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Abstract

In the present day, distributed systems are becoming more and more important. It can be difficult
to stop such systems to perform an update, either because they are critical infrastructure, like air
traffic control systems, or simply because we don’t have direct control of the nodes. As a result of
this, dynamic updates are of great interest, but so far no standard approach has emerged that strikes
a good balance between the partly conflicting goals of safety, flexibility and performance. This
thesis presents a specification of a dynamic update system in the Creol framework for distributed,
object oriented programming. The system is designed to dynamically update classes, and includes a
procedure for converting existing object instances to an updated version. A method is presented for
controlling when and how an update is applied, and the necessary conditions for a correct update
are discussed. The system presented is a low-overhead solution, lazily transferring state from one
version to the next. It is very flexible, even allowing changes to the inheritance hierarchy. The
system is given a formal specification in rewriting logic, extending Creol’s semantics. Consequently,
formal reasoning about the correctness of updates is possible.
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Introduction

This thesis seeks to answer how a mechanism for dynamic updates in an object oriented program-
ming language for distributed systems can be built. The programming language used in this thesis
is Creol [14, 15], which has been developed at the Department of Informatics at the University of
Oslo to study dynamic updates of distributed object systems in a formal framework. The reason
why we want to replace or upgrade parts of an object oriented distributed system is that it can be
difficult to stop such a system and perform an update, either because it’s a critical system like an
air traffic control system or simply because we don’t have direct control of the nodes, such as in a
peer to peer distributed system.

Problem Statement

The main question this thesis seeks to answer is:

How can we make a safe and flexible mechanism
for dynamically updating Creol programs?

By safe we mean that we can determine with absolute certainty that the system will continue to
operate correctly after it has been updated. By flexible we mean that a wide range of updates can
be performed, not just adding attributes and methods to classes. By dynamic update we mean
updating a program while it is running, with minimal disruption of the services provided by the
program.

The goals of safety and flexibility are to some extent conflicting. If we severely limit the range
of updates which are allowed, it obviously becomes easier to ensure the correct behaviour of the
updated system. Conversely, if we do not make any guarantees about the behaviour of the updated
system, it’s obviously much easier to design a flexible update mechanism.

After reviewing the available literature on the subject, we will try to give answers to the sub-
problems which present themselves once we have a more clear understanding of the problem:

• What should be the unit of replacement in our system?
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• How should state transfer from the old version to the new version be accomplished?

• How can we maintain system responsiveness while the update is in progress?

• Which conditions are necessary for a correct update?

Method

The work we have done builds directly on earlier work by Marte Arnestad [1] who made an oper-
ational semantics for the Creol language in the form of a rewriting logic [23] specification which
can be interpreted using the Maude [5] tool. Many improvements and extensions to the interpreter
have been made by Prof. Olaf Owe and my advisor Einar Broch Johnsen. To investigate the
question of how we can make a safe and flexible mechanism for dynamic updates in Creol, we have
made a specification for such a system using rewriting logic and used the Maude tool to test this
specification. We have also made a simple compiler/translator to check that the proposed syntax
for updates in Creol gives an unambiguous grammar and to ease the work of creating examples.

Results

A mechanism for dynamic updates is presented that works with classes as the unit of replacement.
A procedure for converting existing objects to the new version is presented that works by following
the inheritance hierarchy of an object’s class and executing state conversion routines for each
updated class in the inheritance hierarchy. A flexible approach to controlling updates is used which
categorises the methods of the updated class in three different categories. Parameter conversion
is provided to allow old code to make calls on updated objects. The mechanism presented is a
low-overhead solution, lazily transferring state from one version to the next. This can be done
through several versions, so it’s not necessary to wait for one update to complete before applying
another update. Finally, necessary conditions for a correct update in our system are discussed.

Thesis Outline

Chapter 1 presents a survey of previous work in the field [2, 12, 13, 22] and introduces the main
concepts used in update systems. Two early update systems, Argus [3] and DYMOS [19] are
presented in some detail to illustrate different approaches that can be used when designing an update
system. Chapter 2 introduces the Creol programming language and its model for concurrent objects.
Chapter 3 presents the Creol interpreter, starting with a quick review of rewriting logic which has
been used to specify both the interpreter and the update system. The two next chapters present
the main subject of this thesis, the Creol update system, and discusses the choices made during
its implementation. Chapter 4 deals mainly with state transfer and Chapter 5 with mechanisms
for controlling how and when updates are applied. Finally, in Chapter 6, we discuss necessary
conditions for the correctness of updates.

x



Chapter 1

Update Systems

Even from the beginning of research into programming languages and operating systems there has
been interest in how to update different components of a running system [10]. We are so used to
be able to update programs with new versions as they come out that we don’t even recognise this
as module replacement in a running (operating) system. However, replacements of this granularity
are not that interesting, since they normally require the program to be stopped before the new
version can be started. What we are interested in are techniques that offer a finer granularity
for replacements so that parts of running programs can be updated. Other key features of update
systems are which kinds of updates can be performed while preserving program correctness and how
program state is transferred from the old to the new version when an update occurs. We will also
discuss how these issues relate to distributed and object oriented systems. We will then describe
two influential systems, Argus [3] and DYMOS [19], developed in the beginning of the 80s which
have fundamentally different designs. These systems provide a good background for understanding
the design decisions of more recent systems.

1.1 Basic Concepts of Update Systems

We will begin by reviewing some of the basic concepts used in texts on update systems. Some
important concepts are Granularity, State Transfer and Quiescence and we will discuss each in
turn. We will then look at three different approaches to when an update can take place.

1.1.1 Granularity of Updates

If we choose the whole program as the unit of replacement then the entire program must be stopped
in order to perform an update. In general we cannot have an active thread of execution inside the
unit we are replacing, since we cannot in all cases construct a function which takes the execution
state 1 in one version and maps it to an execution state in the updated version. Because of this, we

1By execution state we mean for example program counter and register contents in a register machine abstraction.
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would typically like to replace as small a unit as possible. However if we allow updates to happen
at a very low level it is likely to incur significant performance penalties to running programs, and
it will also be very hard to reason about the correctness of updates.

In order to facilitate reasoning about the correctness of updates, research into program updating
has concentrated on replacing units that have a clearly defined interface (e.g. the calling convention
used for procedure calls), not individual statements or machine instructions. In procedural systems
it is quite common to choose procedures as the smallest unit of replacement, while in object oriented
systems it makes sense to choose either unique objects or, more commonly, classes as the smallest
unit of replacement. However, in most cases an update will comprise more than one such smallest
unit. Since a group of updates might carry mutual dependencies, we need some way to describe
the process of updating so that dependencies are resolved in a correct way, or we must choose a
bigger unit of replacement so that we don’t get dependencies we cannot resolve. Because of this
problem it is also common to choose entire modules as the smallest unit of replacement.

1.1.2 State Transfer

All systems for updating running programs share the need for state transfer. This is the process of
translating the data that goes with one version of the program into data suitable for the new version.
If it is impossible to change the data representation of the program when updating, the system is
so severely limited that it will most likely be of little practical value. Consequently, a replacement
needs to contain not only the updated program code, but also extra code to do state transfer. To
ensure that the state transfer can be done, the replacement must be carried out when the data is
in a consistent state, so the timing of the update also becomes an issue. In formal systems it is
convenient to specify invariants which hold at certain points of program execution. These points
then become candidates for stopping the program, replacing the code with the updated version and
carrying out state transfer.

Aside from the difficulties of timing state transfer, it can also be difficult to describe the state
transfer functions in a convenient way. In most systems, the implementation language for the
application is also used for state transfer, but since the state transfer function needs to be able
to refer to different versions, this can cause difficulties when adding updating capabilities to an
already existing language. For example if you want to add update capabilities to a language like
Java [22] it is not possible to write a function that takes an object of the old version of a class as an
argument and returns an object of the new version of the class, since there is no way to talk about
versions and the two classes might have different class members. A way of solving this problem is
to provide a version independent description of the object (in Java by using the java.io.Serializable
interface), but this can involve a lot of extra work for the programmer. In formal systems it can
also be difficult to prove the correctness of an update if the state transfer function can contain
arbitrary code. However, a separate language to describe state transfer is not convenient either,
and adds to the complexity of the system.
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Figure 1.1: Three approaches to update timing

1.1.3 Quiescence

In transaction based systems, a part of the system is said to be quiescent if there are no ongoing
transactions that involve that part. If a part is quiescent, that part can be replaced without
disrupting the system as a whole as long as the replacement has the same semantics with respect
to the rest of the system as the old part. The notion of quiescence can be extended to mean that a
part of the system does not have an active thread of execution. In order to replace a unit which is
not quiescent you would have to have a state transfer function for all possible points in a program.
To generate this kind of state transfer function from one version to the next is impossible in general
as it requires information about the semantics of the program which is unavailable to the system.
However, some systems provide a way of specifying transfer of the execution state, for example by
labelling points in the code where upgrades can take place and inserting matching labels in the
updated code to provide a mapping which makes it possible to translate execution state between
these points. This is an interesting approach, but requires the implementor of the old version to
have anticipated where upgrades will happen.

1.1.4 Timing of Updates

In object oriented systems, if the unit of replacement is chosen to be classes, there is an additional
decision to be made as to when we update the instances of the class which has been replaced. We
can choose between three main approaches to updating the objects (Figure 1.1). The first approach
is to put up a barrier, blocking creation of new instances of the replaced class until all instances of
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the old version of the class have expired. This approach has the advantage that state transfer is
not necessary, but there is no guarantee of when (or even if) an update will be carried out. The
second approach is to do explicit state transfer of old objects at the time of the replacement. This
is similar to the barrier approach in that you never get two objects that are instances of different
versions of the same class. However, creating state transfer functions has its own problems as
discussed earlier. The last approach is to allow instances of different versions of a class to coexist.
This is the approach taken by Hjálmtýsson and Gray [13], and is perhaps the easiest to implement.
They extend this approach slightly by providing objects with a way of discovering whether they
are instances of the latest version of the class, making it possible to explicitly migrate objects to
the new version.

1.1.5 Updates in Distributed Systems

In a distributed system, it is usually not convenient or even possible to shut down the entire system
to perform an update. Therefore, research into updating running systems is of great interest to
those who work with distributed systems. There are however some additional challenges to updating
distributed systems compared to traditional systems. Since it can be hard or impossible to control
that all nodes get the update at the same time, provisions have to be made for different versions to
communicate with each other during a transition period without affecting program correctness. It
can also be hard to ensure quiescence of the node that you want to update with respect to the rest
of the system. In transaction based systems such as Argus, there is usually a built in capability
for error recovery, so quiescence can be ensured by cancelling all ongoing transactions before an
update is carried out. However, error recovery can in general not be completely automated so a lot
of work is left to the programmer. Although fault tolerance is an important subject in distributed
systems, it’s not necessarily a good idea to rely on the error handling mechanisms of a system to
facilitate performing updates.

1.1.6 Updates in Object Oriented Systems

The main problems facing work on updates in object oriented systems are state transfer and inher-
itance. The state transfer problem is harder for object oriented systems because of the relationship
between classes and the objects that are instances of a class. Updating a class means you have to
locate instances of this class, a capability which always comes at some cost. It’s also much harder
to keep track of active threads of execution, since there can be different threads executing in dif-
ferent instances of the class. The common way of building larger systems by reusing code through
inheritance also creates additional challenges, because not only instances of the class which has
been updated needs to be located and processed, but also instances of any subclass which reuses
the code that has been replaced. Formalising the relationships between classes so that correctness
criteria for updates can be established has also proven to be hard, and even the most recent works
on formalising updates [27] have ignored object oriented systems.
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1.2 The Argus Distributed Programming System

Argus is a system for distributed programming, and was one of the first such systems to get support
for dynamic replacement [3]. Argus is based on the CLU language [20], and adds distributed
computing to this language through modules called guardians. A guardian provides some service or
encapsulates some resource. Guardians communicate solely through message passing and preform
actions in response to messages. Though many guardians can exist on a node in the system, a
single guardian only exists on one particular node of the system, hence guardians can be thought
of as logical nodes in the system. Internally a guardian may consist of any number of processes
and objects, but to the outside it looks like a single object.

1.2.1 State and Actions

The state of a guardian is the set of objects internal to the guardian. It can be divided into stable and
volatile objects. The stable objects are kept consistent and guaranteed to survive crashes through
a database–like system that ensures that changes to these objects are committed to stable storage
when actions complete. Should a crash occur, all stable objects are loaded from the last committed
version and a special recovery function is called to reinitialise the volatile objects. Atomicity is
guaranteed for all actions, including nested actions. When a sub-action commits, the parent action
can see the results of this action, but unrelated actions will be unable to see the changes until the
top level action finally commits. Argus also provides means of error recovery so that an action
can still complete even if a sub-action aborts. This sophisticated system for error recovery is taken
advantage of in the implementation of updates in Argus.

1.2.2 The Unit of Replacement

The minimum unit of replacement in the Argus update system was determined to be guardians.
This is a natural choice because guardians have a small, well-defined interface to the rest of the
system. Furthermore, guardians have a stable state that can be used to resume execution after
a crash. The same stable state can also be used to resume execution after an update, and it is
also easy to know exactly which state that is subject to state transfer. Replacing smaller units
than guardians was deemed to be impractical because it would be too difficult to ensure that any
changes in the permanent state would not affect other parts of the guardian. However, bigger
units of replacement are considered important because the ability to replace individual guardians
will always be restricted by the implementation details of the subsystem it belongs to, along with
preserving the interface. When some of the interface is only used by a certain subsystem it should
be possible to change that part of the interface as long as the entire subsystem is updated at the
same time. This increases the complexity of making replacements, because subsystems might span
several nodes and also have a hierarchical structure that single guardians do not. A major part of
the work on replacements in Argus has gone into how subsystems are described and determining
the implicit interface of the subsystem so that it is possible to change the interfaces used by the
guardians that make up the subsystem as long as the (implicit) interface to the subsystem as a
whole is unchanged.
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1.3 The DYMOS Dynamic Modification System

DYMOS [19] is a system for dynamic modification of running programs based on the StarMod
programming language [6]. In DYMOS the programmer modifies and recompiles the source code
of procedures and modules that are to be replaced. The programmer then requests the system to
change the current core image to incorporate new code and data. All this is done using a command
language, so the programmer will first issue an edit command, then a compile command and
finally an update command.

1.3.1 The Unit of Replacement

Since DYMOS is based on a procedural language, the natural unit of replacement is procedures.
Procedures can be added, modified (including modifications to parameter lists) or deleted. If a
procedure is deleted or its parameter list modified, then additional changes to any procedures that
call the changed procedure will be required. The update command will return an error if it is issued
before all such required changes have been made. It is also possible to supply a parameter convert
routine that will automatically convert calls of an old procedure to calls of the new procedure.
DYMOS is one of the few systems where it is possible to replace procedures which are running.
This is accomplished through labelled statements in the code which provide points where an update
can take place. Code to convert local variables at a labelled statement can be provided along with
the new version, and there is a way to qualify names of variables so that it is possible for the
new local variables to have the same name as the old ones. Modules and even types can also be
replaced, and can also have conversion code to allow state transfer to take place when they are
updated. These features make DYMOS the most flexible of the update systems surveyed.

1.3.2 Timing of Replacements

The update command in the DYMOS system can have an optional when-idle clause that specifies
that the replacement is not done until the specified modules and procedures do not have any active
code. It is also possible to specify the order in which changes are introduced when the compilation
is done by using the compile X after Y command. This makes it easy to state the requirements
for a correct update, but unfortunately it is hard to formally prove that a certain update will ever
take place. Therefore, a time bound can also be specified for the update command, after which it
will return an error if the conditions in the when-idle clause have not been met. The system can
automatically break down bigger updates into component updates that can be carried out one at a
time by looking at the dependencies between different procedures that are available as a result of
compilation. This helps to reduce the time it takes for an update to complete since the when-idle
part of the update can be broken down into separate requirements for each part of the update.
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1.4 Formalising Updates

The work by Bloom on Argus was one of the first to present a formal model for updates. He also
showed the need for formalising updates by presenting several examples which show the subtle
problems that can occur when you make replacements. One of the most interesting ones being that
of unique ID generators. In this case you can have two implementations of a specification that both
satisfy the requirements of the specification, but are not replacement compatible. Although both
generators will generate unique IDs, replacing one with the other can result in the same ID being
generated again. It is also demonstrated that reasoning about a single replacement is not enough,
because the set of correct states can be changed by earlier replacements. These subtle issues are
important to keep in mind for anyone designing a mechanism for replacement in any language or
system.

1.4.1 Reasoning with History and Futures

The Argus model for formalising updates reasons about abstractions of each component of the
system. Each abstraction has a set of events that can occur at the abstraction’s interface, a set of
abstract states and a mapping from the set of states to sequences of future events that can occur
starting from that state. Intuitively an abstract state is the history of past events, and futures
describe allowable sequences of events that can follow that history. This model is based on earlier
work by Stark [26] and bears a striking resemblance to the model used in the OUN notation [25]
which is a precursor for CREOL. We can then define the concrete state of an implementation as
a mapping to a set of abstract states (since several histories can lead to the same concrete state).
The concrete futures is then a mapping from the concrete state to event sequences that can follow
from that state.

We define how an implementation can satisfy the abstraction by requiring that the concrete futures
from each concrete state are a subset of the futures of each abstract state that the concrete state
maps to. The condition for correct replacement in this model is that the new instance generates
only futures that would be permitted by the replaced abstraction as continuations from the state
where the replacement occurred. This model does well in reasoning about distributed systems, but
requires that the units to be replaced have a formal specification. Although Bloom’s model is not
really object oriented, the similarities with the OUN notation suggest that it should be relatively
straightforward to extend this kind of formalism to object oriented systems.

1.4.2 A Low Level Model for Updates

The work by Gupta et al. [12] takes another direction by trying to go to the lowest level representa-
tion of a program. They model the system as a program Π and a set of states, each state consisting
of a variable assignment and an index into Π (the program counter). An update is then a function
from Π and a state s to a new program Π′ and a new state s′. They argue that such an update is
valid if the state s′ is reachable from the initial state of Π′. They then build on this simple model
to define validity of replacement of procedures. Some suggestions are made as to how this model
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can be extended to object oriented and distributed systems, but the problem is that the model only
defines validity in context of an entire system, so validity of an update can not be established for
components without looking at the whole because there are no contracts between the components.

1.4.3 An Algebraic Approach

One can argue that it is impractical to reason about the correctness of updates in a programming
language when the semantics of the programming language are not properly formalised. Because
of this, Bierman, Hicks et al. [2] have developed an update calculus based on the first-order simply-
typed lambda calculus with mutually recursive modules and a primitive for updating. Working in
such an environment it is much easier to formalise correctness criteria for updates, but unfortunately
it is not trivial to extend this language to include other language constructs such as abstract data
types, higher order functions, objects or concurrency.

1.5 Summary

When designing a system for dynamic updates, several design decisions must be taken. First of
all the unit of replacement must be decided. Then the issue of state transfer has to be dealt
with. A way of dealing with code that has active threads of execution must be decided upon and
a variety of trade-offs have to be made in the implementation of each of these decisions. Finally
the safety of updates within the system must be evaluated, and preferably a formal method for
proving correctness should be presented. Although a lot of work has been done in the area of
dynamic updates, there are several unresolved problems. One of the major shortcomings so far is
the failure to formalise updates as applied to distributed and object oriented systems. Furthermore,
no system so far has managed to combine flexibility with low overhead, ease of use and safety in
such a way that a standard approach has emerged. In the present day, distributed systems are
becoming more and more important, and dynamic updates are also becoming more important as a
result. In conclusion, the challenges facing anyone working on dynamic updates are great, but so
are the rewards of arriving at a successful design.

8



Chapter 2

The Creol Programming Language

The CREOL project is a research project to investigate programming constructs and reasoning
control in the context of open distributed systems, and in particular the issue of maintenance
control, taking an object oriented approach [7]. A part of this project is the development of
the Creol programming language which is used to implement specifications given in OUN (Oslo
University Notation). The Creol programming language has a formally defined semantics, given
in rewriting logic. The full Creol syntax is presented in ISO-EBNF notation in Appendix A. We
will in this chapter present the most important parts of the Creol syntax together with an example
program.

2.1 The Creol Language

Creol is an experimental high-level object oriented language for distributed concurrent objects.
The name is an acronym for Concurrent REflective Object-oriented Language. The language is
based on concurrent objects communicating by means of asynchronous method calls, and both
active and reactive behaviour of objects is supported. The basic communication mechanisms and
operational semantics of the language are described in [14]. The inclusion of multiple inheritance
in the language and the operational semantics are described in [15].

2.1.1 Creol Built-in Data Types and Operators

Creol is a strictly typed language, and all variables have to be declared before use. The built-in data
types are bool (boolean), int (integer), string and reference. References are typed by an interface
which the referenced object implements. If methods from different interfaces are to be invoked on a
single object, multiple references must be held to the object. Normal arithmetic (+, -, *, /), logical
(and, or, not) and comparison (<, >, <=, >=, ==, /=) operators work as expected. The + operator
is overloaded to mean concatenation for string types. The := operator is the assignment operator
with the usual semantics.
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2.1.2 Statements

There are six types of Creol statements: Assignment statements, if-then-else statements, do-while
statements, object creation statements, await statements and method call statements. Object
creation is considered a statement since objects cannot safely be created in an initialiser expression,
but otherwise looks like an assignment statement that uses an operator ’new’ to create an object of
a specified class. Await statements are used to synchronise execution as will be explained shortly.
Method calls in Creol are categorised as either internal or external and either synchronous or
asynchronous. Asynchronous method calls that return something are labelled and the label is used
in conjunction with an await statement to fetch the result of the call. There is a strong preference
for using tail-recursive calls instead of do-while statements for long running loops because, as we
will see later (Section 6.3.3) it is easier to update code that is written this way.

There are three operators that work on statements, in order of increasing precedence we have:
The sequential composition operator ; which means ’first execute the left statement and then
the right statement’, the nondeterministic choice operator [] which means ’execute either left
statement or right statement’ and the nondeterministic merge operator || which means ’execute
both left statement and right statement in any order’. Thus we have the equivalence P||P ′ =
(P;P ′)[](P ′;P ).

2.1.3 Processes and Processor Release Points

Creol objects are concurrent, that means each object has its own (virtual) processor which evaluate
local processes. Processes may be active, started at creation time by the run method, or reactive,
initiated by method calls from other objects. This is just a conceptual aid, as the language does
not differentiate between active and reactive processes. Processes are instances of methods, and
each process has its own valuation of the originating method’s local variables and parameters.

Only one process can be executed in an object at any given time, and the active process continues to
execute until a processor release point is reached. Processor release points are explicitly introduced
with await statements which wait for guards. Guards come in three flavours: Boolean guards
which wait until a boolean expression becomes true, wait guards which always release the processor
and method return guards which wait for an asynchronous method call to return. Guards can
be composed with the & operator. Synchronous method calls implicitly create a processor release
points, since they are equivalent to making an asynchronous call with an immediately following
method return guard.

2.1.4 Interfaces

Creol objects are only allowed to communicate with each other through interfaces. Interfaces can
be parametrised on types, and multiple inheritance can be used to compose interfaces. Within a
method implementation, the caller keyword can be used to obtain a reference to the calling object
which is of the type given in the with clause.
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2.1.5 Classes and Objects

Classes are collections of methods which implement a set of interfaces, in addition to this a class
declares which attributes an object of that class has. Multiple inheritance can be used to combine
classes, and if we have a shared base class, its attributes and methods are only included once1. The
class inheritance is completely separate from the interfaces, and since all communication between
objects have to use interfaces, this gives a lot of freedom in how the classes are created. Each class
has a special ’run’ method which takes no arguments and is started when the object is created.
When a Creol program is compiled, a class is designated as the main class and an object of this
class is created at program start.

Objects are instantiated from classes, and contain a valuation of the class variables and a process
queue. When the object is created, one process is initially created for the ’run’ method of the class
of the object. Other processes are added to the process queue as a result of receiving method calls.
A process contains a valuation of the method variables and a list of statements to be executed.
After each statement is executed it is removed from the statement list in the process, so the next
statement can be executed. When a processor release point is reached either as a result of an await
statement or because a process has finished, another process is selected from the process queue and
made active.

2.1.6 Inheritance and Method Binding

By default Creol methods have virtual binding, while attributes are statically bound as they are not
available through interfaces but only to methods in the class they are defined in and its subclasses.
That means attributes with the same name overrides attributes in parent classes, but sometimes
we want to refer to these attributes. The same goes for methods, sometimes we want to call the
method of a specific class, for example it is common when overriding a method to call the original
method in addition to doing some extra processing. For these reasons Creol names of methods or
attributes can be qualified with a class name to refer to the method or attribute defined in that
specific class. The syntax for a qualifying attributes is identifier@class to refer to the identifier
in the context of the specified class. This syntax is also extended for state transfer to be able to
refer specifically to the old versions of attributes as discussed in the next chapter.

2.2 The Dining Philosophers

One of the first example programs developed in the Creol system [16] was an implementation of
the Dining Philosophers problem due to Dijkstra [8]. At the time, Creol did not include imple-
mentation inheritance so the implementation used two separate classes, Philosopher and Butler.
In a later paper, Creol was extended to include implementation inheritance [15], and a new Dining
Philosophers example was developed where Butler is a subclass of the Philosopher. We will use the

1In contrast to C++ which defaults to including the shared base class once per subclass in the inheritance graph,
unless you specify so-called virtual inheritance for every subclass.

11



interface Phil interface Butler
begin begin

with Phil with Phil
op borrowStick op getNeighbour(out n:Phil)
op returnStick end

end

Figure 2.1: Dining Philosophers interfaces

first version of this example to show the basic constructs in Creol, and later in Chapter 5 to show
how it can be dynamically updated to the second version of the example.

The interfaces for the dining philosophers example are given in Figure 2.1. We see that the Phil
interface defines two operations, borrowStick and returnStick. The with Phil part of the interface
declaration means that these operations can only be used by an object which itself implements the
Phil interface.

The code for the dining philosophers is given in Figure 2.2.
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class Philosopher(butler: Butler)
implements Phil

begin
var

hungry: bool := false,
history: string := "",
chopstick: bool := true,
neighbour: Phil

op think == await not hungry;
{thinking...}history:=history+"t";
await wait;!think

op digest == await not hungry;hungry:=true;
history:=history+"d";
await wait;!digest

op eat == var l : label
await hungry; l!neighbour.borrowStick;
await chopstick&l?();{eating...}history:=history+"e";
hungry:=false; !neighbour.returnStick;
await wait;!eat

op run == butler.getNeighbour(;neighbour);
!think || !eat || !digest

with Phil
op borrowStick == await chopstick; chopstick:=false
op returnStick == chopstick:=true

end

class Butler
implements Butler

begin
var p1:Phil, p2:Phil, p3:Phil, p4:Phil, p5:Phil

op run ==
p1 := new Philosopher(this);
p2 := new Philosopher(this);
p3 := new Philosopher(this);
p4 := new Philosopher(this);
p5 := new Philosopher(this);

with Phil
op getNeighbour(out n:Phil) ==

if caller = p1 then n:=p2
else if caller = p2 then n:=p3
else if caller = p3 then n:=p4
else if caller = p4 then n:=p5
else n:=p1 fi fi fi fi

end

Figure 2.2: Dining Philosopher classes
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Chapter 3

The Creol Interpreter

We will in this chapter give a quick overview of rewriting logic, followed by a guide to the Creol
interpreter specification. This specification uses an intermediate representation called CMC (Creol
(virtual) Machine Code), and a simple translation is given that rewrites a Creol program to CMC.
As part of the work on this thesis, a simple compiler was implemented using the bison and flex tools
to automate the process of translating Creol to CMC. This work also led to some minor revisions
of the Creol syntax to make the grammar belong to the LALR(1) class of context free grammars.

3.1 Rewriting Logic

To specify the semantics of our system we use rewriting logic [23] in the syntax of the Maude system
[5]. The reason for using rewriting logic is that it is a system with well defined semantics, and it
allows us to describe the rules of our programming language on a very high level while still being
able to simulate execution of these rules so we can check our specification.

3.1.1 Operations and Terms

First of all we need to define the types we are working with, which are usually referred to as sorts
in texts on rewriting logic. Given a set S of sorts which we have declared (e.g. things like Integer,
Boolean, List ...), we can declare operations which have sort S∗ × S, meaning an operation with n
arguments of sorts S0, S1...Sn and a value sort S which is the sort of the result. As a special case
we have constants which are operations with no arguments. We declare operations in Maude using
the op keyword as follows (Nat is the sort of the natural numbers including 0):

op zero : -> Nat [ctor] .
op successor : Nat -> Nat [ctor] .
op sum : Nat Nat -> Nat [assoc comm id: zero] .
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note the ctor attribute which indicates to the Maude system that this operation is used to construct
the ground terms of the system, we will get back to this in a moment. Other attributes that
Maude understands is assoc to indicate that the operation is associative, and comm to indicate it
is commutative. The id: attribute indicates a constant which acts as the identity element of the
operation. These attributes are not strictly necessary, but makes it easier to write specifications
because we don’t have to use parentheses everywhere if we declare operations to be associative,
and it helps Maude to execute the rules of the specification in an efficient way.

With these operations we can construct terms which denote the data our rules will operate on.
Since all operations are strongly typed, each term will also have a unique type which can be
used to classify it. Terms are built from the operations we have just defined and from a set of
variables X with sorts in the following way: Every constant and every variable is a term, and every
operation applied to a list of terms with sorts matching the sorts of the arguments for that operation
produces a new term which has sort equal to the value sort of the operation we used to build the
term. For example successor(zero) is a term, and if we declare a variable var N : Nat. then
sum(successor(zero), N) is a term. We call terms which have no variables in them ground terms.

3.1.2 Equations and Reduction

Once we have defined the terms, we can start to make computations with these terms by giving
equations. Computation proceeds by matching the left hand side of an equation to a term, and then
replacing that term with the right hand side of the equation. This procedure is called a reduction
step, and it’s required that repeated application of our equations always result in a normal form,
that is a term which cannot be reduced further. It’s implicit in this that a computation using
our system of equations always terminates, since a non-terminating sequence of reduction steps
would mean that some term does not have normal form. In addition to this, it’s required that our
equations are confluent. Confluence means that, given some starting term, no matter which order
we apply the reductions in, we end up with the same normal form. More specifically the matching
process yields a substitution of variables to ground terms which we will write in the following way:
σ = {X0 7→ t, X1 7→ t′...}. A reduction step then consists of replacing the term matching the left
hand side of an equation with the term obtained by applying the matching substitution to the right
hand side of the equation. An example of equations defining the semantics of summation on the
natural numbers is as follows:

eq sum(zero, N) = N .
eq sum(successor(N), N’) = successor(sum(N, N’)) .

In the Maude system we also have conditional equations on the form ceq t = t’ if condition .
where the condition can be either another equation or a membership test which tests if a term is
of a given sort. We will not define formally exactly how this works, as it’s only used in a very basic
and intuitive way in this thesis.
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3.1.3 Rules and Rewriting

The equations are part of the functional sub-language of the more general rewriting logic. The
main difference between a rewriting rule t → t′ and an equation t = t′ is that the rewriting rules
do not have to be terminating or confluent. Conceptually the difference is that the equations
specify reductions of a term to an equivalent (but simpler) term, while a rewriting rule specifies
the evolution of the system from one state to another. As such, the term that results from a
rewriting step does not have to be equivalent to the term that was rewritten. Given a set of
rewriting rules rl t => t’ . (or crl t => t’ if condition . for conditional rewriting rules),
the Maude system’s command rew [n] t works by reducing t to normal form, then applying some
(selected in a pseudo-random fashion) matching rewriting rule, reducing the result to normal form
by applying the equations, selecting another matching rewriting rule and so on until no rewriting
rule matches or the maximum number of rewrite steps (that is, the bracketed n in the command)
have been reached. The rewrite rules are applied to subterms which match the left hand side of
the rewrite rule in a non-deterministic way (different execution strategies can be specified using
meta-level programming in Maude, we are assuming a non-deterministic strategy while the built-in
’fair’ rewrite strategy in Maude is deterministic and not very fair).

3.2 The Interpreter

Because rewriting logic is a system with formal semantics, the Creol interpreter provides a formal
operational semantics for execution of Creol programs. We will here review the internal represen-
tation of classes, methods, objects and processes as terms in the rewrite theory, and the semantics
of method calls. The Maude specification of the interpreter can be found in Appendix B.

3.2.1 Representation of Classes, Methods, Objects and Processes

Creol objects are represented in rewriting logic as terms on the form 3.1, where O and C are the
unique object identifier and the class identifier respectively, PR is the active process, W is a set of
waiting processes, A is a set of object attributes and N is a counter used to produce unique labels
for asynchronous method calls.

< O : Ob|Cl : C,Pr : PR,PrQ : W,Att : A,Lcnt : N > (3.1)

Creol processes are 4-tuples on the form 3.2 where M is the method identifier of the originating
method, B is a boolean which indicates if the process is newly bound meaning that no statements
have been executed yet, P is a program in the form of a sequence of statements joined by composi-
tion, non-deterministic choice or non-deterministic merge operators, and L is a set of local variables
for this process.

process(M,B,P, L) (3.2)

The representation of Creol classes are on the form 3.3, they are terms consisting of a unique class
identifier C, a list of superclasses S, a list of class attributes (with optional initialisers) IA, a set
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of methods MMTD and a counter F used to create unique object identifiers when objects of this
class are created with a new statement.

< C : Cl|Inh : S, Att : IA, Mtds : MMTD, Ocnt : F > (3.3)

Creol methods are represented as terms on the form 3.4, consisting of a method name R, a set L
of local attributes with optional initialisers and a sequence P of statements.

< R : Mtdname|Latt : L,Code : P > (3.4)

A configuration is a set of classes, objects, messages and call queues which together gives the entire
state of the running program. This is represented as a single term in rewriting logic.

3.2.2 Semantics of Method Calls

We will now briefly look at the semantics of method calls in the interpreter and we will only consider
the asynchronous external call, as the synchronous case can be seen as an asynchronous call which
immediately after the call waits for the return and internal calls can be seen as external calls on
the current object. Because of these equivalences we only have to consider the most general form
of method calls which is the external asynchronous call. The first thing that happens is that the
return label is assigned the current method call counter and this number is added to the set of
completion messages to keep. This step is only taken if there is a label, so if we are not interested
in the reply then we know that we can safely discard the call completion message.

eq < O : Ob | Cl: C, Pr: process(M, B, (Q ! M’(I)); P, L),
PrQ: W, Att: A, Lcnt: N >

< O : Qu | Ev: MM, Keep: H >
= < O : Ob | Cl: C, Pr: process(M, B, (Q := int(N)); (! M’ (I)); P, L),

PrQ: W, Att: A, Lcnt: N >
< O : Qu | Ev: MM, Keep: H ; [N] > .

The next thing that happens is that a method invocation message is sent to the object we want
to call the method on. Here OE is an expression which is evaluated in the context of the class
attributes A and the local variables L to find the object identifier of the receiver. The next part of
the invocation message is the method identifier, and finally we have the list of parameters. This list
always starts with the object identifier of the caller and the unique call number (which is increased
once the invocation message has been emitted). After this follows the list of explicit parameters
which are evaluated in the context of the class attributes and the local variables.
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rl [remote-async-reply] :
< O : Ob | Cl: C, Pr: process(M, B, ( ! OE . Q(I)); P, L),

PrQ: W, Att: A, Lcnt: N >
=>

< O : Ob | Cl: C, Pr: process(M, B, P, L), PrQ: W, Att: A, Lcnt: N + 1 >
invoc(eval(OE, (A, L)), Q, (O int(N) evalList(I, (A, L)))) .

The invocation message then floats around in the configuration until it reaches the message queue
of the receiver. A simple transport rule moves it into the queue.

rl [invoc-msg] :
< O : Qu | Ev: MM, Keep: H > invoc(O, M, DL)

=>
< O : Qu | Ev: MM invoc(O, M, DL), Keep: H > .

The next thing that happens is the virtual binding. To accomplish this a bindMtd message is
emitted. This message is not meant to correspond to a real message sent over a network, but merely
provides an easy way to match the call up with the classes that are floating in the configuration. The
first three parameters in the bindMtd message are pretty self explanatory, but the last parameter
is a list of classes to search for the method. Initially this is just the most specific class of the object.

rl [receive-call-req] :
< O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N’ >
< O : Qu | Ev: MM invoc(O, Q, DL), Keep: H >

=>
< O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N’ >
< O : Qu | Ev: MM, Keep: H >
bindMtd(O, Q, DL, C[nil]) .

The actual binding is performed by searching the classes in the list in a left first, depth first order.
Each time the class at the front of the list does not contain the method sought after, its subclasses
are prepended to the list of classes which will be searched. It’s easy to change the semantics of
virtual binding at this point to use a breadth first search or another strategy if desired. The result
is a boundMtd message which contains the new process resulting from binding the method.

eq bindMtd(O, Q, I, ((C)[DL]) S’)
< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >

= if Q in MMTD then
boundMtd(O, newProcess(Q @ C, get(Q, MMTD), I))

else
bindMtd(O, Q, I, S S’)

fi
< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F > .
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Finally the bound method is included in the process queue of the receiving object. Originally this
was a rewrite rule so it did not have to happen immediately, but to simplify making updates it’s now
an equation which ensures that bound method messages are always transient in the configuration.

eq boundMtd(O, process(M, B, P, L))
< O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >

= < O : Ob | Cl: C, Pr: PR,
PrQ: process(M, B, clear(P), L) : W, Att: A, Lcnt: N > .

3.2.3 Activating Processes from the Process Queue

Several rules and equations in the interpreter specification deal with moving processes in and out
of the process queue. These are of particular importance to our update system, as the points where
these rules apply are exactly the points where we will consider it safe to make an update. Thus we
want to control the usage of these rules, so an object which is a candidate for being updated does
not use these rules, but rather the rules given in the update model. To accomplish this a subsort
of object identifiers which correspond to up-to-date objects has been defined, and these rules have
been modified to only apply to up-to-date objects.

First of all we have an equation and a rule that implement a mechanism to prioritise internal
synchronous calls. Instead of just suspending the calling process and letting the system continue
choosing processes to execute non-deterministically, the calling process is swapped with the called
process and a special continue statement is added to the called process’ program. This is done
with an equation to make sure it happens before the normal rewriting rules for method calls can be
applied. The continue statement will ensure that when the called process finishes, it is the calling
process that will be loaded into the active process by the continue rule.

eq < UTD : Ob | Cl: C, Pr: process(M, B, (N ? (J)); P, L),
PrQ: process(M’, true, P’,

((’caller : UTD), (’label : int(N)), L’)) : W,
Att: A, Lcnt: N’ >

= < UTD : Ob | Cl: C, Pr: process(M’, false, P’ ; continue(N),
((’caller : UTD), (’label : int(N)), L’)),

PrQ: process(M, B, await N ? ; (N ? (J)); P, L) : W,
Att: A, Lcnt: N’ > .

rl [continue] :
< UTD : Ob | Cl: C, Pr: process(M, B, continue(N), L),

PrQ: process(M’, B’, ((N ?(J)); P), L’) : W, Att: A, Lcnt: N’ >
=>

< UTD : Ob | Cl: C, Pr: process(M’, false, ((N ?(J)); P), L’),
PrQ: W, Att: A, Lcnt: N’ > .
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Second we have the conditional rule that suspends processes which are waiting on a guard. It uses
a helper function enabled that checks the guards for the code. Note that we want processes to
be suspended as usual in outdated objects, so there is no requirement that the object identifier is
up-to-date with this rule.

crl [suspend] :
< O : Ob | Cl: C, Pr: process(M, B, P, L), PrQ: W, Att: A, Lcnt: N >
< O : Qu | Ev: MM, Keep: H >

=>
< O : Ob | Cl: C, Pr: none,

PrQ: W : process(M, B, clear(P), L), Att: A, Lcnt: N >
< O : Qu | Ev: MM, Keep: H >

if not enabled(P, (L , A), MM) .

Finally we have to rule to load suspended processes when their guard becomes true. This rule also
loads newly bound processes as the enabled function is automatically true for all statements which
are not guards.

crl [PrQ-enabled] :
< UTD : Ob | Cl: C, Pr: none, PrQ: process(M, B, P, L) : W, Att: A, Lcnt: N >
< UTD : Qu | Ev: MM, Keep: H >

=>
< UTD : Ob | Cl: C, Pr: process(M, false, P, L), PrQ: W, Att: A, Lcnt: N >
< UTD : Qu | Ev: MM, Keep: H >

if enabled(P, (A , L), MM).

3.2.4 Summary of Changes Made to the Interpreter

In order to accomodate the update system, some changes had to be made to the interpreter.
However, as a general rule I have tried to avoid making changes to the interpreter and keeping
the changes local to the update module. A short summary of the changes is given here, but the
motivation for these changes is discussed in more detail in the following chapters.

• Explicit process terms have been introduced to make things clearer and to keep track of which
method a process came from and if it’s newly bound or not. Keeping track of which method
the process came from is absolutely essential, but the ”newly bound” flag is a convenience,
as it’s possible to compare the program in the process with the program in the method to
determine if any execution has taken place.

• Up-to-date object identifiers have been introduced as a subsort of object identifier and the
rules which move waiting processes into the active process have been modified to only match
on up to date objects.
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• Moving processes from boundMtd messages into the waiting process queue of an object has
been changed from a rewrite step to an equation. This is allowed because no real communi-
cation takes place to do this step (the bindMtd/boundMtd messages would never move from
one node to another in a real system). Doing this simplifies updating a configuration since
only invoc and comp messages have to be taken into account.

• Several other minor changes have also been made to make the specification more readable,
including changes to variable names and introduction of explicit sorts Aid and AidList for
attribute identifiers.

3.3 Translation from Creol to CMC

As part of the work on this thesis is a very simple lex/yacc1 based compiler has been developed. The
main purpose of developing this compiler was to speed up the process of making example programs
as the manual translation of programs from Creol to the CMC syntax was tedious and error prone.
The grammar also proved useful when new syntactic constructs for updates were introduced, as
it made it possible to check automatically that no ambiguities were introduced. The work on the
compiler has led to some modifications in the Creol grammar, as the precedence of operators had
to be clarified and certain parts of the original syntax made the grammar ambiguous with only
one token lookahead (which is a common requirement for efficient parsing of the code). The full
grammar that the compiler is based on is presented in ISO-EBNF form in Appendix A.

1Actually we use the GNU tools: flex and bison
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Chapter 4

State Transfer

The process of updating a program can naturally be divided into state transfer and control. We
will in this chapter deal with the problem of state transfer before tackling the problem of how to
control the update process in Chapter 5. Before describing the implementation of the state transfer
process, we will look at how we can divide the state of a running program into smaller units to
enable updates of a finer granularity. First of all we will define the notion of scope, and then we
will look at state transfer functions defined on these scopes.

4.1 Scopes

We define a scope to be a valuation of a set of variables associated with a program sequence that can
refer to these variables. The variables are not available outside of the program sequence associated
with the scope. Multiple scopes can be associated with the same program sequence, for example
when we have multiple threads of execution invoking the same procedure or multiple class instances
in an object oriented system. All scopes are disjoint, and the union of all scopes gives the entire
state of a program. There are two kinds of scopes, transient scopes are instantiated when control
enters the associated program sequence and are removed once control exits that sequence. This
corresponds with the notion of a Creol process. Persistent scopes retain their value when control
exits the associated sequence. Objects in object oriented systems are special cases of persistent
scopes, since instance variables retain their value between method invocations on the same object.
In particular Creol objects are persistent scopes.

4.2 State Transfer Functions

Once we have an old scope and a corresponding new scope, we need a function to transfer the state
between the two versions of the program. These functions can be completely general, allowing
them to call other functions, or they can be restricted to simple expressions. There are also issues
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related to how we program these functions: Do we use the same language as the program is written
in, a subset of it or a whole new language? If we use the same language, we probably have to add
some constructs to be able to disambiguate references to variables with the same name in the old
and new version. We also have to consider if we want to make the old variables read-only or the
new variables write-only. These decisions are interrelated, for example if we make old variables
read-only and new variables write-only we do not have to disambiguate old and new versions of
variables because variables on the left hand side of an assignment always have to refer to the new
version and on the right hand always to the old version.

4.3 The Unit of Replacement in Creol

Although it is possible to make program replacements on a lower level than scopes, it’s very hard
to do any kind of reasoning about the correctness of such updates. The unit of replacement chosen
for Creol is a class, although it is trivial to replace only one of the methods in a class, we package
an update as an update to the entire class. The reason for choosing this granularity is partly to
simplify the implementation since updating individual methods of a class becomes just a special
case of updating the entire class and partly that the mechanism for finding the objects which need
to have their state converted is class-based.

4.4 Updating Classes

To begin an update in Creol we have a function which takes the current configuration and a
configuration containing the updated classes. The function then produces a new configuration by
merging the classes of the old configuration with the new classes and outdating the old configuration.
The classes function simply separates out the classes from the objects, messages and queues.
We also make some temporary ghost objects which represent the objects that have not yet been
converted. This is necessary to help us locate the actual object when we apply several updates in
succession and there are many configurations, as will be explained later.

op update : Configuration Configuration -> Configuration .
eq update(CONFIG, CONFIG’)
= merge(classes(CONFIG), CONFIG’)

makeGhosts(CONFIG)
outdated(CONFIG) .

Merging the classes means that we supplement the new classes contained in the update with any
unchanged classes from the old configuration. We could have avoided this step by including both
old and new classes in the update, but in a real implementation you probably want to make the
updates as small as possible since they might be sent over a network.
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finish list = "finish", identifier, { ’,’, identifier }
restart list = "restart", identifier, { ’,’, identifier }

parameter convert = "convert", definitions ;

class convert = "convert", "==", [ "var", definitions ], statements,
[ finish list ], [ restart list ] ;

method signature = "op", identifier,
[ ( "(", declarations, ["out", declarations], ")"
| "(", [declarations], "out", declarations, ")" ) ] ;

method definition = method signature, [ parameter convert ], "==",
[ "var", definitions ], statements ;

class declaration = "class", identifier,
[ "[", declarations, "]" ], [ "(", declarations, ")" ],
["implements", identifier, { ’,’, identifier }],
["inherits", inheritance, { ’,’, inheritance } ],
"begin",
[ "var", definitions ],
[ class convert ],
{ method definition },
"end" ;

Figure 4.1: Creol EBNF syntax extended with class conversion
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op merge : Configuration Configuration -> Configuration .
eq merge(none, CONFIG’) = CONFIG’ .
eq merge(< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F > CONFIG, CONFIG’)
= if not (C in CONFIG’) then

< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
else none fi
merge(CONFIG, CONFIG’) .

4.5 Outdating Objects

Outdating the old configuration is simply a matter of wrapping it inside a new term so it does
not interfere with the new configuration. If we compare this with the methods shown in Figure
1.1, the method employed here is a kind of membrane as opposed to a barrier. We keep objects
which are not up-to-date on one side of the membrane until they reach a quiescent state and then
we migrate them to the new configuration. This allows for a lazy implementation of state transfer
where quiescent objects are kept on the outdated side of the membrane until a method is invoked on
them. In our implementation, the non-deterministic nature of the rewriting system means objects
are migrated concurrently with executing code in the new configuration. The process is illustrated
in Figure 4.2.

In Creol, invariants are satisfied at processor release points, so in order to keep any reasoning
control we need to continue executing code in the outdated configuration at least until we reach a
processor release point. To be able to control what happens once we reach such a point, we tag
the objects and their corresponding queues in the outdated configuration. The rules for activating
waiting processes in the interpreter have been modified so they only apply to objects without this
tag. Thus the only rules that can activate processes in tagged objects are the ones in the update
module. Tagging outdated objects is done by the following equation (note that this is not a rewrite
rule so it always happens before any of the rules for activating waiting processes are considered):

subsorts Qid < UTDOid < Oid .
op outdated : Qid -> Oid [ctor] .

eq outdated(< UTD : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
< UTD : Qu | Ev: MM, Keep: H >
CONFIG)

= outdated(< outdated(UTD) : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
< outdated(UTD) : Qu | Ev: MM, Keep: H >
findInheritance(outdated(UTD), (C)[nil], nil, missing)
CONFIG)

findInheritance(outdated(UTD), (C)[nil], nil, nil) .

In this step we also find the complete list of classes (including version numbers) that the object
belongs to, both in the old and new configurations. If these are identical, the object is already
up to date and can be moved directly into the new configuration without waiting for a processor
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First the old configuration is wrapped in a membrane and put together with the updated classes
to form a new configuration

Class�
Butler v1�

Class�
Philosopher�

Class�
Person�

Class�
Butler v2�

Then the classes which are unchanged and objects which do not belong to any changed class are
moved out to the new configuration

Class�
Butler v2�

Class�
Butler v1�

Class�
Person�

Class�
Philosopher�

Class�
Philosopher� Class�

Person�

Finally objects and messages that need conversion migrate through the membrane concurrently
with execution in the new configuration

Class�
Butler v2�

Class�
Butler v1�

Class�
Person�

Class�
Philosopher�

Class�
Philosopher� Class�

Person�

Figure 4.2: Three stages of an update
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release point. These lists are also used to determine which parts of the object’s state have to be
converted and which can simply be copied. We also make a list of methods that should be finished
before conversion takes place, which we will get back to in Chapter 5. This list needs to be built in
the new configuration and then transferred to the outdated configuration where it will be used to
guide execution. This is the role of the missing list constructor which is used in the last equation
to fill in finishlist in the outdated configuration.

op missing : -> AidList [ctor] .
op findInheritance : Oid InhList InhList AidList -> Msg [ctor] .
eq findInheritance(O,(((C)[DL]) S’), S’’, AL)

< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
= findInheritance(O,(S S’), ((C # VN)[DL]) S’’, AL finishlist(MMTD))

< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F > .

eq ((C)[DL]) S ((C)[DL]) S’ = ((C)[DL]) S S’ . *** remove duplicates

eq outdated(findInheritance(outdated(UTD), nil, S, missing)
CONFIG)

findInheritance(outdated(UTD), nil, S’, AL)
= outdated(findInheritance(outdated(UTD), nil, S, AL)

CONFIG)
findInheritance(outdated(UTD), nil, S’, AL) .

4.6 Migrating Objects

We now turn to the workings of the membrane. There are two cases, objects which belong to the
same versions of all classes in both configurations can be transferred immediately. Objects which
belong to one or more classes which have been updated need to have their state transferred. The
first case is very simple and is covered by the following rule:

rl [migrate-object] :
outdated(

< outdated(O) : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
< outdated(O) : Qu | Ev: MM, Keep: H >
findInheritance(outdated(O), nil, S, AL)
CONFIG)

findInheritance(outdated(O), nil, S, AL)
< O : Ghost | Cl: C, Old: false >

=>
< O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
< O : Qu | Ev: MM, Keep: H >
outdated(CONFIG < O : Ghost | Cl: C, Old: true >) .
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Here we see that the ghost of the object changes place with the actual object, and the state of the
ghost changes to indicate that the actual object is in a more recent configuration than the ghost.
This information can be used when objects in different configurations need to communicate with
each other.

The rule for converting objects is more complex as we need to figure out exactly which classes that
the object belongs to that have been updated. The classes that the object belongs to that are
unchanged should have their state copied, but we cannot simply copy all state of the old object
since the inheritance graph may have changed and some state should be discarded. We make use
of a function combine which takes the new and old inheritance lists and creates a list where the old
version number of each class in the new inheritance graph is recorded. In this way the conversion
process can take one class at a time in this list and check if it’s up-to-date, if not its state needs
to be converted otherwise it is copied. Note that this rewriting rule only applies to objects which
have no active process. We also use some simple functions to throw any invocation messages in the
queue back out in the outdated configuration while keeping the completions, this will be discussed
in Section 4.13.

rl [convert-object] :
outdated(

< outdated(O) : Ob | Cl: C, Pr: none, PrQ: W, Att: A, Lcnt: N >
findInheritance(outdated(O), nil, S’, AL’)
< outdated(O) : Qu | Ev: MM, Keep: H >
CONFIG

)
findInheritance(outdated(O), nil, S, AL)
< O : Ghost | Cl: C, Old: false >

=>
convert(O, combine(S, S’), A, W)
< outdated(O) : Ob | Cl: C, Pr: none,

PrQ: paramcopy(W, ’null, none),
Att: (’this : O), Lcnt: N >

< outdated(O) : Qu | Ev: comps(MM), Keep: H >
outdated(CONFIG invocs(MM) < O : Ghost | Cl: C, Old: true >) .

op combine : InhList InhList -> InhList .
eq combine((C # VN)[DL], ((C’ # VN’)[DL’]) S)
= if (C == C’) then (C’ # VN’)[DL’] else combine((C # VN)[DL], S) fi .
eq combine((C # VN)[DL], nil) = (C # VN)[DL] .
eq combine(((C # VN)[DL]) S, S’) = combine((C # VN)[DL], S’) combine(S, S’) .

4.7 Quiescence and Internal Synchronous Calls

The rules for internal synchronous calls load the called procedure directly into the active process
and move the active process into the process queue. Then a continue statement is added at the
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end of the called procedure which will load the process that made the call when the called procedure
has finished. This means that during internal synchronous calls the active process never becomes
empty and thus we cannot start converting the object. The semantics of Creol states that any call
is a potential processor release point (since the called procedure can make asynchronous calls), so
we can safely perform conversion at these points. In the full specification of the update system,
there is a rule almost identical to that given in the previous section which starts conversion if the
active process contains a single continue statement. We’ve also changed the continue rule of the
interpreter to require up-to-date objects, since it loads a process from the process queue. When we
convert objects which have a continue statement in their active process, we simply throw it away
since the other rules for loading processes will eventually load the continuation anyway. In effect,
the continue statement is a hint to the runtime system about priorities of the waiting processes,
so we can safely discard it.

4.8 State Conversion

The convert-object rule in Section 4.6 sets up the conversion procedure which then proceeds in
stages. For each class the object is an instance of, we either copy the attributes of the object that
came from that class if it was not updated, or we load a conversion procedure from the updated
class. Notice that the rule which sets up the conversion moves all old attributes and processes out
of the object. The updated object is built up again in stages, so that at each stage all superclasses
of the class that is currently being processed have already been processed.

In practise there are several methods available for referring to the attributes of the old object when
performing the conversion. The most obvious one is maybe to pass a reference to the outdated
object as a parameter to the conversion procedure. However, this is inelegant as it requires the type
system of the compiler to be aware that you are referring to different versions of a type. It’s also
problematic because you are normally allowed to call methods on an object you have a reference
to, but this is not clearly defined with an outdated object. Finally, in Creol, all references are
typed by interface, so it would be rather strange to introduce a special construct for referencing a
class. We felt that introducing a special qualifier was a better choice since it clearly indicates the
special semantics of referring to another version of an attribute, there is no aliasing of attributes
of superclasses, and you can’t make method calls on outdated objects. Thus, when the conversion
process is started for a certain class we take all the old attributes belonging to that class and put
them in the local variables of the conversion process but with their qualifier changed to old by a
function appropriately named age.

op age : Subst Cid -> Subst .
eq age((((Q @ C) : D), A) , C’)
= (if C == C’ then ((Q @ ’old) : D) else no fi) , age(A, C’) .
eq age(((Q : D), A) , C’) = ((Q @ ’old) : D) , age(A, C’) .
eq age(no, C’) = no .

The copy function copies the attributes from a class, but there is a catch. To support changes
in the inheritance graph what we actually do is to use the initialiser list from the class and then
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assign the old values to any attributes which are already present in the attribute list. This could
also be used to provide a default conversion operation for classes which should be converted if none
is present in the class, but the current system requires that conversion operations are present for
updating a class - in practise this is not a problem since the compiler can automatically generate
a conversion function equivalent to the copy function.

op copy : Subst Subst -> Subst .
eq copy(((X : D), A) , A’)
= if (X in A’) then ((X : val(X, A’)), copy(A, A’))

else ((X : D), copy(A, A’)) fi .
eq copy(no, A’) = no .

When an object is updated with conversion, the rule creates a new process from the conversion
procedure in the updated class and gives it the aged attributes from the old class. This process is
then executed by the normal interpreter rules until the special endconvert statement is hit. This
statement is the subject of another rule which will be covered later.

crl [update-object-with-conversion] :
< C # VN : Cl | Inh: S, Att: IA,

Mtds: < Convert | Latt: L, Code: P,
Finish: AL, Restart: AL’ > * MMTD,

Ocnt: F >
convert(O, ((C # VN’)[DL]) S’, A’, W’)
< outdated(O) : Ob | Cl: C’, Pr: none, PrQ: W, Att: A, Lcnt: N >

=>
< C # VN : Cl | Inh: S, Att: IA,

Mtds: < Convert | Latt: L, Code: P,
Finish: AL, Restart: AL’ > * MMTD,

Ocnt: F >
convert(O, S’, A’, W’)
< outdated(O) : Ob | Cl: C’, Pr: process(’convert, false,

P ; endconvert(C),
(L, age(A’, C))),

PrQ: W, Att: (A, evalSS(IA, A)), Lcnt: N >
if VN > VN’ .

If the class which is currently being processed is unchanged from the old version we use the rule
that updates without conversion. The interesting case is when a class has newly been introduced
in the inheritance graph of the object by an update to another class, in this case the copy function
makes sure the attributes are initialised to default values. However, it is the responsibility of the
convert procedure of the class which introduced the new class into the inheritance graph to do any
extra initialisation which is required. We can not possibly pass parameters to the class construction
because the class which is inheriting from the introduced class has yet to be processed so we would
not know what those parameters were. We also see that the process queue has a term added which
uses the function paramcopy which we will discuss shortly.
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crl [update-object-without-conversion] :
< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
convert(O, ((C # VN’)[DL]) S’, A’, W’)
< outdated(O) : Ob | Cl: C’, Pr: none, PrQ: W, Att: A, Lcnt: N >

=>
< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
convert(O, S’, A’, W’)
< outdated(O) : Ob | Cl: C’, Pr: none, PrQ: W : paramcopy(W’, C, MMTD),

Att: (A, copy(evalSS(IA, A), A’)), Lcnt: N >
if VN’ = VN .

4.9 Conversion of Call Queues

Since the parameters of a method might have changed with an update, a way of converting the
parameters of pending method calls1 must be provided. This is done by declaring a conversion
inside the scope of an operation declaration in a class. We have decided to limit the conversion to
providing initialiser expressions for the parameters of the new routine in terms of the parameters
of the old version (qualified with ’old’), constants and this. Early versions of the update system
also allowed the use of object attributes in these expressions, but this created problems when there
are several updates happening at the same time, as a method call can be to an object two versions
away and parameter conversion has to happen twice before the object can receive the call. In
this case the object attributes corresponding to the middle version would not be available when
converting the parameters of the call. Finally, it was decided that the lazy update mechanism which
allows several layers of updates was more important than a more general way of doing parameter
conversion.

rl [finish-conversion] :
< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
convert(O, S’, A’, W’)
< outdated(O) : Ob | Cl: C’, Pr: process(’convert, false, endconvert(C), L),

PrQ: W, Att: A, Lcnt: N >
=>

< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
< outdated(O) : Ob | Cl: C’, Pr: none,

PrQ: W : paramconv(W’, C, MMTD, (’this : O)),
Att: A, Lcnt: N >

convert(O, S’, A’, W’) .

1In the current Creol interpreter pending method calls correspond to newly bound processes in the process queue.
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4.10 Inconvertible State

The remaining state of the object which we can’t convert with the methods so far is considered
inconvertible. This means processes which are suspended on a guard. There are several ways to
deal with this, which we will get back to in the next chapter. For example conversion operations
can be made for local variables and the semantics of labels can be extended to provide a mapping
between processor release points in different versions of the same function. This has been attempted
for example in the DYMOS system [19]. Another option used in the Argus system [3] is to cancel
all old code, because distributed applications need to provide error recovery mechanisms anyway
so most transactions which are interrupted by an update can be resumed. We will not take this
approach as it doesn’t work well with internal calls in Creol which are known to always complete
and do not necessarily have error recovery code. But no matter what you do, the basic problem
remains: There is no one to one mapping between execution state of different versions of code. The
simplest solution, which is the one we have adopted as the default for the Creol system is to do
nothing and continue executing the old code. This can potentially lead to errors, which we will
investigate in Chapter 6.

4.11 Implementation of Parameter Conversion

We keep track of which processes in the process queue of an object are newly bound and thus eligible
for conversion. The parameter conversion takes place at the same time as the state transfer, after
the state belonging to a certain class has been converted or copied, the processes belonging to
that class are subjected to parameter conversion. We have three cases, the first case is the one
where we are converting a process that is newly bound (B == true), here we make a new process
and initialise the local variables with the local variables of the old process subjected to parameter
conversion. We use a small helper function conv to perform the actual conversion, where we check
if there is a parameter conversion defined for the method that the process is an instance of. If
there is a conversion, we evaluate the initialiser list within the context of the aged parameters and
the class attributes. If the updated method does not have a parameter conversion, we copy old
attributes into the new ones with the same name. A small helper function called toList makes
a list from the substitution because that’s what we need to create the new process. The second
case deals with filtering processes belonging to other classes which are already processed or will
be processed later by discarding them. The third case deals with processes which are not newly
bound, which we will just continue executing as is2.

op conv : Subst Mtd Subst -> Subst .
eq conv(L, < M : Mtdname | Latt: L’, Code: P’ >, A)
= copy(((’caller : ’null), (’label : ’null), L’), L) .
eq conv(L, < M : Mtdname | Latt: L’, Code: P’, Convert: IL >, A)
= evalSS(IL, (age(L,’null), A)) .

2This has potential for creating problems, but as will be seen in the next chapters we can wait for these to complete
before converting the object or we can restart them, so we have some possibilities to control the process.
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op program : Mtd -> ProgList .
eq program(< M : Mtdname | Latt: L’, Code: P’ >) = P’ .
eq program(< M : Mtdname | Latt: L’, Code: P’, Convert: IL >) = P’ .

op paramconv : MProg Cid MMtd Subst -> MProg .
eq paramconv(none, C, MMTD, A) = none .

ceq paramconv(process(M @ C, B, P, L) : W, C, MMTD, A)
= process(M @ C, true, program(get(M, MMTD)), conv(L, get(M, MMTD), A)) :

paramconv(W, C, MMTD, A)
if (M in MMTD) and (B == true) .

ceq paramconv(process(M @ C, B, P, L) : W, C’, MMTD, A)
= paramconv(W, C’, MMTD, A)
if not (C == C’) .

ceq paramconv(process(M @ C, B, P, L) : W, C, MMTD, A)
= process(M @ C, B, P, L) : paramconv(W, C, MMTD, A)
if (B == false) .

If the class has not been updated we simply copy the processes belonging to that class using the
following simple function.

op paramcopy : MProg Cid MMtd -> MProg .
eq paramcopy(process(M @ C, B, P, L) : W, C’, MMTD)
= if (C == C’) and ((M in MMTD) or C == ’null) then

process(M @ C, B, P, L)
else

none
fi : paramcopy(W, C’, MMTD) .

eq paramcopy(none, C, MMTD) = none .

4.12 A Simple Example of State Transfer in Creol

A simple recursive procedure to compute the Fibonacci numbers is given in Figure 4.3, it will serve
as an example of a program which we can successfully update with the techniques discussed so far.
The motivation for doing so is that this method of computing the Fibonacci numbers is extremely
slow as it generates an exponential amount of recursive calls. We want to replace the procedure
with a linear time procedure to compute the Fibonacci numbers as given in Figure 4.4 without
interrupting the system - let’s just assume there is a big air traffic control system which cannot be
stopped and relies on computing Fibonacci numbers for some purpose.
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class Fibonacci
begin
var val : int

op fibonacci(n : int out result : int) ==
var

a : int, b : int
if n = 0 then result := 0 else

if n = 1 then result := 1 else
fibonacci(n - 1 ; a) ; fibonacci(n - 2 ; b) ; result := a + b

fi
fi

op run == fibonacci(15 ; val)

end

Figure 4.3: Exponential time method for computing Fibonacci numbers

class Fibonacci
begin
var val : int
convert == val := val@old

op helper(a : int, b : int, c : int out result : int) ==
if c = 0 then result := a else helper(b , a + b, c - 1 ; result) fi

op fibonacci(n : int out result : int) == helper(0, 1, n ; result)

op run == fibonacci(15 ; val)

end

Figure 4.4: Linear time method for computing Fibonacci numbers
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We first compile the two versions of our Fibonacci class with the Creol compiler. When compiling
the update we need to indicate that this is a newer version so the class gets the correct version
number in the CMC representation.

creolc --version 1 <fib_v1.creol >fib_v1.maude
creolc --version 2 <fib_v2.creol >fib_v2.maude

We add the line frew [10000] init . quit to the end of fib v1.maude and then run the specifi-
cation through the Maude tool and write the resulting intermediate configuration to a file with the
following command:

maude interpreter.maude fib_v1.maude >fib_update.maude

we then edit the resulting file a bit by removing Maude’s welcome message up to and including
result (sort not calculated): and replace this by op fib1 : -> Configuration [ctor] .
eq fib1 =. At the end of the file where Maude has said Bye. we replace this with just a period.
After this we write op fib2 : -> Configuration [ctor] . eq fib2 = and copy the definition
of the updated fibonacci class from the file fib_v2.maude. Finally we insert the module definition
mod FIB-UPDATE is and the line pr UPDATE . at the top of the file and end the file with endm.
The result of this is that we now have a file which can be used to test the effect of applying an
update to the configuration reached after 10000 rewrite steps of the original program. This process
could of course be automated with a little script, but it doesn’t take all that long.

We are now ready to test the effect of applying our update, and start Maude again, this time in
interactive mode. We import the interpreter, the update module and our example module and
then we ask to rewrite the term update(fib1, fib2) which performs the update and continues
the process of computing the fibonacci function.

Maude> in interpreter.maude
Maude> in update.maude
Maude> in fib_update.maude
Maude> frew update(fib1, fib2) .
frewrite in FIB-UPDATE : update(fib1, fib2) .
rewrites: 13541 in 290ms cpu (450ms real) (46693 rewrites/second)
result Configuration:
{Class definition and message queue removed}
< ’Fibonacci1 : Ob | Cl: ’Fibonacci,Pr: none,PrQ: none,

Att: (’this : ’Fibonacci1),
(’val @ ’Fibonacci) : int(610), Lcnt: 1067 >

For comparison, if we just rewrite the configuration we had when we applied the update (fib1), we
end up having done almost 20 times more rewrites before we reach the same answer. We can also
see from the Lcnt (which was 1026 in the fib1 configuration) that we’ve reduced the amount of calls
made before the result is arrived at from 949 to 41.
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Maude> frew fib1 .
frewrite in FIB-UPDATE : fib1 .
rewrites: 232999 in 6490ms cpu (9374ms real) (35901 rewrites/second)
result Configuration:
{Class definition and message queue removed}
< ’Fibonacci1 : Ob | Cl: ’Fibonacci,Pr: none,PrQ: none,

Att: (’this : ’Fibonacci1),
(’val @ ’Fibonacci) : int(610), Lcnt: 1975 >

4.13 Remaining State in the Creol Interpreter

Since Creol is supposed to be used in distributed systems, we have to face the reality that messages
can be in transit while the update is taking place. This kind of state has not been taken into
account so far, as we have assumed that all method calls have been bound and made into processes
at the time of the update. We will now deal with these other pieces of state which exist outside
the objects themselves.

4.13.1 Method Invocation Messages

Method invocation messages (which we will just call invocs from now on) and method completion
messages (which we will call comps) comprise all the remaining state in the Creol execution system.
These messages can exist either floating freely in the configuration (this corresponds to being in
transit on the network) or in a message queue for a specific object. To simplify the implementation
a bit, we dump all invoc messages in the message queue of an object back into the outdated
configuration when we move the object and its queue out of the outdated configuration. This way
we don’t have to deal with two separate cases. This simplification is not meant to be a guide for how
this should be implemented in a real execution system, as it’s probably impractical to retransmit
all messages over a real network.

An important aspect of the Creol system is that all method calls are virtually bound and all external
method calls happen through interfaces. Since we are allowed to change the inheritance hierarchy
as part of an update, we have to make sure we know which method the invoc was supposed to bind
to in the old version before we can convert it. As the object has already moved out of the outdated
configuration, we use the ghost of the object to find out which class the object belongs to. Note
that an object can never change class by applying an update. When we know which class the object
belongs to, we can bind the method in the outdated configuration by using a special bindInvoc
message. Invoc messages are converted when there is a ghost of the object in the configuration
instead of the object itself, and this ghost indicates that it represents an old version of the object.
Using ghosts enables us to successfully convert an invoc through several update membranes before
the actual object is reached.
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rl [bind-outdated-unqualified-invoc-msg] :
< O : Ghost | Cl: C, Old: true >
invoc(O, Q, DL)

=>
< O : Ghost | Cl: C, Old: true >
bindInvoc(invoc(O, Q, DL), C[nil]) .

rl [bind-outdated-qualified-invoc-msg] :
< O : Ghost | Cl: C, Old: true >
invoc(O, M @ C’, DL)

=>
< O : Ghost | Cl: C, Old: true >
bindInvoc(invoc(O, M, DL), C’[nil]) .

The bindInvoc message is then processed by a rule mirroring closely the bindMtd rule of the
interpreter. However, binding an invoc does not result in a process like binding a method does.
Instead it results in a boundInvoc message which consists of the fully qualified method name (with
version number of the class) and a Subst containing the bound variables. This Subst is essential
when we want to refer to the (named) old parameters in the parameter conversion of the method
we want to call. The boundInvoc message thus serves to complete the virtual binding and bind
the parameters to their names. After we have done this we are ready to actually convert the invoc
and migrate it into the updated configuration.

op bindInvoc : Msg InhList -> Msg [ctor] .
op boundInvoc : Oid Cid Process -> Msg [ctor] .
ceq bindInvoc(invoc(O, M, DL), ((C)[DL’]) S’)

< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
= boundInvoc(O, C # VN, newProcess(M @ C, get(M, MMTD), DL))

< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
if M in MMTD .

ceq bindInvoc(invoc(O, M, DL), ((C)[DL’]) S’)
< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >

= bindInvoc(invoc(O, M, DL), S’ S)
< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >

if not (M in MMTD) .

We then have a rule to move bound invocs across the version membrane. If the version of the class
the method was found in is the same in both configurations, the invoc can be moved across with no
conversion. However, if the class has been updated, we check if the method still exists - if not we
discard the invoc. The normal case is that it exists, in which case we apply the conversion found
in the method. We use the same helper function conv as in the paramconv function described in
Section 4.11 to get back a converted Subst. However, the resulting invoc should have a List of
parameter values, not a Subst of bound variables. Thus we also need a helper function toList
which strips the variable names from the Subst to again get a List. Note that this list is actually
longer than the original parameter list as it also includes initialisers for the local variables of the
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method, but this is harmless with the current parameter passing semantics. If checks are added
to see that methods are called with the correct number of parameters internally in the interpreter,
this will have to be changed. As it is, the implementation is simplified a lot by just passing the
extra parameters. The toList function can be found in Appendix C.

rl [outdated-invoc-msg] :
< C # VN’ : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
outdated(boundInvoc(O, C # VN, process(M @ C, B, P, L)) CONFIG)

=>
if VN == VN’ then

invoc(O, M @ C, toList(L))
else

if (M in MMTD) then
invoc(O, M @ C, toList(conv(L, get(M, MMTD), (’this : O))))

else
none

fi
fi
< C # VN’ : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
outdated(CONFIG) .

4.13.2 Method Completion Messages

The method completion messages represent the last bit of state we have to deal with. Because we
can have waiting methods in the outdated configuration preventing us from converting an object
(we will get back to this in the next chapter), we have to transport completion messages both
ways through the membrane. Again we use the ghost objects to guide us when we decide if a
completion message needs to be transported. Ghosts which represent old versions of objects mean
the completion messages need to be transported to a newer version and ghosts which represent
objects that have not yet been converted indicate that we need to transport completion messages
to an older version. Note that we do not convert method completion messages, this prevents us
from changing the number of out parameters and also prevents us from changing the return types
(except in a covariant way). The reason for not converting these is that since they need to move
both ways through the membrane the added complexity is bigger than what it is for converting
invocs.

rl [outdated-reply-msg] :
outdated(< O : Ghost | Cl: C, Old: true > comp(O int(N) DL) CONFIG)

=>
comp(O int(N) DL)
outdated(< O : Ghost | Cl: C, Old: true > CONFIG).
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rl [reply-outdated-msg] :
comp(O int(N) DL)
< O : Ghost | Cl: C, Old: false >
outdated(CONFIG)

=>
< O : Ghost | Cl: C, Old: false >
outdated(comp(O int(N) DL) CONFIG) .

4.14 Finishing the Update Process

When all objects and messages have moved out of the outdated configuration, we are finished.
There can be no more activity in a configuration consisting of only classes and ghosts, so we can
at this point get rid of the old configuration. This kind of garbage collection of classes that are no
longer in use would also apply to a real implementation of the update system. In our specification
it is taken care of by the very simple rule:

ceq outdated(CONFIG) = none if objects(CONFIG) = none .
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Chapter 5

Controlling Updates

If we continue executing old code after an update has taken place, we risk errors caused for example
by accessing a class attribute which has changed type or has been removed. Even if we don’t allow
arbitrary modifications, we will in many cases have a hard time proving the invariants hold when
we mix execution of old and new code. To get back some control without having to simply discard
all inconvertible state, we will in this chapter see how the programmer can control when an update
is applied and what happens to the inconvertible state.

5.1 Transaction Based Updates

One of the first systems considered for controlling updates in Creol was based on defining trans-
actions at the language level to have an idea of when an object could be considered quiescent.
Transactions were defined using predicates over the communication history of the object, so an up-
date would not take place while a transaction was in progress. In that way we could avoid loading
methods that started new transactions and just allow methods to execute that were contributing
to completing transactions that were already in progress. However, such a system would not be a
good fit with Creol since it’s based on a purely reactive object model and although you can define
’transactions’ between the object and itself in order to reach a quiescent state, it will always be a
bad fit. Another reason why this idea was discarded was that it was unnecessarily strict. In most
cases the state transfer will enable the converted object to complete transactions started with the
old object so there is really no need to wait until all transactions have completed.

5.2 Guided Execution

The process described in the previous section is in fact just a special case of a more general technique
which we will call guided execution. By this we mean that in order to reach a state we can accept
as quiescent, we need to selectively execute some processes which contribute to moving toward
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this goal while preventing new processes to be started which do not contribute toward this goal.
If we formulate quiescence in terms of a predicate over the communication history of the object
and the state (like the assumption and invariant) we have one piece of the puzzle, but it still does
not give us a procedure for selecting which processes are allowed to run in order to satisfy this
predicate. However, we can formulate predicates for each of the methods in the class which decides
if processes instantiated from this method are allowed to run1. This is a very general approach
which allows almost complete control of the update procedure, but it inevitably has the overhead
of maintaining the communication history and checking the predicates. For our work this was felt
to be too expensive and also complicated to implement, so we went with the simpler approach.

5.3 Finishing Code which Creates Objects

The first implementation of the Creol update system suffered from a big problem when it came to
finishing code which creates objects. Since we allow parameters to object creation to be added as
long as all code that creates objects is also updated, we need a clear strategy for finishing code which
creates objects. The chosen strategy is to create the old version of the object and then immediately
subject it to conversion. However, since the first version of the update system mixed classes from
the old and new versions in the same configuration, it was no longer possible to correctly find the
inheritance graph in the old version (if the class the object was instantiated from had an updated
superclass, that is). It was also quite problematic to separate between objects created by old code
which was finishing and by new code, since the object creation process happens in several stages.

It was this problem which triggered the re-implementation where the old configuration is wrapped
inside an outdated term which acts as a membrane that objects can migrate through into the new
version. With this approach the problem completely vanishes as we are finishing the code inside
the old configuration where everything works as expected and the object created can be converted
just like any other object. Note also that the update function only wraps the old configuration in
this term, it does not in any way process the objects to be updated so there is nothing which can
be missed by objects created after the update function has finished.

5.4 Controlling Updates in the Creol System

The current system lets the programmer divide the processes into three different categories based
on which method a process is an instance of. The categories are called continue, restart and finish.
We will now describe the semantics of converting processes in each of these categories. Note that
processes which are newly bound have already been converted, so the text in this section only
applies to processes which are otherwise inconvertible.

First of all, processes which are instances of methods in the continue category are allowed to
continue running with no conversion in the updated object. This approach is basically the same as

1We have to be able to project the communication history on a specific object X which is performing the method
call in question, so some special semantics must probably be introduced for these predicates...
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that which is adopted in the work on formalising updates in Creol by Johnsen, Owe and Simplot-
Ryl [17]. It is possible to continue running old code when the update does not make arbitrary
modifications (i.e., no attributes or methods are removed or have their type changed2). We will
examine this requirement in more detail in the next chapter. This is the default category, so any
process which is not marked as belonging to the other two categories fall under this one.

Second, processes which are instances of methods in the restart category will be re-instantiated
in the updated object. That means a new process is created which has the same parameters as
the old one, but the (updated) program is loaded from the method and execution starts from the
beginning again. Because the parameters of a Creol method are read-only variables this is easy
to implement, but it should be noted that it would be possible for the compiler to automatically
create separate local variables for parameters that are written to. We indicate which methods we
want to be restarted by a list of method identifiers prepended with the keyword restart.

Third, processes which are instances of methods in the finish category will cause state conversion
to be delayed for the entire object until they are finished executing. This approach is similar to
the when-idle clause employed in the DYMOS system [19], but operates on an object per object
basis instead of delaying the update to the system as a whole. We indicate which methods belong
to this category by a list of method identifiers prepended with the keyword finish.

A final option which could be useful is to stop all processing of a specific method. This is rather
trivial to implement, but the utility of such a construct is questionable unless the language requires
error handling to be present for all method calls. We do not include a discard category as such, but
because it’s impossible to restart a process which is an instance of a method that does not exist in
the new version we discard the process in that case.

5.5 Implementation of Restarting Processes

Restarting processes is simply done by augmenting the paramconv function we saw in Section 4.11
with the ability to convert methods that are not newly bound by restarting them. We will pick the
list of methods to restart out of the convert routine which is part of the method set from the class.
The function restartlist which does this can be found in Appendix C. The important changes to
the paramconv equations are in the conditions. The first case which converts parameters and loads
the updated code into the process is used even if the process is not newly bound when the method
is in the restart list. The second case which discards a process if it’s not an instance of a method
in the class we are currently processing is also used if the method is in the restart list but does not
exist in the updated class and thus cannot be restarted. Finally, the third case for methods which
are not newly bound and should be just allowed to finish has also had its condition changed so it
does not apply to methods in the restart list as these now fall under the first or second case.

op paramconv : MProg Cid MMtd Subst -> MProg .
eq paramconv(none, C, MMTD, A) = none .

2We allow changes to the type if they are substitutable as will be defined in Chapter6.
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ceq paramconv(process(M @ C, B, P, L) : W, C, MMTD, A)
= process(M @ C, true, program(get(M, MMTD)), conv(L, get(M, MMTD), A)) :

paramconv(W, C, MMTD, A)
if (M in MMTD) and ((B == true) or ((M @ C) in restartlist(MMTD))) .

ceq paramconv(process(M @ C, B, P, L) : W, C’, MMTD, A)
= paramconv(W, C’, MMTD, A)
if (not (C == C’)) or (not (M in MMTD) and ((M @ C) in restartlist(MMTD))) .

ceq paramconv(process(M @ C, B, P, L) : W, C, MMTD, A)
= process(M @ C, B, P, L) : paramconv(W, C, MMTD, A)
if (B == false and not ((M @ C) in restartlist(MMTD))) or

(not (M in MMTD) and not ((M @ C) in restartlist(MMTD))) .

5.6 Implementation of Finishing Processes

First of all we make a function waiting which tells us if any processes which are instances of the
methods in a list and are not newly bound are present in the given process queue. We then change
the convert-object rule from Section 4.6 into a conditional rule which has if not waiting(AL, W)
as its condition. This way the programmer can prevent conversion from happening if we cannot
guarantee that it’s safe to continue executing old code in the new configuration.

op waiting : AidList MProg -> Bool .
eq waiting(nil, W) = false .
eq waiting(X, none) = false .
eq waiting(X, process(Y, B, P, L) : W) = (X == Y and not B) or waiting(X, W) .
eq waiting(X Y AL, W) = waiting(X, W) or waiting(Y AL, W) .

Although this makes sure we do not convert an object which has unfinished processes, we have not
specified how these unfinished processes can be completed. Recall that the interpreter rules that
activate waiting processes were modified to only work on up-to-date objects. For each of these rules
we need to make a corresponding rule which specifically allows activating a process which we are
waiting to complete.

crl [guided-PrQ-enabled] :
< outdated(O) : Ob | Cl: C, Pr: none,

PrQ: process(M, false, P, L) : W, Att: A, Lcnt: N >
< outdated(O) : Qu | Ev: MM, Keep: H >
findInheritance(outdated(O), nil, S, AL)

=>
< outdated(O) : Ob | Cl: C, Pr: process(M, false, P, L),

PrQ: W, Att: A, Lcnt: N >
< outdated(O) : Qu | Ev: MM, Keep: H >
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findInheritance(outdated(O), nil, S, AL)
if enabled(P, (A , L), MM) and waiting(AL, process(M, false, P, L)) .

crl [guided-continue] :
< outdated(O) : Ob | Cl: C, Pr: process(M, false, continue(N), L),

PrQ: process(M’, false, ((N ?(J)); P), L’) : W,
Att: A, Lcnt: N’ >

findInheritance(outdated(O), nil, S, AL)
=>

< outdated(O) : Ob | Cl: C, Pr: process(M’, false, ((N ?(J)); P), L’),
PrQ: W,
Att: A, Lcnt: N’ >

findInheritance(outdated(O), nil, S, AL)
if waiting(AL, process(M’, false, empty, no)) .

This allows us to guide the execution in the old configuration toward a state where all waiting
processes have completed and we can perform the state conversion. Of course we can make the
update process deadlock in various ways when we wait for things to complete, but we will look
more into that in the next chapter.

5.7 An Example of Updating

In this section we will show how the Dining Philosophers example presented in Chapter 2 can be
updated dynamically to use inheritance. The first update (Figure 5.1) splits the Philosopher class
into two classes, the Person class and a derived Philosopher class and transfers some of the state
previously belonging to the Philosopher class into the new Person class. The second update (Figure
5.2) changes the Butler class to inherit from Philosopher, and reconfigures the system so the butler
object joins the philosophers at the table. Although this is obviously a toy problem, it highlights
several features of our update system.

5.7.1 An Example of Dynamic Refactoring

A common critique of object oriented systems is that it is difficult to change the class hierarchy
after the first version of the program. A lot of effort has been put into research on refactoring
existing systems [24], and this example shows that our simple update system may be used to use
for this purpose. However, with the current system, there is no link between the think and digest
methods in the Person class and in the Philosopher class. These processes are stopped instead
of restarted because there is no corresponding method in the updated Philosopher class, that is
why the convert routine explicitly starts these processes again. A more general way of specifying
parameter conversion where a method call could be converted to a call on another method would
make it much easier to perform this kind of update.
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class Person
begin

var
hungry: bool := false, history: string := ""

{The methods digest and think are copied from the original Philosopher class}
end

class Philosopher(butler: Butler)
implements Phil
inherits Person

begin
var

chopstick: bool := true, neighbour: Phil

convert ==
hungry@Person := hungry@old; history@Person := history@old+"u";
butler := butler@old; chopstick := chopstick@old;
neighbour := neighbour@old;
!digest ; !think

finish
eat, borrowStick, returnStick

restart
digest, think

{The methods digest and think are removed from this class}
{The methods eat, run, borrowStick and returnStick remain unchanged}

Figure 5.1: An example of a class update with state conversion
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5.7.2 An Example of Dynamic Reconfiguration

Many update systems deal mainly with changes to the configuration, that means adding and delet-
ing objects and changing the connections between objects. In the Creol update system we don’t
have this kind of mechanism, but because we can add code to the objects in the system we can
introduce methods which allow reconfiguration to take place. These methods can be called from
the convert routines of the classes to reconfigure the state of the system when it’s updated. We
will now develop an example that changes the Butler object to be derived from Philosopher and
reconfigures the system so the Butler is also dining with the rest of the Philosophers 3. Changing
the Butler class to inherit from Philosopher along the lines of the first update is trivial, but the
reconfiguration requires a little trick. We make an update to the Philosopher class that doesn’t
actually change the class but just runs a convert routine. The convert routine of the Philosopher
class (see Figure 5.2) looks up the neighbour again, thus creating the new configuration. We need
to be careful here because there is a subtle problem that can occur when calling a method from
the convert routine. An external method call might end up calling a method on the object being
converted, causing the update process to deadlock since the object has not been converted yet and
cannot complete the method call. But in this particular case we don’t have a problem. Because the
butler was not a philosopher in the old version of the code, the Philosopher class’ convert routine
is never called for the butler. If we were to try a similar update after the butler has become a
philosopher it would deadlock because of the external call to getNeighbour. We could fix this
problem by adding a test to check if the butler object was the same as this in the convert routine
of the Philosopher class, but it’s obvious that we have to be careful when making external calls in
convert routines.

5.7.3 Multi Level Updates

These two successive updates to the Dining Philosophers example can be used to illustrate an-
other interesting feature of our update system. Because of our membrane approach which en-
ables us to do lazy state conversion, we can in fact apply the second update while the first up-
date is still being processed. In the Maude system we can test this by entering the command
frew [1000] update(update(v1, v2), v3) . after loading the Dining Philosophers update ex-
ample. From the resulting configuration we see that both updates have been successfully applied
and all the philosophers as well as the butler are dining happily. If we turn on tracing by issuing
the set trace on. command to Maude, we can clearly see that messages are being sent across the
two version membranes as the objects migrate into the final configuration. This kind of lazy state
conversion is very attractive in a real world system, as it amortises the cost of the update over a
period of time and the system can remain responsive even if there is a large number of objects to
be converted when an update is applied.

3 If we wanted to get rid of one of the philosophers, we could do that in the convert routine for the butler, but
the details of how objects are deleted or garbage collected would have to be considered. Since this is not the main
subject here, we opt for the simpler example.
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class Philosopher(butler: Butler)
implements Phil
inherits Person

begin
var

chopstick: bool := true, neighbour: Phil

convert ==
history := history+"u";
butler := butler@old; chopstick := chopstick@old;
butler.getNeighbour(;neighbour);

finish
eat

{The rest of the class is unchanged}
end

class Butler
implements Butler
inherits Philosopher(this)

begin
var p1:Phil, p2:Phil, p3:Phil, p4:Phil, p5:Phil
convert ==

p1 := p1@old; p2 := p2@old; p3 := p3@old; p4 := p4@old; p5 := p5@old;
hungry@Person := false; history@Person := "";
butler@Philosopher := this; chopstick@Philosopher := true;
!run@Philosopher

{The run method is unchanged}
with Phil

op getNeighbour(out n:Phil) ==
if caller = p1 then n:=p2
else if caller = p2 then n:=p3
else if caller = p3 then n:=p4
else if caller = p4 then n:=p5
else if caller = p5 then n:=this
else if caller = this then n:=p1
else n:=null fi fi fi fi fi fi

end

Figure 5.2: Using convert routines for reconfiguration
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Chapter 6

Correctness of Updates in Creol

Reasoning control in the CREOL framework is based on interface requirements formulated as
assumptions and invariants. The assumption associated with an interface is a predicate formulating
the obligations placed on the user of that interface, while the invariant represents the promises
made by the implementor of the interface. The assumptions and invariants in the system are given
as predicates on the communication history of the object. This way of reasoning about object
oriented distributed systems comes from the OUN project [25]. The predicates are not tied to the
implementation and its state variables at all. The invariant which has to hold for a given class is
the conjunction of the invariants of all implemented interfaces in the inheritance hierarchy of that
class. In addition to this it’s required that the assumptions of all interfaces used with the class are
satisfied. Within this framework it’s also possible to give some thought to what the correctness of
upgrades means. In this chapter we discuss necessary conditions for correct updates in our system.
Although these conditions seem to suffice in most practical cases, it would be outside the scope
of this thesis to identify a set of conditions that would be sufficient for ensuring correctness in all
cases.

6.1 Substitutability

When we update a class in the system and convert the objects, the first requirement for a correct
update is that we can substitute the converted objects for the old objects without affecting the parts
of the system that were not updated. Substitutability was originally introduced as a notion related
to subtyping [21], but one could argue that it is even more relevant as a principle for reasoning
about the correctness of updates. If an object still behaves as expected with respect to one of
it’s interfaces after an update, we say that the old object is substitutable with the updated object
with respect to that interface. What we mean by ’behaving as expected’ in this context is that
no calls fail, that the invariant still holds and that no additional assumptions are needed. If these
conditions hold, then the system will keep running correctly (i.e., all invariants are respected) after
the old object is replaced by the new.
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6.1.1 A Formal Definition of Substitutability

We first define the subtype relation v which is a reflexive partial ordering on the set of types T .
The four basic types ”int”, ”bool”, ”label” and ”string” are part of the set and are only related
to themselves. The set of types also contains n-tuples of types, and we extend the v relation by
saying that A v B if the tuples A and B have the same length l and for each 0 ≤ i ≤ l we have
Ai v Bi.

We define a similar relation on the set M of method signatures which we will write in the same
way using the v symbol. Method signatures are 3-tuples, (N, I, O) where N is a unique identifier
taken from a set of method names, I is a tuple (possibly zero-length) of in parameters and likewise
O is a tuple of out parameters. Note that we are not including methods in the set of types as we
cannot pass methods around or have variables of method type in the Creol language. If F and G
are methods, we have

F v G ⇐⇒ FN = GN ∧GI v FI ∧ FO v GO (6.1)

The set T of types also contains interfaces. An interface is a set of method signatures and two
predicates, the assumption and the invariant. For interfaces A and B we have A v B iff the
assumption of A implies the assumption of B and the invariant of B implies the invariant of A1 .
We also require that each of the methods in A has a compatible operation in B where compatibility
is defined in the usual way with covariant out parameter types and contravariant in parameter
types. Informally we say that the interface A is substitutable with interface B when any object
implementing A can be replaced by an object implementing B without compromising the correct
operation of the system2.

A v B ⇐⇒ asm(A) → asm(B) ∧ inv(B) → inv(A) ∧ ∀F.F ∈ B → ∃F ′.F ′ ∈ A ∧ F ′ v F (6.2)

6.2 Handling Arbitrary Changes to Classes and Interfaces

Most update systems only allow additions to be made and code to be replaced, but attributes
cannot be removed, method signatures cannot change, attribute types cannot change, etc. This is
because the state conversion process can be greatly complicated when these kinds of changes have
to be taken into account. In our system we have decided to allow such updates, partly because
Creol’s strict call-through-interfaces semantics and virtual method binding makes it more tractable
and partly because we feel the resulting system is a lot more powerful if these kinds of updates are
allowed. These updates introduce dependencies, which makes the update of other classes necessary.
We will make a distinction between extending an interface, a class or a method and replacing it.
Extending something means that we change it in such a way that no dependencies are created, for
example adding an attribute to a class extends the class. Replacing or removing something means
we can change it in an arbitrary way, but this creates dependencies in the system.

1This is the same as saying that the interfaces must have covariant assumptions and contravariant invariants if
we consider the implication between predicates as a kind of sub-relation.

2In the dynamic case we have to be more careful, if A is substitutable with B we mean that an object implementing
A can be replaced at any time by an object implementing B having the same communication history projected on
interface A as the original object without compromising correct operation of the system.
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6.2.1 Changes to Classes

There are two kinds of dependencies on a class; subclasses are dependent on superclasses, and a
class which creates instances of some specific class C is dependent on C implementing the interface
that is the type of the object reference used to access the newly created object. We have to update
the classes which create instances of a class C if the interfaces implemented by C are replaced. As
mentioned previously, a class can be extended by adding attributes and methods, or by changing
the types of attributes and methods to subtypes of their original types. In addition to these
basic modifications, we can extend a class by implementing additional interfaces or inheriting from
additional superclasses.

Replacing or removing attributes and internal methods (which are not exposed through interfaces)
is manageable, because we provide local quiescence (i.e., running code in the object is finished when
the conversion routine is called). We require methods that have had their signature changed to
have a parameter convert routine. Because we do not provide a mechanism for converting output
parameters back to the old version, the only permitted modification of the output parameters is
to change the type of an output parameter to a subtype. If any methods depend on the change
introduced by replacing an attribute or a method, these methods have to be included in either the
finish or the restart category. Subclasses are naturally dependent on the attributes and methods
of the superclass, so replacing or removing these mean that any subclasses have to be type checked
again and possibly also updated.

6.2.2 Changes to Interfaces

If the list of interfaces a class implements has been replaced, we can have code finishing in an
object O which invokes a method that only existed in the previous version of the class. This case
can clearly not be resolved with parameter conversion, and even if the update will convert O so
it no longer calls the problematic method, we cannot be sure that O will be converted before the
object that it is calling the method on. In this case there is no other solution than to require
global quiescence. This means that all objects have to have reached a processor release point and
finished all methods in their finishlists3 before any object can be converted. Ideally the update
system will also be able to carry out these more general updates, but for distributed systems it can
be very costly to ensure global quiescence, since this requires communication to take place between
all nodes in the system. We have not tried to implement this in our current system, so we have to
require that an update does not remove an exposed method from a class unless it can be proven to
be dead code.

In our system we allow an interface to be extended as part of an update. This naturally creates
a dependency in any class that implements the extended interface or any of its subinterfaces, as
implementations of the new methods need to be provided. Adding superinterfaces to an interface
is also a kind of extension, with the same dependencies being introduced as when we extend the
interface with new methods. Making the interface invariant stronger or the assumption weaker is
also considered an extension of the interface. In addition, we allow replacing method signatures

3We also require that there are no messages in transit, depending on the runtime system we may already be sure
that there are no messages in transit if the other requirements are satisfied.
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in interfaces, creating a dependency on all implementors and all users of the changed interface.
Replacing method signatures is possible precisely because we have parameter conversion. If calls
relying on the old method signature can be parameter converted, old code can finish using the
updated method while the parameters are converted by the update system.

6.3 Correctness of State Conversion

It is not sufficient for an update to satisfy the substitutability requirement. We must also consider
liveness and safety properties of the state conversion. First of all we need to prove that given the
previous class invariant, after executing the class conversion routine the invariant of the updated
class is satisfied. Second we need to prove that the conversion routine will not deadlock through
calling methods which depend on the object already having been converted. In addition to this,
we need to ensure that converting processes will lead to a correct result. Since we have different
update semantics for processes in the different categories, we will now consider necessary correctness
conditions for each of these in turn.

6.3.1 Correctness of Continuing Processes

By default, processes which don’t belong to either the restart or the finish category belong to the
continue category. Processes in this category continue to execute as-is after an update has taken
place. However, this approach can sometimes lead to runtime errors. To prevent these errors, we
need to type check the original method definition of a continuing process in the context of the
updated class hierarchy. If the method definition type checks in the context of the updated class
hierarchy, no runtime error can be introduced by continuing to execute a process that is an instance
of this method definition. For a deeper analysis we need to prove that assuming the old invariant
held at all processor release points in the original method definition, the updated class invariant
also holds at all these points. If a method does not satisfy these conditions, processes which are
instances of this method must belong to either the finish or the restart category.

6.3.2 Correctness of Restarting Processes

Processes that belong to the restart category load their code from the updated class definition, so
type safety is not a problem. The problem is that stopping a process before it would normally finish
might break the updated invariant. Of course we only stop processes at processor release points,
so the old invariant can be assumed. However, the communication history might get disrupted.
An example of this difficulty is the eat method in the Dining Philosophers example, a natural
invariant for the Philosopher class is that there is at most one more call to the borrowStick
method than to the returnStick method. However, if we restart the eat method it could happen
that borrowStick is called twice without an intermediate call to returnStick. Consequently we
need to prove that the updated invariant is satisfied in all possible communication histories that
can arise from restarting processes at processor release points in order to include those processes
in the restart category.
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6.3.3 Correctness of Finishing Processes

Processes that belong to the finish category are always finished before conversion takes place, so
there is no safety property to be proven. However, we need to prove the liveness of updates given a
specific set of methods in the finish category. The problem related to code that must finish is that
it can call other methods and get stuck waiting for the replies. Thus it’s required that if a process
is an instance of a method in the finish category, any method calls (that have returns) made by
this process are external or to other methods which are also in the finish category. If the call is
internal, it is required that this condition also holds for the called method. Tail-recursive processes
are handled correctly because once they call themselves, the process becomes newly bound and
thus eligible for parameter conversion. It’s still possible for an object to get stuck waiting for a
reply from a method call to another object if that object is finishing a process which is waiting
for a method call to complete in the first object. This kind of situation is basically the same as a
normal deadlock, and the usual techniques to prove that a program is deadlock free can be applied
to this problem.

6.4 Security of Updates in a Distributed Environment

Finally, in a distributed environment it’s not enough to statically prove that the update is correct
before applying it. This would open up all kinds of avenues for attack in a hostile environment
such as the Internet. One way of adding security is to use a system of trust where each node in the
system will only receive cryptographically signed updates that can be verified to come from some
trusted author. This places the complete responsibility for correctness on the author of the update.
Another system which is possible is that the updates themselves carry proof of their correctness
and the update system then verifies this proof before applying the update. This relies on the fact
that verifying a proof is a computationally simple procedure while actually creating the proof is
computationally hard. These two ways of providing security are of course more or less orthogonal to
each other and a combination of these techniques can be used to provide the right kind of security
for a particular application.
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Chapter 7

Conclusion and Future Research

The main question this thesis sought to answer was ”How can we make a safe and flexible mecha-
nism for dynamically updating Creol programs?”. We believe we have answered this question by
carefully considering the possible approaches to each of the identified sub-problems and selecting
the approach which fits best within the existing Creol framework. We will now give a brief summary
of the answers to the sub-problems:

The unit of replacement chosen for Creol is the class because the mechanism for finding the objects
which need to be updated is class-based, and formal reasoning in the Creol framework is done using
classes.

State transfer has been fully integrated with object orientations in Creol by providing a hierarchy
of conversion functions that work to convert any object, even allowing for dynamic changes to the
class hierarchy. We are not aware of any other update systems which allow this kind of flexibility,
most other systems don’t address inheritance [3, 12, 19, 27].

Parameter conversion of calls made by old code is introduced to allow a lazy update strategy that
minimally impacts system responsiveness while the update is in progress. Parameter conversion
has been used previously in the DYMOS system [19], but most recent systems do not support this.
Some other systems provide lazy updates, but they are either not very flexible [17] or they are
very high level [4], requiring atomic transactions or other features not normally found in generic
programming languages.

Apart from other work on updates in the Creol framework [17], the only work we are aware of that
take into consideration the special challenges posed by concurrency is the Argus system [3] and
related transaction based solutions [4]. In this thesis we have made use of the particular properties
of Creol programs, which clearly define processor release points and invariants that are satisfied at
these points, in order to find points in the program where updates can be applied. Together with
the finish semantics corresponding to the when-idle semantics from the DYMOS system and the
restart semantics which are inspired by the error-recovery approach taken in the Argus system, this
provides a natural and powerful method for controlling updates in a concurrent and distributed
setting.
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We have made an attempt at clarifying the conditions for a correct update in this system in terms
of substitutability, safety properties and liveness properties. This seems a natural approach for
reasoning about updates in an object oriented system, but a complete investigation of correctness
in the system presented remains a subject for future research. In this respect, other systems [12, 27]
are more developed, but these systems do not consider inheritance or concurrency and are also less
flexible than our approach. As our system has a formal specification in rewriting logic, it is possible
to reason about the correctness of updates 1 and we expect that sufficient conditions for correctness
of updates with our approach can be established in the future.

In conclusion, we believe the Creol update system presented in this thesis provides a good balance
between flexibility and safety, takes inheritance and concurrency into consideration and can perform
updates with minimal impact to the responsiveness of the running system.

Future Research

It would be interesting to use the specification given in this thesis to make a low level implementation
of the Creol update system where performance results could be investigated. A real implementation
of the update system would allow much more complicated systems to be built with Creol and thus
create more realistic scenarios for updates. An implementation of the update system could for
example be made with the LLVM framework for dynamic compilation [18] and a small runtime
using MPI [11] calls for message passing between nodes. I am sure such a system would not only be
a valuable tool for programming distributed applications, but would most certainly also highlight
areas for improvement in the high level specification of Creol.

It would also be of great importance to make a completely formal investigation of the correctness
criteria for updates in my proposed system. Recent work by Stoyle, Bierman, Hicks et al. has intro-
duced a very impressive formal system for updates in C like languages called Proteus [27]. However,
this work does not take into account the special properties of object oriented and distributed sys-
tems. Judging from this work, it would be a huge endeavour to completely define correctness in my
system so in this thesis I have only attempted to provide some pointers to which problems have to
be solved.

Several extensions to the update system presented in this thesis are possible. I think the most
interesting one would be a more complete investigation of the concept of guided execution. General
techniques for reaching a quiescent state would be applicable to almost any update system, and
thus potentially valuable. One such method I have only briefly investigated is to formulate regular
expressions on the communication history of objects. Since regular expressions can be evaluated by
a finite state machine, it’s not necessary to keep a record of the communication history to evaluate
when we reach a quiescent state. Each state in our state machine can then contain information
about which methods will contribute toward reaching a quiescent state and should be allowed to
execute when we are seeking quiescence. This is much more powerful that the simple finish or
restart semantics used in the system presented here, but it remains to be seen if this extra power
is worth the performance overhead added to the method call mechanism.

1Other systems may have inherent problems such as representation incoherency [9] or they are based on a pro-
gramming language that doesn’t allow formal reasoning [13, 22]
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Other possible extensions include a more general way of specifying parameter conversion where
a method call could be converted to a call on another method. I expect this to be a simple
extension to make and it would make it much easier to refactor existing class hierarchies, so it
seems like a valuable addition to the system. We could also add the capability to do state transfer
for completion messages which would allow arbitrary changes to the return types of methods.
One way of doing it without requiring extra syntax would be to allow assignments to the out
parameters in the parameter conversion. The semantics of this would be to use the assignments to
unqualified parameters when converting one way and assignments to parameters qualified with old
when converting the other way. However the value of such an extension seems questionable based
on the findings of Stoyle, Bierman, Hicks et al. [27], where a number of open source applications
were analysed to see which kinds of changes were common. They found that very few changes
were made to function signatures, and even then the changes consisted primarily of adding new
parameters.

Finally an investigation of security concerns would be an interesting undertaking. If we want to
create a system which can match the functionality of Windows Update or other such systems for
distributing patches, security has to be considered carefully. The goal should be to have updates
as an integrated service in the operating system so you would never have to download or install
patches to software you are using and would not notice an update taking place except as a pleasant
surprise due to new or improved functionality.
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Appendix A

Creol EBNF Syntax

letter = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’ |
’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ |
’y’ | ’z’ | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ |
’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ |
’W’ | ’X’ | ’Y’ | ’Z’ ;

digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ ;

symbol = ’!’ | ’#’ | ’$’ | ’%’ | ’&’ | "’" | ’(’ | ’)’ | ’*’ | ’+’ | ’,’ | ’-’ |
’.’ | ’/’ | ’:’ | ’;’ | ’<’ | ’=’ | ’>’ | ’?’ | ’@’ | ’[’ | ’\’ | ’]’ |
’^’ | ’_’ | ’‘’ | ’|’ | ’~’ ;

comment delimiter = ’{’ | | ’}’ ;

space = ’ ’ ;

identifier = (letter | ’_’), { letter | number | ’_’ } ;

number = digit, { digit } ;

string = ’"’, { letter | digit | symbol | space | comment delimiter }, ’"’ ;

name = identifier [ "@", identifier ] ;

expression = name | number | string | "true" | "false"
| "-", expression
| expression, "+", expression
| expression, "-", expression
| expression, "*", expression
| expression, "/", expression
| "not", expression
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| expression, "or", expression
| expression, "and", expression
| expression, "=", expression
| expression, "/=", expression
| expression, ">", expression
| expression, "<", expression
| expression, "<=", expression
| expression, ">=", expression ;

parameters = "(", expression, { ",", expression }, ")" ;

inout parameters = parameters
| "(", [ expression, { ",", expression } ],
";", name, { ",", "name" }, ")" ;

method call = name, [ inout parameters ]
| [ identifier ], "!", name, [ parameters ]
| name ’.’ identifier, [ inout parameters ]
| [ identifier ], "!", name ’.’ identifier, [ parameters ] ;

method return = identifier, "?", "(", name, { ",", name }, ")";

guard = "wait" | expression | method return ;

statement = name, ":=", expression
| name, ":=", "new", identifier, parameters
| "if", expression, "then", statements, [ "else", statments ], "fi"
| "while", expression, "do", statements, "od"
| "await", guard, { "&", "guard" }
| method call
| method return

statements = statement
| statements, "[]", statements
| statements, "||", statements
| statements, ";", statements ;

declaration = identifier, ’:’, identifier ;
definition = identifier, ’:’, identifier, [ ":=", expression ] ;

declarations = declaration, { ’,’, declaration } ;
definitions = definition, { ’,’, definition } ;

inheritance = identifier, [ parameters ] ;

finish list = "finish", identifier, { ’,’, identifier } ;
restart list = "restart", identifier, { ’,’, identifier } ;
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parameter convert = "convert", definitions ;

class convert = "convert", "==", [ "var", definitions ], statements,
[ finish list ], [ restart list ] ;

method signature = "op", identifier,
[ ( "(", declarations, ["out", declarations], ")"
| "(", [declarations], "out", declarations, ")" ) ] ;

method definition = method signature, [ parameter convert ], "==",
[ "var", definitions ], statements ;

interface declaration = "interface", identifier,
[ "[", declarations, "]" ],
["inherits", inheritance, { ’,’, inheritance } ],
"begin",
[ "types", declarations ],
{ "with" ( identifier | "any" ), { method signature } },
"end" ;

class declaration = "class", identifier,
[ "[", declarations, "]" ], [ "(", declarations, ")" ],
["implements", identifier, { ’,’, identifier }],
["inherits", inheritance, { ’,’, inheritance } ],
"begin",
[ "var", definitions ],
[ class convert ],
{ method definition },
"end" ;
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Appendix B

Full Specification of the Interpreter

1 ************************ STRUCTURE *********************************
2
3 fmod DATA is
4 pr QID .
5 pr STRING .
6 pr INT .
7
8 sorts Nil Aid UTDOid Oid AidList Data DataList Call Expr List .
9

10 subsorts Qid < UTDOid < Oid .
11 subsorts Qid < UTDOid Oid Aid < Data < Expr DataList < List .
12 subsorts Aid < AidList < DataList .
13 subsorts Nil < AidList < DataList .
14 subsort Call < Expr .
15
16 op null : -> Oid [ctor] . *** undef. value/none pointer
17 op _[_] : Qid List -> Call [ctor] . *** call
18 op int : Int -> Data [ctor] .
19 op str : String -> Data [ctor] .
20 op bool : Bool -> Data [ctor] .
21 op pair : Data Data -> Data [ctor] .
22 op pair : Expr Expr -> Expr [ctor] .
23 op list : DataList -> Data [ctor] .
24 op list : List -> Expr [ctor] .
25
26 op nil : -> Nil [ctor] .
27 op __ : List List -> List [ctor assoc id: nil] .
28 op __ : DataList DataList -> DataList [ctor ditto] .
29 op __ : AidList AidList -> AidList [ctor ditto] .
30 op __ : Nil Nil -> Nil [ctor ditto] .
31
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32 *** Expressions
33 ops not_ neg_ : Expr -> Expr .
34 ops _+_ _-_ _*_ _/_ _cat_ : Expr Expr -> Expr .
35 ops _<_ _<=_ _>_ _>=_ : Expr Expr -> Expr .
36 ops _and_ _or_ _/=_ _=_ : Expr Expr -> Expr .
37 ops pair : Expr Expr -> Expr [ctor] .
38 ops _.fst _.scd : Expr -> Expr . *** first and second part of pair
39
40 *** some CMC list functions on expressions
41 ops head last : Expr -> Expr . *** first and last element
42 op rest : Expr -> Expr . *** left-rest
43 op tail : Expr -> Expr . *** right-rest
44 op _++_ : Expr Expr -> Expr . *** concat
45 op _+-_ : Expr Expr -> Expr . *** append right
46 op _-+_ : Expr Expr -> Expr . *** append left
47 op length : Expr -> Expr . *** list length
48 op isempty : Expr -> Expr . *** is the list empty
49 ops has index : Expr Expr -> Expr . *** element test, indexing: list number
50 op after : Expr Expr -> Expr . *** tail of list after index
51 op remove : Expr Expr -> Expr . *** remove (first occurrence of)
52 *** element from list
53
54 op _asInt : Expr -> Int .
55 op _asBool : Expr -> Bool .
56 op _asStr : Expr -> String .
57
58 var N : Nat .
59 var B : Bool .
60 var S : String .
61 eq int(N) asInt = N . *** otherwise error...
62 eq bool(B) asBool = B .
63 eq str(S) asStr = S .
64
65 endfm
66
67 *** Bound variables ***
68 fmod LIST-QID-VAL is
69 protecting DATA .
70
71 *** Subst: non-repetitive list of BndVar.
72 *** InitVar InitSubst has Expr where BndVar Subst has Data.
73 sorts BndVar Subst InitVar InitSubst .
74 subsorts BndVar < Subst InitVar < InitSubst .
75
76 op _:_ : Aid Data -> BndVar [ctor format (! o o o) ] .
77 op _:_ : Aid Expr -> InitVar [ctor format (! o o o) ] .
78 op no : -> Subst [ctor] .
79 op _,_ : Subst Subst -> Subst [ctor assoc id: no] .

62



80 op _,_ : InitSubst InitSubst -> InitSubst [ctor assoc id: no] .
81
82 *** Remove multiple values of same variable in a Susbt
83 var A : Aid .
84 var L : Subst .
85 vars D D’ : Expr .
86 eq (A : D), L, (A : D’) = if D’ == null then (A : D), L else (A : D’), L fi .
87
88 endfm
89
90 *** CREOL guards ***
91 fmod GUARDS is
92 protecting LIST-QID-VAL .
93
94 sorts Guard Wait Return ExtGuard .
95 subsorts Return Expr Wait < Guard < ExtGuard .
96
97 op wait : -> Wait [ctor] . *** suspension
98 op _? : Aid -> Return [ctor] . *** reply guard
99 op _? : Nat -> Return [ctor] . *** low level reply guard

100 op _?G(_) : Aid List -> ExtGuard . *** reply guard with side effect
101 op nothing : -> Guard [ctor] .
102 op _&_ : Guard Guard -> Guard [ctor id: nothing assoc comm prec 55] .
103 op _&_ : Guard ExtGuard -> ExtGuard [ctor ditto] .
104
105 *** reduction of guards to normalform: [wait &]? [bool &]? return ***
106 vars E E’ : Expr .
107 eq wait & wait = wait .
108 eq E & E’ = E and E’ .
109 endfm
110
111 *** CREOL program code ***
112 fmod PROG is
113 protecting GUARDS .
114
115 sorts Stm Prog ProgList NeProgList . *** Stm is basic statem
116 *** without a leading guard.
117 subsort Stm < Prog < NeProgList < ProgList . *** possibly with Reply < ...
118
119 *** Cid is class identifier, Mid method name, Aid attribute name
120 sorts Cid Mid Version .
121 subsort Nat < Version .
122 op _#_ : Qid Version -> Cid [ctor] .
123 subsort Qid < Aid < Cid Mid .
124
125 op _._ : Expr Qid -> Mid [ctor] . *** remote call
126 op _@_ : Qid Cid -> Mid [ctor] . *** method qualified by class name (local)
127 op _@_ : Qid Cid -> Aid [ctor] . *** attribute qualified by class name (local)
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128
129 op empty : -> ProgList [ctor] .
130 op _;_ : ProgList ProgList -> ProgList [ctor assoc id: empty] .
131 op _;_ : NeProgList ProgList -> NeProgList [ctor ditto] .
132 op _;_ : ProgList NeProgList -> NeProgList [ctor ditto] .
133 op _;_ : NeProgList NeProgList -> NeProgList [ctor ditto] .
134
135 *** CREOL program syntax
136 *** op _:=_ : Aid Expr -> Stm [ctor] . *** simple assignment
137 op _:=_ : AidList List -> Stm [ctor]. ***simultaneous assignment, same length
138 op _:= new_(_) : Aid Cid List -> Stm [ctor] . *** object creation
139 op if_th_el_fi : Expr ProgList ProgList -> Stm [ctor] .
140 op if_th_fi : Expr ProgList -> Stm .
141 op while_do_od : Expr ProgList -> Stm [ctor] .
142 op _(_;_) : Mid List List -> Stm [ctor] . *** sync. call (with reply)
143 op !_(_) : Mid List -> Stm . *** async. call (without label)
144 op _!_(_) : Qid Mid List -> Stm . *** async. call (with label)
145 op _?(_) : Qid List -> Stm [ctor] . *** async. reply statement
146 op end : List -> Stm [ctor] . *** method return
147 op continue : Nat -> Stm [ctor] . *** sync. termination
148 op _[]_ : ProgList ProgList -> Prog [ctor assoc]. *** non-deterministic progs
149 op _|||_ : ProgList ProgList -> Prog [comm assoc] . *** interleaved progs
150 op _MERGER_ : ProgList ProgList -> Prog [assoc] . *** EBJ 18.01.2005
151 op await_ : Guard -> Prog [ctor] .
152 op await_ : ExtGuard -> Prog . *** reply guards with side effect
153
154 *** Low level CMC mechanism for sync. calls (dummy labels using Nat)
155 op _?(_) : Nat List -> Stm [ctor]. *** sync. reply statement
156
157 *** A Process had a Mid of the method it’s an instance of,
158 *** a Bool indicating if it is newly bound (no execution has been done yet),
159 *** a ProgList with statements and a Subst of bound variables
160 sort Process .
161 op none : -> Process [ctor] .
162 op process : Mid Bool ProgList Subst -> Process [ctor] .
163
164 *** Multiset of Processes
165 sort MProg .
166 subsort Process < MProg .
167 op _:_ : MProg MProg -> MProg [ctor assoc comm id: none] .
168
169 *** Some simplifying equivalences for Programs and Processes
170 var EL : List .
171 var M : Mid .
172 var B : Bool .
173 var L : Subst .
174 var P : ProgList .
175 eq (nil := EL) ; empty = empty .
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176 eq (await nothing); empty = empty .
177 eq process(M, B, empty, L) = (none).Process .
178 eq (empty ||| P) = P . *** ||| with attr. id: nil gives problems.
179 endfm
180
181 *** CREOL classes ***
182 fmod CLASS is
183 protecting PROG .
184
185 sorts Class Mtd MMtd Inh InhList . *** inheritance list
186 subsorts Call < Inh < Expr .
187 subsorts Nil Inh < InhList < List .
188
189 op _[_] : Cid List -> Inh . *** initialised superclass
190 op __ : InhList InhList -> InhList [ctor assoc id: nil] .
191
192 var Ih : Inh . var S : InhList .
193 eq Ih S Ih = Ih S .
194
195 op <_: Mtdname | Latt:_, Code:_> : Qid Subst ProgList ->
196 Mtd [ctor format (m! om m m m m m g m m m! on)] .
197
198 subsort Mtd < MMtd . *** Multiset of methods
199
200 op none : -> MMtd [ctor] .
201 op _*_ : MMtd MMtd -> MMtd [ctor assoc comm id: none] .
202
203 op <_: Cl | Inh:_, Att:_, Mtds:_, Ocnt:_> :
204 Cid InhList InitSubst MMtd Nat -> Class
205 [ctor format (nb! b! ob b b b o g b o g b o g b o b! on )] .
206
207 endfm
208
209 *** CREOL objects ***
210 fmod OBJECT is
211 protecting CLASS .
212
213 sort Object .
214
215 op <_: Ob | Cl:_, Pr:_, PrQ:_, Att:_, Lcnt:_> :
216 Oid Cid Process MProg Subst Nat -> Object [ctor
217 format (nr! r! ob r r or b g r r g r m g r o g r o r! no )] .
218 endfm
219
220 *** CREOL messages and queues ***
221 fmod COMMUNICATION is
222 protecting DATA .
223 pr PROG .
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224
225 sort NatS . *** list of nats
226
227 sort Msg MMsg Kid Queue .
228 subsort Msg < MMsg .
229
230 op none : -> MMsg [ctor] .
231 op __ : MMsg MMsg -> MMsg [ctor assoc comm id: none] .
232
233 *** INVOCATION and REPLY
234 op invoc(_,_,_) : Oid Mid DataList -> Msg *** invocation
235 [ctor format (rg o o o o o o o no)] .
236 op comp(_) : DataList -> Msg *** completion
237 [ctor format (rg o o o no)] .
238 op error : String -> Msg [ctor] . *** error
239 op warning : String -> Msg [ctor] . *** warning
240
241 *** message queue
242 op empty : -> NatS [ctor].
243 op [_] : Nat -> NatS [ctor].
244 op _;_ : NatS NatS -> NatS [ctor assoc id: empty] .
245
246 op <_: Qu | Ev:_, Keep:_> : Oid MMsg NatS -> Queue
247 [format (nm! m! om m m m o m m o m! no)] .
248
249 endfm
250
251 *** STATE CONFIGURATION ***
252
253 fmod CONFIG is
254 protecting OBJECT .
255 protecting COMMUNICATION .
256
257 sort Configuration .
258
259 subsorts Object MMsg Queue Class < Configuration .
260
261 op none : -> Configuration [ctor] .
262 op __ : Configuration Configuration -> Configuration
263 [ctor assoc comm id: none] .
264
265 endfm
266
267 ********************* AUXILIARY FUNCTIONS ******************************
268
269 fmod FUNKSJONER is
270 pr COMMUNICATION .
271 pr OBJECT .
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272
273 *** Queue-function ***
274 op inqueue : Nat MMsg -> Bool . *** checks if Msg is in the queue
275
276 *** Class/method functions ***
277 op get : Qid MMtd -> Mtd . *** fetches method
278 op _in_ : Qid MMtd -> Bool . *** checks if Q is a declared method
279
280 *** VarList functions ***
281 op val : Aid Subst -> Data . *** fetches value of prog. var.
282 op _in_ : Aid Subst -> Bool . *** checks occurence in list
283 op _in_ : Aid AidList -> Bool . *** checks occurence in list
284 op evalList : List Subst -> DataList . *** maps list to values
285 op eval : Expr Subst -> Data . *** evaluate expression
286 op evalB : Expr Subst -> Bool .
287 op evalI : Expr Subst -> Int .
288 op evalS : Expr Subst -> String .
289 op enabled : ProgList Subst MMsg -> Bool . *** eval guard
290 op ready : ProgList Subst MMsg -> Bool . *** eval guard
291 op assign : InitSubst DataList -> Subst . *** parameter substitution
292
293 *** variables
294 vars A A’ : Aid .
295 vars Q Q’ : Qid .
296 vars O O’ O’’ : Oid .
297 vars L L’ : Subst .
298 var IL : InitSubst .
299 vars D D’ : Data .
300 vars DL DL’ : DataList .
301 var St St’ : String .
302 var MMTD : MMtd .
303 var MTD : Mtd .
304 var G G’ : Guard .
305 var SP SP’ : Prog .
306 vars P P’ : ProgList .
307 vars PR PR’ : Process .
308 vars neP : NeProgList .
309 var MP : MProg .
310 vars I J : List .
311 vars M M’ ; Mid .
312 var MM : MMsg .
313 vars X X’ : Expr .
314 vars B B’ : Bool .
315 vars N N’ : Nat .
316 vars C C’ : Int .
317 var AL AL’ : AidList .
318
319 eq A in no = false .
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320 eq A in ((A’ : D), L) = if A == A’ then true else (A in L) fi .
321
322 eq A in nil = false .
323 eq A in (A’ AL) = if A == A’ then true else (A in AL) fi .
324
325 eq val(A, no) = A . *** or null
326 eq val(A,((A’ : D),L)) = if A == A’ then D else val(A, L) fi .
327
328 eq evalI(X,L) = eval(X,L) asInt .
329 eq evalB(X,L) = eval(X,L) asBool .
330 eq evalS(X,L) = eval(X,L) asStr .
331 *** evaluates to Data ***
332
333 eq eval(null, L) = null . *** superfluous?
334 eq eval(A, L) = val(A, L) .
335
336 eq eval(pair(X,X’),L) = pair(eval(X,L),eval(X’,L)) .
337 eq eval(list(J), L) = list(evalList(J, L)) .
338 eq evalList(nil, L) = nil .
339 eq evalList(X I, L) = eval(X, L) evalList(I, L) .
340 eq eval(Q[I], L) = Q[evalList(I, L)] . *** call, need also to define Q
341 eq ’plus [int(C) int(C’)] = int(C + C’) .
342 eq ’plus [str(St) str(St’)] = str(St + St’).
343 eq eval(index(X,X’),L)= index(eval(X,L),eval(X’,L)) .
344 eq index(list(D DL),int(N))= if N == 1 then D else
345 index(list(DL),int(N - 1))fi .
346 eq eval(after(X,X’),L)= after(eval(X,L),eval(X’,L)) .
347 eq after(list( DL),int(0)) = DL .
348 eq after(list(D DL),int(N)) = if N == 1 then DL else
349 after(list(DL),int(N - 1))fi .
350 eq eval(remove(X,X’),L)= remove(eval(X,L), eval(X’,L)) .
351 eq remove(list(nil), D) = list(nil) .
352 eq remove(list(D DL), D’) = if D == D’ then remove(list(DL), D’)
353 else list(D remove(list(DL), D’)) fi .
354
355 *** data-string
356 eq eval(X cat X’, L) = str(eval(X, L) asStr + eval(X’, L) asStr) .
357
358 *** data-int
359 eq eval((neg X), L) = int(- (eval(X, L) asInt)) .
360 eq eval((X + X’), L) = int(eval(X, L)asInt + eval(X’, L)asInt) .
361 eq eval((X - X’), L) = int(eval(X, L)asInt - eval(X’, L)asInt) .
362 eq eval((X * X’), L) = int(eval(X, L)asInt * eval(X’, L)asInt) .
363 eq eval((X / X’), L) = int(eval(X, L)asInt quo eval(X’, L)asInt) .
364
365 *** data-pair
366 eq pair(D,D’).fst = D .
367 eq pair(D,D’).scd = D’ .
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368
369 eq eval(X .fst,L) = eval(X,L).fst .
370 eq eval(X .scd,L) = eval(X,L).scd .
371
372 *** evaluates to booleans
373 eq eval((X > X’), L) = bool(eval(X, L)asInt > eval(X’, L)asInt) .
374 eq eval((X >= X’), L) = bool(eval(X, L)asInt >= eval(X’, L)asInt) .
375 eq eval((X < X’), L) = bool(eval(X, L)asInt < eval(X’, L)asInt) .
376 eq eval((X <= X’), L) = bool(eval(X, L)asInt <= eval(X’, L)asInt) .
377 eq eval( X = X’, L) = bool((eval(X, L) == eval(X’, L))) .
378 eq eval( X /= X’, L) = bool((eval(X, L) =/= eval(X’, L))) .
379 eq eval( not X, L) = bool(not (eval(X, L) asBool)) .
380 eq eval(X and X’, L) = bool(eval(X, L)asBool and eval(X’, L)asBool) .
381 eq eval(X or X’, L) = bool(eval(X, L)asBool or eval(X’, L)asBool) .
382
383 *** data-list
384 eq eval(head(X), L) = head(eval(X, L)) .
385 eq eval(last(X), L) = last(eval(X, L)) .
386 eq eval(tail(X), L) = tail(eval(X, L)) .
387 eq eval(rest(X), L) = rest(eval(X, L)) .
388 eq eval(length(X),L) = length(eval(X, L)) .
389 eq eval(X ++ X’, L) = eval(X, L) ++ eval(X’, L) .
390 eq eval(X -+ X’, L) = eval(X, L) -+ eval(X’, L) .
391 eq eval(X +- X’, L) = eval(X, L) +- eval(X’, L) .
392 eq eval(isempty(X),L) = isempty(eval(X, L)) .
393 eq eval(has(X,X’), L) = has(eval(X, L), eval(X’, L)) .
394
395 eq eval(D, L) = D [owise] .
396
397 *** list-functions
398 eq head(list(nil)) = null .
399 eq head(list(D I)) = D .
400 eq last(list(nil)) = null .
401 eq last(list(I D)) = D .
402 eq rest(list(nil)) = null .
403 eq rest(list(I X)) = list(I) . ***may use D to enforce bottom up evaluation
404 eq tail(list(nil)) = null .
405 eq tail(list(X I)) = list(I) . ***may use D to enforce bottom up evaluation
406 eq list(I) ++ list(J) = list(I J) .
407 eq D -+ list(J) = list(D J) .
408 eq list(I) +- D = list(I D) .
409 eq has(list(nil), D) = bool(false) .
410 eq has(list(J D I),D) = bool(true) .
411 eq isempty(list(nil)) = bool(true) .
412 eq isempty(list(D I)) = bool(false) .
413 eq length(list(nil)) = int(0) .
414 eq length(list(D I)) = if I == nil then int(1)
415 else length(list(I)) + int(1) fi .
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416 eq int(C) + int(C’) = int(C + C’). *** needed due to previous line!
417
418 *** inspects queue
419 eq inqueue(N, none) = false .
420 eq inqueue(N, comp(O int(N’) J) MM) =
421 if N == N’ then true else inqueue(N, MM) fi .
422
423 *** test of guard by ENABLED (EBJ 18.01.2005)
424 eq enabled(SP ; neP, L, MM) = enabled(SP, L, MM) .
425 eq enabled(P [] P’, L, MM) = enabled(P, L, MM) or enabled(P’, L, MM) .
426 eq enabled(P ||| P’, L, MM) = enabled(P, L, MM) or enabled(P’, L, MM) .
427 eq enabled(await(wait & G),L, MM) = false . *** Note: no wait in PrQ!
428 eq enabled(await (X & G), L, MM) = evalB(X, L) and enabled(await G, L, MM) .
429 eq enabled(await((Q ?)& G),L, MM)
430 = inqueue(evalI(Q, L), MM) and enabled(await G, L, MM) .
431 eq enabled(await((N ?)& G),L, MM)
432 = inqueue(N, MM) and enabled(await G, L, MM) .
433 eq enabled(empty,L, MM) = true .
434 eq enabled(SP ; P’, L, MM) = true [owise].
435
436 eq ready(SP ; neP, L, MM) = ready(SP, L, MM) .
437 eq ready(Q ?(I), L, MM) = inqueue(evalI(Q, L), MM) .
438 eq ready(N ?(I), L, MM) = inqueue(N, MM) .
439 eq ready(SP ; P’, L, MM) = enabled(SP ; P’, L, MM) [owise].
440
441 eq get(Q, < Q : Mtdname | Latt: L, Code: P > * MMTD)
442 = < Q : Mtdname | Latt: L, Code: P > .
443
444 eq Q in none = false .
445 eq Q in (< Q’ : Mtdname | Latt: L, Code: P > * MMTD)
446 = if Q == Q’ then true else Q in MMTD fi .
447
448 *** makes substitutions
449 eq assign(IL, nil) = IL .
450 eq assign(no, DL) = no . *** needed??
451 eq assign(((A : X), IL), D DL) = (A : D), assign(IL, DL) .
452
453 *** transform wait guards when active code is suspended. remove all waits.
454 op clear : ProgList -> ProgList .
455 op clear : Guard -> Guard .
456
457 eq clear(empty) = empty .
458 eq clear(SP ; neP) = clear(SP) ; neP .
459 eq clear(P [] P’) = clear(P) [] clear(P’).
460 eq clear(await G) = await( clear(G)).
461 eq clear(nothing) = nothing .
462 eq clear(wait & G) = clear(G) .
463 eq clear(X & G) = X & clear(G).
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464 eq clear((Q ?) & G) = (Q ?) & clear(G).
465 eq clear((N ?) & G) = (N ?) & clear(G).
466 eq clear(SP) = SP [owise].
467 eq clear(P ||| P’) = clear(P) ||| clear(P’).
468
469 *** EXPANSION OF LANGUAGE MACROS:
470 eq await (G’ & Q ?G(I)) = await (G’ & Q ?); (Q ?(I)) .
471 eq if X th P fi = (if X th P el empty fi) .
472
473 endfm
474
475 *** the CREOL INTERPRETER ***
476
477 mod INTERPRET is
478 pr CONFIG .
479 pr FUNKSJONER .
480 pr CONVERSION .
481
482 op new_(_) : Cid List -> Msg . *** initialise program message
483
484 vars O O’ : Oid .
485 var UTD : UTDOid .
486 vars B B’ : Bool .
487 vars C C’ : Cid .
488 var Q : Qid .
489 vars X Y : Aid .
490 var D D’ : Data .
491 vars W W’ : MProg .
492 vars I J K : List .
493 var MM : MMsg .
494 var Ms : Msg .
495 var MMTD : MMtd .
496 vars M M’ : Mid .
497 vars E E’ OE : Expr . *** OE is oid-expr.
498 var F : Nat . *** Ocnt:-values
499 var VN : Nat . *** Version number
500 vars N N’ : Nat .
501 vars G G’ : Guard .
502 var AL : AidList .
503 vars DL : DataList .
504 vars S S’ : InhList . *** list of (parameterized) superclasses
505 vars IA : InitSubst . *** list of initialized attribute declarations
506 vars L L’ A A’ : Subst . *** local var and attribute var-lists, respec.
507 vars P P’ P’’ R R’ : ProgList .
508 vars PR PR’ : Process .
509 vars SP : Prog .
510 var St : Stm .
511 vars H H’ : NatS .
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512
513 op newProcess : Mid Mtd DataList -> Process .
514 eq newProcess(M, < Q : Mtdname | Latt: L, Code: P > , D D’ DL) =
515 process(M, true, P, ((’caller : D), (’label : D’), assign(L, DL))) .
516
517 **********VIRTUAL BINDING of METHODS With MULTIPLE INHERITANCE
518
519 op bindMtd : Oid Qid List InhList -> Msg [ctor] . ***Bind method request
520 *** Given: callee method params (list of classes to look in)
521 op boundMtd : Oid Process -> Msg [ctor] . *** binding result
522 *** CONSIDER the call O.Q(I).
523 *** bindMtd(O,Q,I,C S) try to find Q in class C or superclasses, then in S
524 *** boundMtd(O, process(Q @ C, true, Prog, Latt)) is the result.
525 *** where C is the actual class of the method
526
527 *** Bind run to a no operation program as a default if it’s not defined in any
528 *** class of the object
529 eq bindMtd(O, ’run, D D’ I, nil)
530 = boundMtd(O, process(’run @ ’null, true, end(nil),
531 (’caller : D), (’label : D’))) .
532
533 eq bindMtd(O, Q, I, ((C)[DL]) S’)
534 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
535 = if Q in MMTD then
536 boundMtd(O, newProcess(Q @ C, get(Q, MMTD), I))
537 else
538 bindMtd(O, Q, I, S S’)
539 fi
540 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F > .
541
542 **********ATTRIBUTE inheritance with multiple inheritance
543 *** CMC ensures that all attributes names are (globally) different
544
545 op findAttr : Oid InhList Subst -> Msg [ctor] . *** collect attributes
546 op foundAttr : Oid Subst -> Msg [ctor] . *** resulting Subst
547 *** look in InhList, collect attributes in Subst, give result to Oid
548 eq findAttr(O, nil, A) = foundAttr(O, A) . *** collection completed.
549
550 eq findAttr(O,(((C)[DL]) S’),A)
551 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
552 = findAttr(O,(S S’),(A, evalSS(assign(IA,DL),A)))
553 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F > .
554
555 op evalSS : InitSubst Subst -> Subst . *** eval Subst Sequentially
556 eq evalSS( no, A ) = no .
557 eq evalSS(((X : E),IA), A) = (X : eval(E,A)), evalSS(IA, (A,(X : eval(E,A)))).
558
559 *************************** Names of new objects ********************
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560 op newId : Cid Nat -> Qid .
561 eq newId(C, F) = qid(string(C) + string(F)) .
562 ***** some code to make string/qid total
563 op string : Nat -> String .
564 op string : Cid -> String [ditto] .
565 op string : Oid -> String [ditto] .
566 *** op string : Rat NzNat -> String [ditto] .
567 op qid : Qid -> Qid .
568 op qid : String -> Qid [ditto] .
569 eq string(F) = string(F,10) .
570 eq qid(Q) = Q .
571 eq qid(string(Q)) = Q .
572 eq qid(string(C)) = qid(C) .
573 *** eq qid(S:String) = ’invalid [owise] .
574
575 *********************** INTERPRETER RULES ***************************
576
577 *** assign ***
578
579 rl [assign] :
580 < O : Ob | Cl: C, Pr: process(M, B, (X AL := E I); P, L),
581 PrQ: W, Att: A, Lcnt: N >
582 =>
583 if X in L then
584 < O : Ob | Cl: C, Pr: process(M, B, (AL := evalList(I, (A, L))); P,
585 (L, (X : eval(E, (A,L))))),
586 PrQ: W, Att: A, Lcnt: N >
587 else if X in A then
588 < O : Ob | Cl: C, Pr: process(M, B, (AL := evalList(I, (A, L))); P, L),
589 PrQ: W, Att: (A, (X : eval(E, (A, L)))), Lcnt: N >
590 else error("variable_does_not_exist: " + string(X) + " in " + string(O))
591 fi
592 fi .
593
594 *** if_then_else ***
595 rl [if-el] :
596 < O : Ob | Cl: C, Pr: process(M, B, if E th P el P’ fi ; R, L),
597 PrQ: W, Att: A, Lcnt: N >
598 =>
599 if evalB(E, (A , L)) then
600 < O : Ob | Cl: C, Pr: process(M, B, P ; R, L), PrQ: W, Att: A, Lcnt: N >
601 else
602 < O : Ob | Cl: C, Pr: process(M, B, P’ ; R, L), PrQ: W, Att: A, Lcnt: N >
603 fi .
604
605 *** while ***
606 rl [while] :
607 < O : Ob | Cl: C, Pr: process(M, B, while E do R od ; P, L),

73



608 PrQ: W, Att: A, Lcnt: N >
609 =>
610 < O : Ob | Cl: C,
611 Pr: process(M, B, (if E th (R ; (while E do R od)) fi); P, L),
612 PrQ: W, Att: A, Lcnt: N > .
613
614 *** Object Creation: by new-msg and by new-statements
615 rl [new-start-req] :
616 (new C (DL))
617 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
618 =>
619 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: (F + 1) >
620 < newId(C,F): Ob | Cl: C, Pr: process(’init @ ’null, false,
621 (0 ? (nil)); ’run (nil ; nil), no),
622 PrQ: none, Att: no, Lcnt: 1 >
623 < newId(C, F): Qu | Ev: none, Keep: empty >
624 findAttr(newId(C,F), C[DL], (’this : newId(C,F))) .
625
626 rl [new-start] :
627 foundAttr(O, A)
628 < O : Ob | Cl: C, Pr: process(M, B, (0 ?(nil)); P, L),
629 PrQ: W, Att: A’, Lcnt: 1 >
630 =>
631 < O : Ob | Cl: C, Pr: process(M, B, P, L), PrQ: W, Att: A, Lcnt: 1 > .
632
633 rl [new-req] :
634 < O : Ob | Cl: C, Pr: process(M, B, (X := new C’(I)); P, L),
635 PrQ: W, Att: A, Lcnt: N >
636 < C’ # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
637 =>
638 < O : Ob | Cl: C, Pr: process(M, B, (X := newId(C’, F)); P, L),
639 PrQ: W, Att: A, Lcnt: N >
640 < C’ # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: (F + 1) >
641 < newId(C’,F): Ob | Cl: C’, Pr: process(’init @ ’null, false,
642 (0 ?(nil)); ’run (nil ; nil), no),
643 PrQ: none, Att: no, Lcnt: 1 >
644 < newId(C’,F): Qu | Ev: none, Keep: empty >
645 findAttr(newId(C’,F), (C’)[evalList(I,(A,L))], (’this : newId(C’,F))) .
646
647 *** Non-deterministic choice ***
648
649 crl [nondet-p1] :
650 < O : Ob | Cl: C, Pr: process(M, B, (P [] P’); R, L), PrQ: W, Att: A, Lcnt: N >
651 < O : Qu | Ev: MM, Keep: H >
652 =>
653 < O : Ob | Cl: C, Pr: process(M, B, P ; R, L), PrQ: W, Att: A, Lcnt: N >
654 < O : Qu | Ev: MM, Keep: H >
655 if ready(P, (L, A), MM) .
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656
657 crl [nondet-p2] :
658 < O : Ob | Cl: C, Pr: process(M, B, (P [] P’); R, L), PrQ: W, Att: A, Lcnt: N >
659 < O : Qu | Ev: MM, Keep: H >
660 =>
661 < O : Ob | Cl: C, Pr: process(M, B, P’ ; R, L), PrQ: W, Att: A, Lcnt: N >
662 < O : Qu | Ev: MM, Keep: H >
663 if ready(P’, (L, A), MM) .
664
665 *** Merge ***
666 crl [merge] : *** merge is comm, so this rule considers both P and P’.
667 < O : Ob | Cl: C, Pr: process(M, B, (P ||| P’); R, L),
668 PrQ: W, Att: A, Lcnt: N >
669 < O : Qu | Ev: MM, Keep: H >
670 =>
671 < O : Ob | Cl: C, Pr: process(M, B, (P MERGER P’); R, L),
672 PrQ: W, Att: A, Lcnt: N >
673 < O : Qu | Ev: MM, Keep: H >
674 if ready(P, (L, A), MM) .
675
676 rl [merger] :
677 < O : Ob | Cl: C, Pr: process(M, B, ((SP ; P) MERGER P’); R, L),
678 PrQ: W, Att: A, Lcnt: N >
679 < O : Qu | Ev: MM, Keep: H >
680 =>
681 < O : Qu | Ev: MM, Keep: H >
682 if enabled(SP, (L, A), MM) then
683 < O : Ob | Cl: C, Pr: process(M, B, (SP ; (P MERGER P’)); R, L),
684 PrQ: W, Att: A, Lcnt: N >
685 else
686 < O : Ob | Cl: C, Pr: process(M, B, (P’ ||| (SP ; P)); R, L),
687 PrQ: W, Att: A, Lcnt: N >
688 fi .
689
690 eq empty MERGER P = P .
691
692 *** Suspension ***
693
694 crl [suspend] : *** all kinds of code P
695 < O : Ob | Cl: C, Pr: process(M, B, P, L), PrQ: W, Att: A, Lcnt: N >
696 < O : Qu | Ev: MM, Keep: H >
697 =>
698 < O : Ob | Cl: C, Pr: none,
699 PrQ: W : process(M, B, clear(P), L), Att: A, Lcnt: N >
700 < O : Qu | Ev: MM, Keep: H >
701 if not enabled(P, (L , A), MM) .
702
703 *** Guards ***
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704
705 crl [boolguard] :
706 < O : Ob | Cl: C, Pr: process(M, B, await E ; P, L), PrQ: W, Att: A, Lcnt: N >
707 =>
708 < O : Ob | Cl: C, Pr: process(M, B, P, L), PrQ: W, Att: A, Lcnt: N >
709 if evalB(E, (A , L)) .
710
711 *** Reduction of label to number in guard
712 eq < O : Ob | Cl: C, Pr: process(M, B, await (X ? & G); P, L),
713 PrQ: W, Att: A, Lcnt: N’ >
714 = < O : Ob | Cl: C, Pr: process(M, B, await (evalI(X, L)? & G); P, L),
715 PrQ: W, Att: A, Lcnt: N’ > .
716
717 rl [replyguard-inQ] : *** removal of reply guard
718 < O : Ob | Cl: C, Pr: process(M, B, await(N ? & G); P, L),
719 PrQ: W, Att: A, Lcnt: N’ >
720 < O : Qu | Ev: MM comp(O int(N) K), Keep: H >
721 =>
722 < O : Ob | Cl: C, Pr: process(M, B, await G ; P, L),
723 PrQ: W, Att: A, Lcnt: N’ >
724 < O : Qu | Ev: MM comp(O int(N) K), Keep: H > .
725
726 *** Evaluate guards in suspended processes ***
727
728 crl [PrQ-enabled] :
729 < UTD : Ob | Cl: C, Pr: none, PrQ: process(M, B, P, L) : W, Att: A, Lcnt: N >
730 < UTD : Qu | Ev: MM, Keep: H >
731 =>
732 < UTD : Ob | Cl: C, Pr: process(M, false, P, L), PrQ: W, Att: A, Lcnt: N >
733 < UTD : Qu | Ev: MM, Keep: H >
734 if enabled(P, (A , L), MM).
735
736 *** Notify waiting processes when call completion is in the queue
737 eq < O : Ob | Cl: C, Pr: PR, PrQ: process(M, B, await (N ? & G); P, L) : W,
738 Att: A, Lcnt: N’ >
739 < O : Qu | Ev: MM comp(O int(N) DL), Keep: H >
740 = < O : Ob | Cl: C, Pr: PR, PrQ: process(M, B, (await G ; P), L) : W,
741 Att: A, Lcnt: N’ >
742 < O : Qu | Ev: MM comp(O int(N) DL), Keep: H > .
743
744 *** METHOD CALLS ***
745
746 eq ! Q(I) = ! ’this . Q(I) . *** could alternatively use X@ this class
747
748 *** receive invocation message ***
749 rl [receive-call-req] :
750 < O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N’ >
751 < O : Qu | Ev: MM invoc(O, Q, DL), Keep: H >
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752 =>
753 < O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N’ >
754 < O : Qu | Ev: MM, Keep: H >
755 bindMtd(O, Q, DL, C[nil]) .
756
757 rl [receive-call-req] :
758 < O : Qu | Ev: MM invoc(O, Q @ C, DL), Keep: H >
759 =>
760 < O : Qu | Ev: MM, Keep: H >
761 bindMtd(O, Q, DL, C[nil]) .
762
763 eq boundMtd(O, process(M, B, P, L))
764 < O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
765 = < O : Ob | Cl: C, Pr: PR,
766 PrQ: process(M, B, clear(P), L) : W, Att: A, Lcnt: N > .
767
768 *** local sync call with continue
769 eq < UTD : Ob | Cl: C, Pr: process(M, B, (N ? (J)); P, L),
770 PrQ: process(M’, true, P’,
771 ((’caller : UTD), (’label : int(N)), L’)) : W,
772 Att: A, Lcnt: N’ >
773 = < UTD : Ob | Cl: C, Pr: process(M’, false, P’ ; continue(N),
774 ((’caller : UTD), (’label : int(N)), L’)),
775 PrQ: process(M, B, await N ? ; (N ? (J)); P, L) : W,
776 Att: A, Lcnt: N’ > .
777
778 rl [continue] :
779 < UTD : Ob | Cl: C, Pr: process(M, B, continue(N), L),
780 PrQ: process(M’, B’, ((N ?(J)); P), L’) : W, Att: A, Lcnt: N’ >
781 =>
782 < UTD : Ob | Cl: C, Pr: process(M’, false, ((N ?(J)); P), L’),
783 PrQ: W, Att: A, Lcnt: N’ > .
784
785 rl [local-async-qualified-req] :
786 < O : Ob | Cl: C, Pr: process(M, B, ( ! Q @ C’(I)); P, L),
787 PrQ: W, Att: A, Lcnt: N >
788 =>
789 < O : Ob | Cl: C, Pr: process(M, B, P, L), PrQ: W, Att: A, Lcnt: N + 1 >
790 invoc(O, Q @ C’, (O int(N) evalList(I, (A, L)))) .
791
792 *** REMOTE METHOD CALLS ***
793 eq < O : Ob | Cl: C, Pr: process(M, B, (Q ! M’(I)); P, L),
794 PrQ: W, Att: A, Lcnt: N >
795 < O : Qu | Ev: MM, Keep: H >
796 = < O : Ob | Cl: C, Pr: process(M, B, (Q := int(N)); (! M’ (I)); P, L),
797 PrQ: W, Att: A, Lcnt: N >
798 < O : Qu | Ev: MM, Keep: H ; [N] > .
799

77



800 rl [remote-async-reply] :
801 < O : Ob | Cl: C, Pr: process(M, B, ( ! OE . Q(I)); P, L),
802 PrQ: W, Att: A, Lcnt: N >
803 =>
804 < O : Ob | Cl: C, Pr: process(M, B, P, L), PrQ: W, Att: A, Lcnt: N + 1 >
805 invoc(eval(OE, (A, L)), Q, (O int(N) evalList(I, (A, L)))) .
806
807 *** Reduce sync. call to async. call with reply
808 eq < O : Ob | Cl: C, Pr: process(M, B, (M’(I ; J)); P, L),
809 PrQ: W, Att: A, Lcnt: N >
810 < O : Qu | Ev: MM, Keep: H >
811 = < O : Ob | Cl: C, Pr: process(M, B, ! M’(I); (N ?(J)); P, L),
812 PrQ: W, Att: A, Lcnt: N >
813 < O : Qu | Ev: MM, Keep: H ;[N] > .
814
815 *** emit reply message ***
816 rl [reply] :
817 < O : Ob | Cl: C, Pr: process(M, B, (end(J)); P, L), PrQ: W, Att: A, Lcnt: N >
818 =>
819 < O : Ob | Cl: C, Pr: process(M, B, P, L), PrQ: W, Att: A, Lcnt: N >
820 comp(evalList(’caller ’label J, (A, L))) .
821
822 *** reduce label
823 eq < O : Ob | Cl: C, Pr: process(M, B, (X ?(J)); P, L),
824 PrQ: W, Att: A, Lcnt: N >
825 = < O : Ob | Cl: C, Pr: process(M, B, (evalI(X,L)?(J)); P, L),
826 PrQ: W, Att: A, Lcnt: N > .
827
828 *** blocking reply sentence ***
829 eq < O : Ob | Cl: C, Pr: process(M, B, (N ? (J)); P, L),
830 PrQ: W, Att: A, Lcnt: N’ >
831 < O : Qu | Ev: MM comp(O int(N) DL), Keep: H >
832 = < O : Ob | Cl: C, Pr: process(M, B, (J := DL); P, L),
833 PrQ: W, Att: A, Lcnt: N’ >
834 < O : Qu | Ev: MM, Keep: H > .
835
836 *** Transport rules: include new message in queue ***
837 rl [invoc-msg] :
838 < O : Qu | Ev: MM, Keep: H > invoc(O, M, DL)
839 =>
840 < O : Qu | Ev: MM invoc(O, M, DL), Keep: H > .
841
842 rl [reply-msg] :
843 < O : Qu | Ev: MM, Keep: H ;[N]; H’ > comp(O int(N) DL)
844 =>
845 < O : Qu | Ev: MM comp(O int(N) DL), Keep: H ; H’ > .
846
847 op _in_ : Nat NatS -> Bool .
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848 eq N in empty = false .
849 eq N in H ; [N’] = if N == N’ then true else N in H fi .
850
851 crl [reply-msg] :
852 < O : Qu | Ev: MM, Keep: H > comp(O int(N) DL)
853 =>
854 < O : Qu | Ev: MM, Keep: H >
855 if N in H == false .
856
857 endm
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Appendix C

Full Specification of the Update
System

1 *** DYNAMIC UPDATES ***
2
3 mod UPDATE is
4 protecting INTERPRET .
5
6 vars C C’ : Cid .
7 vars VN VN’ VN’’ : Nat .
8 vars F F’ : Nat .
9 vars IA IA’ : InitSubst . *** list of initialized attribute declaratins

10 var IL : InitSubst .
11 vars S S’ S’’ : InhList . *** list of (parameterized) superclasses
12
13 vars B B’ : Bool .
14 vars O O’ : Oid .
15 vars Q Q’ : Qid .
16 vars W W’ : MProg .
17 vars L L’ : Subst .
18 vars A A’ : Subst .
19 vars X Y : Aid .
20 vars M M’ : Mid .
21 vars N N’ : Nat .
22 vars D D’ : Data .
23 vars DL DL’ : DataList .
24 vars AL AL’ : AidList .
25 vars P P’ R : ProgList .
26 var J : List .
27 var PR : Process .
28 var H H’ : NatS .
29 vars E E’ : Expr .
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30 vars G G’ : Guard .
31
32 var MMTD : MMtd .
33 var MMTD’ : MMtd .
34 var CLASS : Class .
35 var GHOST : Ghost .
36 var OBJECT : Object .
37 var MSG : Msg .
38 var MSG’ : Msg .
39 var MM : MMsg .
40 var STM : Stm .
41 var QUEUE : Queue .
42 var UTD : UTDOid .
43
44 vars CONFIG CONFIG’ : Configuration .
45
46 *** Ghosts are used to help messages find objects which are in a different
47 *** configuration
48
49 sort Ghost .
50 subsort Ghost < Configuration .
51 op <_: Ghost | Cl:_, Old:_> : Oid Cid Bool -> Ghost [ctor] .
52
53 *** Add convert routine methods and methods with parameter conversion
54
55 op <_: Mtdname | Latt:_, Code:_, Convert:_> :
56 Qid Subst ProgList InitSubst -> Mtd
57 [ctor format (m! om m m m m m g m m m m m m! on)] .
58
59 op < Convert | Latt:_, Code:_, Finish:_, Restart:_> :
60 Subst ProgList AidList AidList -> Mtd [ctor] .
61
62 eq get(Q, < Q : Mtdname | Latt: L, Code: P, Convert: IL > * MMTD)
63 = < Q : Mtdname | Latt: L, Code: P, Convert: IL > .
64
65 eq Q in (< Convert | Latt: L, Code: P, Finish: AL, Restart: AL’ > * MMTD)
66 = Q in MMTD .
67 eq Q in (< Q’ : Mtdname | Latt: L, Code: P, Convert: IL > * MMTD)
68 = if Q == Q’ then true else Q in MMTD fi .
69
70 eq newProcess(M, < Q : Mtdname | Latt: L, Code: P, Convert: IA > , D D’ DL)
71 = process(M, true, P, ((’caller : D), (’label : D’), assign(L, DL))) .
72
73 *** updating starts the conversion process
74 op update : Configuration Configuration -> Configuration .
75 eq update(CONFIG, CONFIG’)
76 = merge(classes(CONFIG), CONFIG’)
77 makeGhosts(CONFIG)
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78 outdated(CONFIG) .
79
80 *** merging classes includes the outdated classes that don’t exist in
81 *** the update in the new configuration
82 op merge : Configuration Configuration -> Configuration .
83 eq merge(none, CONFIG’) = CONFIG’ .
84 eq merge(< C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F > CONFIG, CONFIG’)
85 = if not (C in CONFIG’) then
86 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
87 else none fi
88 merge(CONFIG, CONFIG’) .
89
90 *** outdated configuration becomes a term in the new configuration
91 op outdated : Configuration -> Configuration [ctor] .
92
93 *** convert messages control state conversion for objects
94 op convert : Oid InhList Subst MProg -> Msg [ctor] .
95
96 *** outdated are marked so they cannot load processes without good reason
97 op outdated : Qid -> Oid [ctor] .
98 op endconvert : Cid -> Prog [ctor] .
99

100 *** if an object has the same version of all classes in the old configuration
101 *** as in the new configuration then move it
102 rl [migrate-object] :
103 outdated(
104 < outdated(O) : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
105 < outdated(O) : Qu | Ev: MM, Keep: H >
106 findInheritance(outdated(O), nil, S, AL)
107 CONFIG)
108 findInheritance(outdated(O), nil, S, AL)
109 < O : Ghost | Cl: C, Old: false >
110 =>
111 < O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
112 < O : Qu | Ev: MM, Keep: H >
113 outdated(CONFIG < O : Ghost | Cl: C, Old: true >) .
114
115 *** if an object is ready to be converted, then convert it
116 crl [convert-object] :
117 outdated(
118 < outdated(O) : Ob | Cl: C, Pr: none, PrQ: W, Att: A, Lcnt: N >
119 findInheritance(outdated(O), nil, S’, AL’)
120 < outdated(O) : Qu | Ev: MM, Keep: H >
121 CONFIG
122 )
123 findInheritance(outdated(O), nil, S, AL)
124 < O : Ghost | Cl: C, Old: false >
125 =>
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126 convert(O, combine(S, S’), A, W)
127 < outdated(O) : Ob | Cl: C, Pr: none,
128 PrQ: paramcopy(W, ’null, none),
129 Att: (’this : O), Lcnt: N >
130 < outdated(O) : Qu | Ev: comps(MM), Keep: H >
131 outdated(CONFIG invocs(MM) < O : Ghost | Cl: C, Old: true >)
132 if not waiting(AL, W) .
133
134 crl [convert-object-continue] :
135 outdated(
136 < outdated(O) : Ob | Cl: C, Pr: process(M, B, continue(N’), L),
137 PrQ: W, Att: A, Lcnt: N >
138 findInheritance(outdated(O), nil, S’, AL’)
139 < outdated(O) : Qu | Ev: MM, Keep: H >
140 CONFIG
141 )
142 findInheritance(outdated(O), nil, S, AL)
143 < O : Ghost | Cl: C, Old: false >
144 =>
145 convert(O, combine(S, S’), A, W)
146 < outdated(O) : Ob | Cl: C, Pr: none,
147 PrQ: paramcopy(W, ’null, none),
148 Att: (’this : O), Lcnt: N >
149 < outdated(O) : Qu | Ev: comps(MM), Keep: H >
150 outdated(CONFIG invocs(MM) < O : Ghost | Cl: C, Old: true >)
151 if not waiting(AL, W) .
152
153 *** combine sets up an inheritance list which reflects which classes are old
154 *** and which are new, but using the new inheritance graph.
155
156 op combine : InhList InhList -> InhList .
157 eq combine((C # VN)[DL], ((C’ # VN’)[DL’]) S)
158 = if (C == C’) then (C’ # VN’)[DL’] else combine((C # VN)[DL], S) fi .
159 eq combine((C # VN)[DL], nil) = (C # VN)[DL] .
160 eq combine(((C # VN)[DL]) S, S’) = combine((C # VN)[DL], S’) combine(S, S’) .
161
162 *** update rule to convert class attributes using convert routine
163 crl [update-object-with-conversion] :
164 < C # VN : Cl | Inh: S, Att: IA,
165 Mtds: < Convert | Latt: L, Code: P,
166 Finish: AL, Restart: AL’ > * MMTD,
167 Ocnt: F >
168 convert(O, ((C # VN’)[DL]) S’, A’, W’)
169 < outdated(O) : Ob | Cl: C’, Pr: none, PrQ: W, Att: A, Lcnt: N >
170 =>
171 < C # VN : Cl | Inh: S, Att: IA,
172 Mtds: < Convert | Latt: L, Code: P,
173 Finish: AL, Restart: AL’ > * MMTD,
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174 Ocnt: F >
175 convert(O, S’, A’, W’)
176 < outdated(O) : Ob | Cl: C’, Pr: process(’convert, false,
177 P ; endconvert(C),
178 (L, age(A’, C))),
179 PrQ: W, Att: (A, evalSS(IA, A)), Lcnt: N >
180 if VN > VN’ .
181
182 *** finish convert routine by converting parameters
183 rl [finish-conversion] :
184 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
185 convert(O, S’, A’, W’)
186 < outdated(O) : Ob | Cl: C’, Pr: process(’convert, false, endconvert(C), L),
187 PrQ: W, Att: A, Lcnt: N >
188 =>
189 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
190 < outdated(O) : Ob | Cl: C’, Pr: none,
191 PrQ: W : paramconv(W’, C, MMTD, (’this : O)),
192 Att: A, Lcnt: N >
193 convert(O, S’, A’, W’) .
194
195 *** update rule to copy class attributes for unchanged superclasses
196 crl [update-object-without-conversion] :
197 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
198 convert(O, ((C # VN’)[DL]) S’, A’, W’)
199 < outdated(O) : Ob | Cl: C’, Pr: none, PrQ: W, Att: A, Lcnt: N >
200 =>
201 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
202 convert(O, S’, A’, W’)
203 < outdated(O) : Ob | Cl: C’, Pr: none, PrQ: W : paramcopy(W’, C, MMTD),
204 Att: (A, copy(evalSS(IA, A), A’)), Lcnt: N >
205 if VN’ = VN .
206
207 *** when all classes have been processed the object is up to date
208 eq convert(O, nil, A’, W’)
209 < outdated(O) : Ob | Cl: C, Pr: none, PrQ: W, Att: A, Lcnt: N >
210 < outdated(O) : Qu | Ev: MM, Keep: H >
211 = < O : Ob | Cl: C, Pr: none, PrQ: W, Att: A, Lcnt: N >
212 < O : Qu | Ev: MM, Keep: H > .
213
214 *** mark outdated objects and find inheritance in old and new configuration
215 *** to prepare for conversion
216 eq outdated(< UTD : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
217 < UTD : Qu | Ev: MM, Keep: H >
218 CONFIG)
219 = outdated(< outdated(UTD) : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N >
220 < outdated(UTD) : Qu | Ev: MM, Keep: H >
221 findInheritance(outdated(UTD), (C)[nil], nil, missing)
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222 CONFIG)
223 findInheritance(outdated(UTD), (C)[nil], nil, nil) .
224
225 *** fill in finishlist in outdated configuration
226 eq outdated(findInheritance(outdated(UTD), nil, S, missing)
227 CONFIG)
228 findInheritance(outdated(UTD), nil, S’, AL)
229 = outdated(findInheritance(outdated(UTD), nil, S, AL)
230 CONFIG)
231 findInheritance(outdated(UTD), nil, S’, AL) .
232
233 *** the findInheritance takes a class and finds all superclasses
234 op missing : -> AidList [ctor] .
235 op findInheritance : Oid InhList InhList AidList -> Msg [ctor] .
236 eq findInheritance(O,(((C)[DL]) S’), S’’, AL)
237 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
238 = findInheritance(O,(S S’), ((C # VN)[DL]) S’’, AL finishlist(MMTD))
239 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F > .
240
241 eq ((C)[DL]) S ((C)[DL]) S’ = ((C)[DL]) S S’ . *** remove duplicates
242
243 *** separates invocs and comps
244 ops invocs comps : MMsg -> MMsg .
245
246 eq invocs(invoc(O, M, DL) MM) = invoc(O, M, DL) invocs(MM) .
247 eq invocs(comp(O int(N) DL) MM) = invocs(MM) .
248 eq invocs(none) = none .
249
250 eq comps(invoc(O, M, DL) MM) = comps(MM) .
251 eq comps(comp(O int(N) DL) MM) = comp(O int(N) DL) comps(MM) .
252 eq comps(none) = none .
253
254 *** separates classes and objects (including messages and queues)
255 ops classes objects : Configuration -> Configuration .
256
257 eq classes(CLASS CONFIG) = CLASS classes(CONFIG) .
258 eq classes(OBJECT CONFIG) = classes(CONFIG) .
259 eq classes(QUEUE CONFIG) = classes(CONFIG) .
260 eq classes(MSG CONFIG) = classes(CONFIG) .
261 eq classes(GHOST CONFIG) = classes(CONFIG) .
262 eq classes(outdated(CONFIG’) CONFIG) = classes(CONFIG) .
263 eq classes(none) = none .
264
265 eq objects(CLASS CONFIG) = objects(CONFIG) .
266 eq objects(OBJECT CONFIG) = OBJECT objects(CONFIG) .
267 eq objects(QUEUE CONFIG) = QUEUE objects(CONFIG) .
268 eq objects(MSG CONFIG) = MSG objects(CONFIG) .
269 eq objects(GHOST CONFIG) = objects(CONFIG) .
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270 eq objects(none) = none .
271
272 *** check for class in configuration
273 op _in_ : Cid Configuration -> Bool .
274 eq C in (none).Configuration = false .
275 eq C in < C’ # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F > CONFIG
276 = C == C’ or C in CONFIG .
277
278 *** makeGhosts makes a ghost for every object in the system
279 op makeGhosts : Configuration -> Configuration .
280 eq makeGhosts(< O : Ob | Cl: C, Pr: PR, PrQ: W, Att: A, Lcnt: N > CONFIG)
281 = < O : Ghost | Cl: C, Old: false > makeGhosts(CONFIG) .
282 eq makeGhosts(< O : Ghost | Cl: C, Old: false > CONFIG)
283 = < O : Ghost | Cl: C, Old: false > makeGhosts(CONFIG) .
284 eq makeGhosts(outdated(CONFIG’) CONFIG) = makeGhosts(CONFIG) .
285 eq makeGhosts(GHOST CONFIG) = makeGhosts(CONFIG) .
286 eq makeGhosts(CLASS CONFIG) = makeGhosts(CONFIG) .
287 eq makeGhosts(QUEUE CONFIG) = makeGhosts(CONFIG) .
288 eq makeGhosts(MSG CONFIG) = makeGhosts(CONFIG) .
289 eq makeGhosts(none) = none .
290
291 *** Check for unfinished processes corresponding to the methods in the list
292 op waiting : AidList MProg -> Bool .
293 eq waiting(nil, W) = false .
294 eq waiting(X, none) = false .
295 eq waiting(X, process(Y, B, P, L) : W) = (X == Y and not B) or waiting(X, W) .
296 eq waiting(X Y AL, W) = waiting(X, W) or waiting(Y AL, W) .
297
298 *** Extract finishlist from methods
299 op finishlist : MMtd -> AidList .
300 eq finishlist(< Convert | Latt: L, Code: P, Finish: AL, Restart: AL’ > * MMTD)
301 = AL .
302 eq finishlist(< M : Mtdname | Latt: L’, Code: P’, Convert: IL > * MMTD)
303 = finishlist(MMTD) .
304 eq finishlist(< M : Mtdname | Latt: L’, Code: P’ > * MMTD) = finishlist(MMTD) .
305 eq finishlist(none) = nil .
306
307 *** Extract restartlist from methods
308 op restartlist : MMtd -> AidList .
309 eq restartlist(< Convert | Latt: L, Code: P, Finish: AL, Restart: AL’ > * MMTD)
310 = AL’ .
311 eq restartlist(< M : Mtdname | Latt: L’, Code: P’, Convert: IL > * MMTD)
312 = restartlist(MMTD) .
313 eq restartlist(< M : Mtdname | Latt: L’, Code: P’ > * MMTD) = restartlist(MMTD) .
314 eq restartlist(none) = nil .
315
316 *** age and copy of attributes
317 op age : Subst Cid -> Subst .
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318 eq age((((Q @ C) : D), A) , C’)
319 = (if C == C’ then ((Q @ ’old) : D) else no fi) , age(A, C’) .
320 eq age(((Q : D), A) , C’) = ((Q @ ’old) : D) , age(A, C’) .
321 eq age(no, C’) = no .
322
323 op copy : Subst Subst -> Subst .
324 eq copy(((X : D), A) , A’)
325 = if (X in A’) then ((X : val(X, A’)), copy(A, A’))
326 else ((X : D), copy(A, A’)) fi .
327 eq copy(no, A’) = no .
328
329 op toList : Subst -> List .
330 eq toList(((X : D), A)) = D toList(A) .
331 eq toList(no) = nil .
332
333 *** convert and copy of parameters
334 op conv : Subst Mtd Subst -> Subst .
335 eq conv(L, < M : Mtdname | Latt: L’, Code: P’ >, A)
336 = copy(((’caller : ’null), (’label : ’null), L’), L) .
337 eq conv(L, < M : Mtdname | Latt: L’, Code: P’, Convert: IL >, A)
338 = evalSS(IL, (age(L,’null), A)) .
339
340 op program : Mtd -> ProgList .
341 eq program(< M : Mtdname | Latt: L’, Code: P’ >) = P’ .
342 eq program(< M : Mtdname | Latt: L’, Code: P’, Convert: IL >) = P’ .
343
344 op paramconv : MProg Cid MMtd Subst -> MProg .
345 eq paramconv(none, C, MMTD, A) = none .
346
347 ceq paramconv(process(M @ C, B, P, L) : W, C, MMTD, A)
348 = process(M @ C, true, program(get(M, MMTD)), conv(L, get(M, MMTD), A)) :
349 paramconv(W, C, MMTD, A)
350 if (M in MMTD) and ((B == true) or ((M @ C) in restartlist(MMTD))) .
351
352 ceq paramconv(process(M @ C, B, P, L) : W, C’, MMTD, A)
353 = paramconv(W, C’, MMTD, A)
354 if (not (C == C’)) or (not (M in MMTD) and ((M @ C) in restartlist(MMTD))) .
355
356 ceq paramconv(process(M @ C, B, P, L) : W, C, MMTD, A)
357 = process(M @ C, B, P, L) : paramconv(W, C, MMTD, A)
358 if (B == false and not ((M @ C) in restartlist(MMTD))) or
359 (not (M in MMTD) and not ((M @ C) in restartlist(MMTD))) .
360
361 op paramcopy : MProg Cid MMtd -> MProg .
362 eq paramcopy(process(M @ C, B, P, L) : W, C’, MMTD)
363 = if (C == C’) and ((M in MMTD) or C == ’null) then
364 process(M @ C, B, P, L)
365 else
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366 none
367 fi : paramcopy(W, C’, MMTD) .
368 eq paramcopy(none, C, MMTD) = none .
369
370 *** guided execution rules -- allow waiting processes to be loaded
371 crl [guided-PrQ-enabled] :
372 < outdated(O) : Ob | Cl: C, Pr: none,
373 PrQ: process(M, false, P, L) : W, Att: A, Lcnt: N >
374 < outdated(O) : Qu | Ev: MM, Keep: H >
375 findInheritance(outdated(O), nil, S, AL)
376 =>
377 < outdated(O) : Ob | Cl: C, Pr: process(M, false, P, L),
378 PrQ: W, Att: A, Lcnt: N >
379 < outdated(O) : Qu | Ev: MM, Keep: H >
380 findInheritance(outdated(O), nil, S, AL)
381 if enabled(P, (A , L), MM) and waiting(AL, process(M, false, P, L)) .
382
383 crl [guided-continue] :
384 < outdated(O) : Ob | Cl: C, Pr: process(M, false, continue(N), L),
385 PrQ: process(M’, false, ((N ?(J)); P), L’) : W,
386 Att: A, Lcnt: N’ >
387 findInheritance(outdated(O), nil, S, AL)
388 =>
389 < outdated(O) : Ob | Cl: C, Pr: process(M’, false, ((N ?(J)); P), L’),
390 PrQ: W,
391 Att: A, Lcnt: N’ >
392 findInheritance(outdated(O), nil, S, AL)
393 if waiting(AL, process(M’, false, empty, no)) .
394
395 *** do not pass around the ’outdated’ tag -- only objects should have it
396 eq invoc(O, M, outdated(O’) DL) = invoc(O, M, O’ DL) .
397 eq invoc(outdated(O), M, DL) CLASS
398 = invoc(O, M, DL) CLASS .
399 eq comp(outdated(O) int(N) DL) CLASS
400 = comp(O int(N) DL) CLASS .
401
402 *** make sure invocs and comps in queues matches the object idea including tag
403 eq < O : Qu | Ev: MM invoc(outdated(O), M, DL), Keep: H >
404 = < O : Qu | Ev: MM invoc(O, M, DL), Keep: H > .
405 eq < O : Qu | Ev: MM comp(outdated(O) int(N) DL), Keep: H ; H’ >
406 = < O : Qu | Ev: MM comp(O int(N) DL), Keep: H ; H’ > .
407
408 eq < outdated(O) : Qu | Ev: MM invoc(O, M, DL), Keep: H >
409 = < outdated(O) : Qu | Ev: MM invoc(outdated(O), M, DL), Keep: H > .
410 eq < outdated(O) : Qu | Ev: MM comp(O int(N) DL), Keep: H ; H’ >
411 = < outdated(O) : Qu | Ev: MM comp(outdated(O) int(N) DL), Keep: H ; H’ > .
412
413 *** bind outdated invocs to prepare for conversion
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414 rl [bind-outdated-unqualified-invoc-msg] :
415 < O : Ghost | Cl: C, Old: true >
416 invoc(O, Q, DL)
417 =>
418 < O : Ghost | Cl: C, Old: true >
419 bindInvoc(invoc(O, Q, DL), C[nil]) .
420
421 rl [bind-outdated-qualified-invoc-msg] :
422 < O : Ghost | Cl: C, Old: true >
423 invoc(O, M @ C’, DL)
424 =>
425 < O : Ghost | Cl: C, Old: true >
426 bindInvoc(invoc(O, M, DL), C’[nil]) .
427
428 *** bindInvoc makes sure all invocs are qualified and parameters bound
429 op bindInvoc : Msg InhList -> Msg [ctor] .
430 op boundInvoc : Oid Cid Process -> Msg [ctor] .
431 ceq bindInvoc(invoc(O, M, DL), ((C)[DL’]) S’)
432 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
433 = boundInvoc(O, C # VN, newProcess(M @ C, get(M, MMTD), DL))
434 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
435 if M in MMTD .
436
437 *** couldn’t bind in this class, look in next class in the inheritance graph
438 ceq bindInvoc(invoc(O, M, DL), ((C)[DL’]) S’)
439 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
440 = bindInvoc(invoc(O, M, DL), S’ S)
441 < C # VN : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
442 if not (M in MMTD) .
443
444 *** move invocs across version barrier
445 rl [outdated-invoc-msg] :
446 < C # VN’ : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
447 outdated(boundInvoc(O, C # VN, process(M @ C, B, P, L)) CONFIG)
448 =>
449 if VN == VN’ then
450 invoc(O, M @ C, toList(L))
451 else
452 if (M in MMTD) then
453 invoc(O, M @ C, toList(conv(L, get(M, MMTD), (’this : O))))
454 else
455 none
456 fi
457 fi
458 < C # VN’ : Cl | Inh: S, Att: IA, Mtds: MMTD, Ocnt: F >
459 outdated(CONFIG) .
460
461 *** move comps across version barrier
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462 rl [outdated-reply-msg] :
463 outdated(< O : Ghost | Cl: C, Old: true > comp(O int(N) DL) CONFIG)
464 =>
465 comp(O int(N) DL)
466 outdated(< O : Ghost | Cl: C, Old: true > CONFIG).
467
468 rl [reply-outdated-msg] :
469 comp(O int(N) DL)
470 < O : Ghost | Cl: C, Old: false >
471 outdated(CONFIG)
472 =>
473 < O : Ghost | Cl: C, Old: false >
474 outdated(comp(O int(N) DL) CONFIG) .
475
476 *** Transport rules: include new message in outdated queue ***
477 rl [invoc-msg-outdated] :
478 < outdated(O) : Qu | Ev: MM, Keep: H > invoc(O, M, DL)
479 =>
480 < outdated(O) : Qu | Ev: MM invoc(outdated(O), M, DL), Keep: H > .
481
482 rl [reply-msg-outdated] :
483 < outdated(O) : Qu | Ev: MM, Keep: H ;[N]; H’ > comp(O int(N) DL)
484 =>
485 < outdated(O) : Qu | Ev: MM comp(outdated(O) int(N) DL), Keep: H ; H’ > .
486
487 *** garbage collect outdated configurations with no objects in them
488 ceq outdated(CONFIG) = none if objects(CONFIG) = none .
489
490 *** local sync call in convert routine ***
491 eq < outdated(O) : Ob | Cl: C, Pr: process(’convert, B, (N ? (J)); P, L),
492 PrQ: process(M’, true, P’,
493 ((’caller : O), (’label : int(N)), L’)) : W,
494 Att: A, Lcnt: N’ >
495 = < outdated(O) : Ob | Cl: C, Pr: process(M’, false, P’ ; continue(N),
496 ((’caller : O), (’label : int(N)), L’)),
497 PrQ: process(’convert, B, await N ? ; (N ? (J)); P, L) : W,
498 Att: A, Lcnt: N’ > .
499
500 rl [continue-convert] :
501 < outdated(O) : Ob | Cl: C, Pr: process(M, B, continue(N), L),
502 PrQ: process(’convert, B’, ((N ?(J)); P), L’) : W,
503 Att: A, Lcnt: N’ >
504 =>
505 < outdated(O) : Ob | Cl: C, Pr: process(’convert, false, ((N ?(J)); P), L’),
506 PrQ: W,
507 Att: A, Lcnt: N’ > .
508
509 endm
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