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A B S T R A C T 

Quantifying tensions – inconsistencies amongst measurements of cosmological parameters by different experiments – has 
emerged as a crucial part of modern cosmological data analysis. Statistically significant tensions between two experiments or 
cosmological probes may indicate new physics e xtending be yond the standard cosmological model and need to be promptly 

identified. We apply several tension estimators proposed in the literature to the dark energy surv e y (DES) large-scale structure 
measurement and Planck cosmic microwave background data. We first e v aluate the responsi veness of these metrics to an input 
tension artificially introduced between the two, using synthetic DES data. We then apply the metrics to the comparison of Planck 
and actual DES Year 1 data. We find that the parameter differences, Eigentension, and Suspiciousness metrics all yield similar 
results on both simulated and real data, while the Bayes ratio is inconsistent with the rest due to its dependence on the prior 
volume. Using these metrics, we calculate the tension between DES Year 1 3 × 2pt and Planck , finding the surv e ys to be in 

∼2.3 σ tension under the � CDM paradigm. This suite of metrics provides a toolset for robustly testing tensions in the DES Year 
3 data and beyond. 
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 I N T RO D U C T I O N  

wo experiments are generally expected to agree, roughly within the 
eported errors, on the measured values of cosmological parameters. 
 disagreement between such measurements – a tension – may be 
 sign of a mistake in one or both analyses, of unaccounted-for
ystematic errors, or perhaps of new physics. A prominent historical 
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022
xample of such tensions in cosmology is the disagreement between 
 variety of measurements of the matter density �m 

in the 1980s
nd 1990s that was vigorously debated at the time (Peebles 1984 ;
fstathiou, Sutherland & Maddox 1990 ; Krauss & Turner 1995 ;
striker & Steinhardt 1995 ) and eventually turned out to be explained
y the disco v ery of the accelerating universe (Riess et al. 1998 ;
erlmutter et al. 1999 ). 
Presently, the discrepancy between the measurements of 

he Hubble constant using the distance ladder, H 0 = (74 . 03 ±
 . 42) km s −1 Mpc −1 (Riess et al. 2019 ), and those from Planck , H 0 =
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Figure 1. Toy model example of a set of 2D constraints, where the 1D 

projections hide the discrepancy between the two data sets. The darker 
and lighter shade correspond to the 68 per cent and 95 per cent confidence 
re gions, respectiv ely. 
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67 . 4 ± 0 . 5) km s −1 Mpc −1 (Planck Collaboration 2018 ), is much
iscussed, as it may be a harbinger of new physics. Similarly, recent
easurements of the parameter combination 1 S 8 ≡ σ 8 ( �m 

/0.3) 0.5 

rom large-scale structure by the Dark Energy Surv e y (DES; Abbott
t al. 2018 ) and the Kilo Degree Survey (Asgari et al. 2020 ; Heymans
t al. 2020 ) differ from the cosmic microwave background (CMB)
stimates from the Planck satellite at ∼2–3 σ significance. These N σ

uantifications of tension are generally understood to correspond
o probabilities equi v alent to 1D normal distribution, so that 1 σ
orresponds to 68 per cent confidence that the measurements are
iscrepant, 2 σ corresponds to 95 per cent, etc. 
The challenge is how to convert constraints from two data sets

nto such a probabilistic measure of tension between them. There
xist a variety of methods to do this, which are being actively used
n the community. While these tension metrics are expected to give
onsistent messages in cases where the two data sets obviously agree
r disagree, in more marginal cases the differences amongst them –
ncluding how much they depend on an analysis’ choice of priors,
ssumptions of posterior Gaussianity, and the higher dimensional
hape of the posterior – have the potential to alter the assessment of
hether or not two data sets are in agreement. 
In the lead-up to cosmological results expected from the analysis of

ES year 1 to year 3 data (henceforth; simply Y3) and to inform other
uture cosmological analyses, we wish to provide a comprehensive
haracterization of how several proposed methods compare to one
nother. We also wish to confront these results with our intuition
or what these metrics ought to be telling us about the agreement
r disagreement between measurements. We specifically apply the
ethods to assess the consistency of DES and Planck . This paper

omplements two earlier analyses that test the consistency of probes
ithin DES (Doux et al. 2020 ; Miranda, Rogozenski & Krause 2020 ).
These metrics serve only as diagnostics for whether there is

ension, and not as a solution. If tension exists, it would indicate
ither unaccounted-for systematic effects in one or both experiments,
r that the underlying model is inadequate to explain the data. 
Our basic approach is to create a suite of simulated DES data sets

ith a controlled level of induced tension relative to the best-fitting
lanck 2018 cosmology. We then apply a number of methods to
uantify this synthetic tension and assess their performance. Finally,
e apply the same tension metrics to quantify any tension between

he published constraints from the first year of DES data (DES Y1)
nd the Planck 2015 and 2018 data sets. 

The paper is structured as follows: we discuss the difficulties
f tension estimation, and present the moti v ation of the present
roblem in Section 2. We then describe our methodology in Section 3.
he different tension metrics studied in this paper are presented in
ection 4. We show results on simulated DES data in Section 5,
pply the tension metrics to DES Y1 in Section 6, and present our
onclusions in Section 7. 

 MOTIVATION  

or a tension in a single parameter with an approximately Gaussian
osterior distribution, it is easy to define a robust tension metric, as
ne can just report the 1D difference between the posterior means of
he two measurements divided by the quadrature sum of the errors
eported by the two e xperiments. F or e xample, if Planck reports that
 8 = 0.832 ± 0.013 (Planck Collaboration 2018 ) and DES reports
 8 = 0.782 ± 0.022 (Troxel et al. 2018 ), then one simply adds the
 Here, σ 8 is the present-day linear theory root-mean-square amplitude of the 
atter fluctuations averaged in spheres of radius 8 h −1 Mpc. 

T  

e  

n  

c  

NRAS 505, 6179–6194 (2021) 
rrors in quadrature and reports the two results to be different at the
evel of 

�S 8 

σS 8 

= 

0 . 832 − 0 . 782 √ 

0 . 013 2 + 0 . 022 2 
= 2 . 0 (1) 

tandard deviations, that is, they are in tension at the 2 σ level. How-
ver, as soon as we consider a tension in two or more parameters, this
imple procedure becomes inadequate because full 2D information
annot be captured by its 1D projections. Fig. 1 gives an example
ho wing ho w this intuition breaks do wn when the parameter space
s multidimensional. If one were to judge consistency between the
wo data sets solely through their marginalized 1D constraints, one
ould conclude that the two data sets are consistent with each
ther. Ho we ver, as e vident from the comparison of their full 2D
arameter constraints, the two data sets are in strong tension. Further
omplications arise when, for instance, one or more of the posteriors
re non-Gaussian, or when the two posteriors originate from different
rior assumptions on the parameters of interest. 
There is no unique, universally accepted method to quantify ten-

ion under these complicating circumstances. A variety of methods
ave been proposed, re vie wed, and tested (Charnock, Battye & Moss
017 ). Given this array of options, it is not obvious what the best
hoice is for a given analysis. In order to aid in this determination,
n this paper, we will describe and study several of these methods in
rder to compare their performance when applied to DES data. In
oing so, we distinguish between two kinds of tension: 

(i) Internal tensions, between different cosmological probes
ithin one experiment (e.g. DES cosmic shear versus galaxy clus-

ering within DES). 
(ii) External tensions, between different experiments (e.g. DES

ersus Planck ). 

hese must be treated differently because data-related systematic
ffects within the same experiment are often strongly correlated,
ecessitating use of more complex statistical tools when studying
onsistency. While our methodology can be applied to either type

art/stab1670_f1.eps
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f tension, here we specifically apply it to the case of external
ensions. In addition, we focus on quantifying the tension between the 
arge-scale structure measurements (via the combination of galaxy 
lustering, g alaxy–g alaxy lensing and cosmic shear, or often referred 
o as the “3 × 2pt” probes) from DES, and the CMB measurements 
rom Planck . Internal tension will be separately and additionally 
tudied in Doux et al. ( 2020 ) using Posterior Predictive Distributions
PPDs; Gelman et al. 2004 ), which allow us to quantify tension in the
resence of correlated systematic errors in the data, and to visualize 
he source of tension in the data vector. We do not consider the PPD
n this work since it is not well suited to external tensions where there
re many parameters that the two data sets do not share. 

The challenge of accurately quantifying tension starts to become 
pparent as we investigate the expected performance of the tension 
etrics. Na ̈ıvely, one might think that shifting one parameter by 
 controlled number of marginalized N standard deviations would 
mply that the tension in the full-dimensional space would also be 
 σ ; or in other words, that the amount of tension in the full, N -
imensional space is equal to the tension projected 2 to the original 
imension. Ho we ver, this is not the case, because of two ef fects: 

(i) Marginalization can hide tension that can only be seen in higher 
imensions. This is caused by the fact that marginalization leads to 
oss of information. This means that the full-dimensional tension 
an be larger than that inferred by looking at 1D distributions of the
arameters. This is illustrated with the simple 2D example shown 
n Fig. 1 : there are two parameters θ1 and θ2 , and they are highly
orrelated as measured by experiment 1, but largely uncorrelated as 
easured by experiment 2. Because experiment 1 determines both 

arameters separately quite poorly, 1D plots of the posterior show 

eneral agreement between measurements of the two experiments. 
et the 2D plot shows that the two contours are significantly 
eparated. This is because the well-measured combination of θ1 and 
2 significantly differs between experiment 1 and experiment 2. 
(ii) Relatedly, the number of dimensions of the problem also 

ffects the inferred tension. The significance of a difference in pa- 
ameter estimations between two experiments depends on the number 
f parameters constrained simultaneously by both experiments. Con- 
ider, for example, two experiments that measure the same parameter 
and obtain a 1D 3 σ disagreement. The level of significance of this

esult is much higher if θ is the only parameter constrained by both
xperiments, than it is if the experiments also measure a hundred 
xtra parameters, with no significant discrepancies between them. 
his common problem of the dilution of true tension with multiple 
omparisons is well known in statistics. F or e xample, He ymans et al.
 2020 ) report a ∼3 σ tension with Planck in S 8 alone, but a ∼2 σ
ension when considering the full multidimensional parameter space. 

 SETTING  U P  T H E  PROBLEM  

he aim of this work is to compare and understand the performance
f different metrics for measuring tension between DES and Planck 
onstraints on cosmological parameters. If the two experiments 
eport different values for some cosmological parameters, this might 
e an indicator that their results are not compatible. Ho we ver,
t is important to understand what this discrepancy means when 
onsidering the entire model. To do this, we use synthetic DES
nd Planck data sets that have been generated with different input 
osmological parameters in order to produce varying levels of 
 In this paper, the terms ‘marginalized o v er’ and ‘projected’ both mean 
inte grated o v er the other parameters’. 

3

4

xpected tension. By applying the various tension metrics to these 
ynthetic data, we can study how they compare to one another and the
nown input parameter discrepancies. Note that we do not attempt 
o explain the origin of the possible incompatibility in cosmological 
arameters reported by two experiments. 
We study tension in the context of the flat � CDM cosmological
odel. Our parameters are { �m 

, �b , H 0 , A s , n s } , where �m 

and �b 

re the density parameters for matter and baryons, respectively; H 0 

s the Hubble constant; and A s and n s are respectively the amplitude
nd slope of the primordial curv ature po wer spectrum at a scale of k
 0.05 Mpc −1 . We assume one massive and two massless neutrino

pecies with the total mass equal to the minimum allowed by the
scillation experiments, m ν = 0.06 eV. We do not vary the neutrino
ass in our analysis in the simulated data sets, but we do in the

eanalysis of tension between DES Y1 and Planck of Section 6, to be
onsistent with the DES Y1 3 × 2pt analysis choices (Krause et al.
017 ). The data and prior choices are further described in Section A.
We use the CosmoSIS framework 3 (Zuntz et al. 2015 ) to extract

he best-fitting cosmological parameters from the Planck 2015 
ikelihood by sampling it using Nested Sampling (Skilling 2006 ), via
he PolyChord algorithm 

4 (Handley, Hobson & Lasenby 2015a , b ).
rom this chain, we infer the best-fitting values of the � CDM model
arameters according to Planck data and use model predictions from 

hese values to generate a baseline simulated DES-like 3 × 2pt data-
ector under the Planck cosmology, henceforth referred to as the 
aseline cosmology. As previously mentioned, the simulated DES 

ata are composed of galaxy clustering, cosmic shear, and galaxy–
alaxy lensing correlation functions (Abbott et al. 2018 ). 

.1 Generating a priori tension 

 convenient starting point in our analysis would be synthetically 
enerated tension in two data sets, corresponding to data vectors 
enerated at different values of cosmological parameters. Precisely 
o w dif ferent these two sets of cosmological parameters are should
e guided by some preliminary measure of tension. This starting 
oint is henceforth referred to as the ‘ a priori Gaussian tension’, and
n this subsection, we provide a recipe to define it. 

Quantifying the a priori tension at parameter level with some 
etrics w ould mak e our e x ercise circular and unfair to other metrics,

o it is not a good option. To make progress, we follow a procedure
hat at least guarantees that the amount of tension we introduce is
ncreasing with increasing shifts, and is, by construction, sensitive to 
arameters of interest. Using the Planck and DES posteriors obtained 
rom their respective baseline data vectors, we first compute the 
ariance in the marginalized 1D posterior distributions for �m 

and 
8 , referred to as var( θ ), where θ ∈ { �m 

, σ 8 } . We then shift each
arameter by a multiple of the quantity 

θ = 

√ 

var ( θDES ) + var ( θPlanck ) (2) 

nd generate simulated DES data vectors with either �m 

or σ 8 shifted 
y integer multiples of the corresponding δθ . We indicate the total
hift with �θ ≡ αδθ for a given integer α. We then use those data
ectors to obtain simulated DES chains. We shift σ 8 towards lower 
alues than Planck ’s, and �m 

towards higher values, for simplicity, 
ut we would expect to obtain similar results if the shifts were done
n the opposite directions. 
 HTTPS:// BITBUCKET.ORG/ JOEZUNTZ/COSMOSIS/ WIKI/HOME 
 HTTPS://GITHUB.COM/POLYCHORD/POLYCHORDLITE 
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input shifts. The corresponding a priori Gaussian tension is shown in Table 1 . 
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A shift in σ 8 is obtained by changing the input value of A s . Shifting
m 

, on the other hand, changes the history of structure growth and
hereby σ 8 ; we compensate for this collateral shift in σ 8 by counter-
hifting A s . The DES constraints (shown in the �m 

–σ 8 plane) from
 representative subset of these shifted synthetic data are shown in
ig. 2 . 
If we approximate the difference between the Planck and DES

osteriors as a Gaussian distribution in multiple dimensions we can
ow ask, a priori , what the significance of these shifts is (in the
m 

–A s plane) by computing 

2 = δθT ( C D + C P ) −1 δθ (3) 

here C D and C P are the 2 × 2 covariance matrices in ( �m 

, A s )
or DES and Planck , respectively. Because we are changing only two
arameters, the quantity has two degrees of freedom. Note that this is
ust the generalization of equation (1) to multiple dimensions. While
he Gaussian approximation is not expected to be accurate, especially
n the tails of the posteriors, it is expected to be a reasonable guess
f the tension that we are inputting into our synthetic examples. 
Fig. 3 shows the distribution of shifted parameter combinations

e describe abo v e, as well as the baseline Planck + DES parameter
onstraints. Specifically, the contour shows the combined baseline
lanck + DES constraints, while the markers show the best-
tting values of individual shifted DES-only constraints. We can

mmediately see that, in multiple dimensions, the tension that we
ttributed to a 1D shift is higher since �m 

and σ 8 are correlated. 
To quantify the significance of the shifts shown in Fig. 3 , we

alculate from equation (3) the probability to exceed (PTE) our input
hifts in the Gaussian case. For example, we would like to associate
 ‘1 σ tension’ to an �m 

shift that lies precisely on the edge of the
8 per cent confidence region. We thus adopt a simple 1D Gaussian
onversion 

 σ ≡
√ 

2 Erf −1 ( PTE ) , (4) 

here Erf −1 is the inverse error function. Given a PTE, N σ matches
hat probability with the number of standard deviations that an
NRAS 505, 6179–6194 (2021) 
qui v alent e vent from a 1D Gaussian distrib ution would ha ve. Note
hat the conversion in Equation (4) is only a convenient proxy
o report high statistical significance results, and does not assume
aussianity per se in any of the statistics. 
The resulting e v aluation of the a priori Gaussian tension is shown

n Table 1 . Here, the first column shows the parameter shift applied
o DES data in the ( �m 

, σ 8 ) space, where each parameter is shifted
y a half-integer multiple of its reported (marginalized) error. The
econd column shows the full-parameter-space tension calculated
sing Equation (4) as described abo v e. Note that the ‘input shifts’ in

art/stab1670_f2.eps
art/stab1670_f3.eps
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Table 1. Evaluation of a-priori Gaussian tension for controlled shifts in ( σ 8 

and �m 

). The δθ by whose half-integer value we are shifting these parameters 
is referring to their respective 1D marginalized posterior as in equation (2). 
See equation (4) for the explanation how we convert these shifts into the 
“number of sigmas” in the full parameter space, shown in the second column. 

Evaluation of a priori Gaussian tension 
( �m 

, σ 8 ) shift full-par-space N - σ

�σ8 = −0 . 5 × δσ8 0 . 02 σ
��m 

= + 0 . 5 × δ�m 

0 . 09 σ

�σ8 = −1 × δσ8 0 . 4 σ
��m 

= + 1 × δ�m 

1 . 0 σ

�σ8 = −1 . 5 × δσ8 1 . 1 σ
��m 

= + 1 . 5 × δ�m 

2 . 3 σ

�σ8 = −2 × δσ8 2 . 0 σ
��m 

= + 2 × δ�m 

3 . 8 σ

�σ8 = −3 × δσ8 3 . 7 σ
��m 

= + 3 × δ�m 

> 5 σ

�σ8 = −5 × δσ8 > 5 σ
��m 

= + 5 × δ�m 

> 5 σ
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m 

lead to higher tension than those in σ 8 . This is because shifting
m 

while keeping σ 8 fixed also leads to a shift in A s , which increases
he tension in the full-dimensional space. 

Finally, let us note that the a priori tension, by its construction, does
ot contain stochastic noise, as it ef fecti vely measures the distance
n the space of input cosmological parameters. This is in contrast 
ith all of the tension metrics that we study below, which are applied

o random realizations of data that do contain noise. The fact that
he ef fecti vely noiseless input tension is being compared to tension

easurements applied on noisy data are one reason why we do not
xpect a perfect match between the two. We will return to this point
n Section 5. 

 TENSION  METRICS  

his section describes the tension metrics that we will be comparing 
n this work. Several metrics have been proposed for quantifying 
ension between cosmological data sets. In this work, we select a 
eries of methods that we believe to be appropriate to our data,
nd which are distinct enough to highlight the strengths and failure 
odes of each metric. We separate the tension metrics into two 

ubcategories, since while all methods aim to quantify tension 
etween data sets, they answer slightly different questions: 

(i) Evidence-based methods seek to answer the question: 
iven hypothesis H 1 : ‘The assumed model is capable of generating 

he data observed by both experiments’, and hypothesis H 2 : ‘The 
ssumed model is not capable of generating the data observed by 
oth experiments’, which hypothesis is pr eferr ed by the data under
he assumed model’? 

(ii) Parameter-space methods seek to answer the question: 
hat is the statistical significance of the differences between the 

osteriors for experiments A and B, within the parameter space 
nalysed by both experiments? 

All of the tension metrics that we consider solve the problems 
hat we have discussed in Section 2 by considering all dimensions of
arameter space. In addition, since the y pro vide results in terms of
robabilities, they are independent of the specific parametrizations 
hat are used. 
The remainder of this section describes these tension metrics. The 
esults for these metrics will be shown in Section 5. 

.1 Bayesian evidence ratio 

he Bayesian evidence ratio, or Bayes ratio R , is an evidence-based
ethod, defined for independent data sets A and B as (Marshall,
ajguru & Slosar 2006 ): 

 ≡ Z AB 

Z A Z B 

. (5) 

ere, Z D 

is the Bayesian Evidence, defined as the probability of
easuring the observed data D for a given model M , which can be

btained marginalizing o v er all the model parameters θ : 

 D 

≡ P ( D| M) = 

∫ 

d θ P ( D| θ, M ) P ( θ | M ) . (6) 

enceforth, we adopt the following notation for Bayes’ theorem: 

 = 

L × � 

Z 

(7) 

here P ≡ P ( θ | D, M) is called the posterior, L ≡ P ( D| θ, M) is the
ikelihood, and � ≡ P ( θ | M ) is the prior. The Bayesian Evidence is a
ifficult quantity to calculate, as it requires integrating a probability 
istribution o v er a large number of dimensions. One of the most
requently used tools to calculate Bayesian Evidences is Nested 
ampling (Skilling 2006 ), which also produces posterior distribu- 

ions. There exist publicly available codes for Nested Sampling 
alculations, such as MULTINEST (Feroz, Hobson & Bridges 2009 ) 
nd POLYCHORD (Handley et al. 2015a , b ). 

In the Bayes ratio R as written in equation (5), the numerator
equires both data sets to be simultaneously explained by the same
arameter values within the model, while the denominator allows 
ach data set to be explained by different parameter values (still
ithin the same assumed underlying model). A more intuitive 

nterpretation (Amendola, Marra & Quartin 2013 ; Raveri & Hu 
019 ; Handley & Lemos 2019 ) uses Bayes theorem to rewrite 
his as 

 = 

P ( A | B, M) 

P ( A | M) 
, (8) 

where data sets A and B can be interchanged). That is, does the
xistence of data set B make the data set A more or less likely
han it would be in the absence of B , all within the context of
ssumed model M ? Therefore, a ratio of probabilities R � 1 is
nterpreted as the data sets being consistent, while R � 1 indicates
hat the data sets are in tension. This tension metric has several
esirable properties: it is a global statistic (that is, operates on the full
arameter space), and it is symmetric between data sets (so tension
etween data A and data B is the same as tension between B and A).
or these reasons, R was used in Abbott et al. ( 2018 ), to quantify

ension between the DES Y1 measurements and external data 
ets. 

This new interpretation carries an important issue, which is R ’s
ependence on the prior volume: as described by Handley & Lemos
 2019 ), equation (5) can be rewritten as: 

 ≡
∫ 

d θ
P A P B 

� 

. (9) 

or a flat and uninformative prior, R is therefore proportional to
he prior volume. For example, doubling the prior volume doubles 
he value of R , and increases the agreement between the data sets
ndependently of the shape of the posteriors. As an extreme case, one
MNRAS 505, 6179–6194 (2021) 
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Figure 4. Example of the prior -v olume dependence of R . In amber and red are two Gaussians that are at a 3 σ tension. The black dotted line is the prior (note 
that it is not normalized, to make it easier to visualize). When we use a uniform prior in the range [ − 10, 10] (left-hand panel), R is much smaller than one, 
which means the data sets are in tension. When we increase the prior to [ − 200, 200] (right-hand panel), R becomes greater than one, indicating agreement. 
This example, although extreme, illustrates a possible issue of the Bayes ratio as a tension metric. 

Table 2. Jeffreys’ scale used by (Abbott et al. 2018 ) to quantify agreement 
or tension between data sets (Jeffreys 1939 ). 

log R Interpretation 

> 2.3 Strong agreement 
(1.2,2.3) Substantial agreement 
( − 1.2, 1.2) Inconclusive 
( − 2.3, −1.2) Substantial tension 
< −2.3 Strong tension 
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ould increase the prior range arbitrarily to make any two posteriors
onsistent according to R . This is illustrated by Fig. 4 , which gives
wo equal-width Gaussians horizontally offset by 3 σ . The Bayes
atio is close to zero when the prior encompasses relatively tightly
he bulk of the two distrib utions, b ut goes up to R > 1 if the prior
s made sufficiently wide. In the latter case, the Bayes-ratio-logic
ays that the two Gaussians are close to each other relative to the
idth of the prior , and hence are reported to not be in any tension.
his prior dependence is therefore a central feature of the Bayes

atio. Nevertheless, such a prominent role for the prior may be
orrying in situations when physically moti v ated priors are not 

vailable. 
A second concern about the Bayes ratio R is that its raw numerical

alue needs calibration. R is the ratio of probabilities (see equation 5)
nd one often uses the Jeffreys’ scale (Jeffreys ( 1939 ); see Table 2 ) to
onvert the different outcomes to interpretations about the presence
f tension between data sets. Ho we ver, the boundaries in Jeffreys’
cale are arbitrary, and they lack obvious interpretation as a statistical
ignificance. 

Both the interpretation and the calibration problem can be cir-
umvented if another tension metric is used to calibrate the Bayes
atio. In this paper, we use the simulated data vectors described in
ection 3 to calibrate the Bayes ratio outcomes (along with those
rom other tension metrics). Note, ho we ver, that this calibration is
ery specific to our choice of the problem, such as the observables,
he parameter space, or the priors we employ. Our results would not
e generalizable to an arbitrary cosmological analysis. 
NRAS 505, 6179–6194 (2021) 
.2 Bayesian suspiciousness 

ayesian Suspiciousness (Handley & Lemos 2019 ) is an evidence-
ased method, introduced as an alternative to the Bayes ratio from
ection 4.1 for the case of priors which, instead of being moti v ated
y prior knowledge, are purposefully wide and uninformative. This
s the case for DES, where wide priors are chosen with the goal of
btaining DES-only constraints. The idea is the following: We divide
he Bayes ratio R in two parts, one that quantifies the probability of
he data sets matching given the prior width, and another one that
uantifies their actual mismatch. The first part is quantified by the
nformation ratio I , defined as: 

log I ≡ D A + D B − D AB , (10) 

here D is the Kullback–Leibler Divergence (Kullback & Leibler
951 ): 

 ≡
∫ 

P log 

(P 

� 

)
d θ. (11) 

he Kullback–Leibler Divergence is particularly well suited to
liminate the prior dependence from the Bayes ratio, as it quantifies
ow much information has been gained going from the prior � to the
osterior P . Therefore, it encloses the prior dependence that we want
o eliminate. The Kullback–Leibler Divergence has been extensively
sed in cosmology (e.g. Hosoya, Buchert & Morita 2004 ; Verde,
rotopapas & Jimenez 2013 ; Seehars et al. 2014 , 2016 ; Grandis
t al. 2016 ; Nicola, Amara & Refregier 2019 ). 

The part of the Bayes ratio R that is left after subtracting the
ependence on prior volume depends only on the actual mismatch
etween the posteriors, and it is what we call Bayesian suspiciousness
 : 

log S = log R − log I . (12) 

s explained in Section 4.1 and in Handley & Lemos ( 2019 ), the
ain concern regarding the Bayes ratio R is that the tension can be

hidden’ by widening the priors. S can be understood as the version
f R that corresponds to the smallest priors that do not significantly
lter the posterior. It also has two useful qualities that R lacks: It
oes not depend on the prior volume and, in the case of Gaussian

art/stab1670_f4.eps
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osteriors, it follows a χ2 
d distribution, where d is the ef fecti ve number

f degrees of freedom constrained by both data sets. Therefore, we 
an assign a tension probability p T as the p-value of the distribution.
his tension probability quantifies the probability of the observed 

ension occurring by chance. While the chi-squared interpretation 
elies on the approximation of Gaussian posteriors, 5 the rest of this
ection does not, so the value and sign of S can be used to measure
ension for any posterior distributions. 

To obtain the value of p T , we need to calculate the ef fecti ve number
f dimensions constrained by the combination of the data sets. While 
here are several available methods to do this, we propose using the
ayesian Model Dimensionality (Handley & Lemos 2019 ): 

 = 2 
∫ 

P 

(
log 

P 

� 

− D 

)2 

. (13) 

his formula is analogous to the more traditional Bayesian Model 
omplexity (BMC; Spiegelhalter et al. 2002 ) used in previous 
osmological analyses (e.g. Kunz, Trotta & Parkinson 2006 ; Bridges 
t al. 2009 ), with which it shares the property that it is formed
f Bayesian quantities and reco v ers a value of d = 1 for the 1D
aussian case. But while the BMC requires the use of either the
ean or maximum-posterior parameter values and is hence subject to 

ampling error (i.e. numerical noise due to a finite length of a MCMC
hain), equation (13) does not suffer from these issues (Handley & 

emos 2019 ). 
While the suspiciousness is according to our definition an 

vidence-based method, it has been recently shown (Heymans et al. 
020 ) that it can be reformulated as the difference of the log-
ikelihood expectation values of joint and individual data sets, leading 
o a relation between the suspiciousness and the goodness-of-fit loss 
ntroduced in Section 4.5 (Joudaki et al. 2020 ) through the Deviance
nformation Criterion (Spiegelhalter et al. ) This shows that despite 
hem being defined very differently, there are fundamental relations 
etween these statistics. 

All the quantities discussed in this subsection can be simply 
btained from a single nested sampling chain (in the case of the BMD,
r even an MCMC chain), which means that their computational cost 
s the same as that of the Bayes ratio introduced in Section 4.1. Nested
ampling can also give us an estimate of the sampling error by re-
ampling the sample weights (Higson et al. 2018 ). Joachimi et al.
 2020 ), noted that this method can lead to noise in the dimensionality
alculation. This noise was included in this work, and contributes to 
he error in the estimate of the tension probability. All calculations 
re implemented in the PYTHON package ANESTHETIC 

6 (Handley 
019 ); an example on how to calculate these quantities can be found
t HTTPS://GITHUB.COM/PABLO- LEMOS/SUSPICIOUSNESS- COS MOSIS . 

.3 Parameter differences 

nother estimator that we consider is the Monte Carlo estimate of
he probability of a parameter difference as described in Raveri, 
acharegkas & Hu ( 2020 ). This is a parameter-space method, which

elies on the computation of the parameter difference probability 
 As pointed out by Handley & Lemos ( 2019 ), non-Gaussian posteriors can be 
Gaussianized’ using Box–Cox transformations (Box & Cox 1964 ; Joachimi 
 Taylor 2011 ; Schuhmann, Joachimi & Peiris 2016 ) that preserve the value of 
 . Therefore, the chi-squared interpretation of S derived in the Gaussian case 
an be approximately v alid e ven for posteriors that do not look Gaussian, even 
f it is not guaranteed that both posteriors can be Gaussianized simultaneously. 
 HTTPS://GITHUB.COM/WILLIAMJAMESHANDLEY/ANESTHETIC 

s
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t  

7

s
8

5 February 
ensity P( �θ ). In the case of two uncorrelated data sets, this is
iven by the convolution integral: 

( �θ ) = 

∫ 

V p 

P A ( θ ) P B ( θ − �θ )d θ (14) 

here P A and P B are the two parameter posterior distributions and V p 

s the support of the prior, i.e. the region of parameter space where the
rior is non-vanishing. Notice that this probability density has been 
arginalized o v er the value of the parameters and only constrains

heir difference. 
Once the density of parameter shifts is obtained one can quantify

he probability that a genuine shift exists: 

 = 

∫ 

P ( �θ ) > P (0) 
P( �θ ) d �θ (15) 

hich is the posterior mass abo v e the iso-probability contour for
o shift, �θ = 0. Note that since equation (15) is the integral of a
robability density, it is invariant under reparametrizations. 
Equations (14 and 15) look straightforward, but their e v aluation

s greatly complicated in parameter spaces with a large number 
f dimensions. In such cases (which are typical in cosmological 
pplications), the posterior samples cannot be easily smoothed or 
nterpolated to a continuous function, and we are left to work
 xclusiv ely with N A samples from the posterior P A and N B from
 B , i.e. discrete representations of the posteriors of interest. Each
ne of the N A N B pairs of samples corresponds to one term on the
ight-hand side of Equation (14; with �θ = θA − θB , where θA and 
B are the parameter values for that pair). 7 

To make progress, we perform the integral in Equation (15) with a
onte Carlo algorithm. One computes the Kernel Density Estimate 

KDE) probability of �θ = 0 and then the KDE probability of each
f the samples of the parameter difference posterior. The number 
f samples with KDE probability abo v e zero divided by the total
umber of samples is the Monte Carlo estimate of the integral in
quation (15) and the error can be estimated from the binomial
istribution. This approach largely mitigates the need for an accurate 
stimate of the optimal KDE smoothing scale. In practice, we use
 multi v ariate Gaussian kernel with smoothing scale fixed by the
ilverman’s rule (Chac ́on & Duong 2018 ). 
We use the implementation of this tension estimator in the 

ENSIOMETER 

8 code. 

.4 Parameter differences in update form 

nother parameter-space method that we consider is the update 
ifference-in-mean (UDM) statistic, as defined in Raveri & Hu 
 2019 ). This compares the mean parameters determined from one
ata set, ˆ θA , with their updated value, ˆ θA + B , obtained after adding
nother data set. The shifts in parameters are then weighted by their
nv erse co v ariance to gi ve 

 UDM 

= ( ̂  θA + B − ˆ θA ) T 
(
C A − C A + B 

)−1 
( ̂  θA + B − ˆ θA ) (16) 

here C A and C A + B are the posterior covariances of the single data
et A and the joint data set A + B . If the parameters ˆ θA and ˆ θA + B 

re Gaussian distributed then Q UDM 

is chi-squared distributed with 
ank ( C A − C A + B ) degrees of freedom. These degrees of freedom are
he parameters that are measured by both data sets A and B and
 In the case of weighted samples, the weight of the parameter difference 
ample is the product of the two weights. 
 DMA 

MNRAS 505, 6179–6194 (2021) 
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Planck computed using the KL modes from its update with simulated DES. 
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numbers on top of the figure show the fractional error impro v ement of DES 
o v er Planck for each KL mode. 
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re the only ones that can actively contribute to a tension between
he two. For both fully informative and uninformative priors, the
tatistical significance of a shift in ˆ θA + B − ˆ θA is the same as the
hift in ˆ θA − ˆ θB since both of them are weighted by their inverse
ovariance. We note that in non-update form and for uninformative
riors, i.e. equation (3), parameter dif ferences are equi v alent to the
ndex of Inconsistency (Lin & Ishak 2017a , b , 2019 ), while providing
 clear assessment of statistical significance rather than interpretation
n the Jeffreys’ scale. 
There are two main advantages of using Q UDM 

instead of non-
pdate difference in mean statistics: parameter-space directions that
an exhibit interesting tension are identified a priori , i.e. before
xplicitly measuring the tension, to aid physical interpretation; non-
aussianities are mitigated since we can select the most constraining

nd Gaussian of two data sets. 
As shown in Raveri & Hu ( 2019 ), an effective method to compute
 UDM 

in practice consists of breaking down the calculation as a sum
 v er the Karhunen–Lo ́eve (KL) modes of the covariances involved.
e indicate these modes with φa and their corresponding generalized

igenvalue with λa . The modes φa are uncorrelated for both data set A
nd A + B . For a given KL mode, λa − 1 is the improvement observed
or the variance in the value of that mode when the second data set
s added to the first. To a v oid sampling noise in the calculation of
 UDM 

, we restrict our calculation to modes that satisfy: 

 . 2 < λa − 1 < 100 . (17) 

he lower bound remo v es directions along which data set B is not
pdating A, while the upper bound remo v es directions along which
 is not updating B. In both cases, with perfect knowledge of the

ovariances these directions would not contribute to the end result. 
We notice here that the procedure of identifying the KL modes

an be performed a priori , before looking at the data, starting from
he Fisher matrix. We also point out that the set of KL modes is
nvariant under linear parameter transformations while the principal-
omponent decomposition is not. 

The KL decomposition of parameter shifts allows to investigate
he physical origin of the reported tensions. As discussed in Wu et al.
 2020 ), we can write the parameters’ Fisher matrix F = ( C) −1 as a
um o v er KL components: 

 αα = 

∑ 

a 

F 

a 
αα = 

∑ 

a 

φa 
αφa 

α/λa . (18) 

he fractional Fisher information F 

a 
αα/F αα ∈ [0 , 1] tells us how

mportant a given KL mode is in constraining a cosmological
arameter. Lo w v alues mean that the KL mode can be remo v ed from
he full decomposition without altering the parameter constraint. 

In Fig. 5 , we show the fractional contribution of different KL
odes to the Planck Fisher matrix when it is updated with our

imulated DES measurements. We also report in the figure the error
mpro v ement which is given by 

√ 

λa − 1 for each mode. We have a
otal of five modes, equal to the number of parameters that the data
ets have in common and we have sorted them by error improvement
f DES + Planck o v er Planck alone. The first data set – in this case
lanck – is setting the parameter combinations that are updated for
ach mode, while the second data set is setting the impro v ement
actor. For the first two modes, we can see that DES impro v es on the
lanck determination of σ 8 by almost a factor two (94 per cent) and

he determination of �m 

h 2 by 26 per cent. DES does not impro v e
ther modes significantly. 
We use the implementation of Q UDM 

and related KL decomposition
lgorithms in the TENSIOMETER code. 
NRAS 505, 6179–6194 (2021) 
.5 Goodness-of-fit loss 

e next consider goodness-of-fit loss which measures how much
oodness of fit degrades when joining two data sets. This is a method
n between evidence- and parameter-based ones since it relies on
oth likelihood values and parameters. When fitting two data sets
eparately, each probe can individually invest all model parameters in
mproving its goodness of fit. Ho we ver, when the two measurements
re joined, the parameters have to compromise and the quality of
he joint fit naturally degrades. This degradation is quantified by the
stimator: 

 DMAP = 2 ln L A ( θpA ) + 2 ln L B ( θpB ) − 2 ln L A + B ( θpA + B ) (19) 

here θpA , θpB and θpA + B are the Maximum a posteriori (MAP)
arameters measured by the first and second probe and their com-
ination respectively, and L is the data likelihood for the single
nd joint probes and is e v aluated at the MAP point, θp . We use
he subscript DMAP to denote the difference in MAP estimates. As
iscussed in Raveri & Hu ( 2019 ), when the likelihoods and posteriors
re Gaussian Q DMAP is χ2 distributed with 

N eff = N 

A 
eff + N 

B 
eff − N 

A + B 
eff (20) 

egrees of freedom where N 

A 
eff , N 

B 
eff , and N 

A + B 
eff are the respective

umbers of the degrees of freedom 

 eff = N − tr 
[
C −1 

� 

C p 
]

(21) 

is the number of parameters that a data set ends up constraining
ompared to the priors it began with. The goodness of fit is expected
o degrade by one for each measured parameter, and indicates tension
f the decrease is higher. Only the parameters that are constrained
y the data o v er the prior can contribute to a tension since prior-
onstrained parameters cannot be optimized to impro v e the data fit.
n the limits where the prior is uninformative or fully informative,

art/stab1670_f5.eps
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Table 3. The tension between Planck and simulated DES chains for different shifts in σ 8 and �m 

, calculated via the different tension metrics 
described in the main text. The first column refers to the number of 1D standard deviations by which each parameter is shifted, defined in equation 
(2). The a priori Gaussian tension is calculated as described in Section 3 and serves only as an order of magnitude approximation of expected results. 
The probability results of each of the tension metrics is converted to a number of ef fecti ve sigmas using equation (4). 

1D shift a priori Bayes ratio Eigentension GoF Loss MCMC/Update Suspiciousness 
Tension log R Interpretation Param Diffs 

Baseline 0 σ 5.7 ± 0.6 Strong agreement 0 . 5 σ 0 . 2 σ 0 . 3 / 0 . 3 σ (0 . 1 ± 0 . 1) σ

�σ 8 = −0.5 × δσ 8 0 . 0 σ 6.4 ± 0.6 Strong agreement 0 . 4 σ 0 . 4 σ 0 . 3 / 0 . 4 σ (0 . 2 ± 0 . 2) σ
��m 

= 0.5 × δ�m 

0 . 1 σ 5.4 ± 0.6 Strong agreement 1 . 3 σ 0 . 7 σ 0 . 9 / 0 . 8 σ (0 . 5 ± 0 . 2) σ

�σ 8 = −1 × δσ 8 0 . 4 σ 5.5 ± 0.6 Strong agreement 1 . 1 σ 0 . 8 σ 1 . 0 / 0 . 8 σ (0 . 3 ± 0 . 2) σ
��m 

= 1 × δ�m 

1 . 0 σ 3.5 ± 0.5 Strong agreement 2 . 3 σ 1 . 9 σ 1 . 8 / 1 . 7 σ (1 . 5 ± 0 . 3) σ

�σ 8 = −1.5 × δσ 8 1 . 1 σ 3.6 ± 0.6 Strong agreement 2 . 0 σ 1 . 2 σ 1 . 8 / 1 . 9 σ (1 . 5 ± 0 . 3) σ
��m 

= 1.5 × δ�m 

2 . 3 σ − 0.4 ± 0.6 No evidence 3 . 3 σ 3 . 0 σ 2 . 8 / 2 . 7 σ (2 . 9 ± 0 . 4) σ

�σ 8 = −2 × δσ 8 2 . 0 σ 0.3 ± 0.6 No evidence 2 . 6 σ 2 . 1 σ 2 . 7 / 3 . 0 σ (2 . 2 ± 0 . 4) σ
��m 

= 2 × δ�m 

3 . 8 σ − 4.8 ± 0.6 Strong tension 4 . 1 σ 3 . 9 σ 3 . 4 / 3 . 6 σ (4 . 1 ± 0 . 6) σ

�σ 8 = −3 × δσ 8 3 . 7 σ − 6.2 ± 0.6 Strong tension 4 . 3 σ 3 . 4 σ 4 . 6 / 4 . 8 σ (3 . 7 ± 0 . 5) σ
��m 

= 3 × δ�m 

> 5 σ − 16.2 ± 0.6 Strong tension > 5 . 4 σ 6 . 2 σ 5 . 3 / 5 . 3 σ (5 . 9 ± 0 . 7) σ

�σ 8 = −5 × δσ 8 > 5 σ − 26.3 ± 0.6 Strong tension > 5 . 4 σ 5 . 8 σ 6 . 8 / 8 . 8 σ (6 . 3 ± 0 . 8) σ
��m 

= 5 × δ�m 

> 5 σ − 47.0 ± 0.6 Strong tension > 5 . 4 σ 10 . 0 σ 6 . 6 / 8 . 1 σ (9 . 6 ± 1 . 2) σ

Q
t
o

a
i
p  

s
b  

w  

D

4

T
w
c
t
t  

c  

f

b

c
m

 

t  

e

c
a
c

F  

n
fi

a  

w  

W

e

t  

c  

i  

f

 

i
 

i  

0

c

F
f
i
q

4

A  

t  

n  

t
&  

c  

u  

s  

w  

e  

n
e  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/6179/6298244 by U
niversity of O

slo. Library. Library of m
edicine and health sciences user on 15 February 2022
 DMAP is the likelihood expression for parameter shifts discussed in 
he previous sections and its statistical significance should match the 
ne obtained with parameter-shift techniques. 
Notice that this estimator requires Gaussianity in both data space 

nd parameter space. This is a stronger requirement than just approx- 
mate Gaussianity in parameter space, and limits its applicability in 
ractice. Most of the likelihoods that we use here are Gaussian in data
pace with the exception of the large-scale CMB likelihood. This can 
e thought to be a prior on the optical depth of re-ionization, τ , which
ould not contribute to the tension budget since it is not shared with
ES and hence allows us to use Q DMAP . 
We use the implementation of Q DMAP in the TENSIOMETER code. 

.6 Eigentension 

he goal of the eigentension parameter-space method is to identify 
ell-measured eigenmodes in the data and compare the parameter 

onstraints of two experiments within the subspace spanned by 
he well-measured eigenmodes. Here, we briefly describe the steps 
aken to quantify the tension between the fiducial Planck and DES
onstraints in this paper, and refer the reader to Park & Rozo ( 2019 )
or a more detailed discussion and testing of the method. 

We begin by identifying the well-measured parameter subspace 
y following these steps: 

(i) Obtain the parameter covariance matrix from a set of fiducial 
onstraints for DES and identify the eigenvectors of this covariance 
atrix. 
(ii) For each eigen vector , take the ratio of its variance in the prior

o its variance in the posterior. If this ratio is abo v e 10 2 , identify the
igenvector as well-measured or robust. 

(iii) Project the fiducial Planck constraints and the various DES 

onstraints along the subspace spanned by the robust eigenvector(s), 
nd create importance sampled chains of equal length for each 
onstraint. 

or (i), we use constraints from a fiducial DES analysis with a
oiseless data vector generated from theory under the Planck best- 
tting parameters and the true DES Y1 covariance matrix. This 
llows the ad hoc choice of 10 2 as the threshold value in (ii), which
e make after examining the eigenvectors from (i), to be a priori .
e identify one well-measured DES eigenvector: 

 DES = σ8 �
0 . 57 
m 

(22) 

hat has a variance ratio of 2665, and construct importance sampled
hains of length 10 5 along this eigenmode. With the projected chains
n hand, we quantify tension between two constraints i and j as
ollowing; we 

(i) construct the chain of differences � e = e i − e j between the
mportance sampled chains for i and j . 

(ii) approximate the probability surface for � e via KDE , and
dentify the iso-probability contour that crosses the origin, i.e. � e =
 

N , where N is the number of robust eigenvectors identified. 
(iii) integrate the probability surface within the origin-crossing 

ontour, and convert the integral to Gaussian sigmas. 

or (ii), we use a Gaussian KDE with bandwidths determined 
rom Silverman’s rule of thumb, and a straightforward Monte Carlo 
ntegration with 1.28 × 10 7 random draws, which is sufficient to 
uantify tensions up to 5.4 σ . 

.7 Other metrics 

s mentioned in the introductions, a plethora of methods to quantify
ension can be found in the cosmological literature. Our work does
ot investigate all of these methods, as this would make the analysis
oo wide in scope. For example, Hyperparameters (Hobson, Bridle 
 Lahav 2002 ; Luis Bernal & Peacock 2018 ) are more useful to

onstruct a posterior from data sets in tension, by factoring in possible
nknown systematic effects. The surprise (Seehars et al. 2016 ) is best
uited for experiments that are an update from a previous version
ith less data. PPDs (Feeney et al. 2019 ) are similar in nature to the

vidence ratio as shown in Lemos et al. ( 2020 ). Other methods are
ot considered as they closely resemble others, such as Amendola 
t al. ( 2013 ), Martin et al. ( 2014 ), and Joudaki et al. ( 2017 ) being
ased on the Bayesian Evidence ratio, and Lin & Ishak ( 2017a ),
MNRAS 505, 6179–6194 (2021) 
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dhikari & Huterer ( 2019 ), and Lin & Ishak ( 2019 ) being different
ersions of parameter differences in update form. 

 RESU LTS  U SIN G  SIMULATED  D E S  DATA  

n this section, we apply the tension metrics described in Section 4 to
he simulated vectors obtained as outlined in Section 3, and compare
he results to our a priori expectation from Section 3. Our results are
hown in Table 3 and graphically illustrated in Fig. 6 . 

We first note that our estimates of a priori Gaussian tension should
e only used as an rough indication and are generally lower than the
ension e v aluated by the metrics that we study. This is because the
 priori Gaussian tension does not have noise in the data vector
hile the tensions simulations do. This noise realization is the same

or all the shifts, which explains the fact that the a priori tension
s systematically lower in all results with respect to other tension
stimators. We can see this in the baseline case, where in a noiseless
ase all metrics would obtain perfect agreement (a ‘0 σ ’ tension), but
nstead the noise leads to small discrepancies. 

When applying parameter-shift estimators in both MCMC and
pdate form we can see, from Table 3 and Fig. 6 , that, for tensions
easured up to 5 σ , the two estimates agree very well, to within

.3 σ . This o v erall result is reassuring since these two estimators
re measuring the same sense of tension between the two data
ets. This agreement is also expected since the distributions that we
onsider are roughly Gaussian in the bulk of the distribution. At high
tatistical significance, MCMC results are lower in both cases and this
uggests that the decay of the tails of the distribution is slower than a
aussian distribution. For the parameter update, we observe that the

wo parameter combinations, discussed in Section 4.4, DES + Planck
ignificantly impro v es o v er Planck -only do not appreciably change
hroughout the test cases. 

In case of either fully informative or uninformative priors, the
tatistical significance of Goodness of Fit (GoF) loss is expected to
atch the one reported by parameter-shift estimators. As we can

ee from Table 3 that is the case at low statistical significance.
on-Gaussianities in the form of slowly decaying tails violate the

ssumptions used by the GoF loss estimator, while their impact
an be mitigated by parameter shifts in update form. As a result,
s statistical significance increases, in Table 3 the two estimates
iffer. In particular, as e xpected, GoF loss o v erestimates statistical
ignificance since this estimator is assuming Gaussian decay in the
ails. 

For eigentension, we make use of the metric on the simulated
ectors, making use of the robust DES eigenvector and the Monte
arlo sampling procedure discussed in Section 4.6. Note that

he eigentension metrics are calculated only up to 5.4 σ , or 1 in
.28 × 10 7 ; beyond this probability we simply quote that the tension
s greater than 5.4 σ and consider the tension to be definitive. The
esults are in good agreement with other tension metrics, in particular
he two parameter shift estimators, with which eigentension shares
he general approach of quantifying tensions at the parameter space
evel. 

With suspiciousness, as shown in Table 3 and in Fig. 6 , we obtain
ood agreement with the rest of tension metrics, especially when we
onsider the sampling error estimated from repeated re-samplings
or the weights of the chain. To assign a tension probability, we need
o calculate the Bayesian Model Dimensionality, for which we get d
 2.3 ± 0.1. At high statistical significance, suspiciousness seems

o agree particularly well with GoF loss. This is reassuring since
he two estimators coincide in the Gaussian limit with uninformative
riors. 
NRAS 505, 6179–6194 (2021) 
In Table 3 , we also show the results for the Bayes ratio, interpreted
ith the Jeffreys’ scale as used by Abbott et al. ( 2018 ), and shown

n Table 2 . As we can see from the table, the interpretation of
 transitions very quickly from ‘Strong Agreement’ to ‘Strong
ension’. To further investigate the relation between R and the other
etrics, we plot them against each other in Fig. 7 . This immediately

ighlights that the Jeffreys’ scale that we use to interpret the Bayes
atio results lacks granularity in how it quantifies physical tensions.
oherently across different estimators the interpretation of R goes

rom one extreme case to the other in a probability interval that covers
bout one standard deviation. Fig. 7 also clearly shows the bias of
he evidence ratio toward agreement. The value of R = 1, which
eparates agreement and disagreement for our choice of priors is at a
robability level that roughly corresponds to 3 σ (i.e. a probability of
he discrepancy occurring by chance of p T ∼ 0.003). We note that the
ffset between R = 1 and 50 per cent probability events is set by the
rior width and would hence change when changing the prior. Fig. 7
lso shows that the evidence ratio, interpreted with the Jeffreys’ scale,
ould still signal a strong tension, if present, while lacking granular-

ty in the discrimination of mildly statistically significant tensions. 
In Section 4, we made a distinction between parameter-space
ethods and evidence-based methods. We find that all our

ension metrics agree well not only amongst themselves, but
lso qualitatively with the a priori Gaussian tension calculations
escribed in Section 3. This is a non-trivial result, as both the
alculations and the fundamental questions that the various methods
re trying to address differ. 

The only exceptions to this good agreement are given by the sta-
istically significant σ 8 shifts where the spread between the three pa-
ameter difference estimators is smaller than the difference between
hem GoF loss and suspiciousness; and the smaller a priori shifts in

m 

, for which the a priori Gaussian tension estimate is smaller than
he results from eigentension and suspiciousness. Since the input
alculation used a noiseless data vector and simulated DES data
ectors had noise, these disagreements are e xpected. The y are likely
o be caused by the noise introduced in the chains used by the tension

etrics, and will have a more significant impact on the small shifts. 
Based on these results, we propose a methodology to quantify

ension between data sets that exploits the strengths of all the
ifferent methods, summarized by Fig. 8 . Within the parameter-based
pproach, we recommend to generate a Monte Carlo parameter
ifference distribution and observe where the zero-difference point
tands provided we have enough samples of the posterior distribution
n its tail, as this method has no problem with non-Gaussianities, and
as the advantage of providing useful visualizations in the form of
onfidence regions generated directly from the difference chain itself.
o we ver, if the number of samples in the tension tail is insufficient,

his parameter -difference distrib ution will not be reliable enough to
ake statements about tension. In this case, either Eigentension or
arameter differences in update form provide reliable metrics of

ension. These two methods are also useful in identifying the physics
ehind the tension, as the y pro vide characteristic parameter combina-
ions along with the identified tensions lie. Since it does not offer mit-
gation of non-Gaussianities, we do not recommend using goodness-
f-fit loss on its own, but rather as a cross-check with other metrics. 
For the evidence-based methods, if we have a well-moti v ated prior,

uch as the posterior from a previous experiment or a physically
oti v ated one, we can calculate the tension using the Bayes ratio .
o we ver, as discussed in the te xt, e xperiments such as DES and
lanck often choose wide priors in order to obtain posteriors that do
ot depend on previous experiments. The arbitrariness in the choice
f width of those priors means that we cannot use the Bayes ratio, as
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Figure 6. A graphical illustration of the main results of Table 3 . Different points show the tension calculated by each tension metric as a function of the input 
shifts. The error bars in the green points correspond to sampling errors, which can be calculated for evidence-based methods by re-sampling the nested sampling 
weights. 
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iscussed in Section 4.1, unless we calibrated R using Fig. 7 , but that
ould require recalibration if any details of the analysis changed. 

n the case of wide and uninformative priors, the suspiciousness 
nswers the same question as the Bayes ratio but correcting for the
rior volume effect. We recommend its use o v er the Bayes ratio in
eneral since it has the additional desirable property of having a 
tension probability’ interpretation under a Gaussian approximation, 
ithout any need for calibration. 
As pointed out in Fig. 8 , different methods require reliable 

alculations of different quantities. Parameter-space methods require 
 good estimate of the posterior, and particularly of its mean and
ovariance matrix. Evidence-based methods require a calculation 
f the Bayesian evidence. Therefore, our choice of tension metric 
hould inform our sampling choices, as further discussed in The 
ark Energy Surv e y Collaboration ( 2020 ). 
 APPLI CATI ON  TO  D E S  Y 1  A N D  P L A N C K  

ith a better understanding of the interpretation of each of the tension 
etrics, we no w re visit the issue of consistency between the DES Y1

osmology results and those obtained by the Planck collaboration 
Planck Collaboration 2016 , 2018 ). This also serves as a w ork ed
xample on real data of how tension between experiments can be
ully quantified. 

We choose to investigate three different combinations of DES data 
ets: (1) weak lensing-only constraints from Troxel et al. ( 2018 ); (2)
onstraints from combining the auto and cross-correlation between 
eak lensing and galaxy clustering, referred to as the 3 × 2pt

nalysis; and (3) constraints from (2) plus cross-correlation with 
MB lensing, referred as the 5 × 2pt analysis (Abbott et al. 2019 ).
e particularly focus in the second combination, as it provided the
MNRAS 505, 6179–6194 (2021) 
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Figure 8. A practical ‘decision tree’ to measure tension, illustrating when each tension metric should be used. 
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ost powerful constraints from large-scale structure measured by
ES alone. For Planck 2015, we use the small-scale ( � > 30)
easurements of the CMB temperature power spectrum and the

oint large-scale temperature and polarization data. For Planck 2018,
e use small-scale CMB temperature, polarization, and their cross-

orrelation measurements combined with large-scale temperature
nd and E -mode polarization data. In doing so, we follow the rec-
mmendations of the Planck collaboration in the two data releases. 
The results of parameter estimation for these data sets are shown

n Fig. 9 and the results of different tension estimators in T able 4 . W e
ighlight in the table the results that we focus our discussion on. 9 

We start with MCMC parameter shifts, as it is the parameter-based
ethod that can give the most accurate value for the tension, thanks

o its ability to go beyond the Gaussian approximation. In Fig. 10 ,
e can see the posterior of differences between the determination
f σ 8 and �m 

from different DES data sets and Planck that clearly
hows a tension that is greater than 2 σ . In Table 4 , we see that in full
arameter space this tension is at the 2.2 σ level. We proceed with
uspiciousness as our recommended evidence-based method which
ully confirms the parameter-shift results, giving a 2.4 ± 0.2 σ tension
etween Planck 2015 and DES 3 × 2pt. We note that applying both
ethods provides a useful cross-check of their respective results.
his moderate tension remains when Planck is updated from the
015 to the 2018 data and for DES 5 × 2pt. This shows that this
ension is robust to the inclusion of CMB polarization data. 

To understand the physics behind these discrepancies, it is useful
o consider other methods. Using eigentension, we identify a single
ell-measured eigenmode for each DES analysis: σ8 �

0 . 57 
m 

for the
 × 2pt analysis, and σ8 �

0 . 58 
m 

in the 5 × 2pt case. Both eigenmodes are
ery similar to the widely used definition of S 8 = σ 8 ( �m 

/0.3) 0.5 , and
an be interpreted as representing the ‘lensing strength’ arising from
he large-scale structure of the late-time universe. After measuring
ension e xclusiv ely along this direction in parameter space, we find
 The reader might notice that the values of the Bayes ratio reported in Table 4 , 
n particular for the case DES 3 × 2pt versus Planck 15, differ from the values 
eported by Abbott et al. ( 2018 ; R = 6.6). This difference has been identified as 
riginating from sampling issues in the DES Y1 analysis, as will be described 
n more detail in The Dark Energy Surv e y Collaboration ( 2020 ). 
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ebruary 2022
esults that are in agreement with other methods. This shows that
he moderate tension between DES and Planck is found along a
arameter space direction that we believe DES is robustly measuring.
tudying parameter updates of DES with respect to Planck gives
imilar conclusions. As discussed in the previous section and shown
n Fig. 5 , combining DES impro v es the Planck determination of two
arameters, the first mode projecting mostly on to σ 8 and the second
n to �m 

h 2 . The first mode drives most of the tension while the shift
n the second is compatible with a statistical fluctuation. Decrease in
oodness of fit agrees with other estimators. 
The Bayes ratio interpreted on the Jeffreys’ scale reports no

ignificant tension between all data combinations that we consider.
iven the results of the previous section, we can understand this as

he data tension not o v ercoming the bias of the Bayes ratio towards
greement. We note that the priors used for the fiducial analyses
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Table 4. The tension between Planck and different data set combinations involving DES Y1 data, calculated via the different tension metrics described in the 
main text. In the first column, Planck refers to the combination of the TT, TE, and EE likelihoods. In bold font, we highlight the combinations of DES 3 × 2pt 
and Planck , as those are the main focus of this section. The horizontal line separates Planck 2015 and 2018 data set combinations. 

Data set Bayes ratio Eigentension GoF Loss MCMC/Update Suspiciousness 
log R Interpretation Param Shifts 

DES cosmic shear versus Planck 15 2.2 ± 0.5 Substantial agreement 1 . 8 σ 1 . 3 σ 1 . 3 / 1 . 2 σ (0 . 7 ± 0 . 4) σ
DES 3 × 2pt versus Planck 15 1.0 ± 0.5 No evidence 2 . 4 σ 2 . 7 σ 2 . 2 / 2 . 2 σ (2 . 4 ± 0 . 2) σ
DES 5 × 2pt versus Planck 15 1.1 ± 0.5 Substantial agreement 2 . 4 σ 2 . 8 σ 2 . 1 / 2 . 3 σ (2 . 2 ± 0 . 3) σ
DES 5 × 2pt versus Planck 15 + lensing 1.0 ± 0.6 No evidence 2 . 4 σ 2 . 5 σ 2 . 1 / 2 . 3 σ (2 . 2 ± 0 . 4) σ
DES 5 × 2pt + Planck lensing versus Planck 15 6.1 ± 0.6 Strong agreement 1 . 6 σ 2 . 4 σ 1 . 9 / 2 . 2 σ (1 . 8 ± 0 . 2) σ

DES cosmic shear versus Planck 18 3.3 ± 0.4 Strong agreement 1 . 5 σ 1 . 0 σ 1 . 0 / 1 . 1 σ (0 . 5 ± 0 . 3) σ
DES 3 × 2pt versus Planck 18 2.2 ± 0.6 Substantial agreement 2 . 2 σ 1 . 6 σ 2 . 0 / 2 . 3 σ (2 . 4 ± 0 . 2) σ
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Figure 10. Joint marginalized posterior distribution of the parameter differences between different DES data selections and Planck 15/18. The distribution 
of parameter differences is used to compute the statistical significance of a parameter shift. The darker and lighter shading corresponds to the 68 per cent and 
95 per cent C.L. regions, respectively. 
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n the previous section do not coincide with the priors used in this
ection; we thus cannot use the previously derived calibration of the 
ayes ratio. 
The mild tension we obtain between Planck and DES, varying 

etween 2 σ and 3 σ , should not be o v erlooked. While this lev el of
ension could still be a statistical fluke, it is significant enough to
arrant in-depth future investigations. The forthcoming DES Y3 

nalysis, incorporating a larger fraction of the sk y, is e xpected to
hed light on this matter. 

 C O N C L U S I O N S  

n this work, we have explored different methods to quantify 
onsistency between two uncorrelated data sets, focusing on the 
omparison between DES and Planck . The moti v ation is to decide
n a metric of tension between these two surv e ys ahead of the DES
3 data release. This was done by simulating a set of DES data sets
ith values of cosmological parameters chosen to introduce varying 

ev els of discrepanc y with Planck . We calculate the tension for each
imulated DES data set, and compare to an a priori Gaussian tension
xpected based on the known true cosmologies for the simulated 
ata sets. While this work has been performed for the specific case of
ES and Planck , our findings about the different metrics described in
ection 5 apply to any problem of tension quantification. Ho we ver,

f we wanted to apply the Bayes ratio to a different problem with
ninformative priors, the exercise of calibrating the Bayes ratio 
ould have to be repeated. 
We have found that the Bayes’ ratio used in the Y1 analysis has

ev eral fla ws that make it unsuitable for the quantitativ e comparison
f DES and Planck . In particular, it is proportional to the width of the
hosen uninformative prior; it relies on the Jeffreys’ scale to interpret
he ratio of probabilities, which needs an unknown calibration that 
s problem-dependent (i.e. we would need to build a table such as
able 3 in every problem to calculate the o v erall calibration of the
ayes ratio); and the fact that we can only calculate logarithms of the
robability ratio means that the Jeffreys’ scale used in the DES Y1
nalysis (Table 2 ) will in most cases diagnose extreme agreement or
xtreme tension. 

As shown in Table 3 , the other four tension metrics employed
n this work – eigentension, GoF loss, parameter differences, and 
uspiciousness – agree with the a priori tension, as well as amongst
hemselves, with the exceptions of small shifts in �m 

and large shifts
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n σ 8 discussed in Section 5, which are likely the result of noise
ntroduced in the simulated data vectors. We conclude that any of the
ension metrics can be used for the problem of quantifying tension
etween DES and Planck , as they produce similar results. 

We use these tension metrics to re-assess the tension between DES
1 and Planck 2015, as well as with the latest Planck 2018 results.
e find, similar to our findings from the simulated analyses that the

ependence of the evidence ratio on calibration causes the results
o be inconsistent with what we see in the plots, and what all other
ension metrics indicate. We find that there is a ∼2.3 σ between DES
nd Planck , which remains when the Planck 2018 likelihood is used.
t remains to be seen how this will evolve when the more powerful
ES Y3 data are used. If the tension is reduced when more data are

onsidered, we are likely looking at a statistical fluctuation. If the
ension remains or increases, we could be looking at unexplained
ystematics in either of the surv e ys, or evidence of physics beyond
he � CDM model. 
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Table A1. Cosmological and nuisance parameters and their priors used in 
this analysis. 

Parameter Prior 

Cosmology 
�m 

flat (0.1, 0.9) 
A s flat (5 × 10 −10 , 

5 × 10 −9 ) 
n s flat (0.87, 1.07) 
�b flat (0.03, 0.07) 
h flat (0.55, 0.90) 
�νh 2 flat(5 × 10 −4 , 10 −2 ) 

Lens galaxy bias 
b i ( i = 1, 5) flat (0.8, 3.0) 

Intrinsic alignment 
A IA flat ( −5, 5) 
ηIA flat ( −5, 5) 

Lens photo- z shift (red sequence) 
�z 1 l Gauss (0.0, 0.007) 
�z 2 l Gauss (0.0, 0.007) 
�z 3 l Gauss (0.0, 0.006) 
�z 4 l Gauss (0.0, 0.01) 
�z 5 l Gauss (0.0, 0.01) 

Source photo- z shift 
�z 1 s Gauss (0.0, 0.016) 
�z 2 s Gauss (0.0, 0.013) 
�z 3 s Gauss (0.0, 0.011) 
�z 4 s Gauss (0.0, 0.022) 

Shear calibration 
m 

i ( i = 1, 4) Gauss (0.0, 0.023) 
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PPEN D IX  A :  DA R K  E N E R G Y  SURV EY  DATA  

he DES (The Dark Energy Surv e y Collaboration 2005 ; Abbott
t al. 2016 ) is a 6-yr surv e y that has observ ed o v er 5000 deg 2 in
ve filters ( grizY ) and has probed redshifts up to z ∼1.3. It has also
sed time-domain to measure several thousand type Ia supernovae 
SNe Ia). DES can constrain cosmological parameters in several 
ays: It can use these SNe Ia, and treat them as standarizable

andles to constrain cosmology through their redshift–luminosity 
elation, usually referred to as Hubble Diagram (Hubble 1929 ; 
irshner 2004 ); it can use the distribution of galaxies to measure
he Baryon Acoustic Oscillation (BAO) feature which was imprinted 
y sound waves at the recombination era ( z ∼1100), and which
erves as a standard ruler (Eisenstein, Seo & White 2007 ); it can use
he abundance of galaxy clusters, the largest gravitationally bound 
tructures in the Universe (Allen, Evrard & Mantz 2011 ); it can
se the distribution of galaxies to measure the dark matter density
istribution, under the assumption of some bias relating the two, 
alled galaxy clustering; and it can measure the distortion of light by
ntervening matter along the line of sight, referred to as gravitational
ensing (Mandelbaum 2018 ). When the matter distribution distorting 
he path of light is the large-scale structure of the Universe, the
ffect is called cosmic shear (Kilbinger 2015 ). Because in this case
istortions are too small to be detected for individual galaxies, 
hey are detected through correlations in the shapes and position 
f galaxies images. 
Using data from the first year of observations (Y1), the DES col-

aboration has already reported constraints on cosmology from BAO 

The Dark Energy Surv e y Collaboration 2017 ), galaxy clustering
Elvin-Poole et al. 2018 ), cosmic shear (Troxel et al. 2018 ), the
ross-correlation of galaxy clustering and cosmic shear, referred to 
s g alaxy–g alaxy lensing (Prat et al. 2018 ), and as a main result,
he combination of the two-point functions from cosmic shear, 
alaxy clustering, and galaxy–galaxy lensing, henceforth referred 
o as ‘3 × 2pt’ (Abbott et al. 2018 ). In addition, using data from
 yr of observations (Y3), DES has also constrained cosmology 
rom SNe Ia (Abbott et al. 2019a ), and galaxy clusters (To et al.
020 ). Ho we ver, as described in Abbott et al. ( 2019b ), the most
owerful constraints from future DES data releases will come from 
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ombinations of the different probes, as these can break degeneracies
n parameter constraints and significantly increase accuracy. 

We adopt the same priors used in the DES Y1 analysis, shown in
able A1 . 
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