
The Journal of Navigation (2021), 74:5 985–1008
doi:10.1017/S0373463321000357

RESEARCH ARTICLE

AIS-based near-collision database generation and analysis
of real collision avoidance manoeuvres
Arnstein Vestre,1* Azzeddine Bakdi,1 Erik Vanem,1 ,2 and Øystein Engelhardtsen2

1 Department of Mathematics, University of Oslo, 0851 Oslo, Norway.
2 DNV, Veritasveien 1, Høvik, N-1363, Norway.
*Corresponding author. E-mail: arnsteinvestre@gmail.com

Received: 17 July 2020; Accepted: 18 March 2021; First published online: 25 May 2021

Keywords: automatic identification system (AIS), autonomous navigation, closest point of approach (CPA), COLREGs,
maritime safety

Abstract
Economic and technological development has increased the amount, density and complexity of maritime traffic,
which has resulted in new challenges. One challenge is conforming to the distinct evasion manoeuvres required
by vessels entering into near-collision situations (NCSs). Existing rules are vague and do not precisely dictate
which, when and how collision avoidance manoeuvres (CAMs) should be executed. The automatic identification
system (AIS) is widely used for vessel monitoring and traffic control. This paper presents an efficient, scalable
method for processing large-scale raw AIS data using the closest point of approach (CPA) framework. NCSs
are identified to create a database of historical traffic data. Important features describing CAMs are defined,
estimated and analysed. Applications on a high-quality real-world data set show promising results for a subset
of the identified situations. Future applications may play a significant role in the maritime regulatory framework,
navigation protocol compliance evaluation, risk assessment, automatic collision avoidance, and algorithm design
and testing for autonomous vessels.

1. Introduction

Maritime safety is of utmost importance, but real-world collision data are scarce. This prompts the
researcher to ask what can be learned from situations where collision is imminent, but an adverse
outcome avoided. Large-scale automatic identification system (AIS) data sets keep track of many such
situations, and may be used to create a database of such near-collision situations (NCSs). This may
further enable analysis and new insights for researchers and maritime safety practitioners.

With the rising importance of maritime traffic, collision avoidance has already developed as one
of the most important concerns for maritime safety (Ozturk and Cicek, 2019). With the emergence
of autonomous surface vessels, there is also an emerging need for developing technical standards and
methods for autonomous collision avoidance. The pre-eminent role of maritime transport, as well as the
continuous strive for safety improvements, has recently led to the development of several theoretical and
practical approaches to ensuring higher levels of safety and efficiency in maritime navigation. These
methods allow for extensions to AIS applications.

One of these directions focuses on the concept of smart navigation, such as decision support systems
based on automatic radar plotting aids as presented by Ożoga and Montewka (2018), AIS-based mar-
itime spatial planning (Le Tixerant et al., 2018) and route planning (Jeong et al., 2019). Furthermore,
new methodology has recently been introduced for autonomous navigation (Naeem et al., 2016) and
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Table 1. Main aspects of a CAM.

Situation Time Space Navigation

COLREGs rule Manoeuvre start time Vessel distance at start Total speed change
Governance Situation end time Relative speed at start
Manoeuvring vessel Time to CPA Relative course at start Total course change
Type of manoeuvre Evacuation time Distance to CPA at start

Passing distance

e-navigation (Kim et al., 2014). A second direction focuses on the concept of navigation safety assess-
ment, as explained by Wang et al. (2019), safety control (Wu et al., 2015), maritime navigation risk
identification (Liu et al., 2019), analysis (Chen et al., 2019) and assessment (Ozturk and Cicek, 2019).

Despite the wide range of research methods in the field, few studies address real-world NCSs in a
context which may be generalised, and few studies apply robustly identified parameters in their analysis.
The proposed frameworks require design, simulation and testing to be applicable and reliable in practice.
Hence, identifying aspects of navigation which may be estimated empirically lends itself to extending
such methods.

Key aspects of smart navigation, and associated safety analysis, include, among others, collision
diameter (Altan, 2019), safety distance (Szlapczynski et al., 2018) and safety regions (Szlapczynski and
Szlapczynska, 2017). Szlapczynski and Szlapczynska (2016) identified several collision risk parameters
for such situations. Another approach, such as that taken by Zaman et al. (2015), involves using AIS
data in concert with the formal safety assessment (FSA) methodology. This approach may be extended
to reviewing the choice of risk control options (RCOs) from real-world situations. Existing maritime
traffic models are differently described in the literature, and the proposed parameters are not unique
(Zhou et al., 2019).

The present work is motivated by the shortcomings of the existing methods, and seek to overcome
these by developing a framework for identifying real-world NCSs from high-resolution AIS data. For
the methodology to be widely applicable, it needs to be scalable and generalisable, both geographically
and over time. An NCS, being distinctly mapped by high-resolution AIS data, may be used to accurately
analyse manoeuvre aspects which are relevant for collision avoidance.

Table 1 lists the important aspects describing a collision avoidance manoeuvre (CAM), in the case
of an NCS. The interaction between these aspects, and the guidance presented to sailors, is not strictly
codified in the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs),
which leaves interpretation open to the seafarer.

Rule 16 of COLREGs indicates that the ‘give-way’ vessel shall ‘so far as possible take early and
substantial action’ (the authors’ emphasis). COLREGs rule 8 requires that ‘any alteration of course
and/or speed to avoid collision shall, if the circumstances of the case admit, be large enough to be
readily apparent to the other vessel’. According to rule 17, the stand-on vessel ‘may take action to avoid
collision’ as soon as it becomes apparent that the give-way vessel ‘is not taking appropriate action in
compliance with these rules’. It is first when the stand-on vessel ‘finds herself so close that collision
cannot be avoided (. . . )’ that the stand-on vessel is put under strict requirements: ‘she shall take such
action as will best aid to avoid collision’.

In designing and creating an NCS database, estimation and analysis of the listed aspects is made
possible, with the aim of describing the de facto interpretation of, and vessel conduct under, different
COLREGs rules at sea, such as analysing how early and how substantial actions taken are, and how
large course and speed alterations are in observed CAMs.

Historical AIS data are characterised by noise, both in the sampling sense, and in the sense that
situations with NCS characteristics may in fact be benign in nature. The primary task in the creation of
an NCS database is the detection and identification of credible NCSs.
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There exists a body of literature on NCS detection, which in particular relates to real-time applications
with the goal of providing increased warning time for sailors for evasion manoeuvres at sea. One method
for vessel collision-candidate detection was proposed by Chen et al. (2018), and uses a temporally
discrete nonlinear velocity obstacle algorithm, modelling the vessel encounter as a process. Another
method proposed by Zhang et al. (2015) describes near-miss collision detection through the use of
vessel conflict ranking operators.1 This method was further improved by Zhang et al. (2016, 2017). The
literature also encompasses methods based on simulation models, such as those described by Fang et al.
(2018).

The primary drawbacks of the existing NCS detection methods is the lack of automation and the fact
that they are not computationally efficient enough to be extended to large-scale data sets. We introduce
a framework for handling large AIS data in a computationally feasible way, which allows both for
large-scale extension and automation.

An NCS is defined by the vessel pair, which includes the position, pose and speed of the vessels. The
method further indicates the risk of collision measured at each timestamp, and allows for inclusion of
further characteristics in the analysis, such as vessel type, size and dimensions.

The aggregate analysis at first proceeds by filtering the identified situations in terms of severity. The
observed AIS transmissions from the filtered situations form the basis for analysing various aspects
of CAM patterns, as presented in Table 1. Second, CAMs must be distinguished from normal route-
following and track-keeping actions imposed by traffic separation schemes and natural obstacles. The
proposed framework uses speed and course patterns, as well as vessel position, to incorporate the closest
point of approach (CPA) algorithm, as described by Sang et al. (2016). This determines an estimated
time to CPA and an estimated distance at CPA for every vessel at every timestamp.

The third challenge is detecting critical timestamps during a particular NCS that correspond to when
the CAM is initiated and when the NCS is resolved. The change-point detection is difficult owing to
the noisy environment and the presence of other route-following actions, which lead to the vessel speed
and course to seldom be in a steady state. Other aspects are used to analyse how CAMs are conducted
in a practical sense in light of COLREGs rules, vessel characteristics (dimensions, type and pose),
which vessel executed a manoeuvre and what manoeuvre was executed. For situations where CAMs are
detected, the manoeuvres are described by the magnitude of the steady-state speed and course alteration,
relative distance, speed and course at manoeuvre start, as well as the actual passing distance.

Finally, aspects are estimated for all situations in the NCS database, and presented with empirical
distributions under various COLREGs conditions, for the subset of vessels in unrestricted waters. The
obtained statistics are sensitive to noise in the NCS database as well as the accuracy of the aspect
estimators. However, the obtained results have potential applications in future work, such as informing
selection of safety limits for risk analysis, ensuring proper tuning of parameters in automatic collision
avoidance rule design and as reference benchmarks for comparing and evaluating protocol compliance
and safety performance of autonomous vessels.

The rest of this paper is structured as follows. Section 2 presents an overview of the high-resolution
AIS data source and presents the raw data that are used in this work. Section 3 presents the suggested
framework for identifying NCSs, and discusses situation filtering and manoeuvre identification, as well
as outlining various CAM aspects. Section 4 presents examples of situations retrieved by the framework
and descriptive statistics for a subset of the identified situations, and discusses challenges and possible
applications. The paper concludes in Section 5 with relevant areas for future research and extensions.

ABBREVIATIONS:

AIS Automatic identification system

1The concept of near miss is closely related to near collision in that near collision is a concept nested within near miss. Near collision denotes a
situation in which two vessels are on track for collision, but avoid an adverse outcome. A near miss can be any situation where an adverse outcome
is imminent, but avoided, such as a near-grounding event. Both concepts are different from a collision in that the adverse outcome is avoided.
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CAM Collision avoidance manoeuvre
COLREGs Convention on the International Regulations for Preventing Collisions at Sea
COG Course over ground
CPA Closest point of approach
LAT/LON Latitude/Longitude
NB Norwegian baseline
NCS Near-collision situation
SOG Speed over ground

2. Data

The present paper uses a high-quality traffic data-source consisting of AIS transmissions from 13 days
covering the Norwegian exclusive economic zone (EEZ). AIS data dimensionality varies, but most
sources provide traffic data for speed over ground (SOG), course over ground (COG), position (latitude,
longitude), as well as unique vessel identifiers. The present data source additionally provides information
on vessel type and dimensions. A typical AIS data set of the present quality and geographical coverage
contains 18·5 million registered AIS transmissions per day, with a mean temporal resolution of 9·6 s.
Rates of transmission vary with vessel speed and degree of course change, allowing for particularly high
resolution when vessels are in manoeuvre. This temporal resolution further allows for detailed analysis
of the aspects describing manoeuvring patterns, whereas the spatial coverage allows for analysing the
manoeuvres over various traffic zones.

The data source has low rates of erroneous or missing records, at below 0·1% for SOG and COG.
Approximately 6·0% of records are erroneously registered outside the area of analysis. To focus analy-
sis on commercial vessels, records for which vessel category was not identified, or where vessels were
identified as non-commercial, were not considered. In addition, tugs and pilot vessels were not consid-
ered, as such vessels by nature engage in close-quarters situations which are difficult to discern from
NCSs. The ensuing typical filtered data set consists of 10 million daily records, which entails a sizeable
number of vessel-to-vessel interactions to be analysed at each timestamp.

Using AIS data for analysis with uniquely identified vessels further allows for combination with
other data sets, such as weather or vessel characteristics. The present paper focuses on suggesting a
framework and highlighting some selected manoeuvre aspects, but the versatility of AIS data lends itself
to numerous extensions.

2.1. A note on computational resources

The algorithm which identifies NCSs, as presented in Section 3, involves calculation of identifying
parameters for all close-vessel interactions. Some parameters in the data allow for tuning the balance
between temporal resolution and computational efficiency.

The present data source recorded approximately 90% of vessels at least once within each 20 s window,
with increased resolution during manoeuvres. The NCS identification algorithm starts by observing all
candidate situations once within a moving time window of 20 s, as a substitute for computing on the full-
resolution data. In terms of the NCS identification algorithm, this reduces the number of observations
by 50% – greatly reducing computational cost – while retaining a satisfactory temporal resolution. The
decrease in temporal resolution significantly increases computational efficiency, but does not have a
negative effect on the process of identification. The algorithm for pattern analysis of CAMs – based on
the list of identified situations – uses the full-resolution data.

Furthermore, as NCSs by definition are confined to vessels within the range of sight of one other,
computations are restricted to pairs of vessels within a 2 × 2 km2 square. Computing distances by such
a (box) metric is computationally more efficient than calculating the Euclidean or spheric distance, and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0373463321000357
Downloaded from https://www.cambridge.org/core. IP address: 213.52.102.34, on 09 Sep 2021 at 08:11:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0373463321000357
https://www.cambridge.org/core


The Journal of Navigation 989

as it is a filtering mechanism for further computations, it does not skew the database, as long as the
threshold is set sufficiently high.

The suggested framework is implemented in Python, using the Pandas, Numpy and Numba libraries.
Computations scale linearly in time and may be computed in parallel. The computations for the present
paper have been run on a MacBook Pro (13-inch, 2016) with a 2 GHz Intel Core i5 processor and 8 GB
memory.

3. Methodology

The following discusses the identification of real NCSs for an NCS database based on historical traffic
data from AIS. The CPA framework is established by Sang et al. (2016) as a method for analysing the
collision behaviour of two objects in motion. CPA is defined as the closest point two objects will arrive
at if speed and course are unaltered. Distance between vessels at CPA (DCPA) indicates the severity of
the hypothetical situation. Time to CPA (TCPA) is the remaining time for the two objects to reach CPA
at constant speed and course. Negative TCPA indicates objects moving away from each other. An NCS
is defined as a situation where two vessels will, in the near future, come within an unsafe distance of
each other. NCSs are identified for each candidate situation by an unsafe DCPA – below a set threshold
– and a limited positive TCPA.

AIS data provide positions, speed and course for a vessel 𝑖 at timestamp 𝑡0, and hence provides the
information

𝑡0; (𝑥𝑖 (𝑡0), 𝑦𝑖 (𝑡0)) = (LON(𝑡0),LAT(𝑡0)); SOG𝑖 (𝑡0); COG𝑖 (𝑡0)

where (𝑥𝑖 (𝑡0), 𝑦𝑖 (𝑡0)) is given in decimal degrees, SOG𝑖 (𝑡0) in knots and COG𝑖 (𝑡0) in degrees. The
velocity vector is given by

𝑉𝑖 =

[
𝑉𝑖,𝑥

𝑉𝑖,𝑦

]
=

[
SOG𝑖 sin(COG𝑖)

SOG𝑖 cos(COG𝑖)

]
×

1,852
3,600

(1)

where all variables are evaluated at 𝑡0. The TCPA𝑖, 𝑗 (𝑡0) can be determined for a pair of close vessels
(𝑖, 𝑗) at time 𝑡0 based on their relative velocity Δ𝑉𝑖, 𝑗 (𝑡0) and recorded relative distance Δ𝑃0

𝑖, 𝑗 (𝑡0). The
TCPA𝑖, 𝑗 (𝑡0) is determined as 𝑡 − 𝑡0 for a 𝑡 such that the future distance ‖Δ𝑃𝑖, 𝑗 (𝑡)‖ is minimised, for
𝑡 ≥ 𝑡0. The relative distances are calculated as

Δ𝑃0
𝑖, 𝑗 =

[
(𝑥𝑖 − 𝑥 𝑗 )𝛾 cos

( 𝑦𝑖 + 𝑦 𝑗

2

)
(𝑦𝑖 − 𝑦 𝑗 )𝛾

]
(2)

where 𝛾 = 111,319·9 is the decimal degree-to-metre conversion rate, longitudes are curvature corrected
and all expressions are evaluated at 𝑡0. Relative velocity is calculated as

Δ𝑉𝑖, 𝑗 = 𝑉𝑖 −𝑉 𝑗 (3)

This gives TCPA𝑖, 𝑗 as

TCPA𝑖, 𝑗 =
−(Δ𝑃0

𝑖, 𝑗 )
�Δ𝑉𝑖, 𝑗

(Δ𝑉𝑖, 𝑗 )�(Δ𝑉𝑖, 𝑗 )
if Δ𝑉𝑖, 𝑗 ≠

[
0
0

]
(4)

If 0 ≤ TCPA𝑖, 𝑗 (𝑡0) ≤ TMAX, where the present paper lets TMAX = 1,200 s, we say vessels (𝑖, 𝑗) will
be closest at 𝑡 = 𝑡0 + TCPA𝑖, 𝑗 (𝑡0) given present speed and course, and have

Δ𝑃TCPA
𝑖, 𝑗 = Δ𝑃0

𝑖, 𝑗 + TCPA𝑖, 𝑗Δ𝑉𝑖, 𝑗 (5)
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and, further, the DCPA as

DCPA𝑖, 𝑗 =
√
(Δ𝑃TCPA

𝑖, 𝑗 )�(Δ𝑃TCPA
𝑖, 𝑗 ) (6)

Otherwise, we define DCPA𝑖, 𝑗 = ∞. A version of a function to determine TCPA𝑖, 𝑗 for two vessels may
be implemented as

Listing 1. A simple function to determine TCPA for two vessels.
1 def SingleCPA(x1, y1, sog1, cog1, x2, y2, sog2, cog2):
2 gamma = 111319.9
3
4 TMAX = 1200
5 dcpa = inf
6 Kn2ms = 1852 / 3600
7 dVx = (sog1 * sin(cog1) - sog2 * sin(cog2)) * Kn2ms
8 dVy = (sog1 * cos(cog1) - sog2 * cos(cog2)) * Kn2ms
9

10 dx = (x1 - x2) * gamma * cos((y1+y2)/2)
11 dy = (y1 - y2) * gamma
12 tcpa = (dx * dVx + dy * dVy) / (dVx * dVx + dVy * dVy)
13
14 i f (0 <= tcpa <= TMAX):
15 dcpa = sqrt((dx + dVx *tcpa)*(dx + dVx *tcpa)
16 + (dy + dVy *tcpa)*(dy + dVy *tcpa))
17
18 re turn (tcpa, dcpa)

For 𝑁 vessels at time 𝑡0, represented as explained in Section 2, the algorithm applies the function
above to every pair of vessels using vectors instead of scalars. The function looks the same, and may be
implemented as2

Listing 2. Vectorised function to determine TCPA for 𝑁 vessels.
1 def VectorCPA(X1, Y1, SOG1, COG1, X2, Y2, SOG2, COG2):
2 >> Same computations but vectorised
3
4 (...)
5
6 idx = (0 <= TCPA) && (TCPA <= TMAX)
7
8 DCPA[idx] = sqrt((dX[idx] + dVX[idx] *TCPA[idx])**2
9 + (dY[idx] + dVY[idx] *TCPA[idx])**2)

10
11 re turn (TCPA, DCPA)

where capital letters denote vectors.
The algorithm determines TCPA𝑖, 𝑗 and DCPA𝑖, 𝑗 for all vessel pairs (𝑖, 𝑗). An NCS is identified when

DCPA𝑖, 𝑗 is found to be below a set (unsafe) threshold. The present paper identifies situations where the
minimum DCPA is lower than three times the sum of the vessel lengths, i.e.

DCPAmin(𝑖, 𝑗) ≤ 3 × (𝐿𝑖 + 𝐿 𝑗 )

where 𝐿𝑖 , 𝐿 𝑗 are the vessel lengths.3 The algorithm identifies this on the record level for each vessel
pair. A database can be constructed in several ways. The present paper lets each NCS between a pair of
vessels be identified by the record denoting the lowest DCPA𝑖, 𝑗 (𝑡0) for the vessels.

For every identified situation, full-resolution traffic data are retrieved from the original data set
for both vessels at all timestamps preceding and succeeding the timestamp of minimal DCPA𝑖, 𝑗 by a
sufficient time span, to further analyse the CPA and manoeuvre patterns during the NCS. Choice of time

2The algorithm is implemented in Python’s Numba library as explained in Section 2. It is presented here in native Python-style code for simplicity.
3The choice of such a threshold is important as it decides which NCS candidates are characterised for further inspection. The researcher may

opt for a larger threshold to allow for a greater number of NCS candidates for later inspection, but will need to compensate for this in other ways to
maintain robustness. The significance of this safety limit can be assessed based on the obtained results for the passing distance statistic.
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span must be sufficiently long to encompass the situation, and must be informed by the size and type
of the vessels. The present paper retrieved records 60 min prior to and following the point of minimal
DCPA𝑖, 𝑗 .

Transmission times differ, and hence traffic information must be synchronised for each pair of vessels
participating in a situation to analyse CAMs. Records are synchronised by a process where each record,
with timestamp 𝑡0,𝑖 , is coupled with an equivalent 𝑡0, 𝑗 in the other vessel’s timestamp vector such that
|𝑡0,𝑖,𝑘 − 𝑡0, 𝑗 ,𝑙 | < 5 and 𝑡0, 𝑗 = arg min𝑡0, 𝑗 ∈𝑇0 |𝑡0,𝑖 − 𝑡0, 𝑗 ,𝑘 |, where 𝑇0 is the vector of timestamps for vessel 𝑗 .
Records which have no unique equivalent are discarded. The traffic information synchronisation is
implemented as

Listing 3. Function to synchronise observations.
1 def ObservationSynchronizer(t0i, T0j):
2 jt0 = numpy.argmin(abs(t0i - T0j))
3 t0j = T0j[jt0]
4
5 i f abs(t0j - t0i) > 5:
6 re turn
7
8 e l s e :
9 re turn t0j

where the records are organised such that T0j is the longest timestamp vector of the two.
The synchronised time for each record is taken to be the mean timestamp of the coupled records.

This introduces imprecision, but the common time scale is not used for computations. At this stage,
both vessels are observed at approximately identical timestamps. The synchronised traffic data for each
situation are then used to analyse the traffic patterns during CAMs. First, the timestamp when the CAM
is initiated is detected as 𝑡1,𝑖, 𝑗 and the timestamp when the NCS is resolved is detected as 𝑡𝐹,𝑖, 𝑗 . The
evacuation time window is defined as [𝑡1,𝑖, 𝑗 , 𝑡𝐹,𝑖, 𝑗 ] for each situation, according to the following rules.

1. If DCPA𝑖, 𝑗 does not pass below 10 m, the time window is initiated at the minimum DCPA𝑖, 𝑗 .4 This
is the normal situation where a CAM is initiated to ensure a safe passing distance by increasing the
(predicted) DCPA.

2. If DCPA𝑖, 𝑗 passes below 10 m, the time window starts at the initial point where DCPA𝑖, 𝑗 passes
below 10 m for which TCPA𝑖, 𝑗 has not turned negative. For such NCSs, the calculated values are
assumed to be subject to noise, and the first crossing of 10 m is considered the global minimum.

3. If DCPA𝑖, 𝑗 passes below 10 m, but TCPA𝑖, 𝑗 is negative at this point, the time window starts when
DCPA𝑖, 𝑗 is at its minimum while TCPA𝑖, 𝑗 has not turned negative.

4. If DCPA𝑖, 𝑗 never passes below a threshold DMAX metres (in the present paper set as three times the
sum of the vessel lengths), as explained previously, the situation is discarded from the NCS database.

If the situation is confirmed as an NCS, it is taken to be resolved at 𝑡𝐹,𝑖, 𝑗 , the first point after 𝑡1 when
TCPA𝑖, 𝑗 turns negative. This implies that the two vessels involved in the NCS are no longer approaching
one another. The time interval 𝑡𝐹,𝑖, 𝑗 − 𝑡1,𝑖, 𝑗 is an important manoeuvre aspect as it determines how
‘early’ (as emphasised in COLREGs) CAMs were initiated, and how the linguistic variable ‘early’ from
COLREGs is interpreted in real situations.

An observed CAM is defined for a vessel if, in a situation, the vessel alters her course or speed by a
significant (observable) amount during the evacuation time window. For each situation, we observe either
no vessel, one vessel or both vessels engaged in a CAM. In an ideal application, this determines which
vessel should take responsibility to give-way and which vessel practised the right-of-way and remained
in a stand-on state, as per COLREGs. Furthermore, for each vessel, we may observe no CAM, a course
alteration, a speed alteration or both a speed and course alteration. If one of the latter three scenarios is
recorded, the vessel is defined as having implemented a CAM. Each of the latter three scenarios defines

4The 10 m threshold is introduced to avoid measurement error arising from sampling noise. As AIS data are gathered discretely, choosing the
minimum DCPA when this hovers close to zero will lead to late identification of 𝑡1.
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Figure 1. Joint distribution of the magnitude of observed steady-state course and speed change for
vessels where a course-change CAM is observed. The figure indicates that there is a speed change
observed for course-change CAMs.

a type of CAM. Situations where one or more vessels engage in a CAM are the NCSs of interest. Some
speed change is also observed during course alteration manoeuvres, as shown in Figure 1. In practice,
large vessels more often engage in course-change manoeuvres rather than incremental speed-change
manoeuvres. Combining this assumption with Figure 1, one may deduce that a course-change CAM
will often entail a detectable speed change and, hence, be registered as a combined manoeuvre. This
understanding should enter into the researcher’s analysis of the results.

Classification of manoeuvre type is done vessel-by-vessel, by analysing the individual patterns of
changes in COG and SOG over the entire CAM time window, as shown in Figure 2. A course-change
CAM is classified as such if the time derivative of the COG deviates significantly from the measurement
noise inherent in the time series. The same method is used for classifying speed-change CAMs, by
exchanging COG with SOG. In this regard, the threshold for ‘measurement noise’ is defined as 25%
above the maximum absolute value of the COG time derivative for the 60 s prior to the start of the
evacuation window. If the COG time derivative passes above this measurement noise threshold, the
vessel is classified as having engaged in a course-change CAM. The application is illustrated for a
representative vessel in Figure 2(a). The figure shows how a threshold is defined based on the pre-
𝑡1-period, and that a course-change CAM is defined for this vessel, as the within-window COG time
derivative passes above this threshold. In addition to being useful for analysing the practice of the
COLREGs rules, these aspects allow for the analysis of which and how many types of manoeuvres are
executed to avoid collision in each situation.

This method is not without its limitations. Measurement noise is amplified when calculating deriva-
tives, and the choice of 25% and 60 s as tuning parameters should be subject to refinement. As seen in
Figure 2(b), if the time derivative is consistently and sufficiently close to zero for the duration of the
situation, the measurement noise threshold may be set too low, and a CAM may incorrectly be recorded.
In particular, misclassifications should be expected for vessels where the total speed change is close to
zero. To correct for such misclassifications, vessels for which no observable steady-state course change
is recorded are classified as not having performed a course-change CAM.
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(b)

(a)

Figure 2. COG time derivative for two representative vessels in an overtaking situation: (a) successful
classification; (b) faulty initial classification, needs correction. The black line shows the maximum
noise recorded prior to the evacuation window. The red line shows the implied noise threshold. For
both vessels, a course-change manoeuvre is initially registered. In the first example, this is also the
final classification. The grey-shaded field indicates the time window within which the noise threshold
is defined. In the second example, our methodology recognises that the total registered course change
is too small to indicate an actual course-change manoeuvre, and the final classification is corrected to
‘No manoeuvre’. The time series is taken from the NCS example presented in Figure 7.

The steady-state course change for a vessel is defined as the difference between the mean COG for 11
observations surrounding the start of (𝑡1) and end of (𝑡𝐹 ) the evacuation time window.5 We define the
observed course change as being observationally zero if it is below 1·5◦. This roughly conforms to the
lower 30th percentile of the distribution of observed steady-state course change for all vessels. The same
approach is undertaken with respect to speed change, but where the threshold for what is considered
observationally zero is set at below 0·15 knots of change, which conforms approximately to the lower
30th percentile of the distribution.6 These corrections result in a change in the course-change CAM
status for 6·2% of all NCS-involved vessels, and for 9·6% of all vessels with regards to the detection of a
speed-change CAM. The distribution of situation types, differentiated by manoeuvre status, is presented
in Figure 3.

5For calculations involving COG, means are understood to be circular.
6The choice of thresholds for this classification represents a crude instrument for re-classifying obvious misses in the data-driven method. Further

research is needed with regards to precise classification of manoeuvre typology.
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Figure 3. Distribution of registered manoeuvre types for NCSs where at least one CAM is initiated. In
the case where both types of manoeuvres are registered, the intuition is not that both manoeuvres were
necessarily intended, but rather that a course change often entails a speed change.

The observed steady-state change in COG and SOG are also important indicators of how ‘substantial’
the course and/or speed alterations are in real situations. This allows for evaluating the real interpretation
of ‘substantial’ in terms of COLREGs compliance for each situation.

The full comprehension of CAMs further requires analysis of the conditions at which the manoeuvres
are initiated and their effect on solving the NCS. Several manoeuvre aspects may be of interest. The
present paper estimates the relative approach speed, the distance between vessels at 𝑡1 and passing
distance, in addition to the evacuation time, and the steady-state course and speed change for different
situations in aggregate. The aspects are defined as follows.

• Relative approach speed is computed as the absolute value of the relative velocity, |𝑉𝑖 −𝑉 𝑗 |, between
the two vessels in the first half of the evacuation time window, [𝑡1, 𝑡𝑀 ] (where 𝑡𝑀 = (𝑡1 + 𝑡2)/2).
This indicates the speed with which the vessels are approaching each other.

• Vessel distance at 𝑡1, |𝑃(𝑡1) −𝑄(𝑡1) |, is computed as the actual distance between the two vessels at
the start of the CAM, 𝑡1, and it measures how close vessels are before initiating a CAM.

• Passing distance, |𝑃(𝑡𝐹 ) −𝑄(𝑡𝐹 ) |, is computed as the actual distance between vessels at the end of
the evacuation time window, 𝑡𝐹 . This measures the effect of the CAM in avoiding close-quarters
situations.

• Evacuation time, |𝑡𝐹 − 𝑡1 |, is calculated as the duration from the start of the CAM to the end of the
NCS. This indicates how early the manoeuvre was initiated.

• Steady-state course (respectively speed) change is calculated for each vessel as the difference
between the mean COG (respectively SOG) for 11 observations around the start and end of the
evacuation time window.

To analyse situations with respect to practised CAMs, all NCSs are classified based on which
COLREGs rule applies for the vessels. In particular, COLREGs rules 13, 14 and 15 stipulate actions to
be taken by the participating vessels in situations where a vessel is overtaking, crossing or in a head-on
encounter (Ventura, 2005).

COLREGs rule 13(b) specifies that ‘A vessel shall be deemed to be overtaking when coming up
with another vessel from a direction more than 22·5◦ abaft her beam (. . . )’, whereas COLREGs rule
14(a) specifies that a head-on situation takes place ‘When two power-driven vessels are meeting on
reciprocal or nearly reciprocal courses so as to involve risk of collision (. . . )’ and 14(b) that ‘Such a
situation shall be deemed to exist when a vessel sees the other ahead or nearly ahead (. . . )’. Conditions
for when vessels are in a crossing situation (with actions as required by rule 15) are not specified, but it
is generally understood to be situations which do not fulfil the criteria of rules 13 and 14.

To classify NCSs in light of COLREGs, it is necessary to mathematically define the terms used in
the different rules. As any subsequent alteration of course or bearing should not change the class of a
situation, a situation is classified based on its traffic features prior to 𝑡1, i.e. before the vessels initiate any
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CAMs. Data on vessel heading are often recorded as part of AIS, but are in the present data considered
to involve too many erroneous and missing records to be used as part of a robust measure. Hence, the
heading of a vessel 𝑖 at 𝑡1 is approximated as the mean course in the observations preceding 𝑡1,

COG𝑖 = mean(COG𝑖 (𝑡))) s.t. 𝑡1 − 20 ≤ 𝑡 ≤ 𝑡1 (7)

Taking the mean over several records makes the measure more robust against noise and contributes to
the accuracy of the classification.

In any encounter between two vessels 𝑖 and 𝑗 , the relative angle of approach, henceforth denoted
ΔCOG, is determined as the difference, translated to the interval [0◦, 360◦),

ΔCOG = mod(COG𝑖 − COG 𝑗 , 360◦) (8)

The relative bearing between vessels 𝑖 and 𝑗 with respect to 𝑖 is calculated as

𝛽𝑖 = mod(angle(Δ𝑃𝑡1
𝑗 ,𝑖) − COG𝑖 , 360◦) (9)

where angle(Δ𝑃𝑡1
𝑗 ,𝑖) is the angle of the relative distance vector starting from the position of vessel 𝑖 and

ending at the position of vessel 𝑗 at 𝑡1, as defined in Equation (2). This angle is the absolute bearing and
is measured with respect to the north in a clockwise direction.

Correspondingly, 𝛽 𝑗 is the relative bearing with respect to vessel 𝑗 and is calculated by switching the
indices 𝑖 and 𝑗 in Equation (9). If vessel 𝑖 is own ship and vessel 𝑗 is target ship, 𝛽𝑖 and 𝛽 𝑗 are generally
understood to be the bearing angle and contact angle, respectively, see Woerner et al. (2019).

NCSs are classified based on 𝛽𝑖 , 𝛽 𝑗 and ΔCOG, calculated at 𝑡1. Starting with rule 13(b), a vessel 𝑗 is
overtaking vessel 𝑖 if 𝑗 has a relative bearing of more than 𝜙𝑜 behind the beam of vessel 𝑖, equivalently
90◦ + 𝜙𝑜 off her centreline, where 𝜙𝑜 = 22·5◦ is clearly defined in COLREGs.

Rule 14(a) specifies that two vessels are head-on if ΔCOG is in the interval 180◦ ± 𝜙ℎ. Here
ΔCOG = 180◦ indicate reciprocal courses, and 𝜙ℎ is an added tolerance for ‘nearly’ reciprocal. The 𝜙ℎ

further accounts for the qualification in rule 14(c) that ‘When a vessel is in any doubt as to whether such
a situation exists, she shall assume that it does exist and act accordingly’.

A head-on situation might equivalently be classified using 𝛽𝑖 , 𝛽 𝑗 and rule 14(b). In this case, both
relative bearings should be close to 0◦, such that the vessels see each other ‘ahead or nearly ahead’. The
former approach is chosen in the following analysis.

Neither part of rule 14 specifies numerically the magnitude of 𝜙ℎ . Court rulings indicate a convergence
towards understanding ‘nearly reciprocal’ as meaning 𝜙ℎ ∈ [5, 6]. Recent additions to the literature are
however not unanimous as to how 𝜙ℎ should be interpreted. Woerner et al. (2019) use 𝜙ℎ = 13◦ as their
default tolerance angle for ‘reciprocal or nearly reciprocal courses’, whereas Wang et al. (2018) apply
𝜙ℎ = 15◦ when studying obstacle avoidance. At the upper end, Li et al. (2020) and Cho et al. (2020)
apply 𝜙ℎ = 22·5◦ in their analysis. It is outside of the scope of this paper to conclude as to the true value
of 𝜙ℎ. However, the noisy properties of AIS data argue against opting for the narrowest definition. In
the following, 𝜙ℎ = 10◦ is applied in the classification algorithm.7

A situation is mathematically defined by the following conditions: If a situation is an NCS (where
collision risk exists), we have the rule applying as

· · · =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑗 overtaking 𝑖 if cos(𝛽𝑖) ≤ cos(90 + 𝜙𝑜)

𝑖 overtaking 𝑗 if cos(𝛽 𝑗 ) ≤ cos(90 + 𝜙𝑜)

Head-on if cos(ΔCOG) ≤ cos(180 + 𝜙ℎ)

Crossing Otherwise

where cosines are used as they treat angles as equal on each side of 180◦ and 0◦.

7Upon inspecting the data, setting 𝜙ℎ = 5 identifies 185 of the 1055 situations outside the Norwegian baseline as head-on, 𝜙ℎ = 10 identifies
303 and 𝜙ℎ = 15 identifies 364 situations.
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Figure 4. Vessels involved in NCSs in Norwegian open waters, vessels identified separately. The figure
shows that the observed location of different vessels is localised according to activity.

4. Results

This section presents some identified NCSs, and discusses characteristics of such situations, as well as
strengths and flaws of the presented framework. Summary statistics for the different classifications are
presented, as well as the empirical distributions and mean and median estimates for important manoeuvre
aspects. The analysis is focused on situations outside of the Norwegian baseline (NB), which are not
subject to fixed obstacles, traffic separation schemes, and shallow and congested waters. The sample of
NCSs, as shown in Figure 4, still mostly take place in the Norwegian EEZ, which is more congested
than other parts of the open sea. Application on the described data sample identified a total of 9,180
situations of which 1,055 took place outside the NB. There are 2,110 separate vessels involved in such
situations. Of these, CAMs were detected in 645 situations .

4.1. Representative situations

Figures 5–7 show situations identified by the algorithm which are indeed NCSs, involving two vessels
on path for collision.
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Figure 5. Representative ‘overtaking’ situation: (a) COG; (b) SOG; (c) track; (d) DCPA; (e) TCPA; (f)
vessel distance; (g) manoeuvre aspects.

Figure 5 shows a correctly classified situation where two tankers meet in an overtaking-type encounter.
As shown by Figure 5(a), 5(c) and 5(f), vessel A and vessel B are on the same course, with vessel B
closing in on vessel A from behind at a higher SOG. During the evacuation time window, vessel B
engages in a course-change CAM. As shown by Figure 5(d), this increases the distance at CPA, and the
vessels clear the NCS. TCPA becomes negative when the situation is resolved. The manoeuvre aspects
presented in Figure 5(g) underline these observations. Vessels pass within one kilometre of each other
when the situation is resolved.

Figure 6 shows a situation where a cargo vessel (A) and an offshore vessel (B) meet under the crossing
rule. Vessel A makes a course-change manoeuvre, leaves the NCS and returns to its prior course. As
shown by Figure 6(d), the course alteration by B increases DCPA substantially during the CAM, while,
as Figure 6(e) shows, TCPA decreases. As seen in Figure 6(g), the detected course change for vessel A
is somewhat smaller than what the track plot indicated. This is likely owing to the vessel correcting back
to its initial course directly after having cleared the situation. Vessel B makes a small course adjustment
during the evacuation window, which is recorded by the algorithm.8

Figure 7 depicts a situation where a cargo vessel (A) and a tanker (B) meet under head-on rules.
Figure 7(b) shows that there is substantial difference in speed between the vessels. Vessel A engages
in a course-change manoeuvre, increasing DCPA and decreasing TCPA. As Figure 7(d) shows, DCPA
varies substantially when the vessels are still far apart. In this instance, it may be argued that both vessels
engage in a manoeuvre, although the manoeuvre of vessel A is more pronounced. This likely stems
from the fact that the measurement of the course change is smaller than what the track plot indicates, as
the vessels correct back to their original course directly after clearing the NCS.

8The extent to which this correction is to be regarded as a CAM, or as holding the course, is up for discussion. Under the present framework, it
is registered as a CAM.
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Figure 6. Representative ‘crossing’ situation: (a) COG; (b) SOG; (c) track; (d) DCPA; (e) TCPA; (f)
vessel distance; (g) manoeuvre aspects.

4.2. Manoeuvre aspects

The suggested CAM aspects encompass time, space, situational and navigational aspects. The spatial
and temporal aspects may be classified as either pre- or post-manoeuvre aspects. In the following, these
aspects, as well as navigational aspects, are presented for the subset of situations where a CAM was
detected in an NCS outside of the NB.

Figure 8 presents the empirical distribution of relative approach speed and Figure 9 presents the vessel
distance at 𝑡1, which are both pre-manoeuvre aspects, for situations governed by different COLREGs
rules. The relative approach speed estimates are as expected, relative to both the COLREGs rule and
vessel type, although there is some particular clustering of passenger vessels in head-on situations.

The average vessel distance at 𝑡1 is different in NCSs of different encounter types, as Figure 9 shows.
Overtaking-type NCSs on average have a lower vessel distance at 𝑡1 than crossing situations, which
again on average have a lower vessel distance at 𝑡1 than head-on-type situations. Figure 9 further shows
that the distributions of vessel distance at 𝑡1 differ between the different vessel categories, conceivably
owing to the vessel length.

Figure 10 presents the empirical distributions for the passing distance and Figure 11 for the evacuation
time, which are both post-manoeuvre aspects, for various NCSs. As Figure 10 shows, there are only
minor differences in the mean and median when comparing crossing-type situations to overtaking and
head-on situations. It is, however, evident that the distributions vary with vessel type, and that passenger
vessels in particular, and to some extent fishing vessels, skew lower than cargo vessels in terms of the
observed passing distance, as is expected.

Evacuation time is an aspect that indicates how early the CAM was initiated prior to the situation being
resolved. In terms of the average evacuation time, Figure 11 shows that although there is little difference
in the mean and median between the different overtaking and crossing situations, both statistics are
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Figure 7. Representative ‘head-on’ situation: (a) COG; (b) SOG; (c) track; (d) DCPA; (e) TCPA; (f)
vessel distance; (g) manoeuvre aspects.

substantially lower for head-on situations. For all NCS types, the distributions of evacuation time have
long upper tails, which is related to the vessel speed and available space.

Figures 12 and 13 present the empirical distributions of steady-state course change and steady-
state speed change, respectively, which are navigational aspects of CAMs. These aspects indicate the
magnitude of implemented manoeuvres, which measure how ‘large’ and ‘substantial’ (as per COLREGs)
are these alterations. The aspect distributions are presented for different vessel types, and only for vessels
which engage in the respective manoeuvre types. Figure 12 shows that the observed average course-
change CAM is on average equally significant for vessels in overtaking and crossing situations, which
both are more significant than in head-on situations. The distribution of the magnitude of course-change
CAMs has a considerable spread in overtaking and crossing situations.

Figure 13 shows the distribution of the absolute value of speed change during CAMs in various
NCSs. The observed average speed-change is on average larger in overtaking situations than in crossing
situations, which again is larger than in head-on situations. There are some differences with respect to
the tails of the distributions when disaggregating by vessel type.

4.3. Effect of pre-manoeuvre aspects on navigational outcomes

Estimating manoeuvre aspects allow for presenting the bivariate distributions of the aspects. In particular,
the effect of pre-manoeuvre aspects, such as approach speed and vessel distance at 𝑡1, on navigational
aspects are of interest, as these may conceivably affect the intended actions on the bridge and, hence,
also the observed aspects in the data.

Figures 14 and 15 show the distribution of steady-state course and speed change, contingent on
the distribution of approach speeds. Figure 14 shows that vessels undertaking a course-change CAM
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Figure 8. Distribution of relative approach speed for vessels in a situation where a manoeuvre is
implemented. The numbers indicate the speed with which two vessels approach each other prior to a
CAM being initiated.

Figure 9. Distribution of vessel distance at 𝑡1 for vessels in a situation where a CAM is implemented.
The numbers indicate how far away vessels are at the point where a CAM is initiated.

undertake course changes of different magnitude contingent on the approach speed involved in the
situation. Figure 15 show that the same result applies for the speed change.

Figures 16 and 17 show the distribution of steady-state course and speed change, respectively,
contingent on the distribution of vessel distance at 𝑡1. The distribution of steady-state course change
increases with vessel distance at 𝑡1 for all vessels undertaking a course-change manoeuvre. The same
take-away message applies with regards to steady-state speed change.
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Figure 10. Distribution of passing distance for vessels in a situation where a manoeuvre is implemented.
The numbers indicate the distance between vessels at the point where a CAM is concluded and vessels
are no longer in an NCS.

Figure 11. Distribution of evacuation time for vessels in a situation where a manoeuvre is implemented.
The numbers indicate the time spent between when a CAM is initiated and its conclusion.

4.4. Challenges of the proposed framework

4.4.1. Misclassification and the importance of tuning parameters
Identifying NCSs and classifying CAMs is not straightforward and, in particular, both the NCS
identification algorithm and the CAM classification algorithm depend on tuning parameters.

The main tuning parameters for the CAM classification algorithm are the padding of the measurement
noise threshold (in the present paper, taken at 25% above the observed pre-𝑡1 maximum observation)
and the length of the window in which the pre-𝑡1 maximum observation is estimated. With regards to
the NCS identification algorithm, the choice of methodology for pinpointing 𝑡1 is crucial, as is the size
of the window for estimating incoming and outgoing COG and SOG.

A wrong choice with regards to the former may lead to a later misclassification of the CAM. A
wrong choice with regards to the latter may lead to situations being misclassified or defined as being
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Figure 12. Distribution of steady-state course change for vessels classified as implementing a course-
change manoeuvre. The numbers indicate the change in COG undertaken by vessels during a CAM.

Figure 13. Distribution of steady-state speed change for vessels classified as implementing a speed-
change manoeuvre. The numbers indicate the change in SOG undertaken by vessels during a CAM.

under different COLREGs rules if the vessel undertakes a manoeuvre just prior to 𝑡1, which will produce
wrong estimates for the 𝛽𝑖 , 𝛽 𝑗 and ΔCOG, and possibly incorrect COLREGs rule classification.

One example of a misidentification of 𝑡1 is given in Figure 18, which shows a situation where
two vessels approach each other under a crossing regime (in this case, correctly classified). Vessel B
undertakes a course-change manoeuvre, clears the situation and returns to its former course. Instead of
correctly identifying 𝑡1, the algorithm wrongly identifies 𝑡1 just after the CAM is concluded and instead
classifies B as not having undertaken any CAM. The situation still enters the data because the algorithm
misclassifies a course-following manoeuvre by vessel A as a CAM. Misclassifications such as this may
be avoided by developing the algorithm for defining 𝑡1.
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Figure 14. Bivariate distribution of approach speed and steady-state course change for vessels which
undertake a course-change CAM.

Figure 15. Bivariate distribution of approach speed and steady-state speed change for vessels which
undertake a speed-change CAM.

4.4.2. Difference between observed and intended CAMs
The ideal framework for NCS and CAM analysis would allow the analyst to record the actions and
intentions of the crew and captain on the bridge of every vessel. Such a framework would allow for the
analysis of choices and could incorporate situational analysis. The AIS-based researcher is restricted to
what may be observed from the data.
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Figure 16. Bivariate distribution of vessel distance at 𝑡1 and steady-state course change for vessels
which undertake a course-change CAM.

Figure 17. Bivariate distribution of vessel distance at 𝑡1 and steady-state speed change for vessels which
undertake a speed-change CAM.

AIS data are a strong source of information, in that they are abundant and omnipresent. The proposed
framework suggests algorithms which may enable the analyst to learn from these data. However, it may
not inform about which actions are taken on the bridge. Furthermore, there may be other restricting
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Figure 18. A wrongly classified ‘crossing’ situation: (a) COG; (b) SOG; (c) track; (d) DCPA; (e) TCPA;
( f) vessel distance; (g) manoeuvre aspects. In this situation, the algorithm defines 𝑡1 too late in the
situation, which leads the algorithm to overlook the actual manoeuvre (taken by vessel B prior to the
recorded 𝑡1), and instead designates a course-following manoeuvre taken by vessel A as the CAM. The
table gives the mis-estimated CAM aspects.

factors at play. The present framework does not take account of sailing patterns and intended destination
and route.

An example of a situation where it is difficult to ascertain whether a situation is in fact an NCS is
presented in Figure 19. In this situation, a cargo vessel (A) and a fishing vessel (B) approach each other
under crossing rules. Vessel B adjusts its speed and course to clear the situation. Nevertheless, vessel
B does not heed the direction under crossing rules of passing due starboard of the vessel A. This may
be a finding in and of itself, but truly understanding the factors which drive such actions necessitates
extending the framework further to incorporate weather, water depth, sailing patterns and sea lanes.

4.5. AIS NCS framework as a platform for CAM analysis and further applications

The NCS identification algorithm for creating a reference NCS database provides a useful platform for
intelligent and safe maritime transport applications and analysis.

The presented results are useful with respect to the regulatory framework, to analyse how navigation
rules, such as COLREGs, are practised in real situations, e.g. whether rules are followed, as well as which
manoeuvres are taken by vessels involved in an NCS. The descriptive statistics allow for evaluating the
interpretation of linguistic variables in navigation rules such as ‘early’, ‘substantial’, ‘far’, ‘large’ and
‘safe distance’. Providing technical standards or amendments to such rules is crucially dependent on
fully comprehending the degree of compliance with current rules and which actions are taken by vessels
in situations governed by different sets of rules.
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Figure 19. Representative ‘head-on’ situation: (a) COG; (b) SOG; (c) track; (d) DCPA; (e) TCPA;
( f) vessel distance; (g) manoeuvre aspects.

For the application in risk analysis, the detection of risky manoeuvres can be made easier in compar-
ison with the identified NCS database, and the evaluation of collision risk in real time can be improved
using the provided statistics for common CAMs. For example, the presented statistics for evacuation
time and passing distance may inform the selection of safety limits, with confidence intervals, for time
to CPA and distance at CPA quantities, respectively.

The presented statistics provide useful inputs for the design of automatic collision avoidance algo-
rithms, which are based on fixed rules designed for decision making to determine which actions should
be taken, as well as when and how they should be executed in a particular situation. This has applications
with regards to RCOs and safety assessment. In addition to risk evaluation, applications in performance
evaluation of maritime autonomous surface vessels, which considers protocol compliance and human–
robot interactions between unmanned and manned vessels, are relevant. Both challenges require explicit
descriptions of ‘standard’ collision avoidance protocols and the expected behaviour of manned vessels
in NCSs.

5. Conclusion

This paper has presented a framework for identifying NCSs using widely available AIS traffic data and
the CPA algorithm.

The paper proves that the framework may be implemented in a simple, scalable and computationally
efficient way, and that identification of such situations and creation of an NCS database may be used to
analyse the execution of CAMs.

Future work will consider further refinements necessary for implementation in real-world applica-
tions. In particular, the framework needs to be adapted for use in restricted waters to accommodate for
several vessels and stationary obstacles.
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By the nature of geographically identified data, the framework lends itself to a range of further
extensions, such as classification by weather aspects, in particular wave height, wind and sea surface
currents, as well as the presence of restricted traffic zones, natural obstacles, recommended routes
and traffic separation schemes. The framework may also be extended to include more detailed vessel
characteristics.
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