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Abstract 

Ligninolytic fungi is a large and heterogeneous group of species, mainly from the two phyla 

Ascomycota and Basidiomycota. They are the main players in the decomposition of wooden 

materials worldwide. In this chapter, the diversity and distribution of ligninolytic fungal species 

is presented. Attention is given to how the species diversity can be detected, as fungi are mainly 

living within their substrate and consequently may be difficult to observe. I present the current 

knowledge on how the species diversity originates, and the discovery of cryptic ligninolytic 

fungal species. I also focus on the distribution of ligninolytic fungi, both on how individuals 

are locally distributed on a single substrate of dead wood and on how species are distributed at 

larger scales. Across larger scales fungi are affected by the size and environmental conditions 

in local forests and large-scale climatic variables. The chapter ends with a discussion about 

conservation, with some perspectives for future research directions.  
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1. Introduction 1 

Ligninolytic fungi are saprotrophic species decomposing dead wood. This is a large and 2 

heterogeneous group of fungi from many different fungal orders, that have evolved the ability 3 

to live on this recalcitrant material. There have been several reviews summarizing the 4 

knowledge of fungal evolution and divergence at various taxonomic levels (Giraud et al., 2008; 5 

Gladieux et al., 2014; James et al., 2020; Stukenbrock, 2013). A lot of the current knowledge 6 

is derived from fungal model organisms such as Saccharomyces and Neurospora, or plant 7 

pathogens such as Fusarium and Zymoseptoria. Nevertheless, there are constant gain of 8 

knowledge and development in the field also for non-model organisms. The development of 9 

genomic tools, allowing detailed genomic analyses of non-model organisms and DNA based 10 

diversity studies, are current drivers of new research understanding their diversity, divergence 11 

and distribution. In this chapter I aim to review the knowledge in the field of fungal diversity 12 

and distribution with the focus on ligninolytic fungi. Lignolytic fungi can be long-lived, 13 

decaying large logs and fruiting on old logs, such as Phellopilus nigrolimitatus. Alternatively, 14 

they can be ephemeral pioneer species, decaying only recently fallen logs or small twigs, such 15 

as Trichaptum abietinum and Schizophyllum commune. In particular, the long-lived species will 16 

put larger investments into decaying the substrate and have a very different life history than 17 

many plant pathogens and yeast species. 18 

 In this chapter I will introduce the current knowledge of diversity of ligninolytic fungi. 19 

I will discuss how to define ligninolytic fungal species, and how these species originate and 20 

diverge through speciation and hybridization. Further I will discuss why the different species 21 

are where they are, how they adapt to their environment, and the conservation needs. 22 

 23 

2. Diversity, cryptic species and speciation  24 

2.1 Diversity of fungi 25 

Currently there are about 150 000 fungal species described, with 2 000 new species being 26 

described each year (Niskanen & Douglas, 2018). However, the estimated total number of 27 

fungal species in the world varies from 1.5 to 6 million (Blackwell, 2011; Hawksworth, 1991; 28 

Hawksworth & Lucking, 2017; Taylor et al., 2014; Tedersoo et al., 2014) and is thus highly 29 

uncertain. The primary cause of this uncertainty is that fungi spend most of their life cycle 30 

hidden within substrates such as soil, wood, or within other organisms and cannot easily be 31 
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observed. The different estimates of the total fungal diversity have often been based on a 32 

comparison to the better-known plant diversity. The estimate of 1.5 million fungal species was 33 

mainly based on fungus to plant ratio of 6:1 (Hawksworth, 1991). Later, Taylor et al. (2014) 34 

suggested that a ratio of 17:1 is more reasonable in soils from Alaska, and if this estimate should 35 

be expanded for the whole world, which would suggest 6 million fungal species. A general 36 

pattern of increasing species ranges towards higher latitude has been suggested, this implies 37 

decreasing species diversity at higher latitudes – referred to as Rapoports rule (Stevens, 1989). 38 

A global study of species diversity in soil samples indicated that most fungal species also have 39 

wider distribution towards the poles (Tedersoo et al., 2014). Although, several fungal groups 40 

have a different pattern, i.e. ectomycorrhizal fungi have higher diversity in temporal regions 41 

than in the tropics and lichens have the largest diversity in the arctic (Tedersoo et al., 2012, 42 

2014). Hence, fungal richness estimates based solely on plant diversity can be highly insecure, 43 

as fungi may follow a different diversity patterns to other organisms.  44 

 45 

2.2 Diversity of ligninolytic fungi 46 

Fungi grow on and inside their substrate and the species diversity may be difficult to observe. 47 

For ligninolytic fungi, this substrate is dead wood. In the Nordic countries alone, it has been 48 

documented more than 2500 fungal species growing on dead wood (Stenlid et al., 2008; 49 

Stokland & Meyke, 2008; Stokland & Siitonen, 2012). These are mainly species that produce 50 

fruit bodies and can thus be observed and identified. Of these species, about 1600 species are 51 

basidiomycetes, and about 900 are ascomycetes. Most ligninolytic species are obligately 52 

growing on wood, but some fungal species growing on dead wood are facultative, i.e. they can 53 

grow on many different substates, with wood as one of these substrates (Stokland & Siitonen, 54 

2012). Some fungal species are found on wood, but decay or parasitize other fungal species – 55 

called fungicolous species, and will not be treated in this chapter (see Maurice et al., 2021 for 56 

more details.  57 

The phylum Basidiomycota includes the efficient white rot and brown rot. These are 58 

distributed in several different orders, listed here, with the examples of included genera (in 59 

parentheses), i.e. Polyporales (Fomitopsis, Antrodia, Antrodiella, Datronia, Meruliopsis, 60 

Trametes, Phlebia, Phlebiopsis, Phanerochaete, Postia, Pycnoporus and Sistotrema), 61 

Agaricales (Armillaria, Schizophyllum and Pleurotus), Hymenochaetales (Trichaptum, 62 

Phellopilus and Phellinus), Boletales (Coniophora and Serpula), and Russulales 63 

(Heterobasidion and Hericium). The ligninolytic species of Ascomycota are often less 64 
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conspicuous, but some of the well-known species are in the orders: Xylariales (Daldinia and 65 

Xylaria), Hypocreales (Trichoderma), Pleosporales, Sordariales (Neurospora) and Helotiales 66 

(Ascocoryne and Bisporella). In addition, there are many ligninolytic species found in less 67 

diverse orders throughout the Basidiomycota and Ascomycota.  68 

Estimates of species diversity on dead wood have traditionally been based on fruit body 69 

surveys on decomposing logs. Exemplified by interesting studies of the effect the amount of 70 

dead wood has on fungal diversity (Hottola et al., 2009) and species diversity in Tasmanian 71 

woodland (Gates et al., 2011). However, there are several reasons why a species may not be 72 

detected in such surveys. Many species, especially ascomycetes, have microscopic fruit bodies 73 

which can be hard to detect. For species with ephemeral fruiting bodies, the fungus may not 74 

fruit at the time of the survey. This was especially pinpointed in Nordén et al. (2013), where 75 

fungi that are specialized to fruit on old decayed logs were rarely observed. In the recent years, 76 

DNA-based studies have cast further light on the diversity of ligninolytic fungi. By amplifying 77 

a specific genetic region (usually the nuclear ribosomal Internal Transcribed Spacers ITS1 or 78 

ITS2), sequencing the amplicon with a high throughput sequencing technology and matching 79 

the resulting DNA sequences with established databases, the diversity of environmental 80 

samples can be investigated – an approach called DNA metabarcoding. In 2013, Ovaskainen 81 

and colleagues investigated the diversity of fungi growing in 100 Norway spruce logs of 82 

variable decay grade by fruit body surveys and DNA metabarcoding analyses. They observed 83 

higher diversity with the DNA metabarcoding approach, than from the fruitbody surveys. Those 84 

species that are highly specialized or only fruits after several years decaying the same log were 85 

more often detected with the DNA metabarcoding approach. On the other hand, species that 86 

fruits rapidly after establishment were more commonly detected in the fruit body survey data. 87 

The low detection rate in the DNA metabarcoding data of these ephemeral species was 88 

explained by a small mycelial mass, thus they were not present in the particular sawdust samples 89 

(Ovaskainen et al., 2013). Several studies have suggested that a combination of both fruit body 90 

surveys and DNA metabarcoding may give a more complete picture of the species diversity in 91 

a log (Ottosson et al., 2015; Ovaskainen et al., 2013; Saine et al., 2020). Another option is to 92 

include many DNA metabarcoding samples from each log in order to register the diversity in 93 

the heterogeneous woody substrate. Recent DNA metabarcoding studies have shown that 94 

species known to fruit in late decay stages were also present in earlier decay stages of oak, fir 95 

and spruce logs (Baldrian et al., 2016) and that they are possibly also present for a long time 96 

after fruiting, as shown in Norwegian spruce logs (Ottosson et al., 2015).  97 
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The units detected by DNA metabarcoding studies cannot be directly compared to 98 

species and are referred to as operational taxonomic units (OTUs). Sometimes the sequences 99 

from several species can be combined into one OTU, or intraspecific variation may split 100 

sequences from one species into several OTUs (Blaalid et al., 2013; Nilsson et al., 2008). Two 101 

OTUs were found within each of the two species Phellopilus nigrolimitatus and Phlebia 102 

centrifuga including 16 fruit bodies from one location (Estensmo et al., 2021). Thus, fungal 103 

richness from DNA metabarcoding data cannot be directly extrapolated as species richness. 104 

This leads us to the question of “what are species?” that will be discussed in the next section.  105 

 106 

2.3 Fungal divergence and cryptic species 107 

Species concepts have caused lot of controversy over the years (Wheeler and Meier, 2000). As 108 

scientists have used different species concepts and criteria to define species in their favorite 109 

organisms, it has been impossible to agree on one single definition of species. In this chapter I 110 

will not discuss the number of species concepts that have been proposed, or claim that one is 111 

better than others, however, I will focus on the criteria that are practically used in the 112 

mycological community to distinguish species. Further, I will discuss what we currently know 113 

and do not know about species divergence.  114 

Historically, the morphological species concept was the most commonly applied 115 

concept in fungal studies. The species concept uses macroscopic and microscopic 116 

morphological characters to define and distinguish different species. This concept is practical 117 

and can often be used to identify species in the field. However, ligninolytic fungi often have 118 

few morphological characters, mostly related to fruit body traits, and as discussed previously, 119 

they often live most of their life within their substrate. Thus, during the last 30 years, it has 120 

become clear that many of the morphological characters that are used to distinguish species are 121 

not necessarily recognizing species as independent evolutionary units nor inform about the 122 

relationship among species. 123 

After molecular markers became available for the mycological research community, the 124 

phylogenetic and the genealogical concordance phylogenetic species recognition (GCPSR) 125 

approach have been well received (Dettman, Jacobson, & Taylor, 2003; Dettman, Jacobson, 126 

Turner, et al., 2003; Liti et al., 2006; Taylor et al., 2000). The phylogenetic species concept 127 

uses phylogenetic relationships to define monophyletic groups as species. This was further 128 

developed in the GCPSR, and the criteria are that more than one genetic region should support 129 
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the monophyletic group, and that no other genetic region should be incongruent with this group. 130 

Using molecular markers to enlighten the phylogenetic relationships and evolutionary units in 131 

fungi, have further guided which morphological characters that can be used to distinguish 132 

species defined by the GCPSR. Thus, the morphology is still relevant, but it is a matter of 133 

knowing which morphological characters to use.  134 

Other species concepts are more mechanistic, such as the biological species concept. 135 

The criteria of the biological species concept are that the individuals within a species are 136 

reproductively compatible and the progeny is fertile. Thus, in order to test the criteria for this 137 

species concept for fungi, they need to be sexual organism. The implication of an asexual 138 

reproductive life cycle is discussed further down, but a purely asexual life cycle is not as 139 

common in fungi as previously thought (Taylor et al., 2015). Further, we need to be able to 140 

observe mating or the products of mating.  141 

The evolutionary units that currently exist in nature is not always easy to observe. 142 

Cryptic species are morphologically indiscernible, but genetic distinct, reproductive isolated 143 

lineages. After the development of molecular markers to test species relationships, several 144 

cryptic ligninolytic species have been found within fungal morphospecies. The difficulty in 145 

distinguishing species morphologically contributes to the uncertainty of the current fungal 146 

species richness estimates.  147 

The Heterobasidion annosum species complex (H. annosum sensu lato) is the most 148 

destructive forest pathogen in the Northern Hemisphere, and can almost be considered a model 149 

for cryptic speciation in wood decay species. In this complex there are three species in Europe 150 

(H. parviporum, H. abietinum and H. annosum sensu stricto) and two species in North America 151 

(H. occidentale and H. irregulare), that previously were considered to be one species (H. 152 

annosum s.l.) (Dalman et al., 2010; Garbelotto et al., 1998, 2007; Johannesson & Stenlid, 2003). 153 

These five species are divided into two main clades, one clade with H. abietinum, H. 154 

parviporum and H. occidentale and another clade with H. irregulare and H. annosum s. s. 155 

(Dalman et al., 2010). The split between these two clades was dated to about 60 Mya ago 156 

(Dalman et al., 2010). Thus, an old event has led to diversification in this species complex and 157 

the two clades have co-existed for millions of years.  158 

Trichaptum abietinum is a pioneer species that rapidly produce small fruit bodies on 159 

recently fallen spruce logs all over the temporal and boreal region. In crossing experiment of 160 

individuals from North America, Macrae (1967) and Magasi (1976) found two sympatric, 161 

morphological inseparable, reproductively isolated populations. A recent study revealed that 162 
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these reproductively isolated populations of T. abietinum probably are genetically divergent 163 

(Seierstad et al., 2020), which supports that these are different evolutionary units. Likewise, 164 

intersterility groups were found within the morphologically defined species Armillaria mellea 165 

(Anderson et al., 1980; Anderson & Ullrich, 1979) and Fomitopsis pinicola (Mounce & Macrae, 166 

1938) in North America. Also, for F. pinicola, two sympatric genetic groups were revealed, 167 

when revisiting the reproductive isolated groups in the widespread morphospecies (this time 168 

with molecular markers, Haight et al., 2016). Previously, no population structure was detected 169 

within Europe for F. pinicola (Högberg et al., 1999).  170 

Phylogenetic studies have revealed cryptic species in many genera of wood decay fungi. 171 

Five cryptic species were detected within the morphospecies complex of Serpula himantioides 172 

(Carlsen et al., 2011). One of these cryptic species was spanning temporal regions worldwide, 173 

decaying varying substrates in forests (mostly gymnosperm wood) and houses. The other S. 174 

himantioides lineages had narrower distribution ranges, including one restricted to South 175 

America, here found in the built environment and on Nothofagus dead wood in nature (Carlsen 176 

et al., 2011). Several cryptic species have also been detected within the three Coniophora 177 

morphospecies C. puteana, C. olivacea and C. arida (Kauserud, Shalchian-Tabrizi, et al., 2007; 178 

Kauserud, Svegarden, Decock, et al., 2007; Skrede et al., 2012).  179 

Cryptic species are also found in ligninolytic ascomycetes. In the genus Daldinia, five 180 

species were found in Europe, where three of these previously was referred to as D. concentrica 181 

(Johannesson et al., 2000). Further, eight species were found within the genus Neurospora 182 

where five corresponded to defined morphospecies, and three were newly defined using 183 

molecular data and phylogenetic analyses (Dettman, Jacobson, & Taylor, 2003).  184 

All the cryptic species discussed above have been distinguished by a variety of 185 

molecular markers, also those that were first distinguished by reproductive barriers. How many 186 

markers and which ones are needed to distinguish species vary from group to group. In the 187 

Hypholoma fasciculare complex, it was shown that many molecular markers and phylogenetic 188 

tools were needed to recognize cryptic species within this species complex (Sato et al., 2020). 189 

While in the Serpulaceae it was shown that it is not the number of markers that is important 190 

per se, but selecting a few and informative markers (Balasundaram et al., 2015). Which 191 

molecular markers that have evolved in an even rate and are presenting the history of species 192 

divergence will vary from clade to clade and should thus be evaluated for each study.  193 

 194 
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2.4 Speciation mechanisms in ligninolytic fungi 195 

Even if many fungal species are known, and the estimated species diversity is high, little is 196 

known about how they originate and undergo speciation. In this section I will focus on 197 

speciation mechanisms in ligninolytic basidiomycete fungi, and present some possibilities for 198 

future research.  199 

Most ligninolytic basidiomycete fungi spend most of their life cycle as dikaryotic 200 

mycelia. However, some exceptions are known, where the mycelia contain multiple nuclei, e.g. 201 

in Heterobasidion parviporum, imbalanced nuclear ratios between multiple nuclei may exist 202 

(James et al., 2008). The fusion of the two nuclei into a diploid zygote that undergoes meiosis, 203 

happens in the hymenium of the fruit bodies. Hence, the plasmogamy (fusion of cytoplasm) 204 

and karyogamy (fusion of nuclei) can be separated in time for years, which seems to be a unique 205 

feature for basidiomycetes. A common procedure to investigate reproductive barriers in 206 

Basidiomycota has been to assess whether dikaryotic mycelia are formed when monokaryotic 207 

mycelia are crossed in vitro, as was done for T. abietinum. F. pinicola and A. mellea to 208 

distinguish the sympatric reproductively groups in North America (Anderson et al., 1980; 209 

Anderson & Ullrich, 1979; Macrae, 1967; Magasi, 1976; Mounce & Macrae, 1938). However, 210 

even if the dikaryotization process is well characterized (i.e. see Anderson & Kohn, 2007), it 211 

only represents the first step towards mating. Thus, successful dikaryotization is not 212 

synonymous with reproductive success. 213 

 Successful reproduction following crosses between differentiated populations may 214 

depend on ecological factors that prevent different populations from mating; as residing in 215 

different geographic regions, fruiting in different seasons or growing on different substrates. 216 

Further, genes that preclude plasmogamy, fruitbody formation or karyogamy will also restrict 217 

mating between populations. If the individuals can mate, there may still be mechanisms that 218 

prevent successful reproduction as hybrid sterility or inviability that could be caused by either 219 

ecological factors or genomic incompatibility. For example, a hybrid diploid might encounter 220 

problems during meiosis due to chromosomal rearrangements, resulting in a failure of haploid 221 

spore production or in spores that are less adapted to germinate in the local environment. 222 

 Such reproductive barriers may shape patterns of genomic differentiation observed 223 

among fungal lineages. If reproductive barriers are complete (or if speciation has occurred in 224 

allopatry), then genome-wide differentiation is predicted, with some heterogeneity due to the 225 

effects of selection and variation in rates of mutation and recombination. Greater genomic 226 
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heterogeneity is expected when reproductive barriers are incomplete and divergence is 227 

maintained in the presence of gene flow. For example, patchy divergence (e.g. genomic islands 228 

of divergence) has been reported in the ascomycete species Neurospora crassa where 229 

adaptation to ecologically different features appears to have enhanced divergence (Ellison et 230 

al., 2011). Further, studies of fungal plant pathogens have suggested that genome 231 

rearrangements could be an especially important speciation mechanism for fungi (Plissonneau 232 

et al., 2016; Raffaele & Kamoun, 2012; Stukenbrock, 2013). The role of genome 233 

rearrangements should be further evaluated for ligninolytic fungi.  234 

The nature of reproductive isolation also affects the outcomes of hybridization. If 235 

reproductive barriers are weak or incomplete, some hybrid genotypes may be as fit as the 236 

parents, or even more fit. In such a scenario, the parental lineages may fuse back into a single 237 

species (reverse speciation), or produce a third species (hybrid speciation). Hybrid speciation 238 

has been reported for many different organisms, and it has been shown for the fungal pathogen 239 

Zymoseptoria (Stukenbrock et al., 2012) and recurrently in the true yeast of Saccharomyces. In 240 

Saccharomyces, that are often found on living trees in nature, but may not be defined as 241 

ligninolytic fungi, hybridization and polyploidization have led to the origin of many new 242 

species (Eberlein et al., 2019; Langdon et al., 2019; Libkind et al., 2011; Peris et al., 2016). 243 

Some of these species have been domesticated for fermentation properties, or after the initial 244 

domestication process as S. pastorianus which probably hybridized in the human habitat (Dunn 245 

& Sherlock, 2008).  246 

If reproductive barriers are strong and genetically complex, essentially all hybrids will 247 

be less fit than their parents as they will have less chances of finding a mate. In this case, it will 248 

be advantageous to produce offspring possessing stronger pre-zygotic barriers to prevent 249 

maladaptive hybridization. This may lead to the strengthening or ‘reinforcement’ of 250 

reproductive barriers (Dobzhansky, 1937). While the importance of reinforcement was 251 

questioned by early theoretical papers, there is empirical evidence for this process for many 252 

organisms e.g. flies (Ortiz-Barrientos et al., 2004; Servedio & Noor, 2003), birds (Sætre et al., 253 

1997), plants (Hopkins, 2013) and for Neurospora (Dettman et al., 2008; Dettman, Jacobson, 254 

Turner, et al., 2003) and H. annosum s.l. (Garbelotto et al., 2007; Olson & Stenlid, 2001). In 255 

Neurospora, specific loci related to reinforcement were detected for prezygotic, post mating 256 

reproductive barriers (Turner et al., 2011). In H. annosum s.l. the reinforcement could support 257 

the origin of substrate specialization as hybrids were less fit on specific substrates (Garbelotto 258 

et al., 2007). Reinforcement could also explain the patterns of reproductive isolation found 259 
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among sympatric groups in T. abietinum and F. pinicola. 260 

Although knowledge on fungal speciation mechanisms is emerging from some model 261 

systems, recent review papers have pinpointed the lack of knowledge on speciation processes 262 

in non-model fungi (Giraud et al., 2008; Gladieux et al., 2014; Stukenbrock, 2013). The 263 

temporal separation of plasmogamy and karyogamy in most ligninolytic basidiomycetes may 264 

lead to distinct evolutionary dynamics and genome organization as the two haploid nuclei can 265 

evolve independently until karyogamy (Anderson & Kohn, 2007). In some species it has also 266 

been suggested that the nuclei can go through mitotic recombination during their dikaryotic 267 

stage, a process known as parasexuality (Nieuwenhuis & James, 2016) or mate recurrently by 268 

transferring one nuclei from a dikaryon to a new monokaryon to form a dikaryon with a new 269 

nucleic combination. In the future, ligninolytic wood decay fungi should be ideal organisms to 270 

study speciation processes due to the small genomes of these fungi (average of basidiomycetes 271 

is 46.5 Mb (Mohanta & Bae, 2015)), which allows for a detailed investigation of the role of 272 

chromosomal reorganization, genomic islands of divergence and selection of specific genes 273 

during speciation. Further, they are often culturable, which allows in vitro experiments 274 

evaluating pre- and postzygotic barriers. To understand how these organisms evolve, is of major 275 

importance to understand the emergence of ligninolytic fungal species with important 276 

ecosystem functions. 277 

 278 

3. Individuality and population divergence  279 

As with other organisms, wood decay fungi consist of species, with populations of individuals. 280 

In this section, fungal individuality, how the individuals are distributed in the landscape and the 281 

gene flow among these individuals and among populations will be discussed.  282 

 283 

3.1 Individuality 284 

Fungi are modular organisms. Compared to most animals and plants that have more 285 

defined body size and limits, it is more difficult to observe where a fungal body starts and ends. 286 

Filamentous fungi have hyphae that can grow in different directions, and that may produce fruit 287 

bodies from different parts of the mycelium. Thus, different fruit bodies on a single log may 288 

represent the same or different mycelial individuals. Fungi recognize self from non-self, using 289 

vegetative incompatibility loci (vic or het). If mycelia have different alleles at these loci, they 290 
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will recognize each other as non-self, and usually a confrontation zone is formed. This can 291 

sometimes be observed as black lines in the decayed wood. These confrontation lines have also 292 

been used to test in vitro, if mycelia collected at different sites are different individuals. The 293 

two different mycelia are then placed in one petri dish, and whether a confrontation zone is 294 

formed can be visually observed. The confrontation zone is formed to avoid mixing of 295 

genotypes, to defend the substrate, and possibly also to avoid infections (reviewed by Paoletti, 296 

2016). 297 

Most ligninolytic fungi disperse from one log to the next through air by sexual spores. 298 

The spores will usually establish on the logs as monokaryons that mate with a compatible spore 299 

or another monokaryon. When the mating happens depend on the fungal group, ascomycetes 300 

mate just before fruitbody formation, while basidiomycetes mainly live as dikaryons until 301 

fruiting. For most species, fruit bodies on different logs would then represent different 302 

individuals. However, there are some interesting cases where an individual can spread from one 303 

log to the next by mycelial growth and not only by spores. It has been shown that Armillaria 304 

can spread over extreme distances with rhizomorphs (Anderson et al., 2018; Ferguson et al., 305 

2003; Smith et al., 1992). By using confrontation experiments, one individual of Armillaria 306 

ostroyae in Oregon, USA, spanning 965 hectares (3.8 km in diameter) was found, which is the 307 

largest known organism on earth (Ferguson et al., 2003). Armillaria is both pathogenic and a 308 

wood decay fungus, and has by the occurrence of some large individuals been popularly 309 

referred to as “the humongous fungus”. Even if a few Armillaria individuals spread out to reach 310 

huge sizes, most individuals obtain smaller sizes (Anderson et al., 2018). An even more 311 

complex issue of fungal individuality is the ability of some species to mate recurrently, as was 312 

briefly mentioned in the previous section. In T. abietinum, 82% of all monokaryons that were 313 

paired with a dikaryon resulted in a dikaryotic strain (Kauserud & Schumacher, 2003b). Thus, 314 

a nucleus from a dikaryotic mycelium can be transferred to a new monokaryon and form another 315 

dikaryon, known as Bullers phenomenon or di-mon mating (Buller, 1930; Snider & Raper, 316 

1958). This has been investigated in detail in Schizophyllum commune (Crowe, 1960; Ellingboe 317 

& Raper, 1962; Nieuwenhuis et al., 2011), but is also known from other ligninolytic species 318 

e.g. Pholiota nameko (Nogami et al., 2002) and Armilllaria gallica (Carvalho et al., 1995), and 319 

may be a common phenomenon in ligninolytic fungi.  320 

It was previously thought that many fungi were asexual. However molecular data and 321 

genome sequencing have revealed that many of these clonal fungi, actually have a “cryptic” 322 

sexual stage. For some species, the morphology of the sexual and asexual structures is very 323 
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different and thus these structures were not recognized as the same species. For example, the 324 

early season asexual structures and the late season sexual structures created taxonomic 325 

confusion in the widespread species Xylaria hypoxylon and Ascocoryne sarcoides (see photos 326 

of the asexual and sexual structures of A. sarcoides in Figure 1). Even if the ability to produce 327 

both asexual and sexual structures and spores are most common in ascomycetes it also occurs 328 

in basidiomycetes, e.g. in Postia ptychogaster (Ryvarden & Gilbertson, 1994). Thus, fungi, and 329 

especially ascomycetes, are flexible by having the ability to shift between asexual and sexual 330 

stages when this is advantageous. However, very few species can be considered purely asexual 331 

(J. W. Taylor et al., 2015). To my knowledge, no purely asexual basidiomycete ligninolytic 332 

fungi are known, even if self-fertilization (homothallism) is known in e.g. Sistotrema 333 

brinkmannii (Ullrich & Raper, 1975) and Armillaria mellea (Baumgartner et al., 2012), and 334 

within several genera in the Hymenochaetales (Rajchenberg, 2011). More investigations are 335 

needed to test whether these findings are mostly due to the lack of clamp formation in the 336 

dikaryons formed, which makes mating difficult to observe.  337 

It is common that several individuals of the same species grow on the same log. This 338 

was the case of T. abietinum when cultures made from different fruitbodies found the same log 339 

were confronted with each other – almost all fruitbodies were different individuals (Kauserud 340 

& Schumacher, 2003b). Fewer fruit bodies were found in the rare, and in some countries, 341 

redlisted, pocket rot species Phellopilus nigrolimitatus. This species is known to produce fruit 342 

bodies on heavily decayed logs, but it may be present in the log for a long period before it fruits 343 

(Ovaskainen et al., 2013). From 42 cultures produced from fruit bodies and sawdust of three 344 

logs, 7 individuals could be detected (Kauserud & Schumacher, 2002). This has recently been 345 

revisited, where 53 different individuals were identified among 230 dikaryotic isolates of P. 346 

nigrolimitatus, distributed on 6 logs, where 6 to 12 individuals were found on each log (Jensen 347 

et al., 2020). On the contrary, only a single individual of Serpula lacrymans (known to decay 348 

wood in the built environment) is usually found in each house (Bjørnaraa, 2013).  349 

 350 

3.2 Population size, divergence and gene flow within ligninolytic species 351 

Populations sizes of ligninolytic fungi varies from species living in small, defined, endemic 352 

populations to species that are widespread, and where the divergence is probably more driven 353 

by isolation by distance than distinct population structure. Thus, for some species it may be 354 

difficult to define specific populations and population sizes.  355 
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This is the case for the widely distributed and abundant white rot decay fungus 356 

Schizophyllum commune. This species possesses extremely high genetic diversity (nucleic acid 357 

diversity of 0.20 in the US population was observed) as was shown by full genome sequencing 358 

of individuals from USA and Russia (Baranova et al., 2015). There are several possible 359 

explanations to this, and the authors argued that it is mostly due to high mutation rate, and 360 

partially due to large population sizes. Individuals from the two continents were divergent, but 361 

little divergence was observed within continents, as also supported by previous studies 362 

suggesting that intercontinental long-distance dispersal and gene flow is rare (James et al., 363 

1999; James & Vilgalys, 2001).  364 

Even closely related species may have very different divergence and dispersal rates. In 365 

the two sister species Trichaptum fuscoviolaceum and T. abietinum the population sizes and 366 

divergence seem to differ. In T. abietinum there is several reproductively isolated groups, as 367 

was discussed in section 2, while in T. fusocviolaceum there seem to be two more closely related 368 

populations and no observed reproductive barriers (Kauserud & Schumacher, 2003c; Macrae, 369 

1967; Seierstad et al., 2020). 370 

Within the Fennoscandian range of the species Phellopilus nigrolimiatus, very little 371 

genetic divergence was observed based on population genomic analyses (Sønstebø et al., in 372 

prep.). Little genetic differentiation in Eurasia was also observed for the postfire ascomycete 373 

Daldina loculata (Johannesson et al., 2001), the widespread polypore F. pinicola (Högberg et 374 

al., 1999), the red-listed Phlebia centrifuga (Franzén et al., 2007) and Fomitopsis rosea 375 

(Högberg & Stenlid, 1999; Kauserud & Schumacher, 2003a). Based on this low level of 376 

differentiation, a high dispersal ability is expected. 377 

However, modelling spread of spores in H. annosum showed that only 0.1% of the 378 

spores spread more than 100 m (Stenlid, 1994). For Phlebia centrifuga, spore traps and 379 

modelling analyses suggested that spore dispersal is restricted to tens of meters (Nordén & 380 

Larsson, 2000; Norros et al., 2012). For more long-distance dispersal, spore deposition was 381 

positively correlated to the age of the forest and negatively correlated to forest fragmentation 382 

for the five species, F. pinicola, F. rosea, P. centrifuga, Trichaptum laricinum and Meruliopsis 383 

taxicola (Edman, Gustafsson, Stenlid, & Ericson, 2004; Edman, Gustafsson, Stenlid, Jonsson, 384 

et al., 2004). Specifically, for the red-listed species P. centrifuga and F. rosea, there was a 385 

major reduction of spore deposition in more fragmented forests (Edman, Gustafsson, Stenlid, 386 

& Ericson, 2004). Nevertheless, even for T. laricinum that had the lowest spore deposition, 387 

more than 10 spores per m2 per 24h were found (Edman, Gustafsson, Stenlid, Jonsson, et al., 388 
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2004). There are probably additional factors, as available substrate or competition with other 389 

species, that restricts the red-listed F. rosea and P. centrifuga. 390 

Thus, even with the abundant spore production of these species, there is not much evidence 391 

suggesting that ligninolytic fungi often disperse long distances. Spore survival during the 392 

dispersal process is affected by variables as UV radiation and temperature (Norros et al., 2015), 393 

spore size (Norros et al., 2014), and time of dispersal (Oneto et al., 2020). Thus, a successful 394 

dispersal of an individual is dependent on spore dispersal, survival and establishment.  395 

 396 

4.  Distribution and adaptation 397 

Which wood decay species can be found on a log is dependent on numerous variables, e.g. the 398 

local environment, host tree, substrate size, which other species are present in the wood, who 399 

have lived in the substrate previously, and the decay stage. Wood decay is a highly specialized 400 

process; thus, wood decay species are often adapted to different tree species that have different 401 

biochemical composition. Further, fungi are affected by various environmental factors, such as 402 

temperature and precipitation (Andrew, Heegaard, et al., 2018). A recent study based on 403 

diversity surveys of 180 plots in a mixed forest in Germany, suggested that substrate is more 404 

important than the environment for the distribution of wood decay fungi (Krah, Seibold, et al., 405 

2018). 406 

 407 

4.1 Habitat specificity and substrate specialization  408 

All wood consists of lignocellulose. Lignocelluose is a recalcitrant material consisting of 409 

cellulose, hemicellulose, lignin, in addition to pectin, proteins, fatty acids and a set of 410 

extractives. However, the substrate experienced by the wood decay fungi can still be highly 411 

variable. The proportions of the lignocellulose components vary between gymnosperms and 412 

angiosperms, among different species, and even between different parts of an individual tree 413 

(Kollmann & Cote, 1968; Sjöström, 1993). When comparing angiosperm and gymnosperm 414 

trees, it is generally found that angiosperm trees have more cellulose and less lignin than 415 

gymnosperm trees (Table 1). Further, gymnosperm trees have more extractives in the plant cell 416 

wall matrix. In addition, there are differences in the amount and type of hemicellulose among 417 

the tree species, where angiosperms have more xylans and glucomannanas, and gymnosperms 418 
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have more galactoglucomannans (Sjöström, 1993). These are all elements the fungi adapt and 419 

respond to in their habitat. 420 

Historically, wood decay fungi have been divided into soft rot, brown rot and white rot 421 

based on the morphology and coloring of the decayed wood. Soft rot is mainly caused by 422 

ascomycetes, from several different groups, e.g. Trichoderma, Xylaria, Aspergillus (Eurotiales) 423 

and Phialophora (Chaetothyriales). White and brown rot are caused by basidiomycetes in the 424 

subphyla agaricomycetes, and evolved by the expansion of peroxidases that break down lignin 425 

through oxidation. Examples of genera with species causing white rot are Phanerochaete, 426 

Fomes, Trametes, Heterobasidion and Trichaptum, and examples of genera with species 427 

causing brown rot are Serpula and Fomitopsis. 428 

Brown rot species have evolved repeatedly and independently from various white rot 429 

ancestors (Floudas et al., 2012; Hibbett & Donoghue, 2001). Although independent events, the 430 

transition from white rot to brown rot follows some common evolutionary trajectories. First, 431 

the processes have involved loss of genes encoding enzymes important for the white rot decay 432 

mechanisms, as the peroxidases (Floudas et al., 2012; Riley et al., 2014; for a summary of the 433 

relevant enzymes, see also Lundell et al., 2014). The amount of gene loss varies among species 434 

and the transition between white rot and brown rot is a more continuous transition than 435 

previously thought, with some species having a more intermediate decay mechanism (Riley et 436 

al., 2014). Secondly, the rapid wood decay by brown rot species has later been explained by a 437 

more efficient redox reaction to deconstruct the lignocellulose complex (Arantes & Goodell, 438 

2014; Koenigs, 1974; Zhang et al. 2016). Consequently, the brown rot fungus can then utilize 439 

the carbohydrate polymers of the wood, while leaving the slightly modified lignin as a brown 440 

residue (hence the name brown rot). More details about the evolution of wood decay 441 

mechanisms are found in the chapter by Floudas in this volume. 442 

Ligninolytic fungal species are all specialized to their niche, but the breath of these 443 

niches varies. While some species have a narrow niche, adapted to decaying wood from one 444 

species, others can colonize a large variety of tree species. Brown rot species are more 445 

commonly specialist of gymnosperms than angiosperms, and the opposite is the case for white 446 

rot fungi (Gilbertson, 1980; Hibbett & Donoghue, 2001). In a recent study it was found that 447 

white rot fungi more commonly have evolved from being a generalist to angiosperm specialist, 448 

while brown rot fungi tend to evolve to become a generalist species (Krah, Bässler, et al., 2018).  449 

There have been several studies on the evolution of substrate specificity in close 450 

relatives. For examples, the previously cryptic species in the Heterobasidion abietinum, H. 451 
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parviporum and H. occidentale clade cannot infect species of the genus Pinus, while the H. 452 

annosum s.s. and H. irregulare clade could infect Pinus (Dalman et al., 2010; Garbelotto et al., 453 

1998; Garbelotto & Gonthier, 2013; Johannesson & Stenlid, 2003). Hybrids between these two 454 

clades could not decay Pinus wood efficiently, thus, substrate specialization (through 455 

reinforcement as previously discussed) may maintain species boundaries within 456 

Heterobasidion (Garbelotto et al., 2007). 457 

Similarly, two evolutionary lineages of Meruliopsis taxicola, with different substrate 458 

preferences, occur throughout the Nordic countries (Kauserud, Hofton, et al., 2007; Seierstad 459 

et al., 2013). One lineage is mainly found on pine in coastal areas, while the other lineage grows 460 

mainly on spruce in inland areas. In Norway the separation of the two lineages is maintained, 461 

while in Finland they reproduce throughout the distribution. Interestingly, genetic analyses of 462 

these lineages only found the pine haplotype growing on spruce in dikaryotic individual 463 

(sporocarp) that also possessed the other haplotype (i.e. a hybrid between these two lineages) 464 

(Kauserud, Hofton, et al., 2007; Seierstad et al., 2013). Whether lineages isolated from pine 465 

have lower performance on spruce, or whether there are reproductive barriers between these 466 

two lineages in Norway is unknown and is a topic for further research. 467 

The brown rot decay species Serpula lacrymans, is suggested to be adapted to a niche 468 

with large substrates, but little nitrogen - as would be expected in the built environment, and in 469 

its natural habitat in high mountain areas (Hess et al., 2021). The ability of this species to decay 470 

wood in a rapid manner has been well documented (Jennings & Bravery, 1991). It decays 471 

certain substrates more rapidly than its sister species S. himantioides (Balasundaram et al., 472 

2018; Skrede et al., 2011). Thus, it seems that S. lacrymans is adapted to a narrower niche than 473 

its more widespread sister species, S. himantioides (Balasundaram et al., 2018; Hess et al., 474 

2021). Serpula genomes contain relatively many CAZymes compared to other brown rot 475 

species (Balasundaram et al., 2018; Eastwood et al., 2011; Floudas et al., 2012; Riley et al., 476 

2014). The number of CAZymes is fewer in S. lacrymans than in S. himantioides, suggesting 477 

that S. lacrymans has an increased reliance on the energy efficient non-enzymatic decay system 478 

that characterize brown rot decay (Hess et al., 2021). During this adaptation to rapid decay, S. 479 

lacrymans has become a poor competitor for its substrate, as S. lacrymans had significantly 480 

poorer competitive ability compared to S. himantioides (Balasundaram et al., 2018; Hess et al., 481 

2018).  482 

Competitive interactions among basidiomycete wood decay fungi are known to be 483 

important for the decomposition process (Boddy, 2000; Hiscox et al., 2018). Fungi can defend 484 
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their substrate in various ways by e.g. altering the pH of the wood, exuding oxidative enzymes 485 

or producing volatiles. Primary colonizers are often adapted to rapidly capturing the substrate, 486 

at the expense of an effective defense system. Those species entering the community at later 487 

decay stages need to outcompete these primary colonizers in order to establish and usually have 488 

a more developed competitive repertoire of secondary metabolites (Boddy & Hiscox, 2016; 489 

Hiscox & Boddy, 2017). Thus, wood decay species are known to decay the substrate in a 490 

successional fashion, where some species are dependent on the wood decay of certain other 491 

species in order to decay the wood, while they are hindered by other species. For example, the 492 

wood decay species Phlebiopsis gigantea is used in the forest industry as a biocontrol agent to 493 

stop infections by H. annosum, as the latter cannot outcompete P. gigantea (Garbelotto & 494 

Gonthier, 2013). Phlebiopsis gigantea does not kill living threes, as H. annosum does, thus a 495 

much-preferred fungal species for the forest owners. Another example is Phanerochaete 496 

magnolia that specifically replaces Datronia mollis (Ainsworth & Rayner, 1991). Recently it 497 

was shown that the size of the mycelium also affects the competitive ability, thus fungi 498 

occupying larger substrates have a better defense ability (but slower decomposition rate) than 499 

those individuals occupying smaller substrates (Fukasawa et al., 2020). Competitive ability is 500 

among the traits that are most positive correlated to decomposition rate and extension rate in a 501 

range of basidiomycete wood decay fungi (Lustenhouwer et al., 2020; Maynard et al., 2019). 502 

Thus, this indicates that fast growth and defending its substrate are important success factors 503 

for wood decay fungi.  504 

 505 

4.2 Environmental and climatic effects on fungal distribution 506 

Even if substrate and competition for the substrate are important for the distribution of fungal 507 

species, there is no doubt that other environmental variables, including temperature and 508 

precipitation are also explaining the occurrences and success of fungi (Andrew, Heegaard, et 509 

al., 2018; Gange et al., 2007; Kauserud et al., 2012; Maynard et al., 2019; Wollan et al., 2008). 510 

Recently it has been shown that fungal occurrences in both space and time have been altered as 511 

a consequence of climate change (based on historical collection and weather data). In high 512 

mountain areas many species are now fruiting in higher altitude than previously (Diez et al., 513 

2020). Autumn fruiting species in Europe have now wider seasons in central Europe but shorter 514 

season in Northern Europe, while the opposite is the case for spring fruiting species (Andrew, 515 

Heegaard, et al., 2018; Gange et al., 2007; Kauserud et al., 2012). 516 
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There are several local conditions that affect the fungal diversity on logs, like moisture 517 

level. For fungal wood decay to occur, the wood needs at least 30% moisture, where 40-80% is 518 

optional (Goodell et al., 2020). The above-mentioned study on decomposition rate and 519 

competition ability, found that optimal moisture condition was positively correlated to 520 

decomposition rate, but a wide moisture tolerance gradient was negatively related to 521 

decomposition rate (Lustenhouwer et al. 2020). A strong negative correlation between optimal 522 

moisture and extension rate was also found by Maynard et al. (2019). Thus, adapting to a wide 523 

moisture tolerance niche is maybe at the cost of rapid decomposition. At higher moisture level 524 

the oxygen levels become scarce and the decay efficiency declines for most species, even if 525 

some soft rot ascomycete species can decay wet wood. Thus, logs in humid conditions as those 526 

that have fallen into rivers, mires or lakes will often be decomposed at a slower rate, and by a 527 

specific fungal community dominated by ascomycetes. Interestingly, a study of the diversity in 528 

driftwood in the arctic revealed a high diversity of ascomycetes (Rama et al., 2016), which 529 

could probably be explained both by the moisture level of the wood, but also by the marine 530 

elements. In general, there are more ascomycetes than basidiomycetes found in marine habitats, 531 

even if the fungal diversity in the oceans is still poorly known (Amend et al., 2019).  532 

Fire is another factor that will affect the diversity of wood decay fungi (Edman & 533 

Eriksson, 2016). There are several species that are adapted to decaying fire-damaged wood, e.g. 534 

Antrodia sinuosa, Daldinia loculata and Neurospora crassa. During a confrontation 535 

experiment where A. sinuosa competed on wood discs with five other species, it was never 536 

outcompeted on burnt wood discs, but lost in about 40% of the cases on the regular discs 537 

(Edman & Eriksson, 2016). In a specific confrontation experiment with F. pinicola, A. sinuosa 538 

won 100% of the experiments on burnt wood, but won less than 10% of the cases on regular 539 

wood (most cases were a draw). Thus, growth on burnt wood clearly alters the competing ability 540 

of these species.  541 

In areas with dead wood, but for some reason few large living trees and absence of 542 

canopy (e.g. following avalanches or clear-cutting), there are certain species that are 543 

specifically adapted to the rapid change of temperature, and the direct heat from the sun, e.g. 544 

Gloeophyllum sepiarium, Antrodia xantha, Pyconoporus cinnabarinus and Dacrymyces 545 

stillatus. This adaptation has made G. sepiarium and D. stillatus specifically challenging for 546 

home owners, as they grow directly on the outer surface of wooden houses (Alfredsen et al., 547 

2005).  548 
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Saprotrophic fungi are known to be affected by nutrients and pollution, as was shown by 549 

the correlation between fungal occurrence data and nitrogen deposition (Andrew, Halvorsen, et 550 

al., 2018). Boreal forest is affected by increasing nitrogen deposition in areas affected by 551 

anthropogenic activities as agriculture and industry, but also by direct fertilization (Phoenix et 552 

al., 2006). However, wood is a nitrogen-poor substrate, and most ligninolytic fungi are adapted 553 

to efficient nitrogen usage, e.g. through recycling of nitrogen from old to new mycelia 554 

(summarized in Watkinson et al., 2006). How ligninolytic fungi respond to abundant nitrogen 555 

is insufficiently known, but there are some indications that increased nitrogen leads to increased 556 

diversity of saprotrophs (Morrison et al., 2016) and decomposition of a higher diversity of 557 

organic compounds (Gartner et al., 2004). This observation is in contrast to mycorrhizal species, 558 

where reduced growth and diversity have repeatedly been observed with increased nitrogen 559 

level (Ekblad et al., 2013; Högberg et al., 2003; Högberg et al., 2011; Morrison et al., 2016; 560 

Nilsson & Wallander, 2003; van Diepen et al., 2010).  561 

To summarize, there are many factors affecting the occurrence of wood decay fungi, such 562 

as substrate, temperature, moisture and precipitation, nitrogen deposition, all affecting the 563 

success and occurrence of different ligninolytic fungi. Overall, indicating fungi specialize and 564 

adapt accordingly to these factors.  565 

 566 

4.3 Local adaptation in ligninolytic fungi 567 

While it has been possible to observe species distribution and link this to the various climatic 568 

and environmental variables, the current available genomic tools allow us to understand the 569 

genomic basis and the possibilities of local adaptation.  570 

Fungal species adapt to their habitat and environment, i.e., some species may fruit later in 571 

colder climate, and grow quicker with shorter growth season, others have the ability to grow in 572 

nutrient-poor conditions, in the direct sunlight, and so on. There have been a few game-573 

changing studies, where genomic tools have allowed to understand some of the genetic 574 

mechanisms that are involved in adaptation. Ellison et al. (2011) found that N. crassa, from 575 

Louisiana (US) grew more rapidly in colder conditions than the populations collected in warmer 576 

climate in the Caribbean. Two genomic regions were more divergent than the average 577 

divergence between the genomes of these populations. In these regions, genes related to 578 

temperature response and circadian oscillations were present, indicating that temperature 579 
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tolerance and possibly a response to daylength were important for adapting to the habitat in a 580 

south-north gradient.  581 

In a recent study of P. nigrolimitatus, a weak population genetic structure was found in 582 

Fennoscandia using RAD sequencing of 327 individuals (Sønstebø et al., in prep.). In this study, 583 

they observed associations between numerous genetic loci and variables explaining temperature 584 

and precipitation. In addition, an increased linkage disequilibrium among loci correlated to 585 

climate was observed, suggesting that epistatic interactions allow large parts of the genome to 586 

adapt to climate (Sønstebø et al., in prep.). 587 

Serpula lacrymans, that has adapted to a rapid wood decay compared to its sister species, 588 

and has also gone through local adaptation within species. Serpula lacrymans in the built 589 

environment in Europe, America, Australia and New Zealand is one genetically depauperated 590 

population with only a few vegetative incompatibility types and mating type alleles (Kauserud, 591 

2004; Kauserud et al., 2006; Maurice et al., 2014; Skrede et al., 2021). In contrast, high 592 

population diversity population is found in Japan. Demographic modelling based on population 593 

genomic data showed that these two populations split at least 8000 years before present, 594 

indicating two independent invasions into the built environment (Skrede et al., 2021). Both 595 

populations seem to have conserved genetic functions related to rapid growth, indicating the 596 

importance of this trait in the built environment (Hess et al., 2021, Skrede et al., 2021).  597 

Several other genomic studies of wood decay fungi have shown the importance of enzymes 598 

related to the degradation of the lignocellulose of the plant cell wall during the adaptation to 599 

the woody substrate in ligninolytic fungi, but mainly on higher taxonomic levels, e.g. in 600 

Fistulina and Pycnoporus (Floudas et al., 2015; Miyauchi et al., 2020). On a population level, 601 

however, there are few studies on local adaptation in ligninolytic fungi. In other organisms, it 602 

was recently found that larger chromosomal rearrangements and introgressions among species 603 

are involved in local adaptation in sunflowers (Helianthus) – e.g. a large haplotype block that 604 

resulted from introgression from Helianthus annuus, was responsible for early flowering in a 605 

coastal sunflower population of Helianthus argophyllus (Todesco et al., 2020). Large 606 

chromosomal rearrangements are also known in fungal plant pathogens during rapid 607 

adaptations in the arms race between host and pathogen (e.g. Croll et al., 2013). However, 608 

whether this is the case for ligninolytic fungi is still unknown.  609 

 610 
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4.4 Habitat sensitivity and conservation needs 611 

Deforestation has an effect on water management, desertification, food security and 612 

biodiversity loss, and is discussed in detail in the “State of the world’s forests” (FAO, 2016). 613 

Currently, deforestation is a huge problem in tropical forests, and in the decade of 2000-2010 614 

7 million hectares forests was lost. During the last 5000 years there have been a decline in 615 

forests equivalent to 50% of the total forests today (FAO, 2016). However, in temperate regions 616 

there is now an increase of forested areas (FAO, 2016). Nevertheless, intense forestry 617 

management practices in some regions may leave little dead wood, alter the nutrient 618 

availability, fragment suitable habitats, and disturb the soil (Pohjanmies et al., 2017). Thus, for 619 

fungi, forest management and other anthropogenic activities affect the amount of suitable 620 

substrate, connectivity of the habitat, and size of habitats (Junninen & Komonen, 2011). In 621 

Norway about half of all described polypore species are red-listed mainly due to the forest 622 

management practices the last centuries (Brandrud et al., 2015).  623 

In danish beech (Fagus sylvatica) forests Heilmann-Clausen and Christensen (2005) 624 

suggested that managed forests do not have enough large substrates and suitable conditions for 625 

many ligninolytic species. Further analyses on the European scale suggested that in order to 626 

maintain species diversity and connect fragmented forests, the size of the conserved forests 627 

must be larger than today (Abrego et al., 2015; Heilmann-Clausen & Christensen, 2005). This 628 

was coherent with the findings from boreal forests, where Nordén et al. (2013) suggested to 629 

conserve some large, well-connected areas, rather than many small fragmented regions. The 630 

size and decay stage of the substrate are important variables explaining the general species 631 

richness and the occurrences of rare species in beech forests (Heilmann-Clausen & Christensen, 632 

2004, 2005).  633 

When the effect of forest fragmentation is investigated for individual species, different 634 

trends have been observed. For example, forest fragmentation affected the occurrence of P. 635 

nigrolimitatius (Stokland & Kauserud, 2004), but not Cystostereum murrayi (Sverdrup-636 

Thygeson & Lindenmayer, 2003). These different responses to forest fragmentation could be 637 

caused by differences in specialization. Nordén et al. (2013) estimated the degree of 638 

specialization in a set of wood decay species and showed that common and widespread species 639 

as F. pinicola and T. abietinum have a broader niche, while several species connected to old-640 

growth forests have narrow niches e.g. Amylocystis lapponica and F. rosea. Recent studies have 641 

also modelled that the more specialized species are more affected by habitat loss, loss of 642 

connectivity, and have a higher extinction rate and lower colonization rate (Moor et al., 2020; 643 
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Nordén et al., 2013). Thus, the more specialized a species is, the more prone it is for extinction, 644 

and the more sensitive to habitat change and forest fragmentation. This is also the case for 645 

species that are specialized to co-occur or compete with other species, where recent studies 646 

have shown that forest fragmentation has a negative effect on species interactions, thus those 647 

that are dependent on other species are more negatively affected by forest fragmentation 648 

(Abrego et al., 2017; Rybicki et al., 2020).  649 

  Forest fragmentation was suggested to affect population divergence and genetic 650 

diversity of P. centrifuga (Franzén et al., 2007). It is important to acknowledge that the 651 

generation time of wood decay species may vary extensively, which again will affect the 652 

observed genetic diversity and divergence. The above mentioned, P. nigrolimitatus, may fruit 653 

on old logs, while T. abietinum fruits on logs that are recently fallen. Thus, there may be a lag 654 

from when the species are affected by habitat fragmentation to when a population bottleneck is 655 

possible to observe in the genetic material. 656 

 In the future, conservation efforts should better consider the needs of the wood decay 657 

fungi, and evaluate the habitat size, size and amount of substrate and other needs of these 658 

species to retain genetic diversity, and for successful mating to occur. In order help species 659 

reestablish, there are ongoing research projects testing the possibility to reintroduce locally 660 

extinct species, summarized in Nordén et al.  (2020). Already, successful establishment after 661 

reintroduction was observed for several species in Finland (e.g. Amylocystis lapponica, A. 662 

citrinella and F. rosea) (Abrego et al., 2016) and for Hericium coralloides in the UK (Boddy 663 

et al., 2011). Such experiments have several challenges, i.e. how will these reintroduced species 664 

affect the community that is already there? and how will the low genetic diversity and 665 

population size affect the ability for this species to adapt to local environmental factors? As 666 

discussed earlier in this chapter, species need to adapt to the current local environment and to 667 

climate change, and their chances to adapt are depended on the genetic variability available in 668 

the genome. For suggestions on how to handle some of the challenges of reintroduction, see 669 

Nordén et al. (2020) on ten principles for conservation translocation. 670 

 671 

5. Conclusions and Future perspectives 672 

Ligninolytic fungi are highly adapted to their substrate, but their niches are still highly variable. 673 

Some fungi have wide distributions, decay a wide set of woody substrates and have large 674 

population sizes. Others are highly specialized to a specific substrate, have small endemic 675 
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distributions and have small population sizes. This variety makes ligninolytic fungi interesting 676 

for studies on evolutionary and ecological questions. The development of genomic tools, that 677 

now allows full genome sequencing of ligninolytic fungi for a low price, opens possibilities to 678 

test hypotheses on the mechanisms that allow or restrict, local adaptation and species 679 

divergence on non-model organisms. We still do not know how fast species adapt to their local 680 

environment, and what the genetic prerequisites are, for a species to be able to adapt to rapid 681 

climate changes and habitat fragmentation. As ligninolytic fungi are responsible for a major 682 

part of the decomposition of wooden materials, they are important players of the carbon cycle, 683 

both releasing carbon to the atmosphere and storing carbon in the soil. 684 

More research is needed to understand the effect of various forest management 685 

practices. Currently, it is known that intense forestry practices, such as clear-cutting of large 686 

areas, fragment the forests and affect the success of many ligninolytic species. It has been 687 

suggested that continuous-cover forestry where the timing of felling, thinning level and 688 

regeneration method are carefully monitored to optimized forest diversity, can maintain higher 689 

diversity without having to compromise on the economic profit for the forest owners 690 

(Eyvindson et al., 2018). However, more research and further political initiatives are needed to 691 

establish forest management practices that are optimized for species diversity, low climate 692 

impact, profit for the forest owners and the societal need for forest products. 693 

An accurate estimate of the richness and the functional role of these species in their habitat 694 

are important as species are becoming extinct before we even discover that they exist. Fungal 695 

ligninolytic species have a large variety of ecological roles and are important for the survival 696 

of other species in their ecosystem. As the climate change and the land use is altered, we will 697 

lose species that are still undescribed, unfortunately, without the possibility to apply any 698 

conservation measures. This strongly calls for further research in fungal systematics, fungal 699 

diversity, functional genomics, forest ecology and carbon sequestrations, to obtain a more 700 

complete understanding of the diversity and the ecological role of ligninolytic fungi.  701 
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Tables and figure legends 1218 

 1219 

 1220 

Table 1. Chemical composition of a selection of Angiosperm (above the dotted line) and Gymnosperm 1221 
(below the dotted line) North American tree species. Numbers are derived from chapter 2 in Kollmann 1222 
and Côté (1968) and chapter 3 in Rowell (2012), from both oven dried wood, and soluble components. 1223 

Wood species Cellulose % Hemicellulose % Lignin % Extractives % Ash % 

Acer rubrum 45-47 29-30 21-24 5.3 0.3-0.4 
Betula papyrifera 42-45 38 18-19  0.3 

Fagus grandifolia 45-49 29-32 22 3.4 0.4 

Populus tremuloides 48-49 27-30 19-24  0.4 

Ulmus americana 50-51 23 22-24 1.9 0.8 

Abies balsamea 42 25-27 29 2 0.4 
Picea glauca 41-43 28-31 27-29 1 0.3 

Pinus strobes 41-45 26-27 27-29 3 0.2 

Thuja occidentalis 41-44 23-26 30-31 2 0.5 

Tsuga canadensis 41 23 33 3 0.5 

 1224 

[Figure 1, should be one full page] 1225 

Figure 1. Various ligninolytic fungi. a) Ascocoryne sarcoides sexual stage (teleomorph), Photo: 1226 
Klaus Høiland, b) Ascocoryne sarcoides asexual stage (anamorph), Photo: Klaus Høiland, c) 1227 
Xeromphalina campanella, Photo: Inger Skrede, d) Bisporella citrina, Photo: Klaus Høiland, 1228 
e) Xylaria hypoxylon with white asexual conida, Photo: Klaus Høiland, f) Ganoderma 1229 
applanatum, Photo: Inger Skrede, g) Fomitopsis pinicola, Photo: Inger Skrede, h) Crucibulum 1230 
leave, Photo: Inger Skrede, i) Daedalea quercina, Photo: Inger Skrede, j) Serpula lacrymans, 1231 
Photo: Inger Skrede. 1232 

 1233 

[Figure 2, is prepared as a one-column figure] 1234 

Figure 2. A common lifecycle of an Agaricomycete wood decay fungus, exemplified with 1235 
Trichaptum abietinum.  1236 

 1237 

[Figure 3, is prepared as a one-column figure] 1238 

Figure 3: Schematic drawing of the number of individuals of Trichaptum abietinum on a log, 1239 
inspired by Kauserud & Schumacher (2003b). Many individuals are often present on the same 1240 
log. Photo: Inger Skrede. 1241 
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