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The EMI model represents excitable cells in a more accurate manner than traditional
homogenized models at the price of increased computational complexity. The increased
complexity of solving the EMI model stems from a significant increase in the number of
computational nodes and from the form of the linear systems that need to be solved. Here,
we will show that the latter problem can be solved by careful use of operator splitting of the
spatially coupled equations. By using this method, the linear systems can be broken into
sub-problems that are of the classical type of linear, elliptic boundary value problems.
Therefore, the vast collection of methods for solving linear, elliptic partial differential
equations can be used. We demonstrate that this enables us to solve the systems
using shared-memory parallel computers. The computing time scales perfectly with the
number of physical cells. For a collection of 512 × 256 cells, we solved linear systems with
about 2.5 × 108 unknows. Since the computational effort scales linearly with the number of
physical cells, we believe that larger computers can be used to simulate millions of
excitable cells and thus allow careful analysis of physiological systems of great importance.

Keywords: electrophysiological model, cardiac conduction, cell modeling, finite difference method, operator
splitting algorithm

1. INTRODUCTION

Traditionally, numerical simulations of excitable tissue have been performed using homogenized
mathematical models. For cardiac tissue, the bidomain model and the associated monodomain
model have been very popular and provided important insights into the electrochemical processes
underpinning every heartbeat. Introductions to these models can be found in, e.g., Refs. 1 and 2 and
numerical methods used to solved the models are presented in numerous papers; see, e.g., Refs. 3–7.
In the homogenized models, the extracellular space, the cell membrane and the intracellular space all
exist everywhere in the computational domain. This approach has proven to be very useful in
studying effects on a relatively large length scale (millimeters), but has obvious limitations when the
length scale approaches the size of a cell (micrometers). The main reason for this is that the cell itself
is missing in the homogenized models.

As an alternative to the homogenized models, we have recently presented and applied a cell-based
model; see, e.g., Refs. 8–10. In this model, the extracellular domain (E), the cell membrane (M) and
the intracellular domain (I) are all present in the mathematical model and it is therefore referred to as
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the EMI model. The EMI model is motivated by earlier work
where homogenization has been avoided; see, e.g., Refs. 11–19.

The obvious advantage of the EMI approach over the
homogenized counterparts is that the cell itself is present in
the model. This enables the modeler to change cell membrane
properties locally (e.g., varying ion channel densities along the cell
membrane) which may be of importance for the conduction
velocity; see, e.g., Refs. 9, 20, and 21. Furthermore, the presence of
the cell allows for study of the effect of changes to the cell size and
shape which may be of great importance; see, e.g., Refs. 22–25.
For instance, the T-tubule system can only be represented in an
averaged manner in the classical bidomain/monodomain models,
but in the EMI model it would be possible to represent the
T-tubule system explicitly albeit at the cost of handling complex
geometries.

On the other hand, the obvious disadvantage of the EMI
approach is the computational complexity of the model. One
issue is that in order to represent the geometry of the cell and the
intercalated discs to a reasonable degree of accuracy, we need a
very fine computational mesh. For the finite difference
computations we have conducted, the mesh resolution is
usually between 1 and 4 μm. Using a finite element method,
the number of nodes may be reduced by applying an adaptive
mesh, but the number of grid points remains high. For the
bidomain/monodomain models a typical mesh resolution is
around 0.25 mm (see, e.g., Ref. 26). For a cube with sides
measuring 1 cm, the EMI model (with Δx � 4 μm) requires
about 1.6 × 1010 mesh points whereas the bidomain model
requires about 64,000 mesh points (with Δx � 0.25mm). Since
the volume of the human heart muscle is about 300 cm3, we
realize that the EMI approach is currently not feasible and can
only be used to study relatively small collections of cells. For the
human heart, the bidomain model will require about 20 million
computational nodes, and that is clearly within reach for even
moderately sized computers.

The EMI model is useful for gaining detailed insights into the
dynamics close to excitable cells. It may also be used to study
small collections of specialized cells like the sinus node, AV node
(atrioventricular node), Purkinje junctions, etc. For instance, the
volume of the sinus node (see Ref. 27) is about 80 mm3 and a
mesh with Δx � 4 μm would result in about 1.25 × 109 mesh
points which may be achievable. In contrast, the bidomain
model of the sinus node would need only about 5,000 nodes.

The mouse heart is frequently used as an experimental model
to study cardiac electrophysiology. The size of the sinus node and
AV node for this animal is much smaller than for humans; the
volume of the sinus node of a mouse is about 1.5 mm × 0.5 mm ×
0.3 mm ≈ 0.23 mm3 and the volume of the AV node is about
1.2 mm × 0.5 mm × 0.4 mm ≈ 0.24 mm3, see Ref. 28. With
Δx � 4 μm, we would need to solve linear systems with about 3.5 ×
106 and 3.75 × 106 computational nodes for the sinus node and
the AV node, respectively. Based on the results of the present
paper, we claim that it is possible to perform detailed simulations
based on the EMI model for the sinus node and AV node of the
mouse heart.

Another difficulty associated with the EMI model is the
characteristics of the linear system arising from the

discretization of the model. The system turns out to be
difficult to solve and it does not fall into a standard category
of systems where well-developed methods and software can be
applied. The method used to solve the system in Refs. 8 and 10 is
based on an temporal operator splitting algorithm where the non-
linear part is handled in one step, and then the linear equations
arising from E, M and I are spatially coupled in one common
linear system. Attempts to split the system into separate equations
for E, M and I, and solve these systems in a sequential manner,
lead to severe restrictions on the time step (Δt ∼ 10− 5 ms),
rendering the method useless for any practical purposes.
Therefore, we need to formulate the model as a coupled
system of equations and the challenge becomes how to solve
this system. Fast numerical solution of linear, elliptic equations is
one of the most developed field of scientific computing (see, e.g.,
Refs. 29–32). Therefore, spatial splitting of the problem into sub-
problem of this particular type will ensure that we have efficient
methods at hand. The main result of this paper is to demonstrate
that the EMI model can be split into sub-problems of the classical
elliptic type and therefore the overall method becomes efficient
and stable. The overall computational efforts scale linearly with
the number of cells and, therefore, the number of cells we can
simulate is, in principle, determined by the power of the available
computing facility.

The remainder of this paper is organized as follows: First, in
Section 2, we present the EMI model for a single cell and a finite
difference approach for discretizing and solving the linear model
equations in a coupled manner. We then describe the spatial
operator splitting algorithm for splitting the EMI model into
separate equations for the extracellular space, the membrane and
the intracellular space, and outline a finite difference
discretization for the splitting approach. In Section 2.5, we
investigate the accuracy of the spatial splitting method by
comparing the solution of the splitting algorithm to the
solution of the spatially coupled system of equations. Next, in
Section 3, we present the EMI model for connected cells and
explain how the spatial splitting approach can be extended to this
case. We also describe a finite difference discretization of the
coupled system and the spatial splitting approach, and investigate
the accuracy of the splitting method for a collection of connected
cells. In Section 4, we describe a parallel shared-memory
implementation of the spatial splitting algorithm and report
performance results of the parallel solver. Finally, in Sections
5 and 6 the results of the paper are discussed and summarized.

2. THE SINGLE CELL CASE

We begin by describing a spatial splitting method for the EMI
model for a single cell surrounded by an extracellular space, as
illustrated in Figure 1. This splitting method may also be
straightforwardly extended to collections of isolated cells, as
illustrated in Figure 2. However, when collections of cells are
connected by gap junctions (see Figure 6), the splitting
method must be extended to account for the gap junctional
coupling between cells. This extension is described in
Section 3.
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2.1. The EMI Model
In the EMI model for a single cell, like illustrated in Figure 1, we
consider an intracellular domain, Ωi, surrounded by an
extracellular domain, Ωe. The boundary between the
intracellular and extracellular domains defines the cell
membrane, Γ. The EMI model (see, e.g., Ref. 8) describes the
electric potential in these domains and is given by the following
system of equations:

∇ · σe∇ue � 0 inΩe, (1)

∇ · σ i∇ui � 0 inΩi, (2)

ue � 0 at zΩD
e , (3)

ne · σe∇ue � 0 at zΩN
e , (4)

ne · σe∇ue � −ni · σ i∇ui ≡ Im at Γ, (5)

ui − ue � v at Γ, (6)

vt � 1
Cm

(Im − Iion) at Γ, (7)

st � F at Γ. (8)

Here, ue is the extracellular potential defined in Ωe, ui is the
intracellular potential defined in Ωi, and v is the membrane
potential defined at Γ. The potentials are all given in units of
mV. The parameters σe and σi represent the extracellular and
intracellular conductivites, respectively, and are given in units of
mS/cm. Furthermore, ne and ni denote the outward pointing unit
normal vectors of the extracellular and intracellular spaces,
respectively, and Cm represents the specific membrane
capacitance, given in units of μF/cm2. Time is given in units of
ms and length is given in units of cm.

The current density Iion represents the sum of the ionic
current densities through different types of ion channels,
pumps and exchangers on the cell membrane, and Im
represents the sum Iion and the capacitive current density
Cmvt . All current densities are given in units of μA/cm2. The
model for Iion typically involves a set of additional state variables
describing the gating mechanisms of the ion channels and ionic
concentrations. These variables are defined on Γ and are denoted

by s in the EMI system defined above. The dynamics of s are
governed by a set of ordinary differential equations described by
F(v, s). In the computations of this paper, we let Iion and F(v, s)
be given by the Grandi et al. model for human ventricular
cardiomyocytes [33].

On the outer boundary of the extracellular space, we apply the
homogeneous Dirichlet boundary condition Eq. 3 on a part of the
boundary, zΩD

e , and the homogeneous Neumann boundary
condition Eq. 4 on the remaining part, zΩN

e . In the
computations reported below, we apply Dirichlet boundary
conditions on the outer extracellular boundary in the x- and
y-directions and Neumann boundary conditions on the
extracellular boundary in the z-direction.

2.2. The Coupled Discrete Model
In order to illustrate how the linear part of the EMI model Eqs
1–8 can be discretized and solved in a coupled manner, we
describe below how to set up a finite difference discretization
of the full EMI system. However, because of the possibly
nonlinear terms included in F and Iion, we use a temporal
operator splitting method to split the EMI system into a
linear part and a nonlinear part. The discrete version of this
approach is taken from Ref. 8 but repeated here for
completeness.

2.2.1. Spatial and Temporal Splitting
The challenge we address in the present paper is to split the spatial
coupling of the EMI model such that a solution algorithm can be
founded on well-studied equations. In addition, we use temporal
splitting of Eq. 7.

2.2.2. Step 1: Membrane Dynamics
In the discrete model, we seek discrete approximations un,j,q,ri ,
un,j,q,re , vn,j,q,r , sn,j,q,r of the solutions at t � tn � nΔt, x � xj � jΔx,
y � yq � qΔy, and z � zr � rΔz. It is important to notice that the
approximations of v and s are only sought on Γ, the
approximation of ui in Ωi, and that of ue in Ωe. For each time
step tn, we assume that the solutions vn−1 and sn−1 are known for
the previous time step (t � tn−1). In the first step of the temporal

FIGURE 2 | Illustration of the EMI model domain for a collection of
isolated cells. The spatial splitting approach described in Section 2.2 for a
single cell may also be applied for this type of cell collection.

FIGURE 1 | Illustration of a two-dimensional version of the domain for the
EMI model for a single cell. The domain consists of an intracellular domain, Ωi ,
surrounded by an extracellular domain, Ωe. The membrane, Γ, is defined as
the boundary between the intracellular and extracellular domains. The
figure is reused from Ref. 47 with permission from the publisher.
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operator splitting procedure, we update the solution of v and s by
solving

vt � − 1
Cm

Iion, (9)

st � F(v, s) (10)

for a time step of Δt from the previous solutions vn−1 and sn−1.
We let the solution of s from this step define the
approximation of s at the current time step, sn, and let the
solution of v be denoted by v. In the computations reported
below, we solve Eqs 9 and 10 by taking m forward Euler steps
of size Δt* � Δt/m. We found the forward Euler scheme to
produce stable solutions at Δt* � 0.001 ms with the Grandi
et al. model. If a stiffer cell model was used, a first-order
generalized Rush–Larsen scheme [34] could be a more fitting
choice, as it generally allows for a larger time step than
forward Euler [35].

2.2.3. Step 2: Coupled Linear EMI System
In the next step of the temporal operator splitting procedure, the
remaining EMI system Eqs 1–7 with Iion � 0 is solved using a
coupled finite difference discretization. A two-dimensional version
of the computational grid used in this discretization is illustrated in
Figure 3A. We observe that the computational grid consists of three

types of nodes; extracellular nodes marked by ×, intracellular nodes
marked by ○, and membrane nodes marked by ⊗.

For the intracellular nodes, there is one unknown, ui, and one
governing equation (Eq. 2). This equation is discretized using the
finite difference approximation

σ i

Δx2 (un,j+1,q,r
i − 2un,j,q,ri + un,j−1,q,r

i )
+ σ i
Δy2 (un,j,q+1,r

i − 2un,j,q,ri + un,j,q−1,r
i ) (11)

+ σ i
Δz2 (un,j,q,r+1i − 2un,j,q,r

i + un,j,q,r−1
i ) � 0.

Likewise, for the majority of the extracellular nodes, there is one
unknown, ue, and one governing equation (Eq. 1), which is
discretized using Eq. 11 with σi and ui replaced by σe and ue,
respectively. For the extracellular nodes on zΩD

e , Eq. 11 is replaced
by the discrete version of Eq. 3 (un,j,q,re � 0). Furthermore, for
extracellular nodes on zΩN

e (i.e., for the boundary in the
z-direction), the finite difference approximation

un,j,q,r+1
e − un,j,q,r−1e

2Δx � 0 (12)

of Eq. 4 is used to find substitutions for either un,j,q,r+1e or un,j,q,r−1i
located outside the computational domain in the extracellular
version of Eq. 11.

For the nodes located at the membrane, there are three
unknowns, ui, ue, v, and three governing equations (Eqs 5–7).
For the flux equality equation, Eq. 5, we use a standard first-order
finite difference approximation, and for Eq. 6, we use the discrete
version vn,j,q,r � un,j,q,ri − un,j,q,re . For Eq. 7 with Iion � 0, we use an
implicit time discretization

vn,j,q,r − vj,q,r

Δt � 1
Cm

In,j,q,rm , (13)

where In,j,q,rm is computed using the same finite differences as
for Eq. 5 and vj,q,r is the solution of v from Step 1 of the
operator splitting procedure. Note that for membrane nodes
located at the lines where two membrane planes intersect, we
compute two versions of In,j,q,rm , one for the normal derivative
of each of the membrane planes and define In,j,q,rm as the mean
value of these two versions. For corner nodes where three
membrane planes intersect, we similarly compute three
versions of In,j,q,rm and define In,j,q,rm as the mean value of
these three versions.

Collecting the equations of the discrete version of the linear
part of the EMI model, we end up with a spatially coupled system
of equations consisting of one equation for every computational
node plus two extra equations for each membrane node.

2.3. Robin/Neumann Spatial Splitting of the
EMI Model
The coupled discrete version of the EMI model may be used to
find accurate solutions of the system (see, e.g., Refs 8–10).
However, in some cases it would be much more convenient to
be able to rewrite the EMI system as a set of more standard
problems that can be solved individually using existing well-

FIGURE 3 | Illustration of the computational mesh used in the coupled
(A) and split (B) versions of the finite difference discretization of the EMI model.
The mesh consists of three types of nodes; extracellular nodes marked by ×,
intracellular nodes marked by ○, and membrane nodes marked by ⊗.
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developed solution methods for such standard problems. Linear
systems arising from discretizations of elliptic partial differential
equations have been under intense scrutiny for decades and the
efforts have resulted in optimal solution strategies; see, e.g.,
Ref. 30. Our aim is therefore to introduce a spatial operator
splitting algorithm for the EMI model that results in sub-
problems formulated in terms of standard elliptic problems,
thus enabling the use of optimal solvers.

In this section, we describe a method for constructing such a
splitting of the EMI model. In this approach, for each time step,
we will solve the equations of the intracellular and extracellular
spaces separately as standard Laplace equations with Robin,
Neumann or Dirichlet boundary conditions on the boundary
of the domains. The algorithm described in this section is
summarized in Algorithm 1.

2.3.1. Step 1: Membrane Dynamics
In the first step of the splitting procedure, we solve the nonlinear
part of the EMI model just like in the coupled discrete model. In
other words, we update the solution of the membrane potential, v,
and the remaining membrane state variables, s, by solving the
system of ordinary differential equations

vt � − 1
Cm

Iion, (14)

st � F(v, s) (15)

at Γ for one time step with the solutions from the previous time
step vn−1, sn−1 as initial conditions. We let the solution of s from
this step define the approximation of s at the current time step, sn,
and let the solution of v be denoted by v.

2.3.2. Step 2: Intracellular System
In the next step of the approach, we find an approximation of the
intracellular potential, uni , by solving Eq. 2 and using Eqs. 6, 7
(with Iion � 0 and initial condition v) as boundary conditions for
the membrane. In Eq. 6, we let une be approximated by ue
computed as follows: In the first iteration of Step 2, we let
ue � un−1e , and in the first time step, we assume that at t � 0,
we have u0e � 0. For the next iterations, the approximation ue is
taken from the solution of the previous iteration of the splitting
algorithm. Inserting the approximation of une into Eq. 6, we get

vn ≈ un
i − ue. (16)

In Eq. 7, we discretize the time derivative using the implicit
approximation

vn − v
Δt � 1

Cm
Inm.

Inserting Eq. 16 yields

un
i − ue − v ≈

Δt
Cm

Inm,

and inserting the definition of Im from Eq. 5, we obtain

un
i +

Δt
Cm

ni · σ i∇un
i ≈ v + ue.

This defines a Robin boundary condition at Γ for the intracellular
domain. Summarizing, Step 2 of the splitting procedure consists
of solving

∇ · σ i∇ui � 0 inΩi, (17)

ui + Δt
Cm

ni · σ i∇ui � v + ue at Γ, (18)

to find an approximation of uni , denoted by ui.

2.3.3. Step 3: Extracellular System
In the third step of the procedure, we update the extracellular
potential by solving Eq. 1 with boundary conditions given by Eqs
3–5. Here, ni · σi∇ui in Eq. 5 is found from the solution of Step 2.
In other words, Step 3 consists of computing

Im � −ni · σ i∇ui (19)

from the solution of ui from Step 2, and then solving

∇ · σe∇ue � 0 in Ωe, (20)

ue � 0 at zΩD
e , (21)

ne · σe∇ue � 0 at zΩN
e , (22)

ne · σe∇ue � Im at Γ, (23)

to find an approximation ue of une .

2.3.4. Iteration for the Intracellular-Extracellular
Coupling
After solving Step 2 and Step 3 once, we obtain a new
approximation ue for une . This approximation may be used to
define a new approximation given by Eq. 16, and Step 2 and
Step 3 may be repeated to obtain more accurate estimates of ui
and ue for uni and u

n
e , respectively. After repeating these steps for a

number of iterations, Nit, we define

un
i � ui, (24)

un
e � ue. (25)

2.3.5. Step 4: Updating the Membrane Potential
In the final step of the procedure, the membrane potential, v, is
updated using the solutions of ui and ue from the final iteration of
Step 2 and Step 3. We use Eq. 6 and set

vn � un
i − un

e at Γ. (26)

TABLE 1 | Default parameter values used in the simulations, based on Ref. 9.

Parameter Value

Cm 1 μF/cm2

Cg 0.5 μF/cm2

σ i 4mS/cm
σe 20mS/cm
Rg 0.0045 kΩcm2

Cell size 100 μm × 18 μm × 18 μm
Δx, Δy, Δz 2 μm
Δt (PDE part) 0.01ms
Δt* (ODE part) 0.001ms

For the parameters used in the Grandi et al. model, we refer to Ref. 33.
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2.4. Discrete Version of the Splitting
Approach
An illustration of the computational mesh used in each of the
steps of the finite difference discretization of the splitting method
is found in Figure 3B. In the discrete version of the splitting
approach, we solve Step 1 just like for the coupled version by
taking m forward Euler steps of size Δt* � Δt/m. In Step 2, we
consider the nodes representing the membrane and the purely
intracellular points and we have one equation and one unknown,
ui, in all these points. For the purely intracellular points, we
discretize Eq. 17 using Eq. 11. For the membrane points, we
discretize ni · σi∇ui in Eq. 18 using a standard first-order finite
difference approximation. In Step 3, we discretize Eqs 20–22 in
the same manner as for the coupled system, and use standard
first-order finite difference approximations of ni · σi∇ui
and ne · σe∇ue in Eqs 19 and 23, respectively. In Step 4, we
use the straightforward discrete version of Eq. 26.

2.5. Numerical Comparison of Solution
Methods
In order to investigate the accuracy of the splitting method
introduced above, we set up a simple test case with a single
cell surrounded by an extracellular space. The cell is located in the
center of the domain, and the size of the entire domain Ω � Ωi∪Ωe

is 180 μm × 130 μm × 26 μm. The default parameter values used in
the simulation are given in Table 1, and the membrane dynamics
are modeled by the epicardial version of the Grandi et al. model
for human ventricular cardiomyocytes [33]. In addition, 20% of
the cell in the lower x-direction is stimulated by a membrane
current of −40 μA/cm2.

Figures 4 and 5 show a comparison of the solutions of the
coupled approach and the splitting approach applied to this simple
test problem. The left panel shows the extracellular potential, ue,
and the right panel shows the intracellular potential, ui.
Furthermore, the upper panel shows the solution of the coupled

approach, the middle panel shows the solution of the splitting
approach, and the lower panel shows the absolute value of the
difference between the two solutions. In Figure 4 we use one
iteration (Nit � 1) in the splitting approach, and in Figure 5, we
use five iterations (Nit � 5). We observe that the coupled and
splitting approaches result in very similar solutions for both ue and
ui and for both one and five iterations of the splitting approach.
However, the difference is reduced when five iterations are used
compared to when one iteration is used. ForNit � 1, the maximum
difference between the two solutions is about 10− 6 mV for ue and
10− 2 mV for ui. ForNit � 5, the maximum difference is reduced to
about 10− 14 mV for ue and 10− 10 mV for ui.

In Table 2, we report the difference between the solutions of
the two approaches in the form of the relative, discrete l2-norm of
the difference. We consider a number of different values of Δt for
the splitting approach and compare these solutions to the
solution of the coupled approach for Δt � 0.001 ms. In the
splitting approach, we take five iterations for each time step
(Nit � 5). In the table, we observe that as Δt is reduced for the
splitting approach, the difference between the two solutions
decreases with a rate roughly equal to Δt.

3. CONNECTED CELLS

As observed in the previous section, the proposed splitting
method for the EMI model for a single cell appears to provide
accurate solutions for reasonable time step sizes. However, in
cases where cells are connected by gap junctions like illustrated in
Figure 6, the splitting approach needs to be extended to account
for the coupling between cells through the gap junctions. Again,
the aim of the splitting is to obtain standard uncoupled Laplace
problems in each domain and thereby allow solution of the
originally coupled system by solving decoupled systems for the
individual cells in parallel. In this section, we describe such an
extension of the splitting method.

3.1. The EMI Model for Connected Cells
A two-dimensional version of the domain for the EMI model for
two connected cells is illustrated in Figure 6. Two cells, Ω1

i and Ω2
i ,

are surrounded by an extracellular space, Ωe, and the boundary
between Ωe and each of the cells Ω1

i and Ω2
i consists of the cell

membranes denoted by Γ1 and Γ2, respectively. In addition, the
boundary between the two intracellular domains defines an
intercalated disc, denoted by Γ1,2. The EMI model describes the
electric potential in such a domain and is given by the equations

∇ · σe∇ue � 0 in Ωe, (27)

∇ · σ i∇uki � 0 in Ωk
i , (28)

ue � 0 at zΩD
e , (29)

ne · σe∇ue � 0 at zΩN
e , (30)

ne · σe∇ue � −nk
i · σ i∇uki ≡ Ikm at Γk, (31)

uk
i − ue � vk at Γk, (32)

vkt �
1
Cm

(Ikm − Ikion) at Γk, (33)

Algorithm 1 | Summary of the splitting algorithm for the EMImodel for a single cell.

Initial conditions: v0, s0, u0e .
for n � 1, . . . ,Nt:

Step 1: Find sn and v by solving a time step Δt from (sn−1 , vn−1) of
vt � − 1

Cm
Iion(v, s),

st � F(v, s).
Define ue � un−1e .

for j � 1, . . . ,Nit :
Step 2: Find ui by solving

∇ · σ i∇ui � 0 in Ωi ,

ui + Δt
Cm
ni · σ i∇ui � v + ue at Γ.

Step 3: Find ue by solving
∇ · σe∇ue � 0 in Ωe ,

ue � 0 at zΩD
e ,

ne · σe∇ue � 0 at zΩN
e ,

ne · σe∇ue � −ni · σ i∇ui at Γ.
end
Define une � ue , uni � ui .
Step 4: Define vn � uni − une at Γ.

end
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skt � Fk at Γk, (34)

n
~k
i · σ i∇u~ki � −nk

i · σ i∇uki ≡ Ik,~k at Γk,~k, (35)

uk
i − u

~k
i � wk at Γk,~k, (36)

wk
t �

1
Cg

(Ik,~k − Ikgap) at Γk,~k, (37)

for each cell k and each neighboring cell ~k. Here, ue, uki , v
k are the

extracellular, intracellular and membrane potentials in Ωe, Ωk
i and

at Γk, respectively. In addition, wk � uki − u
~k
i denotes the potential

difference at an intercalated disc, Γk,~k. Note here that at a given
intercalated disc, this potential difference is defined differently for
the two adjoining cells. For instance, at the intercalated disc Γ1,2
illustrated in Figure 6, w1 � u1i − u2i and w2 � u2i − u1i . The
current density Ikgap (in μA/cm2) represents the ionic current
density through the gap junctions at the intercalated disc and is
given by

Ikgap �
1
Rg
wk, (38)

where Rg is the gap junction resistance (in kΩcm2), and Cg in
Eq. 37 represents the specific capacitance of the intercalated disc.

Furthermore, Ik,~k (in μA/cm2) represents the sum of Ikgap and the
capacitive current over the gap junction, Cgwk

t . For definitions and
units for the remaining variables and parameters, see Section 2.1.

3.2. Discrete Coupled Version of the Model
for Connected Cells
A two-dimensional version of the computational mesh used in the
finite difference discretization of the EMImodel for two connected
cells is illustrated in Figure 7A. We observe that in this case, there
are four different types of nodes; nodes located in the extracellular
space, marked by ×, nodes located in the intracellular space,
marked by ○, nodes located at the membrane, marked by ⊗,
and, finally, nodes located at the intercalated disc, marked by •.

In the coupled discrete version of the EMI model for connected
cells, we split the EMI model into a nonlinear part and a linear part
using the same temporal operator splitting procedure as for the
discrete coupled model for a single cell (see Section 2.2). Moreover,
the first nonlinear step, solving the ordinary differential equations
describing the membrane dynamics, is solved in exactly the same
manner as for the single cell case (see Section 2.2.2).

Furthermore, in the finite difference discretization of the linear
part of the EMI model we use the exact same approach to

FIGURE 4 | Comparison of the solutions of the coupled (C) and splitting (S) approaches for the EMI model for a single cell. The left panel shows ue and the right
panel shows ui . Furthermore, the upper panel shows the solution of the C approach, the middle panel shows the solution of the S approach, and the lower panel shows
the absolute value of the difference between the two solutions. The solutions are collected at t � 3.5 ms, and the plots show the solutions in a sheet in the center of the
domain in the z-direction. The parameters used in the simulations are specified in Table 1, and we use Nit � 1 in the S approach.
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discretize the equations for the intracellular, extracellular and
membrane nodes as for the single cell case (see Section 2.2.3).
The only exceptions requiring special attention in the case of
connected cells are the extracellular nodes located directly below
or above the intercalated disc (see Figure 7A). For these nodes, we
enforce a no-flow boundary condition and set the extracellular
potential equal to the potential in the purely extracellular nodes
located directly above or below the corner nodes.

The nodes located at the intercalated disc are treated in exactly
the same manner as the membrane nodes except that Ikgap is not set

to zero in Eq. 37. We discretize n
~k
i · σi∇u~ki and nki · σi∇uki in Eq. 35

using standard first-order finite differences, and use a
straightforward discrete version of Eq. 36. Finally, Eq. 37 is
discretized in time using an implicit finite difference approximation

FIGURE 5 | Comparison of the solutions of the coupled and splitting approaches for the EMI model like in Figure 4, except that we use five iterations, Nit � 5,
instead of one in the splitting approach.

FIGURE 6 | Two-dimensional illustration of the EMI model domain for
two connected cells. The domain consists of two cells, Ω1

i and Ω2
i , with cell

membranes denoted by Γ1 and Γ2, respectively. The cells are connected
to each other by the intercalated disc, Γ1,2, and surrounded by an
extracellular space, denoted by Ωe. The figure is reused from Ref. 48 with
permission from the publisher.

TABLE 2 | Difference between the solution of the coupled approach (uCi , u
C
e , v

C )
with Δt � 0.001 ms and the solution of the splitting approach (uSi , u

S
e , v

S ) for a
number of different values of Δt and with Nit � 5.

Δt (ms) ||uS
e −uC

e ||2||uC
e ||2

||uS
i −uC

i ||2||uC
i ||2

||vS − vC||2||vC||2
0.1 1.65e+00 5.39e−01 5.40e−01
0.05 7.61e−01 1.35e−01 1.35e−01
0.02 2.33e−01 2.69e−02 2.69e−02
0.01 9.85e−02 9.09e−03 9.11e−03
0.005 4.10e−02 3.26e−03 3.27e−03
0.002 9.79e−03 6.99e−04 7.01e−04
0.001 6.84e−10 8.84e−09 8.84e−09
The solutions are compared at t � 3.5 ms in a simulation of a single cell, and the
parameters of the model are specified in Table 1.
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wk,n − wk,n−1

Δt � 1
Cg

(In
k,~k

− 1
Rg
wk,n),

where a first-order finite difference approximation of −nki ·σi∇uk,ni
is used to define In

k,~k
.

3.3. Splitting Approach for the EMIModel for
Connected Cells
We now want to split the intracellular subdomains in order to
obtain classical elliptic equations defined on small domains. In
this splitting approach, the linear part of the EMI model is for
each time step split into standard Laplace problems with Robin,
Neumann or Dirichlet boundary conditions. These problems
can be solved separately in each of the domains Ωk

i and Ωe.
Steps 1, 3, and 4 of the splitting approach are exactly the same

for connected cells as for the single cell case (see Section 2.3), but
Step 2 is extended to account for the cell coupling at the
intercalated discs, Γk,~k. In this section we therefore only
describe the extended version of Step 2 and refer to Section
2.3 for descriptions of the remaining steps of the procedure. In
addition, the full splitting algorithm for coupled cells is
summarized in Algorithm 2.

3.3.1. Step 2: Intracellular System
In Step 2 of the splitting approach for connected cells, we
update the intracellular potential by solving Eq. 28 in each of
the intracellular domains, Ωk

i . On the membrane, Γk, we define
Robin boundary conditions from Eqs 32 and 33, just like in the
single cell case (see Section 2.3.2). What remains is to define a
boundary condition for the intercalated disc, Γk,~k, from Eqs
35–37.

We define this boundary condition in an iterative manner,
where we for each iteration use an approximation ofwk,n, denoted
by wk. In the first iteration, we set wk � wk,n−1. Discretizing the
time derivative in Eq. 37 using an implicit finite difference and
inserting Eq. 38, we obtain

In
k,~k

� 1
Rg
wk,n + Cg

wk,n − wk,n−1

Δt .

Replacing wk,n by the approximation wk, we get

In
k,~k

≈
1
Rg
wk + Cg

wk − wk,n−1

Δt .

This defines an approximation of the Neumann boundary
condition (Eq. 35) for Ωk

i . In each iteration of the intracellular
system, we therefore solve

FIGURE 7 | Illustration of the computational mesh used in the coupled (A) and split (B) versions of the finite difference discretization of the EMI model for two
connected cells. The mesh consists of four types of computational nodes; nodes located in the extracellular domain, marked by ×, nodes located in the intracellular
domain, marked by °, nodes located at the membrane, marked by ⊗, and nodes located at the intercalated disc, marked by •.
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∇ · σ i∇uk
i � 0 in Ωk

i , (39)

uk
i +

Δt
Cm

nki · σ i∇uk
i � vk + ue at Γk, (40)

−nk
i · σ i∇uki �

1
Rg
wk + Cg

wk − wk,n−1

Δt at Γk,~k, (41)

for each cell k to find temporary approximations of uk,ni , denoted
by uki .

1 Finally, we update wk using Eq. 36 on the form

wk � uk
i − u

~k
i . (42)

This procedure (Eqs 39–42) is continued for a number of
iterations, denoted by Mit.

3.4. Discrete Version of the Splitting
Approach
Figure 7B shows an illustration of the computational mesh used
in each of the steps of the finite difference discretization of the
splitting approach for connected cells. The discrete versions of
steps 1, 3, and 4 of the procedure are set up in the samemanner as for
a single cell (see Section 2.4). For each cell and in each iteration of
Step 2, we consider the nodes representing the intercalated disc, the
membrane and the purely intracellular points, and we have one
equation and one unknown, uki , in all these nodes. For the purely
intracellular nodes, we discretize Eq. 39 using Eq. 11. For the

membrane and intercalated disc nodes, we discretize ni · σi∇uki in
Eqs 40 and 41 using a standard first-order finite difference.

3.5. Numerical Comparison of Solution
Methods
In order to investigate the accuracy of the splitting method for
the EMI model for connected cells, we extend the simple test
case introduced in Section 2.5 to include a collection of 5 × 5
connected cells. We still use the parameters specified in
Table 1, unless otherwise specified. In order to allow for
two-dimensional cell connections, each cell is extended with
additional cubes of smaller width in the x- and y-directions
(see Figure 8). The sizes of these additional cubes are given in
Table 3. The distance between the intracellular domain and the
extracellular boundary is 12 μm in the x- and y-directions and
4 μm in the z-direction. Furthermore, we stimulate the 2 × 2
cells in the lower left corner by a 1 ms-long stimulus current of
−40 μA/cm2, and we consider the solution at t � 2.5 ms.

Note that in the current implementation of the model, the
intracellular and extracellular conductivities, σi and σe, are
assumed to be isotropic, and the anisotropy of cardiac tissue is
represented by the anisotropic cell shape and distribution of gap
junctions. Anisotropic conductivities, σi and σe, could, however,

FIGURE 8 | Two-dimensional illustration of the geometry used for a single
cell in the simulations of collections of connected cells. The intracellular domain is
a composition of the subdomains ΩO, ΩW, ΩE, ΩS, and ΩN, and all these
subdomains are shaped as rectangular cuboids with sizes specified in
Table 3. The figure is reused from Ref. 48 with permission from the publisher.

TABLE 3 | Specification of the size of the subdomains of a single cell used in the
simulations of connected cells (see Figure 8).

Domain Size

ΩO 100 μm × 18 μm × 18 μm
ΩW, ΩE 4 μm × 8 μm × 8 μm
ΩS, ΩN 8 μm × 4 μm × 8 μm

Algorithm 2 | Summary of the splitting algorithm for the EMImodel for connected cells.

Initial conditions: vk,0, sk,0, wk,0, u0e , for all k.
for n � 1, . . . ,Nt:

Step 1: For all k, find sk,n and vk at the nodes of themembrane Γk by solving a
time step Δt from (sk,n−1 , vk,n−1) of

vkt � − 1
Cm
Iion(vk , sk),

skt � F(vk , sk).
Define ue � un−1e , wk � wk,n−1 for all k.

for j � 1, . . . ,Nit :
Step 2:
for m � 1, . . . ,Mit :

For every k, find uki by solving
∇ · σ i∇uki � 0 in Ωk

i ,

uki + Δt
Cm
nki · σ i∇uki � vk + ue at Γk ,

−nki · σ i∇uki � 1
Rg
wk + Cg

wk−wk,n−1
Δt at Γk,~k ,

where ~k denotes each of the neighboring cells of cell k.
Update wk � uki − u

~k
i at Γk,~k for all k and ~k.

end
Step 3: Find ue by solving

∇ · σe∇ue � 0 in Ωe ,

ue � 0 at zΩD
e ,

ne · σe∇ue � 0 at zΩN
e ,

ne · σe∇ue � −nki · σ i∇uki at Γk for all k.
end
Define une � ue , uk,ni � uki , w

k,n � wk for all k.
Step 4: Define vk,n � uk,ni − une at Γk for all k.

end

1Note that in the first iteration of this procedure, the approximation of the
capacitive current density, Cg

wk−wk,n−1
Δt , is equal to zero because wk � wk,n−1.
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also be straightforwardly incorporated in the model (see Eqs
27–37). Using the parameters of the simple test case setup, the
conduction velocity is approximately 26 cm/s in the longitudinal
direction (x-direction) and approximately 6 cm/s in the
transverse direction (y-direction).

In Figure 9, we compare the solutions of the coupled and splitting
approaches applied to this test problem. In the splitting approach, we
use five inner and outer iterations (Mit � Nit � 5). We observe that
the coupled and splitting approaches result in very similar solutions
for both ue and ui. The maximum difference between the two
solutions is about 10− 8 mV for ue and 10− 6 mV for ui.

Table 4 compares the solution of the splitting approach for
different values of Δt to the solution of the coupled approach using
Δt � 0.001 ms. Again, we use five inner and outer iterations (Mit �
Nit � 5) in the splitting approach. We observe that as the size of Δt
is decreased for the splitting approach, the difference between the
two solutions decreases with a rate roughly equal to Δt. Note that in
this case, Δt � 0.1 ms lead to instabilities for the splitting approach,
so Δt � 0.05 ms is the smallest time step considered.

In Figure 10, we investigate how the absolute value of the
difference between the intracellular potentials, computed using the
two solution methods, depends on the time step, Δt, the number of
iterations used for the coupling between the intracellular and
extracellular domains, Nit, and the number of iterations used for

FIGURE 9 | Comparison of the solutions of the coupled (C) and splitting (S) approaches for the EMI model for connected cells. The left panel shows ue and the right
panel shows ui . Furthermore, the upper panel shows the solution of the C approach, the middle panel shows the solution of the S approach, and the lower panel shows the
absolute value of the difference between the two solutions. The solutions are collected at t � 2.5 ms, and the plots show the solutions in a sheet in the center of the domain in
the z-direction. The parameters used in the simulations are specified in Tables 1 and 3, and we use five inner and outer iterations in the S approach (Mit � Nit � 5).

TABLE 4 | Difference between the solution of the coupled approach (uCi , u
C
e , v

C,
wC ) with Δt � 0.001 ms and the solution of the splitting approach (uSi , u

S
e , v

S,
wS ) for a number of different values of Δt, using five inner and outer iterations
(Nit � Mit � 5).

Δt (ms) ||uS
e −uC

e ||2||uC
e ||2

||uS
i −uC

i ||2||uC
i ||2

||vS − vC||2||vC||2
||wS −wC||2||wC||2

0.05 1.64e−01 1.09e−01 1.09e−01 2.07e−01
0.02 7.10e−02 4.36e−02 4.35e−02 8.60e−02
0.01 3.50e−02 2.09e−02 2.09e−02 4.19e−02
0.005 1.59e−02 9.35e−03 9.32e−03 1.89e−02
0.002 4.03e−03 2.35e−03 2.34e−03 4.75e−03
0.001 4.26e−06 2.13e−06 2.13e−06 4.23e−06
The solutions are compared at t � 2.5 ms in a simulation of 5 × 5 connected cells, and the
parameters of the model are specified in Tables 1 and 3.
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the coupling between the interior of the cells,Mit. In this case, we use
the same Δt in the coupled and splitting approaches. In the first row
of Figure 10, we observe that when only one inner and outer
iteration is used in the splitting approach, the maximum difference
between the solutions is in the range of 1–10mV, and that the
difference decreases as the time step is decreased. In the next rows,
we observe that the difference between the solutions of the two
methods decreases as we increase the number of iterations used in
the splitting approach. For Δt � 0.05 ms, we see that the maximum
difference is decreased from about 8 mV to about 1.5 mV if Nit or
Mit is increased to five.Moreover, if bothNit andMit is set to five, the
maximum difference decreases to less than 0.01mV. For
Δt � 0.01 ms and Δt � 0.001 ms, we observe that the difference
decreases more extensively when the number of outer iterations,
Nit, is increased to five than when the number of inner iterations,
Mit, is increased to five. Furthermore, when both are set to five the
maximum difference is about 10− 6 for Δt � 0.01 ms and 10− 4 for
Δt � 0.001 ms.

Figure 11 shows a similar comparison of the solutions of the
membrane potential, v, at the center of the membrane of the
center cell as a function of time. We consider three different
time steps Δt � 0.05 ms, Δt � 0.01 ms and Δt � 0.001 ms and
some different combinations of the number of inner and
outer iterations in the splitting algorithm. The upper panel of
the figure shows the full upstroke of the action potential. In
order to get a better impression of the differences between the
solutions, the lower panel zooms in on the solution at the action
potential peak. In the left panel, we observe that when only one
iteration is used in the splitting approach (Nit � Mit � 1), there
are clearly visible differences between the solutions of the
splitting approach and the coupled approach. However, in
the next panels, we observe that when the number of
iterations is increased, the difference between the solutions
decreases, and for Nit � Mit � 5, the solutions of the coupled
and splitting approaches are completely indistinguishable in
the plots.

FIGURE 10 | Absolute values of the difference in ui computed using the coupled and splitting approaches for different combinations of the time step, Δt, number of
outer iterations, Nit , and number of inner iterations,Mit . The solutions are compared in the center of the domain in the z-direction at t � 2.5 ms, and the parameters used
in the simulations are specified in Tables 1 and 3.
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In Figure 12, we examine how the maximum difference in the
computed intracellular potentials between the coupled and
splitting approaches decreases as the number of iterations used
in the splitting approach increases. In the left panel, we fix the
number of inner iterations, Mit, at one or five and vary the
number of outer iterations, Nit, between one and eight. We
observe that the difference between the solutions of the two
methods decreases as the number of outer iterations, Nit,
increases. In addition, the difference is smaller if the number
of inner iterations, Mit, is five than if it is one. In the right panel,
we fix the number of outer iterations, Nit, at one or five and vary
the number of inner iterations,Mit, between one and eight. In this
case we observe that increasingMit above two or three whenNit is

fixed at one or five, respectively, does not seem to increase the
accuracy of the splitting approach.

4. SHARED-MEMORY PARALLEL
IMPLEMENTATION OF THE SPLITTING
ALGORITHM
In this section, we will describe a parallel implementation of the
splitting algorithm. The parallel implementation targets a
hardware platform with a shared-memory system. Such
parallel platforms are currently widely available, e.g., a server
or desktop computer that has multiple sockets each with tens of

FIGURE 11 | Comparison of v at the center of the membrane of the center cell as a function of time computed using the coupled and splitting approaches for
different combinations of the time step, Δt, number of outer iterations, Nit , and number of inner iterations, Mit . The upper panel shows the full upstroke of the action
potential, and the lower panel focuses on the action potential peak. The parameters used in the simulations are specified in Tables 1 and 3.

FIGURE 12 |Maximum absolute difference in ui at t � 2.5 ms computed using the coupled and splitting approaches as the number of outer and inner iterations,Nit

andMit , are increased. In the left panel, we increase the number of outer iterations, Nit , and consider the two casesMit � 1 andMit � 5. In the right panel, we increase the
number of inner iterations, Mit , and consider the two cases Nit � 1 and Nit � 5. The parameters used in the simulations are specified in Tables 1 and 3.
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CPU cores. The entire memory is composed of the memory
domains that are directly connected to the sockets, allowing each
CPU core to access any address in the whole memory space. The
shared address space considerably eases the parallelization.
However, care in programming is needed to maximize data
locality, because accessing non-local parts of the memory is
more costly than accessing the local part.

Important details of programming and performance
enhancement will be discussed below, separately for the three
decoupled numerical components of the splitting algorithm. An
underlying principle is to use, whenever possible, existing software
libraries for the different components. Such software libraries
either use multiple threads to parallelize the computation
internally, or are serially invoked inside a loop of parallel iterations.

4.1. The Intracellular Subdomains
Recall that the intracellular space consists of the individual
excitable cells. Due to the splitting algorithm, the intracellular
systems associated with the cells can be solved independently.
This immediately brings a cell-level parallelism, because the
individual intracellular systems can be assigned to the different
CPU cores.With a spatial resolution of Δx � Δy � Δz � 2 μm there
are about 5,300 degrees of freedom in the linear system for
computing the intracellular potential of each cell. Such a
small-size system suits well for a direct solver, see, e.g., Ref.
36, for which the LU factorization is an excellent choice.
Moreover, since each intracellular matrix Ai that arises from
the finite difference discretization remains unchanged
throughout an entire EMI simulation, the factorization step is
executed only once. The resulting lower and upper triangular
matrices, Li andUi, are stored in memory, so that they are used in
a forward-backward substitution procedure every time a linear
system of the form Aix � b associated with an intracellular
subdomain needs to be solved.

It is possible to adopt several threads to parallelize each
forward-backward substitution step, but the amount of
parallelism at this level is limited. Such a parallelization
approach is thus not recommended unless the number of
available CPU cores greatly exceeds the number of cells.

For computing the LU factorization and performing forward-
back substitutions, we have chosen the serial version of the
SuperLU library [37]. We assign each of the linear
systems Aix � b to an OpenMP thread so that multiple threads
can work in parallel solving different linear systems. SuperLU was
configured to use the included BLAS implementation, CBLAS, for
the linear algebra routines. It is important that the BLAS
implementation used by SuperLU is “thread safe” (i.e., that it
supports being called from multiple threads) and does not attempt
any parallelization of its own, as this interferes with the cell-level
parallelization strategy employed here.

Apart from the aforementioned advantage that the LU
factorization of each Ai is only computed once, there is another
opportunity for performance enhancement. This is true as long as
we are interested in studying excitable cells of the same shape and
size. Under such an assumption, the number of unique
intracellular matrices is limited. More specifically, if the
excitable cells form a rectangular 2D grid, then for each of the

four sides, a cell can either be connected to a neighboring cell via a
gap junction or not, leading to some slight changes in the cell’s
geometry and boundary condition. As such, there are at most
24 � 16 unique matrices, and in the examples in this paper
where the cells form an M × N rectangular grid with M,N ≥ 3,
there are only 9 different matrices (one for each of the four
corners, one for each of the four sides, and one for the inner
cells). To save memory usage, we can thus group together the
linear systems sharing the same matrix Ai, and instead solve
AiX � B, where X and B are matrices that contain, respectively,
all the relevant solution vectors and right-hand sides.
Furthermore, we only need to compute and store the LU
factorization for each of the 9 unique matrices. In order to
ensure good data locality, the CPU cores that are assigned to
the same intracellular matrix Ai should preferably have direct
access to the memory domain where Li and Ui reside.

One remark is in order here. Although we discuss in this paper
a two dimensional collection of cells, it is important to keep in
mind that all the cell geometries are in 3D and all cells are
surrounded by a 3D extracellular space. In fact, the EMImodel for
a mesh of cells can only be applied in 3D because in 2D the
extracellular space would become disconnected.

4.2. The Extracellular Domain
The splitting algorithm requires the solution of a 3D Laplace
equation for the entire extracellular domain with Neumann
boundary conditions on the cell membranes. With a careful
treatment of the boundary conditions, the finite difference
discretization produces a symmetric and positive-definite matrix
for the linear system associated with the extracellular domain.
These properties of the matrix permit the use of a conjugate
gradient (CG) iterative solver with an algebraic multigrid
(AMG) preconditioner to solve the linear system. Under
optimal conditions, the CG+AMG solver should require a
constant number of iterations, irrespective of the number of
degrees of freedom in the linear system, resulting in a solution
time that grows linearly with the size of the linear system [38].

We used the CG and AMG implementations provided by
ViennaCL [39] in our simulations, as ViennaCL supports
shared-memory parallelization via OpenMP. The
termination criterion |Ax − b|/|b|< 10− 5 was used. The
coarsening method inside AMG was set to maximum
independent set (MIS) [40], and the interpolation method
was set to smoothed aggregation. Additionally, the Jacobi

TABLE 5 | Specifications of the two servers used for parallel performance
measurements.

Metric System A System B

Sockets 2 4
NUMA domains 8 (4 per socket) 4 (1 per socket)
CPU model AMD EPYC 7601 Intel Xeon Platinum 8168
CPU base frequency 2.2 GHz 2.7 GHz
CPU cores (total) 64 96
Memory speed 2666 MT/s 2666 MT/s
Memory channels (total) 16 24
Memory size (total) 2 TiB 384 GiB

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 57946114

Jæger et al. Efficient Solution of the EMI Model

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


smoother weight was set to 0.85 as this value seemed to result in
the lowest number of iterations.

4.3. The Membrane
On each mesh node along the membrane, the ODE system given
in Step 1 of Algorithm 2 is solved with a forward Euler scheme
using a substepping time step Δt* � 1 μs. We also implemented a
first-order generalized Rush–Larsen (GRL1) scheme, and found
this theoretically more stable scheme to take about twice the
computing time of forward Euler. Since the forward Euler scheme
produced stable solutions for all the numerical experiments
reported in this paper, the GRL1 scheme was not used. Within
each time step, the ODE model can be solved independently on
each membrane node, hence there is ample parallelism. We used
the Gotran code generator [41] to generate C code for solving a
single step for both the forward Euler and GRL1 schemes. The
auto-generated code was then augmented with OpenMP
directives enabling shared-memory parallel execution.

When initializing the memory for the ODE-model’s state
variables and parameters, we perform a so-called “first touch”
to ensure that all CPU cores work on the parts of the memory that
are located closest to the cores in terms of connectivity. This step
is important for achieving proper scaling on modern servers
where the system memory is typically split into multiple NUMA
(non-uniform memory access) domains.

4.4. Hardware Platform Setup
Two hardware testbeds were used to measure the performance of
our parallel solver that implements the splitting algorithm. The
specifications are listed in Table 5. The first testbed (System A) is
a dual-socket server housing two AMD EPYC 7601 32-core
CPUs, each configured with 8-channel memory operating at
2666 MT/s. This server has 2 TiB of memory in total. The
second testbed (System B) is a quad-socket server with four
Intel Xeon Platinum 8,168 24-core CPUs, each configured
with 6-channel memory operating at 2,666 MT/s. The total
memory size is 384 GiB. Notably, System A has four NUMA
domains per socket,2 whereas System B only has one NUMA

domain per socket. Both systems support 2-way simultaneous
multi-threading (SMT), presenting two logical processors to the
operating system for each physical CPU core. Our hardware test
systems are arguably in the high end of the present-day CPU
server market and thus allow us to explore the limits of what can
be achieved in a shared-memory environment. Simulations with
an even larger number of cells, or a finer resolution inside each
cell, will eventually require an enhanced parallel simulator
capable of utilizing multiple nodes on a distributed-memory
system. Speedup due to increasing the number of nodes used
can be expected as long as the communication overhead does not
exceed the computation time per node.

Our solver is mainly written in the Python programming
language, but the most performance-critical parts are executed in
C code which we call from Python via the ctypes module. The
resulting multi-threaded parallel solver permits rapid prototyping
while also being reasonably performant. In the results presented
below, we have set environment variables to impose a “thread
binding” that fixes the mapping of OpenMP threads to the logical
processors such that the same core will work on the same part of
the memory for every time step. All logical processors were
assigned one thread each, resulting in 128 threads for System
A and 192 threads for System B.

4.5. Performance Results
The mesh resolution was set to Δx � Δy � Δz � 2 μm, and we use
Nit � Mit � 2 in the splitting algorithm. NE is the number of
unknowns in the linear system for the extracellular domain. ItCG
is the mean number of preconditioned CG iterations required for the
extracellular system. The time spent solving each of the three domains
(Extracellular, Membrane and Intracellular) is listed as well as the
total across all domains. On the right side, the times are divided by the
number of cells to demonstrate the asymptotic scaling.

Tables 6 and 7 show the time usage per time step needed for 16
cells up to 65,536 and 16,348 cells for Systems A and B, respectively
(The memory size on System B is not large enough to simulate
256 × 256 cells.) More specifically, the tables report the average
time usage per time step for time steps 6–10 in the simulation. As
the number of cells grows, we can see the solution time per cell
converging toward a constant. The number of AMG-
preconditioned CG iterations for the extracellular system grows
by about 71% while the number of unknowns increases by more

TABLE 6 | Time required to solve a time step of size Δt � 0.02 ms for geometries ranging from 4 × 4 cells to 256 × 256 cells using System A (see Section 4.4).

Cells NE ItCG Time usage for all cells (s) Time per cell (ms)

E M I Total E M I Total

4 × 4 1.5 × 105 21.1 0.22 0.03 0.10 0.35 13.75 1.76 6.24 21.75
8 × 8 5.1 × 105 21.0 0.34 0.10 0.13 0.57 5.30 1.56 2.07 8.92
16 × 16 1.8 × 106 28.6 1.20 0.45 0.20 1.85 4.68 1.77 0.79 7.24
32 × 32 7.0 × 106 28.6 3.95 1.57 0.46 5.98 3.86 1.53 0.45 5.84
64 × 64 2.7 × 107 33.2 15.38 6.17 1.90 23.45 3.75 1.51 0.46 5.72
128 × 128 1.1 × 108 35.5 64.53 26.10 8.11 98.74 3.94 1.59 0.50 6.03
256 × 256 4.3 × 108 35.9 273.35 211.40 35.45 520.20 4.17 3.23 0.54 7.94

Themesh resolution was set to Δx � Δy � Δz � 2 μm, and we use Nit � Mit � 2 in the splitting algorithm. NE is the number of unknowns in the linear system for the extracellular domain. ItCG
is the mean number of preconditioned CG iterations required for the extracellular system. The time spent solving each of the three domains (Extracellular,Membrane and Intracellular) is
listed as well as the total across all domains. On the right side, the times are divided by the number of cells to demonstrate the asymptotic scaling.

2This stems from the CPU package being comprised of 4 dies, each with 8 cores and
two memory channels.
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than a factor of 2,800. System B outperforms System A for all the
cases, which can be attributed to it having 50% higher theoretical
memory bandwidth, 50% more cores, and higher clock speed than
SystemA.Additionally, architectural differences between the CPUs
could also have played a role.

In Table 8, we consider the case of a 4 μm resolution for
System A, and we are in this case able to perform simulations of
up to 512 × 256 cells. Note that in order to use a 4 μm resolution,
the tissue geometry has been slightly altered. The distance from
the cells to the extracellular boundary in the z-direction was
extended to 8 μm, ΩO was of size 104 μm × 16 μm × 16 μm, and ΩW,
ΩE, ΩS, and ΩN had size 8 μm × 8 μm × 8 μm (see Figure 3).

The mesh resolution was set to Δx � Δy � Δz � 4 μm, and we use
Nit � Mit � 2 in the splitting algorithm. NE is the number of
unknowns in the linear system for the extracellular domain. ItCG
is themean number of preconditioned CG iterations required for the
extracellular system. The time spent solving each of the three
domains (Extracellular, Membrane and Intracellular) is listed as
well as the total across all domains. On the right side, the times are
divided by the number of cells to demonstrate the asymptotic scaling.

5. DISCUSSION

Accurate modeling of excitable cells is important in order to
understand how collections of such cells work. The EMI
model provides a promising framework for such
simulations, but it is challenging from a computational
point of view. In this paper, we have developed an optimal
splitting-based method that scales perfectly with the number
of cells in the simulations. The main result of the paper is that
we have been able to formulate a solution strategy that relies

on intermediate steps that all are covered by standard theory
in scientific computing.

We have seen in Table 8 that a collection of 512 × 256 �
131,072 cells, with a mesh resolution of Δx � 4 μm, leads to
linear systems with about 2.5×108 unknowns. In comparison,
we found that the sinus node of the mouse heart would require
about 3.5×106 unknowns. Since the computing time scales
linearly with the number of nodes, we estimate based on
Table 8 that the sinus node of the mouse would require
about 3 s of computing time per time step. A complete
simulation of 300 ms would thus need about 24 hours of
computing time (with Δt � 0.01 ms). This is a rough
estimate of course, but it still illustrates that accurate
simulation of physiologically interesting nodes is within reach.

The volume of the mouse ventricles is about 100 mm3 (see Ref.
42) or about 440 times larger than the mouse sinus node. In order
to be able to simulate mouse ventricles within a 24-hour wall-
clock time frame, we therefore would need a computer that is
about 440 times faster than System A above, assuming that linear
scaling would hold for even larger systems. This is actually well
within today’s technological capability, because the world’s most
powerful supercomputer at the time of writing, named Fugaku
(see, e.g., Refs. 43 and 44), consists of 158,976 computers, each
more powerful than System A (if we consider the available
memory bandwidth). Although theoretically feasible, it
remains to be seen whether a full action potential of a
complete mouse heart can be simulated based on the EMI model.

The computing time may be reduced by applying adaptive time
stepping and the number of nodes may be reduced by using an
adaptive finite element method instead of the finite difference
method. However, the finite difference scheme is exceptionally
well suited for the computer systems A and B and fewer mesh

TABLE 7 | Time required to solve a time step of size Δt � 0.02 ms for geometries ranging from 4 × 4 cells to 128 × 128 cells using System B (see Section 4.4).

Cells NE ItCG Time usage for all cells (s) Time per cell (ms)

E M I Total E M I Total

4 × 4 1.5 × 105 21.1 0.21 0.01 0.05 0.27 12.90 0.51 3.35 16.76
8 × 8 5.1 × 105 21.0 0.55 0.03 0.06 0.64 8.54 0.46 0.95 9.95
16 × 16 1.8 × 106 28.6 0.85 0.13 0.15 1.13 3.32 0.52 0.59 4.43
32 × 32 7.0 × 106 28.6 2.92 0.52 0.35 3.79 2.86 0.50 0.34 3.70
64 × 64 2.7 × 107 33.2 12.04 2.10 1.32 15.46 2.94 0.51 0.32 3.77
128 × 128 1.1 × 108 35.5 47.09 9.40 5.37 61.86 2.87 0.57 0.33 3.78

TABLE 8 | Time required to solve a time step of size Δt � 0.02 ms for geometries ranging from 4 × 4 cells to 512 × 256 cells using System A (see Section 4.4).

Cells NE ItCG Time usage for all cells (s) Time per cell (ms)

E M I Total E M I Total

4 × 4 3.9 × 104 17.2 0.20 0.01 0.01 0.22 12.30 0.54 0.84 13.67
8 × 8 1.4 × 105 17.7 0.23 0.03 0.02 0.28 3.55 0.53 0.34 4.43
16 × 16 5.2 × 105 21.5 0.49 0.11 0.05 0.65 1.92 0.41 0.21 2.55
32 × 32 2.0 × 106 23.6 1.87 0.39 0.14 2.41 1.83 0.38 0.14 2.35
64 × 64 7.9 × 106 23.9 6.70 1.35 0.57 8.62 1.64 0.33 0.14 2.10
128 × 128 3.1 × 107 30.3 24.32 5.81 2.27 32.40 1.48 0.35 0.14 1.98
256 × 256 1.2 × 108 30.9 78.36 22.87 9.93 111.16 1.20 0.35 0.15 1.70
512 × 256 2.5 × 108 31.8 142.04 44.05 19.91 206.00 1.08 0.34 0.15 1.57
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points in the finite element method could therefore result in
increased computing time per computational node (see Ref. 8). A
possible path of future work can be to develop a distributed-memory
parallel implementation of the splitting algorithm, so that the
number of cells to be simulated is not limited by the computing
speed and/or memory capacity of a single shared-memory platform.

A weakness of the current implementation is that, whereas the
finite difference method is well suited for representing very
simple geometries, it is less suited for complex geometrical
shapes. For instance, representation of real geometries of the
heart, and also including the fiber orientation of the heart muscle
is necessary in many applications; see, e.g., Refs. 1, 45, and 46. In
order to analyze problems with complex geometries using the
EMI model, we will need to use the finite element method. Also,
representing realistic geometries of individual cells is very
challenging using the finite difference method, but will be
easier using the finite element method. A finite element
method based on the operator splitting scheme derived in the
present report is currently under development. This code will
clearly offer greater flexibility with respect to geometries, but the
linear systems are less structured and therefore harder to solve in
an optimal manner.

6. CONCLUSION

We have introduced a splitting scheme for the linear part of the
EMI equations that allows us to use well developed theory for

solving linear systems arising from the discretization of linear,
elliptic partial differential equations. The resulting method is
stable and is optimal in the sense that the CPU efforts scale
linearly with the number of computational nodes. The method
therefore enables simulations using far larger computing facilities
than has been available in the present work.
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