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Abstract. In this work we investigate the long-time behavior for Markov
processes obtained as the unique mild solution to stochastic partial dif-
ferential equations in a Hilbert space. We analyze the existence and char-
acterization of invariant measures as well as convergence of transition
probabilities. While in the existing literature typically uniqueness of in-
variant measures is studied, we focus on the case where the uniqueness of
invariant measures fails to hold. Namely, introducing a generalized dissi-
pativity condition combined with a decomposition of the Hilbert space, we
prove the existence of multiple limiting distributions in dependence of the
initial state of the process and study the convergence of transition prob-
abilities in the Wasserstein 2-distance. Finally, we apply our results to
Lévy driven Ornstein–Uhlenbeck processes, the Heath–Jarrow–Morton–
Musiela equation as well as to stochastic partial differential equations
with delay.
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1. Introduction

Stochastic partial differential equations arise in the modelling of applications
in mathematical physics (e.g. Navier–Stokes equations [9,18,22,37] or stochas-
tic non-linear Schrödinger equations [4,13]), biology (e.g. catalytic branching
processes [12,30]), and finance (e.g. forward prices [16,24,38]). While the con-
struction of solutions to the underlying stochastic equations is an important
mathematical issue, having applications in mind it is indispensable to also
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study their specific properties. Among them, an investigation of the long-time
behavior of solutions, that is existence and uniqueness of invariant measures
and convergence of transition probabilities, are often important and at the
same time also challenging mathematical topics. In this work we investigate
the long-time behavior of mild solutions to the stochastic partial differential
equation of the form

dXt = (AXt + F (Xt))dt + σ(Xt)dWt +
∫

E

γ(Xt, ν)Ñ(dt, dν), t ≥ 0 (1.1)

on a separable Hilbert space H, where (A,D(A)) is the generator of a strongly
continuous semigroup (S(t))t≥0 on H, (Wt)t≥0 is a Q-Wiener process and
Ñ(dt, dν) denotes a compensated Poisson random measure with compensator
dtμ(dν) on R+ × E with E a Polish space. The precise conditions need to be
imposed on these objects will be formulated in the subsequent sections. We
focus in particular on SPDEs with multiple limiting distributions.

In the literature the study on the existence and uniqueness of invariant
measures often relies on different variants of a dissipativity condition. The
simplest form of such a dissipativity condition is: There exists α > 0 such that

〈Ax − Ay, x − y〉H + 〈F (x) − F (y), x − y〉H ≤ −α‖x − y‖2
H , x, y ∈ D(A).

(1.2)

Indeed, if (1.2) is satisfied, σ and γ are globally Lipschitz-continuous, and α
is large enough, then there exists a unique invariant measure for the Markov
process obtained from (1.1), see, e.g., [32, Section 16], [10, Chapter 11, Section
5], and [36] where such a condition was formulated for the Yosida approxima-
tions of the operator (A,D(A)). Note that (1.2) is satisfied, if F is globally
Lipschitz continuous and (A,D(A)) satisfies for some β > 0 large enough the
inequality 〈Ax, x〉H ≤ −β‖x‖2

H , x ∈ D(A), i.e. (A,D(A)) is the generator of a
strongly continuous semigroup satisfying ‖S(t)‖L(H) ≤ e−βt. Here and below
we denote by L(H) the space of bounded linear operators from H to H and by
‖ · ‖L(H) its operator norm. For weaker variants of the dissipativity condition
(e.g. cases where (1.2) only holds for ‖x‖H , ‖y‖H ≥ R for some R > 0), in
general one can neither guarantee the existence nor uniqueness of an invariant
measure. Hence, to treat such cases, additional arguments, e.g. coupling meth-
ods, are required. Such arguments have been applied to different stochastic
partial differential equations on Hilbert spaces in [33–35] where existence and,
in particular, uniqueness of invariant measures was studied. We also mention
[7,23] for an extension of Harris-type theorems for Wasserstein distances, and
[21,25] for extensions of coupling methods.

In contrast to the aforementioned methods and applications, several sto-
chastic models exhibit phase transition phenomena where uniqueness of invari-
ant measures fails to hold. For instance, the generator (A,D(A)) and drift F
appearing in the Heath–Jarrow–Morton–Musiela equation do not satisfy (1.2),
but instead F is globally Lipschitz continuous and the semigroup generated
by (A,D(A)) satisfies

‖S(t)x − Px‖H ≤ e−αt‖x − Px‖H
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for some projection operator P . Based on this property it was shown in [36,38]
that the Heath–Jarrow–Morton–Musiela equation has infinitely many invariant
measures parametrized by the initial state of the process, see also Sect. 6.
Another example is related to stochastic Volterra equations as studied, e.g., in
[6]. There, using a representation of stochastic Volterra equations via SPDEs
and combined with some arguments originated from the study of the Heath–
Jarrow–Morton–Musiela equation, the authors studied existence of limiting
distributions allowing, in particular, that these distributions depend on the
initial state of the process.

In this work we provide a general and unified approach for the study of
multiple invariant measures and, moreover, we show that with dependence on
the initial distribution the law of the mild solution of (1.1) is governed in the
limit t → ∞ by one of the invariant measures. In particular, we show that the
methods developed in [6,36,38] can be embedded as a special case of a general
framework where one replaces (1.2) by a weaker dissipativity condition, which
we call hereinafter generalized dissipativity condition:

(GDC) There exists a projection operator P1 on the Hilbert space H and
there exist constants α > 0, β ≥ 0 such that, for x, y ∈ D(A), one
has:

〈Ax − Ay, x − y〉H + 〈F (x) − F (y), x − y〉H

≤ −α‖x − y‖2
H + (α + β) ‖P1x − P1y‖2

H .

Note that for the special case P1 = 0 condition (GDC) contains the classical
dissipativity condition. However, when P1 
= 0, the additional term ‖P1x −
P1y‖2

H describes the influence of the non-dissipative part of the drift. Sufficient
conditions and additional remarks on this condition are collected in the end
of Sect. 2 while particular examples are discussed in Sects. 5–6.

We will show that under condition (GDC) and additional restrictions on
the projected coefficients P1F , P1σ, and P1γ, the Markov process obtained
from (1.1) has for each initial data X0 = x a limiting distribution πx depend-
ing only on P1x. on This will often imply that there are multiple limiting
distributions for (1.1). Moreover, the transition probabilities converge expo-
nentially fast in the Wasserstein 2-distance to this limiting distribution. In
order to prove this result, we first decompose the Hilbert space H according
to

H = H0 ⊕ H1, x = P0x + P1x, P0 := I − P1,

where I denotes the identity operator on H, and then investigate the compo-
nents P0Xt and P1Xt separately. Based on an technique from [39], we con-
struct, for each τ ≥ 0, a coupling of Xt and Xt+τ . This coupling will be then
used to efficiently estimate the Wasserstein 2-distance for the solution started
at two different points.

This work is organized as follows. In Sect. 2 we first discuss the special
case where F, σ, γ are independent of X. In such a case X is an Ornstein–
Uhlenbeck type process and the collection of invariant measures can be easily
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characterized by its characteristic function. This section can be seen as a moti-
vation for our more general results discussed in the subsequent sections. More
precisely, we could also have studied the Ornstein–Uhlenbeck process by our
general results from Sect. 4, however, in such a case we need to impose un-
necessary strong conditions on the Lévy measure and would not obtain the
characterization of invariant measures in terms of their Fourier transforms.
Afterward, we investigate in Sects. 3–5 the general case for which the methods
from Sect. 2, that is convergence of the Fourier transform, can not be applied.
More precisely, after having introduced and discussed in Sect. 3 the generalized
dissipativity condition (GDC), we state the precise conditions imposed on the
coefficients of the SPDE (1.1), discuss some properties of the solution and then
provide sufficient conditions for the generalized dissipativity condition (GDC).
Based on condition (GDC) we also derive an estimate on the trajectories of
the process when started at two different initial points, i.e. we estimate the
L2-norm of Xx

t − Xy
t when x 
= y. Based on this estimate, we then state and

prove our main results in Sect. 4. Examples are then discussed in the subse-
quent Sects. 5 and 6. Namely, the Heath–Jarrow–Morton–Musiela equation is
considered in Sect. 5 for which we first show that the main results of Sect. 4
contain [36,38], and then extend these results by characterizing its multiple
limiting distributions more explicitly. Finally, we apply our results in Sect. 6
to an SPDE with delay.

2. Ornstein–Uhlenbeck process in a Hilbert space

Let H be a separable Hilbert space and let (Zt)t≥0 be an H-valued Lévy process
with Lévy triplet (b,Q, μ) defined on a stochastic basis (Ω,F , (Ft)t≥0, P) with
the usual conditions. This has characteristic exponent Ψ of Lévy-Khinchine
form, i.e.

E

[
ei〈u,Zt〉H

]
= etΨ(u), u ∈ H, t > 0,

with Ψ given by

Ψ(u) = i〈b, u〉H − 1
2
〈Qu, u〉H +

∫
H

(
ei〈u,z〉H − 1 − i〈u, z〉H1{‖z‖H≤1}

)
μ(dz),

where b ∈ H denotes the drift, Q denotes the covariance operator being a
positive, symmetric, trace-class operator on H, and μ is a Lévy measure on
H (see e.g. [3,27,28,32]). Let (S(t))t≥0 be a strongly continuous semigroup
on H. The Ornstein–Uhlenbeck process driven by (Zt)t≥0 is the unique mild
solution to

dXx
t = AXx

t dt + dZt, Xx
0 = x ∈ H, t ≥ 0, (2.1)

where (A,D(A)) denotes the generator of (S(t))t≥0, i.e. (Xx
t )t≥0 satisfies

Xx
t = S(t)x +

∫ t

0

S(t − s)dZs, t ≥ 0.
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The characteristic function of (Xx
t )t≥0 is given by

E

[
ei〈u,Xx

t 〉H

]
= exp

(
i〈S(t)x, u〉H +

∫ t

0

Ψ(S(r)∗u)dr

)
, u ∈ H, t ≥ 0.

See e.g. the review article [3] where also sufficient conditions for the existence
and for the uniqueness as well as properties of invariant measures are discussed.
It is well-known that the Ornstein–Uhlenbeck process has a unique invariant
measure provided that (S(t))t≥0 is uniformly exponentially stable, that is

∃α > 0, M ≥ 1 : ‖S(t)‖L(H) ≤ Me−αt, t ≥ 0,

and the Lévy measure μ satisfies a log-integrability condition for its big jumps
∫

{‖z‖H>1}
log(1 + ‖z‖H)μ(dz) < ∞. (2.2)

Below we show that for a uniformly convergent semigroup (S(t))t≥0 the corre-
sponding Ornstein–Uhlenbeck process may admit multiple invariant measures
parameterized by the range of the limiting projection operator of the semi-
group.

Theorem 2.1. Suppose that (S(t))t≥0 is uniformly exponentially convergent,
i.e. there exists a projection operator P on H and constants M ≥ 1, α > 0
such that

‖S(t)x − Px‖H ≤ M‖x‖He−αt, t ≥ 0, x ∈ H. (2.3)

Suppose that the Lévy process satisfies the following conditions:

(i) The drift b satisfies Pb = 0.
(ii) The covariance operator Q satisfies PQu = 0 for all u ∈ H.
(iii) The Lévy measure μ is supported on ker(P ) and satisfies (2.2).

Then for each x ∈ H it holds

Xx
t −→ Px + X0

∞, t → ∞
in law, where X0

∞ is an H-valued random variable determined by

E

[
ei〈u,X0

∞〉H

]
= exp

(∫ ∞

0

Ψ(S(r)∗u)dr

)
.

In particular, the set of all limiting distributions for the Ornstein–Uhlenbeck
process (Xx

t )t≥0 is given by {δy ∗ μ∞ | y ∈ ran(P )}, where μ∞ denotes the law
of X0

∞.

Proof. We first prove the existence of a constant C > 0 such that
∫ ∞

0

|Ψ(S(r)∗u)|dr ≤ C(‖u‖H + ‖u‖2
H), u ∈ H, (2.4)
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where S(r)∗ denotes the adjoint operator to S(r) on L(H). To do so we esti-
mate

|Ψ(S(r)∗u)| ≤ |〈b, S(r)∗u〉H | + |〈QS(r)∗u, S(r)∗u〉H |

+
∫

{‖z‖H≤1}

∣∣∣ei〈S(r)∗u,z〉H − 1 − i〈S(r)∗u, z〉H

∣∣∣μ(dz)

+
∫

{‖z‖H>1}

∣∣∣ei〈S(r)∗u,z〉H − 1
∣∣∣μ(dz)

= I1 + I2 + I3 + I4.

We find by (2.3) that ‖S(r)x‖H ≤ Me−αr‖x‖H for all x ∈ ker(P ) and hence

I1 = |〈S(r)b, u〉H | ≤ ‖u‖H‖S(r)b‖H ≤ ‖u‖HMe−αr‖b‖H .

For the second term I2 we use ran(Q) ⊂ ker(P ) so that

‖S(r)Qu‖H ≤ Me−αr‖Qu‖H ≤ e−αr‖Q‖L(H)‖u‖H .

This yields ‖QS(r)∗‖L(H) = ‖S(r)Q‖L(H) ≤ Me−αr‖Q‖L(H) and hence

I2 = |〈QS(r)∗u, S(r)∗u〉H |
≤ ‖QS(r)∗u‖H‖S(r)∗u‖H

≤ M‖u‖H‖QS(r)∗u‖H

≤ M‖u‖2
H‖Q‖L(H)Me−αr.

For the third term I3 we obtain

I3 ≤ C

∫
{‖z‖H≤1}

|〈S(r)∗u, z〉H |2μ(dz)

= C

∫
{‖z‖H≤1}∩ker(P )

|〈u, S(r)z〉H |2μ(dz)

≤ C‖u‖2
He−αr

∫
{‖z‖H≤1}

‖z‖2
Hμ(dz),

where C > 0 is a generic constant. Proceeding similarly for the last term, we
obtain

I3 ≤ C

∫
{‖z‖H>1}

min {1, |〈S(r)∗u, z〉H |} μ(dz)

≤ C

∫
{‖z‖H>1}∩ker(P )

min
{
1, ‖u‖He−αr‖z‖H

}
μ(dz)

≤ C‖u‖He−αr

(
μ({‖z‖H > 1}) +

∫
{‖z‖H>1}

log(1 + ‖z‖H)μ(dz)

)
,

where we have used, for a = ‖u‖He−αr, b = ‖z‖H , the elementary inequalities

min{1, ab} ≤ C log(1 + ab)

≤ C min{log(1 + a), log(1 + b)} + C log(1 + a) log(1 + b)

≤ Ca (1 + log(1 + b)) ,
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see [19, appendix]. Combining the estimates for I1, I2, I3, I4 we conclude that
(4.2) is satisfied. Hence, using

lim
t→∞〈S(t)x, u〉H = 〈Px, u〉H

we find that

lim
t→∞ E

[
ei〈u,Xx

t 〉H

]
= exp

(
i〈Px, u〉H +

∫ ∞

0

Ψ(S(r)∗u)dr

)
. (2.5)

Since, in view of (4.2), u �−→ ∫∞
0

Ψ(S(r)∗u)dr is continuous at u = 0, the
assertion follows from Lévy’s continuity theorem combined with the particular
form of (2.6). �

The next remark shows that the Lévy driven OU-process is a particular
case of (1.1) where F, σ, γ independent of x.

Remark 2.2. Let F, σ, γ be independent of the state space variables x ∈ H.
Then (1.1) takes the form

dXt = (AXt + F )dt + σdWt +
∫

E

γ(ν)Ñ(dt, dz). (2.6)

Setting

Zt = Ft + σWt +
∫ t

0

∫
E

γ(ν)Ñ(ds, dz),

we observe that (Zt)t≥0 is a Lévy process with characteristic triplet (F, σ, μ ◦
γ−1), up to a possible change of drift related to the compensation of jumps.
This shows that (2.6) is equivalent to

dXt = AXtdt + dZt

and hence the Lévy driven OU-process covers the case where F, σ, γ in (1.1)
are independent of the state variables.

Below we briefly discuss an application of this result to a stochastic per-
turbation of the Kolmogorov equation associated with a symmetric Markov
semigroup. Let E be a Polish space and η a Borel probability measure on E.
Let (A,D(A)) be the generator of a symmetric Markov semigroup (S(t))t≥0

on H := L2(E, η). Then there exists, for each f ∈ D(A), a unique solution to
the Kolmogorov equation (see, e.g., [31])

dv(t)
dt

= Av(t), v(0) = f.

Below we consider an additive stochastic perturbation of this equation in the
sense of Itô, i.e. the stochastic partial differential equation

dv(t) = Av(t)dt + dZt, v(0) = f, (2.7)

where (Zt)t≥0 is an L2(E, η)-valued Lévy process with characteristic function
Ψ. Let (v(t); f))t≥0 be the unique mild solution to this equation.
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Corollary 2.3. Suppose that the semigroup generated by (A,D(A)) on L2 :=
L2(E, η) satisfies (2.3) with the projection operator

Pv =
∫

E

v(x)η(dx),

and H = L2(E, η). Assume that the Lévy process (Zt)t≥0 satisfies the condi-
tions (i) – (iii) of Theorem 2.1. Then

v(t; f) −→
∫

E

f(x)η(dx) + v(∞), t → ∞

in law, where v(∞) is a random variable whose characteristic function is given
by

E

[
ei〈u,v(∞)〉L2

]
= exp

(∫ ∞

0

Ψ(S(r)∗u)dr

)
.

We close this section with an example of a semigroup (S(t))t≥0 for which
this corollary can be applied.

Example 2.4. Let (Xt)t≥0 be a Feller process on a separable Hilbert space
E and let (pt)t≥0 be its transition semigroup acting on Cb(E). Suppose that
(Xt)t≥0 has a unique invariant measure η. Then, by Jensen’s inequality, (pt)t≥0

can be uniquely extended to a strongly continuous semigroup on L2(E, η)
which is for simplicity again denoted by (pt)t≥0. Suppose that this semigroup
is L2-exponentially convergent in the sense that

lim
t→∞

∫
E

(
ptf −

∫
E

f(x)η(dx)
)2

dη = 0, ∀f ∈ L2(E, η).

Then (pt)t≥0 satisfies (2.3) with projection operator Pv =
∫

E
v(x)η(dx).

3. Preliminaries

3.1. Framework and notation

Here and throughout this work, (Ω,F , (Ft)t∈R+ , P) is a filtered probability
space satisfying the usual conditions. Let U be a separable Hilbert space and
W = (Wt)t≥0 be a Q-Wiener process with respect to (Ft)t∈R+ on (Ω,F ,
(Ft)t∈R+ , P), where Q : U → U is a non-negative, symmetric, trace class
operator. Let E be a Polish space, E the Borel-σ-field on E, and μ a σ-finite
measure on (E, E). Let N(dt, dν) be a (Ft)t≥0-Poisson random measure with
compensator dtμ(dν) and denote by Ñ(dt, dν) = N(dt, dν) − dtμ(dν) the cor-
responding compensated Poisson random measure. Suppose that the random
objects (Wt)t≥0 and N(dt, dν) are mutually independent.

In this work we investigate the long-time behavior of mild solutions to
the stochastic partial differential equation (1.1) with initial condition X0 ∈
L2(Ω,F0, P;H), that is

dXt = (AXt +F (Xt))dt+σ(Xt)dWt +
∫

E

γ(Xx
t , ν)Ñ(dt, dν), t ≥ 0, (3.1)
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where (A,D(A)) is the generator of a strongly continuous semigroup (S(t))t≥0

on H, H � x �→ F (x) ∈ H and H � x �→ σ(x) ∈ L0
2 are Borel measurable

mappings, and (x, ν) �→ γ(x, ν) is measurable from (H × E,B(H) ⊗ E) to
(H,B(H)). Here B(H) denotes the Borel-σ-algebra on H, and L0

2 := L0
2(H)

is the Hilbert space of all Hilbert–Schmidt operators from U0 to H, where
U0 := Q1/2U is a separable Hilbert space endowed with the scalar product

〈x, y〉U0 := 〈Q−1/2x,Q−1/2y〉U =
∑
k∈N

1
λk

〈x, ek〉U 〈ek, y〉U , ∀x, y ∈ U0,

and Q−1/2 denotes the pseudoinverse of Q1/2. Here (ej)j∈N denotes an orthog-
onal basis of eigenvectors of Q in U with corresponding eigenvalues (λj)j∈N.
For comprehensive introductions to integration concepts in infinite dimensional
settings we refer e.g. to [10] for the case of Q-Wiener processes and e.g. to
[3,28,32] for compensated Poisson random measures as integrators. Through-
out this work we suppose that the coefficients F, σ, γ are Lipschitz continuous.
More precisely:

(A1) There exist constants LF , Lσ, Lγ ≥ 0 such that for all x, y ∈ H

‖F (x) − F (y)‖2
H ≤ LF ‖x − y‖2

H ,

‖σ(x) − σ(y)‖2
L0

2(H) ≤ Lσ‖x − y‖2
H ,∫

E

‖γ(x, ν) − γ(y, ν)‖2
Hμ(dν) ≤ Lγ‖x − y‖2

H . (3.2)

Moreover we suppose that
∫

E

‖γ(0, ν)‖2
Hμ(dν) < ∞. (3.3)

Note that condition (3.3) implies that the jumps satisfy the usual growth
conditions, i.e.
∫

E

‖γ(x, ν)‖2
Hμ(dν) ≤ 2

∫
E

‖γ(x, ν) − γ(0, ν)‖2
Hμ(dν) + 2

∫
E

‖γ(0, ν)‖2
Hμ(dν)

≤ 2max
{

Lγ ,

∫
E

‖γ(0, ν)‖2
Hμ(dν)

}
(1 + ‖x‖2

H).

Moreover, it follows from (GDC) and (3.2) it follows

〈Ax, x〉H ≤
(
β +

√
LF

)
‖x‖2

H , x ∈ D(A).

Hence A − (β +
√

LF ) is dissipative and thus by the Lumer-Phillips theorem
the semigroup (S(t))t≥0 generated by (A,D(A)) is quasi-contractive, i.e.

‖S(t)x‖H ≤ e(β+
√

LF )t‖x‖H , x ∈ H. (3.4)

Then, under conditions (GDC) and (A1), for each initial condition X0 ∈
L2(Ω,F0, P;H) there exists a unique cádlág, (Ft)t≥0-adapted, mean square
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continuous, mild solution (Xt)t≥0 to (3.1) such that, for each T > 0, there
exists a constant C(T ) > 0 satisfying

E

[
sup

t∈[0,T ]

‖Xt‖2
H

]
≤ C(T )

(
1 + E

[‖X0‖2
H

])
(3.5)

This means that (Xt)t≥0 satisfies P-a.s.

Xt = S(t)X0 +
∫ t

0

S(t − s)F (Xs)ds +
∫ t

0

S(t − s)σ(Xs)dWs

+
∫ t

0

∫
E

S(t − s)γ(Xs, ν)Ñ(ds, dν), t ≥ 0, (3.6)

where all (stochastic) integrals are well-defined, see, e.g., [1,28], and [17]. More-
over, for each X0, Y0 ∈ L2(Ω,F0, P;H), the corresponding unique solutions
(Xt)t≥0 and (Yt)t≥0 satisfy

E
[‖Xt − Yt‖2

H

] ≤ C(T )E
[‖X0 − Y0‖2

H

]
, t ∈ [0, T ]. (3.7)

If X0 ≡ x ∈ H, then we denote by (Xx
t )t≥0 the corresponding solution to

(3.1). Such solution constitutes a Markov process whose transition probabilities
pt(x, dy) = P[Xx

t ∈ dy] are measurable with respect to x. By slight abuse of
notation we denote by (pt)t≥0 its transition semigroup, i.e., for each bounded
measurable function f : H −→ R, ptf is given by

ptf(x) = E [f(Xx
t )] =

∫
H

f(y)pt(x, dy), t ≥ 0, x ∈ H.

Using the continuous dependence on the initial condition, see (3.7), it can be
shown that ptf ∈ Cb(H) for each f ∈ Cb(H), i.e. the transition semigroup is
Cb-Feller.

In this work we investigate the the existence of invariant measures and
convergence of the transition probabilities towards these measures for the
Markov process (Xx

t )t≥0 with particular focus on the cases where uniqueness
of invariant measures fails to hold. We denote by p∗

t the adjoint operator to pt

defined by

p∗
t ρ(dx) =

∫
H

pt(y, dx)ρ(dy), t ≥ 0.

Recall that a probability measure π on (H,B(H)) is called invariant measure
for the semigroup (pt)t≥0 if and only if p∗

t π = π holds for each t ≥ 0. Let
P2(H) be the space of Borel probability measures ρ on (H,B(H)) with finite
second moments. Recall that P2(H) is separable and complete when equipped
with the Wasserstein-2-distance

W2(ρ, ρ̃) = inf
G∈H(ρ,ρ̃)

(∫
H×H

‖x − y‖2
HG(dx, dy)

) 1
2

, ρ, ρ̃ ∈ P2(H). (3.8)

Here H(ρ, ρ̃) denotes the set of all couplings of (ρ, ρ̃), i.e. Borel probability
measures on H ×H whose marginals are given by ρ and ρ̃, respectively, see [40,
Section 6] for a general introduction to couplings and Wasserstein distances.



NoDEA On a class of stochastic partial differential equations Page 11 of 46 28

3.2. Discussion of generalized dissipativity condition

In this section we briefly discuss the condition

〈Ax, x〉H ≤ −λ0‖x‖2
H + (λ0 + λ1)‖P1x‖2

H , x ∈ D(A), (3.9)

where λ0 > 0 and λ1 ≥ 0. Note that, if (3.9) and condition (3.1) are satisfied,
then

〈Ax − Ay, x − y〉H + 〈F (x) − F (y), x − y〉H

≤ 〈Ax − Ay, x − y〉H +
√

LF ‖x − y‖2
H

≤ −
(
λ0 −

√
LF

)
‖x − y‖2

H + (λ0 + λ1) ‖P1x − P1y‖2
H , (3.10)

i.e. the generalized dissipativity condition (GDC) is satisfied for α = λ0−√
LF

and β = λ1 +
√

LF , provided that λ0 >
√

LF .

Proposition 3.1. Suppose that there exists an orthogonal decomposition H =
H0 ⊕ H1 of H into closed linear subspaces H0,H1 ⊂ H such that (S(t))t≥0

leaves H0 and H1 invariant and there exist constants λ0 > 0 and λ1 ≥ 0
satisfying

‖S(t)x0‖H ≤ e−λ0t‖x0‖H , ‖S(t)x1‖H ≤ eλ1t‖x1‖H , ∀t ≥ 0.

for all x0 ∈ H0 and x1 ∈ H1. Then (3.9) holds for P1 being the orthogonal
projection operator onto H1.

Proof. Let P0 be the orthogonal projection operator onto H0. Since (S(t))t≥0

leaves the closed subspace H0 invariant, its restriction (S(t)|H0)t≥0 onto H0 is a
strongly continuous semigroup of contractions on H0 with generator (A0,D(A0))
being the H0 part of A, that is

A0x = Ax, x ∈ D(A0) = {y ∈ D(A) ∩ H0 | Ay ∈ H0}.

Since H0 is closed and S(t) leaves H0 invariant, it follows that Ay = limt→0
S(t)y−y

t ∈ H0 for y ∈ D(A) ∩ H0, i.e. D(A0) = D(A) ∩ H0 and P0 : D(A) →
D(A0).

Arguing exactly in the same way shows that the restriction (S(t)|H1)t≥0 is
a strongly continuous semigroup of contractions on H1 with generator
(A1,D(A1)) given by A1x = Ax and x ∈ D(A1) = D(A) ∩ H1 so that
P1 : D(A) → D(A1). Since S(t) leaves H0 and H1 invariant, we obtain
P0S(t) = S(t)P0, P1S(t) = S(t)P1 from which we conclude that AP1x = P1Ax
and AP0x = P0Ax for x ∈ D(A).

Since (eλ0tS(t)|H0)t≥0 is a strongly continuous semigroup of contractions
on H0 with generator A0 +λ0I, and (e−λ1tS(t)|H1)t≥0 is a strongly continuous
semigroup of contractions on H1 with generator A1 − λ1I, we have by the
Lumer-Phillips theorem (see [31, Theorem 4.3])

〈A0x0, x0〉H ≤ −λ0‖x0‖2
H and 〈A1x1, x1〉H ≤ λ1‖x1‖2

H , x0 ∈ H0, x1 ∈ H1.
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Hence we find that

〈Ax, x〉H = 〈Ax,P0x〉H + 〈Ax,P1x〉H

= 〈P0Ax,P0x〉H + 〈P1Ax,P1x〉H

= 〈A0P0x, P0x〉H + 〈A1P1x, P1x〉H

≤ −λ0‖P0x‖2
H + λ1‖P1x‖2

H

= −λ0‖x‖2
H + (λ0 + λ1)‖P1x‖2

H ,

where the last equality follows from H0 ⊥ H1. This proves the assertion. �

At this point it is worthwhile to mention that Onno van Gaans has inves-
tigated in [39] ergodicity for a class of Lévy driven stochastic partial differen-
tial equations where the semigroup (S(t))t≥0 was supposed to be hyperbolic.
Proposition 3.1 can be also applied for hyperbolic semigroups provided that
the hyperbolic decomposition is orthogonal. The conditions of previous propo-
sition are satisfied whenever (S(t))t≥0 is a symmetric, uniformly convergent
semigroup.

Remark 3.2. Suppose that (S(t))t≥0 is a strongly continuous semigroup on H
and there exists an orthogonal projection operator P on H and λ0 > 0 such
that

‖S(t)x − Px‖H ≤ e−λ0t‖x − Px‖H , t ≥ 0, x ∈ H. (3.11)

Then the conditions of Proposition 3.1 are satisfied for H0 = ker(P ) and
H1 = ran(P ) with λ0 > 0 and λ1 = 0. In particular, (S(t))t≥0 is a semigroup
of contractions.

The following example shows that (3.9) can also be satisfied for non-
symmetric and non-convergent semigroups.

Example 3.3. Let H = R
2, H0 = R × {0}, H1 = {0} × R, and denote by

P0, P1 the projection operators onto H0 and H1, respectively. Let A be given

by A =
(−1 1

0 1

)
. Then

〈(
x
y

)
, A

(
x
y

)〉
H

= −x2 + xy + y2

≤ −1
2
(x2 + y2) + 2y2

= −1
2
‖(x, y)‖2

H + 2‖P1(x, y)‖2
H ,

i.e. (3.9) holds for λ0 = 1
2 and λ1 = 3

2 . Since etA =
(

e−t et−e−t

2
0 et

)
, it is clear

that neither the conditions of Proposition 3.1 nor of Remark 3.2 are satisfied.
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3.3. Key stability estimate

Define, for x, y ∈ D(A), the function

L(‖ · ‖2
H)(x, y) := 2〈A(x − y) + F (x) − F (y), x − y〉H + ‖σ(x) − σ(y)‖2

L0
2(H)

+
∫

E

‖γ(x, ν) − γ(y, ν)‖2
Hμ(dν).

Remark that if (1.1) has a strong solution, then the function

L(‖ · ‖2
H)(z) := 2〈A(z) + F (z), z〉H + ‖σ(z)‖2

L0
2(H) +

∫
E

‖γ(z, ν)‖2
Hμ(dν).

is simply the generator L applied to the unbounded function ‖z‖2
H , see, e.g,. [2,

equation (3.4)]). Since we work with mild solutions instead, all computations
given below require to use additionally Yosida approximations for the mild
solution of (1.1).

Below we first prove a Lyapunov-type estimate for L(‖ · ‖2
H) and then

deduce from that by an application of the generalized Itô-formula A.2 to (3.1)
an estimate for the L2-norm of Xx

t − Xy
t .

Lemma 3.4. Assume that condition (GDC) and (A1) are satisfied. Then

L(‖ · ‖2
H)(x, y) ≤ − (2α − Lσ − Lγ) ‖x − y‖2

H + 2(α + β)‖P1x − P1y‖2
H (3.12)

holds for x, y ∈ D(A).

Proof. Using first (A1) and then (GDC) we find that

L(‖ · ‖2
H)(x, y) ≤ (Lσ + Lγ)‖x − y‖2

H

+ 2〈Ax − Ay, x − y〉H + 2〈F (x) − F (y), x − y〉H

≤ − (2α − Lσ − Lγ) ‖x − y‖2
H + 2 (α + β) ‖P1x − P1y‖2

H .

This proves the asserted inequality. �

The following is our key stability estimate.

Proposition 3.5. Suppose that (GDC) and (A1) are satisfied, that

ε := 2α − Lσ − Lγ > 0, (3.13)

and suppose that

sup
x∈H

∫
E

‖γ(x, ν)‖4μ(dν) < ∞. (3.14)

Then, for each X0, Y0 ∈ L2(Ω,F0, P;H) and all t ≥ 0,

E
[‖Xt − Yt‖2

H

]

≤ e−εt
E
[‖X0 − Y0‖2

H

]
+ 2(α + β)

∫ t

0

e−ε(t−s)
E
[‖P1Xs − P1Ys‖2

H

]
ds,

(3.15)

where (Xt)t≥0 and (Yt)t≥0 denote the unique solutions to (3.1), respectively.
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Proof. Let (Xn
t )t≥0 and (Y n

t )t≥0 be the strong solutions to the corresponding
Yosida-approximation systems{

dXn
t = AXn

t + RnF (Xn
t )dt + Rnσ(Xn

t )dWt +
∫

E
Rnγ(Xn

t , ν)Ñ(dt, dν),
Xn

0 = RnX0, t ≥ 0

and{
dY n

t = AY n
t + RnF (Y n

t )dt + Rnσ(Y n
t )dWt +

∫
E

Rnγ(Y n
t , ν)Ñ(dt, dν),

Y n
0 = RnY0, t ≥ 0

where Rn = n(n − A)−1 for n ∈ N with n > α + β +
√

LF =: λ. By (3.4) we
find for each n ≥ 1 + λ the inequality

‖Rnz‖H ≤ n

n − λ
‖z‖H ≤ (1 + λ)‖z‖H .

By classical properties of the resolvent (see [31, Lemma 3.2]), one clearly has
Rnz → z as n → ∞ in H . Moreover, by properties of the Yosida approximation
of mild solutions of SPDEs (compare e.g. with Appendix A2 in [28] or Section
2 in [2]) we have

lim
n→∞ E

[
sup

t∈[0,T ]

‖Xn
t − Xt‖2

H + sup
t∈[0,T ]

‖Y n
t − Yt‖2

H

]
= 0, ∀T > 0

and hence there exists a subsequence (which is again denoted by n) such that
Xn

t −→ Xt and Y n
t −→ Yt hold a.s. for each t ≥ 0. Following a method

proposed in [2] we verify that sufficient conditions are satisfied to apply the
generalized Itô-formula from Theorem A.2 to the function F (t, z) := eεt‖z‖2

H ,
where ε = 2α − Lσ − Lγ is given by (3.13):

Xn
t − Y n

t = Rn(X0 − Y0) +
∫ t

0

{A(Xn
s − Y n

s ) + Rn(F (Xn
s ) − F (Y n

s ))} ds

+
∫ t

0

Rn(σ(Xn
s ) − σ(Y n

s ))dWs +
∫ t

0

∫
E

Rn(γ(Xn
s , ν) − γ(Y n

s , ν))Ñ(ds, dν).

Observe that, by condition (A1) and (3.14), one has∫ t

0

∫
E

‖Rn(γ(Xn
s , ν) − γ(Y n

s , ν))‖2
Hμ(dν)ds

+
∫ t

0

∫
E

‖Rn(γ(Xn
s , ν) − γ(Y n

s , ν))‖4
Hμ(dν)ds

≤ (1 + λ)2
∫ t

0

∫
E

‖γ(Xn
s , ν) − γ(Y n

s , ν)‖2
Hμ(dν)ds

+ 8(1 + λ)4
∫ t

0

∫
E

(‖γ(Xn
s , ν)‖4

H + ‖γ(Y n
s , ν)‖4

H

)
μ(dν)ds

≤ Lγ(1 + λ)2
∫ t

0

‖Xn
s − Y n

s ‖2
Hds

+ 16(1 + λ)4t sup
z∈H

∫
E

‖γ(z, ν)‖4
Hμ(dν) < ∞.
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Thus we can apply the generalized Itô-formula from Theorem A.2 and obtain
(similar to (3.5) in [2])

eεt‖Xn
t − Y n

t ‖2
H − ‖Rn(X0 − Y0)‖2

H

=
∫ t

0

〈2eεs(Xn
s − Y n

t ), Rn(σ(Xn
s ) − σ(Y n

s ))dWs〉H

+
∫ t

0

eεs
[
ε‖Xn

s − Y n
s ‖2

H + Ln(‖ · ‖2
H)(Xn

s , Y n
s )
]
ds

+
∫ t

0

∫
E

eεs
[‖Xn

s − Y n
s + Rn(γ(Xn

s , ν) − γ(Y n
s , ν))‖2

H

−‖Xn
s − Y n

s ‖2
H

]
Ñ(ds, dν), (3.16)

where we used, for z, w ∈ D(A), the notation

Ln(‖ · ‖2
H)(z, w) := 2〈z − w,A(z − w) + Rn(F (z) − F (w))〉H

+ ‖Rn(σ(z) − σ(w))‖2
L0

2(H)

+
∫

E

‖Rn(γ(z, ν) − γ(w, ν))‖2
Hμ(dν).

Taking expectations in (3.16) yields

eεt
E
[‖Xn

t − Y n
t ‖2

H

]− E
[‖Rn(X0 − Y0)‖2

H

]

= E

[∫ t

0

eεs
(
ε‖Xn

s − Y n
s ‖2

H + Ln(‖ · ‖2
H)(Xn

s , Y n
s )
)
ds

]
. (3.17)

Lemma 3.4 yields

eεt
E
[‖Xn

t − Y n
t ‖2

H

]− E
[‖Rn(x − y)‖2

H

]

− 2(α + β)
∫ t

0

eεs
E
[‖P1X

n
s − P1Y

n
s ‖2

H

]
ds

≤ E

[∫ t

0

eεs(−L(‖ · ‖2
H)(Xn

s , Y n
s ) + Ln(‖ · ‖2

H)(Xn
s , Y n

s ))ds

]
.

Below we prove that the right-hand-side tends to zero as n → ∞, which would
imply the assertion of this theorem. To prove the desired convergence to zero
we apply the generalized Lebesgue Theorem (see [28, Theorem 7.1.8]). For this
reason we have to prove that

L(‖ · ‖2
H)(Xn

s , Y n
s ) − Ln(‖ · ‖2

H)(Xn
s , Y n

s ) → 0 (3.18)

holds a.s. for each s > 0 as n → ∞ and, moreover, there exists a constant
C > 0 such that

|L(‖ · ‖2
H)(Xn

s , Y n
s ) − Ln(‖ · ‖2

H)(Xn
s , Y n

s )| ≤ C‖Xn
s − Y n

s ‖2
H . (3.19)

We start with the proof of (3.18). Denote Fn
s := F (Xn

s ) − F (Y n
s ), σn

s :=
σ(Xn

s ) − σ(Y n
s ) and γn

s (ν) := γ(Xn
s , ν) − γ(Y n

s , ν) and analogously Fs :=
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F (Xs) − F (Ys), σs := σ(Xs) − σ(Ys) and γs(ν) := γ(Xs, ν) − γ(Ys, ν) for each
n ∈ N, s ≥ 0 and ν ∈ E. Then

|(L(‖ · ‖2
H)(Xn

s , Y n
s ) − Ln(‖ · ‖2

H)(Xn
s , Y n

s ))|
≤ 2|〈Xn

s − Y n
s , Fn

s − RnFn
s 〉H | + |‖σn

s ‖2
L0

2
− ‖Rnσn

s ‖2
L0

2
|

+
∣∣∣∣
∫

E

‖γn
s (ν)‖2

H − ‖Rnγn
s (ν)‖2

Hμ(dν)
∣∣∣∣

=: I1 + I2 + I3.

For the first term I1 we estimate

I1 ≤ 2‖Xn
s − Y n

s ‖H‖Fn
s − RnFn

s ‖H

≤ 2‖Xn
s − Y n

s ‖H (‖Fn
s − Fs‖H + ‖Fs − RnFs‖H + ‖RnFs − RnFn

s ‖H)

≤ 2‖Xn
s − Y n

s ‖H (‖Fn
s − Fs‖H + ‖Fs − RnFs‖H + (1 + λ)‖Fs − Fn

s ‖H) .

Using that Xn
s → Xs and Y n

s → Ys as a.s. for some subsequence (also denoted
by n), we easily find that the right-hand side tends to zero. The convergence
of the second term follows from

I2 =
∣∣‖σn

s ‖L0
2
− ‖Rnσn

s ‖L0
2

∣∣ (‖σn
s ‖L0

2
+ ‖Rnσn

s ‖L0
2

)
≤ (2 + λ)

√
Lσ‖σn

s − Rnσn
s ‖L0

2
‖Xn

s − Y n
s ‖H

≤ (2+λ)2
√

Lσ‖Xn
s −Y n

s ‖H

(‖σn
s −σs‖L0

2
+ ‖σs − Rnσs‖L0

2
+ ‖σs − σn

s ‖L0
2

)
.

It remains to show the convergence of the third term. First, observe

I3 ≤ (2 + λ)

∫
E

‖γn
s (ν) − Rnγn

s (ν)‖H‖γn
s (ν)‖Hμ(dν)

≤ (2 + λ)

∫
E

(
‖γn

s (ν) − γs(ν)‖H + ‖γs(ν) − Rnγs(ν)‖H

+ ‖Rnγs(ν) − Rnγn
s (ν)‖H

)
‖γn

s (ν)‖Hμ(dν)

≤ (2 + λ)

(∫
E

‖γn
s (ν)‖2

Hμ(dν)

) 1
2
[(∫

E

‖γn
s (ν) − γs(ν)‖2

Hμ(dν)

) 1
2

+

(∫
E

‖γs(ν) − Rnγs(ν)‖2
Hμ(dν)

) 1
2

+

(∫
E

‖Rnγs(ν) − Rnγn
s (ν)‖2

Hμ(dν)

) 1
2
]

≤
√

2(2 + λ)2Lγ‖Xn
s − Y n

s ‖H (‖Xn
s − Xs‖H + ‖Y n

s − Ys‖H)

+ (2 + λ)
√

Lγ‖Xn
s − Y n

s ‖H

(∫
E

‖γs(ν) − Rnγs(ν)‖2
Hμ(dν)

) 1
2

= I1
3 + I2

3
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where the last inequality follows from condition (A1) combined with the in-
equality

‖Rnγs(ν) − Rnγn
s (ν)‖2

H

≤ (1 + λ)2‖γs(ν) − γn
s (ν)‖2

H

≤ 2(1 + λ)2
(‖γ(Xs, ν) − γ(Ys, ν)‖2

H + ‖γ(Xn
s , ν) − γ(Y n

s , ν)‖2
H

)
.

The first expression I1
1 clearly tends to zero as n → ∞. For the second ex-

pression I2
3 we use the inequality ‖γs(ν) − Rnγs(ν)‖2

H ≤ 2(2 + λ)2‖γs(ν)‖2
H so

that dominated convergence theorem is applicable, which shows that I2
3 → 0

as n → ∞ a.s.. This proves (3.18). Concerning (3.19), we find that

|(L(‖ · ‖2
H)(Xn

s , Y n
s ) − Ln(‖ · ‖2

H)(Xn
s , Y n

s ))|
≤ 2|〈Xn

s − Y n
s , Fn

s − RnFn
s 〉H | + |‖σn

s ‖2
L0

2(H) − ‖Rnσn
s ‖2

L0
2(H)|

+
∣∣∣∣
∫

E

‖γn
s (ν)‖2

H − ‖Rnγn
s (ν)‖2

Hμ(dν)
∣∣∣∣

≤ 2(2 + λ)‖Xn
s − Y n

s ‖H‖Fn
s ‖H +

(
1 + (1 + λ)2

)
[
‖σn

s ‖2
L0

2(H) +
∫

E

‖γn
s (ν)‖2

Hμ(dν)
]

≤ 2(2 + λ)LF ‖Xn
s − Y n

s ‖2
H +

(
1 + (1 + λ)2

)
(Lσ + Lγ)‖Xn

s − Y n
s ‖2

H .

Hence the generalized Lebesgue Theorem is applicable, and thus the assertion
of this theorem is proved. �

Note that condition (3.14) is used to guarantee that the Itô-formula A.2
for Hilbert space valued jump diffusions can be applied for (x, t) → etε‖x‖2

H .
The assertion of Proposition 3.5 is also true when ε ≤ 0, but will be only
applied for the case when ε > 0.

4. Convergence to limiting distribution

4.1. The strongly dissipative case

As a consequence of our key stability estimate we can provide a simple proof
for the existence and uniqueness of a unique limiting distribution in the spirit
of classical results such as [32, Section 16], [10, Chapter 11, Section 5], and
[36].

Theorem 4.1. Assume that condition (GDC) is satisfied for P1 = 0 (and hence
β = 0), (A1) holds, and (3.14) is satisfied. If (3.13) is satisfied, then

W2(p∗
t ρ, p∗

t ρ̃) ≤ W2(ρ, ρ̃)e−εt/2, t ≥ 0, (4.1)

holds for any ρ, ρ̃ ∈ P2(H). In particular, the Markov process determined by
(3.1) has a unique invariant measure π. This measure has finite second mo-
ments and it holds that

W2(p∗
t ρ, π) ≤ W2(ρ, π)e−εt/2, t ≥ 0, (4.2)

for each ρ ∈ P2(H).
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Proof. Using (GDC) with P1 = 0 combined with Proposition 3.5 we find that

E[‖Xx
t − Xy

t ‖2
H ] ≤ e−εt‖x − y‖2

H , x, y ∈ H.

Using the definition of the Wasserstein distance, we conclude that

W2(p∗
t δx, p∗

t δy) ≤ (E[‖Xx
t − Xy

t ‖2
H ]
)1/2 ≤ ‖x − y‖He−εt/2.

The latter one readily yields (4.12). Finally, the existence and uniqueness of an
invariant measure as well as (4.2) can be derived from (4.12) combined with a
standard Cauchy argument. �

This result can be seen as an analogue of the conditions introduced in [32,
Section 16], [10, Chapter 11, Section 5], and [36], where a similar statement
was given. Opposite to this case, in this work we focus on the study of multiple
invariant measures. For this purpose we will assume that ε > 0 and that (GDC)
holds for some P1 
= 0.

4.2. The case of vanishing coefficients

While Proposition 3.5 provides an estimate on the L2-norm of the difference
Xx

t −Xy
t , such an estimate alone does neither imply the existence nor unique-

ness of an invariant distribution. However, if the coefficients F, σ, γ vanish at
H1, then we may characterize the limiting distributions in L2.

Theorem 4.2. Suppose that (GDC) holds with a projection operator P1, (A1),
(3.14), (3.13) are satisfied, that (S(t))t≥0 leaves H0 := ran(I − P1) invariant,
and that ran(P1) ⊂ ker(A). Moreover, assume that

P1F ≡ 0, P1σ ≡ 0, P1γ ≡ 0. (4.3)

Given any X0 ∈ L2(Ω,F0, P;H) which satisfies

F (P1X0) = 0, σ(P1X0) = 0, γ(P1X0, ·) = 0, a.s., (4.4)

then the inequality

E
[‖Xt − P1X0‖2

H

] ≤ e−εt
E
[‖(I − P1)X0‖2

H

]

holds. In particular, let ρ be the law of X0 ∈ L2(Ω,F0, P;H) and ρ1 be the law
of P1X0, respectively. Then ρ1 is an invariant measure.

Proof. Fix X0 ∈ L2(Ω,F0, P;H) with property (4.4) and set P0 = I−P1. Since
ran(P1) ⊂ ker(A) we find that S(t)P1 = P1 for t ≥ 0 and hence P0S(t)P1 = 0.
Moreover, since (S(t))t≥0 leaves H0 invariant, we obtain P0S(t) = P0S(t)P0 +
P0S(t)P1 = P0S(t)P0 = S(t)P0. Hence, using (4.3) we find that

P1Xt = P1S(t)X0 = P1S(t)P0X0 + P1S(t)P1X0 = P1X0.
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From this we conclude that (P0Xt)t≥0 satisfies

P0Xt = P0S(t)X0 +
∫ t

0

P0S(t − s)F (Xs)ds +
∫ t

0

P0S(t − s)σ(Xs)dWs

+
∫ t

0

∫
E

P0S(t − s)γ(Xs)Ñ(ds, dν)

= S(t)P0X0 +
∫ t

0

S(t − s)P0F (P1X0 + P0Xt)ds

+
∫ t

0

S(t − s)P0σ(P1X0 + P0Xs)dWs

+
∫ t

0

∫
E

S(t − s)P0γ(P1X0 + P0Xs)Ñ(ds, dν)

= S(t)P0X0 +
∫ t

0

S(t − s)F̃ (P0Xt)ds +
∫ t

0

S(t − s)σ̃(P0Xs)dWs

∫ t

0

∫
E

S(t − s)γ̃(P0Xs)Ñ(ds, dν),

where we have set F̃ (y) := P0F (P1X0 + y), σ̃(y) := P0σ(P1X0 + y) and
γ̃(y, ν) := P0γ(P1X0 + y, ν) for all y ∈ H0 and ν ∈ E. Since these coefficients
share the same Lipschitz estimates as F, σ and γ, are F0-measurable and the
noise terms are independent of F0, we can apply Proposition 3.5 (conditionally
on F0) to the process (P0Xt)t≥0 obtained from the above auxiliary SPDE and
obtain

E[‖Xt − P1X0‖2
H ] = E[‖P0Xt‖2

H ] = E[‖P0Xt − P0Y
0
t ‖2

H ] ≤ e−εt
E[‖P0X0‖2

H ],

where we have used that P0Yt = 0 for the unique solution with Y0 = 0 due to
(4.4). �

This theorem can be applied, for instance, to the Heath–Jarrow–Morton–
Musiela equation, see Sect. 5.

4.3. Main result: the general case

In Theorem 4.2 we have assumed (4.3), (4.4), and that (S(t))t≥0 leaves H0

invariant. Below we continue with the more general case. Namely, for the
projection operator P1 given by condition (GDC) we set P0 = I − P1 and
suppose that:
(A2) The semigroup (S(t))t≥0 leaves H1 := ran(I − P0) invariant, one has

P1σ = P1γ = 0 and P1F (x) = P1F (P1x), x ∈ H.

Let us briefly comment on this condition. Let (Xt)t≥0 be the unique solution
to (3.6) and decompose the process Xt according to Xt = P0Xt + P1Xt.
Then condition (A2) simply implies that P1Xt is F0-measurable and satisfies
ω-wisely the deterministic equation

f(t;x) = P1S(t)x +
∫ t

0

P1S(t − s)P1F (P1f(s;x))ds, f(0, x) = x ∈ H, (4.5)



28 Page 20 of 46 B. Farkas et al. NoDEA

i.e. P1Xt = f(t;x) with f(0, x) = x = X0 holds a.s. Our next condition
imposes a control on this component:
(A3) For each x ∈ H1 = ran(P1) there exists f̃(x) ∈ H1 and constants C(x) >

0, δ(x) > 0 such that

‖f(t;x) − f̃(x)‖2
H ≤ C(x)e−δ(x)t, t ≥ 0.

Without loss of generality we will always suppose that δ(x) ∈ (0, |ε|). Such
assumption will simplify our arguments later on. Note that, if P1F (P1·) = 0
then condition (A3) reduces to a condition on the limiting behavior of the
semigroup (S(t))t≥0 when restricted to H1 = ran(P1). In such a case condition
(A3) is, for instance, satisfied if ran(P1) ⊂ ker(A). Recall that condition (GDC)
was formulated in the introduction and that (A1), (3.14) and (3.13) were
formulated in Sect. 3. The following is our main result in this section.

Theorem 4.3. Suppose that condition (GDC) holds for some projection opera-
tor P1, that conditions (A1) – (A3), (3.14) and (3.13) are satisfied. Then the
following assertions hold:
(a) For each x ∈ H there exists an invariant measure πδx

∈ P2(H) for the
Markov semigroup (pt)t≥0 and a constant K(α, β, ε, h) > 0 such that

W2(pt(x, ·), πδx
) ≤ K(α, β, ε, x)e− δ(x)

2 t, t ≥ 0.

(b) Suppose, in addition to the conditions of (A3), that there are constants δ
and C, such that

δ(x) ≥ δ > 0 and C(x) ≤ C(1 + ‖x‖H)4, x ∈ H. (4.6)

Then, for each ρ ∈ P2(H), there exists an invariant measure πρ ∈ P2(H)
for the Markov semigroup (pt)t≥0 and a constant K(α, β, ε) > 0 such
that

W2(p∗
t ρ, πρ) ≤ K(α, β, ε)

∫
H

(1 + ‖x‖H)2ρ(dx)e− δ
2 t, t ≥ 0.

The proof of this theorem relies on the key stability estimate formulated
in Proposition 3.5 and is given at the end of this section. So far we have stated
the existence of invariant measures parametrized by the initial state of the
process. However, under the given conditions it can also be shown that πδx

as
well as πρ depend only on the H1 part of x or ρ, respectively.

Corollary 4.4. Suppose that condition (GDC) holds for some projection oper-
ator P1, that conditions (A1) – (A3), (3.14) and (3.13) are satisfied. Then the
following assertions hold:
(a) Let x, y ∈ H be such that P1x = P1y. Then πδx

= πδy
.

(b) Suppose, in addition, that (4.6) holds. Let ρ, ρ̃ ∈ P2(H) be such that
ρ ◦ P−1

1 = ρ̃ ◦ P−1
1 . Then πρ = πρ̃.

Let us briefly compare the conditions imposed in Theorem 4.2 with those
imposed in Theorem 4.3. In Theorem 4.3 we have weakened (4.3) with respect
to F by replacing P1F = 0 by P1F (x) = P1F (P1x). Moreover, we have re-
placed ran(P1) ⊂ ker(A) by condition (A3). Finally note that condition (4.4)
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is not assumed in Theorem 4.3. Below we provide a counter example showing
that, in general, condition (A3) cannot be omitted.

Example 4.5. Let H = R
2 and (Wt)t≥0 be a 2-dimensional standard Brownian

motion. Let Yt = (Y 1
t , Y 2

t ) ∈ H = R
2 be the solution of

dYt =
(−1 1

0 1

)
Ytdt +

(
1 0
0 0

)
dWt.

Then condition (A1) holds for F = 0, γ = 0 and clearly σ(x) =
(

1 0
0 0

)
.

Example 3.3 shows that (GDC) holds with P1 being the projection onto the
second coordinate. Moreover, (4.3) and hence (A2) holds. However, since

Y 2
t = etY 2

0 +
∫ t

0

et−sdW 2
s

it is clear that condition (A3) is not satisfied. Moreover, Y 2
t does not have a

limiting distribution and hence also Yt cannot have a limiting distribution.

The next remark shows that, under a stronger condition on the Lévy
measure, the results obtained in Theorem 2.1 could partially also be deduced
from the general statements of this section.

Remark 4.6. The results obtained in Sect. 2 for the Lévy driven Ornstein–
Uhlenbeck process could partially be also obtained from the above results.
Indeed, (2.1) can be cast into the form

dXx
t = AXx

t dt + dZt

= (AXx
t + b)dt + QdWt +

∫
{‖z‖H≤1}\{0}

zÑ(dt, dz) +

∫
{‖z‖H>1}

zN(dt, dz)

= (AXx
t + b + c)dt + QdWt +

∫
H\{0}

zÑ(dt, dz),

where c =
∫

{‖z‖H>1} zμ(dz) and we have used the Lévy-Ito decomposition for
the Lévy process (Zt)t≥0, i.e.,

Zt = bt + QWt +
∫

{‖z‖H≤1}\{0}
zÑ(dt, dz) +

∫
{‖z‖H>1}

zN(dt, dz),

where N(dt, dz) is a Poisson random measure with compensator dtμ(dz). Sup-
pose that the conditions of Theorem 2.1 are satisfied. If the semigroup gener-
ated by (A,D(A)) is also symmetric, then using Proposition 3.1 one can show
that also (GDC) holds. Condition (A1) is clearly satisfied for Lγ = Lσ = 0
and σ(x) = Q, γ(x, z) = z. Thus (3.13) is satisfied. To prove condition (A2)
we let H0 = ker(P ), H1 = ran(P ) and observe that PXt, compare with (4.5),
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simplifies to

PXt = PS(t)x +
∫ t

0

PS(t − s)(b + c)ds +
∫ t

0

PS(t − s)QdWs

+
∫ t

0

∫
H\{0}

PS(t − s)zÑ(ds, dz)

= Px +
∫ t

0

∫
H\{0}

PzÑ(ds, dz),

where we have used PS(t − s) = PS(t − s)P = P and the conditions imposed
in Theorem 2.1 on the Lev́y triplet, i.e., P (b+c) = 0 and PQ = 0. Noting that
supp(μ) ⊂ ker(P ) we find that Ñ is supported on R+ × ker(P ) and hence∫ t

0

∫
H\{0}

PzÑ(ds, dz) = 0.

This shows that condition (A3) is satisfied for any choice of C(x), δ(x) and
f̃(x) = Px. Finally, (3.14) requires that μ satisfies the stronger moment con-
dition ∫

{‖z‖H>1}
‖z‖4

Hμ(dz) < ∞.

Thus under the above assumptions the existence of multiple invariant mea-
sures for the Ornstein–Uhlenbeck process also follows from Theorem 4.3 and
Corollary 4.4. However, in contrast to Theorem 2.1, the general results from
this section, do not provide an explicit characterization of the limiting distri-
butions in terms of the Fourier transform and also require to assume stronger
conditions.

Next we turn to a proof of Theorem 4.3 and Corollary 4.4.

4.4. Construction of a coupling

Let x ∈ H and let (Xx
t )t≥0 be the unique mild solution to (3.6). Below we

construct for given τ ≥ 0 a coupling for the law of (Xx
t ,Xx

t+τ ). Let (Y x,τ
t )t≥0

be the unique mild solution to the SPDE

Y x,τ
t = S(t)x +

∫ t

0

S(t − s)F (Y x,τ
s )ds +

∫ t

0

S(t − s)σ(Y x,τ
s )dW τ

s

+
∫ t

0

∫
E

S(t − s)γ(Y x,τ
s , ν)Ñτ (ds, dν), t ≥ 0, (4.7)

where W τ
s = Wτ+s − Wτ is a Q-Wiener process, and Ñτ (ds, dν) defined by

Ñτ ((0, t] × A) := Ñ((τ, τ + t] × A)

for t > 0 and A ∈ E is a Poisson random measure with respect to the filtration
(Fτ

s )s≥0 defined by Fτ
s = Fs+τ .

Lemma 4.7. Suppose that (GDC), (A1), (3.14) and (3.13) are satisfied. Then
for each x ∈ H and t, τ ≥ 0 the following assertions hold:
(a) Y x,τ

t has the same law as Xx
t .
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(b) It holds that

E
[‖Y x,τ

t − Xx
t+τ‖2

H

] ≤ e−εt
E
[‖x − Xx

τ ‖2
H

]

+ 2(α + β)
∫ t

0

e−ε(t−s)
E
[‖P1Y

x,τ
s − P1X

x
s+τ‖2

H

]
ds.

Proof. (a) Since (3.6) has a unique solution it follows from the Yamada-
Watanabe Theorem (see [26]) that also uniqueness in law holds for this equa-
tion. Since the driving noises Nτ and W τ in (4.7) have the same law as N and
W from (3.6), it follows that the unique solution to (4.7) has the same law as
the solution to (3.6). This proves the assertion.

(b) Set Xx,τ
t := Xx

t+τ , then by direct computation we find that

Xx,τ
t = S(t)S(τ)x +

∫ t+τ

0

S(t + τ − s)F (Xx
s )ds +

∫ t+τ

0

S(t + τ − s)σ(Xx
s )dWs

+
∫ t+τ

0

∫
E

S(t + τ − s)γ(Xx
s , ν)Ñ(ds, dν)

= S(t)S(τ)x + S(t)
∫ τ

0

S(τ − s)F (Xx
s )ds + S(t)

∫ τ

0

S(τ − s)σ(Xx
s )dWs

+ S(t)
∫ τ

0

∫
E

S(τ − s)γ(Xx
s , ν)Ñ(ds, dν)

+
∫ t+τ

τ

S(t + τ − s)F (Xx
s )ds +

∫ t+τ

τ

S(t + τ − s)σ(Xx
s )dWs

+
∫ t+τ

τ

∫
E

S(t + τ − s)γ(Xx
s , ν)Ñ(ds, dν)

= S(t)Xx,τ
0 +

∫ t

0

S(t − s)F (Xx,τ
s )ds +

∫ t

0

S(t − s)σ(Xx,τ
s )dW τ

s

+
∫ t

0

∫
E

S(t − s)γ(Xx,τ
s , ν)Ñτ (ds, dν),

where in the last equality we have used, for appropriate integrands Φ(s, ν) and
Ψ(s), that ∫ τ+t

τ

Ψ(s)dWs =
∫ t

0

Ψ(s + τ)dW τ
s ,

∫ τ+t

τ

∫
E

Φ(s, ν)Ñ(ds, dν) =
∫ t

0

∫
E

Φ(s + τ, ν)Ñτ (ds, dν).

Hence (Xx,τ
t )t≥0 also solves (4.7) with Fτ

0 = Fτ and initial condition Xx,τ
0 =

Xx
τ . Consequently, the assertion follows from Proposition 3.5 applied to Xx,τ

t

and Y x,τ
t . �

4.5. Proof of Theorem 4.3

Proof of Theorem 4.3. Fix x ∈ H and recall that pt(x, ·) denotes the transition
probabilities of the Markov process obtained from (3.6). Below we prove that
(pt(x, ·))t≥0 ⊂ P2(H) is a Cauchy sequence with respect to the Wasserstein
distance W2. Fix t, τ ≥ 0. We treat the cases τ ∈ (0, 1] and τ > 1 separately.
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Case 0 < τ ≤ 1: Then using the coupling lemma 4.7.(b) yields

W2(pt+τ (x, ·), pt(x, ·)) ≤ (E [‖Y x,τ
t − Xx

t+τ‖2
H

])1/2

≤ e− ε
2 t
(
E
[‖Xx

τ − x‖2
H

])1/2

+
√

2(α + β)
(∫ t

0

e−ε(t−s)
E
[‖P1Y

x,τ
s − P1X

x
s+τ‖2

H

]
ds

)1/2

=: I1 + I2.

The first term I1 can be estimated by

I1 ≤ e− ε
2 t sup

s∈[0,1]

(
E
[‖Xx

s − x‖2
H

])1/2
.

To estimate the second term I2 we first observe that by condition (A2) we
have P1Y

x,τ
s = P1X

x
s = f(s;x) being deterministic and hence by condition

(A3) one has for each s ≥ 0 that

E
[‖P1Y

x,τ
s − P1X

x
s+τ‖2

H

] ≤ 2‖P1Y
x,τ
s − f̃(x)‖2

H + 2‖P1X
x
s+τ − X̃x

∞‖2
H

≤ 4C(x)e−δ(x)s. (4.8)

This readily yields

∫ t

0

e−ε(t−s)
E
[‖P1Y

x,τ
s − P1X

x
s+τ‖2

H

]
ds

≤ 4C(x)
∫ t

0

e−ε(t−s)e−δ(x)sds

= 4C(x)e−εt e(ε−δ(x))t − 1
ε − δ(x)

≤ 4C(x)
e−δ(x)t

ε − δ(x)
. (4.9)

Inserting this into the definition of I2 gives

I2 ≤ 2

√
(α + β)C(x)

ε − δ(x)
e− δ(x)

2 t.

Case τ > 1: Fix some N ∈ N with τ < N < 2τ and define a sequence of
numbers (an)n=0,...,N by

an :=
τ

N
n, n = 0, . . . , N.
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Then a0 = 0, aN = τ and an − an−1 = τ
N =: κ ∈ ( 1

2 , 1) for n = 1, . . . , N .
Hence we obtain from the coupling Lemma 4.7.(b)

W2(pt+τ (x, ·), pt(x, ·))

≤
N∑

n=1

W2(pt+an(x, ·), pt+an−1(x, ·))

≤
N∑

n=1

(
E

[
‖Y x,κ

t+an−1
− Xx

t+an−1+κ
‖2H
])1/2

≤
N∑

n=1

e− ε
2 (t+an−1)

(
E

[
‖Xx

κ
− x‖2H

])1/2

+
√

2(α + β)

N∑
n=1

(∫ t+an−1

0

e−ε(t+an−1−s)
E

[
‖P1Y

x,κ
s − P1X

x
s+κ

‖2H
]
ds

)1/2

=: J1 + J2.

For the first term J1 we use κ > 1
2 so that

N∑
n=1

e− ε
2 κ(n−1) ≤

∞∑
n=0

e− ε
4n =

(
1 − e− ε

4
)−1

,

from which we obtain

J1 = e− ε
2 t sup

s∈[0,1]

(
E[‖Xx

s − x‖2
H ]
) 1

2

N∑
n=1

e− ε
2 κ(n−1)

≤ sup
s∈[0,1]

(
E[‖Xx

s − x‖2
H ]
) 1

2
(
1 − e− ε

4
)−1

e− ε
2 t.

To estimate the second term J2 we first observe that by condition (A2) we
have P1Y

x,τ
s = P1X

x
s = f(s;x) being deterministic and hence by condition

(A3), one has for s ≥ 0

E
[‖P1Y

x,κ
s − P1X

x
s+κ

‖2
H

] ≤ 2‖P1Y
x,κ
s − f̃(x)‖2

H + 2‖P1X
x
s+κ

− f̃(x)‖2
H

≤ 4C(x)e−δ(x)s.

Hence we find that∫ t+an−1

0

e−ε(t+an−1−s)
E
[‖P1Y

x,κ
s − P1X

x
s+κ

‖2
H

]
ds

≤ 4C(x)
∫ t+an−1

0

e−ε(t+an−1−s)e−δ(x)sds

= 4C(x)e−ε(t+an−1)
e(ε−δ(x))(t+an−1) − 1

ε − δ(x)

≤ 4C(x)
e−δ(x)t

ε − δ(x)
e−δ(x)an−1

≤ 4C(x)
e−δ(x)t

ε − δ(x)
e− δ(x)

2 (n−1)
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where the last inequality follows from an−1 = κ(n − 1) ≥ 1
2 (n − 1). From this

we readily derive the estimate

J2 ≤ 2

√
(α + β)C(x)

ε − δ(x)

(
1 − e− δ(x)

4

)−1

e− δ(x)
2 t.

Hence, using also (3.5) we obtain

W2(pt+τ (x, ·), pt(x, ·)) ≤ K(α, β, ε, x)e− δ(x)
2 t, t, τ ≥ 0, (4.10)

where the constant K(α, β, ε, x) > 0 is given by

K(α, β, ε, x) = K(ε)(1 + ‖x‖H) + 2

√
(α + β)C(x)

ε − δ(x)

(
1 − e− δ(x)

4

)−1

with another constant K(ε) > 0. This implies that, for each x ∈ H, (pt(x, ·))t≥0

has a limit in P2(H). Denote this limit by πδx
. Assertion (a) now follows by

taking the limit τ → ∞ in (4.10) and using the fact that K(α, β, ε, x) is
independent of τ .

It remains to prove assertion (b). First observe that, using δ(x) ≥ δ > 0
and C(x) ≤ C(1 + ‖x‖H)4, we have

K(α, β, ε, x) ≤ (1 + ‖x‖H)2K̃(α, β, ε)

for some constant K̃(α, β, ε). Note that

p∗
t ρ(dy) =

∫
H

pt(z, dy)ρ(dz) and p∗
t+τρ(dy) =

∫
H

pt+τ (z, dy)ρ(dz).

Hence using first the convexity of the Wasserstein distance and then (4.10) we
find that

W2(p∗
t+τρ, p∗

t ρ) ≤
∫

H

W2(pt+τ (x, ·), pt(x, ·))ρ(dx)

≤ K̃(α, β, ε)
∫

H

(1 + ‖x‖H)2ρ(dx) · e− δ
2 t.

Since ρ ∈ P2(H), the assertion is proved. �

4.6. Proof of Corollary 4.4

Proof of Corollary 4.4. Recall that, by condition (A2) the process P1X
x
t solves

P1X
x
t = P1S(t)P1x +

∫ t

0

P1S(t − s)F (P1X
x
s )ds.

Since F is globally Lipschitz continuous by condition (A1), it follows that this
equation has for each x ∈ H a unique solution and is deterministic. From this
we readily conclude that P1X

x
t = P1X

y
t holds for all t ≥ 0, provided that

P1x = P1y. Hence Proposition 3.5 yields for such x, y

E
[‖Xx

t − Xy
t ‖2

H

] ≤ e−εt‖x − y‖2
H , ∀t ≥ 0. (4.11)
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Then for each x, y ∈ H with P1x = P1y and each t ≥ 0 we obtain

W2(πδx
, πδy

) ≤ W2(πδx
, pt(x, ·)) + W2(pt(x, ·), pt(y, ·)) + W2(pt(y, ·), πδy

)

≤ W2(πδx
, pt(x, ·)) + e− ε

2 t‖x − y‖H + W2(pt(y, ·), πδy
).

Letting t → ∞ yields πδx
= πδy

and hence assertion (a) is proved.
To prove assertion (b), let ρ, ρ̃ ∈ P2(H) be such that ρ ◦ P−1

1 = ρ̃ ◦ P−1
1 .

Then

W2(πρ, πρ̃) ≤ W2(πρ, p
∗
t ρ) + W2(p∗

t ρ, p∗
t ρ̃) + W2(p∗

t ρ̃, πρ̃)

Again, by letting t → ∞, it suffices to prove that

lim sup
t→∞

W2(p∗
t ρ, p∗

t ρ̃) = 0. (4.12)

Let G be a coupling of (ρ, ρ̃). Using the convexity of the Wasserstein distance
and Proposition 3.5 gives

W2(p∗
t ρ, p∗

t ρ̃)

≤
∫

H×H

W2(pt(x, ·), pt(y, ·))G(dx, dy)

≤
∫

H×H

(
E
[‖Xx

t − Xy
t ‖2

H

])1/2
G(dx, dy)

≤
∫

H×H

e− ε
2 t‖x − y‖HG(dx, dy)

+
√

2(α + β)
∫

H×H

(∫ t

0

e−ε(t−s)
E
[‖P1X

x
s − P1X

y
s ‖2

H

]
ds

)1/2

G(dx, dy)

=: I1 + I2.

The first term I1 satisfies

I1 ≤
(

2 +
∫

H

‖x‖2
Hρ(dx) +

∫
H

‖y‖2
H ρ̃(dy)

)
e− ε

2 t.

For the second term we first use (A2) so that P1X
x
s = P1X

P1x
s , P1X

y
s =

P1X
P1y
s and hence we find for each T > 0 a constant C(T ) > 0 such that for

t ∈ [0, T ]

I2 =
√

2(α + β)
∫

H1×H1

(∫ t

0

e−ε(t−s)‖P1X
x
s − P1X

y
s ‖2

Hds

)1/2

G(dx, dy)

≤ C(T )
(∫

H×H

‖P1x − P1y‖2
HG(dx, dy)

)1/2

.

Let us choose a particular coupling G as follows: By disintegration we
write ρ(dx) = ρ(x1, dx0)(ρ ◦ P−1

1 )(dx1), ρ̃(dx) = ρ̃(x1, dx0)(ρ̃ ◦ P−1
1 )(dx1) =

ρ̃(x1, dx0)(ρ◦P−1
1 )(dx1) where ρ(x1, dx0), ρ̃(x1, dx0) are conditional probabil-

ities defined on B(H0) and we have used that (ρ◦P−1
1 )(dx1) = (ρ̃◦P−1

1 )(dx1).
Then G is, for A,B ∈ B(H), given by

G(A × B) :=
∫

H×H

1A(x0, x1)1B(y0, y1)ρ(x1, dx0)ρ̃(y1, dy0)G̃(dx1, dy1),
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where G̃ is a probability measure on H2
1 given, for A1, B1 ∈ B(H1), by

G̃(A1 × B1) = (ρ ◦ P−1
1 )(A1 ∩ B1) = ρ ({x ∈ H | P1x ∈ A1 ∩ B1}) .

For this particular choice of G we find that∫
H×

‖P1x − P1y‖2
HG(dx, dy)

=
∫

H1×H1

∫
H2

0

‖x1 − y1‖2
Hρ(x1, dx0)ρ̃(y1, dy0)G̃(dx1, dy1)

=
∫

H1×H1

‖x1 − y1‖2
HG̃(dx1, dy1) = 0

and hence I2 = 0, since G̃ is supported on the diagonal of H1×H1. This proves
(4.12) and completes the proof. �

5. The Heath–Jarrow–Mortion–Musiela equation

The Heath–Jarrow–Morton–Musiela equation (HJMM-equation) describes the
term structure of interest rates in terms of its forward rate dynamics modelled,
for β > 0 fixed, on the separable Hilbert space of forward curves

Hβ = {h : R+ → R : h is absolutely continuous and ‖h‖β < ∞} ,

〈h, g〉β = h(∞)g(∞) +
∫ ∞

0

h′(x)g′(x)eβxdx (5.1)

with norm ‖h‖2
β = 〈h, h〉β . Such space was first motivated and introduced by

Filipovic [15]. Note that h(∞) := limx→∞ h(x) exists, whenever
∫∞
0

(h′(x))2

eβxdx < ∞. It is called the long rate of the forward curve h. The HJMM-
equation on Hβ is given by{

dXt = (AXt + FHJMM (σ, γ)(Xt)) dt + σ(Xt)dWt +
∫

E
γ(Xt, ν)Ñ(dt, dν),

X0 ∈ L2(Ω,F0, P;Hβ)
(5.2)

where (Wt)t≥0 is a Q-Wiener process, Ñ(dt, dν) is a compensated Poisson
random measure on E with compensator dtμ(dν) as defined in Sect. 3.1 for
H := Hβ , and

(i) A is the infinitesimal generator of the shift semigroup (S(t))t∈R+ on Hβ ,
that is S(t)h(x) := h(x + t) for all t, x ≥ 0.

(ii) h �→ σ(h) is a B(Hβ)/B(L0
2)-measurable mapping from Hβ into L0

2(Hβ)
and (h, ν) �→ γ(h, ν) is B(Hβ)⊗E/B(Hβ)-measurable mapping from Hβ ×
E into Hβ .

(iii) The drift is of the form

FHJMM (σ, γ)(h) =
∑
j∈N

σj(h)Σj(h) −
∫

E

γ(h, ν)
(
eΓ(h,ν) − 1

)
μ(dν),
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with σj(h) =
√

λjσ(h)ej ,

Σj(h)(t) =
∫ t

0

σj(h)(s)ds and Γ(h, ν)(t) = −
∫ t

0

γ(h, ν)(s)ds.

The special form of the drift stems from mathematical finance and is sufficient
for the absence of arbitrage opportunities. We denote the space of all forward
rates with long rate equal to zero by

H0
β = {h ∈ Hβ : h(∞) = 0}.

For the construction of a unique mild solution to (5.2) the following conditions
have been introduced in [11]:
(B1) σ : Hβ → L0

2(H
0
β), γ : Hβ × E → H0

β′ are Borel measurable for some
β′ > β.

(B2) There exists a function Φ : E → R+ such that Φ(ν) ≥ |Γ(h, ν)(t)| for all
h ∈ Hβ , ν ∈ E and t ≥ 0.

(B3) There is an M ≥ 0 such that, for all h ∈ Hβ , and some β′ > β

‖σ(h)‖L0
2(Hβ) ≤ M,

∫
E

eΦ(ν) max{‖γ(h, ν)‖2
β′ , ‖γ(h, ν)‖4

β′}μ(dν) ≤ M.

(B4) The function F2 : Hβ → H0
β defined by

F2(h) = −
∫

E

γ(h, ν)
(
eΓ(h,ν) − 1

)
μ(dν)

has the weak derivative given by

d

dx
F2(h) =

∫
E

γ(h, ν)2eΓ(h,ν)μ(dν) −
∫

E

(
d

dx
γ(h, ν)

)(
eΓ(h,ν) − 1

)
μ(dν).

(B5) There are constants Lσ, Lγ > 0 such that, for all h1, h2 ∈ Hβ , we have

‖σ(h1) − σ(h2)‖2
L0

2(Hβ) ≤ Lσ‖h1 − h2‖2
β ,∫

E

eΦ(ν)‖γ(h1, ν) − γ(h2, ν)‖2
β′μ(dν) ≤ Lγ‖h1 − h2‖2

β .

The following is the basic existence and uniqueness result for the Heath–
Jarrow–Morton–Musiela equation (5.2).

Theorem 5.1. [11] Suppose that conditions (B1)–(B5) are satisfied. Then
FHJMM : Hβ −→ H0

β and there exists a constant LF > 0 such that, for
each h1, h2 ∈ Hβ,

‖FHJMM (h1) − FHJMM (h2)‖2
β ≤ LF ‖h1 − h2‖2

β . (5.3)

This constant can be chosen as

LF =
max(Lσ, Lγ)

√
M

β

⎛
⎝
√

6M
√

2 +
√

8
β3

+
16
β

+

√
16(1 + 1√

β
)2 + 48

(β′ − β)

⎞
⎠ .

(5.4)
Moreover, for each initial condition h ∈ L2(Ω,F0, P;Hβ) there is a unique
adapted, cádlág mild solution (Xt)t≥0 to (5.2).
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Proof. This result can be found essentially in [11], where the bound on LF is
an immediate result from its derivation. �

Using the space of all functions with zero long rate we obtain the decom-
position

Hβ = H0
β ⊕ R, h = (h − h(∞)) + h(∞),

where h(∞) ∈ R is identified with a constant function. Denote by

P0h = h − h(∞) and P1h = h(∞)

the corresponding projections onto H0
β and R, respectively. Such a decom-

position of Hβ was first used in [38] to study invariant measures for the
HJMM-equation driven by a Q-Wiener process. An extension to the Lévy
driven HJMM-equation was then obtained in [36]. The proof of the next the-
orem shows that the results of Sect. 4 imply the stability properties of the
HJMM-equation as a particular case.

Theorem 5.2. Suppose that conditions (B1)–(B5) are satisfied. If

β > 2
√

LF + Lσ + Lγ , (5.5)

then for each initial distribution ρ on Hβ with finite second moments there
exists an invariant measure πρ and it holds that

W2(p∗
t ρ, πρ) ≤ K

(
1 +
∫

Hβ

‖h‖2
βρ(dh)

)
e− β−2

√
LF −Lσ−Lγ

2 t (5.6)

for some constant K = K(β, σ, γ) > 0. Moreover, given ρ, ρ̃ such that ρ◦P−1
1 =

ρ̃ ◦ P−1
1 , then πρ = πρ̃.

Proof. Observe that the assertion is an immediate consequence of Theorem
4.3 and Corollary 4.4. Below we briefly verify the assumptions given in these
statements. Condition (A1) follows from (B1), (B5), and (5.3). The growth
condition (3.14) is satisfied by (B3) and the fact that ‖ ·‖β ≤ ‖·‖β′ for β < β′.
It is not difficult to see that

‖S(t)h − P1h‖β ≤ e− β
2 t‖h − P1h‖β , t ≥ 0

and that (S(t))t≥0 leaves H0
β as well as R ⊂ Hβ invariant. Hence Remark 3.2

yields that

〈Ah, h〉β ≤ −β

2
‖h‖2

β +
β

2
‖P1h‖2

β , h ∈ D(A).

It follows from the considerations in Sect. 2 (see (3.10)) that (GDC) is satisfied
for α = β

2 − √
LF . Consequently, ε = β − 2

√
LF − Lσ − Lγ and (3.13) holds

due to (5.5). Since the coefficients map into H0
β and S(t)P1h = h(∞) = P1h,

conditions (A2), (A3) and (4.6) are trivially satisfied. The particular form of
the estimate (5.6) follows from the proof of Theorem 4.3. �



NoDEA On a class of stochastic partial differential equations Page 31 of 46 28

Comparing our result with [36,38], we allow for a more general jump noise
and prove convergence in the stronger Wasserstein distance with an exponen-
tial rate. Moreover, assuming that the volatilities map constant functions onto
zero, i.e.

σ(c) ≡ 0, γ(c, ν) ≡ 0, ∀c ∈ R ⊂ Hβ , ν ∈ E (5.7)

shows that F (c) ≡ 0 and hence also (4.4) is satisfied. Hence we may apply
Theorem 4.2 to characterize these invariant measures more explicitly. In fact,
since P1h = h(∞) holds for all h ∈ Hβ we get the following corollary.

Corollary 5.3. Suppose that conditions (B1) – (B5) are satisfied, that (5.5)
and (5.7) hold. Then

E
[‖Xt − X0(∞)‖2

β

] ≤ E
[‖X0 − X0(∞)‖2

β

]
e−(β−2

√
LF −Lσ−Lγ)t

for each X0 ∈ L2(Ω,F0, P;Hβ).

This Corollary describes a case where the set of multiple invariant mea-
sures is explicitly given by the laws of square integrable random variables over
the continuum of long rates, including the case of invariant measures δh0(∞)

for all X0 = h0 ∈ Hβ .
We close this section by applying our results for the particular example

discussed before also in [36].

Example 5.4. Take

σ1(h)(x) :=
∫ ∞

x

min
(
e−βy, |h′(y)|) dy

and σj ≡ 0 for j ≥ 2. Then

‖σ(h)‖2
L0

2(Hβ) = ‖σ1(h)‖2
β ≤

∫ ∞

0

(e−2βx)eβxdx =
1
β

=: M

and since min(a, b1) − min(a, b2) ≤ |b1 − b2| for a, b1, b2 ∈ R+, we also have

‖σ(h1) − σ(h2)‖2
L0

2(Hβ) = ‖σ1(h1) − σ1(h2)‖2
β

=
∫ ∞

0

(min(e−βx, |h′
1(x)|) − min(e−βx, |h′

2(x)|))2eβxdx

≤
∫ ∞

0

(h′
1(x) − h′

2(x))2eβxdx

≤ ‖h1 − h2‖2
β .

Consequently, by taking γ ≡ 0, the conditions (B1) – (B5) are satisfied with
Lσ = 1 and Lγ = 0 and M = 1

β for the Lipschitz and growth constants. By
(5.4) we get

LF =
1√
β3

⎛
⎝
√

6
√

2
β

+
√

8
β3

+
16
β

+

√
16(1 + 1√

β
)2 + 48

(β′ − β)

⎞
⎠ ,
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for β′ > β. Choosing β ≥ 3 and β′ > β large enough such that LF < 1, we
find that

2
√

LF + Lσ + Lγ < 3 = β,

i.e. (5.5) is satisfied. It is clear that σ(c) ≡ 0 for each constant function c.
Hence Corollary 5.3 is applicable.

6. Stochastic partial differential equations with delay

6.1. Description of the model

Let H be a separable Hilbert space and (Wt)t≥0 a Q-Wiener process on a sto-
chastic basis (Ω,F , (Ft)t≥0, P) with the usual conditions. Below we investigate
invariant measures for the stochastic delay equation{

dXt = (AXt + G(Xt+·)) dt + σ(Xt,Xt+·)dWt, t > 0
X0 = φ0,X0+· = φ,

(6.1)

where φ0 ∈ L2(Ω,F0, P;H), φ ∈ L2(Ω,F0, P;L2([−1, 0];H)) and for t ≥ 1 the
term Xt+· denotes the past segment of the trajectory, i.e.

Xt+· : [−1, 0] −→ H

s �−→ Xt+s,

and for t ∈ [0, 1)

Xt+· : [−1, 0] −→ H

s �−→ φ(t + s)1[−1,−t)(s) + Xt+s1[−t,0](s),

and
(i) (A,D(A)) is the infinitesimal generator of a strongly continuous semi-

group (S(t))t≥0 on H.
(ii) (ψ0, ψ) �→ σ(ψ0, ψ) is measurable from H × L2([−1, 0];H) to L0

2(H).
(iii) G : W 1,2([−1, 0];H) → H is a continuous linear operator given by the

Riemann-Stieltjes integral

Gφ :=
∫ 0

−1

η(ds)φ(s)

where η : [−1, 0] → L(H) is of bounded variation.
Such an equation is usually studied in an extended Hilbert space which also
takes the evolution of the past segment (Xt+·)t≥0 into account, see [8]. Below
we follow this approach. Namely, introduce the new Hilbert space

H = H × L2([−1, 0];H), ‖(φ0, φ)‖H =
(
‖φ0‖2

H + ‖φ‖2
L2([−1,0];H)

)1/2

.

(6.2)

Define the operator

A0 :=
(

A 0
0 d

ds

)
D(A) = {(φ0, φ)T ∈ D(A) × W 1,2([0, 1];H) : φ(0) = φ0},
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which generates a strongly continuous semigroup (S0(t))t≥0 on H, given by

S0(t) :=
(

S(t) 0
St T0(t)

)
(6.3)

due to [5, Theorem 3.25]. Here (T0(t))t≥0 is the nilpotent left shift semigroup
on L2([−1, 0];H) and

Stφ0(τ) :=

{
S(t + τ)φ0, −t < τ ≤ 0,

0, −1 ≤ τ ≤ −t.

It then follows from [5, Theorem 3.29] that the operator A with domain
D(A) = D(A0) given by

A :=
(

A G
0 d

ds

)
= A0 +

(
0 G
0 0

)
(6.4)

is the generator of a strongly continuous semigroup (S(t))t≥0 on H. Thus, we
can formally identify (6.1) with the H-valued SPDE

{
dXt = AXtdt + Σ(Xt)dWt

X0 = (φ0, φ)T t ≥ 0,
Σ(φ0, φ) :=

(
σ(φ0, φ) 0

0 0

)
. (6.5)

6.2. Main results for (6.5)

Next we proceed to apply the results of this work to the SPDE (6.5). For this
purpose we make the following assumption:

(C1) There exists an Lσ > 0 such that

‖σ(φ0, φ) − σ(ψ0, ψ)‖2
L2

0(H) ≤ Lσ

(
‖φ0 − ψ0‖2

H + ‖φ − ψ‖2
L2([−1,0];H)

)

holds for all (φ, φ0), (ψ0, ψ) ∈ H.
(C2) The operator (A,D(A)) satisfies (GDC) with projection operators P0, P1

and constants α > 0, β ≥ 0.

We will see that condition (C1) implies (A1), condition (C2) will be used to
prove that A also satisfies (GDC) with respect to a (possibly equivalent) scalar
product on H.

Proposition 6.1. Suppose that conditions (C1), (C2) are satisfied, that η has
a jump at −1 and that one of the following conditions hold:

(i) G is bounded on L2([−1, 0];H),z or
(ii) (S(t))t≥0 leaves H0 = ran(P0) and H1 = ran(P1) invariant, H0,H1 are

orthogonal, ran(G) ⊂ H1 and GP0 extends to a bounded linear operator
on L2([−1, 0];H).

Then for each initial condition (φ0, φ) ∈ L2(Ω,F0, P;H) there exists a unique
mild solution (Xt)t≥0 ⊂ L2(Ω,F , P;H) to (6.5).
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Proof. Under condition (i) we work on the Hilbert space H while under con-
dition (ii) we work on the Hilbert space Hτ , which is algebraically H but
equipped with the equivalent norm given by

‖(φ0, φ)‖2
Hτ := ‖φ0‖2

H +
∫ 0

−1

‖P0φ(s)‖2
Hds +

∫ 0

−1

‖P1φ(s)‖2
Hτ(s)ds, (6.6)

where

τ(r) =
∫ r

−1

‖η(dr)‖L(H), r ∈ [−1, 0] (6.7)

denotes the variation of η. Note that due to a result of Webb (see [41] and
Remark 6.4 below) this norm is, indeed, equivalent to the original norm on H.
For condition (A1) we first observe that LF = Lγ = 0 (as F = 0, γ = 0) and
if assumption (i) holds, then

‖Σ(φ0, φ) − Σ(ψ0, ψ)‖2
L2

0(H) ≤ ‖σ(φ0, φ) − σ(ψ0, ψ)‖2
L2

0(H)

≤ Lσ

(
‖φ0 − ψ0‖2

H + ‖φ − ψ‖2
L2([−1,0];H)

)

= Lσ‖(φ0, φ)T − (ψ0, ψ)T ‖2
H.

If condition (ii) holds, then analogously we obtain

‖Σ(φ0, φ) − Σ(ψ0, ψ)‖2
L2

0(Hτ ) ≤ Lσ‖(φ0, φ)T − (ψ0, ψ)T ‖2
H

≤ max{1, τ(0)}Lσ‖(φ0, φ)T − (ψ0, ψ)T ‖2
Hτ .

This shows that condition (A1) is satisfied. Finally, it follows from Proposition
6.5 below that the operator (A,D(A)) satisfies condition (GDC). �

We proceed to formulate our main results on invariant measures for (6.5).
For this purpose we introduce the following additional condition:
(C3) For each (φ0, φ) ∈ H there exist M(φ0, φ) ≥ 1, δ(φ0, φ) > 0 and an

element f̃(φ0, φ) ∈ H such that

‖S(t)(P1φ0, φ) − f̃(φ0, φ)‖H ≤ M(φ0, φ)e−tδ(φ0,φ), t ≥ 0.

Observe that (C3) corresponds to condition (A3), and is trivially satisfied, if
(S(t))t≥0 is exponentially stable which is for example the case in the setting
of [5, Corollary 5.9].

Introduce the subspaces

H0 := H0 × {0} and H1 := H1 × L2([−1, 0];H),

which yield an orthogonal decomposition of H with projection operators

P0 : H −→ H0, (φ0, φ) �−→ (P0φ0, 0),

P1 : H −→ H1, (φ0, φ) �−→ (P1φ0, φ).

The following is our main result for this section, and uses that A satisfies
(GDC), whenever A does, and some additional conditions are satisfied (this
technical result is proved below in Proposition 6.5).

Theorem 6.2. Suppose that conditions (C1) – (C3) hold, that P1σ(φ0, φ) = 0
for all (φ0, φ) ∈ H, and that one of the following conditions are satisfied:
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(i) G is bounded on L2([−1, 0];H), GP1 = P1G, (S(t))t≥0 commutes with
P1, and

α > 1/2 + Lσ/2;

(ii) (S(t))t≥0 leaves H0 = ran(P0) and H1 = ran(P1) invariant, H0,H1 are
orthogonal, ran(G) ⊂ H1, GP0 extends to a bounded linear operator on
L2([−1, 0];H), and

α > 1/2 + max{1, τ(0)}Lσ/2.

Then the assertions of Theorem 4.3 and Corollary 4.4 are applicable. In par-
ticular, for each h := (φ0, φ) ∈ L2(Ω,F0, P;H) there exists an invariant
measure πLaw(h) for the Markov process (Xt)t≥0, and this measure satisfies
πLaw(h) = πLaw(P1h).

Proof. Let us first show that condition (A2) is satisfied, i.e. that S(t) leaves H1

invariant and P1Σ = 0. It follows from Lemma 6.6 below that P1 commutes
with the semigroup (S(t))t≥0. Moreover, one has

P1Σ(φ0, φ) =
(

P1σ(φ0, φ) 0
0 0

)
= 0

due to P1σ = 0. This shows that condition (A2) is satisfied. Condition (A3)
is immediate by assumption (C3) while, by virtue of Proposition 6.5, (3.13)
reduces under condition (i) to

ε = 2
(

α − 1
2

)
− Lσ > 0,

and under condition (ii) to

ε = 2
(

α − 1
2

)
− max{1, τ(0)}Lσ > 0.

Altogether we conclude that Theorems 4.3 and 4.4 apply, which proves the
assertion. �

Remark 6.3. Condition (ii) is slightly more restrictive on the semigroup and
the projection operators than condition (i). In contrast to the latter, condition
(ii) contains delay operators like point evaluations in H1, that is G = δ−1P1

for δ−1φ = φ(−1) for φ ∈ W 1,2([−1, 0];H1).

6.3. Some technical results

Let us first provide a sufficient and easy to check condition for the operator
A to satisfy the generalized dissipativity condition (GDC). As a first step we
recall a result from [41].

Remark 6.4. (An equivalent scalar product). Let τ be defined as in (6.7) and
suppose that η has a jump at −1. Suppose that there exists c ∈ R such that
A − c is dissipative. Then the Hilbert space norm defined by

‖(φ0, φ)‖2
Hτ := ‖φ0‖2

H +
∫ 0

−1

‖φ(s)‖2
Hτ(s)ds
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is equivalent to the original one on H. Moreover, A−γI is dissipative for every
γ ≥ max{0, c + τ(0)} with respect to this norm, i.e.

〈A(φ0, φ)T , (φ0, φ)〉Hτ ≤ γ‖(φ0, φ)T ‖Hτ , for all (φ0, φ) ∈ D(A).

Based on this observation we can now provide sufficient conditions for
(A,D(A)) to satisfy (GDC).

Proposition 6.5. Suppose that A satisfies (GDC) with constants α, β ≥ 0.
(i) If G extends to a continuous linear operator on L2([−1, 0];H) and α >

1/2, then A satisfies (GDC), i.e.,

〈A(φ0, φ)T , (φ0, φ)T 〉H ≤ −α̃‖(φ0, φ)‖2
H +

(
α̃ + β̃

)
‖P1(φ0, φ)T ‖2

H,

where

α̃ := α − 1 + ε2

2
and β̃ := β + α +

1
2ε2

‖G‖2
L(L2([−1,0];H)) +

ε2

2
,

and ε > 0 is such that ε <
√

2α − 1.
(ii) Assume that H0,H1 provide an orthogonal decomposition of H such the

semigroup (S(t))t≥0 generated by (A,D(A)) leaves H0 and H1 invariant.
Moreover, suppose that ran(G) ⊆ H1, and that W 1,2([−1, 0];H) � φ �→
GP0φ ∈ H1 extends to a continuous linear operator GP0 : L2([−1, 0];H) →
H1 with operator norm denoted by ‖GP0‖. Define an equivalent Hilbert
space norm by (6.6). If α > 1/2, then A satisfies (GDC) with respect to
this norm, i.e., it holds that

〈A(φ0, φ)T , (φ0, φ)T 〉Hτ ≤ −
(

α − 1
2

)
‖(φ0, φ)‖Hτ

+
((

α − 1
2

)
+ β + τ(0) +

‖GP0‖
2

)
‖P1(φ0, φ)‖2

Hτ

Proof. (i) For (φ0, φ)T ∈ D(A0) we have

〈A0(φ0, φ)T , (φ0, φ)T 〉H = 〈Aφ0, φ0〉H +
∫ 0

−1

〈
d

ds
φ(s), φ(s)

〉
H

ds

= 〈Aφ0, φ0〉H +
∫ 0

−1

1
2

d

ds
‖φ(s)‖2

Hds

= 〈Aφ0, φ0〉H +
1
2
(‖φ(0)‖2

H − ‖φ(−1)‖2
H)

≤ 〈Aφ0, φ0〉H +
1
2
‖φ0‖2

H ,

where we used the fact that φ0 = φ(0). Making further use of the fact that A
satisfies (GDC) we find

〈A0(φ0, φ)T , (φ0, φ)T 〉H ≤ −
(

α − 1
2

)
‖φ0‖2

H + (β + α)‖P1φ0‖2
H

≤ −
(

α − 1
2

)
‖(φ0, φ)‖2

H +
(

β + 2α − 1
2

)
‖(P1φ0, φ)T ‖2

H.
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To estimate the operator A we will use that

〈Gφ, φ0〉H ≤ ‖Gφ‖H‖φ0‖H

≤ 1
2ε2

‖Gφ‖2
H +

ε2

2
‖φ0‖2

H

=
1

2ε2
‖G‖2

L(L2([−1,0];H))‖φ‖2
L2([−1,0];H) +

ε2

2
‖φ0‖2

H

≤ 1
2ε2

‖G‖2
L(L2([−1,0];H))‖P1(φ0, φ)T ‖2

H +
ε2

2
‖(φ0, φ)T ‖2

H

where ε > 0. Thus we obtain

〈A(φ0, φ)T , (φ0, φ)T 〉H

= 〈A0(φ0, φ)T , (φ0, φ)T 〉H + 〈Gφ, φ0〉H

≤ −
(

α − 1
2

)
‖(φ0, φ)‖2

H +
(

β + 2α − 1
2

)
‖P1(φ0, φ)T ‖2

H

+
1

2ε2
‖G‖2

L(L2([−1,0];H))‖P1(φ0, φ)T ‖2
H +

ε2

2
‖(φ0, φ)T ‖2

H

= −
(

α − 1 + ε2

2

)
‖(φ0, φ)‖2

H +
(

β + 2α − 1
2

+
1

2ε2
‖G‖2

L(L2([−1,0];H))

)

‖P1(φ0, φ)T ‖2
H.

Assuming ε is so small that ε <
√

2α − 1, we obtain α − 1+ε2

2 > 0 and

β + 2α − 1
2

+
1

2ε2
‖G‖2

L(L2([−1,0];H))

=
(

α − 1 + ε2

2

)
+ β + α +

1
2ε2

‖G‖2
L(L2([−1,0];H)) +

ε2

2
> 0

which proves the assertion.
(ii) As P0, P1 are complementary self-adjoint projections, they induce

an orthogonal decomposition H = H0 ⊕ H1. Thus, for (φ0, φ) ∈ H we have
(φ0, φ) = (P0φ0, P0φ) + (P1φ0, P1φ) which gives also an orthogonal decompo-
sition

H =
(
H0 × L2([−1, 0];H0)

)⊕ (H1 × L2([−1, 0];H1)
)
.

Applying Remark 6.4 to the Hilbert space H1 × L2([−1, 0];H1) we find that

‖P1φ0‖H2 +
∫ 0

−1

‖P1φ(s)‖2
Hτ(s)ds

gives rise to a norm on H1 × L2([−1, 0];H1) which is equivalent to the one
given by (6.2) when applied to (P1φ0, P1φ). Thus, the norm defined in (6.6)
is, indeed, equivalent to the original norm on H. Let (φ0, φ) ∈ D(A), so that
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φ(0) = φ0 and we can write:

〈A(φ0, φ)T , (φ0, φ)T 〉Hτ

=

〈(
Aφ0 + Gφ,

d

ds
φ

)T

, (φ0, φ)T

〉

Hτ

= 〈Aφ0, φ0〉H + 〈Gφ, φ0〉H

+
∫ 0

−1

〈
d

ds
P0φ(s), P0φ(s)

〉
H

ds +
∫ 0

−1

〈
d

ds
P1φ(s), P1φ(s)

〉
H

τ(s)ds

= I1 + I2 + I3 + I4.

For the first term I1 we use φ0 = P0φ0 + P1φ0, then the fact that P0, P1 are
self-adjoint projection operators and finally P0A = AP0, P1A = AP1 on D(A)
(similarly to the proof of Proposition 3.1) to find that

I1 = 〈P0Aφ0, P0φ0〉H + 〈P1Aφ0, P1φ0〉H

= 〈AP0φ0, P0φ0〉H + 〈AP1φ0, P1φ0〉H ≤ −α‖P0φ0‖2
H + 〈AP1φ0, P1φ0〉H ,

where the last inequality follows from (GDC) combined with P1P0φ0 = 0.
Likewise, for the second term we use that ran(G) ⊂ H1 so that P0G = 0 to
obtain

I2 = 〈Gφ,P1φ0〉H

= 〈GP0φ, P1φ0〉H + 〈GP1φ, P1φ0〉H

≤ ‖GP0‖‖P0φ‖L2([−1,0];H)‖P1φ0‖H + 〈GP1φ, P1φ0〉H

≤ ‖GP0‖
2

‖P0φ‖2
L2([−1,0];H) +

‖GP0‖
2

‖P1φ0‖2
H + 〈GP1φ, P1φ0〉H .

For the third term I3 we obtain

I3 =
1
2

∫ 0

−1

d

ds
‖P0φ(s)‖2

Hds ≤ 1
2
‖P0φ0‖2

H .

To summarize, we obtain
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〈A(φ0, φ)T , (φ0, φ)T 〉Hτ

≤ −
(

α − 1

2

)
‖P0φ0‖2

H +
‖GP0‖

2

(‖P1φ0‖2
H + ‖P0φ‖2

L2([−1,0];H)

)

+ 〈AP1φ0, P1φ0〉H + 〈GP1φ, P1φ0〉H +

∫ 0

−1

〈
d

ds
P1φ(s), P1φ(s)

〉
H

τ(s)ds

= −
(

α − 1

2

)
‖(φ0, φ)T ‖2

Hτ +

(
α − 1

2

)
‖P1φ0‖2

H +

(
α − 1

2

)∫ 0

−1

‖P0φ(s)‖2
Hds

+

(
α − 1

2

)∫ 0

−1

‖P1φ(s)‖2
Hτ(s)ds +

‖GP0‖
2

‖P1φ0‖2
H +

‖GP0‖
2

∫ 0

−1

‖P0φ(s)‖2
Hds

+
〈
A(P1φ0, P1φ)T , (P1φ0, P1φ)T

〉
Hτ

≤ −
(

α − 1

2

)
‖(φ0, φ)T ‖2

Hτ +

(
α − 1

2
+ γ +

‖GP0‖
2

)
‖P1φ0‖2

H

+

(
α − 1

2
+

‖GP0‖
2

)∫ 0

−1

‖P0φ(s)‖2
Hds +

(
α − 1

2
+ γ

)∫ 0

−1

‖P1φ(s)‖2
Hτ(s)ds

≤ −
(

α − 1

2

)
‖(φ0, φ)T ‖2

Hτ +

(
α − 1

2
+ γ +

‖GP0‖
2

)
‖P1(φ0, φ)T ‖2

Hτ ,

where we have used the fact that A − βI is dissipative so that by Remark 6.4
with γ = β + τ(0)〈A(P1φ0, P1φ)T , (P1φ0, P1φ)T

〉
Hτ ≤ γ‖(P1φ0, P1φ)T ‖2

Hτ

= γ‖P1φ0‖2
H + γ

∫ 0

−1

‖P1φ(s)‖2
Hτ(s)ds.

This proves the assertion. �

The next result has been used in the previous proof.

Lemma 6.6. Consider the setting of stochastic delay equation, i.e., let (S0(t))t≥0,
(S(t))t≥0, (A0,D(A0)), (A,D(A)), G, P1 as in Sects. 6.1, 6.2 and Theorem
6.2. In particular suppose that P1S(t) = P1S(t), where S(t) is given in (6.3).
Then

P1S(t) = S(t)P1, t ≥ 0.

Proof. Let us first consider the case where G satisfies assumption (i) from
Proposition 6.5, i.e. G is bounded from L2([−1, 0];H) to H. Since G is bounded
we obtain from the bounded perturbation theorem (the Dyson-Phillips series)
the representation

S(t) =
∞∑

n=0

S(n)
0 (t),

where the series converges in L(H), and S(n)
0 (t) is inductively defined by

S(0)
0 (t) = S0(t), S(n+1)

0 (t) =
∫ t

0

S(n)
0 (s)

(
0 G
0 0

)
S0(t − s)ds.
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Thus it suffices to prove that

P1S(n)
0 (t) = S(n)

0 (t)P1, n ≥ 1, t ≥ 0. (6.8)

For n = 0 we use the particular form of P1 and S0(t) to find that

P1S0(t)(φ0, φ)T = P1

(
S(t)φ0

Stφ0 + T0(t)φ

)

=
(

P1S(t)φ0

Stφ0 + T0(t)φ

)
=
(

S(t)P1φ0

Stφ0 + T0(t)φ

)
= S0(t)P1(φ0, φ)T ,

where we have used the assumption that S(t) commutes with P1. Now suppose
that (6.8) holds for some n ≥ 0. Then

P1S(n+1)
0 (t) = P1S0(t) +

∫ t

0

P1S(n)
0 (s)

(
0 G
0 0

)
S0(t − s)ds

= S0(t)P1 +
∫ t

0

S(n)
0 (s)

(
0 G
0 0

)
S0(t − s)P1ds = S(n+1)

0 (t)P1,

where we have used that

P1

(
0 G
0 0

)
(φ0, φ)T = P1(Gφ, 0)T

= (P1Gφ, 0) = (GP1φ, 0) =
(

G 0
0 0

)
P1(φ0, φ)T .

This completes the proof for the case where G : L2([−1, 0];H) −→ H is
bounded.

Let us now consider the case where condition (ii) from Proposition 6.5
holds. Following [5, Theorem 3.29] we know that the semigroup (S(t))t≥0 is
constructed as a Miyadera-Voigt perturbation and hence has due to [14, Chap-
ter III, Corollary 3.15] a series representation of the form

S(t) =
∞∑

n=0

V
nS0(t),

where V denotes the closure of the operator

F �−→ V F (t) :=
∫ t

0

F (s)
(

0 G
0 0

)
S0(t − s)ds,

where F ∈ C([0, t0];Ls(H)) (for some small but fixed t0 > 0) and Ls(H)
denotes the space of bounded linear operators over H equipped with the strong
operator topology. Following the same computations as in the first case, we
can prove that P1V

nS0(t) = V nS0(t)P1 and hence P1V
nS0(t) = V

nS0(t)P1.
This proves the assertion also in this case. �
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Appendix A: Itô formula

Below we recall an Itô formula for Hilbert space valued semimartingales of the
form

X(t) = X(0) +
∫ t

0

a(s)ds +
∫ t

0

σ(s)dWs +
∫ t

0

∫
E

γ(s, ν)Ñ(ds, dν),

where a and σ are as before and (γ(t, ν))t≥0 is a predictable, H-valued sto-
chastic process for each ν ∈ E such that

E

[∫ t

0

∫
E

‖γ(s, ν)‖2
Hμ(dν)ds

]
< ∞

and

E

[∫ t

0

‖σ(s)‖2
L0

2
ds

]
< ∞.

For this purpose we first introduce the class of quasi-sublinear functions.

Definition A.1. (Sublinear Functions) A continuous, non-decreasing function
h : R+ → R+ is called quasi-sublinear, if there exists a constant C > 0 such
that

h(x + y) ≤ C(h(x) + h(y))

h(xy) ≤ C(h(x)h(y))

for all x, y ≥ 0.

The following Itô-Formula is a combination of [20,29] (see also [28]).

Theorem A.2. (Generalized Itô-Formula). Let F ∈ C2(R+×H, R) and suppose
there exist quasi-sublinear functions h1, h2 : R+ → R+ such that for all t ≥ 0
and x ∈ H

‖Fx(t, x)‖H ≤ h1(‖x‖H), ‖Fxx(t, x)‖L(H,L(H,R)) ≤ h2(‖x‖H)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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and ∫ t

0

∫
E

‖γ(s, ν)‖2
Hμ(dν)ds +

∫ t

0

∫
E

h1(‖γ(s, ν)‖H)2‖γ(s, ν)‖2
Hμ(dν)ds

+
∫ t

0

∫
E

h2(‖γ(s, ν)‖H)‖γ(s, ν)‖2
Hμ(dν)ds < ∞

Then P-almost surely for each t ≥ 0:∫ t

0

‖Ft(s,X(s))‖Hds +
∫ t

0

∫
E

|F (s,X(s) + γ(s, ν)) − F (s,X(s))|2μ(dν)ds

+
∫ t

0

∫
E

|F (s,X(s) + γ(s, ν)) − F (s,X(s))

− 〈Fx(s,X(s)), γ(s, ν)〉H)|μ(dν)ds < ∞.

Moreover, the generalized Itô-formula holds P-almost surely for each t ≥ 0 and

F (t,X(t)) = F (0,X(0)) +
∫ t

0

LF (s,X(s))ds +
∫ t

0

〈Fx(s,X(s)), σ(s)dWs〉H

+
∫ t+

0

∫
E

{F (s,X(s−) + γ(s, ν)) − F (s,X(s−))} Ñ(ds, dν)

where LF (x,X(s)) is given by

LF (s,X(s)) =
∫ t

0

{Ft(s,X(s)) + 〈Fx(s,X(s)), a(s)〉H} ds

+
1
2

∫ t

0

tr [Fxx(s,X(s))σ(s)Qσ(s)∗] ds

+
∫ t

0

∫
E

{F (s,X(s) + γ(s, ν)) − F (s,X(s))

−〈Fx(s,X(s)), γ(s, ν)〉H} μ(dν)ds
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[40] Villani, C.: Optimal transport, Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 338.
Springer, Berlin (2009) (Old and new)

[41] Webb, G.F.: Functional differential equations and nonlinear semigroups in Lp-
spaces. J. Differ. Equ. 20(1), 71–89 (1976)



28 Page 46 of 46 B. Farkas et al. NoDEA

Bálint Farkas and Barbara Rüdiger
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