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Spectral link of the generalized Townsend-Perry constants in turbulent boundary layers
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We propose a first minimal theory for boundary layer turbulence that captures very well the profile of the
mean-square velocity fluctuations in the streamwise direction and give a quantitative prediction of the Townsend-
Perry constants. Our theory is based on connecting all moments of velocity fluctuations as a function of the
distance to the wall with the turbulent energy spectrum. A similar spectral theory was proposed in G. Gioia and
P. Chakraborty [Phys. Rev. Lett. 96, 044502 (2006)] to explain the friction factor and the von Kármán law in G.
Gioia, N. Guttenberg, N. Goldenfeld, and P. Chakraborty [Phys. Rev. Lett. 105, 184501 (2010)]. We generalized
it by including fluctuations in the wall-shear stress and the streamwise velocity. The theoretical predictions for
the mean velocity and mean-square fluctuations reproduce the shape of the velocity profiles in the buffer and
inertial layer obtained from wind tunnel experiments.
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I. INTRODUCTION

Turbulence is a ubiquitous phenomenon encountered in
very diverse natural systems, from the large-scale atmosphere
[1] and oceans [2] all the way down to quantum fluids [3],
as well as in engineered systems, such as pipelines, heat
exchangers, wind turbines, etc. It relates to the complex
fluid dynamics that orchestrate the interactions of flow eddies
spanning many length scales and generating non-Gaussian
statistics of velocity increments. The statistical properties
of these turbulent fluctuations are fundamentally changed
when the flow is confined by the presence of solid walls or
boundaries [4,5]. In contrast to the bulk turbulence, which is
statistically homogeneous and isotropic, the wall-bounded tur-
bulence is characterized by statistically anisotropic properties.
Namely, there is a net mean flow in the streamwise direction
along the wall and different flow structures form depending on
their distance to the wall. We typically differentiate between
four flow regions as moving away from the wall [6,7]: (i) The
viscous region is closest to the wall and dominated by viscous
flows, (ii) the buffer layer makes the transition from viscous
to turbulent flows and is where detached eddies initially form,
(iii) the inertial layer where the turbulent eddies form from the
attached eddies and the log laws of the wall applies, and (iv)
the wake, the fully developed energetic region where turbulent
fluctuations can be described by homogeneous turbulence.
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A theory presenting the form of the averaged velocity
and averaged velocity fluctuation squared, formulating the
influence of both attached and detached eddies on these quan-
tities, holds the possibility of explaining a wide variety of
boundary flows, ranging from pipe flows to atmospheric flows
and extending to the flows observed on other planets. In this
paper, we formulate a step toward a more complete theory of
phenomena observed in flows sheared by a boundary.

The log law of the wall refers to the logarithmic depen-
dence of the mean flow velocity (MVP) with the distance to
the wall, also known as the Prandtl and von Kármán law, and
is one of the staples of wall-bounded turbulence. It reads as

U = 1

κ
log(ỹ) + B, (1)

where κ is the universal von Kármán constant that is inde-
pendent of the microscopic flow characteristics and relates to
generic features such as space dimension and geometry. The
distance to the wall y and the mean fluid velocity u along the
wall are typically expressed in the ”wall units” determined by
the wall shear stress τ0. This is because τ0 is an important
theoretical concept that is also experimentally measurable.
The friction velocity uτ = √〈τ0〉/ρ, which is set by the wall
shear stress τ0 and the kinematic viscosity ν and enters in
the unit rescalings as Ũ = U/uτ and ỹ = yuτ /ν. The constant
fluid density is ρ and the B is a dimensionless constant that is
fitted to experimental data, e.g., Ref. [8].

Other log laws have been empirically found and argued for
and relate to the logarithmic dependence of any moment of the
streamwise flow velocity with the wall distance. Namely, the
streamwise velocity fluctuations, ũ = u/uτ , ũ = Ũ + w̃, also
follow the log law of the wall in its second moment as

〈w̃2〉 = −A1 log(ỹ) + B1, (2)
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where the coefficients A1 and B1, also called the Townsend-
Perry constants, were first measured by Perry and Chong
[9,10]. It has been experimentally observed that the log law
generalizes to any moment of the streamwise velocity fluctu-
ations,

〈w̃2p〉1/p = −Ap log(ỹ) + Bp, (3)

which can also be shown assuming Gaussian fluctuations,
even though the dependence of Ap and Bp on p turns out
to be sub-Gaussian, as confirmed both experimentally and
numerically [11]. The sub-Gaussian behavior was explained
in Ref. [12] using the stochastic closure theory (SCT) of turbu-
lence [13,14] and the analysis was improved in Ref. [15]. Both
of these studies used the results from homogeneous turbulence
[16] and made an assumption about the form of the fluctuating
shear stress in the inertial layer based on physical principles.

By now, there is a consensus on the universality of these log
laws in the inertial region for different wall-bounded turbulent
flows and its importance for practical applications. However,
we are still lacking a unified theoretical framework in which
these asymptotic log laws can be derived systematically with
minimal phenomenological input and in a way that connects
the buffer and inertial regions. We propose such a first theory
for the wall-bounded turbulence using the spectral link be-
tween the statistics of near-wall fluctuations and the turbulent
kinetic energy that starts already in the buffer region. It turns
out that what happens in the buffer region plays a key role
in setting up eddies that then facilitate energy cascade and
sufficient turbulence for the log laws to emerge in the inertial
layer.

Previous studies have derived the asymptotic log laws in
various ways. One way of deriving the log law for the MVP
is to use the attached eddy hypothesis of Townsend [17],
but the problem with the attached eddy hypothesis is that
it has not been successfully formulated theoretically until
now. We show that the spectral link provides us with a way
of mathematically formulating the attached eddy hypothesis.
This spectral link was already applied to the MVP in Ref. [18],
and we are able to extend it to derive the profile of the mean
of the second moment both in the buffer and in the inertial
region. We provide a physical explanation of the 1/k spec-
trum that has been observed in the buffer region as being
the shrinking and speeding up of vortex tubes whose cross-
sections consist of detached eddies. The 1/k scaling turns out
to be critical to understand the second and higher moments
of the streamwise velocity fluctuations. It also allows us to
improve the MVP profile from the spectral theory proposed
in Ref. [18]. Our spectral theory provides quantitative predic-
tions for all the Townsend-Perry constants and the generalized
Townsend-Perry constants that enter in the log laws of the
higher moments and are in agreement with the predictions
from the SCT of turbulence [13,14].

In this paper, we propose a generalization of the spectral
theory that includes fluctuations in the streamwise velocity
due to an essentially fluctuating wall shear stress. These veloc-
ity fluctuations are characterized by an interplay between the
Kolmogorov-Obukhov energy spectrum and the 1/k spectrum
in the buffer and inertial layers. Figure 1 shows our spectral
theory predictions of the profiles of the mean velocity and

FIG. 1. Theoretical predictions from the spectral theory for the
MVP 〈u〉 and mean-square velocity fluctuations 〈w2〉 (dimensionless
variables in wall units).

mean-square fluctuations across the viscous, buffer, and in-
ertial layers.

Figure 1 illustrates a statistical theory of the mean velocity
and its variation across the boundary layer. It starts with the
Prandtl-von Kármán law in the inertial region but extends
the mean velocity across the boundary and viscous layers by
means of detached and attached eddies. The latter is a math-
ematical formulation of Townsend’s theory [17] that connects
all the eddies, and the former is similar. The theory produces
the log law of the variation and its higher moments in the in-
ertial region and permits an evaluation of the Townsend-Perry
constants and their generalizations.

The rest of the paper is structured as follows. We introduce
the spectral theory from Ref. [18] and generalize it for the
second moment in Sec. II and higher moments in Sec. III. This
produces the log law of the wall in Eq. (2) for the velocity fluc-
tuations and its higher moments in Eq. (3). Then in Sec. IV,
we derive the functional form of the mean-square fluctuations
in the viscous layer and the inertial layer. In Sec. V, we use the
attached eddy hypothesis and the SCT [13,14] to derive the
form of the Townsend-Perry and the generalized Townsend-
Perry constants. This allows us to derive the streamwise
fluctuations in the wall shear stress and remove the assump-
tion made in Refs. [12] and [15]. Using theory-informed data
analysis, we can construct the Townsend-Perry constants and
the generalized Townsend-Perry constants. In Sec. VI, we
extend the formulas for the mean-square fluctuations to the
buffer layer and the energetic wake. In Sec. VII, we compare
the predicted MVP and mean-square velocity profile from this
spectral theory to experimental data. In Sec. VIII, we conclude
with a discussion on the proposed spectral theory and the role
that Townsend’s attached eddies play in it.

II. THE SPECTRAL THEORY

The typical velocity of an inertial eddy of size s can be
obtained by integrating out the kinetic energy contained in all
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eddies of sizes up to s as introduced in Ref. [18],

v2
s =

∫ ∞

1/s
E (k)dk, (4)

where the kinetic energy spectrum follows the Kolmogorov-
Obukhov scaling with cutoffs in the injection scale and
viscous scales,

E (k) = cd (ηk)
2

3
(κεε)2/3k−5/3ce(Rk), (5)

with 2
3 (κεε)2/3k−5/3 being the Kolmogorov-Obukhov spec-

trum and cd (ηk) and ce(Rk) the phenomenological dimen-
sionless corrections functions in the dissipative (set by the
Kolmogorov scale η) and energetic range (set by the system
size R), respectively; κε is a dimensionless parameter, ε is the
turbulent energy dissipation rate, η = ν3/4ε−1/4 is the viscous
length scale, and R is the largest length scale in the flow. The
dissipative correction function is typically an exponential cut-
off function cd (ηk) = exp(−βdηk), and the energetic-range
(wake) correction function is ce(Rk) = (1 + [βe/(Rk)]2)−17/4,
which is the form that was proposed by von Kármán. βd and
βe are nonnegative fitting constants that can be adjusted to
data. By the change of variables ξ = sk, we recast Eq. (4) as

v2
s = (κεεs)2/3I

(η

s
,

s

R

)
, (6)

where the spectral function I is given by the formula

I
(η

s
,

s

R

)

= 2

3

∫ ∞

1
e−ξβd η/sξ−5/3

(
1 +

(
βes

Rξ

)2)−17/6

dξ . (7)

The integral sums the energies of all eddies of a smaller radius
than s and computes their contribution to the energy of the
eddy of radius s. This is the energy (or spectral) formulation of
the attached eddy hypothesis of Townsend [17]. The I function
correctly captures the buffer layer as the transition from the
viscous to the inertial layer and the asymptotic of the MVP
in the energetic wake. The asymptotic values are such that in
the inertial layer I = 1 and in the viscous layer I = 0. The I
function combines the Kolmogorov-Obukhov theory with the
observed spectrum in the viscous layer, the inertial layer, and
the wake and is thus able to capture the transition from one
layer to the next. In Ref. [18], it was used to give the details
of the MVP. In this paper, we will use it to capture the profile
of mean-square fluctuations.

In the buffer layer, a different scaling of the attached eddies
comes into play; this is the k−1 scaling of the spectrum that has
been debated in the literature, but clearly shows up in recent
simulations and experiments in the middle of the buffer layer;
see Fig. 9(a) in Ref. [19] and Fig. 12(b) in Ref. [20]. In the
spectral theory, the corresponding I function for this scaling
regime is

Ib

(η

s
,

s

R

)

= 2

3
s− 2

3

∫ ∞

1
e−ξβd

η

s ξ−1

(
1 +

(
βes

Rξ

)2)− 17
6

dξ, (8)

where the subscript b stands for ”buffer.” The mean velocity is
primarily influenced by the I function, whereas the variation
(fluctuation squared) is greatly influenced by the Ib function
in the buffer layer. I is associated with the Kolmogorov-
Obukhov energy cascade k−5/3 in the inertial layer, whereas
Ib is associated with the k−1 scaling in the buffer layer. We
will take Ib to be zero outside the buffer layer.

The splitting of the near-wall region based on different
scaling of the spectrum was proposed by Perry and Chong
[9] who used it to build an interpolation model for MVP and
the variation; this model was improved in Ref. [21].

We find that in the boundary and buffer layers the isotropic
k−5/3 (K41) and 1/k scalings capture both the mean energy
and the fluctuation squared dependence on the attached eddies
quite well. In the inertial layer, intermittency becomes im-
portant and we need the full intermittency corrections (K62)
to model the generalized Townsend-Perry constants; see be-
low. This is consistent with the results in Ref. [22]. Namely,
intermittency is important in the streamwise direction and
becomes more pronounced toward the wall. However, it does
not seem to play a role in the energy transfer of the attached
and detached eddies away from the wall.

III. GENERALIZED LOG LAW

In this section, we will generalize the derivation of the
MVP in Ref. [18] by adding a fluctuation to the streamwise
mean velocity, U (y), namely,

u = U + w. (9)

In Ref. [18] the mean shear stress at the distance y from
the wall that controls the momentum transfer across layers is
given by 〈τt 〉 = κτρyvyU ′, where the U ′ = dU/dy, vy is the
typical eddy velocity at distance y from the wall, ρ is the fluid
density, and κτ is the dimensionless proportionality factor.
When velocity fluctuations are included, the instanteneous
shear stress becomes:

τt = κτρyvy(U ′ + w′). (10)

The mean energy dissipation rate is related to the wall shear
stress as 〈ε〉 = 〈τt 〉U ′/ρ [18], and including the fluctuations,
this becomes

ε = τt (U
′ + w′)/ρ. (11)

The eddy velocity for an eddy with radius s = y at the distance
y from the wall is the same as in Ref. [18] and as discussed
above,

vy = (κεεy)1/3
√

I, (12)

where I (η/y, R/y) is the integral from Eq. (7) and κε is a di-
mensionless proportionality factor. In the inertial layer, I = 1
and κε = 4/5 according to Kolmogorov’s 4/5 law.

Eliminating ε and vy from the three equations above, we
obtain that

τt = (κεκ
3
τ )1/2ρy2u′2I3/4. (13)

The viscous shear stress is ρνu′ so the total shear stress,
including the contribution from the fluctuation, is [17]

τt + ρνu′ = τ0(1 − y/R). (14)
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Equation (14) is derived from the Navier-Stokes equation
for channel flow; see Ref. [17], Chapter 5. The addition of
the energy integral is due to Gioia et al. in Ref. [18]; it is
the mathematical formulation of Townsend’s attached eddy
theory that connects all the eddies. Our assumption is that the
wall shear stress τ0 is also a quantity that fluctuates about its
mean value.

The equations defining the stress in Ref. [17], Chapter 5
can be integrated from any point y1 in the flow to give

τt + ρνu′ = τ1 + ∂ p1

∂x
(y − y1), (15)

where p1 is the pressure at the distance y1 from the wall
and τ1 and ∂ p1

∂x are fluctuating quantities. This shows that the
turbulence is driven not only by the boundary fluctuations but
also by the (total) fluctuating stress at any point in the flow. It
explains why the boundary can be cut away and the turbulence
persists in numerical simulations [5,23]. It has been observed
in experiment that the wall stress can become negative and
then Eq. (15) must be used instead of Eq. (14).

We change the rescaled variables in the wall units written
here in terms of the friction factor f : ỹ = yRe

√
f /R, ũ =

u/(U
√

f ), and w̃ = w/(U
√

f ) and let f = 〈τ0〉/ρU 2. The
Reynolds number is Re = UR

ν
, where U is the mean velocity of

the flow (for example, the flux divided by the cross-sectional
area of a pipe) and R is the largest length scale in the flow
(for example, the radius of a pipe). Then, the equation above
becomes

κ̃2ỹ2(ũ′)2I3/4 + ũ′ = τ0

〈τ0〉
(

1 − ỹ

Re
√

f

)
. (16)

We will present three derivations of U and w below based on
Eq. (16). First we make an approximation in this section to
connect with the the Prandtl-von Kármán log law for Ũ and
the Townsend-Perry log law for 〈w̃2〉 in the intertial range.
Then in the next section, we derive the real formulas for U
and w, showing that the log laws are the leading terms in the
inertial range. These formulas also produce the Generalized
Townsend-Perry constants. Finally, in Sec. VI, we integrate
the differential equations for U and w; this is necessary be-
cause I is a function of y the distance from the wall and get
the expressions for Ũ and 〈w̃2〉 that can be compared with
simulations and experimental data.

If we let ỹ → 0, w̃ → 0 and integrate, we get the law of
the viscous layer

Ũ = ỹ, (17)

the laminar profile being

Ũ =
(

ỹ − ỹ2

2Re
√

f

)
. (18)

In the large Reynolds number limit, solving just for the mean
velocity, we obtain the Prandtl-von Kármán law

Ũ = 1

κ̃
log(ỹ) + D. (19)

If we solve for both the mean velocity and the fluctuation in
the large Reynolds number limit, we get that

Ũ + w̃ =
√

τ0

〈τ0〉1/2κ̃
log(ỹ) + C. (20)

This is consistent with Eq. (19) in the sense that if w̃ = 0,
then

√
τ0 = 〈τ0〉1/2 and we recover Eq. (19). Thus squaring

Eq. (20) and taking the average, we obtain the log law of the
mean-square fluctuation gives that

〈w̃2〉 = −A log(ỹ) + B, (21)

where A = − 2C〈√τ0〉−2D
√〈τ0〉

κ̃
√〈τ0〉 and B = C2 − D2 are the

Townsend-Perry constants. The full formulas in the next sec-
tion show that Eq. (21) is the leading term with C = D.

To simplify the notation, we will now drop the tildes from
all the variables with the dimensionless units implicitly as-
sumed, unless otherwise stated.

IV. TOWNSEND-PERRY LAW

We will now use Eq. (16) to find the general form of
the average of the fluctuations squared as a function of the
distance to the wall. Integrating Eq. (16) in the limit of I = 0
and subtracting U gives

〈w2〉 = 〈τ 2
0 〉 − 〈τ0〉2

〈τ0〉2

(
y − y2

2Re
√

f

)2

. (22)

In the inertial layer I = 1 and ignoring the small O(1/y4)
term, we get that

U + w = 1

2κ2y
+ 2

√
τ0

κ
√〈τ0〉

√
1 − y

2Re
√

f

− 2
√

τ0

κ
√〈τ0〉

tanh−1

(√
1 − y

2Re
√

f

)
+ K, (23)

by a symbolic computation, where K is an integration con-
stant. The average velocity satisfies

U = 1

2κ2y
+ 2

κ

√
1 − y

2Re
√

f

− 2

κ
tanh−1

(√
1 − y

2Re
√

f

)
+ K ′, (24)

where K ′ is another constant, because τ0 becomes 〈τ0〉. Thus,
the fluctuating velocity is given by

w = 2
(
√

τ0 − √〈τ0〉)

κ
√〈τ0〉

√
1 − y

2Re
√

f

− 2
(
√

τ0 − √〈τ0〉)

κ
√〈τ0〉

tanh−1

(√
1 − y

2Re
√

f

)
+ C,

(25)

where C = K − K ′. By taking the mean-square average and
looking at the leading-order term for high Re number, we
obtain

〈w2〉 ∼ 2C
(〈√τ0〉 − √〈τ0〉)

κ
√〈τ0〉

log

(
y

Re
√

f

)
+ h.o.t ., (26)

which reduces to Eq. (21). For higher-order moments 〈w2p〉1/p

the similar term, linear in tanh−1(x) and multiplied by 2C, is
of leading order,

〈w2p〉1/p ∼ 2C
〈(√τ0 − √〈τ0〉)p〉1/p

κ
√〈τ0〉

log

(
y

Re
√

f

)
+ h.o.t .

(27)
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FIG. 2. The eddy of radius s and the variation in the fluctuations
across it in the x (streamwise) direction.

These formulas establish the log dependence of the second
moment of the fluctuations, with the Townsend-Perry con-
stants, and the log dependence of the higher moments of the
fluctuations, with the generalized Townsend-Perry constants,
and justify formulas in Eq. (2) and Eq. (3). Together, Eq. (2)
and Eq. (3) can be called the generalized log law of the wall.

V. DERIVATION OF THE GENERALIZED
TOWNSEND-PERRY CONSTANTS

We consider the dependence of the fluctuation w on the
distance x along the wall to understand the Townsend-Perry
constants. So far we have only considered w(y) as a function
of the distance y from the wall, but w(x, y) obviously depends
on both variables x and y. If we consider the eddy depicted in
Fig. 2, then we see that the difference in momentum in the x
direction, across the eddy, is given by

ρ(w(x + s) − w(x − s)) ∼ 2ρswx, (28)

for y fixed, where wx = d
dx w.

This means that the total turbulent stress, across a vertical
surface at x, denoted by a dotted line on Fig. 2 for an eddy of
radius s ∼ y, is

τ0 = τt + τx, (29)

where τx = 2κτρywxvy, analogous to formula Eq. (10) above.
Then we get, using Eq. (12) and

ε = (τt + τx )(U ′ + wx )ρ, (30)

that

τt + τx = κ2ρI3/4y2(U ′ + wx )2, (31)

where prime denotes the derivative with respect to y, and

(τt + τx )1/2 = κρ1/2I3/8y(U ′ + wx )

= 〈τ0〉1/2 + κρ1/2I3/8y|wx|, (32)

since both parts must be positive. The derivation is completely
analogous to the derivation in Sec. III, but here with w varying
in the x direction and wy = 0. This gives that for y fixed,

τ
1/2
0 − 〈τ0〉1/2 = (τt + τx )1/2 − 〈τ0〉1/2

= κρ1/2I3/8y|wx|. (33)

Considering the leading-order log(y/2Re
√

f ) term in Eq. (26)
gives the Townsend-Perry constant

A1 = 2Cρ1/2y〈|wx|〉√〈τ0〉
, (34)

and the generalized Townsend-Perry constants

Ap = 2Cρ1/2y〈|wx|p〉1/p

√〈τ0〉
, (35)

by use of Eq. (27). This justifies the form of the stress tensor
assumed in Ref. [12] and used in Ref. [15]. Finally, we get the
expressions

A1 = K〈|w(x + y) − w(x − y)|〉 (36)

and

Ap = K〈|w(x + y) − w(x − y)|p〉1/p, (37)

where K is a constant and this produces the relationship
between the Townsend-Perry and the generalized Townsend-
Perry constants and the structure function of turbulence; see
Refs. [13,14,16] used in Refs. [12,15],

A1 = KC1|y∗|ζ1 , (38)

A2 = KC1/2
2 |y∗|ζ2/2, (39)

and

Ap = KC1/p
p |y∗|ζp/p, (40)

where −y � y∗ � y. Considering the ratio, washes out the
constant K ,

Ap

A2
= C1/p

p

C1/2
2

|y∗|ζp/p−ζ2/2, (41)

where the Cps and ζp are, respectively, the Kolmogorov-
Obukhov coefficients and the Kolmogorov-Obukhov scaling
exponents, with intermittency corrections of the structure
functions from Refs. [13,14,16]. The last ratio was used in
Ref. [15] to get agreement between experimental data and
theory.

VI. THE SPECTRAL THEORY OF MEAN-SQUARE
FLUCTUATIONS

In the above sections we have not used the spectral in-
formation in the integral I in Eq. (7). We have just used the
attached eddy hypothesis and set I = 0 in the viscous layer
and I = 1 in the inertial layer. But following Ref. [18], we
can now use the spectral information through the integral I
to find the beginning of the buffer layer and the form of both
the MVP U and the fluctuation w in the buffer layer and in
the wake. This allows one to obtain the full functional form
of both U and w as functions of the distance y from the wall
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and compare it with the experimental data in the next section.
By use of the energy Eq. (11) and the relation η = ν3/4ε−1/4,
we can find an expression for η/y, the viscosity parameter
that increases as we approach the wall y → 0. If we set the
fluctuation equal to zero,

η/y = (ũ′(1 − ỹ/Re
√

f ) − (ũ′)2)−1/4ỹ−1 (42)

and find a formula for ỹ using this equation along with the
equation

κ2ỹ2(u′)2I3/4 + u′ =
(

1 − ỹ

Re
√

f

)
. (43)

The resulting formula is given in Ref. [18],

ỹ =
(

(η/y)4/3 + κ4/3I1/2(η/y, 0)

κ2/3(η/y)8/3I1/4(η/y, 0)

)
. (44)

It gives the minimum value of ỹ for which I (η/y, 0) > 0 and
the small eddies begin to contribute to the turbulent shear
stress τt > 0. In fact, for each value of the parameter βd , there
is a minimum value of ỹ denoted ỹv below which I = 0. Only
after this minimum does ỹ increase with η/y. This gives the
end of the viscous layer and the beginning of the buffer layer
and a value of the MVP, uv at ỹv . It also gives the value of
the fluctuation w at ỹv and we can integrate the differential
equations for u and w, with respect to y, to get the form of
both functions in the buffer layer, the inertial layer, and the
wake. Along with the formulas in the viscous layer, this gives
the full functional form. The differential equations use the
spectral information through the full functional form of I and
the two parameters βd and βe must be fitted to experimental
data.

Approximations to the MVP and mean-square fluctuations,
based on the formulas in Sec. IV, are given in Figs. 3 and
4, respectively. To compare with experimental data, one must
solve the differential equations, from Eq. (16), for only the
mean velocity U ,

U ′ = − 1

2κ2I3/4y2
+ 1

κI3/8y

√
1 − y

Re
√

f
+ 1

4κ2I3/4y2
,

(45)
with the boundary condition U = 4.17 at the beginning of the
buffer layer y = 4.17. For the fluctuation we first have to solve
the differential equation, from Eq. (16), for the fluctuation w

after subtracting U and ignoring term of order O(1/y3) and
higher,

w′ =
√

τ0 − √〈τ0〉
κI3/8y

√〈τ0〉
√

1 − y

Re
√

f
, (46)

with the initial condition w = τ0−〈τ0〉
〈τ0〉 (4.17 − 17.39

2Re
√

f
) at the

beginning of the buffer layer.
The parameters βe and βd are fixed by the fit of the mean

velocity U to the experimental data; see Ref. [18]. Unlike
the mean velocity, the best fit of w with the viscous profile
w = τ0−〈τ0〉

〈τ0〉 (y − y2

2Re
√

f
) is not always at y0 = 4.17, so we let

the initial condition y0 vary to get a best fit with the viscous
profiles in Fig. 4.

FIG. 3. The average of the MVP as a function of log(y), where
y is the distance from the wall. Experimental data are plotted in
the dotted curves corresponding to different Re numbers, and the
theoretical prediction is given in the black curve. (a) The theoretical
curve is determined by a spectral I function αI (y) + (1 − α)Ib(y) that
interpolates between the k−5/3 and the k−1 with α � 1 in the buffer
region. (b) The theoretical curve has only the I (y)-integral with the
k−5/3 scaling present in buffer and inertial regions.

VII. COMPARISON WITH EXPERIMENTAL DATA

The data we use to compare with the theory come from
the wind tunnel experiments at the University of Melbourne
using the nano-scale thermal anemometry probe (NSTAP) to
conduct velocity measurements in the high Re number bound-
ary layer up to Reτ = 20000. The NSTAP has a sensing length
almost one order of magnitude smaller than conventional hot
wire; hence it allows for a fully resolved NSTAP measurement
of velocity fluctuations [20,24]. The size of the University
of Melbourne wind tunnel and the accuracy of the NSTAP
permit the measurement over a very large range of scales. We
use the averaged velocity time series at Reynolds numbers
Reτ = 6000, 10000, 14500, 20000 and the averaged variance
at the same Reynolds numbers. Figure 3 shows the mean
velocity profiles as a function of normalized distance from the
wall, whereas Fig. 4 shows the averaged fluctuation squared
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FIG. 4. The average of the fluctuation squared as a function of log(y), where y is the distance from the wall (dimensionless units).
Comparison of experimental data (dotted curves for different Re numbers) with the theoretical curves give. The theoretical curve is determined
by a spectrum I function αI (y) + (1 − α)Ib(y) that interpolates between the k−5/3 to the k−1 with α 
 1 in the buffer region. The straight lines
correspond to the log law with the Towsend-Perry constants predicted by the SCT.

(variation) as a function of the normalized distance to the wall.
Both are semilog plots.

First, let us consider the curve describing the MVP in
Fig. 3(b). It starts with the viscous profile because the I
function is zero. But then we reach the value yv where the first
attached eddies appear (y = 4.17) and then the viscous profile
changes; instead of reaching its maximum u = Re

√
f /2 at

y = Re
√

f , the attached eddies increase the viscosity (de-
crease the Re number) and the MVP reaches its maximum
increase at y ≈ 15, independent of the Reynolds number. The
energy transfer of the attached eddies is captured by the I
integral and we integrate the differential equation given by
Eq. (45), from y = 4.17, with the initial condition u = 4.17.
This gives the MVP in Fig. 3(b). This was already done in
Ref. [18] and describes how the attached eddies transfer en-
ergy into the buffer and the inertial layer. However, we notice
that in the predicted MVP overestimates the mean velocity in
buffer region. This is because the I function from Eq. (7) does
not account for the formation of the detached eddies, which
reduce the net energy transfer in the direct cascade.

The curves for the fluctuations squared in Fig. 4 are ob-
tained in a similar manner. The attached eddies fix the peak
of 〈w2〉 at y ≈ 15 and the peak profiles can be fitted by
the viscous formula 〈w2〉 = a(y − y2

30 )2 where a ∼ (〈τ 2
o 〉 −

〈τo〉2)/〈τo〉2. This fit is shown in Fig. 4(c). The peak posi-
tion is experimentally observed to be fixed, but its height
shows a weak Reynolds number dependence a = −3.06 +
0.99 log(Re); see Ref. [20]. This relationship can be tested

using our theory; see also Ref. [25] for more discussion.
Then, we integrate the differential equation from Eq. (46)
for w with the initial data described in the last section from
some point to the right of the peak, where the above peak
profile fits the initial condition; this gives the profile of the
fluctuations squared, down to the flat part in the buffer layer.
At the beginning of the flat part, y ≈ 60, the second scaling
from Sec. II begins to dominate the fluctuations, modeling
the 1/k scaling of detached eddies in the buffer layer. Then
we use interpolate between the two spectral functions, such
that Ib(y) dominates for values of y in the buffer region, and
I (y) takes over for values of y in the inertial region where
the Kolmogorov-Obukhov scaling dominates again and the
attached eddies break up. This produces the curves in Fig. 4.

We can now compare the mean-square fluctuations shown
in Fig. 4 with the predictions of the SCT of turbulence, used
in Refs. [12,15], to compute the Townsend-Perry constants
in the inertial (log) layer. These computations use the first
structure function S1 of turbulence and we explain how they
are performed; see Refs. [12,15] for more information. The
computed Townsend-Perry constants are listed in Table I.

The first structure function of turbulence is (see Ref. [16])

E (|u(x, t ) − u(y, t )|) = S1(x, y, t )

= 2

C

∑
k∈Z3\{0}

|dk|(1 − e−λkt )

|k|ζ1 + 4π2ν
C |k|ζ1+ 4

3

| sin(πk · (x − y))|,
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TABLE I. Here the approximate A1 value is computed from C1

using the proportionality factor A1 = C1/(K|y∗|ζ1 ) = C1/12.952.

Reλ C1 A1 B1

6000 9.449 0.730 9.373
10,000 15.628 1.207 13.073
14,500 15.500 1.197 13.573
20,000 14.994 1.158 13.673

where the Re number dependence enters through the viscosity
ν, and E denotes the expectation (ensemble average). To get
the Kolmogorov-Obukhov coefficients, Cp in

Sp(r,∞) ∼ Cprζp, (47)

for the lag variable r small, and ζp the scaling exponents, we
send t to ∞ in the above formulas and project onto the longi-
tudinal lag variable r = (r, 0, 0). For p = 1, this becomes

S1 ∼ 2πζ1

C

∑
k =0

|dk|
(1 + 4π2ν

C |k|4/3)
rζ1

= 4πζ1

C

∞∑
k=1

a

(a2 + km)(1 + 4π2ν
C |k|4/3)

rζ1 , (48)

see Ref. [16]; where ζ1 = 0.37, see Ref. [13]. Now we use
the values for ν in Table 1 in Ref. [15] and the corresponding
values for a, m, and C from Table 3 in the same paper. The Re
numbers, 6430, 10,770, 15,740, and 19,670 are close enough
to the experimental ones such that we can use the value of the
parameters in Ref. [15]. This gives the values in Table I, where
A1 ∼ K|y∗|ζ1C1, see Sec. V, and the proportionality factor
K|y∗|ζ1 = 1/12.952 is computed at the Re number 15,470,
where the approximated A1 coincides with the measured A1.
The log functions with coefficient A1, from the third column
in Table I, and using the constant B1 from the fourth column in
Table I, are then compared to the experimental and theoretical
values in Fig. 4. The spanwise Townsend-Perry constants, for
the spanwise fluctuations, can computed similarly by project-
ing onto the spanwise lag variable t = (0, t, 0).

In Fig. 4(a), the Townsend-Perry constant A1 computed by
the SCT does not agree with the measured slope. This was
already observed in Ref. [15], since for low Reynolds numbers
the C1s do not provide a good approximation to the A1s.
They only do for large Reynolds numbers and the discrepancy
(a) occurs at the smallest Reynolds number. This does not
happen for the Generalized Townsend-Perry constants, the
reasons are explained in Ref. [15], and for them the Cps, p � 2
provide good approximations to the Aps for all Reynolds
numbers.

VIII. DISCUSSION

We used the spectral theory of the MVP and the varia-
tion profile to represent both and compare with experiment
[20] for a range of Reynolds numbers. Assuming that the
wall shear stress is a fluctuating quantity, we can derive
the log law for the variation (2) that was proposed by
Townsend and measured by Perry and Chong. This law

involves the Townsend-Perry constants. This was first done
in the large Reynolds number limit and then for general
Reynolds numbers. The Reynolds number dependence of the
Townsend-Perry constants is determined by the SCT [12,15].
We derive the log law for the higher moments of the fluctua-
tions and the generalized Townsend-Perry constants based on
the functional form of the variation and use the SCT to express
them in terms of the Kolmogorov-Obukhov coefficients of
the structure functions of turbulence [16]. This confirms the
results in Refs. [12,15].

The spectral function I derived in Ref. [18] plays a central
role in this theory. It can be considered to be the analytic
expression of Townsend’s theory of wall-attached eddies. It
quantifies when the first eddies appear at the boundary of the
viscous and the buffer layer and when they are fully devel-
oped in the inertial layer. It even quantifies the limit of their
influence in the energetic wake. By introducing the spectral
theory into the analysis, it resolves many of the issues that we
are faced with in boundary layer turbulence.

The I function corresponds to the Kolmogorov-Obukhov
cascade k−5/3 in the inertial layer, but in the buffer layer
another cascade k−1 dominates the fluctuations, although its
influence on the MVP is small. This is a scaling at constant
energy, 1/k in Fourier space, that shrinks (the cross-section
of) and accelerates detached eddies. The energy transfer of
this cascade is captured by the I function in buffer layer, Ib.
With it we are able to produce the functional form of the
averaged fluctuations square in the buffer layer. Once in the
inertial layer the original I function dominates again.

The final confirmation of this spectral theory is how we are
able to improve the fit to experimental values of the MVP in
Ref. [18] by use of the Ib function in the buffer layer. Although
this effect on the MVP is small, the detached eddies siphon a
small amount of energy from the MVP in the buffer layer. We
model this by linear combination of the I and Ib function (1 −
α)I + αIb, in the buffer layer, where a is small. This produces
a better fit to the measured MVP in the buffer region as shown
in Fig. 3(a), whereas the fit without this linear combination,
shown in Fig. 3(b), is not as good.

A formulation of the unstable vortices and streaks found
by Kline et al. [26] and the formulation of structures forming
in the wake are still missing from our theory. However, with
these results as a basis, hopefully such structures can also be
added.

It is fair to ask what the Townsend attached eddies actu-
ally look like since our spectral method is based on them.
Unlike the streamwise streaks and associated vortices that
have been visualized since the experiments of Kline et al.
in the 1960s (see Refs. [26,27]), the attached eddies are dif-
ficult to visualize either in experiments or in simulations.
We provide a sketch in Fig. 5, where streamwise streaks are
visualized gradually lifting from the boundary by the flow,
and perpendicular to them are spanwise attached eddies being
deformed by the alternating slow and fast streamwise flow into
a hairpin vortex. This does happen both in experiments and in
observations; see Ref. [28]. However, these hairpin vortices
are made unstable by the striations in the streamwise flow,
and the typical attached eddies are irregular in shape with the
general feature of being stretched by the flow and attached
to the wall. In general, the hairpin vortices break up into
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FIG. 5. Sketch of the instantaneous streaks, in the streamwise
direction, and the wall-attached eddies in the spanwise direction.

wall-attached eddies in the streaks and wall-detached eddies
on the buffer layer side of the (Kline) streamwise vortices.
One must interpret their influence in a statistical sense.
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