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A B S T R A C T

Environmental contours are widely used as a basis for e.g., ship design, especially in early design phases. The
traditional approach to such contours is based on the well-known Rosenblatt transformation. Here we focus on
convex contours estimated using Monte Carlo methods and establish a rigorous mathematical foundation for
such contours. In the present paper we also present an improved simulation procedure based on importance
sampling. In particular, we show how this procedure can be extended to cases with omission factors and
where the joint distribution of the environmental variables is a discrete mixture. It is well-known that contours
constructed using Monte Carlo simulation typically have certain irregularities. In particular, the sets bounded
by the estimated contours appear to be convex. However, when the curves are investigated more closely, they
include a large number of small loops. In the present paper we provide a precise condition for convexity,
and propose a smoothing method which can be used to eliminate the loops. The methods are illustrated by a
numerical example.
1. Introduction

Environmental contours are widely used as a basis for e.g., ship
design. Such contours are typically used in early design when the
strength and failure properties of the object under consideration are
not known. An environmental contour describes the tail properties of
some relevant environmental variables, and is used as input to the
design process. See Haver (1987), Baarholm et al. (2010), Ditlevsen
(2002), Moan (2009) and Jonathan et al. (2011). The methodology for
constructing environmental contours were introduced by Winterstein
et al. (1993) and Haver and Winterstein (2009). The process starts
out by constructing a contour for two independent standard normally
distributed variables. This contour is then transformed to the environ-
mental space using the inverse Rosenblatt transformation introduced
in Rosenblatt (1952). As pointed out in Huseby et al. (2013) the prob-
abilistic properties of the contour is typically not preserved under this
transformation. Hence, the resulting contour may need to be adjusted
in order to get the desired exceedance probability. Huseby et al. (2013)
also presented an alternative approach where environmental contours
are constructed using Monte Carlo simulation. For a similar approach to
a related problem see Ottesen and Aarstein (2006). Improved methods
are found in Huseby et al. (2015a,b).

Contour methods are often used in situations where the environ-
mental variables are the significant wave height and the wave period. By
focussing on the significant wave height the uncertainty in the short-
term response is essentially ignored. In Winterstein et al. (1993) it is
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pointed out that largest response can sometimes be produced in a seast-
ate with less-than-maximum significant wave height. Thus, assuming
that the worst case responses are proportional to the significant wave
height may result in underestimation of the risk. Winterstein et al.
(1993) suggest that the uncertainty in the short-term response can be
included by adding a random error term, often referred to as an omission
factor. Still, modelling such a factor in normal space can be challenging.
To avoid explicit inclusion of this factor, Winterstein et al. (1993) argue
that the uncertainty alternatively can be accounted for by using an
inflated contour.

For Monte Carlo contours it is in principle much easier to take into
account the uncertainty in the short-term response by adding a random
error term since this can be done directly in the environmental space.
When running a full-scale Monte Carlo simulation, adding an extra
random variable is straightforward. It should be noted, however, that if
more advanced Monte Carlo methods, like e.g., importance sampling, is
used, it becomes more difficult to include omission factors. A solution
to this issue is presented in Section 4.1.

A challenge with Monte Carlo based methods is that in order to
obtain stable results it may be necessary to run a large number of
simulations. In Huseby et al. (2015b) this issue was addressed by
using rejection sampling. In the present paper we show how this can
be improved even further using importance sampling. Even though
the resulting contours are fairly precise, a closer examination of the
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Fig. 2.1. An environmental contour and a failure region.

urves reveals certain irregularities. In the present paper we study this
roblem in detail, and show why these irregularities occur. Based on
he theoretical results we also propose a simple smoothing method for
emoving these irregularities.

. Basic concepts

Let (𝑇 ,𝐻) ∈ R2 be a vector of environmental variables where e.g.,:

𝑇 = Wave period
= Significant wave height

he distribution of (𝑇 ,𝐻) is assumed to be absolutely continuous with
espect to the Lebesgues measure in R2.

An environmental contour is defined as the boundary of a compact1

et  ⊆ R2 and denoted 𝜕. To avoid pathological cases we always
ssume that these sets have a non-empty interior. In particular, sets
ontaining just a single point will not be considered.

During the design phase of some structure of interest the environ-
ental contour can be used to identify conditions which the structure

hould be able to withstand. That is, if (𝑇 ,𝐻) ∈ , the structure
hould function normally. Consequently, the environmental contour 𝜕
epresents the most severe or extreme conditions that the structure
hould be able to handle, and the points on this contour represent
ossible design requirements for the structure.

The failure region  ⊆ R2 of a structure is the set of states where the
tructure fails. See Fig. 2.1. For a given environmental contour 𝜕 we
ay that the design requirements are satisfied if and only if the failure
egion  does not overlap with the interior of the set . Formally, we
tate this as2  ∩ ⊆ 𝜕. That is, the failure region  is only allowed to
ntersect with the set  at its boundary. If the set  is large, an allowed
ailure region,  will be located in the outer regions of the outcome
pace. This implies that the structure will be subject to strict design
equirements. As a result, the probability of failure, i.e., the probability
hat (𝑇 ,𝐻) ∈  is small.

In the design phase the exact shape of the failure region of a
tructure is typically unknown. It may still be possible to argue that
he failure region belongs to a certain family denoted by  . We then
ay that the design requirements are satisfied if and only if  ∩ ⊆ 𝜕
or all  ∈  .

1 A set is compact if it is closed and bounded.
2 Although this condition includes the possibility that  ∩  = 𝜕, the

ailure regions considered in the present paper will typically overlap only with
proper subset of 𝜕.
2

Fig. 3.1. Supporting hyperplane and halfspaces.

The exceedance probability of  with respect to  is defined as:

𝑒(, ) = sup
∈

{𝑃 [(𝑇 ,𝐻) ∈  ]}.

he exceedance probability is an upper bound on the failure probability
f the structure assuming that the true failure region is a member of the
amily  . For a given target exceedance probability3 𝑝𝑒 our goal is to
ind a minimal set  such that:

𝑒(, ) ≤ 𝑝𝑒. (2.1)

f the set  satisfies (2.1), then 𝜕 is said to be a valid environmental
contour.

A failure region  ∈  is said to be maximal if there does not exist
region  ′ ∈  such that  ⊂  ′. The family of maximal regions in 

is denoted by ∗. If 1,2 ∈  and 1 ⊆ 2, we obviously have:

[(𝑇 ,𝐻) ∈ 1] ≤ 𝑃 [(𝑇 ,𝐻) ∈ 2].

rom this it follows that:

𝑒(, ) = sup
∈

{𝑃 [(𝑇 ,𝐻) ∈  ]}

= sup
∈∗

{𝑃 [(𝑇 ,𝐻) ∈  ]}.

. Convex environmental contours

It is often natural to assume that a failure region is convex. This
eans that if the structure fails at two distinct points (𝑡1, ℎ1) and (𝑡2, ℎ2),

hen it also fails for all states on the straight line between these points.
f the contour is convex as well, this implies that the maximal failure
egions are halfspaces. See Fig. 3.1 where 𝛱 is a supporting hyperplane
f the convex set , while 𝛱+ is a supporting halfspace of . The set
− is the halfspace separated from 𝛱+ by the hyperplane 𝛱 . We say

hat 𝛱− as the halfspace opposite to the supporting halfspace 𝛱+, and
bserve that  ⊆ 𝛱−.

In the remaining parts of this paper we only consider contour sets 
hich are compact and convex. Furthermore, we assume that all the sets

n  are convex. For a given compact and convex set  we introduce
he following families of sets:

() = The family of supporting hyperplanes of ,
+() = The family of supporting halfspaces of ,

3 The target probability is usually determined based on the relevant data
ampling rate and the desired return period of a failure event. See Huseby et al.
2013) for further details. A target probability is typically a small number,
.g., of magnitude 10−4 or 10−5. In order to avoid degenerate cases, the target

probability must at least be smaller 0.5.
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

𝑃

−() = The family of halfspaces opposite to supporting halfspaces
of 

By using well-known results from convexity theory, it is easy to show
the following result:

Proposition 3.1. Let  ⊂ R2 be a compact and convex set, and let 
be the family of convex sets such that  ∩  ⊆ 𝜕 for all  ∈  . Then
∗ = +(), and hence:

𝑒(, ) = sup
𝛱+∈+()

{𝑃 [(𝑇 ,𝐻) ∈ 𝛱+]}. (3.1)

Moreover, the set  can be expressed as:

 =
⋂

𝛱−∈−()
𝛱−. (3.2)

The families (), +() and −() can be expressed in a more
explicit form. In order to explain how this can be done, we start out by
letting 𝜃 ∈ [0, 2𝜋), and define:

𝐵(, 𝜃) = sup
(𝑡,ℎ)∈

[𝑡 cos(𝜃) + ℎ sin(𝜃)] (3.3)

We also introduce :

𝛱(, 𝜃) = {(𝑡, ℎ) ∶ 𝑡 cos(𝜃) + ℎ sin(𝜃) = 𝐵(, 𝜃)}
𝛱+(, 𝜃) = {(𝑡, ℎ) ∶ 𝑡 cos(𝜃) + ℎ sin(𝜃) ≥ 𝐵(, 𝜃)},
𝛱−(, 𝜃) = {(𝑡, ℎ) ∶ 𝑡 cos(𝜃) + ℎ sin(𝜃) ≤ 𝐵(, 𝜃)}.

Since  is assumed to be compact, it follows that  is bounded, and
thus, 𝐵(, 𝜃) must be finite. Moreover, by the definition of 𝐵(, 𝜃) it
follows that:

𝑡 cos(𝜃) + ℎ sin(𝜃) ≤ 𝐵(, 𝜃), for all (𝑡, ℎ) ∈ .

Finally, since  is compact,  is closed as well. Thus, there must exist
at least one point (𝑡0, ℎ0) ∈  such that:

𝑡0 cos(𝜃) + ℎ0 sin(𝜃) = 𝐵(, 𝜃)

From this it follows that 𝛱(, 𝜃) ∈ (), 𝛱+(, 𝜃) ∈ +() and
𝛱−(, 𝜃) ∈ −().

Assume conversely that 𝛱 ∈ (), and let 𝛱+ and 𝛱− be the
corresponding supporting and opposite halfspaces separated by 𝛱 .
Then 𝛱 , 𝛱+ and 𝛱− can be expressed as follows:

𝛱 = {(𝑡, ℎ) ∶ 𝑡𝑎1 + ℎ𝑎2 = 𝑏},
𝛱+ = {(𝑡, ℎ) ∶ 𝑡𝑎1 + ℎ𝑎2 ≥ 𝑏},
𝛱− = {(𝑡, ℎ) ∶ 𝑡𝑎1 + ℎ𝑎2 ≤ 𝑏}

for suitable real numbers 𝑎1, 𝑎2 and 𝑏. Without loss of generality we
may assume that 𝑎1 and 𝑎2 are normalized such that 𝑎21 + 𝑎22 = 1. Then
it follows that there exists a 𝜃 ∈ [0, 2𝜋) such that 𝑎1 = cos(𝜃) and
𝑎2 = sin(𝜃).

Since 𝛱+ is a supporting halfspace of , we must have:

𝑡 cos(𝜃) + ℎ sin(𝜃) ≤ 𝑏, for all (𝑡, ℎ) ∈ ,

and

𝑡0 cos(𝜃) + ℎ0 sin(𝜃) = 𝑏, for some (𝑡0, ℎ0) ∈ ,

From this it follows that:

𝑏 = sup
(𝑡,ℎ)∈

[𝑡 cos(𝜃) + ℎ sin(𝜃)] = 𝐵(, 𝜃),

implying that 𝛱 = 𝛱(, 𝜃), 𝛱+ = 𝛱+(, 𝜃) and 𝛱− = 𝛱−(, 𝜃). The
following proposition summarizes these findings:

Proposition 3.2. Let  ⊂ R2 be a compact and convex set. Then we
have:

() = {𝛱(, 𝜃) ∶ 𝜃 ∈ [0, 2𝜋)},
+() = {𝛱+(, 𝜃) ∶ 𝜃 ∈ [0, 2𝜋)},
−() = {𝛱−(, 𝜃) ∶ 𝜃 ∈ [0, 2𝜋)}.
3

Furthermore, by combining Propositions 3.1 and 3.2 we also obtain
the following result:

Proposition 3.3. Let  ⊂ R2 be a compact and convex set, and let 
be the family of convex sets such that  ∩  ⊆ 𝜕 for all  ∈  . Then we
have:

𝑃𝑒(, ) = sup
𝜃∈[0,2𝜋)

{𝑃 [(𝑇 ,𝐻) ∈ 𝛱+(, 𝜃)]}. (3.4)

Moreover, the set  can be expressed as:

 =
⋂

𝜃∈[0,2𝜋)
𝛱−(, 𝜃) (3.5)

An immediate consequence of this result is that the function 𝐵
induces an ordering of compact and convex sets. More formally, we
have the following result:

Proposition 3.4. Let 1 and 2 be two compact and convex sets, and
assume that:

𝐵(1, 𝜃) ≤ 𝐵(2, 𝜃) for all 𝜃 ∈ [0, 2𝜋).

Then 1 ⊆ 2.

Proof. If 𝐵(1, 𝜃) ≤ 𝐵(2, 𝜃) for all 𝜃 ∈ [0, 2𝜋), this implies that:

𝛱−(1, 𝜃) ⊆ 𝛱−(2, 𝜃) for all 𝜃 ∈ [0, 2𝜋).

Hence, by the second part of Proposition 3.3 we get that:

1 =
⋂

𝜃∈[0,2𝜋)
𝛱−(1, 𝜃) ⊆

⋂

𝜃∈[0,2𝜋)
𝛱−(2, 𝜃) = 2 ■

Another consequence of Proposition 3.3 is that a compact and
convex set  ⊂ R2 is uniquely determined by the function 𝐵(, 𝜃).
Hence, the boundary 𝜕 can be reconstructed from this function as
well. In order to study the relation between 𝐵(, 𝜃) and 𝜕 further,
the following result, first proved by Minkowski in 1896, is relevant:

Proposition 3.5 (Minkowski). Let  be a closed convex set. Then for every
point 𝒙 ∈ 𝜕 there exists a hyperplane 𝛱 ∈ () such that 𝒙 ∈ 𝛱 .

By using Proposition 3.2 this result can be restated for compact
convex sets in R2 as follows:

Proposition 3.6. Let  ⊂ R2 be a compact convex set. Then for every
point (𝑡0, ℎ0) ∈ 𝜕 there exists a 𝜃 ∈ [0, 2𝜋) such that (𝑡0, ℎ0) ∈ 𝛱(, 𝜃).

This proposition indicates that it may be possible to construct a
mapping from angles 𝜃 ∈ [0, 2𝜋) to the points in 𝜕. In the general
case, however, the relation between angles and boundary points is not
straightforward. By the definition of 𝐵(, 𝜃) it follows that for a given
𝜃 ∈ [0, 2𝜋) there exists at least one point (𝑡0, ℎ0) ∈  such that:

𝑡0 cos(𝜃) + ℎ0 sin(𝜃) = 𝐵(, 𝜃), (3.6)

and this point must also be on the boundary of . However, (𝑡0, ℎ0) may
not be the only boundary point which satisfies (3.6). As an example
consider a case where  is a convex polygon. If, for a given 𝜃, the vector
(cos(𝜃), sin(𝜃)) is orthogonal to, and pointing away from one of sides of
, then the hyperplane 𝛱(, 𝜃) intersects with all the points on this
side. On the other hand, for any 𝜃′ ≠ 𝜃, the corresponding supporting
hyperplane 𝛱(, 𝜃′) does not intersect with any of the points on this
side (except possibly the endpoints). Hence, it is not possible to define
a mapping where each angle 𝜃 ∈ [0, 2𝜋) is mapped to a unique point
(𝑡0, ℎ0) ∈ 𝜕.

In order to avoid such problems we assume that  is strictly convex.
That is, for any pair of distinct points (𝑡1, ℎ1), (𝑡2, ℎ2) ∈ , all the points
on the line segment between (𝑡1, ℎ1) and (𝑡2, ℎ2) (except possibly the
endpoints (𝑡1, ℎ1) and (𝑡2, ℎ2)) belong to the interior of . The following
proposition essentially states that for strictly convex sets there exists a
well-defined mapping from angles to boundary points.
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Proposition 3.7. Let  ⊂ R2 be a compact and strictly convex set. Then
for every angle 𝜃 ∈ [0, 2𝜋) there exists a unique point (𝑡(𝜃), ℎ(𝜃)) ∈ 𝜕 such
hat (𝑡(𝜃), ℎ(𝜃)) ∈ 𝛱(, 𝜃).

roof. By the definition of 𝛱(, 𝜃) we know that there exists at least
ne point (𝑡1, ℎ1) ∈ 𝜕 such that (𝑡1, ℎ1) ∈ 𝛱(, 𝜃). Assume, for a

contradiction that there exists another boundary point (𝑡2, ℎ2), different
from (𝑡1, ℎ1), which also belongs to the hyperplane 𝛱(, 𝜃). Since
𝛱(, 𝜃) is convex, all the points on the line segment between (𝑡1, ℎ1)
and (𝑡2, ℎ2) also belong to 𝛱(, 𝜃). However, since  is assumed to
be strictly convex, the points on the line segment between (𝑡1, ℎ1) and
(𝑡2, ℎ2) are elements of the interior of , which contradicts that 𝛱(, 𝜃)
is a supporting hyperplane of . Hence, we conclude that (𝑡1, ℎ1) ∈ 𝜕
is the only boundary point which intersects with 𝛱(, 𝜃), and we define
(𝑡(𝜃), ℎ(𝜃)) to be this point ■

If the function 𝐵(, ⋅) is differentiable, the mapping from angles to
boundary points is given by the following explicit formula:

Proposition 3.8. Let  ⊂ R2 be a compact and strictly convex set, and
assume that 𝐵(, ⋅) defined by (3.3) is differentiable. Then the boundary of
 can be expressed as:

𝜕 = {(𝑡(𝜃), ℎ(𝜃)) ∶ 𝜃 ∈ [0, 2𝜋)}

where:
(

𝑡(𝜃)
ℎ(𝜃)

)

=
[

𝐵(, 𝜃) −𝐵′(, 𝜃)
𝐵′(, 𝜃) 𝐵(, 𝜃)

]

⋅
(

cos(𝜃)
sin(𝜃)

)

. (3.7)

Proof. See Huseby et al. (2015a) ■

The function 𝐵(, ⋅) introduced in (3.3) can be extended to a func-
tion defined for all 𝜃 ∈ R. Since the trigonometric functions cos(⋅) and
sin(⋅) are periodic, the extended version of 𝐵(, ⋅) is periodic as well and
have the property that 𝐵(, 𝜃) = 𝐵(, 𝜃 ± 2𝜈𝜋) for all 𝜈 ∈ N. Since the
set  is convex, the function 𝐵(, ⋅) must satisfy a certain condition. In
order to investigate this further we assume that the 𝐵(, ⋅) is two times
differentiable, and consider the derivative of (𝑡(𝜃), ℎ(𝜃)) with respect to
𝜃. By (3.7) we get that:

𝑡′(𝜃) = 𝐵′(, 𝜃) cos(𝜃) − 𝐵(, 𝜃) sin(𝜃)

− 𝐵′′(, 𝜃) sin(𝜃) − 𝐵′(, 𝜃) cos(𝜃)

= −[𝐵(, 𝜃) + 𝐵′′(, 𝜃)] sin(𝜃)

ℎ′(𝜃) = 𝐵′′(, 𝜃) cos(𝜃) − 𝐵′(, 𝜃) sin(𝜃)

+ 𝐵′(, 𝜃) sin(𝜃) + 𝐵(, 𝜃) cos(𝜃)

= [𝐵(, 𝜃) + 𝐵′′(, 𝜃)] cos(𝜃).

That is, we have:
(

𝑡′(𝜃)
ℎ′(𝜃)

)

= [𝐵(, 𝜃) + 𝐵′′(, 𝜃)] ⋅
(

− sin(𝜃)
cos(𝜃)

)

. (3.8)

In order to prove the convexity condition for 𝐵(, ⋅), we need the
following lemmas:

Lemma 3.9. Let  ⊂ R2 be a compact and strictly convex set, and let:

̃ = {(𝑡, ℎ̃) = (𝑡 − 𝑡0, ℎ − ℎ0) ∶ (𝑡, ℎ) ∈ } (3.9)

for some point (𝑡0, ℎ0) ∈ R2. Then 𝐵(̃, 𝜃) is given by:

𝐵(̃, 𝜃) = 𝐵(, 𝜃) − 𝑡0 cos(𝜃) − ℎ0 sin(𝜃),

for all 𝜃 ∈ R. Moreover, assuming that 𝐵(, ⋅) is two times differentiable,
we have:

𝐵′(̃, 𝜃) = 𝐵′(, 𝜃) + 𝑡0 sin(𝜃) − ℎ0 cos(𝜃),

𝐵′′(̃, 𝜃) = 𝐵′′(, 𝜃) + 𝑡0 cos(𝜃) + ℎ0 sin(𝜃).
4

𝒗

Fig. 3.2. Derivatives.

roof. By (3.3) we have:

(̃, 𝜃) = sup
(𝑡,ℎ̃)∈̃

{𝑡 cos(𝜃) + ℎ̃ sin(𝜃)}

= sup
(𝑡,ℎ)∈

{(𝑡 − 𝑡0) cos(𝜃) + (ℎ − ℎ0) sin(𝜃)}

= sup
(𝑡,ℎ)∈

{𝑡 cos(𝜃) + ℎ sin(𝜃)} − 𝑡0 cos(𝜃) − ℎ0 sin(𝜃)

= 𝐵(, 𝜃) − 𝑡0 cos(𝜃) − ℎ0 sin(𝜃)

he remaining parts of the lemma follow by taking derivatives ■

emma 3.10. Let  ⊂ R2 be a compact and strictly convex set, and
ssume that 𝐵(, ⋅) is two times differentiable. Then there exists a 𝜃0 ∈
0, 2𝜋) such that:

(, 𝜃0) + 𝐵′′(, 𝜃0) > 0.

roof. Let (𝑡0, ℎ0) be an interior point of  and let ̃ be defined as in
3.9). Then we have:

0 cos(𝜃) + ℎ0 sin(𝜃) < 𝐵(, 𝜃) for all 𝜃 ∈ [0, 2𝜋)

ence, by Lemma 3.9 we have:

(̃, 𝜃) = 𝐵(, 𝜃) − 𝑡0 cos(𝜃) − ℎ0 sin(𝜃) > 0 for all 𝜃 ∈ [0, 2𝜋)

Moreover, since 𝐵(̃, 𝜃) extended to a function defined for all 𝜃 ∈ R,
s periodic, it follows that the extended version of 𝐵′(̃, 𝜃) is periodic as
ell. In particular that 𝐵′(̃, 0) = 𝐵′(̃, 2𝜋). Hence, by the mean value

heorem, there exists a 𝜃0 ∈ (0, 2𝜋) such that 𝐵′′(̃, 𝜃0) = 0. From this it
ollows that:

(̃, 𝜃0) + 𝐵′′(̃, 𝜃0) > 0

y Lemma 3.9 we also that:

(̃, 𝜃0) + 𝐵′′(̃, 𝜃0) = 𝐵(, 𝜃0) − 𝑡0 cos(𝜃) − ℎ0 sin(𝜃)

+ 𝐵′′(, 𝜃0) + 𝑡0 cos(𝜃) + ℎ0 sin(𝜃)

= 𝐵(, 𝜃0) + 𝐵′′(, 𝜃0),

nd thus, the result follows ■

As 𝜃 runs through [0, 2𝜋), the point (𝑡(𝜃), ℎ(𝜃)) runs counterclockwise
hrough the boundary 𝜕. The derivative (𝑡′(𝜃), ℎ′(𝜃)) is the tangent
ector to 𝜕 at (𝑡(𝜃), ℎ(𝜃)).

Since the set  is assumed to be strictly convex, the angle between
𝑡′(𝜃), ℎ′(𝜃)) and (𝑡′(𝜃 + 𝛥), ℎ′(𝜃 + 𝛥)) is positive for any 𝜃 ∈ [0, 2𝜋) and
mall 𝛥 > 0 (see Fig. 3.2). We then define:

(𝜃) = (𝑡′(𝜃), ℎ′(𝜃), 0), 𝜃 ∈ [0, 2𝜋),
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and calculate the cross-product:

𝒗(𝜃) × 𝒗(𝜃 + 𝛥) =
|

|

|

|

|

|

|

𝒊 𝒋 𝒌
𝑡′(𝜃) ℎ′(𝜃) 0

𝑡′(𝜃 + 𝛥) ℎ′(𝜃 + 𝛥) 0

|

|

|

|

|

|

|

= (0, 0, 𝑡′(𝜃) ⋅ ℎ′(𝜃 + 𝛥) − ℎ′(𝜃) ⋅ 𝑡′(𝜃 + 𝛥))

By the right-hand rule of the cross-product the angle between the vectors
(𝑡′(𝜃), ℎ′(𝜃), 0) and (𝑡′(𝜃 + 𝛥), ℎ′(𝜃 + 𝛥), 0) is positive if and only if:

𝑡′(𝜃) ⋅ ℎ′(𝜃 + 𝛥) − ℎ′(𝜃) ⋅ 𝑡′(𝜃 + 𝛥) > 0.

Inserting the expressions for the derivatives given in (3.8) we get:

𝑡′(𝜃) ⋅ ℎ′(𝜃 + 𝛥) − ℎ′(𝜃) ⋅ 𝑡′(𝜃 + 𝛥)

= [𝐵(, 𝜃) + 𝐵′′(, 𝜃)] ⋅ [𝐵(, 𝜃 + 𝛥) + 𝐵′′(, 𝜃 + 𝛥)]

⋅ (− sin(𝜃) cos(𝜃 + 𝛥) + sin(𝜃 + 𝛥) cos(𝜃))

= [𝐵(, 𝜃) + 𝐵′′(, 𝜃)] ⋅ [𝐵(, 𝜃 + 𝛥) + 𝐵′′(, 𝜃 + 𝛥)] ⋅ sin(𝛥).

Since 𝛥 > 0 is small, we have sin(𝛥) > 0. Hence, the angle between
(𝑡′(𝜃), ℎ′(𝜃)) and (𝑡′(𝜃 + 𝛥), ℎ′(𝜃 + 𝛥)) is positive if and only if:

[𝐵(, 𝜃) + 𝐵′′(, 𝜃)] ⋅ [𝐵(, 𝜃 + 𝛥) + 𝐵′′(, 𝜃 + 𝛥)] > 0

for all 𝜃 ∈ [0, 2𝜋) and small 𝛥 > 0. This condition holds if and only if
the sign of 𝐵(, 𝜃) + 𝐵′′(, 𝜃) is the same for all 𝜃 ∈ [0, 2𝜋).

By Lemma 3.10 there exists at least one 𝜃0 ∈ (0, 2𝜋) such that
𝐵(, 𝜃0)+𝐵′′(, 𝜃0) > 0. Hence, we have shown the following important
result:

Theorem 3.11. Let  ⊂ R2 be a compact and strictly convex set, and
assume that 𝐵(, ⋅) is two times differentiable. Then we have:

𝐵(, 𝜃) + 𝐵′′(, 𝜃) > 0 for all 𝜃 ∈ [0, 2𝜋). (3.10)

Given a periodic function which does not satisfy (3.10), it is very
easy to modify this function so that the condition is satisfied. The
following result shows how this can be done.

Proposition 3.12. Let 𝐶(⋅) be a periodic function with period 2𝜋 which is
two times differentiable. Assuming that both 𝐶 and 𝐶 ′′ are bounded, there
exists a constant 𝐶0 such that the function 𝐶̃(⋅) = 𝐶0 +𝐶(⋅) satisfies (3.10).

Proof. We let:

𝑐 = inf
𝜃∈[0,2𝜋)

[𝐶(𝜃) + 𝐶 ′′(𝜃)]

Since both 𝐶 and 𝐶 ′′ are bounded, 𝑐 must be finite. If 𝑐 > 0, 𝐶(⋅) satisfies
(3.10). We may then let 𝐶0 = 0. Hence, 𝐶̃(⋅) = 𝐶(⋅), and thus, 𝐶̃(⋅)
obviously satisfies (3.10) as well. On the other hand, if 𝑐 ≤ 0, we let 𝐶0
be some number greater than −𝑐. Since 𝐶̃ ′′ = 𝐶 ′′, it follows that for all
𝜃 ∈ [0, 2𝜋) we have:

𝐶̃(𝜃) + 𝐶̃ ′′(𝜃) = 𝐶0 + 𝐶(𝜃) + 𝐶 ′′(𝜃)

> −𝑐 + 𝐶(𝜃) + 𝐶 ′′(𝜃)

≥ −𝑐 + 𝑐 = 0.

Hence, we conclude that 𝐶̃(⋅) satisfies (3.10) ■

3.1. Valid convex environmental contours

We now turn to the problem of finding a convex contour 𝜕 which
is valid, i.e., a contour that has an exceedance probability which is less
than or equal to a given target probability 𝑝𝑒 ∈ (0, 0.5).

Following Huseby et al. (2015a) we let 𝐶(𝜃) be defined for all angles
𝜃 ∈ [0, 2𝜋) as:

𝐶(𝜃) = inf{𝑦 ∶ 𝑃 [𝑌 (𝜃) > 𝑦] ≤ 𝑝𝑒}, (3.11)

where 𝑌 (𝜃) = 𝑇 cos(𝜃) + 𝐻 sin(𝜃). The function 𝐶 is referred to as the
𝑝 -level percentile function of the joint distribution of (𝑇 ,𝐻).
5

𝑒

For 𝜃 ∈ [0, 2𝜋) we also introduce :

𝛱(𝜃) = {(𝑡, ℎ) ∶ 𝑡 cos(𝜃) + ℎ sin(𝜃) = 𝐶(𝜃)}

𝛱+(𝜃) = {(𝑡, ℎ) ∶ 𝑡 cos(𝜃) + ℎ sin(𝜃) ≥ 𝐶(𝜃)},

𝛱−(𝜃) = {(𝑡, ℎ) ∶ 𝑡 cos(𝜃) + ℎ sin(𝜃) ≤ 𝐶(𝜃)}.

By the definition of 𝐶(𝜃) and the assumption that the distribution of
(𝑇 ,𝐻) is absolutely continuous with respect to the Lebesgues measure
in R2 it follows that for all 𝜃 ∈ [0, 2𝜋) we have:

𝑃 [(𝑇 ,𝐻) ∈ 𝛱+(𝜃)]

= 𝑃 [𝑇 cos(𝜃) +𝐻 sin(𝜃) ≥ 𝐶(𝜃)]

= 𝑃 [𝑇 cos(𝜃) +𝐻 sin(𝜃) > 𝐶(𝜃)] = 𝑝𝑒

If we can find a convex set  such that 𝐵(, 𝜃) ≥ 𝐶(𝜃), it follows by
Proposition 3.3 that:

𝑃𝑒(, ) = sup
𝜃∈[0,2𝜋)

{𝑃 [(𝑇 ,𝐻) ∈ 𝛱+(, 𝜃)]}

= sup
𝜃∈[0,2𝜋)

{𝑃 [𝑇 cos(𝜃) +𝐻 sin(𝜃) ≥ 𝐵(, 𝜃)]}

≤ sup
𝜃∈[0,2𝜋)

{𝑃 [𝑇 cos(𝜃) +𝐻 sin(𝜃) ≥ 𝐶(𝜃)]} = 𝑝𝑒

Hence, this implies that 𝜕 is a valid environmental contour. As stated
Section 2 our goal is to find a minimal set  such that 𝜕 is valid.
By Proposition 3.4 this means that we want 𝐵(, 𝜃) to be as small as
possible. Thus, if there exists a compact and convex set  such that
𝐵(, 𝜃) = 𝐶(𝜃) for all 𝜃 ∈ [0, 2𝜋), this set will be the minimal compact
and convex set with the property that 𝜕 is a valid environmental
contour. The following result summarizes the consequences of all these
findings:

Theorem 3.13. Let 𝐶(⋅) be defined by (3.11), and assume that there exists
a compact and convex set  such that 𝐵(, 𝜃) = 𝐶(𝜃) for all 𝜃 ∈ [0, 2𝜋).
Then  is the minimal compact and convex set with the property that 𝜕 is
a valid environmental contour, and the set  is given by:

 =
⋂

𝜃∈[0,2𝜋)
𝛱−(𝜃) (3.12)

If  is strictly convex, and 𝐶(⋅) is differentiable, the environmental contour,
𝜕, can be expressed as:

𝜕 = {(𝑡(𝜃), ℎ(𝜃)) ∶ 𝜃 ∈ [0, 2𝜋)},

where:
(

𝑡(𝜃)
ℎ(𝜃)

)

=
[

𝐶(𝜃) −𝐶 ′(𝜃)
𝐶 ′(𝜃) 𝐶(𝜃)

]

⋅
(

cos(𝜃)
sin(𝜃)

)

, (3.13)

If 𝐶(⋅) is two times differentiable, a necessary condition for the existence of
a strictly convex set  such that 𝐵(, 𝜃) = 𝐶(𝜃) for all 𝜃 ∈ [0, 2𝜋) is that:

𝐶(𝜃) + 𝐶 ′′(𝜃) > 0 for all 𝜃 ∈ [0, 2𝜋). (3.14)

Note that the function 𝐶(⋅) is determined by the joint distribution
of 𝑇 and 𝐻 . It is possible to construct distributions where 𝐶(⋅) does not
satisfy (3.14). In such cases the contour defined by the formula (3.13),
will not be the boundary of a convex set. When this happens, 𝐶(⋅) must
be adjusted. We will return to this issue in Section 5.

In this section we have studied environmental contours defined
through the 𝑝𝑒-level percentile function (3.11). Theorem 3.13 shows
that if a minimal valid environmental contour exists (for some given
joint distribution of (𝑇 ,𝐻)), then it is necessarily given by the repre-
sentation (3.13), and that the differential inequality (3.14) has to hold.
In Section 5 we will see that the condition (3.14) is useful for analysing
and improving numerical methods for constructing environmental con-
tours. This is also true in higher dimensions, i.e. when instead of
(𝑇 ,𝐻) ∈ R2 one considers a random variable in R𝑚. By studying the
connection between environmental contours and Voronoi cells, Hafver
et al. (2020) proved the 𝑛-dimensional analog of (3.13) and a slightly
weaker alternative of the necessary condition (3.14) (corresponding to
≥ in (3.14)). This method is also discussed further in Sections 4 and 5.
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Fig. 4.1. 𝑁 = 1000 simulations, 𝑛 = 90 angles.

. Estimating environmental contours

In a given practical situation the 𝐶-function is typically estimated
ointwise using Monte Carlo simulations. Following Huseby et al.
2015a) we assume that we have a sample from the joint distribution
f (𝑇 ,𝐻) generated using Monte Carlo simulation:

𝑇1,𝐻1),… , (𝑇𝑁 ,𝐻𝑁 )

or a given angle 𝜃 ∈ [0, 2𝜋) we calculate the projections of these points
nto the unit vector (cos(𝜃), sin(𝜃)), i.e.:

𝑗 (𝜃) = 𝑇𝑗 cos(𝜃) +𝐻𝑗 sin(𝜃), 𝑗 = 1,… , 𝑁

hese projections are then sorted in ascending order:

(1)(𝜃) ≤ 𝑌(2)(𝜃) ≤ ⋯ ≤ 𝑌(𝑁)(𝜃).

ssuming that 𝑘 ≤ 𝑁 is an integer such that:
𝑘
𝑁

≈ 1 − 𝑝𝑒,

it follows that 𝐶(𝜃) can be estimated by:

𝐶̂(𝜃) = 𝑌(𝑘)(𝜃) (4.1)

Proceeding in this fashion the 𝐶-function can be estimated for a
suitable set of angles 𝜃1,… , 𝜃𝑛 ∈ [0, 𝜋). We let 𝐶̂(𝜃1),… , 𝐶̂(𝜃𝑛) denote
the resulting estimates. The set  given in (3.12) of Theorem 3.13 can
hen be approximated by a polygon of the following form:

̂ =
𝑛
⋂

𝑖=1
𝛱̂−(𝜃𝑖), (4.2)

where:

𝛱̂−(𝜃𝑖) = {(𝑡, ℎ) ∶ 𝑡 cos(𝜃) + ℎ sin(𝜃) ≤ 𝐶̂(𝜃𝑖)}

There are several methods for constructing an estimate of the
oundary of the set . One method is based directly on the polygon
iven in (4.2), where the corners are determined by computing the
ntersection between the hyperplanes 𝛱(𝜃𝑖) and 𝛱(𝜃𝑖+1), for 𝑖 = 1,… , 𝑛,

and where we define 𝛱(𝜃𝑛+1) to be equal to 𝛱(𝜃1). This method is also
imilar to the method suggested by Ottesen and Aarstein (2006), and
s the method used in the remaining part of the present paper. Another
ethod is based on (3.13) given in Theorem 3.13. This method uses

he estimate of the 𝑝𝑒-level percentile function given in (4.1). Other
ethods include the use of Fourier series and splines. For more details

n this see Huseby et al. (2015a).
In Fig. 4.1 the set  is estimated using only a few simulations

and halfspaces. We observe that the resulting contour has significant
irregularities especially in the areas where the direction of the contour
changes a lot.
6

h

Fig. 4.2. 𝑁 = 1000000 simulations, 𝑛 = 360 angles.

Fig. 4.3. 𝑁 = 1000000 simulations, 𝑛 = 360 angles.

Fig. 4.4. Ideal case: All hyperplanes support .

By increasing the number of simulations and halfspaces, a smoother
ontour is obtained. This is illustrated in Fig. 4.2. If we zoom in on
he border of ̂, we still find substantial ‘‘irregularities’’ as is seen in
ig. 4.3. This issue is illustrated in a simplified way in Fig. 4.4 and
ig. 4.5. Fig. 4.4 represents an ideal case where all the hyperplanes sup-
ort . In such cases  is well approximated by the polygon obtained
s the intersection of the corresponding halfspaces. The corners of the
olygon are obtained as the intersection points between successive
yperplanes, and the boundary of the polygon is obtained by drawing
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Fig. 4.5. Irregular case: The hyperplane 𝛱(𝜃𝑗 ) does not support .

straight lines between the corners. Since all the hyperplanes support
, no loops occur. Fig. 4.5 on the other hand represents a case where
at least one of the hyperplanes does not support . Attempting to
obtain the boundary of the polygon by drawing straight lines between
the intersection points will result in a loop. Moreover, if we use the
intersection of the halfspaces as our set , this set will typically have
a slightly higher exceedance probability than the desired value 𝑝𝑒. In
Section 5 we will show how to avoid these problems and obtain a
smooth contour.

4.1. Importance sampling, omission factors and mixtures

Generating a sample from the joint distribution of (𝑇 ,𝐻) can of
course be done easily using standard Monte Carlo methods. In the
following we focus on one specific method for doing this based on the
Rosenblatt transformation introduced in Rosenblatt (1952). This trans-
formation, which we here denote by 𝛹 , has the property that if (𝑋, 𝑌 ) =
(𝑇 ,𝐻), then (𝑋, 𝑌 ) is a vector of two independent standard normally
istributed variables. This implies that we can generate a sample
𝑇1,𝐻1),… , (𝑇𝑁 ,𝐻𝑁 ) by generating a sample of 𝑁 vectors of indepen-
ent standard normally distributed variables, (𝑋1, 𝑌1),… , (𝑋𝑁 , 𝑌𝑁 ), and

then let (𝑇𝑗 ,𝐻𝑗 ) = 𝛹−1(𝑋𝑗 , 𝑌𝑗 ), 𝑗 = 1,… , 𝑁 . More specifically, the
inverse Rosenblatt transformation, 𝛹−1 takes the following form for
𝑗 = 1,… , 𝑁 :

𝐻𝑗 = 𝐹−1
𝐻 (𝛷(𝑋𝑗 )),

𝑇𝑗 = 𝐹−1
𝑇 |𝐻 (𝛷(𝑌𝑗 )),

where 𝛷 denotes the cumulative distribution function of the standard
normal distribution, while 𝐹−1

𝐻 and 𝐹−1
𝑇 |𝐻 are respectively the inverse

cumulative distribution function of 𝐻 and the inverse conditional
cumulative distribution function of 𝑇 .

We then recall that the 𝐶-function corresponds to the (1 − 𝑝𝑒)-
percentiles of the projections 𝑌1(𝜃),… , 𝑌𝑁 (𝜃). Thus, in order to estimate
this function, only the tail area of the joint distribution of (𝑇 ,𝐻) is
of interest. Huseby et al. (2015b) proposed a method for sampling
from the tail based on rejection. We now show how this method can
be improved significantly by using importance sampling. The idea is
to generate the sample (𝑋1, 𝑌1),… , (𝑋𝑁 , 𝑌𝑁 ) from the distribution of
(𝑋, 𝑌 ) conditioned on the event that the length of the vector,

√

𝑋2 + 𝑌 2

s greater than some suitable number 𝑟, i.e., the event that the point
𝑋, 𝑌 ) falls outside of a circle  centred at the origin and with radius 𝑟.

In order to generate (𝑋1, 𝑌1),… , (𝑋𝑁 , 𝑌𝑁 ) from this conditional distri-
bution we use a modified Box–Muller transform. That is, we start out by
generating a set of 𝑁 independent vectors (𝑈1, 𝑉1),… , (𝑈𝑁 , 𝑉𝑁 ) where
7

𝑈𝑗 and 𝑉𝑗 are independent and uniformly distributed on the interval d
(0, 1], 𝑗 = 1,… , 𝑁 . Then the desired variables are obtained by using
the following transformation for 𝑗 = 1,… , 𝑁 :

𝑋𝑗 =
√

𝑟2 − 2 ln(𝑈𝑗 ) ⋅ cos(2𝜋𝑉𝑗 ),

𝑌𝑗 =
√

𝑟2 − 2 ln(𝑈𝑗 ) ⋅ sin(2𝜋𝑉𝑗 ).

Having generated (𝑋1, 𝑌1),… , (𝑋𝑁 , 𝑌𝑁 ) we proceed by using the
nverse Rosenblatt transformation, and obtain (𝑇1,𝐻1),… , (𝑇𝑁 ,𝐻𝑁 ), as
ell as the projections 𝑌1(𝜃),… , 𝑌𝑁 (𝜃).

We note that since 𝑋2
𝑗 + 𝑌 2

𝑗 is 𝜒2-distributed with 2 degrees of
reedom, it follows that:

((𝑋𝑗 , 𝑌𝑗 ) ∉ ) = 𝑃 (𝑋2
𝑗 + 𝑌 2

𝑗 > 𝑟2) = 𝑒−𝑟
2∕2.

Assuming that the radius 𝑟 is not too large, the event {𝑌𝑗 (𝜃) > 𝐶(𝜃)}
is contained in the event that {(𝑋𝑗 , 𝑌𝑗 ) ∉ }, and thus, it follows that:

(𝑌𝑗 (𝜃) > 𝐶(𝜃)|(𝑋𝑗 , 𝑌𝑗 ) ∉ ) =
𝑃 (𝑌𝑗 (𝜃) > 𝐶(𝜃))
𝑃 ((𝑋𝑗 , 𝑌𝑗 ) ∉ )

= 𝑝𝑒𝑒
𝑟2∕2

ence, we can estimate 𝐶(𝜃) by 𝑌(𝑘′)(𝜃) where 𝑘′ is chosen so that:

𝑘′

𝑁
≈ 1 − 𝑝𝑒𝑒

𝑟2∕2

To find a suitable value for the radius 𝑟, we express this quantity as:

𝑟 = 𝛼
√

−2 ln(𝑝𝑒)

for some suitable constant 𝛼 > 0. This implies that:

𝑝𝑒𝑒
𝑟2∕2 = 𝑝𝑒𝑒

−𝛼2 ln(𝑝𝑒) = 𝑝1−𝛼
2

𝑒

Since 𝑝1−𝛼2𝑒 is a probability, it follows that we must have 𝛼 ≤ 1.
Moreover, we observe that the radius 𝑟 grows proportionally to 𝛼. A
igh value of 𝛼 implies an aggressive importance sampling where a

large portion of the data set is sampled from the tail area. In order
to maximize the effect of the importance sampling we want 𝛼 to be
s close to 1 as possible. However, at the same time we must ensure
hat the event {𝑌𝑗 (𝜃) > 𝐶(𝜃)} is contained in the event that {(𝑋𝑗 , 𝑌𝑗 ) ∉
}. Experience has shown that 𝛼 = 0.95 is a good choice for most
applications.

The use of importance sampling indeed has a very significant effect
on the precision of the Monte Carlo method. Thus, using this method
whenever possible is definitely desirable. Since the Rosenblatt transfor-
mation plays an important part in this method, we need to implement
this transformation for the given joint distribution of the environmental
variables. As a part of this, we need to determine the inverse cumulative
distribution of (𝑇 ,𝐻). For most commonly used distributions, this is
very easy. In some cases, however, it may be necessary to implement
this using numerical methods. We will illustrate this by considering two
examples.

The first example is motivated by the notion of omission factors. Such
factors may be necessary in order to account for short-term uncertainty
which is not covered by the significant wave height 𝐻 . This can be done
by letting 𝐻 ′ = 𝐻 + 𝜖, where 𝜖 is a suitable error term. The Rosenblatt
transformation can then be expressed as:

𝐻 ′ = 𝐹−1
𝐻 ′ (𝛷(𝑋))

𝑇 = 𝐹−1
𝑇 |𝐻 ′ (𝛷(𝑌 ))

ence, to calculate 𝐻 ′ we need to find the cumulative distribution
unction of the sum of 𝐻 and 𝜖, and then also the inverse of this
unction. Finding analytical expressions for these function is often not
ossible. Thus, a numerical solution is needed. Fortunately, this is
sually fairly easy. In particular, if the distribution of the error term can
e approximated by a discrete distribution, the resulting cumulative
istribution function of 𝐻 ′ can be represented as a discrete mixture of

istribution functions. More specifically, assume that the error term has
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values in the set {𝑒1,… , 𝑒𝓁}, and that 𝑃 (𝜖 = 𝑒𝑗 ) = 𝛼𝑗 , 𝑗 = 1,… ,𝓁. The
cumulative distribution function of 𝐻 ′ is then given by:

𝐹𝐻 ′ (ℎ) =
𝓁
∑

𝑗=1
𝛼𝑗𝐹𝐻 (ℎ − 𝑒𝑗 )

Below we describe a general method for determining the inverse of such
mixtures.

In the second example we consider a case where the joint distri-
bution of (𝑇 ,𝐻) is a discrete mixture of distributions. In addition to
cases with omission factors, such mixtures occur in situations where
the joint distribution depends on some background variable such as the
season or the wind direction. An example of this can be found in Vanem
and Huseby (2018). See also Winterstein (2016). In such cases it may
not be possible to find explicit formulas for 𝐹−1

𝐻 and 𝐹−1
𝑇 |𝐻 . Instead one

has to find the inverse by solving an equation numerically. Here we
explain how to do this for 𝐹−1

𝐻 . The corresponding procedure for 𝐹−1
𝑇 |𝐻

s completely similar. More specifically, we assume that 𝐹𝐻,1,… , 𝐹𝐻,𝓁
re 𝓁 cumulative distribution functions which are all continuous and
trictly increasing. Moreover, we assume that the inverse functions
−1
𝐻,1,… , 𝐹−1

𝐻,𝓁 are known and easy to calculate. We have started out
y generating a bivariate normal vector, (𝑋, 𝑌 ), where 𝑋 = 𝑥, and we

want to compute the corresponding value for 𝐻 , i.e., ℎ = 𝐹−1
𝐻 (𝑥), and

we introduce:

ℎ𝑗 = 𝐹−1
𝐻,𝑗 (𝑥), 𝑗 = 1,… ,𝓁.

We also define:

ℎ𝑚𝑖𝑛 = min
1≤𝑗≤𝓁

ℎ𝑗 , and ℎ𝑚𝑎𝑥 = max
1≤𝑗≤𝓁

ℎ𝑗 .

We then introduce the cumulative distribution function for 𝐻 as the
mixture of 𝐹𝐻,1,… , 𝐹𝐻,𝓁 :

𝐹𝐻 (ℎ) =
𝓁
∑

𝑗=1
𝛼𝑗𝐹𝐻,𝑗 (ℎ),

where 𝛼𝑗 ≥ 0, 𝑗 = 1,… ,𝓁, and ∑𝓁
𝑗=1 𝛼𝑗 = 1.

In order to determine ℎ we must to solve the following equation:

𝐹𝐻 (ℎ) =
𝓁
∑

𝑗=1
𝛼𝑗𝐹𝐻,𝑗 (ℎ) = 𝑥. (4.3)

Under these assumptions there exists a unique solution to (4.3), and we
have:

ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥. (4.4)

To prove (4.4) we note that since the cumulative distribution functions
are non-decreasing and ∑𝓁

𝑗=1 𝛼𝑗 = 1, we have:

𝐹𝐻 (ℎ𝑚𝑖𝑛) =
𝓁
∑

𝑗=1
𝛼𝑗𝐹𝐻,𝑗 (ℎ𝑚𝑖𝑛) ≤

𝓁
∑

𝑗=1
𝛼𝑗𝐹𝐻,𝑗 (ℎ𝑗 ) =

𝓁
∑

𝑗=1
𝛼𝑗𝑥 = 𝑥

Similarly, we have:

𝐹𝐻 (ℎ𝑚𝑎𝑥) =
𝓁
∑

𝑗=1
𝛼𝑗𝐹𝐻,𝑗 (ℎ𝑚𝑎𝑥) ≥

𝓁
∑

𝑗=1
𝛼𝑗𝐹𝐻,𝑗 (ℎ𝑗 ) =

𝓁
∑

𝑗=1
𝛼𝑗𝑥 = 𝑥

Since 𝐹𝐻,1,… , 𝐹𝐻,𝓁 are continuous and strictly increasing, it follows
that 𝐹𝐻 is continuous and strictly increasing as well. Thus, since we
have established that:

𝐹𝐻 (ℎ𝑚𝑖𝑛) ≤ 𝑥 ≤ 𝐹𝐻 (ℎ𝑚𝑎𝑥)

there must exist some ℎ ∈ [ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥] such that 𝐹𝐻 (ℎ) = 𝑥.
Having identified the interval [ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥] containing the solution

to (4.3), the value ℎ can easily and efficiently be found numerically,
8

e.g., by using the bisection method. t
Table 5.1
Fitted parameter for the three-parameter Weibull distribution.
𝛼 𝛽 𝛾

2.259 1.285 0.701

Table 5.2
Fitted parameter for the conditional log-normal distribution.

𝑖 = 1 𝑖 = 2 𝑖 = 3

𝑎𝑖 1.069 0.898 0.243
𝑏𝑖 0.025 0.263 −0.148

5. Constructing a smooth environmental contour

In this section we will show how the loops illustrated in the previous
sections can be removed. We demonstrate the method by considering
a specific example. In this example we let 𝑝𝑒 = 1.37 ⋅ 10−5, which
orresponds to a return period of 25 years and a data collection rate of
observations per day. The contour is estimated using the importance

ampling method presented in Section 4.1.
The joint long-term models for significant wave height, denoted by

, and wave period denoted by 𝑇 is given by:

𝑇 ,𝐻 (𝑡, ℎ) = 𝑓𝐻 (ℎ)𝑓𝑇 |𝐻 (𝑡|ℎ)

here a three-parameter Weibull distribution is used for the significant
ave height, 𝐻 , and a lognormal conditional distribution is used for the
ave period, 𝑇 .

The Weibull distribution is parameterized by a location parameter,
, a scale parameter 𝛼, and a shape parameter 𝛽:

𝐻 (ℎ) =
𝛽
𝛼

(

ℎ − 𝛾
𝛼

)𝛽−1
𝑒−[(ℎ−𝛾)∕𝛼]

𝛽
, ℎ ≥ 𝛾.

The lognormal distribution has two parameters, the log-mean 𝜇 and
the log-standard deviation 𝜎 and is expressed as:

𝑓𝑇 |𝐻 (𝑡|ℎ) = 1

𝑡
√

2𝜋
𝑒−[(ln(𝑡)−𝜇)

2∕(2𝜎2)], 𝑡 ≥ 0,

he dependence between 𝐻 and 𝑇 is modelled by letting the parame-
ters 𝜇 and 𝜎 be expressed in terms of 𝐻 as follows:

𝜇 = 𝐸[ln(𝑇 )|𝐻 = ℎ] = 𝑎1 + 𝑎2ℎ
𝑎3 ,

= 𝑆𝐷[ln(𝑇 )|𝐻 = ℎ] = 𝑏1 + 𝑏2𝑒
𝑏3ℎ.

he parameters are estimated using available data from the relevant
eographical location and are listed in Tables 5.1 and 5.2.

The resulting environmental contour, based on 1 million simula-
ions, importance sampling and 𝑛 = 360 hyperplanes, is illustrated in
ig. 5.1. While this contour may appear to be very smooth, it turns out
hat is not at all the case.

In order to show this we measure the angle between successive sides
f the polygon. For a convex polygon, these angles should all be non-
egative. In the simple polygon with just six corners shown in Fig. 5.2
e observe that all angles are positive except the angle at corner 𝑒. As
result the polygon is clearly not convex.

In Fig. 5.3 we have plotted the angles found at the 360 corners of the
ontour shown in Fig. 4.2. Due to a high number of loops in some areas
e see that a substantial number of the angles are indeed negative.

Since the estimated environmental contours shown here are poly-
ons, these sets are clearly not strictly convex. Still it turns out the
oop issue is strongly connected to the necessary condition for strict
onvexity given in (3.14) in Theorem 3.13. In order to study this further
e have estimated values of 𝐶(𝜃)+𝐶 ′′(𝜃) using interpolation and plotted

he resulting curve in Fig. 5.4. We observe that the curve values are
ostly positive except for some clusters of small negative values. It is

hese negative values that cause the loops.
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Fig. 5.1. Environmental contour before smoothing.

Fig. 5.2. Measuring polygon angles.

Fig. 5.3. Polygon angles (radians) of the environmental contour before smoothing.

By Proposition 3.12 it follows that if 𝐶 is a known function, a convex
et can always be constructed by increasing this function by a suitable
ositive constant. It is possible to prove that a similar effect occurs for
he estimated 𝐶-function. If we add a sufficiently large positive constant
o this function, the intersection points between the hyperplanes will
e more spread out. As a result all the loops disappear. However, this
9

Fig. 5.4. 𝐶(𝜃) + 𝐶 ′′(𝜃) before smoothing.

Fig. 5.5. Unsmoothed 𝐶(𝜃) (red curve) versus smoothed 𝐶(𝜃) (green curve). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

change also inflates the contour considerably, which is usually not
desirable. In the following we have chosen a different approach. By
considering the plot it is evident that the issue with loops appears to
be caused mostly by estimation errors. Fortunately, this problem can be
remedied by applying a modest amount of smoothing. Thus, to get rid
of the loops along the contour, we simply use a smoothed version of the
estimated 𝐶-curve. A simple smoothing formula utilizing information
rom nearby points could e.g. be the following:

̃(𝜃𝑗 ) =
∑+𝑤

𝑖=−𝑤 𝜔𝑖𝐶(𝜃𝑗+𝑖)
∑+𝑤

𝑖=−𝑤 𝜔𝑖
, 𝑗 = 1,… , 𝑛,

where 𝑤 ≥ 0 is a suitable integer determining the number of utilized
nearby points. Moreover, 𝜔−𝑤,… , 𝜔+𝑤 are suitable weights determin-
ing the influence of the nearby points. In the above formula the indices
are ‘‘looped’’, so that 𝜃𝑛+𝑖 = 𝜃𝑖, 𝑖 = 1, 2,… , 𝑤, while 𝜃1−𝑖 = 𝜃𝑛+1−𝑖,
𝑖 = 1, 2,… , 𝑤. In our calculations we have used 𝑤 = 5 and:

𝜔−𝑖 = 𝜔+𝑖 = (6 − 𝑖), 𝑖 = 0, 1,… , 5.

In Fig. 5.5 we have plotted both the unsmoothed and smoothed
versions of 𝐶(𝜃) in the same plot. With the level of smoothing applied,
the two curves are almost identical except for some areas around the
local minima.

However, even this very minor adjustment has a dramatics effect on
the measured angles along the contour. In Fig. 5.6 we have plotted the
angles after the smoothing. These angles are indeed very different from

the angles shown in Fig. 5.3.
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Fig. 5.6. Polygon angles (radians) of the environmental contour after smoothing.

Fig. 5.7. 𝐶(𝜃) + 𝐶 ′′(𝜃) after smoothing.

Fig. 5.8. Unsmoothed contour (red curve) versus smoothed contour (green curve). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

In Fig. 5.7 we have plotted 𝐶(𝜃) + 𝐶 ′′(𝜃) after smoothing has been
applied. Now all points are non-negative which by Theorem 3.11
implies that the resulting contour is convex.

Finally, in Fig. 5.8 we have plotted both the unsmoothed and
smoothed contours. The two contours are apparently not very different
except that the smoothed curve is somewhat more rounded. In order to
avoid too strict design requirements, one wants the set  to be as small
as possible. We observe that the set bounded by the smoothed contour
10
is slightly larger than set bounded by the unsmoothed contour. On the
other hand, by using the smoothed curve, we get a contour with a more
precise exceedance probability, which after all is the most important
goal.

5.1. Environmental contours and Voronoi cells

Hafver et al. (2020) has shown that the polygon given by (4.2)
corresponds to the Voronoi cell of a point 𝐨 = (𝑜𝑥, 𝑜𝑦) ∈ ̂ with respect
to the function

𝑠𝐨(𝜃) =
(

𝑜𝑥
𝑜𝑦

)

+ 2𝐶𝐨(𝜃)
(

cos(𝜃)
sin(𝜃)

)

, (5.1)

here

𝐨(𝜃) = 𝐶(𝜃) −
(

𝑜𝑥
𝑜𝑦

)

⋅
(

cos(𝜃)
sin(𝜃)

)

. (5.2)

his means that

̂ = 𝑉 𝑜𝑟(𝐨,) =
{

𝐱 ∈ R2 ∣ ‖𝐱 − 𝐨‖ ≤ inf
𝐬∈

‖𝐱 − 𝐬‖
}

, (5.3)

here  = {𝑠𝐨(𝜃) ∣ 𝜃 ∈ [0, 2𝜋)}.This suggest an alternative approach to
onstruct environmental contours, by computing the above Voronoi
ell based on estimated values of 𝐶(𝜃). The Voronoi approach can
lso be used to detect hyperplanes that do not support , as the
orresponding points in  will not be connected to 𝐨 in the dual
elaunay triangulation. For further details see Hafver et al. (2020).

An alternative method to obtain smooth environmental contour is
escribed in Hafver et al. (2020), where a Voronoi contour is computed
ased on the un-smoothed/raw 𝐶(𝜃) and this contour is then projected
utwards on the hyperplanes 𝛱̂(𝜃𝑖) included in (4.2).

. Conclusions

In the present paper we have focused on convex environmental
ontours, and studied various properties of such contours. By estab-
ishing a mapping between angles 𝜃 ∈ [0, 2𝜋) and the points along the
ontour, we have shown that such contours can be parameterized. The
apping is valid whenever the contour set is strictly convex. A neces-

ary condition for strict convexity is also proved. Using Monte Carlo
imulations we can estimate convex environmental contours which in
rinciple have a constant exceedance probability in all tail directions.
e have shown how this procedure can be improved significantly by

sing importance sampling. Moreover, we have extended this method-
logy to cases with omission factors and mixtures. Due to numerical
nstabilities the contours still contain small irregularities or loops. The
resence of such loops is closely related to the necessary conditions for
trict convexity. By examining how this condition is violated in areas
ith loops, it becomes clear that the problem can be eliminated by a

imple smoothing scheme. This method is demonstrated on a specific
umerical example.
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