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1. INTRODUCTION

Vector autoregressive, VAR, models are one of the basic tools for analyzing macroeconomic time series. In such
time series trends are often observed, and tools for handling such behavior are necessary. Cointegration has played
an important role in this respect since it was introduced in the seminal paper by Engle and Granger (1987). One of
the implications is that under some regularity conditions there exists a Johansen–Granger representation of a VAR
model which means that it is possible to decompose the time series into a random walk part, a stationary part, a
non-stochastic part and a part depending on an initial condition. Certain linear combinations of the components
of the levels of the time series are stationary and these linear combinations are the cointegration vectors.

The regularity conditions needed for a Johansen–Granger representation ensure that the stationary part is causal,
that is, the observations depend on only past and present errors of the VAR. However, this is not the only way to
obtain stationarity. In the so-called non-causal and mixed causal non-causal models the observations also depend
on future errors. Earlier contributions to the literature on non-causal models are Breidt et al. (1991), Andrews et
al. (2006) and the monograph by Rosenblatt (2000) which all mainly considered univariate time series models.
Recently also multivariate models have attracted attention, see Lanne and Saikkonen (2013), Cubadda et al. (2019),
Gouriéroux and Jasiak (2017), Davis and Song (2020) and Cavaliere et al. (2020). For multivariate nonstationary
and non-causal time series the question arises whether there is a formulation such that the important property of
cointegration implied by a Johansen–Granger representation is retained and analysis based on levels of the time
series is permitted.

The models allowing for non-causality which we will consider can be seen as an extension of the stable causal
VAR model. Then the roots of the determinant of the autoregressive polynomial are all located outside the unit
circle, {z ∶ |z| = 1}. Requiring only that the determinant of the autoregressive polynomial is non-zero for values
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at the unit circle is sufficient to ensure existence of stationary processes, causal or non-causal. If all the roots are
inside the unit circle, the process is purely non-causal and if there are roots both inside and outside the unit circle
mixed causal or non-causal process is used as denomination.

The well-known integrated and cointegrated processes can be seen as another extension of the stable causal
VAR models by permitting also one or more root of the determinant of the characteristic polynomial exactly at 1
in addition to those located outside the closed unit disk.

We shall in this article address the situation where both extensions of the stable VAR models are possible. Then
the determinant of the characteristic polynomial of the VAR model can have roots outside and inside the unit circle
but also some roots exactly at z = 1. Previous studies of reduced rank VAR models allowing roots inside the unit
circle have assumed causality in addition, which means that the process is explosive. Johansen (2009) and Nielsen
(2010) studied situations where unstable roots are present. Engsted and Nielsen (2012) used such processes to
model bubble behavior. Another example where explosive processes arise is in using bootstrap methods to find the
appropriate reduced rank r. The usual procedure consists of fitting models of increasing rank. For some estimation
methods it may happen that although the data generating model may have a characteristic polynomial where the
determinant of the characteristic polynomial is non-zero inside the unit circle, some of the fitted models may not,
see, for example, Cavaliere et al. (2012) and Swensen (2006). The alternative to introducing explosive processes
is to allow for non-causality. This has been done for unit root testing by Saikkonen and Sandberg (2016). We will
consider the multivariate situation.

In the present article we show that a Johansen–Granger representation also exists when some roots of the deter-
minant of the characteristic polynomial of the VAR have modulus less than 1 and the only roots with modulus 1
are exactly at z = 1. Then the stationary part is no longer causal and may depend on future random shocks.

When autoregressive models of this type are fitted to an observed time series a natural question is how many
roots of the determinant of the characteristic polynomial of the VAR are located inside the unit circle. This can
be answered once the coefficients of the VAR-model have been estimated. To find out how that can be done is
therefore important.

An example where such results can be employed is described in the article by Lanne and Saikkonen (2013)
where a non-causal VAR model was introduced to analyze the expectation hypothesis of the term structure of
interest rates. In the article a bivariate time series consisting of 6-month and 5-year interest rate was considered
using the change in the 6-month rate and the spread between the 6-month and 5-year interest rates. Being able to
employ the levels directly and not rely on a transformation to obtain stationarity will be an advantage. For example,
one can investigate whether the transformation to stationarity using difference and spread is appropriate.

There are a couple of special features which are prominent for the full rank stationary case which also have
implications when the rank is reduced and which are worth mentioning. One is how the dependence of future
shocks shall be interpreted. Non-causal models take the uncertainty of future errors, not only present and past
errors, into account. This can be a clear advantage in some situations. Gouriéroux and Zakoian (2017), section
3.3, stress that such models with error distributions having fat tails can describe the local explosive behavior often
found in economic and financial time series. Taking into account non-causality can be useful also when fitting
causal models. Lanne and Saikkonen (2013) pointed out that this is the case when only a subset of the variables
which are causally generated is modeled. More specifically, building on a result of Johansen and Juselius (2014),
they explained that a linear combination, Yt, of such a subset may have a one sided representation, Yt = Σ∞

i=0Ξi𝜖
y
t−i

where the errors 𝜖
y
t are correlated with Yt−i, i = 1,… . Such dependence is typical for non-causal time series

having a two-sided representation. Hence, if non-causal models provide better fit than causal models, omissions
of this kind may be the explanation.

The other aspect is identifiability. To a VAR model where some of the roots of the determinant of the charac-
teristic polynomial are inside the unit circle, it is possible to specify a new VAR with a different variance of the
errors, Var(𝜖t), which have all the roots outside the unit circle, that is, a causal model. It can be shown that the
two models have the same first and secondary moment structure. The distribution of a Gaussian model is defined
by this structure. Two Gaussian models with the same first and secondary moment structure will therefore have
the same distribution. To ensure identifiability in Gaussian models the parameter space is restricted such that only
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180 A. RYGH SWENSEN

causal models are permitted. For non-causal model to be identifiable only non-Gaussian models are permitted and
some additional restrictions must be imposed.

The article is organized as follows. In the next section we prove a Johansen–Granger representation for a
non-causal VAR model. For the case where there are no deterministic terms we discuss in Sections 3 and 4 how
the unknown parameters can be estimated and find the asymptotic distribution of the trace test for determining the
rank. Section 5 contains results from some Monte Carlo simulations.

Some additional results can be found in the online supporting information.

2. A JOHANSEN–GRANGER REPRESENTATION THEOREM

The vector autoregressive, VAR, model of dimension p and order k is defined by the recursion

Xt = A1Xt−1 + · · · + AkXt−k + 𝜖t, (1)

where {𝜖t} is a series of uncorrelated random variables with expectation zero and finite second-order moment.
The traditional stability requirement, see Hannan and Deistler (1988) and Lütkepohl (2005), that the determinant
of the autoregressive or characteristic polynomial, A(z) = I −A1z− · · · −Akzk, is non-zero on the closed unit disk,
{z ∶ |z| ≤ 1}, is sufficient to ensure that {Xt}∞t=−∞ is stationary and can be expressed as a linear filter of the present
and past values of the variables 𝜖t, that is,

Xt = Σ∞
j=0Cj𝜖t−j, t = 0,±1,±2,… where Σ∞

j=0tr(C′
j Cj) < ∞. (2)

VAR models satisfying the stability requirement have been extensively studied and are an important ingredient in
applications in many fields such as empirical macroeconomics, engineering and climate research, just to mention
a few. Important references in addition to the mentioned Hannan and Deistler (1988) and Lütkepohl (2005) are
Hannan (1970), Brockwell and Davis (1991) and Hendry (1995).

For models allowing roots of the determinant of the characteristic polynomial on the unit circle the alternative
vector equilibrium, VECM, formulation is useful. The recursion (1) can be reparameterized as

ΔXt = ΠXt−1 + Γ1ΔXt−1 + · · · + Γk−1ΔXt−k+1 + ΦDt + 𝜖t, (3)

where a deterministic term Dt has been added. When the rank r of the matrix Π is reduced, 0 ≤ r < p, det A(1) = 0
and it follows from the Johansen–Granger theorem, see Johansen (1995), that under some regularity conditions,
Xt, t = k + 1, k + 2,… can be decomposed into a random walk, a stationary part, a non-stochastic part and a term
depending on the initial values X1,… ,Xk.

A Johansen–Granger representation allowing for non-causality can be proved under assumptions which are
quite similar to those used in the causal situation. In fact, the only change is that solutions of det A(z) = 0 which
have moduli strictly less than 1 are permitted.

Assumption 1. The recursion (3) satisfies the following conditions

(i) the determinant of the characteristic polynomial has roots which are exactly at 1 or have moduli which are
either strictly less than 1 or strictly larger than 1, that is det A(z) = 0 implies z = 1 or |z| ≠ 1,

(ii) the matrix Π = 𝛼𝛽′ where matrices 𝛼 and 𝛽 have full rank r with 0 ≤ r < p,
(iii) the matrix

𝛼′
⟂Γ𝛽⟂

has full rank p − r, where Γ = Ip − Γ1 − · · · − Γk−1.
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The following notation is used. If an m × n matrix a, where n ≤ m, has full rank, a⟂ denotes an m × (m − n)
matrix of full rank such that a′

⟂a = 0. The matrix a(a′a)−1 is defined as ā, so that a′ā = In and āa′ is the projection
matrix on the space spanned by the columns of a.

The following assumptions on the distribution of the errors and the behavior of the deterministic terms are also
needed.

Assumption 2. The errors 𝜖t are i.i.d. random variables with expectation 0 and covariance matrix Ω.

Assumption 3. There exist constants a and b such that the deterministic term, Dt, satisfies |Dt| < a + |t|b.

The idea is to express, following Hansen (2005), the model (3) in a companion form, for suitable pk × l,
l = p(k − 1) + r matrices 𝛼∗ and 𝛽∗, as

ΔX∗
t = 𝛼∗𝛽∗′X∗

t−1 + Φ∗
t + 𝜖∗t , t = k + 1,… (4)

where X∗
t = (X′

t ,… ,X′
t−k+1)

′, 𝜖∗t = (𝜖′t , 0,… , 0)′ and Φ∗
t = ((ΦDt)′, 0,… , 0)′. Multiplying both sides of (4) with

𝛽∗′ and rearranging yields

𝛽∗′X∗
t = (I + 𝛽∗′𝛼∗)𝛽∗′X∗

t−1 + 𝛽∗′(𝜖∗t + Φ∗
t ). (5)

Under Assumption 1, as shown in Appendix A, there exist nonsingular matrices M,G1,G2 such that

I + 𝛽∗′𝛼∗ = MGM−1 = M
⎛⎜⎜⎝

G1 0 0
0 G2 0
0 0 0

⎞⎟⎟⎠M−1

where all the eigenvalues of G1 have modulus less than 1, all the eigenvalues of G2 have modulus larger than 1
and the lower right block is present only when the matrix I + 𝛽∗′𝛼∗ is singular.

In Appendix A and the supporting information one can find a proof of the following.

Proposition 1. Under Assumptions 1–3 and with the matrices M, G1 and G2 as described above, Xt can be
represented as

Xt = C
t∑

s=k+1

(𝜖s + ΦDs) +
∞∑

s=−∞
Cs(𝜖t−s + ΦDt−s) + A, t = k + 1,… (6)

where C = 𝛽⟂(𝛼′
⟂Γ𝛽⟂)

−1𝛼′
⟂ and Cs = FMC∗

s M−1B with B = (𝛽, I, 0,… , 0)′ if k > 1. If k = 1, B = 𝛽′. With
Γ∗

i = Γi + · · · + Γk−1 the matrices F and C∗
s are F = ((I − CΓ)𝛽,−CΓ∗

1,… ,−CΓ∗
k−1) and

C∗
s =

⎛⎜⎜⎝
Gs

1 0 0
0 0 0
0 0 0

⎞⎟⎟⎠ when s ≥ 0 and C∗
s = −

⎛⎜⎜⎝
0 0 0
0 Gs

2 0
0 0 0

⎞⎟⎟⎠ when s < 0.

The term A = C(Xk − Γ1Xk−1 − · · · − Γk−1X1) depends only on the initial values and 𝛽′A = 0.
Conversely, if I + 𝛽∗′𝛼∗ is non-singular, a process satisfying (6) where Cs = FMC∗

s M−1B, must satisfy the
recursion defined in (3) for t = k+1,….

To illustrate the implications of Proposition 1 we consider the following simple example where there is a double
root of det A(z) = 0 at 1 and one outside or inside the unit circle.

J. Time Ser. Anal. 43: 178–196 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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Example 1. Let p = 3, k = 1 and r = 1 and consider the three dimensional VAR model

ΔXt = 𝛼𝛽′Xt−1 + 𝜖t, t = 2, 3,… (7)

Then

𝛽∗ = 𝛽, 𝛼∗ = 𝛼 and I1 + 𝛽∗′𝛼∗ = 1 + 𝛽′𝛼.

Also 𝛽′Xt satisfies 𝛽′Xt = (1 + 𝛽′𝛼)𝛽′Xt−1 + 𝛽′𝜖t. The determinant of the characteristic polynomial is a third order
polynomial. We consider a simple situation where 𝛽 = (1, 0, 1)′ and 𝛼 = (a, a, a)′. Then

I1 + 𝛽∗′𝛼∗ = 1 + 2a.

The determinant of the characteristic polynomial of (7) is det A(z) = (1− z)2(1− z− 2az) which has a double root
at 1 and a single root at 1∕(1 + 2a). With

𝛽⟂ =
⎛⎜⎜⎝

0 1
1 0
0 −1

⎞⎟⎟⎠ and 𝛼⟂ =
⎛⎜⎜⎝

a a
0 −2a
−a a

⎞⎟⎟⎠
the matrix C is

C = 𝛽⟂(𝛼′
⟂Γ𝛽⟂)

−1𝛼′
⟂ =

⎛⎜⎜⎝
1∕2 0 −1∕2

−1∕2 1 −1∕2

−1∕2 0 1∕2

⎞⎟⎟⎠
since in this case Γ = I3. Then the non-zero coefficients are Cs = FMC∗

s M−1𝛽′ = (I − C)𝛽𝛽′(1 + 2a)s when s ≥ 0
and |1 + 2a| < 1 and Cs = −(I − C)𝛽𝛽′1(1 + 2a)s when s < 0 and |1 + 2a| > 1. Since

(I − C)𝛽𝛽′ =
⎛⎜⎜⎝

1∕2 0 1∕2
1∕2 0 1∕2
1∕2 0 1∕2

⎞⎟⎟⎠
Xt can be expressed as

Xt =
1
2

t∑
s=2

⎛⎜⎜⎝
𝜖1,s − 𝜖3,s

−𝜖1,s + 2𝜖2,s − 𝜖3,s

−𝜖1,s + 𝜖3,s

⎞⎟⎟⎠ +
⎛⎜⎜⎝

1∕2 0 1∕2

1∕2 0 1∕2

1∕2 0 1∕2

⎞⎟⎟⎠ St +
⎛⎜⎜⎝

X1,1 − X3,1

−X1,1 + 2X2,1 − X3,1

−X1,1 + X3,1

⎞⎟⎟⎠ ∕2

where

St =
∞∑

s=0

(1 + 2a)s
(

𝜖1,t−s

𝜖2,t−s
𝜖3,t−s

)
when |1 + 2a| < 1

and

St = −
∞∑

s=1

(1 + 2a)−s
⎛⎜⎜⎝
𝜖1,t+s

𝜖2,t+s

𝜖3,t+s

⎞⎟⎟⎠ when |1 + 2a| > 1.
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NON-CAUSAL CVAR TIME SERIES 183

Xt is an I(1) process since ΔXt is stationary as one can see by direct subtraction. Also 𝛽′Xt = (1, 0, 1)Xt = X1,t+X3,t

is stationary since the random walk part disappears and only the linear filter where the coefficients are decaying
exponentially remains.

As one can see, according to whether the root 1∕(1 + 2a) of the determinant of the characteristic polynomial
is outside or inside the unit circle the stationary part is causal or purely non-causal. For more complex situations
where there are roots both outside and inside the unit circle the stationary part will be a combination of causal and
non-causal processes.

If we let L−1xt = xt+1 in a sequence {xt}∞−∞ the following Corollary is immediate. One can find a definition of
Laurent series in Brockwell and Davis (1991, p. 88).

Corollary 1. Under Assumptions 1–3 Xt can be represented as

Xt = C
t∑

s=k+1

(𝜖s + ΦDs) + C(L)(𝜖t + ΦDt) + A, t = k + 1,… (8)

where C = 𝛽⟂(𝛼′
⟂Γ𝛽⟂)

−1𝛼′
⟂ and C(z) is a Laurent series converging in an annulus 1 − 𝛿 < |z| < 1 + 𝛿 for some

𝛿 > 0.

Corollary 2. Consider the recursion (3) for t = k + 1,… ,T . Under Assumptions 1–3 the variables X̃1,t =∑∞
s=0 C∗

s M−1B𝜖t−s and X̃2,t =
∑−1

s=−∞ C∗
s M−1B𝜖t−s satisfy

X̃1,t =
⎛⎜⎜⎝

G1 0 0

0 0 0

0 0 0

⎞⎟⎟⎠ X̃1,t−1 +
⎛⎜⎜⎝

I 0 0

0 0 0

0 0 0

⎞⎟⎟⎠M−1B𝜖t, t = k + 1,… ,T

X̃2,t =
⎛⎜⎜⎝

0 0 0

0 G−1
2 0

0 0 0

⎞⎟⎟⎠ X̃2,t+1 −
⎛⎜⎜⎜⎝

0 0 0

0 G−1
2 0

0 0 0

⎞⎟⎟⎟⎠M−1B𝜖t+1, t = T ,… , k + 1.

Remark 1. Because Π = −A(1) = 𝛼𝛽′, the equation det A(z) = 0 has at least p − r roots at z = 1, but in
combination with the third requirement in Assumption 1 it follows by the argument in Corollary 4.3 in Johansen
(1995) that exactly p − r roots are equal to 1.

Remark 2. By fixing T , see Corollary 2, a variety of solutions can be obtained using the method used to prove
Proposition 1. In the following we only discuss the solution of the form (6) since considering the others will depend
on specifying terminal conditions for XT+1,… ,XT+k.

Remark 3. The variables X̃1,t and X̃2,t in Corollary 2 are related to what Gouriéroux and Jasiak (2017, p. 119),
call the causal and non-causal components. One can see that an error 𝜖t at time t has a direct effect on the random
walk component and the causal part, but lagged one period on the non-causal part.

Remark 4. The time series 𝛽′Xt is a VAR of order k which can be non-causal. It is well known that such time
series are not identified if the process is Gaussian. To ensure identifiability we therefore assume the following.

Assumption 4. The distribution of the errors {𝜖t} is non-Gaussian with density f𝜖 and the time series {𝛽′Xt} is
identified up to a change in scale and shift in the time origin of the error series.

That two series are not identified aside from change in time of origin and scale essentially means that in two
formulations as in (2) with i.i.d. errors, for all t 𝜖t−q = H𝜖t and Ct−q = C̃tH for an integer q and a nonsingular

J. Time Ser. Anal. 43: 178–196 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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matrix H. Sufficient conditions that ensure that Assumption 4 is fulfilled can be found in Lanne and Saikkonen
(2013) and Davis and Song (2020).

3. ESTIMATION OF THE PARAMETERS

Let X1,… ,XT be T observations from the autoregressive model (3) satisfying Assumptions 1, 2 and 4. In the
following we only consider the situation whereΦ = 0 so Assumption 3 is automatically satisfied. From Proposition
1 it follows that the time series Xt consists of a sum of a random walk component and a stationary process in
addition to a term depending on the initial condition. The additional Assumption 4 ensures that Xt is identified
when the stationary part is causal or non-causal.

For parameterization of a stationary non-causal VAR model Lanne and Saikkonen (2013) used the formulation

A(z) = Π̃(z)Φ̃(z−1) (9)

where Π̃ and Φ̃ are matrix polynomials. Both det Π̃(z) = 0 and det Φ̃(z) = 0 were required to have solutions
strictly larger than 1 in absolute value. Davis and Song (2020) studied stationary non-causal time series with the
conventional formulation (1) but allowing for solutions of det A(z) = 0 which have moduli strictly less than 1 in
addition to moduli strictly larger than one. We will follow their approach, which has the advantage of not needing
to specify the orders of Π̃ and Φ̃.

3.1. An Approximate Likelihood

Assume first that 𝛽 is fixed and normalized by requiring c′𝛽 = I where c is a known p × r matrix. Then the
process 𝛽′Xt is stationary and the known results for that situation can be used. Thus, following Davis and Song
(2020) we express the distribution of the variables (X∗′

k 𝛽∗,ΔX∗′
k+1,… ,ΔX∗′

T )′ as a transformation of the errors
𝜖t, t = 0,±1,±2…. It turns out that the influence of the errors before t = k and after t = T + 1 can be ignored
asymptotically. Some additional notation is necessary for describing the transformation. From the Jordan canonical
form theorem there exists a nonsingular matrix M1 such that I + 𝛽∗′𝛼∗ = M1JM−1

1 where J = J1 ⊕ J2, that is,
J is block diagonal with diagonal blocks J1 and J2 consisting of the canonical blocks with eigenvalues strictly
smaller and strictly larger than 1 in modulus respectively. The notation J(𝜙) , J1(𝜙) and J2(𝜙) will be used when
it is useful to emphasize that J, J1 and J2 are functions of the autoregressive parameters. Since M−1

1 𝛽∗′X∗
t =

JM−1
1 𝛽∗′X∗

t−1 +M−1
1 𝛽∗′𝜖∗t , by using the block diagonal structure of J, V1

t = J1V1
t−1 + 𝜀1

t and V2
t = J2V2

t−1 + 𝜀2
t where

M−1
1 𝛽∗′X∗

t = Vt = (V1′
t ,V2′

t )′ and 𝜀t = (𝜀1′
t , 𝜀

2′
t )

′ = M−1
1 𝛽∗′𝜖∗t . The variables V1

t and V2
t can be expressed as linear

filters with coefficients that are exponentially decaying. They are therefore bounded in probability. The following
result is proved in Appendix C.

Proposition 2. Assume that Assumptions 1, 2 and 4 are satisfied. Then there exists a non-singular matrix K with
det K = det M1(− det J−1

2 )T−k such that

⎛⎜⎜⎜⎜⎝
𝛽∗′X∗

k

ΔX∗
k+1

⋮

ΔX∗
T

⎞⎟⎟⎟⎟⎠
= K

⎛⎜⎜⎜⎜⎜⎜⎝

V1
k

𝜖∗k+1

⋮

𝜖∗T

V2
T

⎞⎟⎟⎟⎟⎟⎟⎠
(10)

where Vt = (V1′
t ,V2′

t )′ = M−1
1 𝛽∗′X∗

t . V1
k depends on 𝜖t, t = −∞,… , k and V2

T depends on 𝜖t, t = T + 1,….

Let X and E denote the vectors on the left and right side of (10) respectively and g and h be their densities.
The density of X is therefore h(K−1x)| det K−1|. The components of E = K−1X are independent. Denote the

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 43: 178–196 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12607



NON-CAUSAL CVAR TIME SERIES 185

parameters by 𝜽 and assume that 𝜖t has density f𝜖 . One can then, as in Davis and Song (2020), consider the point
wise approximate log likelihood

lT (𝜽) =
T∑

t=k+1

[log f𝜖(𝜖t(𝝓);𝜽) + log | det J2(𝜙)|] (11)

where 𝜖t(𝜙) = ΔXt − 𝛼𝛽′Xt−1 − Γ1ΔXt−1 − · · · − Γk−1ΔXt−k+1 and the first k observations X1,… ,Xk are consid-
ered as given. The approximation consists of ignoring the term log det M1 and the contribution from V1

k and V2
T .

Asymptotically these terms will not contribute to a log likelihood with T − k terms since they are bounded in
probability.

For fixed 𝛽 the parameters of a general parameter space where the approximate likelihood is defined can be
described by dividing 𝜽 into three parts; first, the coefficients in the autoregressive recursion, 𝛼,Γ1,… ,Γk−1

denoted by 𝜙; second, the parameters describing the correlation of the errors denoted by 𝜎, that is, the set of sym-
metric positive definite p × p matrices; third, the other parameters in the error distribution. They are denoted by
𝜈 and are assumed to belong to an open d-dimensional set. The parameters 𝜙 are a subset of ℝpr+(k−1)p2

satisfying
the requirements specified in Assumption 1. These requirements define a union of open subsets so 𝜙 and 𝜽 belong
to open sets.

The term det J2(𝜙) in (11) is the product of the eigenvalues of I + 𝛽∗′𝛼∗ having moduli larger than 1,
so for fixed values of the parameters it can be determined by a procedure computing the eigenvalues. Once
the autoregressive parameters are known the eigenvalues defining det J2(𝜙) are the inverse of the solutions
of det A(z) = 0 with moduli less than 1. The number of such solutions determines also the dimension
of J2(𝜙). The extra term (T − k) log | det J2(𝜙)| in the likelihood when the process is non-causal is posi-
tive and increases with the number of solutions of det A(z) = 0 having moduli less than one and also
with their distance from the unit circle. However, since det A(0) = 1 the eigenvalues in det J2(𝜙) must be
finite since their inverse values are roots of det A(z) as pointed out by Hansen (2005) in the proof of his
Lemma A.2.

The behavior of J2(𝜙) can be quite complicated when some of the eigenvalues are not simple. However in the
case where they are distinct the matrices J1 = J1(𝜙) and J2(𝜙) are diagonal with the diagonal elements equal to the
eigenvalues. Furthermore, the eigenvalues are continuous and differentiable as functions of the matrix entries, see
for example, Theorem 6.3.12 in Horn and Johnson (2013). Also the decomposition I+𝛽∗′𝛼∗ = M1JM−1

1 simplifies
since J = J(𝜙) will be a diagonal matrix with the eigenvalues of I + 𝛽∗′𝛼∗ as diagonal entries and the eigenvectors
as columns of M1

In Lanne and Saikkonen (2013) a similar approach to derive the distribution of the observations and an approx-
imate likelihood as in (10) and (11) can be found. However due to their use of another parameterization of the
process the expression for the approximative likelihood is different.

3.2. A Two-Step Procedure

We first discuss how the maximum likelihood estimators of the elements of 𝜽 can be determined for fixed values
of 𝛽 for a restricted parameter space which is confined to the situation where the eigenvalues of I + 𝛽∗′𝛼∗, that
is, the roots of the determinant of the characteristic polynomial of the autoregressive process 𝛽∗′X∗

t of (5), are
distinct. Multiplicity of the roots larger than 1 imposes constraints on the autoregressive coefficients. Hence the
complement, which defines the region where the eigenvalues are distinct, that is, the restricted parameter space,
is a union of open sets.

The distribution of {𝜖t} is assumed to satisfy the conditions A.1–A.7 in Davis and Song (2020) or the corre-
sponding conditions in Lanne and Saikkonen (2013). In particular we focus on the situation where the distribution
is elliptic, that is, f𝜖(x;𝜽) = (detΣ)−1∕2f (x′Σ−1x; 𝜈) where 𝜈 is a d-dimensional parameter.
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Let now 𝜽 be an interior point of the restricted parameter set. It follows using the arguments in Davis and
Song (2020) that the likelihood is differentiable.1 Therefore there exists a consistent sequence of roots of the
approximate maximum likelihood equation, 𝜕

𝜕𝜽
lT (𝜽) = 0, as T → ∞. It can also be proved that these estimators are

asymptotically normally distributed, that is,
√

T(�̂�(𝛽) − 𝜃)
w
−→ Np(0, I−1(𝛽)) or

√
TI1∕2(𝛽)(�̂�(𝛽) − 𝜃)

w
−→ Np(0, I).

For verifying that the location of the global maximum converges an alternative argument is necessary, see for
example, van der Wart (1998, p. 68). Notice that the maximization to determine the parameters 𝜙 can be done
over the whole space ℝpr+(k−1)p2

, since under the conditions we have imposed the probability of choosing values
in the exceptional subsets will tend to zero. Also these exceptional parts will be very small parts of the set where
the likelihood is defined.

Next, consider the case where 𝛽 is not known. We will consider the situation where a consistent estimator 𝛽 is
plugged in for 𝛽 and investigate the asymptotic distribution of this estimator �̂�(𝛽). By writing√

T(�̂�(𝛽) − 𝜃) =
√

T(�̂�(𝛽) − 𝜃) +
√

T(�̂�(𝛽) − �̂�(𝛽)),
I1∕2(𝛽) = I1∕2(𝛽) + (I1∕2(𝛽) − I1∕2(𝛽))

and multiplying the two expressions we see that a sufficient condition for
√

TI1∕2(𝛽)(�̂�(𝛽) − 𝜃)
w
−→ Np(0, I) is that√

T(�̂�(𝛽) − �̂�(𝛽)) = oP(1) and I1∕2(𝛽) − I1∕2(𝛽) = oP(1) (12)

and that
√

T(𝛽 − 𝛽) = oP(1) is crucial for (12). Although likely to be valid in many cases a formal proof of (12)
is needed for a verification of the plug in procedure.

A candidate for estimating 𝛽 satisfying
√

T(𝛽 − 𝛽) = oP(1) is based on the common method of solving a
generalized eigenvalue problem, which amounts to using the maximum likelihood estimator from the situation
where the stationery part is causal and the errors are Gaussian. In the notation of Johansen (1995) model (3) can
be written Z0t = 𝛼𝛽′Z1t +ΨZ2t +𝜖t where Z0t = ΔXt, Z1t = Xt−1 and Z2t = (ΔX′

t−1,… ,ΔX′
t−k+1)

′. Then for i, j = 0, 1
define

Sij =
1

T − k

T∑
t=k+1

⎡⎢⎢⎣ZitZ
′
jt −

(
T∑

t=k+1

ZitZ
′
2t

)(
T∑

t=k+1

Z2tZ
′
2t

)−1 ( T∑
t=k+1

Z2tZ
′
jt

)⎤⎥⎥⎦ . (13)

Proposition 3. Let

S(𝜆) = 𝜆S11 − S10S−1
00 S01 (14)

and define 𝛽 as the r eigenvectors of corresponding to the r largest solutions of det S(𝜆) = 0 normalized as
𝛽′S11𝛽 = I. Assume that Assumptions 1 and 2 are satisfied. Then the estimator 𝛽 normalized by c′𝛽 = I is

consistent and
√

T(𝛽 − 𝛽) = oP(1).

Proof. By inspecting the proof of Lemma 13.1 in Johansen (1995) one can see that the essential element of the
proof of the consistency of 𝛽 in the causal case is the decomposition of Xt into a random walk and a stationary
part. From Proposition 1 the argument remains valid also in the non-causal situation, so 𝛽 can be estimated as the
r eigenvectors of

det S(𝜆) = det(𝜆S11 − S10S−1
00 S01) = 0 (15)

1 The argument in Davis and Song (2020) relies on differentiating the term log det J2(𝜙). A sufficient condition for this to be valid is that the
eigenvalues are distinct.
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corresponding to the r largest eigenvalues and normalized by 𝛽′S11𝛽 = I. It follows from Lemma 6 (i) and (iii) in the
supplementary material that S11𝛽 = OP(1) and from Lemma 7 (ii) that S10 = OP(1). By pre- and post-multiplying

S(𝜆) with (𝛽′, 𝛽′
⟂∕

√
T)′ and applying Lemma 7 (i) from the supporting information the solutions of the equation

det S(𝜆) = 0 converge to the solutions of

det(𝜆Σ𝛽𝛽 − Σ𝛽0Σ−1
00 Σ0𝛽) det

(
𝜆𝛽′

⟂C ∫
1

0
WuW ′

uduC′𝛽⟂

)
= 0 (16)

where Wu, 0 ≤ u ≤ 1 is a p-dimensional Brownian motion with Cov(Wu) = uΩ and Σ00, Σ′
𝛽0 = Σ0𝛽 and Σ𝛽𝛽 are

the limits in probability of S00, S0𝛽 = S01𝛽 and S𝛽𝛽 = 𝛽′S11𝛽 respectively. Now consider the space spanned by
the the r eigenvectors of (15) corresponding to the r largest solutions of det S(𝜆) = 0. Arguing as in Johansen
(1995) it follows that this space converges to the space spanned by the r first unit vectors and that 𝛽 = 𝛽(𝛽′𝛽)−1

is a consistent estimator of 𝛽 and
√

T(𝛽 − 𝛽) = oP(1). However according to his formula (13.3)
√

T(𝛽 − 𝛽) =
(I − 𝛽′c)

√
T(𝛽 − 𝛽) + OP(|𝛽 − 𝛽|2) = oP(1) + OP(T−1∕2) = oP(1).

A more thorough treatment of other possible estimators for 𝛽 and their asymptotic distributions is outside the
scope of the present article, but is an interesting question.

4. THE ASYMPTOTIC DISTRIBUTION OF THE TRACE TEST

Next, we address the question of how to determine the rank when Φ = 0. The model where the rank is r is denoted
by H(r). The trace test of the hypothesis H(r) versus H(p) is based on the statistic Qr = −(T −k)

∑p
j=r+1 log(1− �̂�j)

where 1 > �̂�1 > · · · > �̂�p are the ordered solutions of det S(𝜆) = 0 where S(𝜆) = 𝜆S11 − S10S−1
00 S01. The hypothesis

is rejected for large values of Qr. For the causal situation the trace test is the likelihood ratio test for testing H(r)
versus H(p) when the errors are Gaussian. The argument for the asymptotic distribution in this case depends on
a representation of the same type as in Proposition 1, but with Σ−1

i=−∞Ciz
i = 0, so that the stationary part does not

involve future errors.
Without the causality assumption the asymptotic distribution is more complicated but can be found by elabo-

rating on the result of Theorem 11.1 in Johansen (1995). Consider the decomposition of det[(𝛽, 𝛽⟂)′S(𝜆)(𝛽, 𝛽⟂)′]
as

det[𝛽′S(𝜆)𝛽] det[𝛽′
⟂{S(𝜆) − S(𝜆)𝛽[𝛽′S(𝜆)𝛽]−1𝛽′S(𝜆)}𝛽⟂].

Then if 𝜌 = T𝜆 and T → ∞ for 𝜆 fixed, 𝛽′S(𝜆)𝛽 = −Σ𝛽0Σ−1
00 Σ0𝛽 + oP(1) so the probability limit of det[𝛽′S(𝜆)𝛽] is

different from zero for all 𝜆. Following Johansen (1995) 𝛽′
⟂{S(𝜆) − S(𝜆)𝛽[𝛽′S(𝜆)𝛽]−1𝛽′S(𝜆)}𝛽⟂ equals

𝜌T−1𝛽′
⟂S11𝛽⟂ − 𝛽′

⟂S10N0S01𝛽⟂ + oP(1)

where

N0 = Σ−1
00 − Σ−1

00 Σ0𝛽[Σ𝛽0Σ−1
00 Σ0𝛽]−1Σ𝛽0Σ−1

00 .

In the causal case 𝛼′N0 = 0 which simplifies the derivation of the asymptotic distribution. More generally
the asymptotic distributions of S11 and S10 are given in Lemma 7 in the supporting information. Recall that
Wu, 0 ≤ u ≤ 1 is a p-dimensional Brownian motion with Cov(Wu) = uΩ. Then

S10

w
−→ N1 − N2N4

−1N′
3 + C ∫

1

0
WudW ′

u + C−1Ω − N2N4
−1(C′

−1 − C′
−2,… ,C′

−k+1 − C′
−k)

′Ω (17)
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weakly, where N1 and N2 are random matrices distributed as the asymptotic distribution of 1

T−k

∑T
t=k+1 Z1tZ

′
1t𝛽𝛼

′ and
1

T−k

∑T
t=k+1 Z1tZ

′
2t respectively. N′

3 and N4 are the limits in probability of 1

T−k

∑T
t=k+1 Z2tZ

′
1t𝛽𝛼

′ and 1

T−k

∑T
t=k+1 Z2tZ

′
2t

respectively. Expressions for N1, N2 and N3 can be found in Lemma 6 in the supporting information.

Proposition 4. Assume Φ = 0 and that Assumptions 1 and 2 are satisfied. Denoting 𝛽′
⟂C ∫ 1

0 WuW ′
uduC′𝛽⟂ by U1

and the limit of 𝛽′
⟂S10 by U2, the sum of the solutions of det[𝛽′

⟂{S(𝜆)−S(𝜆)𝛽[𝛽′S(𝜆)𝛽]−1𝛽′S(𝜆)}𝛽⟂] = 0 multiplied

by T converges weakly toward the trace of N1∕2
0 U′

2U−1
1 U2N1∕2

0 .

Remark 5. The value of this result is limited by the fact that the asymptotic distribution is dependent of unknown
parameters. A parametric bootstrap is one possibility to deal with this problem. A reasonable way to proceed may
be first to estimate the parameters as described in Section 3 and compute the centered residuals 𝜖t, t = k+1,… ,T .
The bootstrap generated observations can then found using the representation described in Proposition 1 after
resampling the centered residuals. Since there may be roots of the determinant of the estimated characteristic
polynomial inside and/or outside the unit circle the recursions in Corollary 2 must be used to generate the stationary
part. This parallels the procedure used to generate the Monte Carlo simulations in Section 5 where the point is
discussed in more detail.

5. NUMERICAL RESULTS

To get an impression of the finite sample properties, consistency and asymptotic normality of the estimators we
present some Monte Carlo simulations. Additional results can be found in the supporting information. The time
series were generated from model (3) using the representation from Proposition 1.

Table I. Empirical mean and standard deviations of simulated estimates of 𝛽, VAR(1)

T = 100 T = 200 T = 500 T = 1000

True Mean SD Mean SD Mean SD Mean SD

𝜈= 6, 𝛽31 0.0 −0.146 3.376 0.000 0.332 −0.002 0.056 0.00 0.015

𝜈= 6, 𝛽32 0.0 −0.043 13.642 −0.174 5.051 0.015 0.617 −0.01 0.358

𝜈= 20, 𝛽31 0.0 0.020 0.776 −0.016 0.514 0.001 0.054 −0.001 0.036

𝜈= 20, 𝛽32 0.0 0.136 4.697 −0.055 3.732 −0.013 0.628 0.013 0.638

Table II. Empirical mean and standard deviations of simulated estimates, VAR(1)

T = 100 T = 200 T = 500 T = 1000

True Mean SD Mean SD Mean SD Mean SD

𝛼11 −0.5 −0.484 0.101 −0.460 0.116 −0.489 0.043 −0.494 0.026
𝛼21 0.0 0.011 0.129 0.002 0.125 0.003 0.064 0.001 0.044
𝛼31 0.0 −0.002 0.088 0.004 0.064 0.002 0.037 0.001 0.027
𝛼12 0.0 0.114 0.929 0.012 1.142 0.024 0.629 0.004 0.427
𝛼22 2.0 2.320 1.061 2.141 0.784 2.060 0.381 2.026 0.249
𝛼32 0.0 −0.037 0.909 −0.013 0.616 0.010 0.366 −0.002 0.255
𝜎11 1.0 1.048 0.128 1.072 0.159 1.023 0.060 1.011 0.035
𝜎12 0.0 0.014 0.357 0.006 0.385 0.009 0.208 0.002 0.145
𝜎22 1.0 1.056 0.340 0.988 0.239 0.998 0.131 0.999 0.087
𝜎13 0.0 −0.016 0.145 −0.002 0.113 −0.002 0.054 −0.003 0.037
𝜎23 0.0 −0.008 0.310 −0.002 0.207 0.002 0.126 −0.002 0.090
𝜎33 1.0 0.989 0.091 0.992 0.065 0.998 0.041 0.999 0.030
𝜈 6.0 9.152 18.012 6.583 1.966 6.197 1.009 6.112 0.656
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Figure 1. Estimates of 𝛼11 = −0.5: QQ-plots for simulated values

The errors were p-variate elliptical t-distributed with expectation zero, 𝜈 degrees of freedom and parameters
Σ = {𝜎ij} where Σ is a positive definite matrix with square root Σ1∕2. The density is

f𝜖(x) = det(Σ)−1∕2 𝜈
𝜈∕2Γ((𝜈 + p)∕2)
𝜋p∕2Γ(𝜈∕2)

(𝜈 + x′Σ−1x)−(𝜈+p)∕2. (18)

This is the density of a random variable X which can be represented as X = Z−1∕2(𝜈Σ)1∕2Y where Y and Z are
independent. The p-dimensional variable Y is multivariate normal with expectation 0 and covariance matrix Ip and
Z is 𝜒2-distributed with 𝜈 degrees of freedom, see for example, Muirhead (1982).

The simulations were from a VAR(1) model of the form (3) with dimension p = 3, rank r = 2,

𝛼 =
(−0.5 0 0

0 2.0 0

)′
, 𝛽 =

(
1 0 0
0 1 0

)′
, Σ = I3 and 𝜈 = 6 or 𝜈 = 20. The absolute values of the solutions to

det A(z) = 0 are 3.0, 1.0 and 0.5.
For non-Gaussian errors the stationary distribution does not depend only on the two first moments of the error

distribution. Therefore the recursions described in Corollary 2 with a burn-in period of 20 for each of the initial
distributions of the forward- and backward recursions were used to simulate the stationary part of the process.
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Figure 2. Estimates of 𝛼11 = −0.5: histograms for simulated values

Table I illustrates the consistency of the estimator of 𝛽 based on 1000 replications, as the length of the simulated
series increases, solving the generalized eigenvalue problem discussed in Section 3.2. As one can see the distri-
butions get more concentrated about the true values (0, 0)′ with the exception for 𝛽32 when 𝜈 = 20 and T passes
from 500 to 1000. The value is not significantly different from 0, however.

For maximizing the likelihood for 𝛽 fixed, as explained in Section 3.2, the default Nelder–Mead option in the
R-package optim, R Core Team (2016), was used supplemented by employing the BFGS option with numerical
calculation of the gradients. The iterations were started with the values used for the simulations.

In Table II the simulations for estimating the parameters are summarized. For the case T = 100 only the
Nelder–Mead step was possible. The QQ-plots and histograms in Figures 1 and 2 show in more detail the con-
vergence of the estimates of the parameter 𝛼11. The rather slow convergence toward normality may be related to
problems in locating the maximum value of the likelihood which is more pronounced for small values of T . For
T = 100 numerical derivatives of the likelihood were not always returned.

6. CONCLUSION

A main result of this article is a representation theorem of a p-dimensional autoregressive time series Xt where the
roots of the determinant of the characteristic polynomial can be outside and inside the unit circle or equal to 1.
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Under quite general conditions there exists a p× r matrix 𝛽 such that the time series 𝛽′Xt is stationary. The matrix
𝛽 can be consistently estimated by the common generalized eigenvalue procedure. For fixed values of 𝛽 and under
some regularity conditions the maximum likelihood estimates of the remaining parameters are asymptotically
Gaussian distributed. Also the asymptotic distribution of the trace test was discussed.

An open problem that remains is to find the asymptotic distribution of a consistent estimator for the parame-
ter 𝛽. Also, further investigation of tests for hypotheses on this parameter is necessary. To find a procedure for
determining the rank of Π = 𝛼𝛽′ is another challenge.
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APPENDIX

A. PROOF OF THE SUFFICIENT PART OF PROPOSITION 1

By defining a suitable companion matrix the model (3) can be written compactly, see for example, Hansen (2005).
Let the pk × l, l = p(k − 1) + r, matrices 𝛼∗ and 𝛽∗ be defined as

𝛼∗ =

⎛⎜⎜⎜⎜⎝
𝛼 Γ1 · · · Γk−1

0 I 0

⋮ ⋱

0 I

⎞⎟⎟⎟⎟⎠
, 𝛽∗ =

⎛⎜⎜⎜⎜⎜⎝

𝛽 I 0 · · · 0

0 −I I 0

⋮ ⋱

I

0 · · · −I

⎞⎟⎟⎟⎟⎟⎠
.

Then, the model (3) can be expressed as

ΔX∗
t = 𝛼∗𝛽∗′X∗

t−1 + Φ∗
t + 𝜖∗t , t = k + 1,… (A.1)

where X∗
t = (X′

t ,… ,X′
t−k+1)

′, 𝜖∗t = (𝜖′t , 0,… , 0)′ and Φ∗
t = ((ΦDt)′, 0,… , 0)′.

Multiplying both sides of (A.1) with 𝛽∗′ and rearranging yields

𝛽∗′X∗
t = (I + 𝛽∗′𝛼∗)𝛽∗′X∗

t−1 + 𝛽∗′(𝜖∗t + Φ∗
t ). (A.2)

Lemma 1. Under Assumption 1 there exist non-singular real matrices M, G1 and G2 so that

I + 𝛽∗′𝛼∗ = MGM−1 = M
⎛⎜⎜⎝

G1 0 0

0 G2 0

0 0 0

⎞⎟⎟⎠M−1

where all the eigenvalues of G1 have modulus less than 1, all the eigenvalues of G2 have modulus larger than 1
and the lower right block is present when I + 𝛽∗′𝛼∗ is singular.

Proof. As shown in Lemma A.4 in Hansen (2005) the matrix (𝛽∗, 𝛼∗
⟂) is non-singular. It then follows from his

Lemma A.1 that the matrix I + 𝛽∗′𝛼∗ does not have 1 as an eigenvalue. Also, it is argued in the proof of Lemma
A.2 that an eigenvalue, 𝜆 ≠ 0, of I+𝛽∗′𝛼∗ satisfies det A(1∕𝜆) = 0. By Assumption 1 (i) there can be no eigenvalue
of modulus 1 of I + 𝛽∗′𝛼∗. Hence all the eigenvalues of I + 𝛽∗′𝛼∗ have either modulus less than 1 or larger than 1.

One possible way to carry out the construction of M is to appeal to Theorem 3.4.1.5 in Horn and Johnson (2013)
and define G as the real Jordan canonical form and let the lower right block correspond to the eigenvalues equal
to zero. The matrices G1 and G2 are found by rearranging the blocks in G. The real matrix M can then be found
by appealing to Theorem 1.3.29 in Horn and Johnson (2013).
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From Lemma 1 it follows that the autoregressive scheme (A.2) can be written

M−1𝛽∗′X∗
t =

⎛⎜⎜⎝
G1 0 0

0 G2 0

0 0 0

⎞⎟⎟⎠M−1𝛽∗′X∗
t−1 + M−1𝛽∗′(𝜖∗t + Φ∗

t ). (A.3)

Since all diagonal elements in G1 and G2 have absolute values strictly larger or smaller than one, there exists a
stationary solution of (A.2) of the form

𝛽∗′X∗
t = M

∞∑
s=−∞

C∗
s M−1𝛽∗′(𝜖∗t−s + Φ∗

t−s)

where by stationary we mean, as in Hansen (2005), that 𝛽∗′X∗
t − E(𝛽∗′X∗

t ) is stationary. In Hannan and Deistler
(1988, p. 12) and in Davis and Song (2020) this is explained in more detail.

Using that 𝛼∗
⟂ = (𝛼′

⟂,−𝛼
′
⟂Γ1,… ,−𝛼′

⟂Γk−1)′ yields 𝛼∗′
⟂ΔX∗

s = 𝛼∗′
⟂ (𝜖

∗
s + Φ∗

s ), s = k + 1,… , t and by summing
𝛼∗′
⟂ (X

∗
t − X∗

k ) =
∑t

s=k+1 𝛼
∗′
⟂ (𝜖

∗
s + Φ∗

s ). Stacking 𝛽∗′X∗
t and 𝛼∗′

⟂ X∗
t yields the representation

X∗
t = (𝛽∗, 𝛼∗

⟂)
′−1

(
M

∑∞
s=−∞ C∗

s M−1𝛽∗′(𝜖∗t−s + Φ∗
t−s)∑t

s=k+1 𝛼
∗′
⟂ (𝜖

∗
s + Φ∗

s ) + 𝛼∗′
⟂ X∗

k

)
.

Hansen (2005) in the proof of his Theorem 1 showed that the upper p × pk sub-matrix of (𝛽∗, 𝛼∗
⟂)

′−1 can be
written as (F,C�̄�⟂) with F = ((I − CΓ)𝛽,−CΓ∗

1,… ,−CΓ∗
k−1) and Γ∗

i = Γi + · · · + Γk−1. Thus, with initial value
A = C�̄�⟂𝛼

∗′
⟂ X∗

k = 𝛽⟂(𝛼′
⟂Γ𝛽⟂)

−1𝛼∗′
⟂ X∗

k = C(Xk − Γ1Xk−1 − · · · − Γk−1X1),

Xt = FM
∞∑

s=−∞
C∗

s M−1𝛽∗′(𝜖∗t−s + Φ∗
t−s) + C

t∑
s=k+1

(𝜖s + ΦDs) + A

= FM
∞∑

s=−∞
C∗

s M−1B(𝜖t−s + ΦDt−s) + C
t∑

s=k+1

(𝜖s + ΦDs) + A, t = k + 1,…

with B′ = (𝛽, I, 0,… , 0) so 𝛽∗′(𝜖∗t + Φ∗
t ) = B(𝜖t + ΦDt).

B. PROOF OF COROLLARIES OF PROPOSITION 1

Proof of Corollary 1. To prove Corollary 1, define the power series C1(z) =
∑∞

i=0 C1iz
i and C2(z) =

∑∞
i=1 C2iz

i

where C1i and C2i are the matrices consisting of the first p columns of FMC̃∗
i M−1 and FMC̃∗

−iM
−1 respectively.

For a vector x = (x1,… , xn)′, consider the norm ‖x‖∞ = max1≤i≤n |xi| and for an m × n matrix D = {dij}
let ‖D‖∞ be the induced norm, which equals max1≤i≤m

∑n
j=1 |dij|. For an m × n matrix A and n × o matrix B,‖AB‖∞ ≤ ‖A‖∞‖B‖∞. Therefore, because all the eigenvalues of the quadratic matrices C̃∗

i and C̃∗
−i have modulus

strictly less than one, the elements in C1(z) and C2(z) must converge in a disk with radius 1 + 𝛿 where 𝛿 > 0, see
Corollary A.2 in Johansen (1995). Taking C(z) = C1(z) + C2(1∕z) concludes the proof.

Proof of Corollary 2. Consider first the variable X̃1,t. Then for t = k + 1,… ,T

X̃1,t =
∞∑

s=0

⎛⎜⎜⎝
Gs

1 0 0
0 0 0
0 0 0

⎞⎟⎟⎠M−1B𝜖t−s
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=
⎛⎜⎜⎝

I 0 0
0 0 0
0 0 0

⎞⎟⎟⎠M−1B𝜖t +
∞∑

s=1

⎛⎜⎜⎝
Gs

1 0 0
0 0 0
0 0 0

⎞⎟⎟⎠M−1B𝜖t−s

=
∞∑

s=0

⎛⎜⎜⎝
Gs+1

1 0 0
0 0 0
0 0 0

⎞⎟⎟⎠M−1B𝜖t−1−s +
⎛⎜⎜⎝

I 0 0
0 0 0
0 0 0

⎞⎟⎟⎠M−1B𝜖t

=

( G1 0 0
0 0 0
0 0 0

)
X̃1,t−1 +

(
I 0 0
0 0 0
0 0 0

)
M−1B𝜖t.

Similarly for variable X̃2,t. Then

X̃2,t = −
−1∑

s=−∞

⎛⎜⎜⎝
0 0 0

0 Gs
2 0

0 0 0

⎞⎟⎟⎠M−1B𝜖t−s

= −
⎛⎜⎜⎝

0 0 0

0 G−1
2 0

0 0 0

⎞⎟⎟⎠M−1B𝜖t+1 −
−2∑

s=−∞

⎛⎜⎜⎝
0 0 0

0 Gs
2 0

0 0 0

⎞⎟⎟⎠M−1B𝜖t−s

= −
−1∑

s=−∞

⎛⎜⎜⎝
0 0 0

0 Gs−1
2 0

0 0 0

⎞⎟⎟⎠M−1B𝜖t+1−s −
⎛⎜⎜⎝

0 0 0

0 G−1
2 0

0 0 0

⎞⎟⎟⎠M−1B𝜖t+1

=
⎛⎜⎜⎝

0 0 0

0 G−1
2 0

0 0 0

⎞⎟⎟⎠ X̃2,t+1 −
⎛⎜⎜⎝

0 0 0

0 G−1
2 0

0 0 0

⎞⎟⎟⎠M−1B𝜖t+1, t = T ,… , k + 1.

C. PROOF OF PROPOSITION 2

Define 𝜀t = (𝜀1′
t , 𝜀

2′
t )

′ = M−1
1 𝛽∗′𝜖∗t . Then

Lemma 2. (i) There exists a non-singular matrix T0 with det T0 = (− det J−1
2 )T−k such that (V ′

k,… ,V ′
T )

′ =
T0(V1′

k , 𝜀′k+1,… , 𝜀′T ,V
2′
T )′.

(ii) There exists a non-singular matrix H1 with det H1 = (detM1)−(T−k) such that (V1′
k , 𝜀′k+1,… , 𝜀′T ,V

2′
T )′ =

H1(V1′
k , 𝜖∗′k+1𝛽

∗ … , 𝜖∗′T 𝛽∗,V2′
T )′.

Proof. (i) Solving V1
t = J1V1

t−1 + 𝜀1
t backward and arranging on a matrix form

⎛⎜⎜⎜⎜⎜⎜⎝

V1
k

V1
k+1

V1
k+2

⋮

V1
T

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

I 0 0 · · · 0

J1 I 0 · · · 0

J2
1 J1 0 · · · 0

⋮ ⋮

JT−k
1 JT−k−1

1 JT−k−2
1 · · · I

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

V1
k

𝜀1
k+1

𝜀1
k+2

⋮

𝜀1
T

⎞⎟⎟⎟⎟⎟⎟⎠
= T1

⎛⎜⎜⎜⎜⎜⎜⎝

V1
k

𝜀1
k+1

𝜀1
k+2

⋮

𝜀1
T

⎞⎟⎟⎟⎟⎟⎟⎠
.
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Similarly solving V2
t = J2V2

t−1 + 𝜀2
t forward and arranging

⎛⎜⎜⎜⎜⎜⎜⎝

V2
k

V2
k+1

V2
k+2

⋮

V2
T

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

−J−1
2 −J−2

2 −J−3
2 · · · −J−(T−k)

2 J−(T−k)
2

0 −J−1
2 −J−2

2 · · · −J−(T−(k+1))
2 J−(T−(k+1))

2

⋮ ⋮

0 0 0 · · · −J−1
2 J−1

2

0 0 0 · · · 0 I

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

𝜀2
k+1

𝜀2
k+2

⋮

𝜀2
T

V2
T

⎞⎟⎟⎟⎟⎟⎟⎠
= T2

⎛⎜⎜⎜⎜⎜⎜⎝

𝜀2
k+1

𝜀2
k+2

⋮

𝜀2
T

V2
T

⎞⎟⎟⎟⎟⎟⎟⎠
.

Thus for suitable permutation matrices P1 and P2

⎛⎜⎜⎝
Vk

⋮
VT

⎞⎟⎟⎠ = P1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1
k

V1
k+1

⋮

V1
T

V2
k

V2
k+1

⋮

V2
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P1

(
T1 0

0 T2

)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1
k

𝜀1
k+1

𝜀1
k+2

⋮

𝜀1
T

𝜀2
k+1

𝜀2
k+2

⋮

𝜀2
T

V2
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P1

(
T1 0

0 T2

)
P2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

V1
k

𝜀k+1

𝜀k+2

⋮

𝜀T

V2
T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let

T0 = P1

(
T1 0
0 T2

)
P2.

(ii) With

H1 =

⎛⎜⎜⎜⎜⎜⎜⎝

I 0 0 · · · 0

0 M−1
1 · · · 0

⋮ ⋮

0 0 0 · · · M−1
1 0

0 0 0 · · · 0 I

⎞⎟⎟⎟⎟⎟⎟⎠
.

the claim follows from the definition of 𝜀k+1,… , 𝜀T .

Proof of Proposition 2. Since ΔX∗
t = X∗

t − X∗
t−1 = 𝛼∗𝛽∗′X∗

t−1 + 𝜖∗t , t = k + 1,… ,T and (𝛽∗, 𝛼∗
⟂)

′ is invertible, see
Lemma A.1 in Hansen (2005),

⎛⎜⎜⎜⎜⎝
I 0 · · · 0

0 (𝛽∗, 𝛼∗
⟂)

′ · · · 0

⋮ ⋮

0 0 · · · (𝛽∗, 𝛼∗
⟂)

′

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

Vk

ΔX∗
k+1

⋮

ΔX∗
T

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Vk

𝛽∗′X∗
k+1 − 𝛽∗′X∗

k

𝛼∗′
⟂ 𝛼

∗𝛽∗′X∗
k + 𝛼∗′

⟂ 𝜖
∗
k+1

⋮

𝛽∗′X∗
T − 𝛽∗′X∗

T−1

𝛼∗′
⟂ 𝛼

∗𝛽∗′X∗
T−1 + 𝛼∗′

⟂ 𝜖
∗
T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 · · · 0 0 0

−M1 M1 0 0 0 · · · 0 0 0

0 0 I 0 0 … 0 0 0

0 −M1 0 M1 0 · · · 0 0 0

0 0 0 0 I … 0 0 0

⋮ ⋮

−M1 0 M1 0

0 0 0 0 0 0 0 0 I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Vk

Vk+1

𝛼∗′
⟂ 𝜖

∗
k+1

⋮

VT

𝛼∗′
⟂ 𝜖

∗
T

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= H0

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Vk

Vk+1

𝛼∗′
⟂ 𝜖

∗
k+1

⋮

VT

𝛼∗′
⟂ 𝜖

∗
T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= H0P3

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Vk

⋮

VT

𝛼∗′
⟂ 𝜖k+1

⋮

𝛼∗′
⟂ 𝜖T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where P3 is a permutation matrix. Therefore by Lemma 2 and using Vk = M−1

1 𝛽∗′Xk

⎛⎜⎜⎜⎜⎝
M−1

1 0 · · · 0

0 (𝛽∗, 𝛼∗
⟂)

′ · · · 0

⋮ ⋮

0 0 · · · (𝛽∗, 𝛼∗
⟂)

′

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝛽∗′X∗

k

ΔX∗
k+1

⋮

ΔX∗
T

⎞⎟⎟⎟⎟⎠
= H0P3

(
T0H1 0

0 I

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1
k

𝛽∗′𝜖∗k+1

⋮

𝛽∗′𝜖∗T

V2
T

𝛼∗′
⟂ 𝜖

∗
k+1

⋮

𝛼∗′
⟂ 𝜖

∗
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= H0P3

(
T0H1 0

0 I

)
P4

⎛⎜⎜⎜⎜⎜⎝

I 0 · · · 0 0

0 (𝛽∗, 𝛼∗
⟂)

′ · · · 0 0

⋮ ⋮

0 0 · · · (𝛽∗, 𝛼∗
⟂)

′ 0

0 0 · · · 0 I

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

V1
k

𝜖∗k+1

⋮

𝜖∗T

V2
T

⎞⎟⎟⎟⎟⎟⎟⎠
for another permutation matrix P4. Here det H0 = (det M1)T−k , det H1 = (det M1)−(T−k) and det T0 = (− det J−1

2 )T−k.
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