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Abstract
We adapt the Halperin–Mazenko formalism to analyze two-dimensional active nematics coupled
to a generic fluid flow. The governing hydrodynamic equations lead to evolution laws for nematic
topological defects and their corresponding density fields. We find that ±1/2 defects are propelled
by the local fluid flow and by the nematic orientation coupled with the flow shear rate. In the
overdamped and compressible limit, we recover the previously obtained active self-propulsion of
the +1/2 defects. Non-local hydrodynamic effects are primarily significant for incompressible
flows, for which it is not possible to eliminate the fluid velocity in favor of the local defect
polarization alone. For the case of two defects with opposite charge, the non-local hydrodynamic
interaction is mediated by non-reciprocal pressure-gradient forces. Finally, we derive continuum
equations for a defect gas coupled to an arbitrary (compressible or incompressible) fluid flow.

1. Introduction

Nematic order has been widely observed in two-dimensional (2D) realizations of active matter [1, 2], from
vertically vibrated rods [3] to mixtures of cytoskeletal filaments and associated motor proteins [4–6],
bacterial suspensions [7–9], cell sheets [10–13], and even developing organisms [14]. Nematic order has
only quasi-long-range (power-law) falloff in 2D active systems [15–17], as it does in equilibrium, and is
easily destroyed by active stresses that drive spontaneous flows accompanied by the proliferation of
topological defects [4]. A distinctive property of active nematics is that the comet-like +1/2 disclination
becomes motile [4, 18, 19], allowing for an activity-driven defect unbinding transition [20] to a
turbulent-like state with chaotic spatio-temporal dynamics. Both experiments and numerical studies based
on the solution of continuum models have demonstrated that this complex dynamics can be characterized
by focusing either on the statistics of flow vortices or on that of topological defects [2, 6, 21–24].

Recent work has focused on formulating an effective description of defects in active nematics as
quasiparticles [18–21, 25–28]. This approach parallels well-established work in equilibrium systems, where
defects can be described as a gas of Coulomb charges and are known to drive order–disorder transitions in
2D [29].

An important new ingredient in 2D active nematics is that the active self-propulsion of the +1/2 defects
requires taking into account the local geometric polarity of the nematic texture near the defect core [18, 19,
30, 31]. The self-propulsion arises from local active flows generated by the distortion of the texture due to
the defect itself, and is absent for the −1/2 defects due to their threefold symmetry. Shankar et al [20] have
shown that the dynamics of the gas of unbound defects can be mapped onto that of a mixture of
self-propelled (the +1/2 defects) and passive (the −1/2 defects) quasiparticles with Coulomb interactions
and aligning torques, provided that the texture gradients generated at the core of one defect by the other
defects can be treated as quasistationary. More recently, the inclusion of multi-defect interactions, within
the same quasistatic approximation, has revealed new non-central and non-reciprocal forces in multi-defect
textures [28]. Important corrections to the effective dynamics also arise from the fact that the phase field
induced at the core of a defect by all the others depends on all the defect velocities, as well as on their past
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history of accelerations, but including such effects remains a formidable challenge. These previous works all
treat the case of an active nematic on a substrate, where friction dominates over viscous dissipation and the
compressible flow is slaved to the gradient of the active stress. Here and below we use the term
‘compressible flow’ to refer to flows that do not satisfy incompressibility (hence ∇ · u �= 0), although we
assume the density to be constant. This could be achieved, for instance, in systems where density is not
conserved due to birth and death processes. Recent numerical works [32] show that friction with the
substrate promotes the kink wall formation in the trail of +1/2 defects and this may have a persistent
memory effect on the collective behavior of many defects [33, 34]. On the other hand, this limit case of a
compressible flow offers an analytically tractable regime, where the flow can be readily eliminated in favor
of the nematic texture [35, 36] and generates active corrections to the nematic stiffness and new nonlinear
terms in the equation for the nematic order parameter [35, 36]. In most experimental realizations, however,
the flow is incompressible, which results in long-range hydrodynamic effects neglected in previous work.

In this paper we formulate the dynamics of defects as quasiparticles in the presence of arbitrary flows
and apply them to flows governed by the Stokes equation, which balances dissipative forces (friction and
viscosity) with pressure and active stress gradients. We find that, as shown in reference [26],
incompressibility reduces the active propulsive speed of an isolated +1/2 defect. We also show, for the first
time, that non-local hydrodynamic effects become important for multi-defect configurations and yield a
finite mobility for the −1/2 defects. We demonstrate this explicitly by calculating the pressure-gradient
forces on a defect dipole and showing that incompressibility gives rise to hydrodynamic interactions that
renormalize the propulsion of positive defects and mediate non-reciprocal active defect–defect interactions
additional to the familiar Coulomb force. These couplings due to pressure gradients are distinct from the
perturbative multi-defect interactions obtained in reference [28] for a compressible nematic.

By coarse graining the defect equations, we also obtain continuum equations for the defect densities and
the polarization density of the +1/2 defects coupled to an arbitrary fluid flow. We find that the +1/2
defects indeed behave like polar particles in a fluid, though advected and rotated by the flow velocity as well
as by the Magnus-type force generated by all the other defects [27]. Our work extends the continuum
equations obtained in reference [27] for a compressible nematic where flows are slaved to texture
deformation. The defect hydrodynamics obtained here applies to both compressible and incompressible
flows and provides a useful starting point for describing experimentally relevant situations with spatially
inhomogeneous activity, where defects can be trapped and guided by activity gradients [27, 37], as observed
for instance in active actomyosin suspensions [38].

Our work relies on describing topological defects and their equation of motion as the zeros of an
appropriate nematic order parameter. This method was originally introduced by Halperin [39] and
extended by Mazenko to O(n)-symmetric order parameters in the context of phase-ordering kinetics [40]. It
was shown in references [41–43] that this is an efficient numerical tool for tracking the positions and
velocities of vortices in superfluids and dislocations in crystals. The Halperin–Mazenko (HM) method
allows us to derive both the discrete defect dynamics and the dynamics of the corresponding defect density
fields from the coupled continuum equations for the flow and the nematic order parameter. For
overdamped compressible flows we recover the equations previously derived in [20].

The rest of the paper is structured as follows. In section 2 we briefly summarize the well-established
continuum model of active nematic hydrodynamics. In section 3, we present the HM method based on the
conservation of topological defects as zeros of the order parameter and relate the defect velocity to the
nematic texture. Here we also derive the equation of motion for the polarization of a +1/2 defect in the
quasistatic-phase approximation. In section 4, we evaluate the defects propulsive velocity arising from
activity-induced flows. We show that our method recovers previous results for isolated defects for both
compressible [18–20] and incompressible [26] flows. We also present new results for a defect dipole in an
incompressible nematic, where flows driven by pressure gradients yield new contributions to the motility of
both the positive and the negative defect, as well as non-reciprocal active forces. In section 5 we derive
general hydrodynamic equations for a defect gas, applicable to both compressible and incompressible flows.
Finally, we summarize and conclude in section 6. The appendices detail analytical computations of the flow
field induced by a variety of specific defect configurations.

2. Continuum model of 2D active nematics

In continuum models, the hydrodynamics of uniaxial active nematics is described by the Q-tensor—the
order parameter for the orientational field θ(r, t) and its associated nematic director (line field)
n̂ = [cos θ, sin θ]. The head–tail symmetry of the local director (n̂ ≡ −n̂) and the property that Q vanishes
in the isotropic phase constrain the Q-tensor to be symmetric and traceless. In 2D, Qij = S(2n̂in̂j − δij) with
S the magnitude of the nematic order. Q has two independent components Qxx = −Qyy and Qxy = Qyx. The
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evolution of the Q-tensor is given by the Edwards–Beris equation, which in 2D reads [1, 44]

(∂t + u · ∇)Qij = λEij + λ′Qij∂kuk + QikΩkj − ΩikQkj +
1

γ

[
K∇2Qij + g(1 − Q2

kk)Qij

]
. (1)

The last two terms on the right-hand side (rhs) determine the conjugate field Hij = −δF/δQij that governs
the relaxational dynamics to minimize the free energy

F =

∫
dr

[
K

2
|∇Q|2 + g

4
tr(1 − trQ2)2

]
, (2)

with the isotropic elastic constant K > 0 and the uniform ordered state, S2
0 = 1.

Here γ is the rotational friction coefficient of the nematic. The remaining terms are given by the
material time derivative in the presence of the fluid flow velocity u with vorticity 2Ωij = ∂iuj − ∂jui and the
tendency of nematics to align with the flow through linear coupling to the symmetric traceless part of the
flow strain rate, 2Eij = ∂iuj + ∂jui − δij∂kuk, and to the flow divergence, ∇ · u. We have neglected
higher-order flow alignment terms which are nonlinear in the order parameter. The flow alignment
parameters λ and λ′ are dimensionless but nonuniversal. They are controlled by the degree of nematic order
and the microscopic shape of the underlying mesogens. The alignment with shear flow, controlled by λ,
directly affects the defect velocity, whereas the coupling to the flow divergence, controlled by λ′, is linear in
the Q-tensor, which vanishes at the defect core. As a result this term may be neglected in determining
quasistatic defect dynamics.

Flows in active nematics are generally characterized by very low Reynolds numbers and follow the Stokes
equation,

μu = η0∇2u −∇Π+∇ · σa, (3)

describing force balance between friction with the substrate (μ), viscous dissipation controlled by the shear
viscosity η0, potential forces due to pressure, Π, and active stress, σa. Pressure becomes important for
incompressible flows, when it is determined by the incompressibility constraint ∇ · u = 0. The active stress
is proportional to the order parameter σa = α0Q, where α0 is the activity coefficient, such that α0 < 0
corresponds to extensile activity, and α0 > 0 to contractile activity. Finally, in equation (3) we neglect elastic
liquid crystalline stresses that are higher order in the gradients of the order parameter field compared to the
active stress. In general, there are other stresses that contribute to the Stokes flow, such as the elastic stress
σe = λHij + QikHkj − QjkHki and the Ericksen stress σE = −K∂iQkl∂jQkl. We neglect them here because
they are of higher order in the gradients of the alignment tensor Q compared to the active stress.

The full hydrodynamic equations contain three length scales: (i) the nematic correlation length
ξ =

√
K/g that controls the minimal length scale of spatial variations of the order parameter (and therefore

determines the defect core size), (ii) the viscous screening length �v =
√
η/γ, and (iii) the active length

�a =
√

K/|α0| determined by the balance of active and elastic stresses. Another important length scale in
simulations and experiments is the system size, L. Extensive simulations of hydrodynamic equations, as well
as experiments have established that �a also controls the mean separation between defects (see, for instance,
reference [2]). In the absence of substrate drag, the uniform active nematics are unstable to flow at small
activity where �a > L and transition to a state of spatio-temporal chaotic flow with a steady number of
topological defects when �a � L. The presence of substrate friction stabilizes the system at small activity,
setting a finite threshold value of activity for the set-up of the spontaneous flow instability. Here we are
working deep in the uniform nematic state, where the defect core size ξ � �a is the smallest length scale. It
is only in this regime that one can treat defects as quasiparticles. It corresponds to the low defect density
approximation where defects are well-separated from each other, which implies that �a � L. We also set
�v = 0, since we neglect viscosity compared to drag.

Dimensional analysis reduces the parameter space to two independent dimensionless numbers. We
rescale time t = τ t̃ by the nematic relaxation time τ = γ/g, and space r = ξr̃ by the nematic coherence
length ξ =

√
K/g, the only relevant lenghscale in this formulation. The fluid velocity then scales as

u = (ξ/τ)ũ and the fluid pressure as p̃ = p/(μξ2/τ). The relevant parameters for the dimensionless
equations then become the rescaled activity α = α0/(μξ2/τ), measuring the strength of the active force
relative to friction, and the rescaled shear viscosity η = η0/(μξ2), measuring viscous forces relative to
friction. From now on we will drop the tildes on the dimensionless variables and treat the
friction-dominated regime η → 0.

The nematic order field has an elegant complex representation ψ = S ei2θ = Qxx + iQxy [26, 27, 45]. The
dynamics of the complex ψ-field following from equation (1) is given by a generalized complex
Ginzburg–Landau equation

∂tψ + u∂zψ + ū∂z̄ψ = λ∂z̄u + (∂zu − ∂z̄ ū)ψ + 4∂z∂z̄ψ + (1 − |ψ|2)ψ, (4)
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with
u = 4η∂z∂z̄u + 2α∂zψ − 2∂z̄Π, (5)

and the incompressibility condition ∂z̄u + ∂zū = 0, with z = x + iy and ∂z = (∂x − i∂y)/2.
Topological defects appear in the ψ-field as localized regions (of size ξ) where S vanishes and around

which the nematic orientation θ winds by π. The method described in the next section allows us to derive
the kinematics of the ±1/2 nematic defects from the dynamics of the zeros of the ψ-field.

3. Defect kinematics

The complex nematic order parameter ψ is always a single-valued function even in the presence of defects.
This restricts any phase discontinuity in θ(r) to have a half-integer fundamental winding number. Taking an
arbitrary contour C surrounding a set of elementary defects, the net phase jump is∮

C
dθ =

∮
C
∇θ · dr = 2π

∑
β∈C

qβ , (6)

where the sum runs over all defects β contained inside C. We consider only energetically stable defects of
charge qβ = ±1/2. Higher charge defects are topologically stable in 2D but are energetically unstable to
disassociation into elementary defects, since their intrinsic energy grows as the square of the charge [46].

Defects are accurately located by the zeros of the complex order parameter. Their dynamics is typically
derived by solving the hydrodynamic field equations in the comoving frame of the defect together with
asymptotic matching of inner- and outer-core solutions under appropriate initial and boundary conditions
[19, 47, 48]. The defect velocity and the phase gradients are then related through the mobility coefficient
which acquires a logarithmic dependence on velocity. The field solutions are derived perturbatively in phase
gradients and defect velocity, and are challenging to generalize when a generic fluid flow is coupled with the
evolution of the order parameter. The HM method [40, 49], in which the defect dynamics is identified with
the motion of the zeros of the complex order parameter, allows us to directly include the coupling to fluid
flow.

The starting point is to represent a configuration of defects by the Dirac delta function δ(ψ), which
picks up the defect positions rβ , with β = 1, 2, . . . the particle number index. The field variables map into
discrete defect positions {rβ}, ∑

β

δ(r − rβ(t)) = |D|δ[ψ(r, t)], (7)

where the Jacobi determinant D(r, t) = det(∂ψ) is

D(r, t) =
1

2i
εij∂iψ̄∂jψ, (8)

with εij the Levi-Civita anti-symmetric tensor. In complex coordinates the determinant is

D(z, t) = ∂zψ∂z̄ψ̄ − ∂zψ̄∂z̄ψ. (9)

The field D captures the zeros of the order parameter and vanishes everywhere except at the defect
positions. It obeys a conservation law determined by the hydrodynamic equation of the ψ-field and readily
obtained by taking time derivatives on both sides of equation (8) [40], with the result

∂tD(r, t) + ∂iJ
(ψ̇)
i = 0, (10)

where the conservative current J(ψ̇)
i is given by

J(ψ̇)
i (r, t) = εij Im(∂tψ∂jψ̄), (11)

or in complex form

J(ψ̇) = J(ψ̇)
x + iJ(ψ̇)

y = −∂z̄ψ̄∂tψ + ∂z̄ψ∂tψ̄. (12)

The defect charge is related to the sign of the determinant evaluated at the defect position,
qβ = 1

2 sgn(D)|r=rβ [49]. This relation allows us to connect the determinant field D with the defect charge
density field for a given configuration of defects, namely

ρ(r, t) =
∑
β

qβδ(r − rβ(t)) =
1

2
D(r, t)δ[ψ(r, t)]. (13)

4
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The defect charge density ρ also satisfies a conservation law [40, 50]:

∂tρ+ ∂iJ
(ρ)
i = 0, (14)

where the current density is

J(ρ)(r, t) =
1

2
J(ψ̇)(r, t)δ(ψ) =

∑
β

J(ψ̇)(rβ)

D(rβ)
qβδ(r − rβ). (15)

Finally, for a given defect configuration, the density current can be also expressed in terms of the
velocity of the defects vβ = ṙβ :

J(ρ)(r, t) =
∑
β

qβvβδ(r − rβ). (16)

The defect velocity is therefore determined by the field D and its current density:

vβ(t) =
J(ψ̇)

D

∣∣∣∣∣
r=rβ

, (17)

which explicitly relates the defect velocity to derivatives of ψ evaluated at defect positions. In complex form
vβ = vx,β + ivy,β is given by

vβ =
−∂z̄ψ̄∂tψ + ∂z̄ψ∂tψ̄

∂zψ∂z̄ψ̄ − ∂zψ̄∂z̄ψ

∣∣∣∣
z=zβ

. (18)

This is the starting point for obtaining an explicit form for the defect velocity in terms of the flow field and
nematic distortions, using the profile of ψ in the vicinity of the defect.

3.1. Defect velocity
To relate the defect velocity to nematic distortions and to flow, we need to evaluate gradients of ψ at the
defect core (equation (18)). Focusing on the βth defect, the order parameter can be written as

ψ(z, z̄) = ψ0(z, z̄)e2iθ̃(z,̄z), (19)

where

ψ0(z, z̄) = S(|z − zβ |)
(

z − zβ
z̄ − z̄β

)qβ

(20)

and θ̃ is the smooth phase distortion due to all other defects and to boundary conditions. The core function
S(|z|) has the generic asymptotic behaviors: S(|z|) ≈ |z| for |z| � 1 and S(|z|) ≈ 1 for |z| � 1. Notice that
in equation (18), the density current and D-field, which depend on the derivatives of ψ, are evaluated at the
defect position where S(|z| = 0) = 0. To leading order in the phase gradients it is then sufficient to consider
only the linear profile of the core function near the defect. Including the full-nonlinear profile will
introduce additional contributions from the core structure.

From equation (9), the determinant D at the defect position is simply D|z=zβ = 2qβ . The defect velocity
from equation (18) is determined directly from the evolution of the ψ-field. At the defect core, we have
∂tψ|z=zβ = [4∂z∂z̄ψ − u∂zψ − ū∂z̄ψ + λ∂z̄u]z=zβ , since all the local terms in ψ vanish. As a result, the
defect velocity does not depend on the local fluid vorticity and ordering potential, and is given by

v+β =
[
−8i∂z̄θ̃ + u − λ e−2iθ̃∂z̄u

]
z=z+

β

,

v−β =
[
+8i∂z̄θ̃ + u − λ e2iθ̃∂zū

]
z=z−

β

. (21)

The nematic phase θ̃β = θ̃(zβ(t), z̄β(t)|{zγ(t), z̄γ(t)}), where γ �= β labels all the other defects, is evaluated
at the position of the tagged defect. To zeroth-order in activity α, the first term on the rhs of each of
equation (21) represents the Coulomb interactions with the other defects. This is easily seen by noting that
for α = 0 the steady-state nematic phase field can be written as the superposition of the phase induced by
each point defect [28],

θ̃β =
i

2

∑
γ �=β

qγ log

(
z̄β − z̄γ
zβ − zγ

)
+ θ0, (22)

5
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Figure 1. Defect polarities e± as defined in equations (24) and (25). (a) Isolated +1/2 defect. (b) Isolated −1/2 defect.
(c) Dipole with separation w. Notice that single defects give rise to long-range distortions in the nematic orientation, whereas the
dipole induces short-ranged distortions such that the nematic orientation is uniform in the far-field and given by θ0.

where θ0 is a fixed external phase. In particular, when the system is topologically neutral, θ0 is equal to the
far field orientation of the nematic texture. The first term on the rhs of equation (22) determines the
Coulomb pairwise interaction force Fβ,γ between any two defects β and γ as

− 16iqβ∂z̄β θ̃β =
∑
γ �=β

8qβqγ
z̄β − z̄γ

≡
∑
γ �=β

Fβ,γ. (23)

The other two terms on the rhs of each of equation (21) represent the contribution to the defect velocity
from the flow velocity u. The terms linear in u describes advection of both positive and negative by flows at
defect cores. The terms proportional to flow gradients arise from the shear flow alignment, and drive defect
motion in a direction determined by the flow gradient field relative to the local nematic orientation.

3.2. Defect polarity
It has been shown that defect polarity plays an important role in the dynamics of defects in active nematics
[20, 27, 28]. The polarity e+β of the βth +1/2 defect is determined by gradients of the order parameter

e+β = [∇ · Q]r=r+
β

or e+β = 2[∂zψ]z=z+
β
= 2 e2iθ̃+

β . (24)

For a −1/2 defect, ∇ · Q vanishes at the defect core due the defect’s trifold symmetry. The polarity of a
−1/2 defect can, however, be defined as a triatic [31] or as a vector e−β that points along one of the three
equivalent directions that define the defect’s orientation [30], defined as

(
e−β

)3
= [∇ · (σ3 : Q)]r=r−

β
or e−β = [2(∂z̄ψ)z=zβ− ]1/3 =

(
2 e2iθ̃−

β

)1/3

, (25)

where σ3 is the Pauli matrix, σ3 =

(
1 0
0 −1

)
.

In general the polarity of a defect depends on the orientation and position of all other defects, as well as
on θ0. Near a +1/2 defect located at the origin and far from all other defects, the order parameter takes the

form ψ+(z, z̄) = (zz̄)1/2
(

z
z̄

)1/2
e2iθ0 and the polarization e+ = 2 e2iθ0 is determined entirely by the boundary

conditions, as shown in figure 1(a). Similarly, near an isolated −1/2 defect located at the origin,

ψ−(z, z̄) = (zz̄)1/2
(

z
z̄

)−1/2
e2iθ0 and the associated polarization is e− = 21/3 e2iθ0/3 (see figure 1(b)). Whereas,

for a dipole consisting of a positive defect at z+ and a negative defect at z−, we have

ψ±(z, z̄) = S(|z − z+|)S(|z − z−|)
(

z−z+

z̄−z̄+

)1/2(
z−z−
z̄−z̄−

)−1/2
e2iθ0 . Denoting by w = z− − z+ = |w|eiφ the

separation between the two defects, the respective polarizations depend both on the far-field boundary
condition and the dipole orientation as given by e+ = 2 ei[−φ+π+2θ0] and e− = 21/3 ei[φ+2θ0]/3, as shown in
figure 1(c).

We evaluate the dynamics of a given defect assuming that θ̃(z, z̄; {zγ , z̄γ}) is quasistatic, meaning that it
is constant in time during the motion of the tagged defect or of any of the other defects. The defect
polarization is then not an independent variable since its dynamics is determined by the dynamics of
{zβ(t)}. Nonetheless, it provides a useful effective degree of freedom for describing the dynamics of defects
as quasiparticles, as well as the hydrodynamics of the defect gas [20, 27].

6
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Figure 2. The contributions v+λ = − λ
2 E · e+β and v−λ = − λ

2 Eσ · (e−β )3 (black arrows, see equation (27)) to the velocity of defects
induced by shear flow is shown for specific configuration for a +1/2 (panel (a)) and a −1/2 defect (panel (b)). The orange
arrows are the defect polarizations as defined in equations (24) and (25). The background arrows represent the flow velocity
gradient.

For a positive defect, the time evolution of the defect polarity follows simply from taking the time
derivative of equation (24), with the result [28]

ė+β =
i

2
e+β Im

∑
γ �=β

(v+β − vγ)F̄β,γ , (26)

where v+β is the defect velocity and Fβ,γ the pair Coulomb force defined in equation (23).
It is also useful to rewrite the equations governing the defect dynamics in real coordinates. Namely, the

defect velocity from equation (21) in real coordinates reads as

v+
β =

[
4ε ·∇θ̃ + u − λ

2
E · e+β

]
r=r+

β

,

v−
β =

[
−4ε ·∇θ̃ + u − λ

2
Eσ ·

(
e−β

)3
]

r=r−
β

, (27)

where Eσ = σ3 : E. The coupling to shear flow drives the ±1/2 defects to move in a direction controlled by
the angle between their polarity and the flow gradient. For example, when the defect polarization points
either along the direction of flow or along the direction of flow gradient, the coupling to shear flow drives
the ±1/2 defects to move normal to their polarization, and in opposite directions, as shown in figure 2.

Similarly the equation for the polarization of the qβ = +1/2 defect takes the real space form

ė+β = −ε · e+β
1

2

∑
γ �=β

Fβ,γ · ε · (v+
β − vγ). (28)

The first term on the rhs of equation (28) shows that the polarity of the +1/2 defect rotates at a rate
dependent on the degree of alignment between defect velocity and the nematic distortion, as found in [20].
Equivalently, the net torque is given by the cross-product of the Coulomb force with the relative velocity of
the tagged positive defect with respect to the rest of defects. A result of this form was recently obtained in
reference [28] for the case of compressible flow. On the other hand, equation (28) holds for any flow
condition since flow enters implicitly through the defect velocity. In the next section we obtain a set of
closed equations for the defect positions and orientation by expressing the Stokes flow in terms of the defect
degrees of freedom.

4. Defect-induced flow

In this section we obtain explicit expressions for the flow induced by specific defect configurations, which,
in turn, drives defect dynamics via equation (27). By eliminating the flow in favor of defect degrees of
freedom we can identify the advection at the defect core as a defect propulsion velocity. We consider both

7
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compressible and incompressible (∇ · u = 0) flows. In the latter case, we calculate for the first time the flow
induced by a defect dipole, which was previously studied numerically in reference [18].

4.1. Single defect in compressible flow
For compressible flows given only by the active stress u = 2α∂zψ, the flow velocity at a positive defect is
simply proportional to the defect’s polarization e+β , while it vanishes at a negative defect. The flow
alignment term in equation (27) can be expressed in terms of the rotated phase gradients using
equation (19) for the profile of ψ near the defect core. This yields the defect propulsion velocity obtained in
previous work [18–21, 27, 28], with defect dynamics governed by

vβ = 8qβKλ

(
ε ·∇θ̃

)
r=rβ

+ αeβδβ, 1
2
, (29)

where Kλ = 1 + λα/2 is the effective elastic constant (in dimensionless units) incorporating the effect of
flow alignment.

The dynamics of the polarization can be obtained from equations (28) and (29) as

ė+β = −ε · e+β

[
α

2Kλ
e+β · ε · v+

β

]
(30)

and has precisely the form of the active torque given in reference [20], but with K replaced by Kλ. Note that
Kλ can change sign for extensile activity (α < 0), resulting in a change of sign of the active torque. Such
corrections are, however, nonperturbative in activity.

4.2. Incompressible flow
For incompressible flows, evaluating the flow velocity requires solving the Poisson equation for the pressure:

∂z∂z̄Π = αRe(∂2
zψ), (31)

where the source term acquires contributions from the topological defects and any smooth deformations of
the order parameter, such as kink walls. The solution of equation (31) can be written as the convolution of
the logarithmic Green’s function G(r) = 1/(2π)log(|z|) with the source term:

Π = 4α
i

2

∫
dz′ dz̄′G(|z − z′|)Re(∂2

z′ψ). (32)

The corresponding incompressible velocity field follows from equation (5):

u(z, z̄) = 2α∂zψ + 2∂z̄Π = 2α∂zψ + αI(z, z̄), (33)

where

I(z, z̄) = − 2

π

i

2

∫
dz′ dz̄′

1

(z̄ − z̄′)
Re(∂2

z′ψ) (34)

arises from the pressure gradient. The first term on the rhs of equation (33) is the defect self-propulsion,
which has the same form for both compressible and incompressible flows. Solving for the pressure field
induced by an arbitrary defect configuration quickly becomes analytically intractable. The calculation can
be carried out, however, for simple configurations, such as a single defect far from all others (‘isolated’
defect) and a defect dipole. These cases are discussed below, with technical details given in appendix A.

Isolated defect. We consider a single positive defect located at the origin with a fixed external phase θ0.
The distortions generated by the defect produce a surrounding flow determined by equation (33), with the
induced pressure gradient calculated explicitly in appendix A.1. The velocity from the active stress
u = 2α∂zψ follows from equation (19). The resulting incompressible flow field at distances |z| larger than
the core size is then

u(z, z̄) =
α√
zz̄

e2iθ0 +
α

2

[
1

z̄

√
z

z̄
e−2iθ0 − 1√

zz̄
e2iθ0

]
. (35)

The first term on the rhs of equation (35) is the same as obtained for compressible flow and remains
finite at the defect core, contributing to the defect’s propulsive velocity. The two terms in square brackets
arise from pressure gradients. The second of these two terms yields a correction to the flow at the core that
reduces the defect’s propulsion. The net self-propulsion velocity of the positive defects due to both active
stress and pressure is then given by

u+ = 2α e2iθ0 + αI(0) =
3

4
αe+, (36)

8
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Figure 3. Velocity field (gray streamlines and blue arrows) and vorticity (color scale) induced by an isolated positive defect
(equation (35) with θ0 = 0), with the nematic texture shown as white lines for an extensile system (α = −1) for (a) compressible
and (b) incompressible flows.

Figure 4. Velocity field (gray streamlines and blue arrows) and vorticity (color scale) induced by an isolated negative defect
(equation (38) with θ0 = 0), with the nematic texture shown as white lines for an extensile system (α = −1) for (a) compressible
and (b) incompressible flows.

where e+ is the defect polarity from equation (24). Pressure gradients drive defect motion in the direction
opposite to that determined by active stresses, hence reducing the magnitude of the defect’s propulsion
velocity as compared to compressible flows (equation (29)). The net propulsion remains, however, in the
direction determined by the sign of activity. Finally, the shear flow due to pressure depends on derivatives of
the I-function, which vanishes at the positive defect (see appendix A.1), and so has no effect on an isolated
positive defect.

The relation between the defect’s self-propulsion velocity and the defect polarity remains valid for a
slowly-varying orientation θ̃(z, z̄). The net velocity of an isolated positive defect in an incompressible active
nematic is then given by

v+ = −8Kλi∂z̄ θ̃|z=z+ +
3

4
αe+. (37)

For an isolated negative defect, the computation of the I-function corresponding to the pressure
gradient is detailed in appendix A.1. The incompressible flow field generated by a negative defect outside of
its core is

u(z) = −α
1

z

√
z̄

z
e2iθ0 − α

2

[
z

z̄2

√
z

z̄
e−2iθ0 − 1

z

√
z̄

z
e2iθ0

]
, (38)

where again the first term is the flow induced by the active stress (which vanishes at the core) and the terms
in square brackets arise from pressure gradients. The net velocity of an isolated −1/2 defect is then the

9
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Figure 5. The trajectories of a neutral defect pair sketched in figure 1(c) with θ0 = π/4 and the extensile activity α = −1, and
determined by equation (42) for an incompressible nematic (solid red lines) are compared to those obtained in a compressible
fluid (dashed black lines). The green dots are the initial position of the two defects. The blue arrows represent the instantaneous
direction of the polarity of the +1/2 defect. Inset: the time evolution of the orientation of the +1/2 defect polarity relative to the
x axis for compressible (back dashed line) and incompressible (solid red line) flow.

same as in compressible nematic and determined solely by the local nematic distortion,

v− = 8Kλi∂z̄ θ̃|z=z− . (39)

On the other hand, when other defects are present, the I-integral is finite at the defect core, as we see next.
Similar expressions for the incompressible flow field around an isolated defect have been derived in
reference [26] by solving for the Green’s function in the real space.

In figures 3 and 4 we compare the flow field induced by a single defect in a compressible (panel (a)) and
an incompressible (panel (b)) active nematic. In the compressible case, the flow is determined entirely by
the active stress (u = 2α∂zψ). In the limit of zero viscosity considered here, the vorticity field remains the
same with or without the incompressibility constraint, since the pressure gradient is curl-free.

4.3. Defect dipole
Another configuration for which one can obtain an analytic solution is a pair of oppositely-charged defects
separated by w = z− − z+ and embedded in an otherwise uniform nematic orientation θ0 (see figure 5(a)).
The details of the evaluation of the integrals arising from pressure gradients are presented in appendix A.2.
The flow velocity at the defect cores are given in terms of the relative distance w as

u+ = α
3

2

√
w̄

w
e2iθ0 − α

4w

3w̄2
e−2iθ0 , (40)

u− = −α
4w

15w̄2
e−2iθ0 . (41)

The first term on the rhs of equation (40) is the self-propulsion of the +1/2 directed along its polarity
e+ = 2 e2iθ0

√
w̄/w. Note that the polarity of the +1/2-defect depends on the orientation of the negative

defect through the factor
√
w̄/w. This dependence survives even when the −1/2 defect is infinitely far away

(|w| →∞). The second term arises from the non-local hydrodynamic interaction between the two defects
due to pressure gradients. The velocity of the −1/2 given in equation (41) is determined entirely by
hydrodynamic interactions. The different geometric structure of the two defects renders these interactions
non-reciprocal, with the velocity of the negative defect five times smaller than that of the positive one. In
the limit where one defect is moved to infinity relative to the other, the hydrodynamic interaction terms
vanish and we recover zero drift for the isolated −1/2 defect and the self-propulsion velocity for the isolated
+1/2 defect.

Substituting the explicit expressions for the incompressible flow in terms of the defect positions and
polarity in equation (21), we obtain

v+ =
2r̂

|r− − r+| +
2α

3|r− − r+|
[
2
(

e+ · r̂
)

r̂ − e+
]
+ α

3

4
e+,

10
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v− = − 2r̂

|r− − r+| +
2α

15|r− − r+|
[
2
(

e+ · r̂
)

r̂ − e+
]

, (42)

where r̂ ≡ (r− − r+)/|r− − r+|. The first terms on the rhs of each of equation (42) represent the familiar
Coulomb interactions among the two defects. The other terms arising from corrections to active flows
induced by pressure gradients are non-reciprocal in nature and yield forces normal to the line joining the
two defects. We emphasize that these forces are distinct from non-reciprocal forces obtained in reference
[28] from a perturbative analysis of multidefect interactions in a compressible active nematic. These forces
are a new result of our work. Finally, notice that there is no need to evolve the defect polarization separately,
since it can be reconstructed directly from the defect positions and the uniform nematic phase θ0.

Figure 5(b) shows the trajectories of the ±1/2 defects determined by equation (42). For comparison we
also plot the defect trajectories in a compressible flow field driven by the active stress alone.
Incompressibility reduces the transient active torque and the velocity of the positive defect, while slightly
increasing the velocity of the negative defect. A generalization to many defects presents many challenges
since the pressure field encodes all the non-local interactions between defects through integrals with many
more complicated branch cuts and singularities.

5. Defect hydrodynamics

We have derived ordinary differential equations describing the dynamics of defects as quasiparticles. In the
turbulent-like nematic state where defects proliferate, it is useful to formulate a continuum model of the
defect gas that describes the dynamics at length scales large compared to the mean defect separation. This
was carried out in reference [27] for an overdamped compressible active nematic. Here we generalize to the
experimentally important case where the fluid flow is incompressible.

We describe a defect configuration in terms of microscopic density fields: defect charge and number
densities, ρ̂ and n̂, their associated current densities, Ĵ(ρ) and Ĵ(n), and defect polarization density p̂:

ρ̂(r, t; {rβ}) =
∑
β

qβ δ(r − rβ(t)), (43)

n̂(r, t; {rβ}) =
∑
β

δ(r − rβ(t)), (44)

Ĵ(ρ)(r, t; {rβ}) =
∑
β

qβvβδ(r − rβ(t)), (45)

Ĵ(n)(r, t; {rβ}) =
∑
β

vβ δ(r − rβ(t)), (46)

p̂(r, t; {rβ}) =
∑
β

eβδ(r − rβ(t)). (47)

where we use a hat to distinguish microscopic fields from coarse-grained ones obtained by averaging over
ensembles of defect configurations. The microscopic charge density satisfies the requisite conservation law.

The coarse-graining method consists of taking ensemble averages over different defect configurations
described by a distribution function P({rβ}),

A(r, t) ≡ 〈Â(r, t; {rβ})〉 =
∫ ∏

β

drβÂ(r; {rβ})P({rβ}). (48)

and factorizing high moments to close the equations.
To obtain the defect hydrodynamic equations, we proceed in two steps. First, we consider a tagged defect

moving in the effective mean-field induced by the rest of the defects that is described by a coarse-grained

flow field u(r) = 〈û(r, t; {rβ})〉 and a coarse-grained nematic texture vn(r) = 〈∇ ˆ̃
θ(r, t; {rβ})〉. The

dynamics of a defect in this mean field is then governed by the equations (for simplicity we consider the
case with no flow alignment λ = 0)

v+β = 4v⊥
n (rβ) + u(rβ), (49)

v−β = −4v⊥
n (rβ) + u(rβ), (50)

ėβ = −2e⊥β
[

vβ · vn(rβ)
]
− 2e⊥β

∑
γ

qγvγ · f ⊥βγ , (51)

11
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where for any vector V = (Vx, Vy) we denote the clockwise rotation corresponding to the multiplication
with the Levi-Civita tensor εij as V⊥ = ε · V = (Vy,−Vx). These equations couple defect dynamics to the
coarse-grained flow and nematic texture, with f βγ = rβγ/|rβγ |2, which rβγ = rβ − rγ , which is the
interaction force which relates the nematic distortion with defect density as

v⊥
n (rβ) = [∇⊥θ(r)]r=rβ ≡

∑
γ �=β

qγ f βγ (52)

is the interaction force from the defect at position rγ on the defect at position rβ .
The phase gradient vn contains the singular phase induced by all defects and relates to the macroscopic

charge density ρ through Stokes’ theorem applied in equation (6),

∇⊥ · vn = − curl(vn) = −2πρ(r). (53)

This determines vn up to a potential vector field which, in the quasistatic approximation, satisfies

∇(∇ · vn − u · vn + ω) = −2πJ(ρ)⊥. (54)

The macroscopic fluid flow u follows the Stokes equation (3), but with the active stress expressed in terms
of the density and polarization density of positive defects,

u − η∇2u = −∇Π+ α
p

n+
. (55)

Incompressibility additionally requires ∇ · u = 0.
The continuum equations for the defect densities and polarization density can then be obtained by

taking the time derivative of the microscopic fields, equation (43), using the defect dynamics given in
equation (49), and applying the coarse-graining procedure. Neglecting defect creation and annihilation, the
equations for the defect density fields ρ and n take the form

∂tρ = −∇ · J(ρ), (56)

∂tn = −∇ · J(n). (57)

In the presence of defect annihilation/creation, the rhs of equation (57) needs to be supplemented by the
kinetic rates describing these processes. The macroscopic current densities are given by

J(ρ)(r, t) =

〈∑
β

[
8qβv

⊥
n (rβ) + u(rβ)

]
qβδ(r − r(β))

〉

= 2v⊥
n n(r, t) + uρ(r, t),

J(n)(r, t) =

〈∑
β

[
8qβv

⊥
n (rβ) + u(rβ)

]
δ(r − r(β))

〉

= 8v⊥
n ρ(r, t) + un(r, t). (58)

The evolution of the microscopic polarization density follows from taking the time derivative of
equation (47), using equation (49) and expressing the sums over defects in terms of the microscopic
densities and their current densities, with the result

∂t p̂ + U ·∇p̂ = −2(vn · U)p̂⊥ − [∇ · U]p̂ − 2p̂⊥(r)

∫
dr′f ⊥(r − r′) · Ĵ(ρ)(r′). (59)

where U = u + 4v⊥
n is the net flow including the one generated by nematic distortion. Upon coarse

graining, we assume 〈p̂(r)ρ̂(r′)〉 ≈ p(r)ρ(r′) and 〈p̂(r)n̂(r′)〉 ≈ p(r)n(r′), and obtain the continuum
equation

∂tp + U ·∇p = −2(vn · U)p⊥ − [∇ · U]p − 2p⊥(r)

∫
dr′f ⊥(r − r′) · J(ρ)(r′). (60)

The polarization equation does not contain terms controlling growth or decay of the magnitude of p nor
any stiffness/diffusive terms because we assumed |eβ | = 2 (not normalized) and did not include noise in the
defect dynamics. The first term on the rhs of equation (60) controls changes in the direction of polarization
and arises from the active torque in the evolution of eβ . The next term only appears when the flow is
compressible and it describes the fact that density variations associated with compressible flow can provide
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sources and sinks of polarization. In addition, equation (53) implies that there are also local changes in
polar order depending on the charge density field, ρ. Finally, the last term on the rhs of equation (60) is a
new nonlocal correction to the torque that arises from the long-range nature of nematic distortions.

It is useful to compare equation (60) for the polarization density to the one obtained in reference [27]
for a compressible fluid. As mentioned above, here we do not have terms describing polarization
growth/relaxation. The kinematic terms describing coupling of polarization to flow do reduce to those
obtained in reference [27] for compressible fluids. This can be seen by noting that in reference [27] the
polarization equation was obtained by eliminating u from the defect dynamics before coarse-graining, using
u → αeβ in equation (59). If we use this in equation (59), and then coarse grain, using the same moment
closure as in reference [27], we recover the same results.

The continuum equations obtained here apply generally to describe the coupling of defect dynamics to
any flow field. They resemble the equations for self-propelled polar particles in a fluid, with the difference
that the +1/2 defects are advected and rotated not only by the fluid flow velocity u but also by the
Magnus-type force proportional to v⊥

n . The fact that only positive defects act as a source of flow in the
Stokes equations for u is consistent with the fact that only the +1/2 defects behave like active quasiparticles.
The negative defects are advected and rotated by flows, like passive particles, but also contribute to the
phase deformations described by vn.

6. Conclusions

To summarize, we have analyzed the effect of arbitrary fluid flow on the motion of ±1/2 nematic defects
and derived both equations describing the dynamics of defects as quasipartciles and hydrodynamic
equations describing the dynamics of the defect gas on length scales large compared to the mean defect
separation. By adapting the Halperin-method formalism to a nematic order parameter, we demonstrate that
it provides an effective alternative to perturbative methods of matched asymptotic expansions for deriving
defect kinematics, especially for incompressible flows. We reproduce previous results for
friction-dominated, compressible flows and find new effects for incompressible systems, where pressure
gradients incorporated through the incompressibility constraint yield long-range forces among any two
defect pair. We specifically examine the case of a defect dipole embedded in a uniform far-field texture,
where analytical calculations are possible. We show that in this case the flows arising from pressure
gradients reduce the self-propulsion of the +1/2 defects and introduce non-reciprocal forces acting on both
defects. A future challenge is to extend our work to describe collective behavior and pattern formation of
many interacting defects.
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Appendix A. I-functions

A.1. Isolated defect:
The I-function corresponding to an isolated defect placed at the origin can be evaluated at the defect
position by expressing the complex area integral in polar coordinates z′ = r eiθ . Letting ẑ = eiθ , we rewrite
the I-function as

I(0) =
2

πi

∫ R

a
dr

∮
γ

dẑF(ẑ, r), (A.1)

where γ is a contour around the unit circle centered at the origin. The function F(ẑ, r) = Re(∂2
z′ψ) can be

evaluated using the ansatz for ψ in equation (19) and the fact that we are integrating from r > a (distances
larger than the core size) where S(|z|) ≈ 1. For a positive defect this gives

F+(ẑ, r) = Re(∂2
z′ψ+) = − 1

8r2

(
1

ẑ
e2iθ0 + ẑ e−2iθ0

)
. (A.2)
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Inserting this into equation (A.1) and using the residue theorem, we arrive at

I(0) = − 1

4πi

∫ R

a

dr

r2

∮
γ

dẑ

(
e2iθ0

ẑ
+ ẑ e−2iθ0

)

= − 1

2a
e2iθ0 , (A.3)

when R � a. The I(z, z′)-function for an isolated positive defect is computed using the transformation to
polar coordinates and applying the residue theorem to the contour integral:

I+(z, z̄) =
2

πi

∫ ∞

0
dr

∮
γ

dẑ

ẑ

1

ẑ−1 − z̄r−1
F+(ẑ, r)

= − 1

πi

1

4

∫ ∞

0

dr

r2

∮
γ

dẑ
1

ẑ(ẑ−1 − z̄r−1)

(
1

ẑ
e2iθ0 + ẑ e−2iθ0

)

= −1

2

[
−|z|

z̄2
e−2iθ0 +

1

|z| e2iθ0

]
. (A.4)

The derivative of the I+-function, and therefore the shear rate, vanishes at the defect core:

∂z̄I+(z, z̄)|z=0 =
i

π

∫
dz′ dz̄′

1

z̄′2
Re(∂2

z′ψ+) =
2

iπ

∫ R

a

dr

r

∮
γ

dẑẑF+(ẑ, r)

= − 2

iπ

1

8

∫ R

a

dr

r3

∮
γ

dẑẑ

(
e2iθ0

ẑ
+ ẑ e−2iθ0

)

= 0. (A.5)

For a negative defect, the corresponding F−(ẑ, r) in equation (A.1) reads

F−(ẑ, r) = Re(∂2
z′ψ−) =

3

8r2

(
1

ẑ3
e2iθ0 + ẑ3 e−2iθ0

)
, (A.6)

and, by the residue theorem, the pressure gradient at a negative defect vanishes:

I−(0) =
2

πi

3

8

∫ R

a

dr

r2

∮
γ

dẑ

(
1

ẑ3
e2iθ0 + ẑ3 e−2iθ0

)

= 0. (A.7)

Similarly the shear flow, determined by the derivative of the I-function, vanishes at the defect position:

∂z̄I−(z, z̄)|z=0 =
2

iπ

∫ R

a

dr

r

∮
dẑẑF−(ẑ, r)

=
1

iπ

3

4

∫ R

a

dr

r3

∮
dẑẑ

(
e2iθ0

ẑ3
+ ẑ3 e−2iθ0

)

= 0, (A.8)

The pressure field away from the negative defect is given by

I−(z, z̄) =
1

πi

3

4

∫ ∞

0

dr

r2

∮
γ

dẑ
1

ẑ−1 − z̄r−1

(
1

ẑ4
e2iθ0 + ẑ2 e−2iθ0

)

=
1

2

[
−|z|3

z̄4
e−2iθ0 +

z̄2

|z|3 e2iθ0

]
. (A.9)

A.2. Dipole
We consider a positive defect placed at the origin, z+ = 0, and a negative defect at a distance w ≡ z− − z+,
such that the induced nematic field is given by

ψ+ =
(z

z̄

) 1
2

(
z − w

z̄ − w̄

)− 1
2

e2iθ0 . (A.10)
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This implies that

Re
(
∂2

zψ+

)
= − w(w − 4z)

8z2(w − z)2

√
z

z̄

√
z̄ − w̄

z − w
e2iθ0 + c.c (A.11)

The area integral in equation (A.1) for I(0) can then be solved analytically using the following basic steps.
First rescale the integration coordinates z′ = z/w and z̄′ = z̄/w̄ to simplify equation (A.16), with lengths in
units of w. Next make the coordinate transformation u2 = z′

z′−1 , and ū2 = z̄′
z̄′−1 to lift the square-root

singularities to simple poles. The residue theorem is applied to the polar representation of the integral with
the substitutions u = rû and ū = r/û, where û is the complex variable associated with the contour integral
over the unit circle. After these transformations the area integral becomes

I(0) =
2

iπw

∫ R

a
r dr

∮
γ

dû

û
F1(rû) +

2w

iπw̄2

∫ R

a
r dr

∮
γ

dû

û
F2(rû), (A.12)

where

F1(r, û) = e2iθ0
(r2û2 − 1)(1 + 3r2û2)û2

4r4(r2 − û2)

F2(r, û) = e−2iθ0
(r2 − û2)2(û2 + 3r2)

4r4û2(r2û2 − 1)2
. (A.13)

Notice that the first integral over the unit circle has poles at û = ±r when r < 1 and the second integral has
poles at û = 0 for all r’s and at û = ±1/r for r > 1. We thus use the residue theorem to compute the
complex integration, and then perform the integration over r with the appropriate bounds set by the poles.
In the limit of a small core size this yields

I+(0) = −1

2

√
w̄

w
e2iθ0 − 4w

3w̄2
e−2iθ0 , (A.14)

where the first term modifies the polarity-driven self propulsion and the second term accounts for the
additional drift in the pressure field generated by the negative defect. Choosing a coordinate such that
w > 0, we see that the second term is in the direction obtained by reflecting the +1/2 defect polarity with
respect to the x axis, or in general, the line that connects the defects. Note that in this case, the polarity of
the +1/2 defect is −2 e2iθ0 .

In the same way to determine the pressure gradient acting on the negative defect at the origin z− = 0
and a distance w ≡ z+ − z− from the positive defect, we use the order parameter ψ for t centered at the
negative defect

ψ− =
( z

z̄

)− 1
2
(

z − w

z̄ − w̄

) 1
2

e2iθ0 (A.15)

and

Re
(
∂2

zψ−
)
=

w(3w − 4z)

8(w − z)2z2

√
w − z

w̄ − z̄

√
z̄

z
e2iθ0 + c.c. (A.16)

The I(0)-integral from equation (A.12) has the corresponding functions F1(r, û) and F2(r, û) given by

F1(r, û) = −e2iθ0
(r2û2 − 1)(3 + r2û2)

4r4(r2 − û2)û2

F2(r, û) = −e−2iθ0
(r2 − û2)2(3û2 + r2)û2

4r4(r2û2 − 1)2
. (A.17)

The first function acquires poles at û = 0 for all r and at û = ±r for r < 1, while the second function has
poles at û = ±1/r for r > 1. Using the residue theorem and performing the integration over r with the
appropriate bounds, we find that there is only one drift term given by the pressure induced by the positive
defect

I0(0) =
4w

15w̄2
e−2iθ0 , (A.18)

which approaches zero in the limit where the positive defect is moved to infinity, corresponding to an
isolated defect. As before the choice of a coordinate such that w > 0 shows that this term is along the
reflection of the +1/2 polarity with respect to the x axis. In this case the +1/2 defect polarity is 2 e2iθ0 .
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