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The extracellular matrix 
glycoprotein ADAMTSL2 
is increased in heart failure 
and inhibits TGFβ signalling 
in cardiac fibroblasts
Karoline B. Rypdal1,2, Pugazendhi M. Erusappan1,2, A. Olav Melleby1,2,3, Deborah E. Seifert4, 
Sheryl Palmero1,2, Mari E. Strand1,2, Theis Tønnessen1,2,5, Christen P. Dahl6, Vibeke Almaas6, 
Dirk Hubmacher7, Suneel S. Apte4, Geir Christensen1,2 & Ida G. Lunde1,2*

Fibrosis accompanies most heart diseases and is associated with adverse patient outcomes. 
Transforming growth factor (TGF)β drives extracellular matrix remodelling and fibrosis in the failing 
heart. Some members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with 
thrombospondin type 1 motifs-like) family of secreted glycoproteins bind to matrix microfibrils, 
and although their function in the heart remains largely unknown, they are suggested to regulate 
TGFβ activity. The aims of this study were to determine ADAMTSL2 levels in failing hearts, and to 
elucidate the role of ADAMTSL2 in fibrosis using cultured human cardiac fibroblasts (CFBs). Cardiac 
ADAMTSL2 mRNA was robustly increased in human and experimental heart failure, and mainly 
expressed by fibroblasts. Over-expression and treatment with extracellular ADAMTSL2 in human 
CFBs led to reduced TGFβ production and signalling. Increased ADAMTSL2 attenuated myofibroblast 
differentiation, with reduced expression of the signature molecules α-smooth muscle actin and 
osteopontin. Finally, ADAMTSL2 mitigated the pro-fibrotic CFB phenotypes, proliferation, migration 
and contractility. In conclusion, the extracellular matrix-localized glycoprotein ADAMTSL2 was 
upregulated in fibrotic and failing hearts of patients and mice. We identified ADAMTSL2 as a negative 
regulator of TGFβ in human cardiac fibroblasts, inhibiting myofibroblast differentiation and pro-
fibrotic properties.
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α-SMA	� Alpha smooth muscle actin
AB	� Aortic banding
ADAMTSL	� A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs-like
AS	� Aortic stenosis
CFB	� Cardiac fibroblast
CM	� Cardiomyocyte
DCM	� Dilated cardiomyopathy
ECM	� Extracellular matrix
GD	� Geleophysic dysplasia
haCFB	� Human adult cardiac fibroblast
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hfCFB	� Human foetal cardiac fibroblast
HOCM	� Hypertrophic obstructive cardiomyopathy
LA	� Left atrium
LLC	� Large latent complex
LTBP1	� Latent TGFβ binding protein
LV	� Left ventricle
SLC	� Small latent complex
TGFβ	� Transforming growth factor beta

Fibrosis is a hallmark feature of heart failure, a leading cause of morbidity and mortality worldwide, and the 
degree of cardiac fibrosis is a strong predictor of poor outcomes in patients1–4. Cardiac fibrosis results from dys-
regulated deposition of extracellular matrix (ECM) molecules by activated cardiac fibroblasts (CFBs), termed 
myofibroblasts, leading to tissue stiffening5–7. Transforming growth factor (TGF)β is a central signalling molecule 
in cardiac development and disease, and a major driver of cardiac myofibroblast differentiation and fibrosis8–10. 
Inactive TGFβ, bound to latent TGFβ binding proteins (LTBPs), is stored in the ECM as the large latent complex 
(LLC), tethered to microfibrils11,12. Release from the inactive complex is required for TGFβ activation and initia-
tion the pro-fibrotic response10. Thus, identification of molecular players governing TGFβ signalling in the heart 
is essential to develop novel treatment strategies that can counteract cardiac fibrosis.

Members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with thrombospondin type 
1 motifs-like) family of secreted glycoproteins structurally resemble ADAMTS proteases, but lack enzymatic 
activity, as they do not have a protease domain13,14. Some ADAMTS proteases have important roles in the 
heart15–17, but little is known about the role of ADAMTSLs. Emerging data suggests that they can bind and 
regulate fibrillin microfibrils18–20, major ECM components that control TGFβ bioavailability. Recessive loss-
of-function ADAMTSL2 mutations cause geleophysic dysplasia (GD), an inherited connective tissue disorder 
resulting in severe musculoskeletal, pulmonary, and cardiac anomalies, with increased TGFβ levels and activity 
observed in patient-derived skin fibroblasts21,22. In beagles, an ADAMTSL2 founder mutation causes Musladin-
Lueke Syndrome with severe skin and intermuscular fibrosis23. Adamtsl2−/− mice fail to survive past birth, 
likely as a result of lung anomalies associated with bronchial fibrillin microfibril accumulation, and have cardiac 
developmental defects24. Collectively, these data suggest that ADAMTSL2 regulates ECM deposition and TGFβ 
signalling and may thus have an important role in cardiac fibrosis and heart failure.

In the present study, we investigated expression of ADAMTSLs in heart failure, and identified novel func-
tions of ADAMTSL2 in CFBs. Specifically, we found that ADAMTSL2 was robustly up-regulated in clinical and 
experimental heart failure, and ADAMTSL2 was predominantly expressed by CFBs. In cultured foetal and adult 
human CFBs, ADAMTSL2 negatively regulated TGFβ signalling, and attenuated myofibroblast differentiation 
and pro-fibrotic properties of CFBs.

Results
ADAMTSL1‑5 and Papilin are up‑regulated in hearts of mice with fibrosis and failure.  To 
understand the role of ADAMTSL proteins in heart failure, we determined ADAMTSL gene expression in left 
ventricles (LV) of mice subjected to AB for two, four and 20 weeks. The resulting cardiac phenotypes were previ-
ously reported25, and in summary show concentric hypertrophic remodelling at two and four weeks post-AB, 
where the heart muscle is thickened, and end-stage dilated heart failure at 20 weeks, with thinning of the heart 
muscle, compared to sham-operated controls. Cardiac fibrosis (increased collagen expression and extracellular 
deposition) and increased TGFβ signalling was present at all three time-points, with increased α-smooth muscle 
actin (α-SMA) observed at two weeks25. We found that all members of the Adamtsl family were upregulated after 
AB, except Adamtsl6, which was unchanged. Adamtsl2 showed the highest up-regulation with a four–eightfold 
increase during hypertrophic remodelling, and an eightfold increase at end-stage cardiac dilatation (Fig. 1a), 
suggesting a potential role in fibrosis and heart failure. Thus, we focused our efforts on ADAMTSL2.

Immunoblotting for ADAMTSL2 in LV protein extracts was consistent with Adamtsl2 mRNA induction, 
showing a 2-3.5-fold increase in full-length protein at two, four and 20 weeks post-AB (Fig. 1b,c). In situ hybridi-
zation (ISH) in heart sections showed that Adamtsl2 mRNA expression was increased in the LV and left atrium 
(LA) after AB, compared to modest expression of Adamtsl2 in the sham-operated mice (Fig. 1d–f). Importantly, 
increased Adamtsl2 expression in AB mice was seen between cardiomyocytes (CM) in the LV wall (Fig. 1d), in 
regions of the LV endocardium (Fig. 1e, arrows) and the LA endocardium (Fig. 1f), suggesting an increase in 
ADAMTSL2 expression in cell types other than CMs across the heart.

ADAMTSL2 is mainly expressed by cardiac fibroblasts in the ventricular wall.  As two of the 
dominant cell types in the ventricular wall, we investigated expression of the ADAMTSLs in primary cultures of 
isolated CMs and CFBs from neonatal rat hearts. The purity of the cultures was confirmed by the cardiomyocyte 
marker Troponin-I (Tnni3), the endothelial cell marker von Willebrand Factor (Vwf), and the fibroblast markers 
type I Collagen (Col1a2), Periostin (Postn), and α-SMA (Acta2) (Supplementary Fig. S1a–c). Adamtsl1-4 were 
mainly expressed by CFBs, with fivefold higher Adamtsl2 expression in CFBs compared to CMs, while Papln 
expression was higher in CMs (Fig. 1g). As endothelial cells were enriched in the CM cultures, our data suggest 
CFBs as the main cellular source of ADAMTSL2 in the ventricle. In line with this, data mined from published 
single-cell RNA sequencing studies26 showed that Adamtsl2 was specifically expressed by fibroblasts and stromal 
cells (fibroblast lineage) in the mouse heart (Fig. 1h). Combined, these results indicate that CFBs constitute the 
main source of ADAMTSL2 in the heart.
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ADAMTSL2 over‑expression inhibits TGFβ signalling in human cardiac fibroblasts.  To deter-
mine the role of ADAMTSL2 in CFBs, gain-of-function in vitro studies were performed. We over-expressed 
ADAMTSL2 using replication-deficient adenovirus 5 containing ADAMTSL2 (L2) or vehicle control (Veh) in 
hfCFBs. Successful over-expression was confirmed by increased ADAMTSL2 mRNA (Fig. 2a) and increased 
full-length, glycosylated protein in the cell cytosol, ECM and medium (Fig. 2b). Loss-of-function studies were 
considered, but deemed unsuitable, as basal ADAMTSL2 expression was barely detectable in our cultured 
hfCFBs (Supplementary Fig. S2a-c), in line with negligible detection of ADAMTSL2 mRNA in cultured human 
dermal fibroblasts from deceased organ donors in the GTEx project (dbGaP Acession phs000424.v8.p2) (Sup-
plementary Fig. S2d).

Effects of increased ADAMTSL2 levels were investigated in hfCFBs at two stages of ECM maturation i.e. cells 
were transduced at day one of a four-day protocol (immature ECM) or at day four of a seven-day protocol (mature 
ECM) (Supplementary Fig. S3a). Matrix proteins showed differential gene expression in the two protocols (Sup-
plementary Fig. S3b-c), and importantly, greater ECM accumulation was evident at seven days (Supplementary 
Fig. S3d). More LLC was incorporated into the mature ECM (Supplementary Fig. S3e), and the cells became less 
proliferative at this stage (Supplementary Fig. S3f.). Myofibroblast differentiation occurred within the first four 
days in culture, as evident from the peak expression at four days (Supplementary Fig. S3g) but persisted through 
seven days (Supplementary Fig. S3d,g). TGFβ signalling was comparable in the two protocols (Supplementary 
Fig. S3h). Thus, the seven-day protocol was used to investigate the role of ADAMTSL2 in a mature ECM, while 
the four-day protocol was used to study its role in a developing, immature ECM.

First, we assessed whether increased ADAMTSL2 affected TGFβ signalling in CFBs. We found that mRNA 
levels of direct downstream targets of TGFβ signalling in the heart, connective tissue growth factor (CTGF) and 
periostin (POSTN)27,28, were reduced 30–50% in L2 cells in both culture protocols (Fig. 2c). Canonical TGFβ 
signalling is mediated mainly through phosphorylation of SMAD2/3 transcription factors, which translocate to 
the nucleus8, and we found that L2 decreased SMAD2 phosphorylation (pSMAD) 50–70% in the two protocols 
(Fig. 2d). Correspondingly, the pSMAD2/3 complex translocated to the nucleus in Veh, but less so in L2 cells 
(Fig. 2e). Thus, our data demonstrate that ADAMTSL2 caused reduced TGFβ signalling in CFBs.

Next, we addressed how ADAMTSL2 reduced TGFβ signalling. To assess whether ADAMTSL2 inhibited 
the active, free form of TGFβ directly, or its interaction with the TGFβ receptor (TGFBR), recombinant, active 
TGFβ1 was added to Veh and L2 cells. Although L2 cells had lower levels of pSMAD at baseline, we found that 
TGFβ treatment increased pSMAD in both Veh and L2 cells, with a higher pSMAD increase in L2 cells relative 
to respective baseline levels (Fig. 2f). This demonstrated that ADAMTSL2 did not inhibit active TGFβ signalling, 
and indicate that the effect of ADAMTSL2 on TGFβ is upstream of active, released TGFβ. Immunoblotting for 
the small latency complex (SLC), consisting of TGFβ bound to latency associated peptide (LAP), showed a 35% 
reduction of SLC in L2 cells (Fig. 2g), suggesting reduced TGFβ production. Furthermore, mRNA expression of 
TGFB1 was reduced to 85% of control in the immature ECM culture and TGFB3 to 60–75% of controls in the 
immature and mature ECM cultures (Fig. 2h). In line with reduced production of TGFβ, we found that LTBP1 
and the LLC were reduced in L2 cell fractions from the cytosol, ECM, and medium of mature ECM hfCFB cul-
tures. (Fig. 2i–j). There was no change in gene expression of the three LTBP isoforms that bind TGFβ, namely 
LTBP1, LTBP3 and LTBP4 (Supplementary Fig. S4a-c), indicating protein-level regulation. Finally, CFB treat-
ment with recombinant TGFβ1 resulted in a 1.6-fold increase in ADAMTSL2 mRNA levels that was returned 
to baseline upon co-treatment with the TGFβ-SMAD inhibitor SB431542 (Fig. 2k). These results suggest that 
ADAMTSL2 is under transcriptional control of TGFβ signalling, and that ADAMTSL2 regulates TGFβ as part 
of a negative feedback loop.

ADAMTSL2 alters expression levels of ECM and ECM‑associated genes in cardiac fibro-
blasts.  We next examined whether ADAMTSL2 over-expression altered production of major ECM constitu-
ents. As the classical definition of cardiac fibrosis is the accumulation of fibrillar collagens5, we quantified the 
amount of newly synthesized collagen in immature ECM hfCFB cultures. However, we found no difference in 
collagen synthesis (Fig. 3a). Thus, despite inhibiting TGFβ signalling, ADAMTSL2 did not affect levels of struc-
tural collagens in cultured hfCFBs.

To address whether ADAMTSL2 regulated ECM microfibrils we measured the expression of fibrillin-1 
(FBN1), fibrillin-2 (FBN2) and tropoelastin (ELN) in L2 cells. The mRNA level of FBN1 was reduced to 80% of 
control in the immature ECM culture, and ELN to 40–60% of controls in both cultures, while mRNA levels of 
FBN2 were increased 1.2-fold in both cultures (Fig. 3b,c). These results suggest that ADAMTSL2 may regulate 
the composition of tissue microfibrils in the cardiac ECM.

Using array expression analysis of 84 ECM and cell adhesion genes (see Supplementary Fig. S5), we found 50 
differentially expressed genes ± 0.5-fold or more (31 down-regulated/19 up-regulated) in L2 cells (Fig. 3d). Pro-
teins involved in cell adhesion, proliferation and spreading, such as integrin β3 (ITGB3), contactin-1 (CNTN1), 
E-cadherin (CDH1) and tenascin C (TNC) were down-regulated, while adhesion molecules related to inflam-
mation, vascular cell adhesion molecule-1 (VCAM1), L-selectin (SELL) and P-selectin (SELP), were among the 
most up-regulated. Collagen degrading enzymes such as matrix metalloproteinase 1 and 13 (MMP1, MMP13), 
as well as non-fibrillar collagens (COL6A1, COL6A2, COL8A1, COL14A1, COL16A1) were also among the up-
regulated. Strikingly, osteopontin mRNA (SPP1) was down-regulated to 6% of controls (Fig. 3d). As both TGFβ 
and osteopontin signalling are required myofibroblast differentiation8,29, this indicate that ADAMTSL2 inhibited 
myofibroblast differentiation.
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ADAMTSL2 inhibits myofibroblast differentiation and regulates cardiac fibroblast func-
tion.  We confirmed negative osteopontin regulation in L2 cells, and found that SPP1 was reduced to 5% and 
30% of controls, in our immature and mature ECM hfCFB cultures, respectively (Fig. 4a). We next investigated 
myofibroblast markers and found that expression of ACTA2, encoding α-SMA, was reduced 50% in both culture 
protocols (Fig. 4b). Correspondingly, immunoblotting showed a 30–40% reduction of α-SMA protein (Fig. 4c), 
and a strong reduction in α-SMA immunostaining (Fig. 4d). These results indicate that ADAMTSL2 inhibits 
cardiac myofibroblast differentiation.

Upon further investigation of characteristic myofibroblast properties we found that increased ADAMTSL2 
resulted in reduced vinculin mRNA and protein levels (Fig. 4e), reduced focal adhesion kinase (FAK) activation 
and phosphorylation of paxillin (Fig. 4f), and impaired stress fibre formation, illustrated by reduced phalloidin 
immunostaining (Fig. 4g). Levels of the cell proliferation markers proliferative cell nuclear antigen (PCNA), mini-
chromosome maintenance protein 2 (MCM2) and marker of proliferation Ki-67 (KI67) were reduced to 50–80% 
of controls (Fig. 4h), indicating that ADAMTSL2 inhibits CFB proliferation. In line with this, incorporation of 
EdU during DNA synthesis was reduced in L2 cells, corresponding to reduced proliferation (Fig. 4i). A scratch 
assay was performed to assess cell migration, and L2 cells showed reduced migration across the gap compared to 
Veh (Fig. 4j). As the hallmark feature of myofibroblasts, we assessed whether ADAMTSL2 affected CFB contrac-
tion, and found that the ability to contract collagen gels was impaired in L2 cells (Fig. 4k).

To assess whether myofibroblast differentiation could be rescued by treatment with TGFβ, recombinant, 
active TGFβ1 was added to the Veh and L2 cultures. Protein expression of α-SMA increased in both conditions, 
relative to respective baseline levels, following treatment (Fig. 4l). This indicates that ADAMTSL2 may inhibit 
myofibroblast differentiation through inhibition of TGFβ. Collectively, these data show that ADAMTSL2 modu-
lated CFBs towards a less myofibroblastic and less fibrotic phenotype.

Extracellular ADAMTSL2 inhibits TGFβ signalling in human cardiac fibroblasts.  To determine 
whether the observed effects of ADAMTSL2 over-expression were due to ADAMTSL2’s function in the extra-
cellular environment, hfCFBs were treated with conditioned medium from L2 cells (L2-medium), which had 
demonstrably higher levels of ADAMTSL2 (Fig. 5a), or controls (Veh-medium). In line with ADAMTSL2 over-
expression, treatment with L2-medium resulted in reduced expression of TGFB1, CTGF, POSTN and ACTA2, 
but still unaltered LTBP1 expression, compared to Veh-medium (Fig.  5b). Furthermore, cells treated with 
L2-medium showed reduced phosphorylation of SMAD2 and reduced levels of α-SMA (Fig. 5c–d). To deter-
mine whether extracellular ADAMTSL2 would affect the active, free form of TGFβ, Veh- and L2-medium was 
pre-incubated with recombinant TGFβ and added to untreated hfCFBs. Both conditions resulted in similar 
increase in pSMAD after 30 and 60 min of treatment, confirming that ADAMTSL2 does not directly bind and 
inhibit free, active TGFβ (Fig. 5e). Thus, these data confirmed the findings from over-expression of ADAMTSL2, 
and showed that hfCFBs respond to increased extracellular ADAMTSL2 with reduced TGFβ activity and myofi-
broblast differentiation.

ADAMTSL2 is increased in human hearts with fibrosis and heart failure.  Finally, from a trans-
lational perspective, we investigated ADAMTSL2 levels in hearts of patients with heart failure and assessed the 
effects of ADAMTSL2 in human adult CFBs (haCFBs). From the GTEx project of deceased organ donors, it 
was evident that ADAMTSL2 was expressed in human hearts, both in left ventricle and atrial appendage (Sup-
plementary Fig. S2d and Table S3). We determined ADAMTSL2 mRNA levels in myocardial biopsies from three 
cohorts of patients, namely aortic stenosis (AS), hypertrophic obstructive cardiomyopathy (HOCM) and dilated 
cardiomyopathy (DCM) vs. respective controls. Patient characteristics were reported previously, with hyper-

Figure 1.   ADAMTSL mRNA is up-regulated in fibrotic, failing mouse hearts, and ADAMTSL2 is produced 
by cardiac fibroblasts. (a) mRNA levels of the seven ADAMTSL genes in left ventricles (LV) of mice 2, 4 and 
20 weeks post aortic banding (AB) or sham surgery (n = 7–13 sham and 10–19 AB mice per time point). 
Phenotypic characteristics have been published previously25. Gene expression was normalized to Rpl32. (b) 
Representative immunoblots of ADAMTSL2 (arrow) in LVs at 2, 4 and 20 weeks post-AB compared to sham 
controls. Uncropped blots are available in Supplementary figure I. (c) Quantification of blots (n = 8 sham and 
n = 8 AB mice per time point). (d–f) Representative in situ hybridization images of Adamtsl2 mRNA in cardiac 
tissue (LV and left atrium (LA)), from AB or sham mice at 4 weeks post surgery (n = 3 sham and n = 4 AB 
mice). Adamtsl2 expression (bright red dots) is seen in the LV wall (d) regions of the ventricular endocardium 
(e, arrows), and LA wall and endocardium (f). Hematoxylin (purple) was used as nuclear counterstain. (g) 
mRNA levels of the ADAMTSL family in cardiac fibroblast (rCFB) and cardiomyocyte (rCM) primary cultures, 
isolated from 1–3 days old neonatal rats (n = 3 isolations with n = 60 hearts per isolation). Gene expression 
was normalized to Rpl4. Data (a, c, g) are mean ± min/max values and statistical analysis was performed using 
the Student t-test. (h) Data mined from EMBL-EBI Single Cell Expression Atlas showing single-cell RNA 
sequencing of 20 different mouse organs and tissues from n = 3 female and n = 4 male 10–15 week old mice26 
(left-hand panel). Adamtsl2 expression (right hand panel) co-clustered with cardiac cells from the right atrium 
(RA), LA, right ventricle (RV) and LV (second panel from left), and with fibroblasts and stromal cells (fibroblast 
lineage) (centre and second panel from the right). Scale bar = expression level as counts per million reads 
mapped (CPM).
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trophic remodelling, fibrosis and heart failure with preserved ejection fraction (HFpEF) in AS and HOCM, 
and dilated heart failure with reduced ejection fraction (HFrEF) and fibrosis in DCM patients30–32. Importantly, 
ADAMTSL2 mRNA was increased 2.5-fold in LVs of HOCM, DCM and AS patients (Fig. 6a). Immunoblotting 
of LV extracts confirmed increased full-length ADAMTSL2 protein in biopsies from HOCM and DCM patients 
(Fig. 6b-c and Supplementary Fig. S6). Biopsies from the AS patients were exclusively used for mRNA analyses 
due to small sample size. Finally, ADAMTSL2 was successfully over-expressed in haCFBs in a four-day proto-
col similar to hfCFBs (see Supplementary Fig. S3), and we found that mRNA levels of CTGF, POSTN, ACTA2, 
SPP1 and PCNA were reduced compared to controls (Fig. 6d). Thus, the increased levels of Adamtsl2 observed 
in experimental heart failure was confirmed in human heart failure, and our findings from hfCFBs translated to 
ventricular haCFBs.

Discussion
The present work places the ADAMTSL family of ECM glycoproteins on the map of influential molecules in 
the failing heart. We found that six out of seven Adamtsl proteins were up-regulated in hearts of mice with AB-
induced heart failure and fibrosis. In particular, ADAMTSL2 mRNA and protein levels were robustly increased in 
both experimental and clinical heart failure. In the heart, Adamtsl2 was mainly expressed by CFBs, and increased 
levels of ADAMTSL2 in human CFBs in vitro, through viral over-expression or exposure to ADAMTSL2-con-
taining conditioned medium, resulted in reduced TGFβ production and activity. Increased ADAMTSL2 levels 
inhibited myofibroblast differentiation, and attenuated important pro-fibrotic, phenotypic properties of CFBs 
i.e. proliferation, migration and contractility. Taken together, our data indicate that ADAMTSL2 is a negative 
regulator of TGFβ and the fibrotic response in CFBs.

A central finding in our study is that increased levels of extracellular ADAMTSL2 attenuated canonical 
TGFβ signalling in human CFBs, shown through reduced intracellular SMAD activation and nucleus transloca-
tion, and reduced expression of specific TGFβ target genes. This is in line with the increased TGFβ levels and 
activity observed in isolated dermal fibroblasts from patients with GD, caused by ADAMTSL2 loss-of-function 
mutations22, in HEK293 cells transfected with the GD-causing ADAMTSL2 mutation p.Gly296Arg33, and in 
chondrocytes isolated from Adamtsl2−/− mice34. Thus, our findings were consistent with the existing literature 
on non-cardiac cells, and we identified that increased ADAMTSL2 levels resulted in both reduced TGFβ amounts 
and activity in fibroblasts of the heart. As TGFβ signalling is central to cardiac fibrosis, this is a novel finding 
with possible implications for limiting fibrosis in heart failure.

TGFβ regulation is extremely complex, with positive and negative feedback loops, and its activity is largely 
regulated by extracellular activation35,36. We found that extracellular ADAMTSL2 did not inhibit the active, free 
form of TGFβ in the extracellular environment, indicating that the effect of ADAMTSL2 on TGFβ1 must be up-
stream, or at the level of, TGFβ1 activation in the ECM. Previous studies have demonstrated that ADAMTSL2 
binds directly to LTBP1 and fibrillin-1 and -222,24,37,38, potentially forming a complex in the ECM. Thus, we specu-
late that ADAMTSL2 might inhibit TGFβ through this interaction. Mechanistically, we suggest that increased 
extracellular ADAMTSL2 inhibits TGFβ complex deposition in the ECM, through direct binding of the LLC, 
or through competitive binding of fibrillin microfibrils, thus limiting the amount of TGFβ that is available for 
activation. Alternatively, ADAMTSL2 may stabilize the LLC on fibrillin microfibrils, preventing TGFβ release, 
however, this seems less likely as we found reduced levels of LLC in the ECM of L2 cells.

As TGFβ positively regulates its own gene expression35,39,40, less TGFβ activity may cause the observed reduc-
tion in TGFB1 expression and protein production in L2 cells. Treatment with active, recombinant TGFβ increased 
endogenous ADAMTSL2 expression in CFBs, indicating that ADAMTSL2 is part of a negative feedback loop, in 
which TGFβ increases its own inhibitor. Indeed, ADAMTSL2 expression was recently shown to be controlled by 
TGFβ during fibrous tissue differentiation in the sclerotome41, supporting this theory. However, the molecular 
mechanisms underlying the reduction in TGFβ production and activity by ADAMTSL2 remain to be elucidated.

Figure 2.   ADAMTSL2 inhibits TGFβ signalling in human cardiac fibroblasts. Human foetal cardiac fibroblasts 
(hfCFBs) were cultured for four or seven days (see Supplementary Fig. S3a), forming an immature or mature 
extracellular matrix (ECM), and transduced with ADAMTSL2 (L2) or vehicle control (Veh) adenoviruses on 
day one or four, respectively. Data represent experiments from three different cell passages. (a) Successful over-
expression of ADAMTSL2 in L2 vs. Veh. (b) Immunoblot of full-length, glycosylated ADAMTSL2 (gL2)47, and 
deglycosylated ADAMTSL2 (cL2), in L2 and not in Veh cell fractions. (c) mRNA levels of TGFβ downstream 
targets, i.e. connective tissue growth factor (CTGF) and periostin (POSTN), in L2 vs. Veh (n = 9–15). (d) 
Representative immunoblots and quantification of phosphorylated (pSMAD2) and total SMAD2/3 in L2 vs. 
Veh (n = 9). (e) Representative immunoblots and quantification of pSMAD2 and total SMAD2/3 in cytosol 
and nucleus cell fractions of L2 vs. Veh (n = 9). (f) Representative immunoblots and quantification of pSMAD2 
and total SMAD2/3 in lysates from L2 vs. Veh with and without treatment with active TGFβ for 24 h (n = 9). 
(g) Representative immunoblot and quantification of latency associated peptide (LAP) in lysates from L2 vs. 
Veh, showing the small latent complex (SLC) consisting of TGFβ and LAP (n = 9). (h) mRNA levels of TGFB1, 
TGFB2 and TGFB3, in L2 vs. Veh (n = 9–15). (i) Representative immunocytochemistry images of latent 
TGFβ-binding protein (LTBP1, red) and DAPI (blue) in L2 vs. Veh (n = 3). (j) Representative immunoblot and 
quantification of LTBP1 and the large latent complex (LLC), in cytosol, ECM and medium of L2 vs Veh with 
mature ECM (n = 5–9 per group). (k) ADAMTSL2 mRNA levels in untreated hfCFBs, hfCFBs treated with 
recombinant TGFβ and hfCFBs treated with TGFβ-SMAD inhibitor SB431542. Uncropped blots are available 
in Supplementary figure II. GAPDH was used as loading control (b, d, e, f, g, j). mRNA was normalized to 
RPL4 (a, c, h, k). Data are mean ± min/max and statistical analysis was performed using the Student t-test vs. 
respective controls (a, c–j), and one-way ANOVA with Tukey’s multiple comparisons test (k).

◂
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Our analysis of multiple facets of CFB phenotype showed that ADAMTSL2 inhibited cardiac myofibroblast 
differentiation. This was seen through reduced α-SMA and osteopontin expression, signature molecules of the 
myofibroblast. Additionally, CFB characteristics shifted towards a less fibrotic phenotype, with reduced stress fibre 
formation, focal adhesion and migration, as well as reduced proliferation, in response to increased ADAMTSL2. 
The latter is in line with increased proliferation of Adamtsl2-deficient chondrocytes34. Importantly, the ultimate 
defining feature of the myofibroblast, contractility42, was inhibited by ADAMTSL2. Since expression of α-SMA 
and osteopontin is essential for development of cardiac fibrosis29, our results suggest that ADAMTSL2 reduces 
pro-fibrotic effects of CFBs. As addition of TGFβ rescued the expression of α-SMA, the effects of ADAMTSL2 
on myofibroblast differentiation was likely mediated through TGFβ.

ADAMTSL2 mutations cause recessive GD (MIM #231,050) in humans, a severe connective tissue disorder 
with poor prognosis, in which cardiac anomalies, such as progressive valve thickening, are found20. In beagles, 
an Adamtsl2 loss-of-function founder mutation causes Musladin-Lueke Syndrome, with severe skin and inter-
muscular fibrosis23 and Adamtsl2-/- mice die shortly after birth due to bronchial occlusion with accumulated 
fibrillin microfibrils, in addition to cardiac malformations24. The phenotypic evidence from ADAMTSL2 muta-
tions in humans, mice and dogs suggests that ADAMTSL2 could limit cardiac fibrosis, possibly through regula-
tion of collagen and microfibrils24,34,37. We did not observe changes in collagen synthesis in our CFB cultures, 
but we found that ADAMTSL2 affected expression of core microfibril components: fibrillin-1, fibrillin-2 and 
tropoelastin, suggesting that ADAMTSL2 is modulating cardiac ECM composition. However, elastic fibres are 
difficult to study in culture, and in vivo studies would have to be performed to settle the role of ADAMTSL2 in 
regulation of microfibrils in the heart.

In the failing heart, adaptive brakes are expressed to counteract the maladaptive drivers. A prime example 
of an adaptive brake is the hallmark heart failure blood and tissue biomarker brain natriuretic peptide (BNP), 
which was recently included in the treatment guidelines1,43. We speculate that elevated levels of ADAMTSL2 
in patients and mice with fibrosis and heart failure could be beneficial, similar to BNP. The lack of experiments 

Figure 3.   ADAMTSL2 alters expression of ECM and ECM-associated genes in human cardiac fibroblasts. 
Human foetal cardiac fibroblasts were cultured for four or seven days (see Supplementary Fig. S3a), forming an 
immature or mature extracellular matrix (ECM), and transduced with ADAMTSL2 (L2) or vehicle control (Veh) 
adenoviruses on day one or four, respectively. Data represent experiments from three different cell passages. 
(a) Incorporation of [3H]-proline representing total collagen synthesis in L2 vs. Veh (n = 36). (b, c) FBN1, 
FBN2 and ELN mRNA levels in L2 vs. Veh (n = 9–15). Gene expression was normalized to RPL4 (b, c). Data are 
presented as mean ± min/max values and statistical analysis was performed using the Student t-test vs. respective 
controls. (d) Gene expression array of 84 ECM and adhesion molecule genes showing 50 differentially expressed 
genes, ± 0.5-fold in L2 vs. Veh (pools of n = 3–6). Gene expression was normalized to GAPDH and Veh and 
presented as –ΔΔCT values.
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examining the in vivo role of ADAMTSL2 in cardiac remodelling, fibrosis and failure is therefore a significant 
limitation of our study. Such experiments are complicated by the fact that Adamtsl2−/− mice are non-viable24. 
Nevertheless, heterozygous Adamtsl2−/+ mice, or mice with global post-natal or fibroblast-specific conditional 
Adamtsl2 inactivation could be utilized. Efforts to increase ADAMTSL2 experimentally during heart failure 
progression, e.g. with an AAV vector, should also be made to evaluate the effects of ADAMTSL2 in vivo. Thus, 
whether increased cardiac ADAMTSL2 has beneficial effects in the diseased heart remains to be elucidated in 
future experiments.

In conclusion, the extracellular matrix-localized glycoprotein ADAMTSL2 was upregulated in fibrotic and 
failing hearts of patients and mice. ADAMTSL2 inhibited TGFβ and myofibroblast differentiation, reduced 
the expression of pro-fibrotic signature molecules and attenuated central pro-fibrotic properties of human 
CFBs. Mechanistically, we showed that ADAMTSL2 over-expressing cells produce less TGFβ, and speculate 
that ADAMTSL2 inhibits TGFβ deposition and activation, contributing to a negative TGFβ feedback loop. We 
suggest that ADAMTSL2 may have anti-fibrotic effects in the failing heart.

Methods
An expanded Supplementary Methods section is available in the Supplementary Information.

Ethics.  The human cardiac biopsy protocol was approved by the Regional Committee for Medical Research 
Ethics (REK IDs 07482a, S-02292/2017–570 and 2010/2226), the South-Eastern Regional Health Authority of 
Norway, and was in accordance with the Declaration of Helsinki. Informed consent was signed by all patients 
and the next of kin of heart donors. Mouse protocols were approved by the Norwegian National Animal Research 
Committee (approval 8041), and conformed to the NIH Guide for the Care and Use of Laboratory Animals 
(NIH publication no. 85-23, revised 2011) and the ARRIVE guidelines for reporting of animal research44.

Human heart tissue samples.  Left ventricular (LV) tissue biopsies were obtained at Oslo University Hos-
pital, Norway, from patients with heart disease of three aetiologies, Aortic stenosis (AS, n = 11), hypertrophic 
obstructive cardiomyopathy (HOCM, n = 15) and dilated cardiomyopathy (DCM, n = 20). All patients received 
standard clinical evaluation, treatment and follow-up in accordance with Oslo University Hospital guidelines. 
Patient characteristics have been previously described30–32. For detailed method description, see Supplementary 
Methods 3.1.

Mouse pressure overload heart failure model.  Mouse heart samples used for this study were derived 
from a previously published cohort25. In brief, experimental heart failure was induced in 8–10  week-old 
C57BL/6  J mice by aortic banding (AB) of the ascending aorta, causing pressure overload of the LV. Hearts 
were harvested at two, four and 20 weeks post-AB. Analgesia was administered pre- and post-operatively by 
subcutaneous injection of (0.3 mg/mL) buprenorphine, with additional analgesics given based on the status of 
the animal. The mice were euthanized by dissection of the heart under deep terminal anaesthesia breathing 3% 
isoflurane. For detailed method description, see Supplementary Methods 3.2.

In‑situ hybridization of mouse heart sections.  In situ hybridization was performed on sectioned, 
paraffin-embedded, AB- or sham-operated mouse hearts using an RNAscope technology with a probe specific 
for mouse Adamtsl2. Hematoxylin was used as the counterstain. For full method description, see Supplementary 
Methods 3.3.

Cultures of neonatal rat cardiac myocytes and fibroblasts.  Primary cultures were prepared as 
described previously45. Briefly, CMs and CFBs were isolated from hearts of 1–3 day old neonatal rats (Wistar). 
Cells were plated at 3.8 × 104 cells/cm2cultured in serum-containing Dulbecco’s Modified Eagle medium in a 37 
°C, 5% CO2 humidified incubator. The purity of the cultures was determined by expression analysis of the CM-
specific gene Tnni3, the endothelial cell marker Vwf, and the fibroblast markers Col1a2, Postn, and Acta2 (see 
Supplementary Fig. S1a-c). For full method description, see Supplementary Methods 3.4.

Human cardiac fibroblast cultures.  Commercially available human foetal (Cell Applications) and adult 
(PromoCell) cardiac fibroblasts (hfCFBs and haCFBs, respectively) were used for cell culture experiments with 
the recommended culture media. In summary, cells were plated at 20,000 cells/cm2 and cultured for four days 
(generating an immature, developing ECM) or 10,000 cells/cm2 and cultured for seven days (generating a mature 
ECM) before harvest (see Supplementary Fig. S3). Cells were kept at 37˚C, in a 5% CO2 humidified incubator. 
Adenoviral transduction for over-expression of ADAMTSL2 (L2) or vehicle control (Veh) was performed one 
or four days after seeding in cultures with immature or mature ECM, respectively. Transduction was performed 
in serum-containing medium for 24 h, followed by serum-free medium for 48 h. Non-transduced cells were 
treated with conditioned medium, containing ADAMTSL2 protein (L2-medium), or control (Veh-medium) 
diluted 1:1 in serum-free medium, for three days. Cells were harvested 72 h after seeding. Transduced cells were 
treated with recombinant TGFβ (10 µg/µL) for 24 h following 24 h serum starvation. Non-transduced cells were 
treated with recombinant TGFβ (10 µg/µL) and/or TGFβ-SMAD inhibitor (10 µM) for 2 h following 24 h serum 
starvation. Non-transduced cells were treated with L2 or Veh conditioned medium, pre-incubated for 1 h with 
recombinant TGFβ1 (10 µg/µL), for 0, 30 and 60 min before harvest. For detailed method description, see Sup-
plementary Methods 3.5.
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Figure 4.   ADAMTSL2 inhibits myofibroblast differentiation and directs cardiac fibroblast function. Human 
foetal cardiac fibroblasts were cultured for four or seven days (see Supplementary Fig. S3a), forming an 
immature or mature extracellular matrix (ECM), and transduced with ADAMTSL2 (L2) or vehicle control 
(Veh) adenoviruses on day one or four, respectively. Data represent experiments from three different cell 
passages. (a) mRNA levels of osteopontin (SPP1) and (b) α-smooth muscle actin (α-SMA, ACTA2) in L2 vs. 
Veh (n = 9–15). (c) Representative immunoblot and quantification of α-SMA in lysates from L2 vs. Veh (n = 9). 
(d) Representative immunocytochemistry images of α-SMA (red) and DAPI (blue) in L2 vs. Veh (n = 3). (e) 
mRNA levels of vinculin (VCL) and representative immunoblot and quantification of vinculin in L2 vs. Veh 
(n = 9). (f) Representative immunoblots and quantifications of phosphorylated and total focal adhesion kinase 
(pTyr925 FAK and FAK) and phosphorylated (pTyr118) and total paxillin in lysates from L2 vs. Veh (n = 9). 
(g) Representative immunocytochemistry images of F-actin stress fibres (phalloidin, orange) and DAPI 
(blue) in L2 vs. Veh (n = 3). (h) mRNA levels of proliferating cell nuclear antigen (PCNA), minichromosome 
maintenance protein 2 (MCM2) and marker of proliferation Ki-67 (KI67) in L2 vs. Veh (n = 15). (i) EdU 
incorporation shown as relative fluorescence units (RFU) in L2 vs Veh (n = 48–52), serum was used as positive 
control. (j) Cell migration shown as % of initial scratch area in cell monolayer after 24 h, in L2 vs. Veh (n = 29). 
(k) Representative images and quantification of collagen gel contraction as % contraction of initial gel area, 
measured at 6 and 24 h, of L2 vs. Veh. (l) Representative immunoblots and quantification of α-SMA lysates 
from L2 vs. Veh with and without treatment with active TGFβ for 24 h (n = 9). Uncropped blots are available in 
Supplementary figure III. Gene expression was normalized to RPL4 (a, b, e, h). GAPDH (c, e, l) and Coomassie 
blue staining (f) was used as protein loading control. Data are mean ± min/max values and statistical analysis 
was performed using the Student t-test vs. respective controls, or two-way repeated measures ANOVA with the 
Geisser-Greenhouse correction (k).

◂

Immunocytochemistry.  hfCFBs were cultured on coverslips, fixed in 4% PFA, permeabilized and incu-
bated with primary antibodies for α-SMA, fibrillin-1, EDA-fibronectin, LTBP1 and Collagen type I, and fluo-
rescently labelled secondary antibodies. Cells were mounted onto slides and proteins were visualized with the 
Axioscan Z1 (Carl Zeiss) for full slide scanning, or the LSM 710 confocal microscope (Zeiss). For full method 
description, see Supplementary Methods 3.6.

Collagen gel contraction assay.  hfCFBs transduced with Veh or L2 were mixed with collagen and added 
to BSA-coated plates. The gels were allowed to polymerize before serum-free medium was added to release 
the gels from the surface. Contraction was observed over the next 24 h, percent contraction was calculated by 
measuring the circumference of the collagen gels. For full method description, see Supplementary Methods 3.7.

EdU incorporation assay.  hfCFBs transduced with Veh or L2 were seeded in serum-containing medium 
at 103 cells/cm2 in 96-well plates. After 24 h, serum-free medium, or serum-containing medium for positive con-
trol, was added. After 48 h, cells were labelled with EdU (10 µM) for 2 h. Cells were fixed according to protocol 
(Click-iT™ EdU Proliferation Assay, Cat# C10499, CyQUANT, Invitrogen) and fluorescence was measured on 
the Hidex microplate reader.

Cell monolayer scratch migration assay.  hfCFBs were seeded and transduced in 12-well plates, and 
kept in serum-free medium for 24 h. A 1 mm wide scratch was made through the cell monolayer using a 200 
µL pipette tip and fresh serum-free medium was added. Cell migration across the gap was observed and images 
were taken with the Eclipse Ts100 phase contrast microscope. Percent migration was calculated from the size of 
the scratch at 24 h using ImageJ (NIH).

[3H] proline incorporation assay.  hfCFBs were seeded and transduced in 12-well plates. After 24  h, 
serum-free medium containing ascorbic acid (50 µM/mL) and L-[2,3-3H]-Proline (1 µCi, Cat# NET323001MC, 
Perkin Elmer) was added. After 48 h, cells were lysed in NaOH (1 M) and diluted in OptiPhase HiSafe 3 liquid 
scintillation cocktail (Cat# 1200.437, Perkin Elmer). Amount of incorporated radiolabelled proline, a surrogate 
for collagen biosynthesis46, was measured on the Wallac Winspectral 1414 liquid scintillation counter (Perkin 
Elmer).

Gene expression analysis.  Total RNA was isolated from LVs and cell cultures, and relative gene expres-
sion was determined using TaqMan probes (Supplementary Table S1) or TaqMan array plates. Gene expres-
sion was normalised to housekeeping genes 60S ribosomal protein L32 (RPL32), L4 (RPL4), or glyceraldehyde 
3-phosphate dehydrogenase (GAPDH). For full method description, see Supplementary Methods 3.8.

Gene expression data mined from available online databases.  The Single Cell Expression Atlas 
database (https://​www.​ebi.​ac.​uk/​gxa/​sc/​home, EMBL-EBI, Cambridgeshire, UK, accessed on 11.07.2021) 
was used to mine for published single cell RNA sequencing data describing Adamtsl2 expression in different 
organs and cell types. The Genotype-Tissue Expression (GTEx) Project Portal (https://​gtexp​ortal.​org/​home/, 
Broad Institute, Boston, MA, accessed on 11.07.2021) was used to analyse ADAMTSL family expression (RNA 

https://www.ebi.ac.uk/gxa/sc/home
https://gtexportal.org/home/
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sequencing) in cultured dermal fibroblasts, atrial appendage and left ventricle of deceased organ donors. Charts 
were created using the interactive graphics functionality of the databases.

Protein isolation and immunoblotting.  Protein lysates from mouse and human LVs were extracted as 
previously described25,45, using a PBS‐based lysis buffer containing 1% Triton X‐100. Protein lysates from cell 
cultures were extracted using the buffer above, or a buffer containing 1% SDS for retrieval of ECM proteins. For 
studying LTBP1 in cytosolic and ECM protein fractions, cells were lysed using a NP-40-based lysis buffer and 
fractioned through centrifugation. For studying nuclear translocation of pSMAD, cells were lysed and proteins 
fractioned using the compartment protein extraction kit (Merck Millipore) according to the manufacturer’s pro-
tocol. Secreted proteins were harvested from the cell culture medium. Supernatants and lysates were stored at − 
20 °C. N-linked oligosaccharides were enzymatically removed from glycosylated proteins using PNGaseF. West-
ern blotting was performed using the Trans-Blot Turbo blotting system (Bio-Rad). Membranes were blocked in 
5% non-fat dry milk, casein or BSA, before incubation with primary antibodies (see Supplementary Table S2) 
and species-specific horseradish peroxidase secondary antibodies. For full method description, see Supplemen-
tary Methods 3.9.

Statistical analyses.  Data are expressed as the minimum value, group mean, and maximum value, with 
all data points shown in graphs, relative to respective controls and to a reference gene/protein. Normal data 
distribution was evaluated using the Shapiro–Wilk test. Statistical differences were tested in GraphPad Prism 

Figure 5.   Extracellular ADAMTSL2 inhibits TGFβ signalling and myofibroblast differentiation in human 
cardiac fibroblasts. Human foetal cardiac fibroblasts (hfCFBs) treated with conditioned medium harvested 
from hfCFBs transduced with ADAMTSL2 (L2-medium) or vehicle control (Veh-medium, see Supplementary 
Fig. S3a). Data represent experiments from 3–5 different cell passages (n = 15). (a) Immunoblot of ADAMTSL2 
in L2-medium and Veh-medium. (b) mRNA levels of transforming growth factor (TGF)β 1 (TGFB1), latent 
TGFβ binding protein 1 (LTBP1), connective tissue growth factor (CTGF), periostin (POSTN), and α-smooth 
muscle actin (α-SMA, encoded by ACTA2). (c) Representative immunoblots of phosphorylated (pSMAD2), 
total SMAD2/3 and α-SMA in whole-cell protein lysates and (d) quantification of blots. (e) Representative 
immunoblots and quantification of pSMAD2 and total SMAD2/3 in lysates from hfCFBs treated with Veh- or 
L2-medium, which was pre-incubated with active, TGFβ. hfCFBs were treated for 0 (T0), 30 (T30) or 60 (T60) 
minutes. Uncropped blots are available in Supplementary figure IV. Gene expression was normalized to RPL4. 
GAPDH was used as intracellular protein loading control. Data are presented as mean ± min/max values and 
statistical analysis was performed using the Student t-test vs. respective controls.
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8, using the unpaired Student t-test when comparing two groups, the one-way ANOVA with Tukey’s multiple 
comparisons test when comparing multiple groups, and the two-way repeated measures ANOVA with the Geis-
ser-Greenhouse correction when comparing multiple time-points. P-values < 0.05 were considered statistically 
significant, and exact p-values are given in the figures, unless P < 0.001.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information.
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