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ABSTRACT: A cornerstone of current−density functional theory (CDFT) in its para-
magnetic formulation is proven. After a brief outline of the mathematical structure of CDFT,
the lower semicontinuity and expectation-valuedness of the CDFT constrained-search
functional is proven, meaning that there is always a minimizing density matrix in the CDFT
constrained-search universal density functional. These results place the mathematical
framework of CDFT on the same footing as that of standard DFT.

Density functional theory (DFT) is at present the most widely
used tool for first-principles electronic structure calculations in
solid-state physics and quantum chemistry. DFT was put on a
solid mathematical ground by Lieb in a landmark paper1 from
1983, where he introduced the universal density functional
F(ρ) as the convex conjugate to the concave ground-state
energy E(v) for an electronic system in the external scalar
potential v.
For electronic systems under the influence of a classical

external magnetic potential A, current−density functional
theory (CDFT) was introduced by Vignale and Rasolt in
1987.2 In addition to the density ρ, the paramagnetic current
density jp becomes a basic variable. The mathematical
foundation of CDFT was put in place by Tellgren et al.3 and
Laestadius4,5 in the 2010s on the basis of Lieb’s treatment of
the field-free standard case. However, a central piece of the
puzzle has been missingnamely, whether the CDFT
constrained-search functional F(ρ, jp) is lower-semicontinuous
and expectation-valued,6 i.e., whether the infimum in its
definition (see eq 3 below) is in fact attained. These
foundational issues are important because CDFT is the natural
extension of DFT to treat general magnetic systems and several
numerical implementations have been reported, although the
development of practical functionals lags behind standard
DFT.7−13

In this Letter, we provide proofs of the above assertions. The
CDFT constrained-search functional is indeed convex lower-
semicontinuous and can therefore be identified with the CDFT
Lieb functionalthat is, the Legendre−Fenchel transform of
the energy. Without this fact, the ground-state energy
functional E(v, A) and the constrained-search functional

F(ρ, jp) contain dif ferent information. If F(ρ, jp) were not
expectation-valued, one would lose the interpretation of the
universal functional as intrinsic energy, which is very useful in
standard DFT. For the interested reader, suggested further
reading for convex analysis are van Tiel’s excellent introductory
text14 and the monograph by Ekeland and Teḿam.15 Also, the
monograph by Barbu and Precupanu,16 which treats convex
analysis in Banach spaces, and the one by Bauschke and
Combettes,17 which focuses on the Hilbert space formulation,
are highly recommended. For more details on trace-class
operators, the monograph by Weidmann is an accessible
starting point,18 as well as the now classic volume by Reed and
Simon.19

For an N-electron system in sufficiently regular external
potentials v and A, the ground-state energy is given by the
Rayleigh−Ritz variation principle as

E v H vA A( , ) inf Tr( ( , ))= Γ
Γ (1)

where H v T W vA A r( , ) ( ) ( )i
N

i1= + + ∑ = is the electronic

Hamiltonian with kinetic energy operator T(A) = 1
2
∑i=1

N [−∇i

+ A(ri)]
2 and two-electron repulsion operator W. The
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minimization is over all N-electron density matrices Γ of finite
kinetic energy, for which the one-electron density is

 X L L( ) ( )L
1 3 3 3ρ ∈ = ∩ and an element jp ∈ Xp = L1 ( )3

∩ L3/2 ( )3 .20 (The boldface notation indicates a space of
vector fields.) The external potential energy (v|ρ) =


v r r r( ) ( ) d3∫ ρ , the paramagnetic and diamagnetic terms

A( )1
2

2 ρ| | | and


A j A r j r r( ) ( ) ( ) dp p3∫| = · and thus the Hamil-

tonian H(v, A) are well-defined for any v ∈ XL′ = L3/2 ( )3 +
L ( )3∞ and A ∈ Xp′ = L3 ( )3 + L∞ ( )3 , where XL′ and Xp′ are

the dual spaces of XL and Xp, respectively. Examples of such
potentials are the nuclear Coulomb potentials and uniform
magnetic fields inside bounded domains. The symbol XL for
the space of densities is so chosen to indicate that it is the
density space of Lieb’s analysis, while Xp indicates “para-
magnetic” current densities.
By a well-known reformulation of eq 1, we obtain the CDFT

Hohenberg−Kohn variation principle:

E v F vA j A

A j

( , ) inf ( , )
1
2

( )

X Xj( , ) p
2

p

p L p

i
k
jjj

y
{
zzz{

}
ρ ρ= + + | |

+ |

ρ ∈ ×

(2)

Here the Vignale−Rasolt constrained-search density functional
F: XL × Xp → [0, +∞] is defined by

F Hj( , ) inf Tr( )
jp ( , )

0
p

ρ = Γ
ρΓ→ (3)

where H0 = T(0) + W is the intrinsic electronic Hamiltonian,
and Γ → (ρ, jp) means that the infimum is taken over all N-
electron density matrices Γ with density−current pair

 Lj L( , ) ( ) ( )p
1 3 1 3ρ ∈ × . Thus, if (ρ, jp) is not N-

representable, we have F(ρ, jp) = +∞. The universal density
functional F is the central quantity in any flavor of DFT, and its
mathematical properties and approximation are of utmost
importance to the field.
Although E in eq 2 is not concave, it is readily seen that the

reparametrized energy

E u E uA A A( , )
1
2

,2i
k
jjj

y
{
zzz̃ = − | |

(4)

is concave. This reparametrization relies on a technical notion
of compatibility of function spaces for the scalar and vector
potentials,20 which is satisfied for the potentials we consider
here.
From the concavity and upper semicontinuity of the

modified ground-state energy Ẽ, one can deduce the existence
of an alternative universal density functional F̂: XL × Xp →
[0, +∞] that is related to the ground-state energy by
Legendre−Fenchel transformations in the manner

E u F uA j A j( , ) inf ( , ) ( ) ( )
j( , ) p p
p

ρ ρ̃ = { ̂ + | + | }
ρ (5)

F E u uj A A j( , ) sup ( , ) ( ) ( )
u A

p
( , )

pρ ρ̂ = { ̃ − | − | }
(6)

where the optimizations are over the space XL × Xp and its
dual XL′ × Xp′, respectively. As a Legendre−Fenchel transform,
the functional F̂ is convex and lower-semicontinuous. In this
formulation of CDFT, the ground-state energy Ẽ and the
universal density functional F̂ contain precisely the same

information: each functional can be obtained from the other
and therefore contains the same of the information about
ground-state electronic systems in external scalar and vector
fields.
From a comparison of the Hohenberg−Kohn variation

principles in eqs 2 and 5, it is tempting to conclude that F̂ and
F are the same functional (i.e., F̂ = F), producing the same
ground-state energy for each (v, A). However, there exist
infinitely many functionals F̃: XL × Xp → [0, +∞] that give the
correct ground-state energy E(v, A) (but not necessarily the
same minimizing densities, if any) for each (v, A) in the
Hohenberg−Kohn variation principle. Each such F̃ is said to be
an admissible density functional.6 Among these, the functional
F̂ stands out as being the only lower-semicontinuous and
convex universal density functional and a lower bound to all
other admissible density functionals (i.e., F̂ ≤ F̃). The
functional F̂, the closed convex hull of all admissible density
functionals, is thus the most well-behaved admissible density
functional. Indeed, we may view it as a regularization of all
admissible density functionals, known as the Γ regularization in
convex analysis. (This name is unrelated to our notation of
density matrices.)
A fundamental result of Lieb’s analysis of DFT is the

identification of the transparent constrained-search density
functional with the mathematically well-behaved closed convex
hull F̂. The identification follows since F is convex and lower-
semicontinuous. Whereas convexity follows easily for the
CDFT Vignale−Rasolt functional F, the proof of lower
semicontinuity is nontrivial. For standard DFT it is given in
ref 1, and for CDFT it is provided in the present Letter.
We simplify our analysis by merely assuming that the

density−current pairs are (ρ,jp) ∈ L1 ( )3 × L1 ( )3 =
L ( ) ,1 3 4[ ] which we denote as X. With this topology, the

potentials must be taken to be bounded functions, (v, A) ∈ X′
= L∞ ( )3 × L∞ ( )3 = [L∞ ( ) .3 4] This simplification is
irrelevant in this context: if F can be shown to be lower-
semicontinuous in the L ( )1 3 4[ ] topology, it will be lower-
semicontinuous in any stronger topology, as required if we
enlarge the potential space to include more singular functions
such as those in XL′ × Xp′. Indeed, the original proof of lower
semicontinuity of the standard DFT Levy−Lieb functional (eq
3) was with respect to the L ( )1 3 topology, from which the
same property with respect to the XL topology immediately
follows.
Theorem and Proof. The intrinsic Hamiltonian H0 is self-

adjoint (H0 = H0
†) over LN

2 , the Hilbert space of square-
integrable N-electron wave functions (with spin and permuta-
tional antisymmetry built in). The expectation values of H0 and
H(v, A) are well-defined on the Sobolev space HN

1 , the subset
of LN

2 with finite kinetic energy.
We denote by N the convex set of N-electron mixed states

with finite kinetic energy. We have the mathematical
characterization21

L

L

TC( ) 0, Tr 1,

TC( )
N N

N

2
1 1

2

= {Γ ∈ |Γ = Γ ≥ Γ = ∇Γ∇

∈ }

† †

(7)

where TC(LN
2 ) is the set of trace-class operators over LN

2 , the
largest set of operators to which a basis-independent trace can
be assigned. An operator A is trace-class if and only if the

positive square root A A A| | ≔ † is trace-class.18,19 A self-
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adjoint operator A is trace-class if and only if it has a spectral
decomposition of the form A k k k k1 λ ϕ ϕ= ∑ | ⟩⟨ |=

∞ , where {ϕk}
forms an orthonormal basis and ∑kλk is absolutely convergent.
Now A N= Γ ∈ if and only if λk ≥ 0, ∑kλk = 1, and {ϕk} ⊂
HN

1 and if the total kinetic energy is finite (i.e., ∑kλk⟨ϕk|T|ϕk⟩
< +∞).
For any ψ ∈ HN

1 , the density−current pair (ρ,jp) ∈ L1 ( )3 ×
L1 ( )3 is defined by

Nr r( ) ( ; ) d1 1 1
2

1∫ρ ψ τ τ≔ | |− − (8)

Nj r r r( ) Im ( ; ) ( ; ) dp 1 1 1 1 1 1 1∫ ψ τ ψ τ τ≔ * ∇− − − (9)

where we integrate over all spin variables and over N − 1
spatial coordinates, τ−1 = (σ1, x2, ..., xN). For A N= Γ ∈ , we
can for instance compute ρ = ρΓ from ∑kλkρk, where ρk is
obtained from eq 8 with ψ = ϕk (and similarly for jp).
The theorem invo lves the weak topo logy on

 X L L( ) ( )1 3 1 3= × . Weak convergence of a sequence
{xn}⊂ X, written as xn ⇀ x ∈ X, means that for any bounded
linear functional ω ∈ X′, we have ω(xn)→ ω(x) as a sequence
of numbersthat is, weak convergence is the pointwise
convergence of all bounded linear functionals. Recall that the
dual space of L ( )1 3 is L ( )3∞ , so L ( )n

1 31ρ ρ ∈ if and only

if ( f |ρn) → ( f |ρ) for every f L ( )3∈ ∞ . Likewise, (ρn, jpn) ⇀
(ρ, jp) ∈ X if and only if ( f |ρn)→ ( f |ρ) and (a|jpn)→ (a|jp) for
every ( f, a) ∈ X′.
The trace-class operators over a separable Hilbert space

are examples of compact operators, an infinite-dimensional
generalization of finite-rank operators. Indeed, the set of
compact operators K( ) is the closure of the set of finite-rank
operators in the norm topology and thus a Banach space. The
dual space of K( ) is in fact TC( ). For B K( )∈ and
A TC( )∈ , the dual pairing is Tr(BA). Similar to the weak
topology for a Banach space, the dual of a Banach space can be
equipped with the weak-* topology. A sequence of trace-class
operators {An} converges weak-* to A TC( )∈ if, for each
B K( )∈ , Tr(BnA) → Tr(BA).
We now state and prove our main result, from which lower

semicontinuity follows in Corollary 1 and expectation-valued-
ness in Corollary 2. The theorem is the CDFT analogue of
Theorem 4.4 in ref 1.
Theorem 1. Suppose that (ρ, jp) ∈ X and {(ρn, jpn)} ⊂ X are

such that F(ρ, jp) < +∞ and F(ρn, jpn) < +∞ for each n ∈ and
further suppose that (ρn, jpn) ⇀ (ρ, jp). Then there exists

NΓ ∈ such that Γ → (ρ, jp) and Tr(H0Γ) ≤ lim infn
F(ρn, jpn).
Proof of Theorem 1. The initial setup follows ref 1, which we

here restate. Without loss of generality, we may replace H0 = T
+ W by h2 = T + W + 1, which is self-adjoint and positive-
definite. The operator h is taken to be the unique positive self-
adjoint square root of T + W + 1.
Consider the sequence {gn} with elements gn ≔ F(ρn, jpn). If

gn → +∞, then the statement of the theorem is trivially true.
We therefore assume that {gn} is bounded. There then exists a
subsequence such that g ≔ limn gn exists. Furthermore, for each
n there exists n NΓ ∈ such that Γn → (ρn, jpn) and Tr(hΓnh)
= Tr(h2Γn) ≤ g + 1/n. To demonstrate this, we select for each
n a density matrix Γn → (ρn, jpn) that satisfies Tr(h

2Γn) < gn +
1/2n and choose m such that |g − gn| < 1/2n for each n > m

(by taking a subsequence if necessary); for each n > m, we then
have

h h g h h g h h g

g g n

0 Tr( ) Tr( ) Tr( )

1/

n n n n

n

≤ Γ − = | Γ − | ≤ | Γ − |

+ | − | ≤ (10)

Using the sequence {hΓnh}, we next establish a candidate limit
density operator NΓ ∈ .
The dual-space sequence of (positive-semidefinite) oper-

ators yn ≔ hΓnh ∈ TC(LN
2 ) is uniformly bounded in the trace

norm: ∥yn∥TC ≤ g + 1. By the Banach−Alaoglu theorem, a
norm-closed ball of finite radius in the dual space is compact in
the weak-* topology. Thus, there exists y ∈ TC(LN

2 ) such that
for a subsequence, Tr(Byn) → Tr(By) for each B K L( )N

2∈ ,
meaning that y is the (possibly nonunique) weak-* limit of a
subsequence of {yn}. The limit is positive-definite, since the
orthogonal projector PΦ onto LN

2Φ ∈ is a compact operator,
which gives

y yP y P yTr( ) lim Tr( ) lim 0
n n n n⟨Φ| |Φ⟩ = = = ⟨Φ| |Φ⟩ ≥Φ Φ

(11)

We now define Γ = h−1yh−1, which fulfills all of the criteria
for being an element of N , except possibly TrΓ = 1, although
TrΓ ≤ 1 is already implied by the weak convergence. (It
should be noted that Γ has finite kinetic energy since Tr(h2Γ)
< +∞.) If we can show that Γ→ (ρ, jp), then we are done with
the complete proof s ince NΓ ∈ fo l lows from


N r rTr ( ) d 11

3∫ ρΓ = =− and since

h y y h

n Fj j

Tr( ) Tr lim inf Tr lim inf Tr( )

lim inf F( , ) 1/2 lim inf ( , )
n n n

n

n n n n n

2 2

n p pρ ρ

Γ = ≤ = Γ

≤ { + } =
(12)

Let (ρ′, jp′) ← Γ be the density associated with Γ. To
demonstrate that (ρ′, jp′) = (ρ, jp), we recall that (ρn, jpn) ⇀
(ρ, jp) by assumption. Since weak limits are unique, our proof
is complete if we can show that (ρn, jpn) ⇀ (ρ′, jp′) in

 L L( ) ( )1 3 1 3× . The proof that ρn ⇀ ρ′ is given in ref 1. Here
we demonstrate that jpn ⇀ jp′ by showing for each a L ( )3∈ ∞

that (jpn − jp′ | a) → 0.
Let 3Ω ⊂ be a bounded domain with characteristic

function χ equal to 1 on Ω and 0 elsewhere. Since
L, ( )1 3ρ ρ′ ∈ , for a given ε > 0 we may choose Ω to be

sufficiently large that ∫ (1 − χ)ρ dr < ε and ∫ (1 − χ)ρ′ dr < ε.
Since ρn ⇀ ρ, we also have ∫ (1 − χ)(ρn − ρ) dr < ε for
sufficiently large n. From the triangle inequality, we obtain
∫ (1 − χ)ρn dr ≤ ∫ (1 − χ)(ρn − ρ) dr + ∫ (1 − χ)ρ′ dr,
implying that ∫ (1 − χ)ρn dr < 2ε for sufficiently large n.
In the notation τ = (r1, τ−1) = (x1, x2, ..., xN) and τ−1 = (σ1,

x2, ..., xN) with space−spin coordinates xi = (ri, σi), we define

U N N rIm diag Im ( ) ( , )1 1 1 1∑ λ ψ τ ψ τ= ∂ Γ = ∂α α
μ

μ μ α μ −

where α denotes a Cartesian component and we have
introduced the spectral decomposition Γ = ∑μλμ|ψμ⟩⟨ψμ| ∈

N with ψμ ∈ HN
1 . We note that if Γ → (ρΓ, jpΓ), then

integration of Uα over τ−1 gives the current component jpαΓ(r)
= ∫Uα(r, τ−1) dτ−1.
We now let S = ∏i=1

N χ(ri) be the characteristic function of
N N3Ω ⊂ . By the definition of Uα, we then have
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I U S U

N S

( ) (1 ) d

(1 ) d1,

∫
∫ ∑

τ

λ ψ ψ τ

≔ −

≤ − | ||∂ |

α α

μ
μ μ α μ

Applying the Cauchy−Schwarz inequality twice, we obtain

( )

I U N S

N S

N

( ) (1 ) d

(2 ) (1 ) d

2
d

2

1/2

1,
2

1/2

1/2 2
1/2

1,
2

1/2

i

k

jjjjjjj
y

{

zzzzzzz
i

k

jjjjjjj
y

{

zzzzzzz

i

k

jjjjjjj
y

{

zzzzzzz

∫

∫

∫

∑ ∑

∑

∑

λ ψ λ ψ τ

λ ψ τ

λ ψ τ

≤ − | | |∂ |

≤ − | |

× |∂ |

α
μ

μ μ
μ

μ α μ

μ μ μ

μ
μ α μ

Noting that 1 − S ≤ ∑i=1
N [1 − χ(ri)] and using the symmetry

of |ψμ|
2, we obtain for the two factors

S r(1 ) d (1 ) d2∫ ∫∑ λ ψ τ χ ρ ε− | | ≤ − ′ <
μ

μ μ

and

N
T g

2
d Tr( )2∫ ∑ λ ψ τ|∂ | = Γ ≤

μ
μ α μ

We conclude that I(Uα)
2 ≤ 2Ngε. Introducing Un,α = N

Im diag ∂1αΓn and proceeding in the same manner, we arrive at
the bound I(Un,α)

2 ≤ 4Ngε, assuming that n has been chosen
to be sufficiently large that ∫ (1 − χ)ρn dr < 2ε holds.
We are now ready to consider the weak convergence jpn ⇀ jp′

in L ( )1 3 . For each a L ( )3∈ ∞ and for sufficiently large n,
using the Cauchy−Schwarz inequality and the Hölder
inequality in combination with the bounds I(Uα)

2 ≤ 2Ngε
and I(Un,α)

2 ≤ 4Ngε, we obtain the inequality

j j a

U U a

S U U a

S U U a

a Ng U U a S

j j a r

r

r

r

r

r

( ) d

( ) d

( ) ( ) d

(1 )( ) ( ) d

( ) ( ) d

(6 ) ( ) ( ) d

n

n

n

n

n

n

p p

p p

, 1

, 1

, 1

1/2
, 1

∫

∫

∫

∫

∫

∫

τ

τ

τ

ε τ

− ′ ·

≤ ∑ − ′

= ∑ −

≤ ∑ − −

+ ∑ −

≤ ∑ + ∑ −

α α α α

α α α α

α α α α

α α α α

α α α α α α∞

(13)

Since ε > 0 is arbitrary, it only remains to show that we have
∫ (Un,α − Uα)aα(r1)S dτ → 0 as n → ∞.
Let M be the compact multiplication operator associated

with aα(r1)S(τ), a bounded function with compact support
over  N3 . Let Ωσ = {↑, ↓} be the set consisting of the two spin
states of the electrons. We note that

U a S U a

N M

N h M h y

rd ( ) d

Im Tr( )

Im Tr( )

n n

n

n

,
( )

, 1

1
1

1
1

N∫ ∫τ τ=

= ∂ Γ

= ∂

α α α

α

α

Ω×Ω

− −

σ

(14)

viewing Γn as an operator over L2((Ω×Ωσ)
N) by domain

restriction of the spectral decomposition elementsthat is, ψμ

∈ H1((Ω×Ωσ)
N), meaning that the 2N spin components of ψμ

are in H1(ΩN). For simplicity, the spaces used here are not
antisymmetrized.
Our next task is to demonstrate that B = h−1M∂1αh−1 is

compact over L2((Ω×Ωσ)
N). We first show that h−1 is compact

with range H1((Ω×Ωσ)
N). We have h T W 1= + + with

domain H1((Ω×Ωσ)
N). Now h−1 exists and is bounded since

−1 is not in the spectrum of T + Wthat is, h−1:
L2((Ω×Ωσ)

N) → H1((Ω×Ωσ)
N) is bounded. By the Rellich−

Kondrachov theorem, H1(ΩN) (the standard Sobolev space
without spin) is a compact subset of L2(ΩN). It follows that
H1((Ω×Ωσ)

N) is a compact subset of L2((Ω×Ωσ)
N), since the

tensor product of compact sets is compact. Hence, h−1 is
compact.
Next, the operator ∂1α is, by the definition of the Sobolev

space H1(ΩN), bounded from H1((Ω×Ωσ)
N) to L2((Ω×Ωσ)

N).
Thus, ∂1αh

−1 is bounded over L2((Ω×Ωσ)
N). It follows that B

∈ K(L2((Ω×Ωσ)
N)) because it is a product of the compact

operator h−1 and the bounded operator M∂1αh−1.
From the compactness of B, it follows that

U a S N By

N By U a S

d Im Tr( )

Im Tr( ) d

n n,∫
∫

τ

τ

=

→ =

α α

α α (15)

by the weak-* convergence of yn to y. We conclude that jpn ⇀
jp′ and hence that (ρ, jp) = (ρ′, jp′), completing the proof.
Corollary 1.  F L L: ( ) ( ) 0,1 3 1 3× → [ +∞] is lower-semi-

continuous and also weakly lower-semicontinuous.
Proof. Let  Lj j L( , ) ( , ) ( ) ( )n np p

1 3 1 31ρ ρ ∈ × . From

Theorem 1, we then obtain

F H Fj j( , ) Tr( ) lim inf ( , )
n n np 0 pρ ρ≤ Γ ≤

(16)

where Γ → (ρ, jp). Hence, F is weakly lower-semicontinuous.
By Mazur’s lemma,15 weak lower semicontinuity of a convex
function implies strong lower semicontinuity.
Corollary 2. If F(ρ, jp) < +∞, then the inf imum in the CDFT

constrained-search functional is a minimum:

F Hj( , ) min Tr( )
jp ( , )

0
p

ρ = Γ
ρΓ→ (17)

Proof. One simply takes (ρn, jpn) = (ρ, jp) for all n and applies
Theorem 1.
In conclusion, we have extended Theorem 4.4 of ref 1 to

CDFT. As immediate corollaries, the constrained-search
functional F(ρ, jp) is lower-semicontinuous and expectation-
valued, that is, if F(ρ, jp) < +∞, then there exists Γ → (ρ, jp)
such that F(ρ, jp) = Tr(H0Γ). These mathematical results are
the final pieces in the puzzle of placing CDFT on a solid
mathematical ground in a similar manner as done by Lieb for
standard DFT.
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