BEST LOW-RANK APPROXIMATIONS AND KOLMOGOROV
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Abstract. We relate the problem of best low-rank approximation in the spectral norm for a
matrix A to Kolmogorov n-widths and corresponding optimal spaces. We characterize all the optimal
spaces for the image of the Euclidean unit ball under A and we show that any orthonormal basis
in an n-dimensional optimal space generates a best rank-n approximation to A. We also present a
simple and explicit construction to obtain a sequence of optimal n-dimensional spaces once an initial
optimal space is known. This results in a variety of solutions to the best low-rank approximation
problem and provides alternatives to the truncated singular value decomposition. This variety can
be exploited to obtain best low-rank approximations with problem-oriented properties.
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1. Introduction. The problem of approximating a given matrix by another ma-
trix of a lower rank is labeled as the problem of low-rank approximation (of matrices).
It aims to obtain a more compact representation of data with limited loss of informa-
tion. Low-rank approximation of matrices is ubiquitous in applications: discretization
of partial differential equations, principal component analysis, image processing, data
mining, and machine learning, to name a few; see, e.g., [18] for a survey. In particular,
it plays an important role in matrix completion [3], which finds in the so-called Netfliz
problem one of its most well-known applications [11].

In this paper we consider the classical problem of best low-rank approximation of
matrices measured in the spectral norm. Let A be an m x m real matrix of rank r,
then we seek rank-n matrices R,,, n < r, such that

A= Rnl| < [A= B,

for any m X m matrix B of rank n, and where || - || is the operator norm induced by
the Euclidean norm, i.e., the spectral norm.

The singular value decomposition (SVD) is an essential tool for analyzing and
solving the best low-rank approximation problem; see, e.g., [2, Chapter 3]. Let A =
UXVT be any SVD of A, i.e., ¥ is the diagonal matrix whose diagonal entries,

Ul2022"'201">Jr+1:"':Um:07

are the singular values of A, and U and V' are orthonormal matrices. We further let u;
and v; denote the j-th column vector of U and V. If n < r, then the Eckhart—Young
theorem [9, Theorem 2.4.8] states that the rank-n matrix

n
(11) Rn = ZaiuiviT
i=1
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satisfies

1.2 A—R,|| = i A — B| = ont1,
(12) |4~ Rul= min (4= Bl =0

and is thus a best rank-n approximation to A in the spectral norm. However, in
many applications one is interested in finding low-rank approximations that preserve
certain structures in the original matrix A4, i.e., structured low-rank approximation [4,
10,13,15,22,25]. Preserving these structures could exclude the matrix R, in (1.1) from
being a suitable approximation, and in general one looks for near-best approximations
that preserve these structures. In this paper we provide a classification of other best
low-rank approximations to A than R, in (1.1). One could then search among these
matrices for best low-rank approximations that have the desired structure or other
problem-oriented properties. In fact, the special case of best rank-1 approximations
to Hankel matrices has already been considered in [1]; see also [19] where further
results and efficient algorithms for structured best rank-1 approximations to Hankel
matrices can be found. We also remark that the problem of finding best low-rank
approximations in other (entry-wise) matrix norms has been studied in [28] and [8].

Observe that the matrix R,, in (1.1) is clearly not unique if ,, = 0,41 > 0 and it is
then straightforward to find other best rank-n approximations to A. If o, > 0,41 > 0
it is known that the matrix in (1.1) is the unique best rank-n approximation to A in the
Frobenius norm; see, e.g., [14, Section 7.4.2]. However, as argued by Tropp [31, p. 122],
error bounds in the Frobenius norm are not always useful in cases of practical interest
and can even be completely “vacuous”; see also [21,24] for a similar argument. It is
therefore more desirable to look for low-rank approximations in the spectral norm.
For this norm the problem has infinitely many solutions whenever ,,,1 > 0, because
any matrix of the form

n

(1.3) Z(Uz‘ +e)wv], —ony1 <6 <onp,
i=1

solves (1.2). In this paper we look for more general solutions of the form > 7" | x;y7
with x;, y; € R™, other than (1.1) and (1.3), to the best low-rank approximation
problem in (1.2).

Our approach to finding other best rank-n approximations to A consists of two
steps: first we relate this problem to Kolmogorov n-widths [20] and then we solve
the n-width problem. The Kolmogorov n-width of a set in a normed linear space
is the minimal distance to the given set from all possible n-dimensional subspaces.
An n-dimensional (sub)space is optimal when it realizes this minimal distance. We
provide a classification of all the optimal n-dimensional spaces for the image of the
Euclidean unit ball under A, which can be recognized as an r-dimensional ellipsoid in
R™. It turns out that the corresponding Kolmogorov n-width equals o,,11 and that
any orthonormal basis in such n-dimensional optimal space generates a best rank-n
approximation to A. This results in a large variety of best rank-n approximations
beyond the truncated SVD solution in (1.1), and can be exploited to obtain low-rank
approximations with problem-oriented properties.

As a byproduct of our results we classify all n-dimensional spaces that achieve
the minimum in the following min-max formulation for the singular values of A:

. zT AAT 7
(1.4) Ont1 = Min max 4/ —z——.
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This formula is a direct consequence of the Courant—Fischer theorem [14, Section 7.3].
It is easily verified that X,, = span{uy,...,u,} achieves the minimum in (1.4). How-
ever, as already pointed out in [16,17], this space is unique only in very special cases.
For further relations between the n-width and matrix theory we refer the reader
to the survey paper [26], and for further n-width results in general to the book [27].
In this paper we restrict our attention to the case where the (n + 1)-st singular
value is non-zero and unique, i.e.,

(1.5) Op > Opt1 > Opgo > 0.

Besides the above discussion, this assumption is taken to simplify the exposition since
it ensures that the (n + 1)-st left singular vector of A is unique (up to multiplication
by constants). All our findings can be easily extended to rectangular matrices A of
rank r.

The remainder of this paper is organized as follows. Section 2 states the definitions
of Kolmogorov n-widths and optimal spaces for the image of the Euclidean unit ball by
A and connects them with best rank-n approximations to A. Some known necessary
or sufficient conditions for a subspace to be optimal are recalled in section 3. Section 4
is the core of the paper and provides characterizations of optimal subspaces by means
of some optimality criteria. We discuss them in detail for the important case of best
rank-1 approximation in section 5. Some alternative optimality criteria are collected
in section 6. Sections 7 and 8, inspired by similar results for integral operators in L2,
present a simple explicit construction to obtain a sequence of optimal n-dimensional
subspaces once an initial optimal subspace is given. This construction can be exploited
to obtain alternative best rank-n spectral approximations for any matrix A. Some
concluding remarks are collected in section 9.

2. Kolmogorov n-widths and rank-n approximations. Let A be an m xm
real matrix of rank 7, and define the subset of R™,

A:={Ax:x e R", x| <1},

where || - || is the Euclidean norm in R™. Note that A can be recognized as a (filled)
r-dimensional ellipsoid in R™, where the line segments [—o;u;, o;w;], i = 1,...,r, are
its principal axes. The spectral norm of A is the induced operator norm given by

[A] == max | Ax]],
[l <1
and it can be shown that ||A|| = ||AT|| = o1. For an n-dimensional subspace X,, of

R™ where 0 < n < m, we define the distance to A from X,, by

(2.1) E(A,X,,) := maxdist(a, X,,) = max min ||a — x||.
acA acA xe€X,

Then, the Kolmogorov n-width of A, relative to the Euclidean norm in R™, is defined
» dn(A) :==min E(A,X,,).
A subspace X,, of R™ is called an optimal subspace for A provided that

E(AX,) =d,(A).

Here the 0-dimensional subspace Xy of R™ is {0}.
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We can determine the n-width of A for any n = 0,...,m as follows. Let P, be
the orthogonal projection onto X,,. Then,

E(AX,) = — P,al| = I— P)Ax| = ||(I — P,)A
(A X)) = max [la all ﬁﬁ;ll( )Ax|| = I( A

22 = |AT(I - P,)| = maxw

xA0 ] ’

where we have used that the spectral norm of a matrix equals the spectral norm of
its adjoint. By letting x =y ® z for y € X,, and z L X,, one can check that the last
maximum in (2.2) is achieved for y = 0. This implies that

B | AT z|| B zT AATz
(23) B(A Xn) = max = = max \f — 7 —.

Now, using the definition of d,,(A), together with (1.4) and (2.3), we observe that
(2.4) dp(A) =0pt1, n=0,1,...,m—1.

We also note that it easily follows from the definition of the n-width that d,,(A) = 0,
due to the fact that the only choice of a subspace of R™ of dimension m is X,,, = R™.
Thus, we have

(do(A),d1(A),...,dn(A)) = (01,02,...,0m,0),

and, as mentioned in the introduction, X,, = span{uy,...,u,} is an optimal space
for A.

The relation between Kolmogorov n-widths and rank-n approximations is con-
tained in the next two theorems.

THEOREM 2.1. Assume that the vectors x;, i = 1,...,n, are orthonormal, and
definey; == ATx;,i=1,...,n. If X,, := span{x1,...,X,}, then

1A= " xiy! | = E(A,X,),
=1

and, consequently, the matriz Y, x;y?! is a best rank-n approximation to A if and
only if the subspace X,, is optimal for A.
Proof. Let P, be the orthogonal projection onto X,,. It follows from (2.2) that

n

E(AX,) = ”mHaX |Ax — P, Ax| = HmHaX |lAx — Z(xiTAx)xiH

=1
= max |[Ax — ATx)Tx)x;|| = max |Ax — xzylx
s 46 = 3 (A7) x| = | Z ||
=A==l
i=1
Since d,,(A) = 04,41, the result follows. 1]

We remark that the above theorem can be considered as an extension of an
observation in [28]. Define the subset Ar := {ATx : x € R™, ||x|| < 1} and observe
that d,,(Ar) = 0,41 since AT has the same singular values as A. The following result
can be obtained by a similar argument as for Theorem 2.1.
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BEST RANK-N APPROXIMATIONS AND KOLMOGOROV N-WIDTHS 5

THEOREM 2.2. Assume that the vectors y;, i = 1,...,n, are orthonormal, and
define x; := Ay;, i =1,...,n. IfY, :=span{yi,...,yn}, then

1A= xiy] |l = E(Ar,Y,.),
i=1

and, consequently, the matriz y ., x;y! is a best rank-n approximation to A if and
only if the subspace Y,, is optimal for Ar.

We remark that if X,, is an optimal subspace for A then it follows from the results
of section 8 that AT (X,,) = span{ATx,..., ATx,} is an optimal space for Ar. Thus,
the y;, ¢ = 1,...,n, in Theorem 2.1 span an optimal space for Ar whenever X,, is
optimal for A. A similar observation holds for Theorem 2.2 and we refer the reader
to section 8 for the details.

The classical truncated SVD approximation to A can be recovered by taking
either x; =u;, 2= 1,...,n, in Theorem 2.1 or y; =v;, ¢ =1,...,n, in Theorem 2.2.
From the above theorems we observe that a classification of all the optimal spaces
for A and A7 leads to a classification of several best low-rank approximations to A.
Such a classification is the goal of the remainder of this paper.

Equivalence between best rank-n approximation and optimality of the correspond-
ing subspaces for the Kolmogorov n-width has been shown under the assumptions of
either Theorem 2.1 or Theorem 2.2 (see also Proposition 5.4). It is an open question
whether this equivalence holds more generally.

3. Optimal subspaces. Let us start searching for optimal subspaces for A.
From now on we assume that the singular values of A = UXV7T satisfy (1.5). Here
we recall some optimality conditions from Karlovitz [17]. The following condition is
necessary for the optimality of a subspace; see [17, Theorem 1] for a proof.

THEOREM 3.1. Givenn < r, if X,, is an optimal subspace for A, then X, L u,41.

As mentioned in the introduction, under the assumption (1.5) the left singular
vector u,4+1 is unique (up to multiplication by constants). In general, if there are
multiple equal singular values for A, then an optimal subspace X,, must be orthogonal
to a certain subspace spanned by the left singular vectors of A; see [17, Theorem 1]
for the details.

Note that in the special case ¥ = m and n = m — 1, Theorem 3.1 implies the
uniqueness of the optimality of

(3.1) Xm—1 =span{uy, ..., Wy_1}.

In addition to the necessary condition in Theorem 3.1, Karlovitz also proved a
sufficient condition for optimality. Roughly speaking, it states that any subspace
“sufficiently close” to the optimal space span{uy,...u,} must be optimal whenever
it satisfies the necessary condition of Theorem 3.1. The precise condition is stated in
the following theorem; see [17, Theorem 1] for a proof.

THEOREM 3.2. Given n < min{m — 1,7}, if X,, L u,41 and

n

(3-2) Y= Pawil*o? < oh iy —0p
i=1

where P, is the orthogonal projection onto X,,, then X,, is an optimal subspace for A.
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6 M. S. FLOATER, C. MANNI, E. SANDE, AND H. SPELEERS

4. Optimality criteria. With the aim of deriving novel conditions for optimal-
ity of subspaces, we first provide a characterization of the distance E(A,X,).

LEMMA 4.1. Let P, be the orthogonal projection onto X,,. The distance E(A,X,)
is equal to the square root of the largest eigenvalue of

(4.1) »? - xUTP,UY.

Proof. First note that P, = P2 = PTP,. Similar to [23, Theorem 2.3], by using
(2.1) and the definition of A we deduce that

(I - P,)Ax,(I — P,)Ax)

E(A,X,)? = max ||Ax — P, Ax|? = max
lIx[I<1 x#0 (x,x)
T —
R (A* (I — P,)Ax, x)’
x#0 (x,%x)

and so E(A,X,) is the square root of the largest eigenvalue of M := AT(I — P,)A.
From the SVD of A we see that M = VBVT, where B := ¥?> — SUTP,UYX is the
matrix in (4.1). Since B is a similarity transformation of M, they share the same
eigenvalues. 0

The characterization of E(A,X,,) in Lemma 4.1 forms the basis for our optimality
criteria. Let

Cpy1 =02 ] -2 + SUTP,US,

and let Cy,41[i1,...,1k] denote the k x k submatrix of C,, 11 consisting of the rows and
columns with indices i1, ..., .

LEMMA 4.2. The subspace X,, is optimal for A if and only if X,, L upy1 and
Cpt1[l,...,n,n+2,...,m] is positive semi-definite.

Proof. Suppose X,, is optimal for A. Then, from (2.4) we deduce that EF(A,X,,) =
O0n+1, and by Lemma 4.1 we have that C, 41 is positive semi-definite. Conversely, if
C 41 is positive semi-definite, then using again the same lemma we can conclude that
X, is optimal for A. Moreover, by Theorem 3.1, X,, L u,4+1 and the (n + 1)-st row
and (n + 1)-st column of C),41 are zero, and so Cj, 41 is positive semi-definite if and

only if Cp41[l,...,n,n+2,...,m] is positive semi-definite. |
PROPOSITION 4.3. The subspace X, is optimal for A if and only if X, L upyq

and

(4.2) det(Cpr41[T]) > 0,

for any set of indices J C{1,...,n,n+2,...,m} such that {1,...,n}NJT # 0.
Proof. By the previous lemma, X,, is optimal for A if and only if X,, L w,41

and the matrix Cp41[l,...,n,n + 2,...,m] is positive semi-definite. The latter is
equivalent to the two conditions

(4.3) det(Cr11[J]) >0, JC{n+2,...,m},

and (4.2). Thus, to complete the proof it is sufficient to show that (4.3) holds for all
X, i.e., that Chy1[n+2,n + 3,...,m] is positive semi-definite for any X,,. To see
this, let x =[0,...,0,%p12,.-.,2m]T € R™. Then, noting that P, = P2 = PTP,,
(4.4) xTChi1x = Z (02,1 — 0}zl + | P.UEx|]* > 0,

1=n+2
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BEST RANK-N APPROXIMATIONS AND KOLMOGOROV N-WIDTHS 7

and thus Cp,41[n +2,n+ 3,...,m]| is indeed positive semi-definite. O

Alternatively, we can consider a sufficient condition for optimality that involves
checking the sign of only n determinants.

COROLLARY 4.4. The subspace X,, is optimal for A if X,, L u,41 and

(4.5) det(Cpp1lk,k+1,...,n,n+2,...,m]) >0, k=1,2,...,n.

Proof. The subspace X, is optimal for A if X, 1 wu,4; and the matrix
Cnt1[l,...,n,n +2,...,m] is positive definite. The latter is equivalent to the two
conditions
(4.6) det(Cpi1lk,k+1,...,m]) >0, k=n+2,...,m,

and (4.5). But (4.6) holds for any X,, since inequality (4.4) is strict unless x, 412 =
Tpqg = = Ty = 0. 0

Let us now express the subspace X,, in the form

(4.7) X, = span{xy,...,Xn},

where x1,...,x%, are orthonormal vectors in R™. Then, the projection P, equals
XXT where X € R™" is the matrix whose columns are xi,...,X,. We can express
these vectors in the basis uy,...,u,,, and write

m
Xj: E wijui, j:].,...,n,
i=1

for coefficients w;; € R. Letting W € R™"™ be the matrix [wi;li=1,...m,j=1,..n, We
find that
X =UW,

and it follows that
P, =UWWTyT,

and therefore, that
(4.8) Crp1 =021 -S>+ SWWTSE.
Note that W = UT X, which implies

WIw =XTXx =1,

and so the columns w1,...,w, of W are orthonormal.
We can then further sharpen the condition of Proposition 4.3 by making use of a
matrix determinant identity.

LEMMA 4.5. Suppose X, is as in (4.7) and Crq1 asin (4.8). If J C{1,...,n,n+
2,...,m} is any set of indices, then

det(Cr+1[T]) = det(Myz) [T (0711 — o2),
keJ
where Mg = [m;;li j=1,....n has the elements

_ 2 Z Wi Wk
(49) Mij = Opiq ﬁ + g Wi Wk -
keg ~ntl ko kgg

This manuscript is for review purposes only.
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8 M. S. FLOATER, C. MANNI, E. SANDE, AND H. SPELEERS

Proof. Let T, := {1,...,k}, and let W[J,Z,] be the submatrix of W consisting
of the rows with indices in J and columns with indices in Z,,. We use the fact that
for any non-singular matrix F' € R"™"™ and any matrix G € R™", it holds that

det(F + GGT) = det(I + GTF'G) det(F);
see [12, Theorem 18.1.1]. Applying this identity with
Fi=(op I -¥9)J], G :=3JIWIT, L],
we find that
det(C,1[T)) = det(I + W [T, L) DW[T, L)) det(F),

where D := X[J]|F~'%[J] is the diagonal matrix given by

Moreover, we find that

kETm

i,j=1,...n
O'kaiwk‘

WIJ, L7 DW[T, T, = [Z Tyt )

keJ ntl k i,j=1,....,n

and therefore My = I + W|[J,Z,]" DW|J,T,] since

2
O Wi Wi
k™Rt Ry
mij = g wmwm+-g wmww+-g O I

ked kg T keg On+t1 7~ %k

Finally, since F' is diagonal, we have
det(F) = [ (o741 = o7),
keJ
and the result follows. ]

THEOREM 4.6. The subspace X,, is optimal for A if and only if X, L u,41 and
for all sets of indices J C {1,...,n,n+2,...,m} such that {1,...,n} N T # 0 we
have

(=1)* det(Mz) = 0,

where s is the cardinality of {1,...,n} N T and My is the matriz given in (4.9).

Proof. From Proposition 4.3 we know that X, is optimal for A if and only if X,, L
u,,+1 and for all sets of indices J C {1,...,n,n+2,...,m} such that {1,...,n}NJT #
0, we have

det(Crs1[J]) = det(Mg) [ (0241 — 02) > 0.
keg
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Now, since the singular values satisfy (1.5) we find that

(-1* [T (onss = o) >0,

keJ

which gives the result. O

There is a freedom in the choice of the basis x1,...,x, for the space X, in (4.7),
and this freedom will affect the matrices in the above optimality criterion. Looking at
the sufficient condition in Theorem 3.2, a natural candidate for a basis of X,, seems to
be P,uy,..., P,u,, as long as they are linearly independent. If they are, then they can
be orthonormalized by a Gram—Schmidt process before being used in Theorem 4.6.
Let us now prove that P,uy,..., P,u, are in fact linearly independent whenever X,
is optimal.

PROPOSITION 4.7. Let P, be the orthogonal projection onto X,,. If X,, is optimal

for A, then Ppuy, ..., P,u, are linearly independent.

Proof. Suppose, on the contrary, that there are coefficients ¢y, ..., ¢, € R, not all

zero, such that
n

Z ciPnui =0.
i=1
Then,
Pn <Z Ciui> = Oa
i=1
which we can write as
P,Uc =0,

where ¢ = [c1,...,¢pn,0,...,0]7 € R™. Let y € R™ be such that Yy = c. Then,
PUSy =0,

and therefore,
yI (2?2 —-xUTP,UR)y = y'¥?y.

Since not all the coefficients ¢y, ..., c, are zero, not all the coefficients y1,...,y, are
zero. Therefore, we can form the Rayleigh quotient of B := %2 — SUTP,UY, and y,
and we find
yl'(2? -xUTP,UY)y _ yT32y _ S yio? .
y'y y'y Sy T

and so E(A,X,,) > 0, and X,, is not optimal for A (see Lemma 4.1). d

5. Optimality for the 1-width and best rank-1 approximation. For the
1-width we can derive an explicit form of the optimality criterion in Theorem 4.6.
Suppose X; = span{x; } for some x; = Y .-, w;u; € R™ with [|xq]| = 1.

THEOREM 5.1. The subspace Xy is optimal for A if and only if wy =0 and

2 2
wj < W
7 >3 3"

2
g5 — 0; 01 — 05

(5.1)

m
i—3

(2
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291

316

w
—_
~

319

10 M. S. FLOATER, C. MANNI, E. SANDE, AND H. SPELEERS

Proof. Note that for n = 1 the matrix M7 in (4.9) is a scalar. Using Theorem 4.6,
the subspace X; is optimal if and only if we = 0 and

=AY M T co
ZEJ i €T
for any subset J of {1,3,...,m} that contains 1. Since ws = 0, this is equivalent to
(5.2) Z o + Zw <0,
ieg o3~ 0] ik

where K = {1,3,...,m} \ J. Now, if 7 = {1,3,...,m}, then K = (§ and (5.2) is
equivalent to (5.1). If, on the other hand, J is a strict subset of {1,3,...,m}, then

2 m 2
2 03 2 _ 2 wj
£ 2+Zw <Y 7 202f02wi_02202f02§0’
ieJ o3~ 0] ick e o5~ iek 2 i i=1 02 i
1#£2
since o9 > 09 — 0 for any j € {3,...,m}. This concludes the proof. O

Observe that by combining the above result with either Theorem 2.1 or Theo-
rem 2.2 we obtain a characterization of several best rank-1 approximations to A. We
remark that a condition similar to (5.1) was found by Antoulas [1] in the special case
of rank-1 approximation to Hankel matrices.

The optimality criterion in (5.1) is trivially satisfied by the classical optimal space
span{u; } and it provides a characterization of “how far” a one-dimensional space can
deviate from span{u;} and still remain optimal. Specifically, let x; = > /" w;u; €
R™ with ||x1]] = 1, then Theorem 5.1 shows that if X; = span{x;} is optimal for A
and A # 0, then wy # 0. Indeed, if w; = 0, then from (5.1) we have that w; = 0,
t=2,...,m and so x; = 0. The space X; = {0} can only be optimal for the 1-width
of A if o1 = 09, which contradicts assumption (1.5).

Let us now compare the result in Theorem 5.1 with the sufficient condition of
Karlovitz (Theorem 3.2). Note that (5.1) is equivalent to

No?—0o?
1 i 02
(5.3) E % %wi <1,

by using wf =1 — " ;w? and wy = 0. On the other hand, for n = 1, the left-hand
side of (3.2) equals

m
[y = (a1, x1)x3 P07 = (Jug||* = (1, x1)%)of = (1 - wi)ot = > wiot,
and so, condition (3.2) is equivalent to

m 2
(5.4) > w1,
i=3 92793

Since the singular values are decreasing, we have

2 2 2
0% — o° o )

(5.5) ; 5 < — 1 5, 1=23,...,m,
03 —0? ~ 03— 03
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Xy

FiGc. 1. The (e1,e3) cross-section of A in the case m = 3. The space X1 is optimal for A if
and only if |a| < & in (5.7).

and condition (5.4) implies (5.3), as expected. However, we note that the case i = 3
in (5.5) is a strict inequality if o3 > 0. Thus, for n = 1, the sufficient condition in
Theorem 3.2 is stronger than necessary whenever o3 > 0.

Ezample 5.2. Let m = 3 and consider the space X; = span{x;} for some x; =

w1y + wous + waug, with ||x;|| = 1. From Theorem 5.1 it follows that X; is optimal
for A if and only if wy = 0 and

2 2

05 —0
5.6 wr < 222
(5.6) 37(7%—02

Now, let wy = cos(a), we = 0 and w3 = sin(«), where « is the angle between X; and
the classical optimal space span{u;}. Condition (5.6) is then equivalent to

2 _ 2
(5.7) la| < & := arcsin ( (M) :
1

— 03

Thus, X; is optimal for A if and only if it is rotated in the (uj, us)-plane with an angle
less than or equal to & from the uj-axis. An illustration of this is given in Figure 1
foru; =e;,i=1,2,3.

FEzample 5.3. Similar to an example in [1] we consider the 3 x 3 matrix

1 0 1/4
A=10 1/4 0
1/4 0 1

Note that this is a symmetric matrix with Hankel structure. It is easy to verify that
A=UxUT, with

3 1 1 0
0

E . ) 4a

From Example 5.2 we deduce that any space X; = span{x;} is optimal for A if and
only if it is rotated in the (uj,us)-plane with an angle less than or equal to

& = arcsin(1/V/3) =~ 35.26°

This manuscript is for review purposes only.
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from the uj-axis. The maximum angle & corresponds to the unit vector

. V2u; + u3 1|1
DO s S e L

Vi VAl

which will be an interesting choice for structure-preserving approximation (see Ex-
ample 5.5).

If A is a symmetric matrix, then the low-rank approximations in Theorems 2.1
and 2.2 do not, in general, result in a symmetric approximation to A. As we shall
see in the next proposition, if given a proper choice of the scaling factor, then each
unit vector satisfying the optimality criterion in Theorem 5.1 provides a symmetric
best rank-1 approximation to a symmetric matrix A (at least in the case m = 3).
We remark that the next result is very similar to [1, Theorem 3.1]. Specifically, if A
is a Hankel matrix, then [1, Theorem 3.1] provides a characterization of best rank-1
approximations to A that preserve the Hankel structure. This characterization was
later generalized to best rank-1 Hankel approximations to a symmetric matrix A
in [19, Theorem 4.1].

PROPOSITION 5.4. Let n =1 and m = 3. Let A be a symmetric matriz and let
X = Z?Zl wiw; be a unit vector such that Xy := span{x;} is optimal for A. Then,
for any ox, € R such that

(5.8)
(01 — 03)(02 — 03) (01 + 02)(02 + 03)
£ = X1 S =4 )
(1) (02 —03) — (01 — o3)wi — 7 (02 + 03) + (01 — 03)w3 (x1)
we have
(5.9) |A = oy, x1%7 || = 02

Proof. Without loss of generality, we can restrict ourselves to the case of A being
a diagonal matrix ¥ and u; = e;, the elements of the canonical basis. Proving
equality (5.9) is equivalent to showing that the maximum modulus of the eigenvalues
of the matrix ¥ — oy, x1x] is equal to oy. Since X; is optimal for A, we know from
Theorem 5.1 that we = 0. Therefore, the eigenvalues of 3 — o, x;X7 are given by oy
and by the eigenvalues of the submatrix obtained by removing the second row and
the second column, i.e.,

2
01 — Ox, Wi —0x, WIW3

2
—O0x, W1W3 03 — Ox, W3

(5.10)

Then, proving equality (5.9) is equivalent to showing that the eigenvalues of the matrix
in (5.10) are less than or equal to o3 in modulus. A direct computation shows that
its two (real) eigenvalues are given by

o1+ 03— 0x, £/(01 — 03 — 0x,)% + 4w (01 — 03)0x,

Ay = 5
Imposing —o2 < Ay < g3 results in the range (5.8) for oy, . 0

Let m = 3. Recall from (5.6)—(5.7) that X; is optimal for A if and only if ws =0
and

2 _ 2
w3 < sin?(a&) := %.

01 — 03

This manuscript is for review purposes only.
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Set X7 := cos(&)uy + sin(&)ug, then one can check that
,Q(Xl) S ,2(5(1) =01 +03 = ﬂ(f(l) S ﬂ(Xl),

for any x; such that its span is optimal for A. Therefore, the range of values in
(5.8) for the scaling factor oy, is always non-empty. In particular, it always contains
the value o1 + 03. This means that there always exists at least one best low-rank
approximation in any optimal space for A (with m = 3 and n = 1). The classical
truncated SVD approximation to A corresponds to x; = uj, and in this case we have
01— 09 < 0y, <01+ 0y. This is in agreement with (1.3).

Example 5.5. As a continuation of Example 5.3, consider again the matrix

1 0 1/4
(5.11) A=10 1/4 0
/4 0 1

According to Proposition 5.4, any choice x; = cos(a)uy + sin(a)us, with |a| < &,
leads to a range of best rank-1 approximations to A that are symmetric, i.e.,

o cos? () V2 cos(a) sin(a) cos? ()
Ox, X1X1 = ;1 V2 cos(a) sin(a) 2sin?(a) V2 cos(a) sin(a) |
cos? () V2 cos(a) sin(a) cos? ()
for any ox, € R such that
1 < < 2
————— <oy, < ——.
2 —4sin’(a) ~ ' T 1+ sin®(a)

The specific choice X7, corresponding to the maximum angle &, gives a best rank-1
approximation that even preserves the Hankel structure of A, i.e.,

)

111
1

aﬁilﬁszilll
11 1

since 0%, = 3/2. Similarly, the approximation obtained by taking the angle —&
preserves the Hankel structure as well. According to [1, Theorem 3.1], these matrices
are the only two Hankel-preserving best rank-1 approximations to A in (5.11).

As shown in [1], it is not always possible to find a Hankel-preserving best rank-1
approximation to a Hankel matrix A. When this is not possible one can ask the
question of how well one can approximate A with rank-1 Hankel matrices, and this
has been studied in [19].

6. Alternative optimality criteria. In this section we provide some alterna-
tive optimality criteria that are useful in the case of large n. While this is not relevant
for low-rank approximation, these results are still of independent interest for the Kol-
mogorov n-width. To simplify the exposition, we will in this section only consider
matrices A that are of full rank, i.e., » = m. Recall that a necessary condition for an
n-dimensional space X,, to be optimal for the n-width is that it is orthogonal to u,1
(see Theorem 3.1). This implies that the only optimal space for n = m — 1 is given
in (3.1).
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105 Suppose now that n < m — 2 and that X,, is orthogonal to u, 1. Let us denote
406  the orthogonal complement of X,, & u,41 in R™ by Y,,_,_1, and suppose that we
407 can represent it in the form

408 Ym-n-1= Span{yh ce 7Ym—n—1}a
409  where y1,...,¥m—_n—1 are orthonormal vectors in R”. We can express these vectors
410 as

m
411 yj:Zqijui, j=1....m—n-—1,

i=1

for coefficients ¢;; € R, j =1,...,m —n — 1, where now
qn+17j=O, j:l,...,m—n—l.

112 Denoting by Q € R™™~"~! the matrix

113 (6.1) [Gijli=1,...m,j=1,...m—n—1,
414 we obtain the following alternative characterization of optimality for X,,.

115 LEMMA 6.1. Let @ be the matriz in (6.1). The subspace X,, is optimal for A if
416 and only if X,, L u,41 and the largest eigenvalue of

417 QTx%Q

418 18 at most 0'72L+1.
Proof. Recall from (2.3) that

T AAT
E(.A,Xn):maxﬂiz = Z.
z1X, VA

119 Following the argument of Karlovitz in [17, Theorem 1], any z orthogonal to X,, can
420 be expressed uniquely as z =y ® x, where y € Y,;,_,,—1 and x € span{u,,4+1}. Then,

yT AATy }
yly |’

zTAATz  xTxo2, , +yTAATy )
421 = 7 T < max 0y,
Z'Z X'X+y'y

T T
) . L. . . AA
122 since it is a convex combination of 62, and % We conclude that

IvT AAT
423 E(A,X,) =max{ 0,41, max M
YEYm_n—1 y'y

Any y € Y,,_,—1 can be represented as

m—n—1
y = § CiYis
=1
for coefficients ¢1, ..., Cm_n_1. Setting ¢ := [c1,. .., cm_n_1]T, we have
m—n—1

yiy = E c? =c’e.
j=1

This manuscript is for review purposes only.
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Setting Y := [y1,...,Ym-n—1], we also have
y =Yc=UQkc,

and so

yTAATy = TQTUT AATUQc = T QT 2% Qc.

Therefore,
y AATy T QTS2Qc
max —_— = max _—
YEYm_n-1 yTy ceRm—n—1 CTC
which is the largest eigenvalue of Q7 X2Q. 0

Suppose now that n = m — 2 and that X,,,_o is orthogonal to u,,_1. Let Y; be
the orthogonal complement to X,,,_2 @ u,,—1 in R™. Let y; be a unit vector in Y,
(which is unique up to a change of sign). We can express y; in the basis uy, ..., u,,
and write

m
= E qil,
=1

for coefficients q1, ..., ¢y € R such that >.", ¢ =1 and g,—1 = 0.
THEOREM 6.2. The subspace X,,_o is optimal if and only if ¢g,—1 = 0 and
m
Z q202 < 0
z;ém 1

Proof. This is just an application of Lemma 6.1 for n = m — 2, in which case the
matrix Q7 X2Q has the single element

Example 6.3. Let m = 3 and let X; be a l-dimensional subspace of R3 that is
orthogonal to us, and let y; = ¢iu; + gzus be a unit vector orthogonal to X;. From
Theorem 6.2 it follows that X; is optimal for A if and only if

410} + 305 < a3,
If
Xy = span{cos(a)u; + sin(a)us},
then
Y, = span{—sin(a)u; + cos(a)us},

and (q1,¢q3) = £(—sin(a), cos(a)), thus the optimality condition can be expressed as

2 2

. 05— 0

sin®(a) < 2—3.
01 —03

This agrees with Example 5.2
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7. Totally positive matrices. Melkman and Micchelli studied the n-width
problem for a certain class of matrices, and in this section we compare their results
with the optimality criteria in sections 4 and 5. If A is strictly totally positive, i.e.,
all its minors are positive, then two optimal spaces for A are constructed in [23,
Section 4]. These two spaces are in general different from the classical optimal space
span{uy,...,u,}. We will describe the first of these optimal spaces here. The second
will be discussed in the next section.

When A is strictly totally positive it follows from a theorem of Gantmacher and
Krein [7] that the singular values are positive and distinct,

0'1>(7'2>"'>O'm>07
and the right singular vectors of A have the following sign properties,
(7.1) ST(Vps1) =S (Vpy1)=n, n=0,...,m—1.

Here S~ (v) denotes the actual sign changes of the vector v, where zero components
are discarded and S (v) is the maximum number of sign changes obtainable by adding
1 or —1 to the zero components of v. It follows from (7.1) that vp41,1Up41,m # 0 and
we can assume, without loss of generality, that v,411 > 0. Moreover, using (7.1),
there exist indices 0 = 0y < ¢ < --- < ¥, < £y41 = m, denoting the sign changes in
Vn+1, 1€, such that

Un+1,i(_1)j >0, Ej <i§€j+1a j:071a"'an'

To simplify the exposition, let us assume that the vector v,, ;1 has no zero components;
see [23, Section 4] for the general case. The index ¢; is then the index before the sign
change, i.e., such that v,y10,vn410,+1 < 0. For each j = 1,2,...,n, define the
m-dimensional vector s; by

Sig = 1/‘vn+1,k|7 k:fj,fj—i—]_’
P 0, otherwise.

Then, s; L vyp4q for each j = 1,...,n, and Melkman and Micchelli proved the
following result [23, Theorem 3.1].

THEOREM 7.1. If A is a strictly totally positive matriz, then
(7.2) XL :=span{4s,..., As,}
is an optimal subspace for A:= {Ax :|x| < 1}.

As a consequence of the above result, if we use a Gram—Schmidt process to find an
orthonormal basis for X!, then we immediately obtain a best rank-n approximation
to A by applying Theorem 2.1.

Note that the space X1 in (7.2) satisfies the necessary condition X! 1 u,41 (see
Theorem 3.1) since s; L vj,41 foreach j=1,...,n.

Ezxample 7.2. Consider the case n = 1 and m = 3. In view of Theorem 5.1 and
Example 5.2 it would be interesting to check how far the optimal subspace in (7.2)
is from the classical space span{u;} for different choices of A. Let us take what is
perhaps one of the simplest possible choices of a strictly totally positive matrix, the
Vandermonde matrix obtained by interpolating at the points 1, 2, 3:

1 1 1
A=11 2 4
139
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In this case, it can be checked that the angle between (7.2) and the space spanned by
u; is less than 0.171°, while the maximum angle for an optimal space as in Example 5.2
is greater than 6.695°.

8. Sequence of optimal subspaces. In Theorem 4.6 we obtained an equivalent
condition for optimality that allowed us to classify all optimal spaces of dimension
n = 1 for any matrix A in Theorem 5.1. However, as n increases it becomes trickier
to apply the optimality criterion in Theorem 4.6 for an arbitrary matrix A. On the
other hand, as we saw in the last section, there exist matrices where one can obtain
an optimal n-dimensional space for A using specific properties of the matrix A. In
this section we prove that, given some initial optimal space X!, we can obtain a
whole sequence of optimal spaces XP, p > 1. Moreover, this sequence converges to
the classical optimal space as p — oco. The arguments here hold for any matrix A and
are based on those found in [5,6,29] for an integral operator in L2.

Let X! and Y! be any n-dimensional subspaces of R™, and define the sequence
of subspaces X? and Y? by

(8.1) XP = A(YETY), YE .= AT(XP"h) p=23 ...
Then, similar to [5, Lemma 1], we have the following lemma.

LEMMA 8.1. For any matriz A and any subspaces X} and Y., we have

E(Av Xﬁ) < E(ATvyﬁil)a
E(ATvaz) < E(A7 be_l)’
for allp > 2.

Proof. The two inequalities are analogous and so we only prove the last one.
Let P, be the orthogonal projection onto XE~!. Then, the image of AT P, is Y2 =
AT (Xp=1) and so

B(Ar,¥5) < max [(AT = ATP,)x]| = max, (4= P.A] = B(AX; ). D

x||<1 x||<1

Since d,, (A) = d,,(Ar) = 041, we can apply Lemma 8.1 in an induction argument
on p to obtain the following theorem.

THEOREM 8.2. Suppose the subspace X\ is optimal for A and Y} is optimal for
Ar. Then,
o the subspaces XP in (8.1) are optimal for A, and
e the subspaces YP in (8.1) are optimal for Ar,
for allp > 2.

Proof. Assume XP~! is optimal for A and Y2~! is optimal for Ar. Then, using
Lemma 8.1, we have

E(AXP) < B(A7,Y51) = dp(Ar) = dn(A),
E(ATvyg) S E(A7 beil) = dn(A) = dn(AT)a
and so X? is optimal for A and Y? is optimal for Ap. The result now follows from
induction on p. 0

Note that for p > 2, the spaces XP and Y? could in general have dimension less
than n, but they are still optimal for the n-width problem whenever X! and Y} are
optimal. In fact, if XP has dimension k, 0 < k < n, then dj(.A) must equal d,,(A) by
definition of the n-width.
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Example 8.3. Let A be a strictly totally positive matrix. Then, by definition, A”
is also strictly totally positive, and if we construct the vectors t;, j = 1,...,n, in a
way analogous to the s; in the previous section, it follows from Theorem 7.1 that

Y! :=span{ATt;,..., ATt,}

is optimal for Az. Using Theorem 8.2 we then have that, for p > 1, the spaces

8.2 . )
(82) span{(AAT)* 1ty ... (AAT) 1}, p=2i+2,

v — {span{(AATVAsl, o (AATYAs,),  p=2i+1,

are optimal for A. Moreover, we can apply Theorem 2.1 to an orthonormal basis for
any of the above subspaces XP, p > 1, to obtain a best rank-n approximation to A.
Similarly for Y2 and Theorem 2.2. We remark that the space X2 in (8.2) is the second
optimal space found by Melkman and Micchelli.

Ezxample 8.4. Let us compare the result of Theorem 8.2 with the optimality cri-
teria in section 5. For simplicity we consider the case n =1, m =3 and A = X. We
further assume that the unit vector x; is at the boundary of satisfying the optimality
criteria in section 5. More precisely, we let x; = Z?zl wj;u;, and using (5.6), we
assume that

2 2 2 2

9 0] — 03 B 9y 03 —03

w; = ———5, we =0, w;=-—-5—-=.
1 2 2 ) 3 2 2
o] — 03 oi—o

It then follows from Theorem 5.1 that span{x;} is optimal for A. Now, let y; =
Ax1/||Ax1]|. From Theorem 8.2 we know that span{y;} is also optimal for .A. More-
over, if we let y; = 23 zjuj, then zp = 0 and

j=1
2,2 2 2 2 2

52 — o3W3 _ 03 —03 03 — 03 — w2

3= 2 = 32 2 2 — W3,

2,2 2 2
ojwy +o3wy 07 —03+s 07 —03

where s = (02 /03 —1)(0? —03) > 0. Thus, y; is closer to the first singular vector (or
in this case, eigenvector) u; = e; than x;. We will look closer at this property in the
next theorem.

Note that the definition of the spaces XP and Y2 in (8.1) is very similar to
the (block) power method for eigenvalue approximation. The following result, based
on [29, Theorem 7.1}, should therefore not come as a surprise for anyone familiar with
this method.

THEOREM 8.5. Suppose X}, is optimal for A and Y} is optimal for Ar. Let P, ,
be the orthogonal projection onto X and II, , be the orthogonal projection onto YP .
Then,

p
On .
H(I_P’ﬂgp)uJHvH(I_Hn,p)v]HS ( +1) ) j:1727"'7na

gy
and consequently,

XP —— span{uy,...u,}, Y —— span{vy,...v,}.
p—00 p—00
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The above result follows from the next lemma and so we will postpone the proof.
To ease notation we define the two function classes AP and A%, for p > 1, by Al := A,
AL = Ar and

(8.3) AP = A(APTY), AP = AT(APTY),

for p > 2. Using an argument similar to the proofs of [6, Lemma 1] and [30, Lemma 2]
we have the following result.

LEMMA 8.6. If X! is optimal for A and Y} is optimal for Ar, then
E(A?,X7) = E(AL, YD) = (0041)".

Proof. Let P, , be the orthogonal projection onto X? and IL,, ,, be the orthogonal
projection onto Y?. Then, the matrix

(I—P,,)All,, 1 =0,

since All, ,—1x € XP for any vector x € R™. If we now let the matrix B be defined
by B := AT(AAT)! for p = 2i + 2 and B := (AT A)? for p = 2i + 1, then

E(A?,X7) = (I = Pop)AB| = |[(I = Pop) AU =Ty p 1) B|
< (I = Pap) AU =y po1) Bl = o1 E(AF YR,
since X? is optimal for A4 by Theorem 8.2. By a similar argument we have

E(‘Ag"?YfL) = On+1 E(Apilﬂxﬁil)v

O

and the result follows from induction on p.

From the definitions of AP and A% in (8.3) we deduce that d,,(A?) = d,(AP) =
(0nt1)P. Tt thus follows from Lemma 8.6 that if X! is optimal for A and Y. is
optimal for Ar then X? is optimal for AP and Y is optimal for A%. In fact, using
the arguments of [6, Section 4] one can show that if X! is optimal for A and Y}, is
optimal for Az then X? is optimal for .4° and Y? is optimal for A% for allp > s > 1.

Proof of Theorem 8.5. The two cases are analogous and so we only consider the
case ||(I — P, p)uj||. Using the definition of the spectral norm and Lemma 8.6 we
have

(7 = P p) (AAT) || < [[(1 = P p) (AATY'| ||

(8.4) = E(A",X7) = (ont1)?, p = 2i,
' [(1 = Pop) A(ATA)' x| < [[(1 = Pop) A(AT A)||[|x]
=E(AP,XP) = (0p41)", p=2i+1,
for any unit vector x € R”™. We first consider p = 2i. Then, for any j = 1,...,n we
have
1 i 1 i
(I = Pop)u;| = [[(1 - Pn,p)g(AAT) w = 5l — Py p)(AAT) ],
J J

and by letting x = u; in (8.4) we obtain

P
on
17— Puy)uy | < ( “)

gj

A similar argument proves the case p = 2i + 1. 0
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9. Conclusions. We have addressed the problem of best rank-n approximations
to a given matrix A in the spectral norm, and we have shown that the problem can
be related to the concept of Kolmogorov n-widths and corresponding optimal spaces.
More precisely, any orthonormal basis in an optimal n-dimensional space for the
image of the Euclidean unit ball under A generates a best rank-n approximation to
A. This results in a variety of best low-rank approximations that are different from
the truncated SVD.

In this perspective, we have laid out explicit characterizations of optimal sub-
spaces of any dimension, and presented a complete description of all the optimal
one-dimensional subspaces. Furthermore, we have provided a simple construction to
obtain a sequence of optimal n-dimensional subspaces once an initial optimal subspace
is known.

The paper features an explicit theoretical contribution. The task to retrieve useful
information while maintaining the underlying physical feasibility often necessitates the
search for low-rank approximations with/without specific properties/structures of the
data matrix [1,4,13,22,25]. In this context, the results we have presented may also
have a practical impact. However, we have not considered here the problem of finding
efficient algorithms to compute our approximations. We note, on the other hand, that
in the special case of Hankel matrices such algorithms have been considered in [19].
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