =


0 0 y∗(5,6) y∗(6,6) y∗(3,6) y

∗
(4,6)

0 0 y∗(3,5) y∗(3,6) y∗(3,3) y
∗
(3,4)

−y∗(5,6) −y
∗
(3,5) 0 y∗(4,6)−y

∗
(5,5) y

∗
(3,4) y

∗
(4,4)

−y∗(6,6) −y
∗
(3,6) y

∗
(5,5)−y

∗
(4,6) 0 y∗(3,5) y

∗
(4,5)

−y∗(3,6) −y
∗
(3,3) −y∗(3,4) −y∗(3,5) 0 0

−y∗(4,6) −y
∗
(3,4) −y∗(4,4) −y∗(4,5) 0 0

. (2.2.9)

�

Proposition 2.2.8. Let Ar be any matrix in PC of rank r < 6, and let Sr be an
r-secant space to ν4(P2) containing Ar, spanned by r points P1, . . . , Pr of ν4(P2)
in general position. If Ar is in the smooth locus of Cr, then for every i = 1, . . . , r
we have

FC(Ar) = FC(Pi) ∩ FS6(Ar). (2.2.10)

Proof. When r = 5, the equality in (2.2.10) follows from FC(Ar) = FS6(Ar). For
the remaining cases, we have an open orbit (see Remark 2.2.4), so without loss
of generality, we may reduce to check the statement for A1, . . . , A4 as in (2.2.4).

We use the computations in the proof of Theorem 2.2.7. The reciprocal set
FC(A1) is the intersection V (Pf3(S1)) ∩ FS6(A1), and using explicit equations
one can directly see that

V (Pf3(S1)) ∩ FS6(A1) ∩ FS6(A2) = V (Pf3(S1)) ∩ FS6(A2)
= V (Pf3(S2)) ∩ FS6(A2)
= FC(A2),
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with S1 as in (2.2.7) and S2 as (2.2.8).
Analogously, when r = 3, 4, we have

V (Pf3(S1)) ∩ FS6(A1) ∩ FS6(Ar) = FS6(Ar) = FC(Ar).

�

Corollary 2.2.9. For r = 2, . . . , 5, we have inclusions FC(Cr) ⊆ FC(Cr−1).

Proof. The natural inclusions FS6(Ar) ⊆ FS6(Ar−1), applied to Proposition 2.2.8
give

{FC(Ar) | Ar ∈ Cr generic} ⊆ {FC(Ar−1) | Ar−1 ∈ Cr−1 generic},

and the statement follows by taking the Zariski closure. �

Corollary 2.2.9 is the analogous of Corollary 1.3.6. Note that this property is
very special: for a generic PL ⊂ PSm, the reciprocal sets of rank loci would all
have the same dimension.

2.2.3 Relation with secant varieties of Grassmannians

An equivalent way to read Theorem 2.2.7 is that the C-reciprocal sets of points
are linear sections of secant varieties of Grassmannians. More precisely, if Ar is
a rank-r catalecticant matrix, there is a linear isomorphism

FC(Ar) ' σ2(G(2, 8− r)) ∩ PNr , (2.2.11)

with PNr = FS6(Ar), of dimension Nr =
( 7−r

2
)
− 1.

Given a skew-symmetric matrix S, let us denote with Pfk(S) the ideal of the
degree-k Pfaffians of S. For every n, it is known that the Grassmannian of lines
in Pn and its secant are defined by Pfaffians:

G(2, n) = V (Pf2(S)), σ2(G(2, n)) = V (Pf3(S)),

where S is a generic n×n skew-symmetric matrix with linear polynomial entries.
Moreover, the singular locus of the 2-secant is exactly

Sing(σ2(G(2, n))) = G(2, n).

The linear sections in (2.2.11) are not generic with respect to the singularity
property.

Proposition 2.2.10. Let A2, A
′
2 ∈ PC be two rank-2 matrices corresponding to

a point on a secant line and a point on a tangent line and let S2, S
′
2 be 6 × 6

skew-symmetric matrices whose cubic Pfaffians define FC(A2) and FC(A′2). Then:

(1) The singular locus of FC(A2) properly contains V (Pf2(S2)) ∩ FS6(A2),
and similarly for A′2;

47



2. Inverting catalecticants of ternary quartics

(2) The reciprocal sets FC(A2) and FC(A′2) are not projectively equivalent;

(3) There exists another 6× 6 matrix T2, non-equivalent to S2, whose cubic
Pfaffian defines FC(A2).

Proof. Without loss of generality, we may assume that A2, A
′
2 and S2, S

′
2 are

as in the proof of Theorem 2.2.7. All the following claims can be verified with
Macaulay2.

To prove (1), we compute the irreducible decomposition of the singular loci
and check that only some of the components show up in the decomposition of
the quadric Pfaffians.

For (2), it is enough to check that the components appearing in the tangent
and secant case are not isomorphic.

In the secant case we have:

Sing(FC(A2)) = γ1 ∪ γ2 ∪ γ3,

where

• γ1 = ν2(P3) is defined by the 2-minors of y
∗
(2,2) y

∗
(2,3) y

∗
(2,4) y

∗
(2,5)

y∗(2,3) y
∗
(3,3) y

∗
(3,4) y

∗
(3,5)

y∗(2,4) y
∗
(3,4) y

∗
(4,4) y

∗
(4,5)

y∗(2,5) y
∗
(3,5) y

∗
(4,5) y

∗
(5,5)


plus the linear equations of FS6(A2),

• γ2 ' γ3 are two rational normal P2-scrolls of degree 6, defined by the
2-minors of [

y∗(2,2) y
∗
(2,3) y

∗
(2,4) y

∗
(3,4) y

∗
(3,3) y

∗
(3,5)

y∗(2,3) y
∗
(3,3) y

∗
(3,4) y

∗
(4,5) y

∗
(3,5) y

∗
(5,5)

]
and [

y∗(2,2) y
∗
(2,4) y

∗
(2,3) y

∗
(3,4) y

∗
(4,4) y

∗
(4,5)

y∗(2,4) y
∗
(4,4) y

∗
(3,4) y

∗
(3,5) y

∗
(4,5) y

∗
(5,5)

]
respectively, plus the linear equations of FS6(A2) and the additional linear
equation y∗(3,4) − y

∗
(2,5) = 0.

On the other hand we only have

V (Pf2(S2)) ∩ FS6(A2) = γ1 ∪ γ3. (2.2.12)

In the tangent case we have irreducible decomposition

Sing(FC(A′2)) = γ′1 ∪ γ′2 ∪ γ′3,

where
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Reciprocal sets of points

• γ′1 = ν2(P3) is defined by the 2-minors of y
∗
(3,3) y

∗
(3,4) y

∗
(3,5) y

∗
(3,6)

y∗(3,4) y
∗
(4,4) y

∗
(4,5) y

∗
(4,6)

y∗(3,5) y
∗
(4,5) y

∗
(5,5) y

∗
(5,6)

y∗(3,6) y
∗
(4,6) y

∗
(5,6) y

∗
(6,6)

,
plus the linear equations of FS6(A2).

• γ′2 = G(2, 4) is defined by the quadric Pfaffian of 0 y∗(4,4) y∗(4,5) y∗(4,6)
−y∗(4,4) 0 y∗(5,5)−y

∗
(4,6) y

∗
(5,6)

−y∗(4,5) y
∗
(4,6)−y

∗
(5,5) 0 y∗(6,6)

−y∗(4,6) y∗(3,5) −y∗(5,6) 0

,
plus the linear equations of FS6(A2) and the additional linear equations
y∗(3,j) = 0 for j = 1, . . . , 6.

• γ′3 is an embedded component of γ′2. Set-theoretically, it is defined by the
same equations of γ′2 plus the determinant of[

y∗(4,4) y
∗
(4,5) y

∗
(4,6)

y∗(4,5) y
∗
(5,5) y

∗
(5,6)

y∗(4,6) y
∗
(5,6) y

∗
(6,6)

]
.

On the other hand, we have

V (Pf2(S′2)) ∩ FS6(A′2) = γ′1 ∪ γ′2. (2.2.13)

Note that dim(γ′2) = 4, so the above equation (2.2.13) is an improper intersection
between a G(2, 6) and a P9.

Finally, to prove (3), we need to find a matrix T2 such that

FC(A2) = V (Pf3(T2)) ∩ FS6(A2)

with decomposition on the quadric Pfaffians

V (Pf2(T2)) ∩ FS6(A2) = γ1 ∪ γ2.

As suggested by Proposition 2.2.8, a way to find both S2 and T2 requires
knowing the 7× 7 skew-symmetric matrices associated with rank-1 matrices. For
example, consider the A1 above corresponding to ν4(1 : 0 : 0), as well as the S1
in (2.2.7).

Then, imposing the equations of P9 = FS6(A2), we obtain a new matrix from
S1, whose first row and column are set to zero, so it can be identified with a
6× 6 skew-symmetric matrix. This matrix is in fact equivalent to S2, so we have

FC(A2) = V (Pf3(S1)) ∩ FS6(A2), (2.2.14)

and the quadric Pfaffians decompose as γ1 ∪ γ3.

49



2. Inverting catalecticants of ternary quartics

Similarly, we can consider another rank-1 matrix A′1 corresponding to the
second point ν4(0 : 0 : 1). Then

S′1 =



0 0 y∗(5,5) y∗(4,5) y∗(3,5) y∗(2,5) y∗(1,5)
0 0 y∗(4,5) y∗(4,4) y∗(3,4) y∗(2,4) y∗(1,4)

−y∗(5,5) −y
∗
(4,5) 0 −y∗(2,5)+y∗(3,4) y

∗
(3,3) −y

∗
(1,5)+y∗(2,3) y

∗
(1,3)

−y∗(4,5) −y
∗
(4,4) y

∗
(2,5)−y

∗
(3,4) 0 y∗(2,3) −y

∗
(1,4)+y∗(2,2) y

∗
(1,2)

−y∗(3,5) −y
∗
(3,4) −y∗(3,3) −y∗(2,3) 0 −y∗(1,3) 0

−y∗(2,5) −y
∗
(2,4) y

∗
(1,5)−y

∗
(2,3) y∗(1,4)−y

∗
(2,2) y∗(1,3) 0 y∗(1,1)

−y∗(1,5) −y
∗
(1,4) −y∗(1,3) −y∗(1,2) 0 −y∗(1,1) 0


satisfies

FC(A′1) = V (Pf3(S′1)) ∩ FS6(A′1),

and imposing the equations of the same P9 = FS6(A2), we obtain a new matrix
from S′1, whose last row and column are set to zero, so it can be identified with
a 6× 6 skew-symmetric matrix T2.

Then

FC(A2) = V (Pf3(S′1)) ∩ FS6(A2) = V (Pf3(T2)) ∩ FS6(A2),

but the quadric Pfaffians decompose into γ1 ∪ γ2. �

Note that a similar behavior for points on tangent lines is not to be expected:
the components γ′i above do not present the same kind of symmetry and in fact
they can only depend on one rank-1 point, namely the tangency point.

We conclude the section with the following proposition, which gives an
indication of why reciprocal sets of points are defined by Pfaffians.

Proposition 2.2.11. For any point A ∈ C1, its reciprocal set FC(A) is a union
of Grassmannians G(2, 6).

Proof. By Lemma 2.2.6, FC(A) is computed by the restriction of Adj5 : PS5 99K
(PS5)∨ to an 11-dimensional projective linear subspace PLA ⊂ PS5.

We prove the statement by showing that PLA is a union of P8s that are
linear spans of rational normal curves of degree 8. Then the result follows by
recalling that every such P8 parametrizes a catalecticant space of binary octics,
so its image via Adj5 is a G(2, 6) (cfr. Theorem 1.2.1).

Using the action of PGL(3), we may assume without loss of generality that
A is the matrix corresponding to ν4(P ), with P = [1 : 0 : 0]. Then matrices in
PLA have parametric form.

a(2,2,0) a(2,1,1) a(1,3,0) a(1,2,1) a(1,1,2)
a(2,1,1) a(2,0,2) a(1,2,1) a(1,1,2) a(1,0,3)
a(1,3,0) a(1,2,1) a(0,4,0) a(0,3,1) a(0,2,2)
a(1,2,1) a(1,1,2) a(0,3,1) a(0,2,2) a(0,1,3)
a(1,1,2) a(1,0,3) a(0,2,2) a(0,1,3) a(0,0,4)

 .
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Rank loci in the reciprocal variety

The rank-1 locus of PLA is a surface S of degree 12. More specifically, S is the
image of P2 via

λ : P2 |OP2 (4)−2P |
9999999999K P11,

and a degree check shows that the remaining rank loci PLA ∩Dr
S5 are the secant

varieties σr(S).
There are exactly two families of curves in P2 that are mapped to rational

normal octics in PLA via λ. The first, denoted by F1, is the P5 of plane conics.
The second, denoted by F2, is the P6 of cubics singular at P .

We claim that PLA =
⋃
γ∈F1

〈λ(γ)〉. Indeed, σ5(S) = PLA, so every point
Q ∈ PLA belongs to at least one 5-secant space to S. We may choose one such
secant, say 〈P1, . . . , P5〉, where Pi ∈ S. The points Pi are the image via λ of 5
points in the plane, determining a conic γ ∈ F1 hence Q ∈ 〈λ(γ)〉. �

2.3 Rank loci in the reciprocal variety

We can now move to compute the dimension of the reciprocal sets of the rank
loci. This, combined with basic intersection theory of complete quadrics, allows
us to prove that the degree of the reciprocal variety depends only on the degree
of FC(C1) (Theorem 2.3.4).

The numerical results obtained in Section 2.1, imply that there must be
non-empty intersection between PC−1 and the orthogonal space PC⊥. In
Proposition 2.3.8 we explain this phenomenon from a geometric perpective,
by studying the intersection of each FC(Cr) with the orthogonal space.

Proposition 2.3.1. For r = 1, . . . , 4, we have dimFC(Cr) = 2r + 13 − dimCr,
while dimFC(C5) = 5. In particular, only FC(C1) is a hypersurface in the
reciprocal variety.

Proof. By Theorem 2.2.7, for any rank-r matrix A ∈ Cr we have dimFC(A) =
13− dimCr. Moreover,

FC(Cr) = {FC(A) | A ∈ Cr generic }
= {FC(Sr) | Sr = 〈P1, . . . , Pr〉, Pi ∈ ν4(P2)},

where the last equality is justified by Remark 2.2.5. An r-secant space is
determined by the choice of r points on the surface, so altogether dimFC(Cr) =
2r + 13− dimCr.

The case r = 5 is special because 5 points on ν4(P2) uniquely determine
the tangent space to C5 and this tangent space is a hyperplane in PC, which
intersects the surface in a curve that is the image, via the ν4, of a degree 4 curve
in P2. In particular, such curve is singular at those 5 points, so it must be the
image of a double conic. Therefore, for r = 5 the choice of a tangent space is
uniquely determined by the choice of a point in the P5 of plane quadrics. �

Corollary 2.3.2. Set-theoretically, FC(C5) = D1
(S6)∗ and FC(C4) = D2

(S6)∗ .
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2. Inverting catalecticants of ternary quartics

Proof. By Remark 1.1.18, we have a natural inclusion of FC(C5) (resp. FC(C4))
in the locus of matrices of (PS6)∨ of rank at most 1 (resp. 2), which is irreducible
of dimension 5 (resp. 10). �

A natural set up for understanding the inversion map and its regularization
comes from complete quadrics. In this setting, we can analyze how the rank loci
in the reciprocal variety contribute to its degree.

We give a quick overview of the needed definitions and properties in the case
of catalecticants of ternary quartics. For a more general and detailed treatment
of this topic, see [40, Section 3] as well as the references cited therein.

Set V = C6 and recall that P(S2(V )) is the space PS6 of symmetric matrices
while P(S2(∧5V )) = (PS6)∨.

The space of complete quadrics on V , denoted CQ(V ) is the Zariski closure
of the image of

ψ : P(S2(V )) 99K P(S2(V ))× P
(
S2
( 2∧

V
))
× · · · × P

(
S2
( 5∧

V
))

given by
[A] 7→ ([A], [∧2A], . . . , [∧5A]).

We consider two kinds of divisor classes in the intersection ring of CQ(V ).
Classes of the first kind, denoted by µ1, . . . , µ5, are the pull-backs of hyperplane
classes via the natural projection maps π1, . . . , π5 on the five factors.

Classes of the second kind, denoted by δ1, . . . , δ5, correspond to exceptional
divisors coming from the blow-up of the rank loci. We are going to use the
following relation between divisor classes:

µ5 = 1
6 ·

5∑
r=1

r · δr. (2.3.1)

Remark 2.3.3. Complete quadrics can be equivalently thought as a particular
compactification of the space of smooth quadrics in PV . This is done by blowing-
up PS6 first along its rank-1 locus, then the strict transform of its rank-2
locus, and so on up to the rank-5 locus. In particular, π5 is a regularization of
Adj6 : PS6 99K (PS6)∨.

Let us denote with P̃C the proper transform of PC inside CQ(V ), and with
C̃r the intersection of P̃C with the exceptional divisor over the rank-r symmetric
locus, so that [C̃r] = [P̃C] · δr. The projection map π5 restricted to P̃C is a
regularization of Adj6 : PC 99K (PS6)∨.

Theorem 2.3.4. The degree of the reciprocal variety of PC only depends on the
degree of FC(C1). More precisely,

deg(PC−1) = degFC(C1)
6 .
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Rank loci in the reciprocal variety

Proof. The degree of PC−1 is by definition the number of points in its intersection
with 14 general hyperplanes of (PS6)∨. Since Adj6 is birational, its regularization
has degree 1. Therefore, by pulling back classes in the space of complete quadrics,
the degree of the reciprocal variety can be equivalently computed as [P̃C] · µ14

5 .
According to (2.3.1) , we can rewrite the last expression as∑5

r=1 r · [P̃C] · δr · µ13
5

6 =
∑5
r=1 r · [C̃r] · µ13

5
6 .

The product [C̃r] · µ13
5 counts the number of points in the intersection of

FC(Cr) with 13 general hyperplanes of (PS6)∨. By Proposition 2.3.1, we have
dim(FC(Cr)) < 13 when r = 2, . . . , 5, so the resulting intersection number is 0
and the unique contribution to the above sum is [C̃1] · µ13

5 = degFC(C1). �

Remark 2.3.5. From Section 2.1 we numerically computed the degree of PC−1

to be 85, therefore the degree of the reciprocal set FC(C1) is equal to 510.

For ternary quartics and binary forms of even degree, only FC(C1) contributes
to the degree of the reciprocal variety. This might not be true for higher
catalecticants, where the rank loci are not necessarily secant varieties to Veronese
embeddings.

Question 2.3.6. Does the degree of PCat(k, n+ 1)−1 depend only on the degree
of FC(C1), for every (k, n)?

The orthogonal space PC⊥ is a 5-dimensional projective linear space. We
want to study its intersection with PC−1 and the first step towards this is the
analysis of its rank loci.

Remark 2.3.7. A computation with Macaulay2 (see Appendix A.1.4) shows that
the generic rank of PC⊥ is 6 and that it is empty in rank 1 and 2. On the other
hand, the rank-3 locus is a Veronese surface ν2(P2) while the loci of rank 4 and
5 are the cubic hypersurface defining the secant variety σ2(ν2(P2)). The PGL(3)
action in Remark 2.2.4 ensures that the only possibilities for FC(Cr) ∩ PC⊥ are
the rank loci of the orthogonal space.

Proposition 2.3.8. The orthogonal PC⊥ does not contain the image of any full-
rank point and intersects the varieties FC(Cr) in the emptyset for r = 3, 4, 5, and
set-theoretically in a Veronese surface ν2(P2) for r = 1, 2. In particular:

PC−1 ∩ PC⊥ 6= ∅.

Proof. The orthogonal space does not contain full-rank points of the reciprocal
variety as we already pointed out in Remark 1.1.23.

Let now A have rank r ≤ 5. When r = 4, 5, the statement follows from
Remark 2.3.7: indeed, points on FC(C4) and FC(C5) have rank at most 2 and 1
respectively, while PC⊥ is empty in rank 1 and 2.

The cases r = 1, 2, 3 can be checked fiberwise using Theorem 2.2.7 (see also
the codes in Appendix A.1.5). If A is any rank-3 point, or a rank-2 point lying on
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2. Inverting catalecticants of ternary quartics

a proper secant line to C1, we have FC(A)∩PC⊥ = ∅. On the other hand, if A is
a rank-2 point lying on a tangent line to C1 or a rank-1 point, then FC(A)∩PC⊥
in one single point belonging to its Veronese surface ν2(P2). This intersection
point varies inside the surface as we move the tangent line (the point on C1).
We then conclude by Remark 2.3.7. �

Remark 2.3.9. The non-empty intersection between the orthogonal and the
reciprocal variety of PC not only explains that deg(PC−1) 6= ML-deg(PC). It
also shows that the problem of computing the degree FC(C1) cannot be easily
dealt with as for Hankel matrices (cfr. Theorem 1.4.8) since now the projection
πC is not regular.

2.4 Singularities

The main result of this section is Theorem 2.4.1, which gives information on the
singularities of PC−1. We provide both a numerical and a theoretical proof, with
different levels of insight.

Theorem 2.4.1. The reciprocal variety PC−1 of the catalecticant space of ternary
quartics is singular along the locus D2

(Sm)∗ of dual symmetric matrices of rank at
most 2.

Numerical proof of Theorem 2.4.1. Recalling Theorem 2.1.3, we have 27 cubics
numerically computed to be in the set of minimal generators for the ideal of
PC−1. Let J denote the Jacobian of these cubics. This is a 21×27 matrix, whose
generic rank is 6. We check that the rank drops on a single rank-1 symmetric
matrix and on a single rank-2 symmetric matrix. Then the statement follows
because by Corollary 2.3.2, PC−1 contains all rank-1 and rank-2 symmetric
matrices and we can move from one point to another using the action of PGL(6)
on (PS6)∨.

For a point B ∈ (PS6)∨ of rank r we compute with Julia:

rk J(B) =
{

3 if r = 2
0 if r = 1.

The statement for rank-1 points can also be proven by computing degree and
dimension of the variety defined by the the zero locus of the entries of J . With
HomotopyContinuation.jl, we obtain a variety of projective dimension 5 and
degree 32, which matches with ν2(P5) = D1

(S6)∗ . Codes for these computations
can be found in Appendix A.2.5. �

Remark 2.4.2. The case of rank-1 points is very special: indeed, the numerical
computations show that the tangent cone of the reciprocal variety at rank-1
points spans the whole (PS6)∨ or, equivalently, that rank-1 points are singular
for each of the 27 cubics.
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We proceed with an alternative approach for the proof of Theorem 2.4.1,
exploiting our knowledge on the geometry of the rank loci in the reciprocal
variety. We start with some preparatory results.

Definition 2.4.3. For any PL ⊆ PSm and for any rank-r matrix B ∈ PL−1, we
define the L-reciprocal preimage of B to be

F−1
L (B) := {A ∈ PL ∩Dm−r

Sm | B ∈ FC(A)}.

Note that, with this definition we have: F−1
L (B) = F−1

Sm (B) ∩ PL

Lemma 2.4.4. For any matrix B ∈ (PS6)∨ of rank-1 (resp. 2, 3, 4, 5, 6), the
intersection F−1

C (B) is a projective linear space of dimension 8 (resp. 3, 2, 1, 0, 0).

Proof. Let r = rk(B). When r = 5, 6, the statement is trivial. In the remaining
cases, we observe that F−1

Sm (B) is linear in PS6, so it remains linear when
intersecting with PC. The dimensions are given by 13− dimFC(C6−r), that is 8
(resp. 3, 2, 1) when r = 1 (resp. 2, 3, 4). �

Remark 2.4.5 (The role of the fiber P8). The above Lemma 2.4.4 gives also an
important relation between reciprocal preimages and secant spaces.

Indeed, when rk(B) = 2 (resp. 3, 4), then F−1
C (B) contains a 4 (resp. 3, 2)-

secant space to ν4(P2) and they must coincide because they are both linear and
of the same dimension.

The case rk(B) = 1 is different: there is not only a single 5-secant space in
the preimage, but many of them, and altogether they form a P8. Recall, the
tangent spaces to C5 at its smooth points are embedded in PC as 11-dimensional
projective spaces that cut ν4(P2) in a curve, image of a double conic via ν4. This
is therefore a rational curve of degree 8, the composition ν4(ν2(P1)). Its linear
span is the above P8.

Since FC(C5) = FSm(D5
S6) (cfr. Corollary 2.3.2), then for every fixed B of

rank 1, the associated P8 is simply given by

F−1
C (B) = {A ∈ PC | AB = 0}.

The Jacobian of Adj6 : PS6 99K (PS6)∨ is a 21× 21 matrix with polynomial
entries of degree 4. The restriction of the Jacobian of Adj6 to PC, which we
denote with JC, is a 21 × 15 matrix. For every A ∈ PC, the evaluation JC(A)
represents a linear map of vector spaces C → (S6)∗. If Adj6 is defined on A, we
have the induced tangent map on the quotients

TAPC = C
〈A〉

τA−−→ (S6)∗
〈Adj6(A)〉 = TAdj6(A)(PS6)∨. (2.4.1)

Geometrically, τA sends a point P ∈ TAPC to the tangent line at Adj6(A) at the
quintic curve Adj6(〈P,A〉).
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2. Inverting catalecticants of ternary quartics

Lemma 2.4.6. Let A ∈ PC be a general rank-r catalecticant matrix. Then:

rk JC(A) =


15 if r = 6
7 if r = 5
3 if r = 4
0 if r ≤ 3.

Proof. The maximal rank of JC is 15 and it is attained at the points on which
Adj6 is a well-defined bijective map, namely rank-6 points.

On rank-5 points, Adj6 is still well-defined but not injective. We have

ker(τA) =
{
P ∈ C

〈A〉

∣∣∣∣ JC(A)(P ) ∈ 〈Adj6(A)〉
}
' F−1

C (Adj6(A)),

which by Lemma 2.4.4 is an 8-dimensional space. Moreover, Adj6 is defined at
A, so JC(A) ·A 6= 0 and rk JC(A) = 15− 8 = 7.

On rank-4 points, JC is well-defined but Adj6 is not. In particular, we cannot
use the tangent map in (2.4.1). The analogous map to consider is

C
〈A〉

τ ′A−−→ (S6)∗
V

,

where V is the 3-dimensional vector space for which FC(A) = P2 = P(V ). By
construction, the map τ ′A is identically zero, and since Adj6 is not defined at A,
we have JC(A) ·A = 0.

Altogether, this implies that the image of JC(A) is contained in V , hence
rk JC(A) ≤ 3. Equality is attained at points A belonging to the orbit of points
on bitangents 4-secant spaces (see Example 2.4.7 below), hence it is attained at
general rank-4 points.

Finally, a point A of rank at most 3 is a base point for JC, hence
JC(A) = 0. �

Example 2.4.7. We are going to see that when A lies on a degenerate 4-secant
space that is bitangent to ν4(P2), the rank of JC(A) is equal to 3 and its 11-
dimensional kernel is the linear span of the limits of tangent planes to points on
the Veronese surface.

For example, let us consider the rank-4 matrix

A =

1 1 0 · · · · · · 0
1 0 0 · · · · · · 0
0 · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · 0
0 0 · · · 0 0 1
0 0 · · · 0 1 1




,

corresponding to a point on the P3 bitangent to ν4(P2) at P1 = ν4(1 : 0 : 0) and
P2 = ν4(0 : 0 : 1). Via the identification TAPC ' PC, the kernel of JC(A) is the
linear subspace defined by the equations a(2,0,2) = a(1,2,1) = a(0,4,0) = 0.
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This also coincides with the linear span of the two P5 of matrices that are
obtained as limits of spans of tangent planes to points approaching P1 and P2.
Explicitly, these two 5-dimensional linear spaces are parametrized by

a(4,0,0) a(3,1,0) a(3,0,1) a(2,2,0) a(2,1,1) .

a(3,1,0) a(2,2,0) a(2,1,1) a(1,3,0) . .

a(3,0,1) a(2,1,1) . . . .

a(2,2,0) a(1,3,0) . . . .

a(2,1,1) . . . . .
. . . . . .




and

. . . . . .

. . . . . a(1,1,2)

. . . . a(1,1,2) a(1,0,3)

. . . . a(0,3,1) a(0,2,2)

. . a(1,1,2) a(0,3,1) a(0,2,2) a(0,1,3)

. a(1,1,2) a(1,0,3) a(0,2,2) a(0,1,3) a(0,0,4)




.

♦

Remark 2.4.8. The proof of Lemma 2.4.6 in fact works without generality
assumption for the matrix A, except for the case rk(A) = 4.

Moreover, Example 2.4.7 suggests that, when A is general of rank 4, the
kernel of JC(A) is equal to the tangent space TA(C4).

With the knowledge we now have about the Jacobian matrix evaluated at
different points, we are ready to revisit part of the argument proving that PC−1

is singular.

Proof of Theorem 2.4.1 revisited. We show that FC(C5) = D1
(S6)∗ is contained

in the singular locus of PC−1. Let A be a general matrix of rank 5 in PC and let
B = Adj6(A). It is enough to prove that B is singular for PC−1. Then, thanks
to the action of PGL(6) on (PS6)∨, every other rank-1 symmetric matrix will
satisfy the same property.

A sufficient condition for B to be singular is that the tangent cone of PC−1

at B spans all (PS6)∨. To see this, we proceed as follows (computations can be
done with Macaulay2, see also Appendix A.1.6).

First, by Lemma 2.4.4 and Remark 2.4.5, the preimage F−1
C (B) is a P8, union

of 5-secant spaces. So, let us fix a 5-secant space S5 ⊂ C5 and a matrix A ∈ S5.
By Lemma 2.4.6, we have rk JC(A) = 7. Equivalently, using the identifications
in (2.4.1), the tangent space of Adj6(TAPC) at B is embedded as a P6 in (PS6)∨.
More precisely, P6 is the linear span 〈TBAdj6(L1), . . . , TBAdj6(L15)〉, where
Li = 〈A,Pi〉 is a line through A and Pi, and the 15 points Pi are in general
position.

Second, we move the matrix A ∈ S5. For every such matrix, we obtain
a P6

A ⊂ (PS6)∨. Picking A1, . . . , A5 ∈ S5 in general position, the linear span
〈P6
A1
, . . . ,P6

A5
〉 is a P10.

Finally, we move the 5-secant S5 ∈ P8. For every such secant we obtain a
P10
S5
⊂ (PS6)∨. A choice of a 5-secant corresponds to the choice of a 5-tuple of

points on the embedding of a plane conic via ν4 (cfr. Remark 2.4.5). Picking
five generic 5-tuples on the same plane conic, we obtain five different secants
S5,1, . . . , S5,5 and we get equality 〈P10

S5,1
, . . . ,P10

S5,5
〉 = (PS6)∨. �

We now might wonder if the reciprocal variety itself is defined by the cubic
Pfaffians of an 8× 8 skew-symmetric matrix. Although the codimension would
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2. Inverting catalecticants of ternary quartics

be the correct one, the degree would be at most 84 and the number of cubic
generators would be 28, both numbers differing from the numerical results
obtained in Section 2.1. What we can still conjecture is:

Conjecture 2.4.9. The reciprocal variety PC−1 is defined by exactly 27 cubic
equations which are Pfaffians of at least two 7× 7 skew-symmetric matrices.
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Chapter 3

The natural rank and the local
cactus rank of ternary forms

In this chapter, we investigate the natural rank and the local catcus rank of
general ternary forms of any degree. These notions of rank, introduced in [6]
and [7], approximate that of cactus rank, first presented in [15].

In Section 3.1, we set all the definitions and notation. A crucial notion will
be that of a catalecticant matrix associated with inhomogeneous polynomials.
The importance of these matrices is highlighted in Key Lemma 3.1.11.

In Section 3.2, we explore some first easy examples, where the two ranks can
be computed straightforwardly by understanding the geometry of plane curves.

In Section 3.3, we explain a general approach for computing the natural rank,
yielding the closed formula of Theorem 3.3.1.

In Section 3.4, we develop generalized procedures for computing the local
cactus rank, obtaining the closed formula in Proposition 3.4.1 holding for small
degrees. We then conjecture that the formula holds for any degree.

We conclude with an extended example for the case of ternary quintics, which
is illustrated in Section 3.5.

3.1 Preliminaries

In Chapter 1, Section 1.1, we introduced apolarity and catalecticant matrices. For
any (n+ 1)-dimensional C-vector space V generated by x0, . . . , xn, we consider
the graded symmetric algebra S̄ := S(V ) = C[x0, . . . , xn] and we denote with
S̄d its d-graded part. For any F ∈ S̄d and l ∈ S̄1 we have a dehomogenization of
F with respect to l, defined as the residue class of F in the quotient S̄/(l − 1)
and usually denoted by Fl.

In the main applications, we consider dehomogenizations with respect to
l = x0, so we identify the quotient space with S = C[x1, . . . , xn] and the
projection map with

πx0 : S̄ → S

F (x0, x1 . . . , xn) 7→ F (1, x1, . . . , xn).

We denote with T̄ := S(V ∗) = C[∂0, . . . , ∂n] the dual graded algebra of
differential operators, acting on S̄ by contraction. This induces contraction on
dehomogenized spaces, that is an action of T := C[∂1, . . . , ∂n] on S. We call the
order of an operator D ∈ T , the smallest degree of a non-zero homogeneous term
of D.
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3. The natural rank and the local cactus rank of ternary forms

Definition 3.1.1. Given a homogeneous form F ∈ S̄, its apolar ideal, denoted by
F⊥, is the ideal in T̄ defined by the annihilator of F , i.e.

F⊥ := {D ∈ T̄ | D(F ) = 0}.

Analogously, given an inhomogeneous polynomial f ∈ S, its apolar ideal is the
annihilator of f in T and it is denoted by f⊥.

The quotient ring Tf := T/f⊥ is an Artinian Gorenstein graded local ring.
Since we are working in characteristic 0, apolarity is equivalent to standard

differentiation.

Definition 3.1.2. For any f ∈ S and for any D ∈ T , we call D(f) a partial of f .
The order of a partial g of f ∈ S is the largest order of an operator D ∈ T such
that g = D(f).

For every f in S, let us denote with Diff(f) = {D(f) | D ∈ T} the space of
all partials of f . We have isomorphism of T -modules

τ : Tf
∼−→ Diff(f)

D 7→ D(f).

In particular, we may interpret the Hilbert function of Tf in terms of a filtration
of Diff(f). More precisely, let m be the maximal ideal of Tf . The m-adic filtration

Tf = m0 ⊃ m ⊃ m2 ⊃ · · · ⊃ md ⊃ md+1 = 0, (3.1.1)

where d = deg(f), defines an associated graded ring

T ∗f =
d⊕
i=0

mi/mi+1.

Definition 3.1.3. For any f ∈ S, the Hilbert function of f , denoted by Hf , is
the Hilbert function of the graded ring T ∗f .

We also have a filtration

Tf ⊃ (0 :md+1) ⊃ (0 :md) ⊃ · · · ⊃ (0 :m2) ⊃ (0 :m), (3.1.2)

inducing a sequence of ideals

Ck :=
d−k⊕
i=0

Ck,i ⊂ T ∗f ,

where k = 0, 1, 2 . . . and each graded piece is defined to be

Ck,i := (0 :md+1−k−i) ∩mi

(0 :md+1−k−i) ∩mi+1 .

We then consider the quotient modules

Qk := Ck/Ck+1, k = 0, 1, 2, . . .
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Preliminaries

with Hilbert functions
∆Q,k := H(Qk).

The decomposition of Ck induces a decomposition of Qk as a direct sum
Qk = ⊕di=0Qk,i, where Qk,i = Ck,i/Ck,i+1. When d ≥ 2 and k > d − 2,
we have Ck = Qk = 0.

Proposition 3.1.4 ([35], Theorem 1.5). The T ∗f -modules Qk satisfy the reflexivity
condition

Q∨k,i ' Qk,d−k−i.

In particular, the Hilbert function ∆Q,k = H(Qk) is symmetric around (d− k)/2.
Therefore the Hilbert function of T ∗f has a symmetric decomposition

H(T ∗f ) =
∑
k

∆Q,k.

Let us denote with Diff(f)i ⊂ Diff(f) the subspace of partials of f of degree
at most i. The isomorphism τ sends (0 :mi) to Diff(f)i−1, so (3.1.2) induces a
degree filtration

C = Diff(f)0 ⊂ Diff(f)1 ⊂ Diff(f)2 ⊂ · · · ⊂ Diff(f)d = Diff(f). (3.1.3)

Since we have isomorphism

(0 :mi)/(0 :mi−1) ' (mi−1/mi)∨,

the Hilbert function Hf = H(T ∗f ) can be expressed as

Hf (0) = 1, Hf (i) = dimC Diff(f)i − dimC Diff(f)i−1,

where i = 1, . . . , d.
On the other hand (3.1.1) induces an order filtration on Diff(f). Indeed, the

image τ(mi) ⊆ Diff(f)d−i is the space of partials of order at least i.
So let us denote with Diff(f)ki ⊂ Diff(f) the space of partials of degree at

most i and order at least d− i− k. By Proposition 3.1.4, we have

Q∨k,i '
Diff(f)ki

(Diff(f)k−1
i + Diff(f)k+1

i−1 )
,

so we may think of Q∨k,i as the space parametrizing the partials of f of degree
equal to i and order equal to d− k − i. By Proposition 3.1.4, the sequences

∆f,k(i) := dim(Q∨k,i)

satisfy ∆f,k(i) = ∆f,k(d− k − 1) and they induce a symmetric decomposition
Hf =

∑d−2
k=0 ∆f,k for the Hilbert function of f .
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3. The natural rank and the local cactus rank of ternary forms

Example 3.1.5. Let f = x5
1 + x4

1 + x1x
2
2. To determine the generators for the

spaces of partials Q∨k , it is enough to compute its partials with respect to bases
for the graded parts Tk. We may use ∂k1∂k−1

2 (f) for every k = 0, . . . , 5 and
i = 0, . . . , k. We obtain

∂4
1(f) = x1 + 1 ∂2

1(f) = x3
1 + x2

1 ∂1(f) = x4
1 + x3

1 + x2
1

∂3
1(f) = x2

1 + x1 ∂1∂2(f) = x2 ∂2(f) = x1x2

∂2
2(f) = x1,

where operators yielding constant partials are omitted. Therefore we have
generators of spaces of partials

degree 0 1 2 3 4 5

Q∨0 1 x1 x2
1 x3

1 x4
1 f

Q∨1 0 0 0 0 0

Q∨2 0 x2 x1x2 0

and the associated symmetric decomposition for the Hilbert function of f :

degree 0 1 2 3 4 5

∆f,0 1 1 1 1 1 1
∆f,1 0 0 0 0 0
∆f,2 0 1 1 0

Hf 1 2 2 1 1 1

.

♦

Every partial sum
∑k
α=0 ∆f,k(i) is the Hilbert function of a C-algebra

generated in degree 1 (cfr. [34], Section 5B). In particular, they have positive
values and satisfy the Macaulay growth conditions: If, for fixed i, k, we have
binomial expansion

k∑
i=0

∆f,k(i) =
(
mi

i

)
+
(
mi−1
i− 1

)
+ · · ·+

(
mj

j

)
(3.1.4)

with mi > mi−1 > · · · > mj ≥ j ≥ 1, then

k∑
i=0

∆f,k(i+ 1) ≤
(
mi + 1
i+ 1

)
+
(
mi−1 + 1

i

)
+ · · ·+

(
mj + 1
j + 1

)
. (3.1.5)

We will later be interested in characterizing spaces of polynomials f with
Hf (i) = 1 for every i = 0, . . . , d. For these polynomials, the generators for the
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spaces of partials are essentially determined by the choice of a linear form. We
denote with

Lin(f) =: Diff(f) ∩ S1 (3.1.6)
the space of linear forms that are partials of f . In Example 3.1.5, Lin(f) =
〈x1, x2〉 = S1 is maximal.

In [7], Bernardi, Jelisiejew, Marques and Ranestad characterize polynomials
with given Hilbert function via "standard" and "exotic" forms. Here we use a
different approach, based on the study of the catalecticant matrix associated
with an inhomogeneous polynomial. We now give the formal definition of this
matrix, which will play a central role throughout the rest of this chapter.

Definition 3.1.6. Let f =
∑d
i=0 fi be the decomposition in homogeneous

summands of a degree d polynomial in S. The catalecticant matrix of f is
defined to be

C(f) :=


Cat(0, f0) Cat(0, f1) · · · Cat(0, fd−1) Cat(0, fd)
Cat(1, f1) Cat(1, f2) · · · Cat(1, fd) 0

...
... ... ... ...

Cat(d− 1, fd−1) Cat(d− 1, fd) 0 · · · 0
Cat(d, fd) 0 · · · · · · 0

 .
Remark 3.1.7. The matrix C(f) is a (d+ 1)× (d+ 1) symmetric block matrix.
The rows in

[ Cat(k, fk) Cat(k, fk+1) Cat(k, fd) 0 · · · 0 ]
correspond to partials of f of order k. More precisely, the (i, j)-th entry of
Cat(k, fk+l) is the coefficient of xl−j1 xj2 for the partial ∂k−i1 ∂i2(f).

For every k = 0, . . . , d, the matrix Cat(k, fd) gives the coefficients of partials
of f of order equal to k and degree equal to d − k. Hence we have a relation
with the first symmetric component of the Hilbert function of f :

∆f,0(i) = rk(Cat(i, fd)).
Remark 3.1.8. The matrix C(f) is the square catalecticant matrix of a
homogeneous ternary form of degree 2d, namely xd0F , where F is the
homogenization of f with respect to x0:

F = fd + x0fd−1 + x2
0fd−2 + · · ·+ xd0f0.

Example 3.1.9. Let f = x2
1x2 + x2

1 + x2. Then the catalecticant matrix of f is

· · 1 1 · · · 1 · ·
· 1 · · 1 · · · · ·
1 · · 1 · · · · · ·
1 · 1 · · · · · · ·
· 1 · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
1 · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·




C(f) = .

63



3. The natural rank and the local cactus rank of ternary forms

♦

In addition Remark 3.1.7, we can observe a further relation between C(f) and
the Hilbert function of f . For every k = 0, . . . , d, let us consider the submatrices
of C(f) defined by its last k + 1 rows of blocks:

Ck(f) :=

Cat(d−k, fd−k) Cat(d−k, fd−k−1) · · · Cat(d−k, fd−1) Cat(d−k, fd)
Cat(d−k+1, fd−k+1) Cat(d−k+1, fd−k+2) · · · Cat(d−k+1, fd) 0

...
... ... ... ...

Cat(d−1, fd−1) Cat(d−1, fd) 0 · · · 0
Cat(d, fd) 0 · · · · · · 0




.

In other words, the rows of Ck(f) correspond to partials in Diff(g)0
k. In particular,

for every k ≤ d, the matrix Ck(f) is a submatrix of Ck+1(f) and we have a
strictly increasing sequence of ranks

rk(C0(f)) < rk(C1(f)) < · · · < rk(Cd(f)). (3.1.7)

Definition 3.1.10. Let f ∈ S be a polynomial of degree d, with Hilbert function
Hf = (Hf (i0), . . . ,Hf (id)). We define the length of Hf to be

len(Hf ) :=
d∑
a=0

Hf (ia).

The set of Hilbert functions admits a (trivial) total ordering: let f, g be
two polynomials of possibly different degree, with Hilbert functions Hf and Hg

respectively. Then we say that Hf ≤ Hg if and only if len(Hf ) ≤ len(Hg).
Note that this ordering is "coarse", since it does not compare all the single

values of Hilbert functions, but only their sum. Therefore, two Hilbert functions
with different values may have equal length.

We have the following key result:

Lemma 3.1.11 (Key lemma). Let f be a polynomial of degree d. Then the
following are equivalent:

(1) For every 0 ≤ i ≤ d we have
∑i
j=0Hf (j) ≤

∑i
j=0 nj;

(2) For every 0 ≤ i ≤ d we have rk(Ci(f)) ≤
∑i
j=0 nj.

In particular, the length of Hf is equal to the rank of C(f).

Proof. It follows from:

rk(Ci(f)) = dim(Diff(f)0
i ) =

i∑
j=0

j∑
k=0

dim(Q∨k,j) =
i∑

j=0

j∑
k=0

∆f,k(j) =
i∑

j=0
Hf (j).

�
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Remark 3.1.12. The equivalent conditions of Key Lemma allow us to describe
the set of polynomials of degree d with a given Hilbert function by means of
homogeneous ideals, giving the set a subscheme structure in the projective space
P(⊕di=0Si), see example Example 3.1.13 and Lemma 3.4.4.

Moreover, the conditions of Key Lemma explain how total ordering on the
set of Hilbert functions induces a partial ordering (by inclusion) on varieties of
polynomials with Hilbert function of fixed length. Explicitly, for any two degrees
d ≤ e and for any positive integers λ ≤ µ, we may consider the two varieties

F =
{
f ∈ P(⊕di=0Si) | len(Hf ) ≤ λ

}
⊆ P(⊕di=0Si)

and
G = {g ∈ P(⊕ei=0Si) | len(Hg) ≤ µ} ⊆ P(⊕ei=0Si).

The natural inclusion P(⊕di=0Si) ↪→ P(⊕ei=0Si) makes the two matrices C(f)
and C(g) comparable, as catalecticant matrices of degree-e polynomials. The
conditions of Lemma 3.1.11 for the length of Hilbert functions of elements in
f ∈ F and g ∈ G imply that generically

λ = rk(C(f)) ≤ rk(C(g)) = µ,

hence F ⊆ G, as subvarieties of P(⊕ei=0Si).

Varieties of polynomials of fixed degree and with Hilbert function of fixed
length are usually reducible. Among the small-dimensional components, one
typically finds subvarieties of polynomials of smaller degree.

Example 3.1.13. The variety of cubic polynomials f in two variables with
len(Hf ) ≤ 5 is defined by the determinantal equation on the generic catalecticat
matrix:

rk



a(0,0) a(1,0) a(0,1) a(2,0) a(1,1) a(0,2) a(3,0) a(2,1) a(1,2)
a(1,0) a(2,0) a(1,1) a(3,0) a(2,1) a(1,2) · · ·
a(0,1) a(1,1) a(0,2) a(2,1) a(1,2) a(0,3) · · ·
a(2,0) a(3,0) a(2,1) · · · · · ·
a(1,1) a(2,1) a(1,2) · · · · · ·
a(0,2) a(1,2) a(0,3) · · · · · ·
a(3,0) · · · · · · · ·
a(2,1) · · · · · · · ·
a(1,2) · · · · · · · ·
a(0,3) · · · · · · · ·


≤ 5.

This is a subvariety of P(⊕3
i=0Si) ' P9 of dimension 7, degree 9, which is defined

by 48 sextics. As a scheme, it has two irreducible components, and it is not
reduced.

The first component, of dimension 7 and degree 9, is defined by the square
of the ideal

(a2
(2,1) − a(1,2)a(3,0), a(1,2)a(2,1) − a(0,3)a(3,0), a

2
(1,2) − a(0,3)a(2,1)),
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3. The natural rank and the local cactus rank of ternary forms

that is the ideal defining the cubic polynomials whose cubic term is a pure power
of a linear form. The general element of this component has Hilbert function
(1, 2, 1, 1) and in fact its defining equations are given by imposing Hf (2) ≤ 1.

The second one is an embedded (fat) component of dimension 5 and degree
50, whose radical ideal is simply

(a(3,0), a(2,1), a(1,2), a(0,3)),

that is the ideal cutting the linear P5 of quadrics in the space of cubics. ♦

In Section 3.4, we will be interested in maximal-dimensional components of
varieties of polynomials of degree e and with Hilbert function of length at most
e+ 1. The next Proposition 3.1.14 shows that among these maximal components
we find one whose generic element f has unitary Hilbert function, namely it
satisfies Hf = (1, 1, . . . , 1).

Proposition 3.1.14. Let S = C[x1, . . . , xn], let d ≤ e be two positive integers
and consider the following subvarieties of polynomials:

F =
{
f ∈ P(⊕di=0Si) | len(Hf ) ≤ e+ 1

}
G = {g ∈ P(⊕ei=0Si) | Hg(i) ≤ 1, ∀i = 0 . . . , e} ,

Then F ⊆ G, as subvarieties of P(⊕ei=0Si).

Proof. Any element f ∈ F can be regarded as a polynomial of degree e via the
natural inclusion ι : P(⊕di=0Si) ↪→ P(⊕ei=0Si). By Key Lemma 3.1.11, we need
to show that φ := ι(f) satisfies

rk(Ci(φ)) ≤ i+ 1, for every i = 0, . . . , e,

which, in terms of the original catalecticant matrix becomes

rk(Ci(f)) ≤ i+ 1 + e− d, for every i = 0, . . . , d. (3.1.8)

We now recall from (3.1.7) that we have a strictly increasing sequence of
ranks of submatrices Ci(f). If we assume that there exists i0 ≤ d such that the
inequality (3.1.8) is not satisfied, say

rk(Ci0(f)) = i0 + 2 + e− d,

then for i = d we get

len(Hf ) = rk(C(f)) = rk(Cd(f)) ≥ 2 + e− d,

a contradiction. �

Note that a priori there may be several components whose general element
has unitary Hilbert function and these components may not be all of maximal
dimension. Proposition 3.1.14 only shows that we find at least one maximal
component of this kind. We will see later in Proposition 3.4.7 that for polynomials
in two variables, this is the only maximal component.

66



Preliminaries

3.1.1 Apolar schemes, natural rank, cactus rank

We have seen that to any (in)homogeneous polynomial we can associate a natural
scheme by quotienting the ring of operators with the apolar ideal.

Definition 3.1.15. Let F ∈ S̄ be any homogeneous form and let l ∈ S̄1 be linear.
The natural apolar scheme to F at l is Spec (T/F⊥l ).

The natural rank of F at l is the length of the natural apolar scheme to F at
l or, equivalently, the length of HFl .

The natural rank of F is

nat(F ) := min {len(HFl) | l ∈ P(S1)} .

The notion of apolar scheme can be extended:

Definition 3.1.16. A subscheme Z ⊂ Proj(T̄ ) is an apolar scheme to F if its
ideal I(Z) is contained in F⊥ and analogously for inhomogeneous forms f ∈ S.

As a consequence, also the definition of natural rank is extended to the
following:

Definition 3.1.17. The cactus rank of a homogeneous form F ∈ S̄ is the minimal
length of a zero-dimensional scheme apolar to F :

cr(F ) = min
{

len(Z)
∣∣∣∣ Z ⊂ Proj(T̄ ), dim(Z) = 0,

I(Z) ⊂ F⊥
}
.

The local cactus rank of a homogeneous form F ∈ S̄ is the minimal length of a
zero-dimensional scheme apolar to F supported at a single point:

lcr(F ) = min
{

len(Z)
∣∣∣∣ Z ⊂ Proj(T̄ ), dim(Z) = 0,

Supp(Z) = {pt}, I(Z) ⊂ F⊥
}
.

By definition, for any F ∈ S̄ we have lcr(F ) ≤ nat(F ). In Definition 3.1.15
we explain how to compute the natural rank in terms of Hilbert functions of
dehomogenizations. Similarly, we may compute the local cactus rank in terms of
the Hilbert function of a suitable quotient ring by using the following:

Proposition 3.1.18. Let F ∈ S̄d and let f = Fx0 be its dehomogenization.
Suppose that Γ is a zero-dimensional scheme of minimal length among the ones
apolar to F that are supported at the point [x0] = [1 : 0 : · · · : 0] ∈ T̄ . Then Γ is
the apolar scheme of an affine polynomial g whose degree-d tail g≤d equals f .

A typical way to use Proposition 3.1.18 is the following: let F be homogeneous
of degree d and let us assume that the natural bound for the local cactus rank is
given, say lcr(F ) ≤ k = nat(F ). The bound is strict if and only if there exists a
polynomial g in two variables such that

• deg(g) > deg(F )

• there exists a linear form l such that Fl = g≤d;
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• len(Hg) < k.

These conditions immediately give some restrictions for the Hilbert function
of g, for which we have a finite number of cases (thanks to Macaulay’s growth
conditions (3.1.4)-(3.1.5)).

In Section 3.2, we directly apply the strategy explained above for the case
of binary forms and ternary forms of degree 3. Explicit computations can be
easily given for two main reasons: first, the set of possible Hilbert functions Hg

to check is very small; second, the conditions for a polynomial to be the tail of
such g has a well-understood geometric meaning.

For a more general and systematic treatment we proceed with Section 3.3
and Section 3.4.

Throughout this chapter, polynomials in n variables of degree d and
homogeneous (n+ 1)-ary forms of degree d will be treated as points in projective
spaces, so we will denote them with f ∈ P(⊕di=0Si) and F ∈ P(S̄d), respectively.

3.2 First examples

In this section we compute the natural rank and the local cactus rank for general
binary forms of any degree and for general ternary cubics.

3.2.1 Binary forms

The case of binary forms is classical and very simple. So let S̄ = C[x0, x1] and let
F ∈ P(S̄d) be a general degree-d form. For any l ∈ P(S̄1), the dehomogenization
Fl is a polynomial in one variable. Then we have:

Proposition 3.2.1. For a general binary form of degree d, the natural rank and
the local cactus rank are both equal to d.

Proof. Every binary form of degree d can be written as

F =
k∏

i=1,
m1+···+mk=d

(αix0 + βix1)mi ,

whose zero locus V (F ) is a collection of points Pi = [βi : −αi], each one counted
with multiplicity mi. For a general F , we have mi = 1 for every i.

For any l ∈ P(S̄1), the dehomogenization Fl is a polynomial in one variable
whose degree can be either d− 1 or d, depending on whether l divides F or not.
The associated Hilbert function will be unitary in both cases, i.e. HFl = (1, . . . , 1),
so the minimal one will have length d.

This computes the local cactus rank as well: if there was another affine form
g ∈ C[x1] defining a zero dimensional apolar scheme of minimal length, it would
be of degree deg(g) ≥ d+ 1. Its Hilbert function, also unitary, will have length
at least d+ 1, contradicting minimality. �
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3.2.2 Ternary cubics

Let S̄ = C[x0, x1, x2] and consider a general form F =
∑
i+j≤d a(i,j)x

i
1x
j
2x

3−i−j
0

in P(S̄3). Its zero locus is a cubic plane curve, so for every linear form l ∈ P(S̄1),
the intersection V (F, l) can only have one of the following configurations:
3P, 2P + Q or P + Q + R, as elements of the free abelian group generated
by the points of V (l).

Proposition 3.2.2. The natural rank and the local cactus rank of a general
ternary cubic are both equal to 5.

First we examine the possibilities for the natural rank by analyzing the
geometry of the three possible configurations of points.

Lemma 3.2.3. If V (F ) ∩ V (l) = 3P , then either F is smooth at P and
HFl = (1, 2, 1, 1), or HFl = (1, 1, 1, 1).

Proof. Without loss of generality, we may assume that l = x0 and P = [0 : 0 : 1].
Let us write

F = f3 + x0f2 + x2
0f1 + x3

0f0, (3.2.1)

where each fi is a polynomial of degree i in the variables x1, x2. Imposing
multiplicity 3 at P , we must have f3 = a(3,0)x

3
1 (and a(3,0) 6= 0). Let us for short

denote the dehomogenized form Fl with f =
∑3
i=0 fi.

The space of partial derivatives of degree 2 is generated by ∂1(f), while in
degree 1 the generators are {∂2

1(f), ∂2(f)}. In particular:

∂2
1(f) = a(3,0)x1 + ∂2

1(f2) of degree = 1
∂2(f) = a(1,1)x1 + a(0,2)x2 + ∂2(f1) of degree ≤ 1.

Therefore, the dimension of this space is either 1 or 2, depending on whether
a(0,2) is zero or not. Geometrically, this condition translates into asking if V (F )
is singular at P . So, if P is a (smooth) flex point of V (F ) and V (l) is its tangent
line, then HFl = (1, 2, 1, 1), while if P is a singular point of V (F ) and the
multiplicity of V (F ) ∩ V (l) at P is 3, then HFl = (1, 1, 1, 1). �

Lemma 3.2.4. If V (F ) ∩ V (l) = 2P +Q, with P 6= Q, then HFl = (1, 2, 2, 1).

Proof. Again, without loss of generality we may assume that l = x0, P = [0 :
0 : 1] and Q = [0 : 1 : 0]. Keeping the same notation as (3.2.1), we must have
f3 = a(2,1)x

2
1x2 (and a(2,1) 6= 0). Then the spaces of partials of degree 1 and 2

have both maximal dimension, with bases {∂2∂1(f), ∂2
1(f)} and {∂2(f), ∂1(f)}

respectively. Indeed, in all these expressions, the leading term has non-vanishing
coefficient:

∂2
1(f) = a(2,1)x2 + ∂2

1(f2) ∂1(f) = a(2,1)x2x1 + ∂1(f2) + ∂1(f1)
∂2∂1(f) = a(2,1)x1 + ∂2∂1(f2) ∂2(f) = a(2,1)x

2
1 + ∂2(f2) + ∂2(f1).

So, independently on P being smooth or not for V (F ), we have HFl =
(1, 2, 2, 1). �
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Lemma 3.2.5. If V (F ) ∩ V (l) = P + Q + R, with P,Q,R, distinct, then
HFl = (1, 2, 2, 1).

Proof. Both the configuration of points and the Hilbert function are the general
ones. �

Proof of Proposition 3.2.2. Let F be a general smooth cubic ternary form. The
natural rank is computed as the least number among the lengths of the three
Hilbert functions studied in Lemmas 3.2.3 to 3.2.5.

Every general smooth plane cubic curve admits 9 flexes. So taking P to be
one of the flex points of V (F ) and l the form defining the tangent line at P , we
end up in the (smooth) case of Lemma 3.2.3, yielding natural rank 5.

As a consequence, lcr(F ) ≤ 5. If the inequality was strict, then there
would exist a polynomial g in two variables with deg(g) ≥ 4, whose cubic tail
would coincide with Fl for some l and such that len(Hg) ≤ 4. But being g of
degree at least 4, its Hilbert function would be at least Hg = (1, 1, 1, 1, 1), a
contradiction. �

3.3 The natural rank of ternary forms

The main result of this section gives a closed formula for computing the natural
rank of a general degree-d ternary form.

Theorem 3.3.1. The natural rank of a general ternary form F ∈ P(S̄d) of degree
d is:

nat(F ) =
⌊
d(d+ 4)

4

⌋
.

When d = 2k + 1 is odd, the natural rank is realized at 3(k+1)(k+2)(3k2+3k+1)
2

points of P(S1). When d = 2k is even, the natural rank is realized at a degree
3k(k + 1) curve of P(S1).

The claimed expression for the natural rank coincides with the length of the
maximal Hilbert function for a polynomial of degree d in two variables, decreased
by one. Explicitly, for a polynomial f ∈ P(⊕di=0Si) the maximal Hilbert function
is (

1, 2, . . . , d−1
2 , d+1

2 , d+1
2 , d−1

2 , . . . , 2, 1
)

if d = 2k + 1(
1, 2, . . . , d2 ,

d
2 + 1, d2 , . . . , 2, 1

)
if d = 2k.

If we denote its length by

λd :=
⌊

(d+ 2)2

4

⌋
,

the above Theorem 3.3.1 says that the natural rank of a general ternary form of
degree d is equal to λd − 1.

The following lemmas characterize those polynomials f whose Hilbert function
has length λd − 1 and λd − 2.
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Lemma 3.3.2. Let S = C[x1, x2] and let f =
∑d
i=0 fi be a degree-d polynomial

in P(⊕di=0Si). Setting k = bd2c, we have the following equivalent conditions:

(1) The length of Hf is at most λd − 1;

(2) The rank of Cat(k, fd) is at most k;

(3) The point [fd] belongs to σk(νd(P1)).

Proof. When d = 2k + 1 is odd, the unique Hilbert function of length λd − 1
decomposes as:

degree 0 1 · · · d−3
2

d−1
2

d+1
2

d+3
2 · · · d− 1 d

∆f,0 1 2 · · · d−1
2

d−1
2

d−1
2

d−1
2 · · · 2 1

∆f,1 0 0 · · · 0 1 0 0 · · · 0

Hf 1 2 · · · d−1
2

d−1
2

d−1
2

d−1
2 · · · 2 1

. (3.3.1)

Therefore, len(Hf ) ≤ λd − 1 if and only if Hf

(
d−1

2
)
≤ d−1

2 , if and only if
∆f,0(k) ≤ k.

When d = 2k is even, the unique Hilbert function of length λd−1 is symmetric
and it decomposes as:

degree 0 1 · · · d
2 − 1 d

2
d
2 + 1 · · · d− 1 d

∆f,0 1 2 · · · d
2

d
2

d
2 · · · 2 1

Hf 1 2 · · · d
2

d
2

d
2 · · · 2 1

.

Therefore, len(Hf ) ≤ λd−1 if and only if Hf

(
d
2
)
≤ d

2 , if and only if ∆f,0(k) ≤ k.
The equivalence of (1) and (2) follows from recalling that for every 0 ≤ m ≤ d
we have ∆f,0(m) = rk(Cat(m, fd)) (cfr. Remark 3.1.7).

The equivalence of (2) and (3) is trivial. �

In the same hypotheses of Lemma 3.3.2, we have a similar statement for
Hilbert functions of length λd− 2. The odd and even case are studied separately.

Lemma 3.3.3. When d = 2k is even, the following are equivalent:

(1) The length of Hf is at most λd − 2;

(2) The rank of Cat(k, fd) is at most k − 1;

(3) The point [fd] belongs to σk−1(νd(P1)).
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3. The natural rank and the local cactus rank of ternary forms

Proof. The unique Hilbert function of length λd − 2 decomposes as:

degree 0 1 · · · d
2 − 1 d

2
d
2 + 1 · · · d− 1 d

∆f,0 1 2 · · · d
2 − 1 d

2 − 1 d
2 − 1 · · · 2 1

∆f,1 0 0 · · · 1 1 0 · · · 0

Hf 1 2 · · · d
2

d
2

d
2 − 1 · · · 2 1

.

Therefore, len(Hf ) ≤ λd − 2 if and only if Hf

(
d
2
)
≤ d

2 − 1, if and only if
∆f,0(k) ≤ k − 1.

The equivalence with (3) is trivial. �

Lemma 3.3.4. When d = 2k + 1 is odd, the following are equivalent:

(1) The length of Hf is at most λd − 2;

(2) The rank of Cat(k, fd) is at most k and furthermore

rk
[

Cat(k, fd−1) Cat(k, fd)
Cat(k + 1, fd) 0

]
≤ 2k. (3.3.2)

Proof. The unique Hilbert function of length λd − 2 decomposes symmetrically
as:

degree 0 1 · · · d−3
2

d−1
2

d+1
2

d+3
2 · · · d− 1 d

∆f,0 1 2 · · · d−1
2

d−1
2

d−1
2

d−1
2 · · · 2 1

Hf 1 2 · · · d−1
2

d−1
2

d−1
2

d−1
2 · · · 2 1

.

Compared to (3.3.1), we have an additional condition. Explicitly: len(Hf ) ≤ λd−
2 if and only if ∆f,0(k) ≤ k and Hf,1

(
d−1

2
)

= 0. The first condition is equivalent
to rk(Cat(k, fd)) ≤ k, so by performing elementary operations on the columns
of Cat(k, fd), and symmetrically on the rows of Cat(k + 1, fd) = Cat(k, fd)t, we
obtain:

[
Cat(k, fd−1) Cat(k, fd)

Cat(k + 1, fd) 0

]
'


A

B 0 0
0 0 0

Bt 0
0 0
0 0 0

 , (3.3.3)

where A and B are square matrices of size (k+ 1) and k respectively, generically
of full rank.

The second condition is equivalent to saying that there are no partials of
degree k and order d − k − 1. Once the first is satisfied, this is equivalent to
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saying that the contribution to the rank of the matrix in (3.3.3) only comes from

B and Bt, that is rk
[
A B
Bt 0

]
≤ 2k. �

Remark 3.3.5. The right-hand side of (3.3.3) is identified with a square matrix
of size 2k + 1. So, the rank-2k condition defines a hypersurface in the space of
polynomials f with rk(Cat(k, fd)) ≤ k.

We consider the incidence variety associated with dehomogenizations with
Hilbert function of colength 1:

I1 =
{

(F, l) ∈ P(S̄d)× P(S̄1) | len(HFl) ≤ λd − 1
}
,

and analogously for colength 2:

I2 =
{

(F, l) ∈ P(S̄d)× P(S̄1) | len(HFl) ≤ λd − 2
}
.

We have the natural inclusion I2 ⊆ I1, therefore a commutative diagram

P(S̄d)× P(S̄1)

I1

P(S̄d) I2 P(S̄1)
p1 q1

p2 q2

.

Keeping Lemmas 3.3.2 to 3.3.4 in mind, let Ir denote the ideal of r-minors of
Cat(k, fd) and let J denote the determinantal ideal giving the condition (3.3.2).

Corollary 3.3.6. Let d be any positive integer and let k = bd2c. For every
l ∈ P(S̄1) we have

q−1
1 (l) ' P(⊕di=0Si/Ik+1) (3.3.4)

and

q−1
2 (l) '

{
P(⊕di=0Si/Ik) d = 2k
P(⊕di=0Si/(J + Ik+1)) d = 2k + 1.

(3.3.5)

In particular, q−1
2 (l) is a subvariety of q−1

1 (l) of codimension 2 (resp. 1) when
d = 2k (resp. d = 2k + 1).

Proof. Without loss of generality, we can reduce to study the fiber of l = x0.
Then the expression in (3.3.4) follows from Lemma 3.3.2 while the two cases
in (3.3.5) follow from Lemma 3.3.3 and Lemma 3.3.4.

Moreover, when d = 2k, the codimension of q−1
2 (l) ⊆ q−1

1 (l) is equal to
the codimension of σk−1(νd(P1)) ⊆ σk(νd(P1)), that is 2. When d = 2k + 1,
codimension 1 follows from Remark 3.3.5. �

The two following propositions altogether prove Theorem 3.3.1. Their proofs
can be found at Pages 77 and 80.
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3. The natural rank and the local cactus rank of ternary forms

Proposition 3.3.7. For every d, the incidence variety I1 dominates P(S̄d). More
precisely:

• If d = 2k + 1, then p1 is generically finite of degree 3(k+1)(k+2)(3k2+3k+1)
2 ;

• If d = 2k, then the fiber of p1 is generically a curve of degree 3k(k + 1).

Proposition 3.3.8. For every d, the incidence variety I2 does not dominate
P(S̄d).

Saying that p1 is dominant for every d, means that the equivalent conditions
of Lemma 3.3.2 generically hold. If this is the case, then λd − 1 is a bound for
the natural rank of the general ternary form of degree d.

We address this problem by reducing to a Chern class computation. Let
us denote with V ' C3 the vector space of linear forms in 3 variables, so that
P(S̄1) ' PV . Writing O = OPV for short, we have the standard Euler sequence:

0→ O(−1)→ V ⊗O → Q→ 0.

More generally, for every positive integer m, we have a short exact sequence
(cfr. [10, Ch. III, §6.2 Proposition 4]):

0→ Sm−1V ⊗O(−1)→ SmV ⊗O → SmQ → 0,

whose exactness is preserved by twists

0→ Sm−1V ⊗O(n− 1) αm−−→ SmV ⊗O(n) βm−−→ SmQ(n)→ 0 (3.3.6)

and by dualization

0→ SmQ∗ β∗m−−→ SmV ∗ ⊗O α∗m−−→ Sm−1V ∗ ⊗O(1)→ 0. (3.3.7)

The fibers of SmV ⊗O(n) are homogeneous degree-m ternary forms. Their
restriction to lines give fibers of SmQ(n). In other words, for every linear form
l ∈ PV , the fiber of SmQ(n) over l consists of the sets of m points on V (l).

Example 3.3.9. Let {v0, v1, v2} be a basis for V and let m = n = 2. Then S2V
decomposes as 〈v⊗2

0 〉 ⊕ · · · ⊕ 〈v
⊗2
2 〉. For every linear form l = c0x0 + c1x1 + c2x2

in P(S̄1), the sequence (3.3.6) induces a short exact sequence on fibers

0→ V ⊗O(1)|l
α|l−−→ S2V ⊗O(2)|l

β|l−−→ S2Q(2)|l → 0,

where α|l(vi) = vi⊗ (c0v0 + c1v1 + c2v2). Thus the fiber S2Q(2)|l consists of the
degree-2 forms of the plane modulo l, that is, the space of quadrics on the line
{l = 0}. ♦

In this section, we are concerned with maps between symmetric powers
of Q. Specifically, recall the notation from Chapter 1, Section 1.1: for every
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ternary form F of degree d and for every k ≤ d, we have a linear map of k-
contractions γk,F : SkV ∗ → Sd−kV , defined by D 7→ D(F ) and represented by
the catalecticant matrix Cat(k, F ).

This induces a map SkV ∗ → Sd−kV ⊗ O(d), constant on each fiber, so
with slight abuse of notation we keep calling it γk,F . This in turn gives a map
ρ(γk,F ) : SkQ∗ → Sd−kQ(d), defined by the composition

ρ(γk,F ) := βd−k ◦ γk,F ◦ β∗k ,

and whose fibers are defined by restriction on lines. Explicitly, if we write
F =

∑d
i=0 l

ifd−i, the map ρ(γk,F )|l is represented by the catalecticant matrix
Cat(k, fd).

Example 3.3.10. Let us consider the forms F =
∑
i+j≤d a(i,j)x

i
1x
j
2x
d−i−j
0 and

l = x0. The homogeneous part of degree d in the dehomogenization Fx0 is
fd =

∑
i+j=d a(i,j)x

i
1x
d−i
2 . We fix standard bases

Bx,d−k = {xd−k0 , x0x
d−k−1
1 , . . . , xd−k2 } B∂,k := {∂k0 , ∂k−1

0 ∂1, . . . , ∂
k
2}

for ternary forms of degree d − k, and dual operators of order k respectively.
With these bases, the linear map γk,F is represented by the catalecticant matrix

Cat(k, F ) =

a(0,0) a(1,0) a(0,1) · · · a(d−k,0) a(d−k−1,1) · · · a(0,d−k)

a(1,0)
...

...

a(0,1)
...

...
...

...
...

a(k,0) · · · · · · · · · a(d,0) a(d−1,1) · · · a(k,d−k)

a(k−1,1) · · · · · · · · · a(d−1,1)
...

...
...

...
a(0,k) · · · · · · · · · a(k,d−k) · · · · · · a(0,d)





.

The fiber ρ(γk,F )|x0 is represented by the highlighted submatrix itself, that is
Cat(k, fd). ♦

The maps γk,F and ρ(γk,F ) can be equivalently regarded as sections of
SkV ⊗Sd−kV (d) and SkQ⊗Sd−kQ(d) respectively. The spaces of these sections
are identified with the image of the maps ι and ρ ◦ ι below:

H0(SkV ⊗ Sd−kV (d)) H0(SkQ⊗ Sd−kQ(d))

Cat(k, d− k; 3)

ρ

ι
ρ◦ι .

Let us denote with S the image of ρ ◦ ι. Note that S can be identified with
the space Cat(k, d− k; 2) of catalecticant matrices of degree-d binary forms. In
view of proving that the conditions of Lemma 3.3.2 generically hold, we need
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3. The natural rank and the local cactus rank of ternary forms

to understand where the general element of S fails to have full rank. This is
a classical question in intersection theory and the answer is a consequence of
Porteous’ Theorem (for the general statement see [24, Theorem 12.4] or Porteous’
original reference [45]).

Let E and F be vector bundles of ranks e and f on a smooth variety X. For
any map φ : E → F we denote with Dk(φ) the subscheme of X where rk(φ) ≤ k.
We say that Dk(φ) has expected codimension if codimX(Dk(φ)) = (e− k)(f − k).

Theorem 3.3.11 (Porteous’ Formula). If De−1(φ) has the expected codimension
f − e+ 1, then its class is given by

[De−1(φ)] =
{
c(F)
c(E)

}
f−e+1

,

where the right-hand side denotes the class of codimension f − e+ 1 of the ratio
of the Chern characters of E and F .

We would like to apply Porteous’ formula to the the general element of S.
To satisfy the hypotheses of the theorem, we need to make sure that its k-th
degeneracy locus has expected codimension, namely 2 when d = 2k + 1, and 1
when d = 2k. For this we are going to use a Bertini-type argument for vector
bundles. The proof of the following proposition is taken almost verbatim from
[44, Theorem 2.6]:

Proposition 3.3.12. The subset S ⊂ H0(SkQ ⊗ Sd−kQ(d)) is base-point-free.
In particular, if φ : SkQ∗ → Sd−kQ(d) is a general element of S, then for any
r ≤ k, we have that Dr(φ) is either empty or it has expected codimension and
Sing(Dr(φ)) ⊆ Dr−1(φ).

Proof. The base locus of S is

Bs(S) = {l ∈ P(S̄1) | ρ(γk,F )|l = 0, ∀F ∈ P(S̄d)}
= {l ∈ P(S̄1) | V (l) ⊂ V (F ), ∀F ∈ P(S̄d)},

which is empty, since there is no line V (l) contained in every degree-d plane
curve.

Let us consider the subvariety of P(S̄1)× S defined by

Σr := {(l, φ) | rk(φl) ≤ r}

and let us denote with p and q the restriction to Σr of the canonical projection
maps to P(S̄1) and S respectively.

For any (l, φ) ∈ Σr, we have

p−1(l) ' {φ ∈ S | rk(φl) ≤ r} ' {A ∈ Cat(k, d− k; 2) | rk(A) ≤ r} .

Moreover,
q−1(φ) '

{
l ∈ P(S̄1) | rk(φl) ≤ r

}
= Dr(φ).
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Therefore
dim(Σr) = 2 + dim σr(νd(P1)) = 2r + 1,

so for a general φ we have dim(q−1(φ)) = 2r + 1 − d. This implies that only
Dk(φ) is non-empty. When d = 2k+ 1 (resp. when d = 2k), its codimension is 2
(resp. 1), which coincides with the expected one.

Finally, note that the smooth locus of Σr is

Sm(Σr) = Σr \ Σr−1.

The restriction q|Sm(Σr) has dense image, so Dr(φ) \Dr−1(φ) is smooth by the
Generic Smoothness theorem (see [30], § III, Corollary 10.7). �

Corollary 3.3.13. The hypotheses of Porteous’ Theorem are satisfied by a general
element φ ∈ S. Moreover, Dk(φ) is smooth and Dk−1(φ) is empty.

We are now ready to give the proofs of the two Propositions 3.3.7 and 3.3.8.
Computations in the first proof are based on the following:

Proposition 3.3.14 ([24], Proposition 5.17). If E is a vector bundle of rank r
and L is a line bundle, then

ck(E ⊗ L) =
k∑
i=0

(
r − k + i

i

)
c1(L)ick−i(E).

Proof of Proposition 3.3.7. Let us begin with the case d = 2k + 1. To count the
number of lines in the generic fiber of p1, we need to apply Porteous’ formula to
Dk−1(φ) for the general map

φ : SkQ∗ −→ Sk+1Q⊗O(2k + 1).

Let us denote with h the hyperplane class of PV . We have

c(O(d)) = 1 + dh, c(Q) = 1 + h+ h2 c(Q∗) = 1− h+ h2.

Since Q has rank 2, the characteristic classes of its symmetric powers may be
computed using the splitting principle by assuming that Q = L ⊕M. Under
these assumptions, we have

−c1(Q∗) = c1(Q) = c1(L) + c1(M), c2(Q∗) = c2(Q) = c1(L)c1(M),

as well as the splitting

SkQ = L⊗k ⊕ (L⊗k−1 ⊗M)⊕ · · · ⊕ (L ⊗M⊗k−1)⊕M⊗k,
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and similarly for the dual. Therefore, the characteristic class of SkQ∗ is

c(SkQ∗) =
k∏
j=0

(1 + (k − j)c1(L∗) + jc1(M∗))

=
k∏
j=0

(1− (k − j)c1(L)− jc1(M))

= 1−
k∑
j=0

jc1(Q) +
k−1∑
j=0

k∑
i=j+1

(k − j)(k − i)(c1(L)2 + c1(M)2)

+
k−1∑
j=0

k∑
i=j+1

[j(k − i) + (k − j)i]c1(L)c1(M)

= 1− k(k + 1)
2 c1(Q) +

k−1∑
j=0

k∑
i=j+1

(k − j)(k − i)(c1(L)2 + c1(M)2)

+
k−1∑
j=0

k∑
i=j+1

(ik − 2ij + jk)c2(Q).

By completing squares we get:

c(SkQ∗) = 1− k(k + 1)
2 c1(Q) +

k−1∑
j=0

k∑
i=j+1

(k − j)(k − i)c1(Q)2

− 2
k−1∑
j=0

k∑
i=j+1

(k − j)(k − i)c2(Q) +
k−1∑
j=0

k∑
i=j+1

(ik − 2ij + jk)c2(Q)

= 1− k(k + 1)
2 h+

k−1∑
j=0

k∑
i=j+1

(2ik + 2jk − 3ij − k2)h2

= 1− k(k + 1)
2 h+ k4 + 2k3 + 3k2 + 2k

8 h2.

(3.3.8)
With analogous computations, we obtain

c(Sk+1Q) = 1 + (k + 1)(k + 2)
2 h

+
k∑
j=0

k+1∑
i=j+1

[2i(k + 1) + 2j(k + 1)− 3ij − (k + 1)2]h2

= 1 + (k + 1)(k + 2)
2 h+ k4 + 6k3 + 15k2 + 18k + 8

8 h2.

We now apply Proposition 3.3.14 to obtain the relevant classes for the tensor
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with O(2k + 1):

c1(Sk+1Q⊗O(2k + 1)) =
1∑
i=0

(
k + 1 + i

i

)
c1(O(2k + 1))ic1−i(Sk+1Q)

= c1(Sk+1Q) + (k + 2)c1(O(2k + 1))

= (k + 2)(5k + 3)
2 h.

(3.3.9)

and

c2(Sk+1Q⊗O(2k + 1)) =
2∑
i=0

(
k + i
i

)
c1(O(2k + 1))ic2−i(Sk+1Q)

= c2(Sk+1Q) + (k + 1)c1(O(2k + 1))c1(Sk+1Q)

+ (k + 1)(k + 2)
2 c1(O(2k + 1))2

= 25k4 + 106k3 + 155k2 + 98k + 24
8 h2.

(3.3.10)
By Porteous’ Theorem we are then reduced to compute:{

c
(
Sk+1Q⊗O(2k + 1)

)
c(SkQ∗)

}
2

,

which means that we need to find the degree-2 term in the ratio. If we express
the numerator as 1 + ah+ bh2 and the denominator as 1 + ch+ dh2, the term is
(c2 − ac+ b− d)h2.

We substitute the coefficients a, b, c, d from Equations (3.3.8) to (3.3.10), and
obtain:[

k2(k + 1)2

4 + k(k + 1)(k + 2)(5k + 3)
4 + 25k4 + 106k3 + 155k2 + 98k + 24

8

− k4 + 6k3 + 15k2 + 18k + 8
8

]
h2

=
[

9k4 + 36k3 + 48k2 + 27k + 6
2

]
h2.

This completes the proof for the case d = 2k + 1.
When d = 2k, we need to look at the degeneracy locus Dk−1(φ) for the

general map
φ : SkQ∗ −→ SkQ⊗O(2k),

which by Porteous’ Theorem is{
c(SkQ⊗O(2k))

c(SkQ∗)

}
1
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If we express the numerator as 1 +ah+ bh2 and the denominator as 1 + ch+dh2,
the degree-1 term in the ratio is (a − c)h. The first Chern class of SkQ∗ was
computed in (3.3.8) while

c1(SkQ⊗O(2k)) =
1∑
i=0

(
k + i
i

)
c1(O(2k))ic1−i(SkQ)

= c1(SkQ) + (k + 1)c1(O(2k))

= 5k(k + 1)
2 h.

Altogether, (a− c)h = [3k(k + 1)]h. �

Proof of Proposition 3.3.8. When d = 2k, the incidence variety I2 dominates if
and only if the equivalent conditions of Lemma 3.3.3 are satisfied. In terms of
vector bundles, we need to look at the class of (k − 1)-st degeneracy locus of
φ : SkQ → SkQ(2k), which is empty by Corollary 3.3.13.

When d = 2k + 1, the incidence variety I2 dominates if and only if the
equivalent conditions of Lemma 3.3.4 are satisfied. We assume by contradiction
that p2 is dominant. Then let C be an irreducible component of I2 dominating
P(S̄d). But I2 ⊆ I1 and p1 is generically finite by Proposition 3.3.7. Therefore
C is also an irreducible component of I1, of dimension equal to the one of P(S̄d).
By Corollary 3.3.6, for every (F, l) ∈ C we have that q−1

2 (l) = q−1
1 (l) ∩ I2 is a

hypersurface in q−1
1 (l). On the other hand, q−1

1 (l) is contained in C, so it is
equal to q−1

2 (l), a contradiction. �

3.4 The local cactus rank of ternary forms

In this section, we describe a procedure to compute the local cactus rank of a
general degree-d ternary form. For small degrees, we obtain a closed formula:

Proposition 3.4.1. The local cactus rank of a general ternary form F ∈ P(S̄d)
of degree d ≤ 5 is:

lcr(F ) =
⌈
d(d+ 3)

4

⌉
.

As we will see at the end of this section, an obstacle to the generalization of
this statement to higher degrees is to make our procedure more systematic.
Nevertheless, our conjecture is that this formula in fact holds for any d
(Conjecture 3.4.15).

The starting point goes back to Proposition 3.1.18, from which we know
that the local cactus rank of a degree-d form F is computed by the local apolar
scheme of a polynomial g of degree e ≥ d whose tail g≤d coincides with a
dehomogenization of F .

This essentially says that we need to compute the dimension of the families
of tails of polynomials with Hilbert function of fixed lenght.
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To prove Proposition 3.4.1, it is enough to provide the dimension of the spaces
of tails of polynomials g with unitary Hilbert function, that is Hg = (1, 1, . . . , 1).
These dimensions are computed in the forthcoming Proposition 3.4.11.

The fact that we can reduce to the case of unitary Hilbert functions is
explained by the following proposition.

Proposition 3.4.2. The local cactus rank of a homogeneous ternary form is
computed by polynomials with unitary Hilbert function.

Proof. Let us denote with S̄ = C[x0, x1, x2] and S = C[x1, x2]. Let F ∈ P(S̄d)
be a homogeneous form of degree d and let g ∈ P(⊕ei=0Si) be a polynomial of
degree e ≥ d computing lcr(F ) = r + 1.

We need to show that there exists another polynomial g′ of degree r ≥ e
with Hg′ = (1, 1, . . . , 1) and such that g′≤e = g. If we consider the subvarieties

G1 := {g ∈ P(⊕ei=0Si) | len(Hg) ≤ r + 1}
G2 := {g′ ∈ P(⊕ri=0Si) | Hg′(i) ≤ 1, ∀i = 0, . . . , r} ,

it is enough to prove that G1 ⊆ G2 and that G2 is irreducible. The inclusion
is provided by Proposition 3.1.14, while irreducibility is proved later in
Proposition 3.4.7. �

With this motivation in mind, we consider the incidence variety:

Ge :=
{

(G, l, l′) ∈ P(S̄e)× P(S̄1)× P(S̄1)
∣∣∣∣∣HGl(i) ≤ 1, ∀i = 0, . . . , e

Lin(Gl) = 〈l′ mod l〉

}
, (3.4.1)

where S̄ = C[x0, . . . , xn] and Lin(Gl) denotes the space of linear partials of Gl,
modulo additive constants (cfr. Equation (3.1.6)). We denote with π1, π2 and π3
the three projection maps going from Ge to P(S̄e), P(S̄1) and P(S̄1) respectively.

Remark 3.4.3. By definition, Ge is projected via π1 to the variety of homogeneous
forms of degree e in n+ 1 variables admitting a dehomogenization with unitary
Hilbert function. Moreover, the condition on the linear partials, restricts the
choice of l′ as a linear form in P(S̄/l)1.

We have
π1(Ge) =

⋃
l∈P(S̄1)
l′∈P(S̄/l)1

π1[π−1
2 (l) ∩ π−1

3 (l′)].

As l, l′ vary, the fiber intersections π−1
2 (l) ∩ π−1

3 (l′) are all isomorphic. In
particular, we have

dim(π1(Ge)) = min
{

2n− 1 + dim(π−1
2 (l) ∩ π−1

3 (l′)), dimP(S̄e)
}
. (3.4.2)

Our goal is to compute this dimension. Without loss of generality, we will reduce
to the case l = x0 and l′ = x1 ∈ P(S̄/x0)1 ' P(S1).
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3.4.1 Dimension of polynomials with unitary Hilbert function

We are going to use auxiliary families of inhomogeneous polynomials. The fiber
π−1

2 (x0) is isomorphic to

Ge,x0 :=
{

(g, l1) ∈ P(⊕ei=0Si)× P(S1)
∣∣∣∣∣Hg(i) ≤ 1, ∀i = 0, . . . , e

Lin(g) = 〈l1〉

}
.

Analogously, the intersection π−1
2 (x0) ∩ π−1

3 (x1) is isomorphic to

Ge,x0,x1 :=
{
g ∈ P(⊕ei=0Si)

∣∣∣∣∣Hg(i) ≤ 1, ∀i = 0, . . . , e
Lin(g) = 〈x1〉

}
.

The projection to the first factor π1(Ge,x0) is the variety of polynomials of degree
e with unitary Hilbert function. Its dimension is

dim π1(Ge,x0) = min
{

dim π1(Ge,x0,x1) + n− 1, dimP(S̄e)
}
. (3.4.3)

As we saw in Key Lemma 3.1.11, all these varieties are defined by
determinantal equations. Between Ge,x0 and Ge,x0,x1 , the latter is more manageble
when it comes to write down explicit defining equations. To this purpose, we
give the following lemma:

Lemma 3.4.4. Let S = C[x1, . . . , xn] and let g ∈ P(⊕ei=0Si). Then the following
are equivalent:

(1) For every i ≤ e, we have Hg(i) ≤ 1;

(2) For every i ≤ e we have ∆g,0(i) = 1, while for every 1 ≤ k ≤ e− 2 and
i ≤ e− k we have ∆g,k(i) = 0;

(3) There exists l ∈ S1 such that Q∨0,i = 〈li〉 for every i ≤ e and Q∨k,1 = 0 for
every 1 ≤ k ≤ e− 2;

(4) There exists l ∈ S1 such that Diff(g)0
i = 〈1, l, . . . , li〉 for every i ≤ e;

(5) For every 0 ≤ k ≤ e− 2, we have rk(Ck+1(g)) ≤ k + 2.

Proof. Equivalence of (1) and (2). Follows from the decomposition Hg(i) =∑e−2
k=0 ∆g,k(i), where ∆g,k(i) = dimQ∨k,i.
Equivalence of (2) and (3). The condition ∆g,0(i) = 1 means that for every

degree i, the polynomial g admits exactly one partial of degree i and order e− i.
This is only possible when the degree-e part of g is a pure power of a linear
form, that is ge = le for some l ∈ S1. Therefore, this is equivalent to have
Q∨0,i = 〈li〉 for every i ≤ e. Moreover, the vanishing of the remaining ∆g,k(i)
imply in particular that ∆g,k(1) = 0 hence Q∨k,1 = 0.

Viceversa, if ∆g,k(1) = 0 for every 1 ≤ k ≤ e− 2 and ∆g,0(i) = 1 for every
i ≤ e, then for any given k we have

∑k
j=0 ∆g,j(1) = 1 = ( 1

1 ). Macaulay growth
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conditions imply that for every i ≥ 2 we have
∑k
j=0 ∆g,j(i) ≤ ( ii ) = 1. In

particular, ∆g,k(i) = 0 for every k = 1, . . . , e− 2 and i = 2, . . . , e− k.
Equivalence of (3) and (4). We have previously seen that when Q∨0,i = 1 for

i ≤ e and Q∨k,1 = 0 for every 1 ≤ k ≤ e− 2, then the remaining quotient spaces
vanish too. In particular, Q∨1,i = 0 for i ≤ e− 1. Let us assume that (3) holds.
Then:

Diff(g)0
i = 〈li〉+ Diff(g)1

i−1, (3.4.4)
Diff(g)1

i = Diff(g)2
i−1 + Diff(g)0

i . (3.4.5)

We show by induction that Diff(g)0
i = 〈1, l, . . . , li〉. First by definition,

Diff(g)0
0 = 〈1〉. Let us assume that Diff(g)0

i−1 = 〈1, l, . . . , li−1〉. Then (3.4.4)
and (3.4.5) imply,

Diff(g)0
i = 〈li〉+ Diff(g)2

i−2 + 〈1, l, . . . , li−1〉.

Moreover, by definition

Diff(g)2
i−2 '

i−2⊕
j=0

i−j⊕
k=0

Q∨k,j .

By hypothesis, the quotient modules surviving in the direct sum are those with
k = 0, so Diff(g)2

i−2 = Diff(g)0
i−2 = 〈1, l, . . . , li−2〉, hence the thesis.

Viceversa, let us assume that Diff(g)0
i = 〈1, l, . . . , li〉, for every i ≤ e . Then

Q∨0,i = 〈1, l, . . . , li〉/Diff(g)1
i−1 and the sequence of inclusions

〈1, l, . . . , li−1〉 = Diff(g)0
i−1 ⊆ Diff(g)1

i−1 ⊆ Diff(g)0
i = 〈1, l, . . . , li〉,

gives Diff(g)1
i−1 = Diff(g)0

i−1, and Q∨0,i = 〈li〉.
Moreover, Diff(g)k1 = 〈1, l〉 for every 1 ≤ k ≤ e− 2. We use again induction.

We have just seen that Diff(g)1
1 = Diff(g)0

1. Let us assume that Diff(g)k−1
1 = 〈1, l〉.

By induction we have

〈1, l〉 = Diff(g)k−1
1 ⊆ Diff(g)k1 ⊆ Diff(g)0

k+1 = 〈1, l, . . . , lk+1〉,

so Diff(g)0
k+1 = 〈1, l〉. In particular, Q∨k,1 = 0.

Equivalence of (1) and (5). Follows from Lemma 3.1.11. �

The next result provides an explicit description of Ge,x0,x1 in the case of
polynomials in two variables.

Lemma 3.4.5. Let S = C[x1, x2] and let g =
∑
i+j≤e a(i,j)x

i
1x
j
2 be a polynomial

in P(⊕ei=0Si). Then g belongs to the locally closed subset

U := {a(e,0) = 1} ∩ Ge,x0,x1

if and only if

a(i,e−i) = 0 for every 0 ≤ i ≤ e− 1 (3.4.6)
a(i,e−i−1) = 0 for every 0 ≤ i ≤ e− 3 (3.4.7)
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and the following determinantal equations are satisfied for every 2 ≤ k ≤ e− 2
and 0 ≤ i ≤ e− k − 2:

a(i,e−k−i) a(i+2,e−k−i−1) a(i+3,e−k−i−1) · · · a(i+k−1,e−k−i−1) a(i+k,e−k−i−1)

a(e−k,1) a(e−k+2,0) a(e−k+3,0) · · · a(e−1,0) 1
...

...
... · · · · · ·

...
a(e−3,1) a(e−1,0) 1 0 · · · 0
a(e−2,1) 1 0 · · · · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(3.4.8)

Proof. By Lemma 3.4.4, a polynomial g ∈ P(⊕ei=0Si) belongs to Ge,x0,x1 if and
only if rk(Ck(g)) ≤ k + 1 for every 0 ≤ k ≤ e.

Q∨0,i = 〈xi1〉 for every 0 ≤ i ≤ e (3.4.9)
Q∨k,1 = 0 for every 1 ≤ k ≤ e− 2. (3.4.10)

In particular, (3.4.9) is equivalent to saying that the leading term of g is the
rank-1 form ae,0x

e
1, therefore ai,e−i = 0 for every 0 ≤ i ≤ e− 1, which is (3.4.6).

Next, we are going to translate (3.4.10) in terms of rank conditions on
catalecticant matrices. Let us assume that ae,0 = 1. Then for every k = 0, . . . , e,
we have

∂e−k1 (g) = xk1 +
k−1∑
j=0

[a(e−k+1+j,0)x
j
1] + a(e−k,1)x2 + gk, (3.4.11)

where gk ∈ C[x1, x2] is a polynomial of degree at least 2 and divisible by x2. In
particular, the catalecticant blocks Cat(e−m, ge) have all entries equal to zero,
except for the top left one, which is equal to 1. In particular, rk(Ck+1(g)) ≥ k+2
for every k ≤ e− 2. Lemma 3.4.4 implies that g ∈ Ge,x0,x1 if and only if

rk(Ck+1(g)) = k + 2 for every k ≤ e. (3.4.12)

When k = 1, we need Q∨1,1 = 0, that is, no partials of degree equal to 1 and
order equal to d− 2. Equivalently, rk(C2(g)) = 3, where

C2(g) =

a(e−2,0) a(e−1,0) a(e−2,1) 1 0 · · · 0
a(e−3,1) a(e−2,1) a(e−3,2) 0 · · · · · · 0

...
...

...
...

...
a(0,e−2) a(1,e−2) a(0,e−1) 0 · · · · · · 0
a(e−1,0) 1 0 · · · · · · · · · 0
a(e−2,1) 0 · · · · · · · · · · · · 0

...
...

...
a(0,e−1) 0 · · · · · · · · · · · · 0

1 0 · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · 0...

...
0 · · · · · · · · · · · · · · · 0





.
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This is equivalent to asking the highlighted submatrix of C2(g) to be of rank 2,
that is ∣∣∣∣a(0,e−1) 0

a(e−2,1) 1

∣∣∣∣ = · · · =
∣∣∣∣a(e−3,2) 0
a(e−2,1) 1

∣∣∣∣ = 0,

which is (3.4.7).
More generally, let us assume that Q∨1,1 = · · · = Q∨k−2,1 = 0, so that

rk(Ck−1(g)) = k. The further condition Q∨k−1,1 = 0, is asking no partials
of degree equal to 1 and order equal to e − k. This holds if and only if
rk(Ck(g)) = k + 1. Therefore, let us consider the first e − k + 1 rows of
Ck(g), which are the ones corresponding to the partials of g of order equal to
e− k. They are of the form

∂e−k−i1 ∂i2(g) =
k∑
j=0

[a(i+1+j,e−k−i−1)x
j
1] + a(i,e−k−i)x2 + hi,k,

for every 0 ≤ i ≤ e− k, where hi,k ∈ C[x1, x2] is a polynomial of degree at least
2 and divisible by x2 .

When i = 0, we have the partial ∂e−k1 (g), whose degree is exactly k,
so it cannot contribute to Q∨k−1,1. For every other i, the only way we can
possibly obtain a partial of degree equal to 1 is by taking linear combinations
of ∂e−k−i1 ∂i2(g) with the partials in (3.4.11), which explains the determinantal
condition in (3.4.8). �

Remark 3.4.6. By applying recursively equations (3.4.6), (3.4.7) and (3.4.8), it
follows that the variety Ge,x0,x1 is cut out by linear equations

a(i,e−k−i) = 0 0 ≤ k ≤ b e−1
2 c, 0 ≤ i ≤ e− 2k − 1 (3.4.13)

and higher degree equations of the form

a(i,e−k−i) = fi,e−k−i 2 ≤ k ≤ e− 2, e− 2k ≤ i ≤ e− k − 2, (3.4.14)

where fi,e−k−i is a polynomial of degree at least 2 depending on the variables
a(e−2,1), . . . , a(e−k−i+2,1) and a(e−1,0), . . . , a(e−k−1+i,0).

It is now straightforward to determine the dimension of Ge,x0,x1 , hence the
dimension of π1(Ge), that is, the dimension of the family of homogeneous ternary
forms of degree e admitting a dehomogenization with unitary Hilbert function.

Proposition 3.4.7. The variety Ge,x0,x1 ⊆ P(⊕ei=0Si) is isomorphic to the
(2e− 1)-dimensional affine space

Spec
(
C
[
a(i,0), a(j,1) | 0 ≤ i ≤ e− 1, 0 ≤ j ≤ e− 2

])
. (3.4.15)

In particular, π1(Ge,x0) is irreducible of dimension

dim(π1(Ge,x0)) = min
{

2e, dimP(S̄e)
}

and π1(Ge) is irreducible of dimension

dim(π1(Ge)) = min
{

2e+ 2, dimP(S̄e)
}
.
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Proof. The defining equations of Ge,x0,x1 are given in Lemma 3.4.5, which
in Remark 3.4.6 are noted to be each one linear in a different variable
of P(⊕ei=0Si), where all the variables are covered, except for those listed
in (3.4.15). The dimensions of π1(Ge,x0,x1) and π1(Ge) follow from formulas (3.4.3)
and (3.4.2). �

Example 3.4.8 (e = 5). We want to write the defining equations of G5,x0,x1 .
Formulas (3.4.6) and (3.4.7) give

a(0,5) = a(1,4) = a(2,3) = a(3,2) = a(4,1) = 0
a(0,4) = a(1,3) = a(2,2) = 0.

In the next cases, we use (3.4.8). When k = 2, we have:∣∣∣∣a(0,3) a(2,2)
a(3,1) 1

∣∣∣∣ = 0,
∣∣∣∣a(1,2) a(3,1)
a(3,1) 1

∣∣∣∣ = 0,

from which we obtain a(0,3) = 0 and a(1,2) = f1,2(a(3,1)) = a2
(31).

When k = 3, we have: ∣∣∣∣∣∣
a(0,2) a(2,1) a(3,1)
a(2,1) a(4,0) 1
a(3,1) 1 0

∣∣∣∣∣∣ = 0,

which gives a(0,2) = f0,2(a(3,1), a(2,1), a(4,0)) = 2a(2,1)a(3,1) − a2
(3,1)a(4,0). ♦

Remark 3.4.9. Let Q = [1 : 0 : · · · : 0] be the point in P(⊕ei=0Si) corresponding
to the polynomial xe1. The tangent space of TQGe,x0,x1 is defined by equations

a(i,e−i) = 0 for 0 ≤ i ≤ e− 1
a(i,e−k−i) = 0 for 1 ≤ k ≤ e− 2, 0 ≤ i ≤ e− k − 2. (3.4.16)

For any polynomial g ∈ TQGe,x0,x1 , we may consider its homogenization G
with respect to x0, that is an element of P(S̄e). Its zero locus V (G) is a degree-e
plane curve, intersecting the line V (x0) in the point [0 : 0 : 1]. As a divisor of the
line, this is identified with the point P = [0 : 1].

Then, the equations (3.4.16) imply that a form G ∈ P(S̄e) is the
homogenization of a g ∈ TQGe,x0,x1 if and only if we have multiplicities

mP (V (G) ∩ V (x0)) ≥ e

and
mP (PiP (G) ∩ V (x0)) ≥ e− i− 1 for 1 ≤ i ≤ e− 2,

where PiP (G) denotes the i-th polar of V (G) with respect to P .
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3.4.2 Dimension of tails

The next step to compute the local cactus rank requires to determine whether
the tails of forms in π1(Ge) fill up the space of degree-d forms.

More precisely, we consider the incidence variety

X ed :=
{

(F, l, l′) ∈ P(S̄d)×P(S̄1)×P(S̄1) | Fl = (Gl)≤d, for some (G, l, l′) ∈ Ge
}
,

where S̄ = C[x0, . . . , xn] and Ge is defined as in (3.4.1). We denote with p1, p2
and p3 the projection maps going from X ed to P(S̄d),P(S̄1) and P(S̄1) respectively.

Remark 3.4.10. By definition, X ed is projected via p1 to the variety of
homogeneous forms of degree d in n+ 1 variables admitting a dehomogenization
that is a tail of a polynomial of degree e in two variables, with unitary Hilbert
function.

Analogously to Remark 3.4.3, for any choice of l, l′, we have:

dim(p1(X ed )) = min
{

2n− 1 + dim(p−1
2 (l) ∩ p−1

3 (l′)), dimP(S̄d)
}
. (3.4.17)

As before, we define auxiliary families, so that the fiber p−1
2 (x0) is isomorphic to

X ed,x0
:=
{

(f, l1) ∈ P(⊕di=0Si)× P(S1) | f = g≤d, for some (g, l1) ∈ Ge,x0

}
,

and the intersection p−1
2 (x0) ∩ p−1

3 (x1) is isomorphic to

X ed,x0,x1
:=
{
f ∈ P(⊕di=0Si) | f = g≤d, for some g ∈ Ge,x0,x1

}
.

Our goal is to compute the dimension of X ed,x0,x1
, hence the dimension of

p1(X ed ) via (3.4.17).

Proposition 3.4.11. When S̄ = C[x0, x1, x2] and e ≤ 10, we have:

dim(X ed,x0,x1
) =

{(
d+2

2
)
− 2 if e = 1

2
(
d+2

2
)

min
{(

d+2
2
)
− 1, dim(Ge,x0,x1)

}
otherwise.

In particular,

dim(p1(X ed )) = min
{(

d+ 2
2

)
− 1, 2e+ 2

}
.

The proof of this proposition is developed in the next few pages through a
case-by-case analysis. The computations are at the same time elementary and
elaborate, so we first outline a strategy that can be applied in all generality and
then we make it explicit for the cases e ≤ 10.

Strategy and computations in small degrees

For every e ≥ d, we have a map

πe,d : P(⊕ei=0Si) 99K P(⊕di=oSi)∑e
i=0 gi 7→

∑d
i=0 gi,
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sending a degree e polynomial to its degree-d tail. We want to determine the
dimension of πe,d(Ge,x0,x1) = X ed,x0,x1

or, equivalently, the dimension of the
generic fiber for the restriction of πe,d to Ge,x0,x1 . A way to tackle this problem
is via elimination. Indeed, the defining equations of X ed,x0,x1

are obtained from
the ones of Ge,x0,x1 by eliminating the variables

a≥d+1 :=
{
a(i,j) | i+ j ≥ d+ 1

}
.

We may do this by essentially applying the implicit function theorem. Specifically,
we proceed as follows:

(1) We homogenize the equations of Ge,x0,x1 given in Lemma 3.4.5 with respect
to a(e,0).

(2) We identify the number – say n – of parameters a≥d+1 that we need to
eliminate. According to Remark 3.4.6 (3.4.13), this can be done trivially
for some parameters by using the linear equations of Ge,x0,x1 . We remain
with just the a(k−i,i) with d+ 1 ≤ k ≤ e and 0 ≤ i ≤ e− k, therefore we
may assume that

n =
{
e2+e(1−2d)+d2−d

2 if d ≥ b e−1
2 c

e2+4e−2d2−6d
4 if d < b e−1

2 c.
(3.4.18)

To eliminate these n parameters we are now restricted to use a number m
of non-linear defining equations. By Remark 3.4.6 (3.4.14), this number is

m =
{
e2−4e+3

4 if e odd
e2−4e+4

4 if e even .
(3.4.19)

(3) Let J = (Ja≤d | Ja≥d+1) be the Jacobian matrix of Ge,x0,x1 , where Ja≥d+1

denotes the n×m submatrix of the Jacobian associated with the partial
derivatives with respect to the variables a≥d+1 (and similarly for Ja≤d).
For a general point x ∈ X ed,x0,x1

, we have:

dim(π−1
e,d(x)) = n− rk(Ja≥k+1).

In the next examples we are going to see that Ja≥d+1 has always maximal
rank. We do so by identifying a suitable full-rank maximal submatrix J ′
of Ja≥d+1 or, equivalently, by choosing n non-linear defining equations of
Ge,x0,x1 .

(4) We use the equations Lemma 3.4.5 to re-write the entries of J ′ only in
terms of independent parameters, namely the a(i,j) with j = 0, 1.

(5) We find values for the independent parameters at which the evaluation of
J ′ has maximal rank.
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Below, we examine the cases e = 2, . . . , 10. We essentially observe two kinds
of situations for the restriction of πe,d to Ge,x0,x1 : it is either a finite-to-one
birational map, or a dominant map with positive-dimensional fibers.

Exceptions occur only when

dim(Ge,x0,x1) = dimP(⊕di=0Si),

in which case, the restriction of πe,d has 1-dimensional fibers. Table 3.1
summarizes all the dimensions.

d
e 10 9 8 7 6 5 4 3 2

2 5 5 5 5 5 5 5 4 3
3 9 9 9 9 9 8 7 5
4 14 14 14 13 11 9 7
5 19 17 15 13 11 9
6 19 17 15 13 11
7 19 17 15 13
8 19 17 15
9 19 17
10 19

Table 3.1: Dimension of πe,d(Ge,x0,x1).

Note that it is enough to check only the highlighted cases among the ones
displayed in Table 3.1. The remaining ones can be obtained by applying the
following lemma:

Lemma 3.4.12. Let d and e be fixed integers and S = C[x1, x2]. Then:

• For any d1 ≤ d2 ≤ e and for any subset X ⊆ P(⊕ei=0Si) we have

πe,d1(X) ⊂ πe,d2(X).

• For any e2 ≥ e1 ≥ d we have

πe1,d(Ge1,x0,x1) ⊆ πe2,d(Ge2,x0,x1).

Proof. The first claim follows from the definition of πe,d. For the second claim,
it is enough to observe that by Proposition 3.1.14, the variety Ge1,x0,x1 is an
embedded component of the irreducible variety Ge2,x0,x1 . �

Unitary quadrics. The variety G2,x0,x1 is a 3-dimensional linear subspace of
P(⊕2

i=0Si) ' P5, defined by a(0,2) = a(1,1) = 0.
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3. The natural rank and the local cactus rank of ternary forms

Tails of unitary cubics. The variety G3,x0,x1 is a 5-dimensional linear subspace
of P(⊕3

i=0Si) ' P9, defined by

a(0,3) = a(1,2) = a(2,1) = 0 a(0,2) = 0.

In particular, π3,2(G3,x0,x1) is a hyperplane in P(⊕2
i=0Si) ' P5.

Tails of unitary quartics. The variety G4,x0,x1 is a 7-dimensional subvariety
of P(⊕4

i=0Si) ' P14, defined by homogeneous equations

a(0,3) = a(1,2) = 0 a(0,4) = · · · = a(3,1) = 0
a2

(2,1) − a(0,2)a(4,0) = 0.

Projecting to P(⊕3
i=0Si), is equivalent to eliminating the variable a(4,0), which

is done by using the quadric equation. Therefore, the projection π4,3 is a 2 : 1
when restricted to G4,x0,x1 .

When projecting to the space of quadrics P(⊕2
i=0Si), we need to eliminate

the variables a(4,0), a(3,0), a(2,1). We only have one equation available, so the
fiber is 2-dimensional and G4,x0,x1 dominates the P5 of quadrics.

Tails of unitary quintics. The variety G5,x0,x1 is a 9-dimensional subvariety
of P(⊕5

i=0Si) ' P20, defined by homogeneous equations

a(0,5) = · · · = a(4,1) = 0 a(0,4) = · · · = a(2,2) = 0 a(0,3) = 0 (3.4.20)
a(4,0)a(1,2) − 2a(3,1)a(2,1) + a(0,2)a(5,0) = 0 a2

(3,1) − a(1,2)a(5,0) = 0.
(3.4.21)

Similarly to the previous example, the projection π5,4 is finite-to-one when
restricted to G5,x0,x1 .

When projecting to the space of cubics, we need to eliminate the variables

a(5,0), a(4,0), a(3,1). (3.4.22)

We only have 2 equations available, so we consider the submatrix J ′ of the
Jacobian of G5,x0,x1 corresponding to the partial derivatives of the two quadrics
in (3.4.21) with respect to variables (3.4.22).

We have
J ′ =

[
a(0,2) a(1,2) −2a(2,1)
−a(1,2) 0 2a(3,1)

]
.

Using again the equations (3.4.21), we may re-write its entries only in terms of
the independent variables, obtaining

J ′ =


a(4,0)a

2
(3,1)−2a(5,0)a(3,1)a(2,1)

a2
(5,0)

a2
(3,1)
a(5,0)

−2a(2,1)

−a
2
(3,1)
a(5,0)

0 2a(3,1)

 .
This matrix has generically maximal rank, hence the restriction of π(5,3) to Ge,x0,x1

has generic fiber of dimension 1 (and G5,x0,x1 is mapped onto to hyperplane
a0,3 = 0).
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Tails of unitary polynomials from sextics to decimics. The remaining cases
e = 6, . . . , 10 are analogous. In each of these situations, Ge,x0,x1 is defined by
the equations as in Remark 3.4.6, where the nonlinear homogeneous equations
can be simplified as

Qi,j : a(e,0)a(i,j) − gi,j = 0 2 ≤ j ≤ b e2c 0 ≤ i ≤ e− 2j,

where gi,j has degree 2. Referring to the strategy explained at Page 88, we will
just specify the equations Qi,j detemining the submatrix J ′ of Ja≥d . In these
examples, the evaluation of J ′ at

a(i,0) = 1 for 2 ≤ i ≤ e
a(i,1) = (−1)i for 2 ≤ i ≤ e− 1

will always give a matrix of maximal rank.

• (e = 6) To determine the fiber dimension of π6,4, we need to eliminate the
variables a≥5. After using the linear relations, we are reduced to eliminate
3 of them. For those, we can choose the 3 non-linear equations Qi,j , with
(i, j) 6= (0, 2). Rank maximality for the associated matrix J ′ implies that
the restriction π6,4 is finite-to-one.
When projecting to the space of cubics, we reduce to eliminate 6 of the
variables a≥4. Here we choose all the 4 available equations Qi,j . Rank
maximality for the associated J ′ implies that the restriction π6,3 has fibers
of codimension 2.

• (e = 7) We have only one case to check, namely the projection π7,4. We
reduce to eliminate 6 of the variables a≥5 and to do so we use all the
6 available equations Qi,j . We obtain that the restriction of π7,4 is a
finite-to-one map.

• (e = 8) To determine the dimension of π8,5(G8,x0,x1), we reduce to eliminate
6 of the variables a≥6. To do so, we select 6 among the 9 non-linear
equations Qi,j subject to (i, j) 6= (0, 2), (0, 3), (1, 2), and we obtain that
the restriction of π8,5 is finite-to-one.
When projecting to the space of quartics, we reduce to eliminate 10 of the
variables a≥5. We select all of the 9 non-linear equations Qi,j and obtain
that the restriction of π8,4 has fibers of codimension 1.

• (e = 9) We only have to check the projection π9,5. We reduce to eliminate
10 of the variables a≥6 and we do so by selecting the 10 equations Qi,j
with (i, j) 6= (0, 2), (0, 3). The restriction of π9,5 is a finite-to-one map.

• (e = 10) We only have to check the projection π10,5. We reduce to eliminate
15 of the variables a≥6 and we do so by selecting the 15 equations Qi,j
satisfying (i, j) 6= (0, 2). The restriction of π10,5 is a finite-to-one map.
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3. The natural rank and the local cactus rank of ternary forms

Remark 3.4.13. The above cases not only complete the proof of the closed
formula presented in Proposition 3.4.11, but also, together with (3.4.18)
and (3.4.19), suggest that the same formula actually holds for any degree,
which we conjecture below. An obstacle to prove this conjecture is to show that,
using the strategy explained above, the rank maximality condition is always
satisfied.

Conjecture 3.4.14. When S̄ = C[x0, x1, x2], we have:

dim(X ed,x0,x1
) =

{(
d+2

2
)
− 2 if e = 1

2
(
d+2

2
)

min
{(

d+2
2
)
− 1, dim(Ge,x0,x1)

}
otherwise.

In particular,

dim(p1(X ed )) = min
{(

d+ 2
2

)
− 1, 2e+ 2

}
.

If Conjecture 3.4.14 holds, then we have a closed formula for computing the
local cacus rank:

Conjecture 3.4.15. The local cactus rank of a general ternary form F ∈ P(S̄d)
of degree d is:

lcr(F ) =
⌈
d(d+ 3)

4

⌉
.

Indeed, the local cactus rank is the minimum length of the the apolar scheme
associated with a higher degree polynomial. By Proposition 3.4.2, we may assume
that higher degree polynomials have unitary Hilbert function. The minimal
length of these schemes is e+ 1, where e ≥ d is the minimum degree such that
p1(X ed ) dominates P(⊕di=0Si).

Conjecture 3.4.14 implies that e needs to be the minimum degree such that
2e+ 2 ≥

(
d+2

2
)
− 1, that is,

e =
⌈
d2 + 3d− 4

4

⌉
.

Remark 3.4.16. Recall from Theorem 3.3.1 that the natural rank of a general
ternary form of degree d is bd(d+4)

4 c. Conjecture 3.4.15 implies that the local
cactus rank is equal to the natural rank only when d ≤ 3.

3.5 Ternary quintics: an extensive example

In this final section we take a closer look at the case of ternary quintics by
retracing the ideas illustrated in the previous sections. Regarding the natural
rank, the computations described in the proof of Theorem 3.3.1 will be made
explicit. For the local cactus rank, on the one hand we rely on the results
and examples illustrated in Section 3.4; on the other hand we explain some
alternative, more direct and ad hoc strategies. Specifically, we will give an
account of the possible Hilbert functions of apolar schemes, excluding those that
for purely geometric reasons cannot compute the local cactus rank.
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The natural rank

The natural rank of a general quintic is 11. To see this, we may begin with
excluding certain Hilbert functions for the dehomogenization:

Lemma 3.5.1. For a general quintic F ∈ P(S̄5) and any linear form l, we have
HFl ≥ (1, 2, 2, 2, 2, 1).

Proof. Without loss of generality we may assume that l = x0. Let us write
Fl =

∑5
i=0 fi. If there was a linear form l such that HFl(4) = 1, then f5 would be

a pure power of a linear form. The zero locus V (f5) = V (F, l) would then be one
point, counted with multiplicity 5. The curve V (F ) would have a hyperinflection
point, which is not a general property. �

Alternative proof. We can alternatively see this by looking at the codimension
of the 1-st degeneracy locus of the general catalecticant element

S1Q∗ φ−→ S4Q⊗O(5),

which by Proposition 3.3.12 is empty. �

We are remained with a few possibilities to check:

(1, 2, 2, 2, 2, 1) (1, 2, 3, 2, 2, 1) (1, 2, 3, 3, 2, 1).

The right-most one is the general one with len(1, 2, 3, 3, 2, 1) = 12 = λ5. We
focus on the remaining two, of length 10 and 11.

The two Propositions 3.3.7 and 3.3.8 say that for a general ternary
quintic there exist 342 linear forms such that the Hilbert function of the
dehomogenization is at most (1, 2, 3, 2, 2, 1) and that there are no linear forms
such that the Hilbert function of the dehomogenization is at most (1, 2, 2, 2, 2, 1).

We are going to see this by running through the computations explained in
the Section 3.3.

We need to compute the degeneracy class D2(φ) for the general element

φ : S2Q∗ → S3Q⊗O(5),

where O = OPV and V ' C3.
We have

c(O(5)) = 1 + 5h, c(Q) = 1 + h+ h2 c(Q∗) = 1− h+ h2.

Assuming that Q = L⊕M, with L,M line bundles and setting a := c1(L), b :=
c1(M), we have:

c(S2Q∗) = (1− 2a)(1− a− b)(1− 2b)
= 1− 3(a+ b) + (2a2 + 8ab+ 2b2)
= 1− 3c1(Q) + (2c1(Q)2 + 4c2(Q))
= 1− 3h+ 6h2.

93



3. The natural rank and the local cactus rank of ternary forms

Analogously, we compute:

c(S3Q) = (1 + 3a)(1 + 2a+ b)(1 + a+ 2b)(1 + 3b)
= 1 + 6(a+ b) + 32ab+ 11(a2 + b2)
= 1 + 6c1(Q) + 11c1(Q)2 + 10c2(Q)
= 1 + 6h+ 21h2.

So, applying Proposition 3.3.14, we obtain

c(S3Q⊗O(5)) = 1 + 26h+ 261h2.

Then by Porteous’ Theorem, the class of D2(φ) is:

[D2(φ)] =
{
c(S3Q⊗O(5))
c(S2(Q∗))

}
2

= {(1 + 26h+ 261h2)(1− (6h2 − 3h) + (6h2 − 3h)2}2
= {(1 + 26h+ 261h2)(1 + 3h+ 3h2)}2
= {1 + 29h+ 342h2}2
= 342h2.

The local cactus rank

The local cactus rank of a general ternary quintic form is bounded by its natural
rank, that is 11. We need to check whether there exist a polynomial g in two
variables of degree greater than 5 satisfying len(Hg) < 11 and such that the
quintic tail g≤5 can be obtained as the dehomogenization of a general quintic.

Polynomials g of this kind clearly must have degree between 6 and 9. All the
possibilities for their Hilbert functions are listed in Table 3.2.

Length Degree Hilbert function
7 6 (1, 1, 1, 1, 1, 1, 1)

8 6 (1, 2, 1, 1, 1, 1, 1)
7 (1, 1, 1, 1, 1, 1, 1, 1)

9
6 (1, 2, 2, 1, 1, 1, 1)
7 (1, 2, 1, 1, 1, 1, 1, 1)
8 (1, 1, 1, 1, 1, 1, 1, 1, 1)

10

6 (1, 2, 2, 2, 1, 1, 1)
7 (1, 2, 2, 1, 1, 1, 1, 1)
8 (1, 2, 1, 1, 1, 1, 1, 1, 1)
9 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Table 3.2: Possible Hg with deg(g) > 5 and len(Hg) ≤ 10.

Note that if g has degree 6 and its Hilbert function is one of those listed in
Table 3.2, then Hg(5) = Hg(4) = 1.
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Lemma 3.5.2. The local catus rank of a general quintic is at least 8.

Proof. It is enough to show that the local cactus rank of a general quintic is not
computed by polynomials of degree 6. Let g ∈ C[x1, x2] be of degree 6 such that
Hg(5) = 1. The space of degree-5 partials is one-dimensional, which means that,
after a suitable change of coordinates, we can assume that g is of the form

g = x6
1 +

∑
i+j≤5

a(i,j)x
i
1x
j
2.

Let us denote with ∂1, ∂2 the dual operators of x1 and x2. Then, both ∂2(g)
and ∂2

1(g) are partials of degree 4. If we additionally assume that Hg(4) = 1,
then such partials must have leading term proportional to x4

1. Equivalently, we
can see this by writing the matrix of coefficients of ∂2(g) and ∂2

1(g) in degree 4:

x4
1 x3

1x2 x2
1x

2
2 x1x

3
2 x4

2[ ]
∂2 a(4,1) a(3,2) a(2,3) a(4,1) a(0,5)
∂2

1 1 0 0 0 0
.

We need this matrix to have rank 1, that is:

a(3,2) = a(2,3) = a(1,4) = a(0,5) = 0.

The polynomial g is then of the form:

g = x6
1 + a(5,0)x

5
1 + a(4,1)x

4
1x2 +

∑
i+j≤4

a(i,j)x
i
1x
j
2.

In particular, the quintic tail of g has a hyperinflection point in (0, 1), so a
general homogenous quintic cannot have a dehomogenization of this kind. �

We then pass to consider polynomials g of degree 7 whose Hilbert function is
again one of those listed in Table 3.2. In all the cases we have Hg(6) = Hg(5) =
Hg(4) = Hg(3) = 1.

Lemma 3.5.3. The local cactus rank of a general quintic is at least 9.

Proof. It is enough to show that the local cactus rank of a general quintic
is not computed by forms of degree 7. Let g ∈ C[x1, x2] be of degree 7. If
Hg(6) = Hg(5) = 1, then we may argue as for Lemma 3.5.2 and assume that, up
to a suitable change of coordinates, we have

g = x7
1 + a(6,0)x

6
1 + a(5,1)x

5
1x2

∑
i+j≤5

a(i,j)x
i
1x
j
2.

The space of partials of degree 4 is generated by ∂1∂2(g), ∂3
1(g) and the linear

combination (∂2 − a(5,1)∂
2
1)(g). Under the condition Hg(4) = 1, all such partials
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3. The natural rank and the local cactus rank of ternary forms

must have proportional leading term. We are asking the matrix

x4
1 x3

1x2 x2
1x

2
2 x1x

3
2 x4

2[ ]∂2 − a(5,1)∂
2
1 a(4,1) − a(6,0)a(5,1) a(3,2) − a2

(5,1) a(2,3) a(1,4) a(0,5)
∂1∂2 a(5,1) 0 0 0 0
∂3

1 1 0 0 0 0

to have rank 1, namely

a(2,3) = a(1,4) = a(0,5) = 0, a(3,2) − a2
(5,1) = 0.

Finally, we observe that both ∂4
1(g) and the combination

D := [∂2 − a(5,1)∂
2
1 − (a(4,1) − a(6,0)a(5,1))∂3

1 ](g)

are partials of degree 3. The condition Hg(3) = 1, then again we asks rank 1 for

x3
1 x2

1x2 x1x
2
2 x3

2[ ]
D ∗ ∗ ∗ a(0,4)
∂4

1 1 0 0 0
,

which gives the condition a(0,4) = 0. The quintic tail of g is then of the form

g≤5 = a(5,0)x
5
1 + a(4,1)x

3
1x2 + a(3,2)x

2
1x

2
2 + a(2,3)x

2
1x

3
2

+ a(4,0)x
4
1 + a(3,1)x

3
1x2 + a(2,2)x

2
1x

2
2 + a(1,3)x

3
1x2 +

∑
i+j≤4

a(i,j)x
i
1x
j
2,

which is singular at (0, 1) and therefore it cannot be the dehomogenization of a
general ternary quintic. �

In general, when the degree of g is close to the degree d of the tail, it is
easy to understand the geometric properties we are asking for (singularities,
hyperinflection points, etc. see also Section 3.2).

On the other hand, when the degree of the tail is low compared to the degree
of g, these properties are not so immediate. This happens also in the case of
quintics, when analyzing the remaining cases of Table 3.2. To conclude that
the local cactus rank of a general quintic is equal to 10, we may instead use the
more computational approach outlined in Section 3.4.2.
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Chapter 4

Towards the degree of the
PGL(4)-orbit of a cubic surface
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Abstract

We study the action of the group PGL(4) on the parameter space P19 of
complex cubic surfaces. Specifically, we look at how the techniques used
by Aluffi and Faber in [4] can be extended to compute the degree of the
orbit closure O of a general cubic surface. We study the base locus of the
induced rational map P15 99K O ⊂ P19, and the first steps in resolving this
rational map by successively blowing up the reduced base locus.

4.1 Introduction

A complex cubic surface S in P3 is the vanishing locus of a homogenous degree-3
form of the type

F (x) = a0x
3
0 + a1x

2
0x1 + · · ·+ a19x

3
3.

It is clear that cubic surfaces are parametrized by PSym3(C4)∗ ' P19. However,
two isomorphic surfaces correspond to different points in P19 and the simplest
way this can happen is when changing coordinates. A natural question would
then be: Given a fixed S as above, which other cubic surfaces arise from S by
coordinate change? In other words, we are asking to describe the orbit O of S
under the action of the group PGL(4) on the parameter space P19.

We would like to study the geometry of O: since this just forms a locally
closed subset in P19, we will rather consider its closure O. A first step in this
direction is to compute its degree. The latter will depend on the choice of the
surface S and in this paper we will primarily focus on the case where S is chosen
to be general.

In the special case of the Cayley cubic, a surface with four distinct nodes, the
degree of the orbit closure is already known. In [57], this number is computed to
be 305, based on counting cubic surfaces with 4 distinct double points passing
through 15 general points.

When S is general, the degree of the orbit closure will be significantly higher
and different techniques will be needed. One could start by looking at the map
φ : PGL(4)→ P19, sending the class of a matrix to its pre-composition with F .
The image of this map is the orbit O and computing the degree of its closure
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4. Towards the degree of the PGL(4)-orbit of a cubic surface

would amount to count the number of points in the intersection of O with a
general linear subspace of complementary dimension.

We can count the number of such points using intersection theory by finding
a pair (Ṽ, φ̃) such that Ṽ is a compactification of PGL(4) and φ̃ a dominant
regular morphism from Ṽ to O extending φ and the intersections of the pull-
back of a hyperplane class by φ̃ is transversal. Then we can simply compute
φ̃∗c1(OP19(1))15.

The first naïve compactification one could think of is PHom(C4,C4) ' P15,
which can be as well equipped with the pre-composition map which naturally
extends φ. Unfortunately, this pair is not good enough since the given map is
not regular. From a computational viewpoint, issues come from the fact that
the pull-back classes we are considering will intersect in positive dimension.

The strategy that we would like to pursue here is to find an explicit resolution
of φ where it is possible to keep track of how the intersections change. This
approach was already considered by Aluffi and Faber who studied the case of
plane curves of any degree. What we are going to do in the present paper is to
adapt many of the ideas contained in there. In particular, we decide to regularize
φ by a sequence of blow-ups at smooth centers. We will start by describing the
support of the base locus Bs(φ) from a set-theoretical point of view. We will
then study the first steps towards the resolution of φ by successively blowing up
the reduced components of the base locus.

Four of these steps will be analyzed, though currently it is not clear if
they will be sufficient to give the desired resolution. This difficulty reflects an
important difference from the case of plane curves: here the base locus of φ has
many components, and this is a consequence of the fact that a general cubic
surface contains 27 distinct lines. More specifically, we will see that problems
can possibly arise from those morphisms in P15 whose image is spanned by a
point contained in one of these lines.

The aim of this paper is to present a report of an on-going project, where the
remaining work that needs to be done regards not only proving or disproving
the existence of further components to blow up. Indeed, as mentioned above,
there is also a computational aspect, namely showing how the different steps in
the resolution contribute in finding the degree of O. These computations will
not be analyzed here, since the results would currently be very partial. They
are hopefully going to appear in a future paper, as the natural conclusion of the
work illustrated here. For this second part as well, we believe that a considerable
inspiration could be taken by the techniques developed in [4].

An alternative approach to the same problem has been recently explored by
Brustenga i Moncusí, Timme and Weinstein in [14]. There is however a significant
difference between the methods. Indeed, in their paper the computation of the
degree of the orbit closure is treated from a more numerical perspective. The
idea is to count the number of solutions of a system of polynomial equations in
an affine variety using homotopy continuation and monodromy methods. As a
result, for a general S, this number turns out to be 96120. On the other hand,
applying intersection theory in the context of resolutions of singularities gives a
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more geometric flavor and we believe that this will help to shed some light on a
complete understanding on the studied phenomena.

The problem was firstly introduced to us from the 27 Questions on Cubic
Surfaces (see [46]), in view of the First Meeting on Cubic Surfaces, that was held
in Oslo on May 13, 2019. We would like to thank: Kristian Ranestad and Corey
Harris for the valuable discussions and the patience with the many questions,
Paolo Aluffi for very nice explanations about his paper [4], Maddie Weinstein
for stimulating conversations, the anonymous referees for all the corrections and
suggestions.

4.2 Setup

In this section we will first describe the action of PGL(4) on the parameter space
of cubic surfaces. This will naturally produce rational maps

P15 ' PHom(W,W ) 99K PSym3(W ∗) ' P19,

one for every fixed cubic. If the latter is chosen to be general, it will be possible
to illustrate how this map can be used to compute the degree of the orbit closure.
Throughout the paper we will work over the field C of complex numbers.

4.2.1 The action of PGL(4)

Let us denote with W the 4-dimensional vector space C4. A complex cubic
surface S ⊂ PW is the zero set of a homogeneous degree-3 polynomial in four
variables, say

F (x) = a0x
3
0 + a1x

2
0x1 + · · ·+ a18x2x

2
3 + a19x

3
3,

which corresponds to a point [F ] := [a0 : a1 : · · · : a19] in the parameter space
F := PSym3(W ∗). The group PGL(4) acts on F by pre-composition (or,
equivalently, by coordinate change):

PGL(4)×F → F
(α, [F (x)]) 7→ [F (α(x))].

For a fixed S (hence for a fixed F ), this yields a map φ : PGL(4)→ F , whose
image is by definition the orbit O of F . Moreover, the fiber φ−1(F ) is the set
of automorphisms of W leaving F unchanged, so it corresponds to group of
linear automorphisms of S. Our object of study is the degree of O in F : to this
purpose, we first need to understand the dimension of O and the degree of φ.

Let us denote with V the space PHom(W,W ) of nonzero endomorphisms
of W up to projective equivalence, which is also canonically isomorphic to the
space of matrices P(W ∗ ⊗W ).

Lemma 4.2.1. Let S be a cubic surface with finite group of linear automorphisms.
Then dimO = 15.
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Proof. By hypothesis φ is a finite map, so dimO = dim PGL(4). But
dimO = dimO and PGL(4) embeds as an open subset V, whose dimension
is 15. �

From now on we will consider S to be general, meaning that its corresponding
point in F lies in some proper Zariski open subset.

Lemma 4.2.2. If S is a general cubic surface, the above map φ has degree 1.

Proof. We will prove that each fiber of φ consists of a single point. Suppose
that there exist two points α1, α2 of PGL(4) with the property that F (α1(x)) =
F (α2(x)): then the composite α−1

1 ◦ α2 would be a linear automorphism of S.
But a general cubic surface has no nontrivial linear automorphisms (see [37]), so
α1 = α2. �

4.2.2 How to compute the degree of O

As we noticed in the proof of Lemma 4.2.1, we can see PGL(4) as an open subset
of V; in particular the map φ can be understood as a rational map V 99K F ,
which, by abuse of notation, we will keep calling φ. The strategy from [4] that
we want to apply here is to resolve φ by a sequence of blow-ups in V and finally
get a regular map φ̃ : Ṽ → F , where Ṽ is a smooth compactification of PGL(4)
and im φ̃ = O. The blow-ups will also produce a morphism π : Ṽ → V , such that
the following diagram commutes:

PGL(4) Ṽ F

PGL(4) V F

φ̃

π

φ

.

Given this construction, we can compute the degree d of O as follows: let
φ̃∗ : CH(Ṽ)→ CH(F) be the push-forward map between the corresponding Chow
rings and let us recall that O is a 15-dimensional subvariety of F .

Then by definition d =
∫
F [O] ·H15, where

∫
F (·) denotes the degree of the

0-dimensional part, while H denotes the hyperplane class in CH(F) ' Z[H]/H16.
On the other hand, by construction Ṽ dominates O, so deg φ̃ · [O] = φ̃∗(1). Then,
using the projection formula, we find:

deg φ̃ · d =
∫
F
φ̃∗(1 · φ̃∗H15) =

∫
Ṽ
φ̃∗H15. (4.2.1)

Definition 4.2.3. With notation as above, we define the predegree of O to be∫
Ṽ(φ̃∗(H))15.

Note that, even when S has nontrivial linear automorphisms, it is possible
to use equation (4.2.1) to find the degree of O by dividing the predegree by the
order of the group of linear automorphisms. In the general case we have the
following result:
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Proposition 4.2.4. For a general cubic surface S, the degree of O equals its
predegree.

Proof. Indeed, thanks to Lemma 4.2.2, we know that if S is general, deg φ̃ = 1;
then the expression (4.2.1) gives the desired equality. �

The first step towards the resolution of φ is to understand its base locus
Bs(φ). To this purpose we note that the linear system defining φ is spanned by
a certain set of hypersurfaces having a nice geometric interpretation.

Definition 4.2.5. Let S = V (F ) be a cubic surface in PW . For every p ∈ PW ,
the point condition Pp is defined as:

Pp = {α ∈ V | F (α(p)) = 0} ,

namely the zero locus of F (α(p)) as a polynomial in α.

Since the point conditions span the linear system defining φ, the base locus
Bs(φ) can be identified with the intersection

⋂
p∈PW Pp. After blowing up this

locus in V, we will get a new rational map, whose base locus will be described
by the intersection of the proper transforms of the point conditions, and so
on. Moreover, if we denote by P̃p the proper transform of Pp in Ṽ, we see that
d =

∫
Ṽ [P̃p]15.

Although the main focus of this paper is to illustrate the several steps needed
to resolve φ, we would like to mention here a very important proposition, which
can be (repeatedly) used to tell how the various blow-ups contribute in the
computation of the degree of O.

Proposition 4.2.6 ([4, Proposition 3.2]). Let i : B → V be an inclusion of non-
singular projective varieties, and let X ⊂ V be a codimension-1 subvariety,
smooth along B. Let Ṽ be the blow-up of V along B, and let X̃ be the proper
transform of X. Then∫

Ṽ

[X̃]dimV =
∫
V

[X]dimV −
∫
B

([B] + i∗[X])dimV

c(NB/V ) ,

where c(NB/V ) denotes the total Chern class of the normal bundle of B in V .

In our situation, the role of V and X will be played by V and Pp, while
B will represent each time a component of the reduced base locus that we are
blowing up. Since the point-conditions are cubic hypersurfaces in V, we have∫
V [Pp]15 = 315. Then the degree of O will be 315 − n1 − · · · − nk, where the ni’s
are the contributions of the blown up loci that can be explicitly computed using
Proposition 4.2.6.

At each step, the most difficult part will be to compute c(NB/V) in the Chow
ring CH(B). This motivates us to look for a resolution, by picking a suitable
sequence of blow-ups that allows to handle this computation easily.

The contributions coming from the sequence of blow-ups is left for a future
paper, that is thought to be the natural continuation of the present one.
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4.3 Towards the resolution of φ

In this section, we will describe the first steps necessary to regularize φ according
to the strategy described in Section 4.2.2. It is not yet clear if these are enough
or if more blow-ups are required. An important difference from the case of plane
curves studied in [4] is that the base locus Bs(φ) has not only one, but many
components, reflecting the fact that a general cubic surface contains 27 distinct
lines.

4.3.1 The base locus of φ

With the next proposition we are going to describe Bs(φ) as a set. To this
purpose, we look at V as the space of matrices P(W ∗ ⊗W ), together with the
Segre embedding

PW ∗ × PW ↪→ P(W ∗ ⊗W )
given by

([k0 : · · · : k3], [q0 : · · · : q3]) 7→


k0q0 k1q0 k2q0 k3q0
k0q1 k1q1 k2q1 k3q1
k0q2 k1q2 k2q2 k3q2
k0q3 k1q3 k2q3 k3q3

 ,
where k⊥ := {x ∈ PW | k0x0 + · · ·+ k3x3 = 0} is the kernel of such a matrix
and q := [q0 : · · · : q3] its image.

Proposition 4.3.1. Let S = V (F ) be a general smooth cubic surface in PW . Let
φ be the map defined above. Then Bs(φ) is supported at the union of two closed
components B and C, with:

(i) B ' PW ∗ × S;

(ii) C ' ∪27
i=1Ci,

where the Ci’s are the irreducible components of C and each Ci is isomorphic to
P7.

Proof. The map φ is not defined over the set

{α ∈ V | F (α(x)) ≡ 0} = {α ∈ V | imα ⊂ V (F )}.

Since S is taken to be general, its linear subspaces are points in S and the 27
lines, that we denote by `1, . . . , `27. We can write the base locus as

B ∪ C,

where

B := {α ∈ V | rkα = 1, imα ∈ S},

C := {α ∈ V | rkα ≤ 2, imα ⊆ `i for some i}.

Then:
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(i) The matrices in B are parametrized by the choice of a point in S and the
choice of a 4-tuple of coefficients in PW ∗ (indeed each column must be a
multiple of the chosen point). Hence B ' PW ∗ × S.

(ii) Regarding C, it consists of 27 components {Ci}27
i=1, where Ci is the space

of matrices whose image is spanned by `i. So for every i we can make the
identification Ci ' PHom(W,U), where U is the 2-dimensional subspace
of W for which P(U) = `i. This is a 7-dimensional projective linear space
and in particular we get C ' ∪27

i=1P7.

�

Remark 4.3.2. Alternatively, one can see the elements of a fixed Ci as the sum
of two rank-1 matrices parametrized by the choice of a point on the given line
and the choice of a 4-tuple of coefficients in PW ∗. In other words, Ci is the
union of the span of all pairs of points in PW ∗ × `i (including the degenerate
case in which the two points coincide), so we are describing the secant variety
σ2(PW ∗ × `i) ' σ2(P3 × P1), which is a P7.

Remark 4.3.3. The subset, PGL(4) ⊂ V does not intersect Bs(φ), so as we
resolve the rational map φ, we still get compactifications of PGL(4).

Remark 4.3.4. The above proof actually says more: the two components B and
C intersect in

B ∩ C = {α ∈ V | rkα = 1, imα is a point on `i for some i}.

In particular, this implies the following Corollary.

Corollary 4.3.5. Let Ci, i = 1, . . . , 27 be the components of C, each isomorphic
to P7. Then

B ∩ Ci ' PW ∗ × `i.

Moreover, for i 6= j we have

Ci ∩ Cj '

{
PW ∗ if `i ∩ `j 6= ∅
∅ otherwise.

As we have mentioned at the end of Section 4.2, since Bs(φ) has many
components, there are many ways of resolving the map. The following order of
blow-ups at smooth centers is suited for relating the base loci of the induced
maps to properties of point conditions in V.

We start by blowing up V along the component B ' PW ∗×S: this produces
a morphism π1 : V1 → V and an exceptional divisor E1 ⊂ V1. After blowing up
B, the proper transforms of the point condition, denoted by P (1)

p , will define a
new rational map φ1 : V1 99K F . Note that B ∩PGL(4) = ∅ in V , so V1 contains
an open dense subset isomorphic to PGL(4) and with a little abuse of notation
we will indicate it using the same symbol. Let us denote with C(1)

i the proper
transform of Ci in V1 for every i.
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G1, . . . , G27 E
(1)
3 E

(2)
2 E

(3)
1 V4 F

C
(3)
1 , . . . , C

(3)
27 E3 E

(1)
2 E

(2)
1 V3 F

C
(2)
1 , . . . , C

(2)
27 B2 E2 E

(1)
1 V2 F

C
(1)
1 , . . . , C

(1)
27 B1 E1 V1 F

C1, . . . , C27 B V F

π4

φ4

π3

φ3

π2

φ2

π1

φ1

φ

Figure 4.1: The sequence of blow-ups

Claim 4.3.6. The base locus Bs(φ1) is supported on the 27 components C(1)
i ’s,

which are disjoint, plus a further component, denoted by B1, contained in the
exceptional divisor E1, intersecting the C(1)

i ’s.

We will choose B1 to be the center of the second blow-up. As before, this
will produce a new morphism π2 : V2 → V1, together with an exceptional divisor
E2 ⊂ V2. Again, the proper transforms of the point conditions, denoted by P (2)

p ,
will define a rational map φ2 : V2 99K F .

Claim 4.3.7. The support of Bs(φ2) contains the 27 pairwise disjoint proper
transforms C(2)

i ’s and a subvariety, denoted by B2, which has a dominant 2: 1
map to B.

Note that it is not clear whether the subvariety B2 is irreducible or not.
What we will prove is that it must consist of either 1 or 2 components. Moreover,
we need to observe that Claim 4.3.7 refers to an inclusion, but not an equality, so
there might be some other components in Bs(φ2), namely the ones dominating
the intersections B ∩ Ci ' PW ∗ × `i.

If we assume that we have exactly the components listed in above, we can
proceed by blowing up B2. We get as usual a map π3 : V3 → V2, an exceptional
divisor E3 ⊂ V3 and a rational map φ3 : V3 99K V induced by the proper
transforms of point conditions. We expect no component of the base locus of φ3
to dominate B. In fact, one might hope that the only components of Bs(φ3) are
the C(3)

i , and that blowing up these components resolves the rational map.
We summarize the construction in Figure 4.1, which also fixes notation for

the rest of the section.
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4.3.2 The base locus after blowing up B

We now aim to prove Claim 4.3.6; in particular, we are interested in giving the
set-theoretical description of B1 := E1 ∩ Bs(φ1).

To this purpose, we recall that B is embedded in V via the Segre embedding.
In particular, for every α ∈ V, we may identify the space TαV with the quotient
(W ∗ ⊗W )/αC. Let α = (k, q) be a point in B and let us denote with σ = TqS
the tangent space of S at the point q.

Lemma 4.3.8. With the identification TαV ' (W ∗ ⊗W )/αC, we have:

(i) TαB = {τ ∈W ∗ ⊗W | im τ ⊂ σ, τ(k⊥) ⊂ q}/αC.

(ii) Tα(PW ∗ × `i) = {τ ∈W ∗ ⊗W | im τ ⊂ `i, τ(k⊥) ⊂ q}/αC.

(iii) The point condition Pp is non-singular at α and

TαPp = {τ ∈W ∗ ⊗W | τ(p) ⊂ σ}/αC.

Proof. The ideas in this proof are essentially the same of [4, Lemma 2.1].

(i) The (5-dimensional) tangent space of B at α is

TαB = Tk(PW ∗ × {q}) ⊕ Tq({k} × S)

= {k
′ ⊗ q ∈W ∗ ⊗W | k′ ∈ PW ∗}

kC
⊕ {k ⊗ q

′ ∈W ∗ ⊗W | q′ ∈ σ}
qC

= {τ ∈W
∗⊗W | im τ = q}

kC
⊕ {τ ∈W

∗⊗W | ker τ = k⊥, im τ ⊂ σ}
qC

.

The two spaces in the direct sum decomposition are both contained in the
space

{τ ∈W ∗ ⊗W | im τ ⊂ σ, τ(k⊥) ⊂ q}
(k ⊗ q)C ,

which is also of dimension 5, so they coincide.

(ii) Similarly we obtain the description for Tα(PW ∗ × `i).

(iii) A line passing through α can be written as γα(s) = α+ τs, for some τ ∈ V .
Note that since imα = q ∈ S, then F (γα(0)(p)) = F (α(p)) = 0. The
intersection multiplicity mα(Pp · γ) is by definition the order of vanishing

ordt=0[F ((α+ τs)(p))],

so the line γ is tangent to Pp if and only if that order is greater or equal
than 2. By taking the Taylor expansion we get

F ((α+ τs)(p)) = F (α(p)) +
3∑
i=0

(
∂F

∂xi

)
α(p)

τi(p)s+ . . . ,
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where τi(p) denotes the i-th coordinate of τ(p). Hence we need the constant
and the linear term of this expression to vanish. We already know that
F (α(p)) = 0, while

∑
i

(
∂F
∂xi

)
q
τi(p) = 0 if and only if τ(p) ⊂ σ, that is

exactly the condition we claimed. The above computation says more: if
τ(p) 6⊂ σ, then the line α+ τs intersects Pp with multiplicity 1 at α, so Pp
is non-singular at α.

�

We will also need a similar lemma describing various tangent spaces at points
of Ci.

Lemma 4.3.9. For every point α ∈ Ci, we have:

(i) TαCi = {τ ∈W ∗ ⊗W | im τ ⊂ `i}/αC.

(ii) TαPp = {τ ∈W ∗ ⊗W | τ(p) ⊂ Tα(p)S}/αC.

Proof.

(i) Since each Ci ' P7 is embedded in V as a linear space, if we identify
the Ci with nonzero matrices with image in `i, then the tangent space to
this linear space at any point is simply the linear space itself, namely the
matrices with image in `i.

(ii) Exactly as the proof of Lemma 4.3.8 (iii).

�

Lemma 4.3.10. After blowing up B1, the C(1)
i are all disjoint in V1.

Proof. Recall that E1 is defined as P(NB/V), with NB/V ' TV/TB. Then
the intersection C

(1)
i ∩ E1 is the projectivization of the image of TCi via the

composition
TCi ↪→ TV → TV/TB.

We need to prove that if Ci and Cj intersect in V, then C
(1)
i and C

(1)
j are

disjoint in the blow-up V1. We can check this fiberwise and show that for every
α ∈ Ci ∩ Cj , the images of TαCi and TαCj in TαV/TαB do not intersect.

First observe that blowing up V along B affects Ci as if it was blown up along
PW ∗ × `i, producing an exceptional divisor Fi := P

(
TCi

T (PW∗×`i)

)
, embedded in

E1. We may therefore instead prove that the image of C(1)
j in Fi is the empty

set, i.e. that TαCi ∩ 〈TαCj , Tα(PW ∗ × `i)〉 is contained in Tα(PW ∗ × `i). Write
q for the intersection `i ∩ `j and σ for TqS. Knowing the description of the
tangent spaces in Lemma 4.3.8 and Lemma 4.3.9 and recalling that the two lines
`i, `j span σ, we obtain

〈TαCj , Tα(PW ∗ × `i)〉 = {τ ∈W ∗ ⊗W | im τ ⊂ σ, τ(k⊥) ⊂ `j}/αC.
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Intersecting this span with TαCi we obtain exactly the tangent space Tα(PW ∗×
`i), so C(1)

i and C(1)
j are disjoint in the blow-up. �

The tangent spaces appearing in Lemma 4.3.8 are also essential to describe
the base locus of φ1.

Proposition 4.3.11. The base locus Bs(φ1) of the rational map φ1 : V1 99K F is
supported on

B1 ∪ {C(1)
1 , . . . , C

(1)
27 },

where B1 is a P5-subbundle of E1. Moreover, B1 = (
⋂
p∈PW P

(1)
p ) ∩ E1 both set

and scheme-theoretically.

Proof. This result refers to [4, Proposition 2.2]. As observed earlier, the base
locus of φ1 is set-theoretically

⋂
p P

(1)
p . In particular, a point α1 ∈ E1 lying in

the fiber of α ∈ B is also in Bs(φ1) if it is determined by a vector in
⋂
p TαPp

which is normal to B. Thanks to Lemma 4.3.8 (iii), we see that the intersection
of all tangent spaces to the point conditions at α is given by the 11-dimensional
space Σα := {τ ∈ W ∗ ⊗W | im τ ⊂ σ}/αC. This contains TαB (see again
Lemma 4.3.8) and the quotient Σα/TαB is a 6-dimensional subspace of the
fiber of NB/V over α. Moving α, we get a rank-6 subbundle of NB/V , so a
P5-subbundle of E1 = P(NB/V), as we wanted. The C(1)

i ’s are also base loci,
since the corresponding Ci’s were so.

The second statement can be proved fiberwise: indeed, the fiber of B1, a
linear subspace, is cut out by fibers of the various P (1)

p ∩ E1, which are linear
spaces themselves. �

Corollary 4.3.12. The component B1 can be globally described as P
(⋂

p
TαPp

TB

)
and its intersection with C(1)

i is the bundle over PW × `i given by:

C
(1)
i ∩B1 = P

(
TCi

T (PW ∗ × `i)

)
.

Proof. The global description of B1 is straightforward from Proposition 4.3.11.
Regarding the intersection C

(1)
i ∩ B1, this coincides with C

(1)
i ∩ E1. The

description then holds by the same arguments used for Lemma 4.3.10. �

4.3.3 The base locus after blowing up B1

We now address Claim 4.3.7: although a complete description of the components
of Bs(φ2) will not be given, we will show which of those components are the
ones dominating B ' PW ∗ × S.

So, let us denote with B2 the closed subvariety of Bs(φ2) ∩ E2 dominating
B. In order to understand B2 we will need to look at the intersection of S
with its tangent planes. We will focus on the points of S lying in the subset
S0 := S \

⋂27
i=1 `i. Note that for every q ∈ S0, the plane cubic curve TqS ∩ S
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is either a node or a cuspidal curve and if ` is a line in the tangent cone
of such a cubic at its singular point q, then the intersection multiplicity is
mq(` · (TqS ∩ S)) = 3.

Definition 4.3.13. A line of matrices α+ τs in V , with α = (k, q) ∈ B is called a
special line if q ∈ S0, τ(k⊥) 6⊂ q and the image of τ is contained in a line tangent
to the cubic curve TqS ∩ S at q.

We would like to translate properties of points in B2 to properties of points
in B and as we will soon see it will be useful to observe the following:

Lemma 4.3.14. The base locus Bs(φ2) is disjoint from E
(1)
1 .

Proof. This is just a rephrase of the second part of Proposition 4.3.11, thanks
to which we know that the point conditions P (1)

p intersect E1 transversely in
V1. �

Proposition 4.3.15. Let α2 be a point of E2 and let us denote with α = (k, q)
its image in B via the composite map π1 ◦ π2. Suppose also that q ∈ S0. Then
α2 is in B2 if and only if it can be written as the intersection of E2 with the
proper transform in V2 of a special line in V. Moreover, the set of such α2 is
dense in B2.

Proof. By definition, α2 ∈ Bs(φ2) if and only if it is contained in the proper
transform of a general point condition P (2)

p . In particular, if α2 is in B2, it must
represent a direction normal to B1 and tangent to a general point condition P (1)

p

at α1 := π2(α2). We can identify this direction with a smooth curve germ γα1

around α1 in V1, satisfying normality to B1 and the tangency condition:

mα1(γα1 · P (1)
p ) ≥ 2, for a general p ∈ PW.

Note that, using the above identification, we can write α2 = E2 ∩ γ(1)
α1 .

Thanks to Lemma 4.3.14 we can rephrase everything in terms of curve germs
in V : indeed, γα1 turns out to be not only normal to B1, but to the whole of E1,
so we can think of it as the proper transform of a line γα = α+ τs ⊂ V , which is
normal to B and intersects a general point condition Pp with multiplicity greater
or equal than 3.

Denoting as usual with σ the tangent plane TqS, we can equivalently say
that:

α2 ∈ B2 ⇐⇒ α = E2 ∩ (α+ τt)(2),

with im τ ⊂ σ and τ(k⊥) 6⊂ q (see Lemma 4.3.8), such that for a general p we
have mα((α+ τs) · Pp) ≥ 3.

This description reduces to study a special class of lines through α in V = V :
we divide in 3 cases, depending on the rank of τ , that can be either 1, 2 or 3.

If rk τ = 3, then im τ = σ. In particular, for a general p ∈ PW , we have
τ(p) = qp, where qp is a point varying on σ and different from q. Then the span

〈α(p) = q, τ(p) = qp〉
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is a general line λp in σ passing through q and (α+ τs)(p) is a parametrization
of such a line. Then for a general p we have

mα((α+ τs) · Pp) = ordt=0(F ((α+ τs)(p)))
= mq(λp · S)
= mq(λp · (S ∩ σ)) = 2 < 3,

so in this case α2 is not in the base locus.
If rk τ = 2, then im τ = `, where ` is a line in the tangent plane σ. Again,

for a general p ∈ PW , the span of α(p) and τ(p) is a line through q and we are
interested in computing mq(λp · (S ∩ σ)). There are two possibilities: if q 6∈ `,
then for every two distinct points p1 and p2 in PW the lines λp1 and λp2 are
distinct. In particular, for a general p, the above multiplicity will be 2, so in this
case as well, α2 is not in the base locus.

On the other hand, if q ∈ `, then for a general p we constantly have λp = `
and α2 is in the base locus precisely when mq(` · (S ∩ σ)) = 3, i.e. when ` is
one of the two tangent lines at the node q (or the double tangent line in the
degenerate case). Note the multiplicity computation makes sense since we are
assuming that q ∈ S0.

Finally, if rk τ = 1, then im τ = q′, a point in σ different from q (otherwise
this would contradict τ(k⊥) 6⊂ q). Then, arguing as above, for a general p, the
span of α(p) = q and τ(p) = q′ is a constant line ` and α2 is in the base locus if
and only if mq(` · (S ∩ σ)) = 3. Note that the rank-1 matrices τ satisfying this
property come from taking the closure of the space of rank-2 matrices described
at the previous step.

The density statement is a consequence of the fact that S0 is dense in S,
since a component dominates B if and only if it dominates PW ∗ × S0 ⊂ B. �

Our knowledge about the components of the base locus of φ2 can be
summarized in the following:

Proposition 4.3.16. The components of the support of Bs(φ2) that dominate a
component of the original base locus Bs(φ) are C(2)

1 , . . . , C
(2)
27 and the irreducible

components of B2. Moreover, the map (π1 ◦ π2)|B2 is a double cover of B, i.e.
B2 consists of at most 2 irreducible components.

Proof. We just need to observe that B2 is obtained by taking the closure of a
subset of E2 whose fibers over B correspond to two special lines of V (counted
with multiplicity). �

Remark 4.3.17. While the C(2)
i ’s are clearly irreducible, we are still left lo

understand if also B2 is.

4.3.4 The base locus after blowing up the C(3)
i

The last part of the paper is devoted to proving the following result:
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Proposition 4.3.18. After blowing up one of the components C(3)
i , corresponding

to matrices with image contained in a line, there will be no remaining base locus
over the points in Ci corresponding to matrices of rank 2.

Since, up to this point, the centers of all blow-ups have been away from
matrices of rank 2, we will for simplicity consider the base locus after blowing
up Ci in V instead of C(3)

i in V2.
We now wish to study the intersection of the tangent spaces of all point

conditions. To this end, we will study the image of matrices contained in the
intersection of all the tangent spaces. From Lemma 4.3.9 (ii) we see that for
every α ∈ Ci, the intersection of all the tangent spaces TαPp is:⋂

p∈W
{τ ∈W ∗ ⊗W | τ(p) ⊂ Tα(p)S}/αC. (4.3.1)

In fact, as we will prove now, this condition will imply that the image of the
matrix τ must be contained in `i.

The proof relies on pencils of hyperplanes. The hyperplanes in W containing
`i are parametrized by H ' P1. A pencil of hyperplanes containing `i will be a
morphism P1 → H, and the degree of the pencil is the degree of this morphism
(if it is nonconstant).

In this and the following lemma, we will work with the affine spaceW instead
of PW .

Lemma 4.3.19. Let α ∈ Ci be a point corresponding to a rank-2 matrix with
image `i, and let τ ∈W ∗⊗W be such that the image of τ in TαV 'W ∗⊗W/αC is
in
⋂
p TαPp. Then for any two-dimensional subspace U ⊂W such that α(U) = `i,

we have τ(U) ⊆ `i.

Proof. From the two-dimensional subspace U we can construct a degree-two
pencil P1 of hyperplanes inW containing `i by assigning to u ∈ U the hyperplane
defined by the equation

3∑
i=0

(
∂F

∂xi

)
α(u)

= 0,

where F is the general degree three polynomial defining the cubic surface S. We
think of P1 as assigning to u ∈ U the tangent plane of S at α(s). This defines a
map from P(U) ' P1 to H. This pencil will have degree two, as it is defined by
degree two polynomials.

Assume for contradiction that τ(U) 6⊆ `i. There are three cases: τ(U) is
either a one-dimensional space not contained in `i, a two-dimensional space
with one-dimensional intersection with `i, or a two-dimensional space with zero-
dimensional intersection with `i. In all cases, we construct a second pencil P2
of hyperplanes containing `i, by assigning to u ∈ U the hyperplane spanned by
τ(u) and `i. This defines a map P(U) 99K H which is a priori at least rational,
but extends to a morphism P(U)→ H since the domain is a curve.

The condition (4.3.1) states that P1 and P2 are equal. Indeed, condition
(4.3.1) requires that P2(p) = 〈p, `i〉 is mapped to Tα(p)S in Tα(p)V . But this can
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only happen if P2(p) = P1(p). However, this cannot be true in any of the three
cases, as we will see in the following:

• If τ(U) is a one-dimensional space not contained in `i, then P2 is constant,
and therefore not equal to P1.

• In the case where τ(U) is two-dimensional and intersects `i in the one-
dimensional space qC, P2(p) will be the hyperplane spanned by `i and
τ(U) for any p, so the pencil is constant.

• If τ(U) is a two-dimensional space intersecting `i only in 0, then P2 is a
pencil of degree 1. Therefore, again, it cannot be equal to P1.

�

From this lemma we can deduce that in fact the image of τ must be in `i.

Lemma 4.3.20. With notation as above, let α be a matrix of rank 2 in Ci. If
τ ∈

⋂
p TαPp, then τ is in the tangent space TαCi.

Proof. Let τ ′ be any element of ∈W ∗ ⊗W that is mapped to τ . For any vector
u ∈ W \ kerα, it is possible to find a 2-dimensional subspace U containing u
such that α(U) = `i. Then, thanks to Lemma 4.3.19, we have τ ′(u) ∈ `i. But
since u was arbitrarily chosen in W \ kerα and this latter set spans W , we must
have im τ ′ ⊂ `i. �

Putting all this together we find that after blowing up a component of the
base locus corresponding to matrices with image in a certain line, the remaining
base locus is supported in the fibers over the rank-1 matrices.

Proposition 4.3.21. Let

PGL(4) V ′ F

PGL(4) V F

φ′

π

φ

be the the diagram associated to the blow-up of V, along one of the components
Ci ' P7 and let φ′ : V ′ 99K F be the induced rational map. If we denote by Gi the
exceptional divisor over Ci and by Bs(φ′) the base locus of φ′, then π(Bs(φ′)∩Gi)
is contained in the PW ∗ × `i ⊂ Ci consisting of rank-1 matrices.

Proof. We will prove the statement fiberwise. Let α ∈ Ci be a rank-2 matrix.
Then we must show that Bs(φ′) ∩ π−1(α) is empty. The fiber π−1(α) is the
projectivization of (NCi/V)α, the fiber of the normal bundle of Ci at α. If we
denote with Pp the stict transform of a point condition, then Pp ∩ π−1(α) is
the projectivization of the quotient TαPp/TαCi. Therefore Bs(φ′) ∩ π−1(α), is
obtained by projectivizing

⋂
p TαPp/TαCi. But by Lemma 4.3.20 we know that⋂

p TαPp is actually contained in TαCi, so the quotient described above must be
trivial. After projectivizing, we see that Bs(φ′) ∩ π−1(α) must be empty. �
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Remark 4.3.22. In our resolution of φ : V 99K F , we actually want to blow up
the proper transforms C(3)

i of the Ci in V2. However, over the matrices of rank
2, the blow-down V2 → V is an isomorphism. We can therefore conclude from
Proposition 4.3.21 that also in this case there is no further base locus over the
rank-2 matrices.

Having Proposition 4.3.21 been proved, the natural question to ask is:

Question 4.3.23. After blowing up the C(3)
i ’s, is there any base locus over the

subset of points that projects down to the locus of rank-1 matrices?
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Appendix A

Auxiliary Codes
In this appendix, we gather all the auxiliary codes needed for the computations
in Chapter 2.

In Section A.1, we collect the Macaulay2 codes used for Theorem 2.2.7,
Remark 2.3.7, Proposition 2.3.8 and Theorem 2.4.1, while in Section A.2 we
collect the Julia codes used for Theorem 2.1.3 and Theorem 2.4.1.

Most of the material presented here is an adaptation of the scripts in the
repository [13].

A.1 Macaulay2 codes

We begin with defining the basic functions, then we proceed with their application
to each of the above mentioned results.

A.1.1 Basic functions

Adjugate matrix Adjm(A) of an m×m matrix A:

adjugate = A -> (

m := numcols A;

adjugateA := for i to m-1 list (

for j to m-1 list (-1)^(i+j)*det(submatrix’(A,{j},{i}))

);

matrix adjugateA

)

Matrix parametrizing the elements of PCat(k, n), namely the linear space
of catalecticant matrices of (n+ 1)-ary forms of degree 2k; the parameters are
taken in a ring X:

genericCatalecticantMatrix = (k,n,X) -> (

N := #(gens X)-1;

a := symbol a;

x := symbol x;

R := QQ[a_0..a_N, x_0..x_n];

aList := drop(gens R, -(n+1));

xList := drop(gens R, N+1);

dBasis := flatten entries basis(2*k, R, Variables=>xList);

form := sum(for i to #aList-1 list aList_i*dBasis_i);
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kBasis := flatten entries basis(k, R, Variables=>xList);

CM := contract(matrix{kBasis}, form);

(M,C) := coefficients(CM, Variables=>xList, Monomials=>kBasis);

f := map(X, R, join(gens X, apply(xList, i->0)));

matrix entries f(C)

)

List of entries in the upper triangular part of a given m × m symmetric
matrix A:

symmetricEntries = (A,m) -> (

flatten(for i to m-1 list (for j from i to m-1 list A_(i,j)))

)

Coordinates of νd(P ), namely, the d-uple embedding of a point P ∈ Pn:

veronese = (P,d) -> (

l := length(P)-1;

u := symbol u;

U := QQ[u_0..u_l];

dBasis := first entries basis(d,U);

for monom in dBasis list (sub(monom, for i to l list u_i=>P_i))

)

Catalecticant matrix associated with the d-uple embedding of a point P :

toCat = (P,d) -> (

k := d//2;

n := length(P)-1;

x := symbol x;

N := binomial(n+2*k, 2*k)-1;

X := QQ[x_0..x_N];

cat := genericCatalecticantMatrix(k,n,X);

veron := veronese(P,d);

sub(cat, for i to N list x_i=>veron_i)

)

Defining equations of the orthogonal space L⊥ of a given linear subspace L
of m×m symmetric matrices, using a coordinate ring S:

orthogonal = (L,S) -> (

varsL := support L;

N := #(varsL)-1;

varsS := support S;
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M := #(varsS)-1;

R := QQ[varsS][varsL];

L’ := sub(L,R);

S’ := sub(S,R);

traceProduct := trace(L’*S’);

use R;

ortho := trim ideal(for i to N list(coefficient(varsL_i, traceProduct)));

sub(ortho, ring S)

)

A.1.2 Setup

We write the two matrices parametrizing the space (PS6)∨ ' P20 of 6× 6 dual
symmetric matrices and the space PCat(2, 3) ' P14 of square catalecticants
associated with ternary quartics. We use

Y = Q[y(1,1), y(1,2) . . . , y(6,6)] and A = Q[a(4,0,0), a(3,1,0), . . . , a(0,0,4)]

as their coordinate rings.

n = 2

k = 2

d = 2*k

m = binomial(k+n,k)

catCoord = reverse flatten(for i to d list (for j to d-i list a_(i,j,d-i-j)))

A = QQ[catCoord]

symCoord = flatten(for i from 1 to m list (for j from i to m list y_(i,j)))

Y = QQ[symCoord]

cat = genericCatalecticantMatrix(k,n,A)

sym = genericSymmetricMatrix(Y,m)

A.1.3 Reciprocal sets of points

This is the auxiliary code for Theorem 2.2.7, cases of rank r = 1, 2. First, we
let P1 = ν4(1 : 0 : 0) and P2 = ν4(0 : 0 : 1). We fix a rank-1 matrix A1 associated
with P1, a rank-2 matrix A2 associated with a point on the secant line through
P1 and P2, and a rank-2 matrix A′2 associated with a point on a tangent line
through P1.

P1 = {1,0,0}

P2 = {0,0,1}

A1 = toCat(P1,4)
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A2 = toCat(P1,4) + toCat(P2,4)

A2’ = sub(cat, join(

{a_(4,0,0)=>1, a_(3,1,0)=>1},

for g in drop(gens A, {0,1}) list g=>0

))

Case r = 1 We give the defining equations of the linear span 〈FC(A1)〉 ' P14,
made of matrices in (PS6)∨ whose entries in the first row and column are all zero.
We identify this linear space with a suitable space of 5× 5 symmetric matrices.
Then, we compute the equations for FC(A1) as the reciprocal variety of the space
of 5× 5 submatrices in PCat(2, 3), obtained by erasing the first row and the first
column. Equations are obtained by saturating the ideal of pull-back (cut out by
3 quartics, and the 6 linear equations), with the determinant polynomial.

PP14 = ideal(for i from 1 to 6 list y_(1,i))

sym’ = submatrix’(sym,{0},{0})

quartics = {

det submatrix’(sym’,{0},{3}) - det submatrix’(sym’,{1},{2}),

det submatrix’(sym’,{0},{4}) - det submatrix’(sym’,{1},{3}),

det submatrix’(sym’,{2},{4}) - det submatrix’(sym’,{3},{3})

};

Q = trim ideal(quartics) + PP14

d5 = ideal(det sym’)

FA1 = Q:d5 --takes 4h ca.

We verify that the cubics defining FC(A1) are the cubic Pfaffians of a 7× 7 skew
matrix S1.

cubics = ideal(for i from 6 to 12 list FA1_i)

S1 = matrix{

{0, y_(6,6), y_(5,6), y_(4,6), y_(3,6), y_(2,6), 0},

{0, 0, y_(5,5)-y_(4,6), y_(4,5), y_(3,5)-y_(2,6), y_(2,5), -y_(3,6)},

{0, 0, 0, y_(4,4), y_(3,4)-y_(2,5), y_(2,4), -y_(3,5)},

{0, 0, 0, 0, -y_(2,4), 0, -y_(3,4)},

{0, 0, 0, 0, 0, y_(2,2), -y_(3,3)},

{0, 0, 0, 0, 0, 0, -y_(2,3)},

{0, 0, 0, 0, 0, 0, 0}

}

S1 = S1 - transpose S1

pfaffians(6,S1) == cubics --true

Case r = 2, secant Analogously, we give the defining equations of the linear
span 〈FC(A2)〉 ' P9, made of matrices of (PS6)∨ whose entries in the first and
last row and in the first and last column are all zero. Then, we compute the
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defining equations of FC(A2) by saturating the pull-back ideal of the reciprocal
variety of a suitable subspace of 4× 4 symmetric matrices.

PP9 = ideal(flatten for i from 1 to 6 list {y_(1,i), y_(i,6)})

sym’ = submatrix’(sym,{0,5},{0,5})

cubic = {det submatrix’(sym’,{0},{3}) - det submatrix’(sym’,{1},{2})};

C = ideal(cubic) + PP9

d4 = ideal(det sym’)

FA2 = C:d4

We verify that the cubic defining FC(A2) is the cubic Pfaffian of a 6× 6 skew
matrix S2.

S2 = matrix{

{0, 0, y_(2,2), y_(2,3), y_(2,4), y_(2,5)},

{0, 0, y_(2,3), y_(3,3), y_(3,4), y_(3,5)},

{0, 0, 0, y_(3,4)-y_(2,5), y_(4,4), y_(4,5)},

{0, 0, 0, 0, y_(4,5), y_(5,5)},

{0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0}

}

S2 = S2 - transpose S2

pfaffians(6,S2) == ideal(FA2_11) --true

Case r = 2, tangent As in the previous case, but now the linear span
〈FC(A′2)〉 ' P9 is made of matrices of (PS6)∨ whose entries in the first two rows
and first two columns are all zero.

PP9 = ideal(flatten(

for i from 1 to 2 list(for j from i to 6 list y_(i,j))

))

sym’ = submatrix’(sym,{0,1},{0,1})

cubic = {det submatrix’(sym’,{1},{3}) - det submatrix’(sym’,{2},{2})};

C = ideal(cubic) + PP9

d4 = ideal(det sym’)

FA2’ = C:d4

We verify that the cubic defining FC(A′2) is the cubic Pfaffian of a 6× 6 skew
matrix S′2.

S2’ = matrix{

{0, 0, y_(5,6), y_(6,6), y_(3,6), y_(4,6)},

{0, 0, y_(3,5), y_(3,6), y_(3,3), y_(3,4)},
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{0, 0, 0, y_(4,6)-y_(5,5), y_(3,4), y_(4,4)},

{0, 0, 0, 0, y_(3,5), y_(4,5)},

{0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0}

}

S2’ = S2’ - transpose S2’

pfaffians(6,S2’) == ideal(FA2’_11) --true

A.1.4 Rank loci in the orthogonal space

This is the auxiliary code for Remark 2.3.7. First, we show that the general rank
of PCat(2, 3)⊥ is 6. Then, we give defining equations for the rank loci, showing
that for r = 1, 2 we have the emptyset, for r = 3 a Veronese surface ν2(P2) and
for r = 4, 5 the secant variety σ2(ν2(P2)).

ortho = orthogonal(cat,sym)

rank sub(sym, Y/ortho)

use Y

rk1locus = ortho + minors(2,sym);

rk2locus = ortho + minors(3,sym);

rk3locus = ortho + minors(4,sym);

rk4locus = ortho + minors(5,sym);

rk5locus = ortho + ideal(det sym);

dim rk1locus-1, dim rk2locus-1

mat = matrix{

{y_(2,2), y_(2,3), y_(3,4)},

{y_(2,3), y_(3,3), y_(3,5)},

{y_(3,4), y_(3,5), y_(5,5)}

}

surface = minors(2,mat)

secant = ideal det(mat)

radical rk3locus == surface + ortho --true

radical rk4locus == secant + ortho --true

radical rk5locus == secant + ortho --true

A.1.5 Intersection with the orthogonal space

This is the auxiliary code for Proposition 2.3.8. We show that PCat(2, 3)⊥
intersects FC(A2) in the emptyset, while it intersect FC(A1) and FC(A′2) in a
point (the same one).
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dim (FA1 + ortho)-1

dim (FA2 + ortho)-1

dim (FA2’ + ortho)-1

A.1.6 Tangent cone at rank-1 points

This is the auxiliary code for the revisited proof of Theorem 2.4.1. We prove
that the tangent cone to PCat(2, 3)−1 at a rank-1 point spans the entire space
(PS6)∨. Specifically, we iterate 10 times the following procedure.

(1) We fix a random 5-tuple of points P1, . . . , P5 ∈ ν2(P1) (to make sure they
are in general position and they span a proper 5-secant space).

(2) We compute their image ν4(ν2(Pi)), for i = 1, . . . , 5. These are points
lying on the image of the same conic.

(3) We pick a random rank-5 point A on the 5-secant space. Then, we pick 15
random points of rank 6 in PCat(2, 3). Joining them with A, we obtain
15 lines through A. The images of these lines are quintic curves passing
through B = Adj6(A).

(4) We compute the tangent directions to these curves at B and store them in
a list.

(5) We check that our random choice was a good choice (the image of A is
constant).

(6) We iterate the process, and in the end we find a list of directions which
spans (PS6)∨.

Z = QQ[gens A, gens Y, t];

AY = Y[gens A];

cat = sub(cat, AY);

sym = sub(sym, AY);

nSteps = 1

tangentsList = {};

rk1Pts = {};

for j from 1 to nSteps do (

use AY;

pts := for i from 1 to 5 list veronese({random QQ,random QQ},2);

for i to 5 do (

rk5 := sum(for P in pts list (random QQ) * toCat(P,4));

nL := 15;

rk6Cats := for i from 1 to nL list (
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sub(cat, for g in gens AY list g=>random QQ)

);

joiningLines := for cat in rk6Cats list (

t*sub(cat,Z) + sub(rk5,Z)

);

imageLines := for L in joiningLines list adjugate L;

imgRk5 := sub(adjugate rk5,Z);

rk1Pts = rk1Pts | {symmetricEntries(imgRk5,6)};

if rank matrix rk1Pts == 1 then print (

"Until step "|j|","|i|": all rank-5 points"|

"are mapped to the same rank-1 point."

)

else (

print (

"At step "|j|","|i|": a different rank-1 point was found."|

"Process interrupted."

);

break

);

b := true;

for curve in imageLines do (

b = b and (mutableMatrix sub(curve,t=>0) == mutableMatrix imgRk5)

);

if b == true then print (

"The curves contain the same rank-1 point"

)

else (

print (

"Found a curve not containing the same rank-1 point. "|

"Pocess interrupted."

);

break

);

tgDirections := for curve in imageLines list(

symmetricEntries(sub(diff(curve, t), t=>0), 6)

);

tangentsList = tangentsList | tgDirections;

);

)

rank matrix tangentsList

A.2 Julia codes

In this section, we need many technical functions, so we introduce them at
different steps. Every function depends only on those defined before it.
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A.2.1 ML-degree of the linear covariance model

The following code is used to compute the ML-degree of the linear concentration
model represented by Cat(2, 3) (cfr. Theorem 2.1.3). First, we import the
required packages.

using LinearCovarianceModels

import HomotopyContinuation

const HC = HomotopyContinuation

Then, we define functions to create linear covariance models of catalecticant
matrices.

function nvectors_sumingupm(n, m)

ntuples = Iterators.product(ntuple(_ -> 0:m, n)...)

return filter(I -> sum(I) == m, collect(ntuples))

end

function Catalecticantindices(r, s)

rowindeces = collect.(nvectors_sumingupm(s, r))

m = binomial(r + s - 1, s - 1)

M = reduce(hcat, fill(rowindeces, m))

return M + permutedims(M)

end

function Catalecticantmatrix(r, s)

return [HC.Variable(:t, I...) for I in Catalecticantindices(r, s)]

end

Catalecticant = LCModel(Catalecticantmatrix)

When applied to the case of catalecticants of ternary quartics, we obtain:

S = Catalecticant(2, 3)

ml_degree_witness(S; dual = true)

A.2.2 Suite of functions for computing the degree

We load the required packages and set HomotopyContinuation to not compile,
since the computations are small.

using HomotopyContinuation, LinearAlgebra

set_default_compile(:none)
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Similarly to Section A.1, we define functions giving the symmetric matrix
corresponding to the vector of its upper triangular part, and viceversa.

sym_to_vec(L,m) = [L[i, j] for i = 1:m for j = i:m]

function vec_to_sym(l::AbstractVector{T},m::Int64) where T

k = 0

L = Matrix{T}(undef, m, m)

for i in 1:m, j in i:m

k += 1

L[i, j] = L[j, i] = l[k]

end

L

end

The following function indexes the entries of a space of catalecticant
matrices.

function Catalecticant_dims(r, s)

m = binomial(r + s - 1, s - 1)

N = binomial(2r + s - 1, 2r)

M = binomial(m + 1, 2)

return m, N, M

end

This can be used to compute the defining equations of any catalecticant
space.

function CatalecticantIndices(r,s,m)

tf = [sum(I) == r for I in Iterators.product(ntuple(i->0:r, s)...)]

indx = collect.(collect(Iterators.product(ntuple(i->0:r, s)...))[tf])

M = hcat([indx for _ in 1:m]...)

return M+permutedims(M)

end

function CatalecticantSpace(M::AbstractMatrix,A::AbstractMatrix,m::Integer)

eq = Vector{typeof(A[1,1]+A[1,1])}(undef,0)

count = Vector{typeof(M[1,1])}(undef,0)

for i in 1:m

for j in i:m

for i2 in (i+1):m

for j2 in i2:m

if M[i,j] == M[i2,j2]

if ([i,j] in count)==false

push!(eq, A[j,i]-A[j2,i2]);

push!(count,[i,j]);
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end

end

end

end

end

end

return eq

end

Finally, a function for computing the adjugate of a square matrix:

function adjugate(M::AbstractMatrix{T}) where T

nr, nc = size(M)

out = similar(M)

rows = BitArray(ones(Int16,nr))

cols = BitArray(ones(Int16,nc))

for r in 1:nr

for c in r:nc

rows[r] = 0

cols[c] = 0

out[c, r] = (-1)^(c+r)*det(M[rows,cols])

rows[r] = 1

cols[c] = 1

end

end

return out

end

A.2.3 Degree of the reciprocal variety

We now give the code for computing the degree of the reciprocal variety of the
catalecticant space of ternary quartics (cfr. Theorem 2.1.3). We consider the
catalecticant space PC := PCat(2, 3) ' PN as a linear subspace of PSm ' PM .

r = 2;

s = 3;

m, N, M = Catalecticant_dims(r, s)

We give the defining equations of PC

@var x[0:2r, 0:2r, 0:2r], y[1:M]

cat = CatalecticantIndices(r,s,m)
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adj = adjugate(Expression.(vec_to_sym(y,m)));

eq = CatalecticantSpace(cat,adj,m);

We set up the system and compute a point on the reciprocal variety PC−1.

F = System(eq; variables = y);

x0 = randn(ComplexF64, N)

@var x[0:2r, 0:2r, 0:2r]

X = map(ijk -> x[(ijk .+ 1)...], cat)

y0 = sym_to_vec(inv(X(variables(X) => x0)),m)

We build an affine space through this point and perform monodromy.

V0 = let

A0 = randn(ComplexF64, N, M)

b0 = A0 * y0

LinearSubspace(A0, b0)

end

mres = monodromy_solve(

F,

y0,

V0,

parameter_sampler=_ -> LinearSubspace(

randn(ComplexF64, N, M),

randn(ComplexF64, N),

),

)

We find 85 solution for this system. These solutions are then certified.

delta = randn(ComplexF64, N);

V1 = translate(V0, delta);

V2 = translate(V0, -delta);

r1 = solve(F, solutions(mres), start_subspace = V0, target_subspace = V1);

r2 = solve(F, solutions(mres), start_subspace = V0, target_subspace = V2);

sigma = svdvals(hcat(sum.(solutions.([r1, mres, r1]))...))

trace = sigma[3] / sigma[1]

A.2.4 Number of cubics and quartics

We introduce here some functions for generating random catalecticant matrices.
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using HomotopyContinuation, LinearAlgebra, Combinatorics

function Catalecticant_indices(r, s)

M = reduce(hcat, [collect(

multiexponents(s, r)) for _ in 1:length(multiexponents(s, r))])

return M .+ permutedims(M)

end

function Catalecticant_generic(r, s)

return [Variable(:x, I...) for I in Catalecticant_indices(r, s)]

end

function Catalecticant_randn(::Type{T}, r, s) where T

catmat = Catalecticant_generic(r, s)

return randnvalue(T, catmat, unique(catmat))

end

Catalecticant_randn(r, s) = Catalecticant_randn(ComplexF64, r, s)

We study the kernel of

φ : Pn ' H0(PSm,OPSm(d)) → H0(PC−1,OPC−1(d))
f 7→ f|PC−1 .

We do the case d = 3 (d = 4 is analogous). First, we pick n general points on
PC−1. These points are generated as inverses of randomly generated catalecticant
matrices. We check that they are in general position

d = 3;

n3 = length(multiexponents(M, d))

points = [inv(Catalecticant_randn(r, s)) for _ in 1:n3];

all(==(m), rank.(points))

We evaluate the monomials in OPSm(d) at these points and compute the
number of cubics in the kernel of φ.

mplanes = mplanes1(M, d, sym_to_vec.(points));

n3 - rank(mplanes)

A.2.5 Rank of the Jacobian

This is the auxiliary code for the numerical proof of Theorem 2.4.1. We build the
(numerical) system of the 27 cubic polynomials in the defining ideal of PC−1.
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mcubics = nullspace(mplanes);

@var y[1:M];

pcubics = transpose(mcubics) * forms_through_point(M, d)(y);

variables(pcubics)

F = System(pcubics; variables = y);

We evaluate the Jacobian matrix of the 27 cubics at a rank-1 symmmetric
point (every such point belongs to PC−1), and check that the evaluation is
identically zero.

v = randn(ComplexF64, m);

S = v * transpose(v);

all(x -> norm(x) < 1e-10, F(sym_to_vec(S)))

J = jacobian(F, sym_to_vec(S)); maximum(svdvals(J))

Now we evaluate the Jacobian at a rank-2 symmetric point (every such point
belongs to PC−1) and compute the rank.

S = zeros(m, m);

S[1,1] = S[2,2] = 1;

all(x -> norm(x) < 1e-10, F(sym_to_vec(S)))

J = jacobian(F, sym_to_vec(S)); rank(J, atol=1e-11)

Finally, we consider system JF of equations defining the variety of points of
(PS6)∨ at which the Jacobian is constantly zero.

JF = System(vec(jacobian(F)); variables = y);

We pick a rank-1 point in PC−1 and build an affine space through it.

v = randn(ComplexF64, m);

S = v * transpose(v);

y = sym_to_vec(S);

codim = 6;

V = let

A = randn(ComplexF64, codim, M)

b = A * y

LinearSubspace(A, b)

end;

The degree of JF is then computed with monodromy.
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mres = monodromy_solve(

JF,

y,

V,

parameter_sampler=_ -> LinearSubspace(

randn(ComplexF64, codim, M),

randn(ComplexF64, codim),

),

)
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