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Abstract. We relate the problem of best low-rank approximation in the spectral norm for a4
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Key words. low-rank approximation, best approximation, n-widths, optimal spaces12

AMS subject classifications. 15A03, 15A18, 15A60, 41A50, 41A5213

1. Introduction. The problem of approximating a given matrix by another ma-14

trix of a lower rank is labeled as the problem of low-rank approximation (of matrices).15

It aims to obtain a more compact representation of data with limited loss of informa-16

tion. Low-rank approximation of matrices is ubiquitous in applications: discretization17

of partial differential equations, principal component analysis, image processing, data18

mining, and machine learning, to name a few; see, e.g., [18] for a survey. In particular,19

it plays an important role in matrix completion [3], which finds in the so-called Netflix20

problem one of its most well-known applications [11].21

In this paper we consider the classical problem of best low-rank approximation of22

matrices measured in the spectral norm. Let A be an m ×m real matrix of rank r,23

then we seek rank-n matrices Rn, n < r, such that24

‖A−Rn‖ ≤ ‖A−B‖,2526

for any m×m matrix B of rank n, and where ‖ · ‖ is the operator norm induced by27

the Euclidean norm, i.e., the spectral norm.28

The singular value decomposition (SVD) is an essential tool for analyzing and
solving the best low-rank approximation problem; see, e.g., [2, Chapter 3]. Let A =
UΣV T be any SVD of A, i.e., Σ is the diagonal matrix whose diagonal entries,

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σm = 0,

are the singular values of A, and U and V are orthonormal matrices. We further let uj29

and vj denote the j-th column vector of U and V . If n < r, then the Eckhart–Young30

theorem [9, Theorem 2.4.8] states that the rank-n matrix31

(1.1) Rn =

n∑
i=1

σiuiv
T
i32
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satisfies33

(1.2) ‖A−Rn‖ = min
rank(B)=n

‖A−B‖ = σn+1,34

and is thus a best rank-n approximation to A in the spectral norm. However, in35

many applications one is interested in finding low-rank approximations that preserve36

certain structures in the original matrix A, i.e., structured low-rank approximation [4,37

10,13,15,22,25]. Preserving these structures could exclude the matrix Rn in (1.1) from38

being a suitable approximation, and in general one looks for near-best approximations39

that preserve these structures. In this paper we provide a classification of other best40

low-rank approximations to A than Rn in (1.1). One could then search among these41

matrices for best low-rank approximations that have the desired structure or other42

problem-oriented properties. In fact, the special case of best rank-1 approximations43

to Hankel matrices has already been considered in [1]; see also [19] where further44

results and efficient algorithms for structured best rank-1 approximations to Hankel45

matrices can be found. We also remark that the problem of finding best low-rank46

approximations in other (entry-wise) matrix norms has been studied in [28] and [8].47

Observe that the matrix Rn in (1.1) is clearly not unique if σn = σn+1 > 0 and it is48

then straightforward to find other best rank-n approximations to A. If σn > σn+1 > 049

it is known that the matrix in (1.1) is the unique best rank-n approximation to A in the50

Frobenius norm; see, e.g., [14, Section 7.4.2]. However, as argued by Tropp [31, p. 122],51

error bounds in the Frobenius norm are not always useful in cases of practical interest52

and can even be completely “vacuous”; see also [21, 24] for a similar argument. It is53

therefore more desirable to look for low-rank approximations in the spectral norm.54

For this norm the problem has infinitely many solutions whenever σn+1 > 0, because55

any matrix of the form56

(1.3)

n∑
i=1

(σi + εi)uiv
T
i , −σn+1 ≤ εi ≤ σn+1,57

solves (1.2). In this paper we look for more general solutions of the form
∑n

i=1 xiy
T
i58

with xi, yi ∈ Rm, other than (1.1) and (1.3), to the best low-rank approximation59

problem in (1.2).60

Our approach to finding other best rank-n approximations to A consists of two61

steps: first we relate this problem to Kolmogorov n-widths [20] and then we solve62

the n-width problem. The Kolmogorov n-width of a set in a normed linear space63

is the minimal distance to the given set from all possible n-dimensional subspaces.64

An n-dimensional (sub)space is optimal when it realizes this minimal distance. We65

provide a classification of all the optimal n-dimensional spaces for the image of the66

Euclidean unit ball under A, which can be recognized as an r-dimensional ellipsoid in67

Rm. It turns out that the corresponding Kolmogorov n-width equals σn+1 and that68

any orthonormal basis in such n-dimensional optimal space generates a best rank-n69

approximation to A. This results in a large variety of best rank-n approximations70

beyond the truncated SVD solution in (1.1), and can be exploited to obtain low-rank71

approximations with problem-oriented properties.72

As a byproduct of our results we classify all n-dimensional spaces that achieve73

the minimum in the following min-max formulation for the singular values of A:74

(1.4) σn+1 = min
Xn

max
z⊥Xn

√
zTAAT z

zT z
.75
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This formula is a direct consequence of the Courant–Fischer theorem [14, Section 7.3].76

It is easily verified that Xn = span{u1, . . . ,un} achieves the minimum in (1.4). How-77

ever, as already pointed out in [16,17], this space is unique only in very special cases.78

For further relations between the n-width and matrix theory we refer the reader79

to the survey paper [26], and for further n-width results in general to the book [27].80

In this paper we restrict our attention to the case where the (n + 1)-st singular81

value is non-zero and unique, i.e.,82

(1.5) σn > σn+1 > σn+2 ≥ 0.83

Besides the above discussion, this assumption is taken to simplify the exposition since84

it ensures that the (n+ 1)-st left singular vector of A is unique (up to multiplication85

by constants). All our findings can be easily extended to rectangular matrices A of86

rank r.87

The remainder of this paper is organized as follows. Section 2 states the definitions88

of Kolmogorov n-widths and optimal spaces for the image of the Euclidean unit ball by89

A and connects them with best rank-n approximations to A. Some known necessary90

or sufficient conditions for a subspace to be optimal are recalled in section 3. Section 491

is the core of the paper and provides characterizations of optimal subspaces by means92

of some optimality criteria. We discuss them in detail for the important case of best93

rank-1 approximation in section 5. Some alternative optimality criteria are collected94

in section 6. Sections 7 and 8, inspired by similar results for integral operators in L2,95

present a simple explicit construction to obtain a sequence of optimal n-dimensional96

subspaces once an initial optimal subspace is given. This construction can be exploited97

to obtain alternative best rank-n spectral approximations for any matrix A. Some98

concluding remarks are collected in section 9.99

2. Kolmogorov n-widths and rank-n approximations. Let A be an m×m100

real matrix of rank r, and define the subset of Rm,101

A := {Ax : x ∈ Rm, ‖x‖ ≤ 1},102103

where ‖ · ‖ is the Euclidean norm in Rm. Note that A can be recognized as a (filled)104

r-dimensional ellipsoid in Rm, where the line segments [−σiui, σiui], i = 1, . . . , r, are105

its principal axes. The spectral norm of A is the induced operator norm given by106

‖A‖ := max
‖x‖≤1

‖Ax‖,107
108

and it can be shown that ‖A‖ = ‖AT ‖ = σ1. For an n-dimensional subspace Xn of109

Rm, where 0 ≤ n ≤ m, we define the distance to A from Xn by110

(2.1) E(A,Xn) := max
a∈A

dist(a,Xn) = max
a∈A

min
x∈Xn

‖a− x‖.111

Then, the Kolmogorov n-width of A, relative to the Euclidean norm in Rm, is defined
by

dn(A) := min
Xn

E(A,Xn).

A subspace Xn of Rm is called an optimal subspace for A provided that

E(A,Xn) = dn(A).

Here the 0-dimensional subspace X0 of Rm is {0}.112
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We can determine the n-width of A for any n = 0, . . . ,m as follows. Let Pn be113

the orthogonal projection onto Xn. Then,114

(2.2)

E(A,Xn) = max
a∈A
‖a− Pna‖ = max

‖x‖≤1
‖(I − Pn)Ax‖ = ‖(I − Pn)A‖

= ‖AT (I − Pn)‖ = max
x6=0

‖AT (I − Pn)x‖
‖x‖

,
115

where we have used that the spectral norm of a matrix equals the spectral norm of116

its adjoint. By letting x = y ⊕ z for y ∈ Xn and z ⊥ Xn one can check that the last117

maximum in (2.2) is achieved for y = 0. This implies that118

(2.3) E(A,Xn) = max
z⊥Xn

‖AT z‖
‖z‖

= max
z⊥Xn

√
zTAAT z

zT z
.119

Now, using the definition of dn(A), together with (1.4) and (2.3), we observe that120

(2.4) dn(A) = σn+1, n = 0, 1, . . . ,m− 1.121

We also note that it easily follows from the definition of the n-width that dm(A) = 0,
due to the fact that the only choice of a subspace of Rm of dimension m is Xm = Rm.
Thus, we have

(d0(A), d1(A), . . . , dm(A)) = (σ1, σ2, . . . , σm, 0),

and, as mentioned in the introduction, Xn = span{u1, . . . ,un} is an optimal space122

for A.123

The relation between Kolmogorov n-widths and rank-n approximations is con-124

tained in the next two theorems.125

Theorem 2.1. Assume that the vectors xi, i = 1, . . . , n, are orthonormal, and126

define yi := ATxi, i = 1, . . . , n. If Xn := span{x1, . . . ,xn}, then127

‖A−
n∑

i=1

xiy
T
i ‖ = E(A,Xn),128

and, consequently, the matrix
∑n

i=1 xiy
T
i is a best rank-n approximation to A if and129

only if the subspace Xn is optimal for A.130

Proof. Let Pn be the orthogonal projection onto Xn. It follows from (2.2) that131

E(A,Xn) = max
‖x‖=1

‖Ax− PnAx‖ = max
‖x‖=1

‖Ax−
n∑

i=1

(xT
i Ax)xi‖132

= max
‖x‖=1

‖Ax−
n∑

i=1

((ATxi)
Tx)xi‖ = max

‖x‖=1
‖Ax−

n∑
i=1

xiy
T
i x‖133

= ‖A−
n∑

i=1

xiy
T
i ‖.134

135

Since dn(A) = σn+1, the result follows.136

We remark that the above theorem can be considered as an extension of an137

observation in [28]. Define the subset AT := {ATx : x ∈ Rm, ‖x‖ ≤ 1} and observe138

that dn(AT ) = σn+1 since AT has the same singular values as A. The following result139

can be obtained by a similar argument as for Theorem 2.1.140
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Theorem 2.2. Assume that the vectors yi, i = 1, . . . , n, are orthonormal, and141

define xi := Ayi, i = 1, . . . , n. If Yn := span{y1, . . . ,yn}, then142

‖A−
n∑

i=1

xiy
T
i ‖ = E(AT ,Yn),143

and, consequently, the matrix
∑n

i=1 xiy
T
i is a best rank-n approximation to A if and144

only if the subspace Yn is optimal for AT .145

We remark that if Xn is an optimal subspace for A then it follows from the results146

of section 8 that AT (Xn) = span{ATx1, . . . , A
Txn} is an optimal space for AT . Thus,147

the yi, i = 1, . . . , n, in Theorem 2.1 span an optimal space for AT whenever Xn is148

optimal for A. A similar observation holds for Theorem 2.2 and we refer the reader149

to section 8 for the details.150

The classical truncated SVD approximation to A can be recovered by taking151

either xi = ui, i = 1, . . . , n, in Theorem 2.1 or yi = vi, i = 1, . . . , n, in Theorem 2.2.152

From the above theorems we observe that a classification of all the optimal spaces153

for A and AT leads to a classification of several best low-rank approximations to A.154

Such a classification is the goal of the remainder of this paper.155

Equivalence between best rank-n approximation and optimality of the correspond-156

ing subspaces for the Kolmogorov n-width has been shown under the assumptions of157

either Theorem 2.1 or Theorem 2.2 (see also Proposition 5.4). It is an open question158

whether this equivalence holds more generally.159

3. Optimal subspaces. Let us start searching for optimal subspaces for A.160

From now on we assume that the singular values of A = UΣV T satisfy (1.5). Here161

we recall some optimality conditions from Karlovitz [17]. The following condition is162

necessary for the optimality of a subspace; see [17, Theorem 1] for a proof.163

Theorem 3.1. Given n < r, if Xn is an optimal subspace for A, then Xn ⊥ un+1.164

As mentioned in the introduction, under the assumption (1.5) the left singular165

vector un+1 is unique (up to multiplication by constants). In general, if there are166

multiple equal singular values for A, then an optimal subspace Xn must be orthogonal167

to a certain subspace spanned by the left singular vectors of A; see [17, Theorem 1]168

for the details.169

Note that in the special case r = m and n = m − 1, Theorem 3.1 implies the170

uniqueness of the optimality of171

(3.1) Xm−1 = span{u1, . . . ,um−1}.172

In addition to the necessary condition in Theorem 3.1, Karlovitz also proved a173

sufficient condition for optimality. Roughly speaking, it states that any subspace174

“sufficiently close” to the optimal space span{u1, . . .un} must be optimal whenever175

it satisfies the necessary condition of Theorem 3.1. The precise condition is stated in176

the following theorem; see [17, Theorem 1] for a proof.177

Theorem 3.2. Given n < min{m− 1, r}, if Xn ⊥ un+1 and178

(3.2)

n∑
i=1

‖ui − Pnui‖2σ2
i ≤ σ2

n+1 − σ2
n+2,179

where Pn is the orthogonal projection onto Xn, then Xn is an optimal subspace for A.180
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6 M. S. FLOATER, C. MANNI, E. SANDE, AND H. SPELEERS

4. Optimality criteria. With the aim of deriving novel conditions for optimal-181

ity of subspaces, we first provide a characterization of the distance E(A,Xn).182

Lemma 4.1. Let Pn be the orthogonal projection onto Xn. The distance E(A,Xn)183

is equal to the square root of the largest eigenvalue of184

(4.1) Σ2 − ΣUTPnUΣ.185

Proof. First note that Pn = P 2
n = PT

n Pn. Similar to [23, Theorem 2.3], by using186

(2.1) and the definition of A we deduce that187

E(A,Xn)2 = max
‖x‖≤1

‖Ax− PnAx‖2 = max
x6=0

((I − Pn)Ax, (I − Pn)Ax)

(x,x)
188

= max
x6=0

(AT (I − Pn)Ax,x)

(x,x)
,189

190

and so E(A,Xn) is the square root of the largest eigenvalue of M := AT (I − Pn)A.191

From the SVD of A we see that M = V BV T , where B := Σ2 − ΣUTPnUΣ is the192

matrix in (4.1). Since B is a similarity transformation of M , they share the same193

eigenvalues.194

The characterization of E(A,Xn) in Lemma 4.1 forms the basis for our optimality195

criteria. Let196

Cn+1 := σ2
n+1I − Σ2 + ΣUTPnUΣ,197

and let Cn+1[i1, . . . , ik] denote the k×k submatrix of Cn+1 consisting of the rows and198

columns with indices i1, . . . , ik.199

Lemma 4.2. The subspace Xn is optimal for A if and only if Xn ⊥ un+1 and200

Cn+1[1, . . . , n, n+ 2, . . . ,m] is positive semi-definite.201

Proof. Suppose Xn is optimal for A. Then, from (2.4) we deduce that E(A,Xn) =202

σn+1, and by Lemma 4.1 we have that Cn+1 is positive semi-definite. Conversely, if203

Cn+1 is positive semi-definite, then using again the same lemma we can conclude that204

Xn is optimal for A. Moreover, by Theorem 3.1, Xn ⊥ un+1 and the (n + 1)-st row205

and (n + 1)-st column of Cn+1 are zero, and so Cn+1 is positive semi-definite if and206

only if Cn+1[1, . . . , n, n+ 2, . . . ,m] is positive semi-definite.207

Proposition 4.3. The subspace Xn is optimal for A if and only if Xn ⊥ un+1208

and209

(4.2) det(Cn+1[J ]) ≥ 0,210

for any set of indices J ⊆ {1, . . . , n, n+ 2, . . . ,m} such that {1, . . . , n} ∩ J 6= ∅.211

Proof. By the previous lemma, Xn is optimal for A if and only if Xn ⊥ un+1212

and the matrix Cn+1[1, . . . , n, n + 2, . . . ,m] is positive semi-definite. The latter is213

equivalent to the two conditions214

(4.3) det(Cn+1[J ]) ≥ 0, J ⊆ {n+ 2, . . . ,m},215

and (4.2). Thus, to complete the proof it is sufficient to show that (4.3) holds for all216

Xn, i.e., that Cn+1[n + 2, n + 3, . . . ,m] is positive semi-definite for any Xn. To see217

this, let x = [0, . . . , 0, xn+2, . . . , xm]T ∈ Rm. Then, noting that Pn = P 2
n = PT

n Pn,218

(4.4) xTCn+1x =

m∑
i=n+2

(σ2
n+1 − σ2

i )x2i + ‖PnUΣx‖2 ≥ 0,219
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and thus Cn+1[n+ 2, n+ 3, . . . ,m] is indeed positive semi-definite.220

Alternatively, we can consider a sufficient condition for optimality that involves221

checking the sign of only n determinants.222

Corollary 4.4. The subspace Xn is optimal for A if Xn ⊥ un+1 and223

(4.5) det(Cn+1[k, k + 1, . . . , n, n+ 2, . . . ,m]) > 0, k = 1, 2, . . . , n.224

Proof. The subspace Xn is optimal for A if Xn ⊥ un+1 and the matrix225

Cn+1[1, . . . , n, n + 2, . . . ,m] is positive definite. The latter is equivalent to the two226

conditions227

(4.6) det(Cn+1[k, k + 1, . . . ,m]) > 0, k = n+ 2, . . . ,m,228

and (4.5). But (4.6) holds for any Xn since inequality (4.4) is strict unless xn+2 =229

xn+3 = · · · = xm = 0.230

Let us now express the subspace Xn in the form231

(4.7) Xn = span{x1, . . . ,xn},232

where x1, . . . ,xn are orthonormal vectors in Rm. Then, the projection Pn equals233

XXT where X ∈ Rm,n is the matrix whose columns are x1, . . . ,xn. We can express234

these vectors in the basis u1, . . . ,um, and write235

xj =

m∑
i=1

wijui, j = 1, . . . , n,236

for coefficients wij ∈ R. Letting W ∈ Rm,n be the matrix [wij ]i=1,...,m,j=1,...,n, we
find that

X = UW,

and it follows that
Pn = UWWTUT ,

and therefore, that237

(4.8) Cn+1 = σ2
n+1I − Σ2 + ΣWWT Σ.238

Note that W = UTX, which implies

WTW = XTX = I,

and so the columns w1, . . . ,wn of W are orthonormal.239

We can then further sharpen the condition of Proposition 4.3 by making use of a240

matrix determinant identity.241

Lemma 4.5. Suppose Xn is as in (4.7) and Cn+1 as in (4.8). If J ⊆ {1, . . . , n, n+242

2, . . . ,m} is any set of indices, then243

det(Cn+1[J ]) = det(MJ )
∏
k∈J

(σ2
n+1 − σ2

k),244

245

where MJ = [mij ]i,j=1,...,n has the elements246

mij = σ2
n+1

∑
k∈J

wkiwkj

σ2
n+1 − σ2

k

+
∑
k 6∈J

wkiwkj .(4.9)247

248
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Proof. Let Ik := {1, . . . , k}, and let W [J , In] be the submatrix of W consisting249

of the rows with indices in J and columns with indices in In. We use the fact that250

for any non-singular matrix F ∈ Rm,m and any matrix G ∈ Rm,n, it holds that251

det(F +GGT ) = det(I +GTF−1G) det(F );252

see [12, Theorem 18.1.1]. Applying this identity with253

F := (σ2
n+1I − Σ2)[J ], G := Σ[J ]W [J , In],254

we find that

det(Cn+1[J ]) = det(I +W [J , In]TDW [J , In]) det(F ),

where D := Σ[J ]F−1Σ[J ] is the diagonal matrix given by255

Dkk =
σ2
k

σ2
n+1 − σ2

k

, k ∈ J .256

257

Moreover, we find that258

I =

[ ∑
k∈Im

wkiwkj

]
i,j=1,...,n

,259

W [J , In]TDW [J , In] =

[∑
k∈J

σ2
kwkiwkj

σ2
n+1 − σ2

k

]
i,j=1,...,n

,260

261

and therefore MJ = I +W [J , In]TDW [J , In] since

mij =
∑
k∈J

wkiwkj +
∑
k 6∈J

wkiwkj +
∑
k∈J

σ2
kwkiwkj

σ2
n+1 − σ2

k

.

Finally, since F is diagonal, we have

det(F ) =
∏
k∈J

(σ2
n+1 − σ2

k),

and the result follows.262

Theorem 4.6. The subspace Xn is optimal for A if and only if Xn ⊥ un+1 and263

for all sets of indices J ⊆ {1, . . . , n, n + 2, . . . ,m} such that {1, . . . , n} ∩ J 6= ∅ we264

have265

(−1)s det(MJ ) ≥ 0,266

where s is the cardinality of {1, . . . , n} ∩ J and MJ is the matrix given in (4.9).267

Proof. From Proposition 4.3 we know that Xn is optimal for A if and only if Xn ⊥268

un+1 and for all sets of indices J ⊆ {1, . . . , n, n+2, . . . ,m} such that {1, . . . , n}∩J 6=269

∅, we have270

det(Cn+1[J ]) = det(MJ )
∏
k∈J

(σ2
n+1 − σ2

k) ≥ 0.271
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Now, since the singular values satisfy (1.5) we find that272

(−1)s
∏
k∈J

(σ2
n+1 − σ2

k) > 0,273

274

which gives the result.275

There is a freedom in the choice of the basis x1, . . . ,xn for the space Xn in (4.7),276

and this freedom will affect the matrices in the above optimality criterion. Looking at277

the sufficient condition in Theorem 3.2, a natural candidate for a basis of Xn seems to278

be Pnu1, . . . , Pnun, as long as they are linearly independent. If they are, then they can279

be orthonormalized by a Gram–Schmidt process before being used in Theorem 4.6.280

Let us now prove that Pnu1, . . . , Pnun are in fact linearly independent whenever Xn281

is optimal.282

Proposition 4.7. Let Pn be the orthogonal projection onto Xn. If Xn is optimal283

for A, then Pnu1, . . . , Pnun are linearly independent.284

Proof. Suppose, on the contrary, that there are coefficients c1, . . . , cn ∈ R, not all
zero, such that

n∑
i=1

ciPnui = 0.

Then,

Pn

(
n∑

i=1

ciui

)
= 0,

which we can write as

PnUc = 0,

where c = [c1, . . . , cn, 0, . . . , 0]T ∈ Rm. Let y ∈ Rm be such that Σy = c. Then,

PnUΣy = 0,

and therefore,

yT (Σ2 − ΣUTPnUΣ)y = yT Σ2y.

Since not all the coefficients c1, . . . , cn are zero, not all the coefficients y1, . . . , yn are
zero. Therefore, we can form the Rayleigh quotient of B := Σ2 − ΣUTPnUΣ and y,
and we find

yT (Σ2 − ΣUTPnUΣ)y

yTy
=

yT Σ2y

yTy
=

∑n
i=1 y

2
i σ

2
i∑n

i=1 y
2
i

≥ σ2
n,

and so E(A,Xn) ≥ σn and Xn is not optimal for A (see Lemma 4.1).285

5. Optimality for the 1-width and best rank-1 approximation. For the286

1-width we can derive an explicit form of the optimality criterion in Theorem 4.6.287

Suppose X1 = span{x1} for some x1 =
∑m

i=1 wiui ∈ Rm with ‖x1‖ = 1.288

Theorem 5.1. The subspace X1 is optimal for A if and only if w2 = 0 and289

(5.1)

m∑
i=3

w2
i

σ2
2 − σ2

i

≤ w2
1

σ2
1 − σ2

2

.290
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Proof. Note that for n = 1 the matrix MJ in (4.9) is a scalar. Using Theorem 4.6,
the subspace X1 is optimal if and only if w2 = 0 and

MJ = σ2
2

∑
i∈J

w2
i

σ2
2 − σ2

i

+
∑
i6∈J

w2
i ≤ 0,

for any subset J of {1, 3, . . . ,m} that contains 1. Since w2 = 0, this is equivalent to291

σ2
2

∑
i∈J

w2
i

σ2
2 − σ2

i

+
∑
i∈K

w2
i ≤ 0,(5.2)292

293

where K = {1, 3, . . . ,m} \ J . Now, if J = {1, 3, . . . ,m}, then K = ∅ and (5.2) is294

equivalent to (5.1). If, on the other hand, J is a strict subset of {1, 3, . . . ,m}, then295

σ2
2

∑
i∈J

w2
i

σ2
2 − σ2

i

+
∑
i∈K

w2
i ≤ σ2

2

∑
i∈J

w2
i

σ2
2 − σ2

i

+
∑
i∈K

σ2
2

σ2
2 − σ2

i

w2
i = σ2

2

m∑
i=1
i 6=2

w2
i

σ2
2 − σ2

i

≤ 0,296

297

since σ2 ≥ σ2 − σj for any j ∈ {3, . . . ,m}. This concludes the proof.298

Observe that by combining the above result with either Theorem 2.1 or Theo-299

rem 2.2 we obtain a characterization of several best rank-1 approximations to A. We300

remark that a condition similar to (5.1) was found by Antoulas [1] in the special case301

of rank-1 approximation to Hankel matrices.302

The optimality criterion in (5.1) is trivially satisfied by the classical optimal space303

span{u1} and it provides a characterization of “how far” a one-dimensional space can304

deviate from span{u1} and still remain optimal. Specifically, let x1 =
∑m

i=1 wiui ∈305

Rm with ‖x1‖ = 1, then Theorem 5.1 shows that if X1 = span{x1} is optimal for A306

and A 6= 0, then w1 6= 0. Indeed, if w1 = 0, then from (5.1) we have that wi = 0,307

i = 2, . . . ,m and so x1 = 0. The space X1 = {0} can only be optimal for the 1-width308

of A if σ1 = σ2, which contradicts assumption (1.5).309

Let us now compare the result in Theorem 5.1 with the sufficient condition of310

Karlovitz (Theorem 3.2). Note that (5.1) is equivalent to311

(5.3)

m∑
i=3

σ2
1 − σ2

i

σ2
2 − σ2

i

w2
i ≤ 1,312

by using w2
1 = 1−

∑m
i=3 w

2
i and w2 = 0. On the other hand, for n = 1, the left-hand313

side of (3.2) equals314

‖u1 − (u1,x1)x1‖2σ2
1 = (‖u1‖2 − (u1,x1)2)σ2

1 = (1− w2
1)σ2

1 =

m∑
i=3

w2
i σ

2
1 ,315

and so, condition (3.2) is equivalent to316

(5.4)

m∑
i=3

σ2
1

σ2
2 − σ2

3

w2
i ≤ 1.317

Since the singular values are decreasing, we have318

(5.5)
σ2
1 − σ2

i

σ2
2 − σ2

i

≤ σ2
1

σ2
2 − σ2

3

, i = 3, . . . ,m,319
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σ1

σ3

X1

α

Fig. 1. The (e1, e3) cross-section of A in the case m = 3. The space X1 is optimal for A if
and only if |α| ≤ α̂ in (5.7).

and condition (5.4) implies (5.3), as expected. However, we note that the case i = 3320

in (5.5) is a strict inequality if σ3 > 0. Thus, for n = 1, the sufficient condition in321

Theorem 3.2 is stronger than necessary whenever σ3 > 0.322

Example 5.2. Let m = 3 and consider the space X1 = span{x1} for some x1 =323

w1u1 +w2u2 +w3u3, with ‖x1‖ = 1. From Theorem 5.1 it follows that X1 is optimal324

for A if and only if w2 = 0 and325

w2
3 ≤

σ2
2 − σ2

3

σ2
1 − σ2

3

.(5.6)326
327

Now, let w1 = cos(α), w2 = 0 and w3 = sin(α), where α is the angle between X1 and328

the classical optimal space span{u1}. Condition (5.6) is then equivalent to329

|α| ≤ α̂ := arcsin

(√
σ2
2 − σ2

3

σ2
1 − σ2

3

)
.(5.7)330

331

Thus, X1 is optimal for A if and only if it is rotated in the (u1,u3)-plane with an angle332

less than or equal to α̂ from the u1-axis. An illustration of this is given in Figure 1333

for ui = ei, i = 1, 2, 3.334

Example 5.3. Similar to an example in [1] we consider the 3× 3 matrix335

A =

 1 0 1/4
0 1/4 0

1/4 0 1

 .336

Note that this is a symmetric matrix with Hankel structure. It is easy to verify that337

A = UΣUT , with338

σ1 =
5

4
, u1 =

1√
2

1
0
1

 ; σ2 =
3

4
, u2 =

1√
2

 1
0
−1

 ; σ3 =
1

4
, u3 =

0
1
0

 .339

From Example 5.2 we deduce that any space X1 = span{x1} is optimal for A if and340

only if it is rotated in the (u1,u3)-plane with an angle less than or equal to341

α̂ = arcsin
(
1/
√

3
)
≈ 35.26◦342
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12 M. S. FLOATER, C. MANNI, E. SANDE, AND H. SPELEERS

from the u1-axis. The maximum angle α̂ corresponds to the unit vector343

x̂1 =

√
2u1 + u3√

3
=

1√
3

1
1
1

 ,344

which will be an interesting choice for structure-preserving approximation (see Ex-345

ample 5.5).346

If A is a symmetric matrix, then the low-rank approximations in Theorems 2.1347

and 2.2 do not, in general, result in a symmetric approximation to A. As we shall348

see in the next proposition, if given a proper choice of the scaling factor, then each349

unit vector satisfying the optimality criterion in Theorem 5.1 provides a symmetric350

best rank-1 approximation to a symmetric matrix A (at least in the case m = 3).351

We remark that the next result is very similar to [1, Theorem 3.1]. Specifically, if A352

is a Hankel matrix, then [1, Theorem 3.1] provides a characterization of best rank-1353

approximations to A that preserve the Hankel structure. This characterization was354

later generalized to best rank-1 Hankel approximations to a symmetric matrix A355

in [19, Theorem 4.1].356

Proposition 5.4. Let n = 1 and m = 3. Let A be a symmetric matrix and let357

x1 =
∑3

i=1 wiui be a unit vector such that X1 := span{x1} is optimal for A. Then,358

for any σx1
∈ R such that359

(5.8)

L(x1) :=
(σ1 − σ2)(σ2 − σ3)

(σ2 − σ3)− (σ1 − σ3)w2
3

≤ σx1
≤ (σ1 + σ2)(σ2 + σ3)

(σ2 + σ3) + (σ1 − σ3)w2
3

=: U(x1),360

we have361

(5.9) ‖A− σx1
x1x

T
1 ‖ = σ2.362

Proof. Without loss of generality, we can restrict ourselves to the case of A being363

a diagonal matrix Σ and ui = ei, the elements of the canonical basis. Proving364

equality (5.9) is equivalent to showing that the maximum modulus of the eigenvalues365

of the matrix Σ − σx1
x1x

T
1 is equal to σ2. Since X1 is optimal for A, we know from366

Theorem 5.1 that w2 = 0. Therefore, the eigenvalues of Σ− σx1
x1x

T
1 are given by σ2367

and by the eigenvalues of the submatrix obtained by removing the second row and368

the second column, i.e.,369

(5.10)

[
σ1 − σx1w

2
1 −σx1w1w3

−σx1
w1w3 σ3 − σx1

w2
3

]
.370

Then, proving equality (5.9) is equivalent to showing that the eigenvalues of the matrix
in (5.10) are less than or equal to σ2 in modulus. A direct computation shows that
its two (real) eigenvalues are given by

λ± =
σ1 + σ3 − σx1

±
√

(σ1 − σ3 − σx1
)2 + 4w2

3(σ1 − σ3)σx1

2
.

Imposing −σ2 ≤ λ± ≤ σ2 results in the range (5.8) for σx1
.371

Let m = 3. Recall from (5.6)–(5.7) that X1 is optimal for A if and only if w2 = 0
and

w2
3 ≤ sin2(α̂) :=

σ2
2 − σ2

3

σ2
1 − σ2

3

.

This manuscript is for review purposes only.
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Set x̂1 := cos(α̂)u1 + sin(α̂)u3, then one can check that372

L(x1) ≤ L(x̂1) = σ1 + σ3 = U(x̂1) ≤ U(x1),373

for any x1 such that its span is optimal for A. Therefore, the range of values in374

(5.8) for the scaling factor σx1
is always non-empty. In particular, it always contains375

the value σ1 + σ3. This means that there always exists at least one best low-rank376

approximation in any optimal space for A (with m = 3 and n = 1). The classical377

truncated SVD approximation to A corresponds to x1 = u1, and in this case we have378

σ1 − σ2 ≤ σu1
≤ σ1 + σ2. This is in agreement with (1.3).379

Example 5.5. As a continuation of Example 5.3, consider again the matrix380

(5.11) A =

 1 0 1/4
0 1/4 0

1/4 0 1

 .381

According to Proposition 5.4, any choice x1 = cos(α)u1 + sin(α)u3, with |α| ≤ α̂,382

leads to a range of best rank-1 approximations to A that are symmetric, i.e.,383

σx1
x1x

T
1 =

σx1

2

 cos2(α)
√

2 cos(α) sin(α) cos2(α)√
2 cos(α) sin(α) 2 sin2(α)

√
2 cos(α) sin(α)

cos2(α)
√

2 cos(α) sin(α) cos2(α)

 ,384

for any σx1
∈ R such that385

1

2− 4 sin2(α)
≤ σx1

≤ 2

1 + sin2(α)
.386

The specific choice x̂1, corresponding to the maximum angle α̂, gives a best rank-1387

approximation that even preserves the Hankel structure of A, i.e.,388

σx̂1
x̂1x̂

T
1 =

1

2

1 1 1
1 1 1
1 1 1

 ,389

since σx̂1
= 3/2. Similarly, the approximation obtained by taking the angle −α̂390

preserves the Hankel structure as well. According to [1, Theorem 3.1], these matrices391

are the only two Hankel-preserving best rank-1 approximations to A in (5.11).392

As shown in [1], it is not always possible to find a Hankel-preserving best rank-1393

approximation to a Hankel matrix A. When this is not possible one can ask the394

question of how well one can approximate A with rank-1 Hankel matrices, and this395

has been studied in [19].396

6. Alternative optimality criteria. In this section we provide some alterna-397

tive optimality criteria that are useful in the case of large n. While this is not relevant398

for low-rank approximation, these results are still of independent interest for the Kol-399

mogorov n-width. To simplify the exposition, we will in this section only consider400

matrices A that are of full rank, i.e., r = m. Recall that a necessary condition for an401

n-dimensional space Xn to be optimal for the n-width is that it is orthogonal to un+1402

(see Theorem 3.1). This implies that the only optimal space for n = m − 1 is given403

in (3.1).404
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14 M. S. FLOATER, C. MANNI, E. SANDE, AND H. SPELEERS

Suppose now that n ≤ m − 2 and that Xn is orthogonal to un+1. Let us denote405

the orthogonal complement of Xn ⊕ un+1 in Rm by Ym−n−1, and suppose that we406

can represent it in the form407

Ym−n−1 = span{y1, . . . ,ym−n−1},408

where y1, . . . ,ym−n−1 are orthonormal vectors in Rm. We can express these vectors409

as410

yj =

m∑
i=1

qijui, j = 1, . . . ,m− n− 1,411

for coefficients qij ∈ R, j = 1, . . . ,m− n− 1, where now

qn+1,j = 0, j = 1, . . . ,m− n− 1.

Denoting by Q ∈ Rm,m−n−1 the matrix412

(6.1) [qij ]i=1,...,m,j=1,...,m−n−1,413

we obtain the following alternative characterization of optimality for Xn.414

Lemma 6.1. Let Q be the matrix in (6.1). The subspace Xn is optimal for A if415

and only if Xn ⊥ un+1 and the largest eigenvalue of416

QT Σ2Q417

is at most σ2
n+1.418

Proof. Recall from (2.3) that

E(A,Xn) = max
z⊥Xn

√
zTAAT z

zT z
.

Following the argument of Karlovitz in [17, Theorem 1], any z orthogonal to Xn can419

be expressed uniquely as z = y ⊕ x, where y ∈ Ym−n−1 and x ∈ span{un+1}. Then,420

zTAAT z

zT z
=

xTxσ2
n+1 + yTAATy

xTx + yTy
≤ max

{
σ2
n+1,

yTAATy

yTy

}
,421

since it is a convex combination of σ2
n+1 and yTAATy

yTy
. We conclude that422

E(A,Xn) = max

σn+1, max
y∈Ym−n−1

√
yTAATy

yTy

 .423

Any y ∈ Ym−n−1 can be represented as

y =

m−n−1∑
j=1

cjyj ,

for coefficients c1, . . . , cm−n−1. Setting c := [c1, . . . , cm−n−1]T , we have

yTy =

m−n−1∑
j=1

c2j = cT c.
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Setting Y := [y1, . . . ,ym−n−1], we also have

y = Y c = UQc,

and so424

yTAATy = cTQTUTAATUQc = cTQT Σ2Qc.425

Therefore,426

max
y∈Ym−n−1

yTAATy

yTy
= max

c∈Rm−n−1

cTQT Σ2Qc

cT c
,427

which is the largest eigenvalue of QT Σ2Q.428

Suppose now that n = m − 2 and that Xm−2 is orthogonal to um−1. Let Y1 be429

the orthogonal complement to Xm−2 ⊕ um−1 in Rm. Let y1 be a unit vector in Y1430

(which is unique up to a change of sign). We can express y1 in the basis u1, . . . ,um,431

and write432

y1 =

m∑
i=1

qiui,433

for coefficients q1, . . . , qm ∈ R such that
∑m

i=1 q
2
i = 1 and qm−1 = 0.434

Theorem 6.2. The subspace Xm−2 is optimal if and only if qm−1 = 0 and

m∑
i=1

i 6=m−1

q2i σ
2
i ≤ σ2

m−1.

Proof. This is just an application of Lemma 6.1 for n = m− 2, in which case the435

matrix QT Σ2Q has the single element436

m∑
i=1

i 6=m−1

q2i σ
2
i .437

438

Example 6.3. Let m = 3 and let X1 be a 1-dimensional subspace of R3 that is
orthogonal to u2, and let y1 = q1u1 + q3u3 be a unit vector orthogonal to X1. From
Theorem 6.2 it follows that X1 is optimal for A if and only if

q21σ
2
1 + q23σ

2
3 ≤ σ2

2 .

If
X1 = span{cos(α)u1 + sin(α)u3},

then
Y1 = span{− sin(α)u1 + cos(α)u3},

and (q1, q3) = ±(− sin(α), cos(α)), thus the optimality condition can be expressed as

sin2(α) ≤ σ2
2 − σ2

3

σ2
1 − σ2

3

.

This agrees with Example 5.2.439
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7. Totally positive matrices. Melkman and Micchelli studied the n-width440

problem for a certain class of matrices, and in this section we compare their results441

with the optimality criteria in sections 4 and 5. If A is strictly totally positive, i.e.,442

all its minors are positive, then two optimal spaces for A are constructed in [23,443

Section 4]. These two spaces are in general different from the classical optimal space444

span{u1, . . . ,un}. We will describe the first of these optimal spaces here. The second445

will be discussed in the next section.446

When A is strictly totally positive it follows from a theorem of Gantmacher and
Krein [7] that the singular values are positive and distinct,

σ1 > σ2 > · · · > σm > 0,

and the right singular vectors of A have the following sign properties,447

(7.1) S+(vn+1) = S−(vn+1) = n, n = 0, . . . ,m− 1.448

Here S−(v) denotes the actual sign changes of the vector v, where zero components
are discarded and S+(v) is the maximum number of sign changes obtainable by adding
1 or −1 to the zero components of v. It follows from (7.1) that vn+1,1vn+1,m 6= 0 and
we can assume, without loss of generality, that vn+1,1 > 0. Moreover, using (7.1),
there exist indices 0 = `0 < `1 < · · · < `n < `n+1 = m, denoting the sign changes in
vn+1, i.e, such that

vn+1,i(−1)j ≥ 0, `j < i ≤ `j+1, j = 0, 1, . . . , n.

To simplify the exposition, let us assume that the vector vn+1 has no zero components;449

see [23, Section 4] for the general case. The index `j is then the index before the sign450

change, i.e., such that vn+1,`jvn+1,`j+1 < 0. For each j = 1, 2, . . . , n, define the451

m-dimensional vector sj by452

sj,k :=

{
1/|vn+1,k|, k = `j , `j + 1,

0, otherwise.
453

Then, sj ⊥ vn+1 for each j = 1, . . . , n, and Melkman and Micchelli proved the454

following result [23, Theorem 3.1].455

Theorem 7.1. If A is a strictly totally positive matrix, then456

(7.2) X1
n := span{As1, . . . , Asn}457

is an optimal subspace for A := {Ax : ‖x‖ ≤ 1}.458

As a consequence of the above result, if we use a Gram–Schmidt process to find an459

orthonormal basis for X1
n, then we immediately obtain a best rank-n approximation460

to A by applying Theorem 2.1.461

Note that the space X1
n in (7.2) satisfies the necessary condition X1

n ⊥ un+1 (see462

Theorem 3.1) since sj ⊥ vn+1 for each j = 1, . . . , n.463

Example 7.2. Consider the case n = 1 and m = 3. In view of Theorem 5.1 and464

Example 5.2 it would be interesting to check how far the optimal subspace in (7.2)465

is from the classical space span{u1} for different choices of A. Let us take what is466

perhaps one of the simplest possible choices of a strictly totally positive matrix, the467

Vandermonde matrix obtained by interpolating at the points 1, 2, 3:468

A =

1 1 1
1 2 4
1 3 9

 .469
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In this case, it can be checked that the angle between (7.2) and the space spanned by470

u1 is less than 0.171◦, while the maximum angle for an optimal space as in Example 5.2471

is greater than 6.695◦.472

8. Sequence of optimal subspaces. In Theorem 4.6 we obtained an equivalent473

condition for optimality that allowed us to classify all optimal spaces of dimension474

n = 1 for any matrix A in Theorem 5.1. However, as n increases it becomes trickier475

to apply the optimality criterion in Theorem 4.6 for an arbitrary matrix A. On the476

other hand, as we saw in the last section, there exist matrices where one can obtain477

an optimal n-dimensional space for A using specific properties of the matrix A. In478

this section we prove that, given some initial optimal space X1
n, we can obtain a479

whole sequence of optimal spaces Xp
n, p ≥ 1. Moreover, this sequence converges to480

the classical optimal space as p→∞. The arguments here hold for any matrix A and481

are based on those found in [5, 6, 29] for an integral operator in L2.482

Let X1
n and Y1

n be any n-dimensional subspaces of Rm, and define the sequence483

of subspaces Xp
n and Yp

n by484

(8.1) Xp
n := A(Yp−1

n ), Yp
n := AT (Xp−1

n ), p = 2, 3, . . . .485

Then, similar to [5, Lemma 1], we have the following lemma.486

Lemma 8.1. For any matrix A and any subspaces X1
n and Y1

n, we have487

E(A,Xp
n) ≤ E(AT ,Yp−1

n ),488

E(AT ,Yp
n) ≤ E(A,Xp−1

n ),489490

for all p ≥ 2.491

Proof. The two inequalities are analogous and so we only prove the last one.492

Let Pn be the orthogonal projection onto Xp−1
n . Then, the image of ATPn is Yp

n =493

AT (Xp−1
n ) and so494

E(AT ,Yp
n) ≤ max

‖x‖≤1
‖(AT −ATPn)x‖ = max

‖x‖≤1
‖(A− PnA)x‖ = E(A,Xp−1

n ).495
496

Since dn(A) = dn(AT ) = σn+1, we can apply Lemma 8.1 in an induction argument497

on p to obtain the following theorem.498

Theorem 8.2. Suppose the subspace X1
n is optimal for A and Y1

n is optimal for499

AT . Then,500

• the subspaces Xp
n in (8.1) are optimal for A, and501

• the subspaces Yp
n in (8.1) are optimal for AT ,502

for all p ≥ 2.503

Proof. Assume Xp−1
n is optimal for A and Yp−1

n is optimal for AT . Then, using504

Lemma 8.1, we have505

E(A,Xp
n) ≤ E(AT ,Yp−1

n ) = dn(AT ) = dn(A),506

E(AT ,Yp
n) ≤ E(A,Xp−1

n ) = dn(A) = dn(AT ),507508

and so Xp
n is optimal for A and Yp

n is optimal for AT . The result now follows from509

induction on p.510

Note that for p ≥ 2, the spaces Xp
n and Yp

n could in general have dimension less511

than n, but they are still optimal for the n-width problem whenever X1
n and Y1

n are512

optimal. In fact, if Xp
n has dimension k, 0 ≤ k < n, then dk(A) must equal dn(A) by513

definition of the n-width.514
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Example 8.3. Let A be a strictly totally positive matrix. Then, by definition, AT515

is also strictly totally positive, and if we construct the vectors tj , j = 1, . . . , n, in a516

way analogous to the sj in the previous section, it follows from Theorem 7.1 that517

Y1
n := span{AT t1, . . . , A

T tn}518

is optimal for AT . Using Theorem 8.2 we then have that, for p ≥ 1, the spaces519

(8.2) Xp
n =

{
span{(AAT )iAs1, . . . , (AA

T )iAsn}, p = 2i+ 1,

span{(AAT )i+1t1, . . . , (AA
T )i+1tn}, p = 2i+ 2,

520

are optimal for A. Moreover, we can apply Theorem 2.1 to an orthonormal basis for521

any of the above subspaces Xp
n, p ≥ 1, to obtain a best rank-n approximation to A.522

Similarly for Yp
n and Theorem 2.2. We remark that the space X2

n in (8.2) is the second523

optimal space found by Melkman and Micchelli.524

Example 8.4. Let us compare the result of Theorem 8.2 with the optimality cri-525

teria in section 5. For simplicity we consider the case n = 1, m = 3 and A = Σ. We526

further assume that the unit vector x1 is at the boundary of satisfying the optimality527

criteria in section 5. More precisely, we let x1 =
∑3

j=1 wjuj , and using (5.6), we528

assume that529

w2
1 =

σ2
1 − σ2

2

σ2
1 − σ2

3

, w2 = 0, w2
3 =

σ2
2 − σ2

3

σ2
1 − σ2

3

.530
531

It then follows from Theorem 5.1 that span{x1} is optimal for A. Now, let y1 =532

Ax1/‖Ax1‖. From Theorem 8.2 we know that span{y1} is also optimal for A. More-533

over, if we let y1 =
∑3

j=1 zjuj , then z2 = 0 and534

z23 =
σ2
3w

2
3

σ2
1w

2
1 + σ2

3w
2
3

=
σ2
2 − σ2

3

σ2
1 − σ2

3 + s
<
σ2
2 − σ2

3

σ2
1 − σ2

3

= w2
3,535

536

where s = (σ2
1/σ

2
3 − 1)(σ2

1 −σ2
2) > 0. Thus, y1 is closer to the first singular vector (or537

in this case, eigenvector) u1 = e1 than x1. We will look closer at this property in the538

next theorem.539

Note that the definition of the spaces Xp
n and Yp

n in (8.1) is very similar to540

the (block) power method for eigenvalue approximation. The following result, based541

on [29, Theorem 7.1], should therefore not come as a surprise for anyone familiar with542

this method.543

Theorem 8.5. Suppose X1
n is optimal for A and Y1

n is optimal for AT . Let Pn,p544

be the orthogonal projection onto Xp
n and Πn,p be the orthogonal projection onto Yp

n.545

Then,546

‖(I − Pn,p)uj‖, ‖(I −Πn,p)vj‖ ≤
(
σn+1

σj

)p

, j = 1, 2, . . . , n,547
548

and consequently,549

Xp
n −−−→

p→∞
span{u1, . . .un}, Yp

n −−−→
p→∞

span{v1, . . .vn}.550
551
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The above result follows from the next lemma and so we will postpone the proof.552

To ease notation we define the two function classes Ap and Ap
T , for p ≥ 1, by A1 := A,553

A1
T := AT and554

(8.3) Ap := A(Ap−1
T ), Ap

T := AT (Ap−1),555

for p ≥ 2. Using an argument similar to the proofs of [6, Lemma 1] and [30, Lemma 2]556

we have the following result.557

Lemma 8.6. If X1
n is optimal for A and Y1

n is optimal for AT , then558

E(Ap,Xp
n) = E(Ap

T ,Y
p
n) = (σn+1)p.559560

Proof. Let Pn,p be the orthogonal projection onto Xp
n and Πn,p be the orthogonal561

projection onto Yp
n. Then, the matrix562

(I − Pn,p)AΠn,p−1 = 0,563564

since AΠn,p−1x ∈ Xp
n for any vector x ∈ Rm. If we now let the matrix B be defined565

by B := AT (AAT )i for p = 2i+ 2 and B := (ATA)i for p = 2i+ 1, then566

E(Ap,Xp
n) = ‖(I − Pn,p)AB‖ = ‖(I − Pn,p)A(I −Πn,p−1)B‖567

≤ ‖(I − Pn,p)A‖ ‖(I −Πn,p−1)B‖ = σn+1E(Ap−1
T ,Yp−1

n ),568569

since Xp
n is optimal for A by Theorem 8.2. By a similar argument we have570

E(Ap
T ,Y

p
n) = σn+1E(Ap−1,Xp−1

n ),571572

and the result follows from induction on p.573

From the definitions of Ap and Ap
T in (8.3) we deduce that dn(Ap) = dn(Ap) =574

(σn+1)p. It thus follows from Lemma 8.6 that if X1
n is optimal for A and Y1

n is575

optimal for AT then Xp
n is optimal for Ap and Yp

n is optimal for Ap
T . In fact, using576

the arguments of [6, Section 4] one can show that if X1
n is optimal for A and Y1

n is577

optimal for AT then Xp
n is optimal for As and Yp

n is optimal for As
T for all p ≥ s ≥ 1.578

Proof of Theorem 8.5. The two cases are analogous and so we only consider the579

case ‖(I − Pn,p)uj‖. Using the definition of the spectral norm and Lemma 8.6 we580

have581

(8.4)

‖(I − Pn,p)(AAT )ix‖ ≤ ‖(I − Pn,p)(AAT )i‖ ‖x‖
= E(Ap,Xp

n) = (σn+1)p, p = 2i,

‖(I − Pn,p)A(ATA)ix‖ ≤ ‖(I − Pn,p)A(ATA)i‖ ‖x‖
= E(Ap,Xp

n) = (σn+1)p, p = 2i+ 1,

582

for any unit vector x ∈ Rm. We first consider p = 2i. Then, for any j = 1, . . . , n we583

have584

‖(I − Pn,p)uj‖ = ‖(I − Pn,p)
1

σp
j

(AAT )iuj‖ =
1

σp
j

‖(I − Pn,p)(AAT )iuj‖,585

586

and by letting x = uj in (8.4) we obtain587

‖(I − Pn,p)uj‖ ≤
(
σn+1

σj

)p

.588
589

A similar argument proves the case p = 2i+ 1.590
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9. Conclusions. We have addressed the problem of best rank-n approximations591

to a given matrix A in the spectral norm, and we have shown that the problem can592

be related to the concept of Kolmogorov n-widths and corresponding optimal spaces.593

More precisely, any orthonormal basis in an optimal n-dimensional space for the594

image of the Euclidean unit ball under A generates a best rank-n approximation to595

A. This results in a variety of best low-rank approximations that are different from596

the truncated SVD.597

In this perspective, we have laid out explicit characterizations of optimal sub-598

spaces of any dimension, and presented a complete description of all the optimal599

one-dimensional subspaces. Furthermore, we have provided a simple construction to600

obtain a sequence of optimal n-dimensional subspaces once an initial optimal subspace601

is known.602

The paper features an explicit theoretical contribution. The task to retrieve useful603

information while maintaining the underlying physical feasibility often necessitates the604

search for low-rank approximations with/without specific properties/structures of the605

data matrix [1, 4, 13, 22, 25]. In this context, the results we have presented may also606

have a practical impact. However, we have not considered here the problem of finding607

efficient algorithms to compute our approximations. We note, on the other hand, that608

in the special case of Hankel matrices such algorithms have been considered in [19].609

Acknowledgements. C. Manni, E. Sande and H. Speleers are members of610

Gruppo Nazionale per il Calcolo Scientifico, Istituto Nazionale di Alta Matematica.611
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