
Formalising Flows
Introducing Affine Extended Transformations and
Flow-Structures

Erik Lien Bolager
Master’s Thesis, Autumn 2021

This master’s thesis is submitted under the master’s programme Data Science,
with programme option Statistics and Machine Learning, at the Department
of Mathematics, University of Oslo. The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

Normalizing flows is a promising avenue in both density estimation and
variational inference, which promises models that can both generate new samples
and evaluate the exact density, both with reasonable computational complexity.
In addition, normalizing flows incorporates deep learning, which gives the
existence of arbitrarily good approximations of any distribution. This thesis
will have two purposes in mind. We first find that normalizing flows contain
several components, where each is not as well defined, and which we provide
a formalisation of the lay the groundwork for future theoretical work. By
formalising, we find both new theoretical results and give an overview of the
current literature.

Second purpose is to fill the gap between normalizing flows that are fast
computationally and have many attractive properties, but less complex than
other flows in the literature. We introduce new normalizing flows that balance
the attractive qualities of the less complex flows, but increases the flexibility.
We show this through both proving asymptotically behaviour exactly the same
as the more complex flows, and then confirm empirically that our proposed
flows improve upon the simpler ones, and indeed fills the gap. In addition to
this, we find interesting results in terms of variational inference, that shows
more complex flows can perform much better in a variational inference setting
with increasing dimensions, than what simpler ones shown in the literature can.

i

Acknowledgements

The work that follows could not have been done without help and support, and
many deserve a gratitude for their role, both through my education, this degree
in particular, but also through my entire life. I am much obliged.

First and foremost I would like to thank my supervisor, Geir O. Storvik for
excellent guidance. You have been very generous with your time and effort,
giving me much needed and appreciated feedback on this thesis, but also for
the fun discussions we have had. In addition, I express my sincere gratitude
towards your trust in me as well, giving me leeway to explore and find my own
research topic, while always being there when needed.

I would also express my gratitude towards my parents, Anne and Kai Bolager,
for continuous moral support, but also for all the years they spent trying to
make a decent man out of me. Hopefully they have achieved it, and that this
work can reflect their wisdom and love.

They say it takes a whole village to raise a child, and I am certainly no
exception. I wish to express sincere gratitude the environment of students and
professors during my years in higher education. In particular for this thesis,
I would like to thank Fride Straum, Ingebjørg Sævareid, Marius Havgar, and
Åsmund Kvitvang for both support and friendship that have been helpful to
take my mind off work, and making this road travelled far from lonely.

Last, but certainly not least, I would like to express gratitude towards
Marius Aasan, for his endearing friendship, uncountable many wonderful and
interesting academic discussions—which this thesis have befitted of greatly—and
unshakeable moral support.

- Erik L. Bolager, 2021

iii

Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1
1.1 Notation . 6

2 Preliminaries 7
2.1 Introduction . 7
2.2 Divergence . 8
2.3 Variational Inference . 10
2.4 Neural Networks . 15
2.5 Conditional Neural Network 20

3 Normalizing Flows 25
3.1 Introduction . 25
3.2 Flows . 26
3.3 Flow Structure . 30
3.4 Conditioner . 46
3.5 Transformations . 48
3.6 Universality . 57

4 Piecewise Affine Flows 67
4.1 Introduction . 67
4.2 Affine Extended Transformations 68
4.3 Universality of CONN . 74
4.4 Universality . 78
4.5 a-activation function . 89

5 Empirical Results 91
5.1 Introduction . 91
5.2 Implementation . 91
5.3 Experiments 1 & 2 . 94
5.4 Experiment 3 . 98
5.5 Experiment 4 . 100

v

Contents

5.6 Conclusion . 103

6 Conclusion and Future Work 105
6.1 Conclusion . 105
6.2 Future Work . 106

Appendices 113

A Additional Resources 115
A.1 Classes of Divergences . 115
A.2 CONN: Non-Independent Sampling and Residual Blocks . . . 116
A.3 Classifying Transformations 119
A.4 Proof of Continuity of bt,d . 122
A.5 Continuity of Target Inverse CDF 123
A.6 Experimental Results . 125

Bibliography 129

vi

CHAPTER 1

Introduction

In this thesis, we aim to take a deep dive into normalizing flows and different
aspects of them, but first; what are normalizing flows and their use. In
both statistics and machine learning, the ability to learn and approximate
distributions plays a large role, where there are two tasks to consider. The first
task goes under density estimation, where the objective is a target distribution
P—unknown to us—and a corresponding density p. Having a set of observations
x ∼ P , the task is then to approximate the distribution, being able to compute
the density and preferably generate new observations. Two problems that occur
in this field is either to be forced to use too restrictive models, i.e., assumptions
that are not necessarily warranted. The other is when the dimension of the
distribution grows, and less assumptive models such as kernel density estimations
struggle due to the curse of dimensionality (J. Friedman et al. 2001). Normalizing
flows provide powerful models that attempts to solve this.

A second task is in the realm of Bayesian statistics, where we have a likelihood
p(y | z), a prior p(z), and a set of observations y. The task at hand is then to
find the posterior distribution—which is in this task the target distribution—
p(z | y), and be able to both generate new observations and evaluate the
density of observations. Although there are a few approaches to this task,
such as approximating samples through Markov chain Monte Carlo (MCMC),
they tend to be too slow for many high dimensional and complex distributions.
We concentrate on turning the problem into an optimisation problem, what is
known as variational inference. In particular, variational inference has been used
in many settings with high dimensionality, or difficult posterior distributions
where other more complex methods struggle. For instance, the use in machine
learning and in particular variational autoencoders (VAE) (Kingma and Welling
2014) have been popular. However, one typically ends up with approximating
distributions using quite simple distributions such as independent Gaussian.
This is where normalizing flows first saw its introduction.

Normalizing flows can be summarised as follows: start with a distribution
which we can easily generate observations from and evaluate its density. We then
create a space of bijective functions f , which typically deploy deep learning to
create flexible functions f , which then transform the observations from our start
distribution. We then find the bijective function f in the corresponding space
that output variables, which approximately are from our target distribution,
through optimising f ’s parameters according to some criteria—e.g. maximising
log-likelihood.

Relating to our two tasks, normalizing flows can do both, as we can either

1

1. Introduction

find a function that takes observations x and find a function f—which often
comprises of a composition of transformations—that transform x through its
inverse, to a variable that fits the start distribution. In the second task, we start
by generating latent observations z from the start distribution and find f that
transforms the variable to fit the posterior distribution. There are, however, a
few properties one needs to be aware of when constructing the space of functions
f :

• It must be bijective, and hence the introduction of deep learning—
in particular neural networks—must be done in a way that preserves
bijectivity, as neural networks are, in general, not bijective.

• We ought to be able to compute at least one way—forward or inverse of
f—and preferably both fast and efficiently.

• The functions ought to be quite flexible, i.e., the function space ought to
be large.

• To evaluate the density of the transformed variable, we must be able to
compute the determinant of the Jacobian of f effectively.

Fulfilling these properties is the essence of normalizing flows and its literature.

Problem Description

When we started reading the literature on normalizing flows, we saw that one
often were concerned with complete flows/models, while they consisted of several
parts that was not completely dependent on each other and deserved to be
studied as components, as well as when aggregated to a complete normalizing
flow. This also resulted in a lack of terminology for the different parts.

We also noted that there seemed to be a gap of different normalizing flows
introduced, between very simple transformations introduced in the early stage,
to much more complex later on. We therefore introduce new examples of the
components to fill this gap. This also reflect our master project description,
which states the two core problems as:

(i) Formalise normalizing flows where the literature lacks,

(ii) Explore new ways to transform data that leans toward the simplistic
transformations, yet tries to be as flexible as possible compared to the
more complex transformations.

During the formalisation of flows, new definitions spur on new results which we
pursue, and our hope is to hopefully make the groundwork that induces more
results in the future, with a framework that one can specify and push forward.

However, such formalisation comes at a cost, namely, abstraction. This, as
is quite typical when giving rigorous definitions, puts a strain on the reader.
We try to alleviate the issue by giving a very concrete example here, which also
highlights our approach when formalising it.

Example 1.0.1. The flow we use is one of the first proposed, known as Real
NVP (Dinh, Sohl-Dickstein et al. 2017). We assume for this example that the

2

dimension of the variables we are working with, is D = 4. Running through the
start by sampling

z0 = {z0,d}4d=1 ∼ N (0, 1),

where N (0, 1) is independent standard Gaussian. We then partition the variable
into to parts, (z0,1, z0,2) and (z0,3, z0,4). We then create a neural network
(introduced in Section 2.4),

Ψ1 : R2 → R2.

The input of this network is the first subset of the partition (z0,1, z0,2), and the
output is the parameters that are applied to transform the second subset of the
partition (z0,3, z0,4). The way it is applied in Real NVP, is through an affine
transformation f1,3 and f1,4, which can be summarised as

(a1,3:4, b1,3:4) = Ψ1(z0,1, z0,2)
z1,d = f1,d(z0,d) = a1,d · z1,d + b1,d, d = 3, 4,

where we constrict the scaling parameter to be strictly positive. We then
let z1,1 = z0,1 and z1,2 = z0,2. We have then computed the first step in
the normalizing flows. Adding another transformation step t = 2, but now
transforming the first two variables, by again creating a neural network with
Ψ2 in similar fashion. Then

(a2,1:2, b2,1:2) = Ψ2(z1,3, z1,4)
z2,d = f2,d(z1,d) = a2,d · z1,d + b2,d, d = 1, 2.

Applying the identity to (z1,3, z1,4). We have then created a small flow,
f(z0) = z2. The density of z2, using the transformation rule, is then

qz2(z2) = qz0(f−1(z2)) ·
∣∣∣∣ 1
a1,3 · a1,4 · a2,1 · a2,2

∣∣∣∣ ,
where qz0 is the density of the independent standard Gaussian. We can then
optimise the flow and finding the best f , by changing the functions Ψ1 and
Ψ2’s parameters. To increase the expressiveness of the flow, we can continue
transforming z2 in the same manner.

Depending on the size of the two neural networks above, there can be a high
number of parameters to optimise—referred to as trainable parameters in this
thesis. However, with modern computers and schemes such as backpropogation
(LeCun, Bengio et al. 2015), the cost is far from insurmountable in many cases.

This has hopefully given a small insight into flows, and how we can
incorporate neural networks, yet preserve the properties we described earlier.
Hopefully, the reader will notice that the complete flow have quite a few different
components, or choices to be made, which not necessarily require the others to
be chosen in similar fashion. In this thesis we have divided the flow into four
components/choice to be made:

• The first choice was the partition of z0, or more formally, which variables
participate in transforming a given variable—which we have defined as
flow-structure (Section 3.3).

3

1. Introduction

• The second choice is how to compute the variables used in the
transformation, e.g. computing (a, b) through neural networks in our
example—which we have defined as conditioner (Section 3.4).

• The third choice is how to transform each variable, which in our example
was chosen as at,d · zt−1,d + bt,d—we define this as the transformation
(Section 3.5).

• The last choice is what to sample from at the start—what is referred to
as the base distribution.

This will hopefully give the reader some intuition when we start defining the
concepts more rigorously.

Overview of Thesis

We give an overview of the different chapters, followed by outlining our biggest
contributions.

Chapter 2 introduces some core concept needed, with mostly well known
theory. We introduce the tasks at hand, introducing the divergence we use as
an optimising criteria, as well as run through variational inference. We continue
by introducing neural networks and notation. The last part of Chapter 2 is
perhaps a bit less familiar, where we first introduce a type of network well
known in the literature, before we generalise it. The generalised version, can be
described as neural network, where each dimension of the output yi can decide
which dimensions of the input xi to be used to calculate yi. This is essential
later on, where neural networks will be used as conditioners.

Chapter 3 is the chapter where we introduce and formalise normalizing flows.
We start by giving a very broad definition of flows, before we start defining each
component as described earlier. We define first flow-structures, which we then
continue investigating, introducing some new theoretical results. The condi-
tioner part is swiftly defined, and a small comment on the different conditioners
in the literature, including the ones we define in Chapter 2. Of the different
flows introduced in the literature, the component we define that varies the most
among the different papers, is the transformation. We therefore take some time
to run through the ones existing in the current literature, defining them properly,
and discuss the pros and cons of each. After introducing all the concepts, we
start putting them together, and define universality, which states what class
of probability distributions a given flow are capable of approximating arbit-
rarily well. We then run through the known universality results in the literature.

Chapter 4 goes on to first recognise gap in what transformations that exist,
and introduces several new transformations that tries to be very simple, just
as the one we saw in Example 1.0.1, but increase the expressiveness. We then
move on to study the conditioner introduced in Chapter 2, and in particular
the universal approximator property known from deep learning, which we
prove when the conditioner fulfills the universal approximator property. We
then move on to proving universality of flows, incorporating our new trans-
formations. We end the chapter by considering how we enforce output of

4

neural networks to be strictly positive. Considering Example 1.0.1, the at,d
parameters must be strictly positive to enforce inverse and hence make it
possible to evaluate the density. As at,d is calculated by a neural network,
the function that enforces positive values is quite important, and can have
a lot to say practically, in particular with regard to optimising flows and stability.

Chapter 5 gathers all the theoretical findings and definitions, and send
them into practice, by running a few experiments. We start by testing many
different flows, giving a overview and some patterns we explore, before choosing
a few models to test on more difficult cases, both with density evaluation and
variational inference

We end this section by mentioning our contributions. As we are formalising
flows, many of the definitions can be seen as a contribution, but we list here
the definitions that, as far as we are aware of, does not exist in the literature.
When using actual definition, or small rewrite to fit our formalisation, we cite
either in the definition, or mention it right above or below. Any theoretical
results that is not mine, does not have a proof and the source is cited in the
stated result.

In Chapter 2 we have one original contribution, which are conditional
neural networks in Section 2.5, which is a generalisation of a existing network
MADE. In particular our discussion on Masks and Definition 2.5.2 is an original
contribution.

In Chapter 3 starts with a formal definition of flows that is a perhaps
not as defined in the literature, but outlines can be found in Kobyzev et
al. 2020. In Section 3.3 everything up until the subsection "Autoregressive
Structure and Coupling Structure" is original contribution, and the closest
we found that had resemblance of our work was in Wehenkel et al. 2020,
but which was independently created. In particular, definition on structures
Definition 3.3.1, Definition 3.3.2, Definition 3.3.5, and Definition 3.3.6
are original contribution. Corresponding result Proposition 3.3.4 as well.
Flow-isomorphic is original contribution with the following Definition 3.3.7,
Definition 3.3.9, and Proposition 3.3.10 is our work. The part on triangular
structures is an original contribution, namely Definition 3.3.11, Definition 3.3.12,
Proposition 3.3.13, Definition 3.3.14, Theorem 3.3.15, Definition 3.3.16,
Definition 3.3.17. In Section 3.6 we have two new theoretical results,
namely, Lemma 3.6.9 and Lemma 3.6.11, with the corresponding definition
Definition 3.6.8 as well. The rest of Chapter 3 is an overview of the current
literature, rewriting it into our framework.

In Chapter 4 is a chapter with only original contributions. In Section 4.2
we introduce affine extended transformations, with Definition 4.2.1 and
corresponding Proposition 4.2.2 is original. Every transformation following
"Piecewise Affine Transformations" is new. In Section 4.3 we give three new
results when it comes to CONNs and universality. Namely, Theorem 4.3.2,
Proposition 4.3.3, and Theorem 4.3.6. As CONNs are a generalisation of existing
MADE, means it is also an original contribution to the theory of MADE. In
Section 4.4, we follow similar strategy as to Huang, Krueger et al. 2018, but every
result unless otherwise stated in the text, is an original contribution, proving
universality for one of our new transformations we proposed in Section 4.2.
Finally, in Section 4.5 our definition of a-activation function is new, but is only

5

1. Introduction

to have a name on an existing type of functions. The introduction of Slowplus
and Slowabs is an original contribution.

In Chapter 5, unless otherwise specified, the results are computed by us,
with our code.

This has hopefully given the reader a scope of what our original contributions
are, and what is merely giving a more formal definition and so on. As a last part
of the introduction, we give a notation table of the more well known symbols
we use.

1.1 Notation

DI(·) Divergence of distributions, Definition 2.2.1.
B(·) Borel sigma algebra
γ(·) Activation function, Definition 2.4.2.
Ψl(·) One hidden layer in a neural network, Definition 2.4.4.
Ψ(·) Fully connected neural network, Definition 2.4.5.
NN [L,D,γ] Space of neural networks with specified properties, Definition 2.4.5.∨∧ Used to indicate how many neurons in each hidden layer, Definition 2.4.5
Fwidth Class of every neural network with arbitrary width.
Fdepth Class of every neural network with arbitrary depth.
ml Function that informs each node in layer l,

which node it can use in previous layer in CONN, Equation (2.10).
Ml Corresponding binary matrix, mask, to ml.
Cmin Smallest space ml can map into, Equation (2.11).
C Largest preferred space ml can map into, Equation (2.12).
c(yd) Function that tells which variables in input yd can use when computed.
ΨCONN Conditional neural network, Definition 2.5.2.
Q Base distribution from Chapter 3 and on.
D Denotes the set {1, 2, . . . , D}.
DT Denotes the set {D1, . . . ,DT }.
T ⊗ DT Denotes the set {(t, d) : t ∈ T , d ∈ Dt}.
qz0 Density of base distribution.
qzT /qx Induced density of flows, i.e., the density of f(z0), Theorem 3.2.4.
Jf The Jacobian of a function f .
S Structure, Definition 3.3.1.
Sext(t, d) The set of influencing variables of (t, d), except for predecessor.
Sint(t, d) The set with only the predecessor of (t, d).
Λ Function composed of Λ2 ◦ Λ1, creates forward-local structures, Definition 3.3.12.
πt Permutation function used to permute the edges in a structure

according to a fixed structure, Definition 3.3.19.
H Conditioner, Definition 3.4.1, Ht conditioner constricted to time step t,

Ht,d conditioner constricted to time step t and dimension d.
Ψ+ Neural network transformations using positive weights, Definition 3.5.6.
NF Class of normalizing flows, Definition 3.6.4.
R+
∗ R restricted to strictly positive values.

C(X ,RD) Space of continuous functions from X to RD.
C(X ,RD; c) Space of continuous functions from X to RD where each output is

constricted to be computed by input given by c, Section 4.3.
P Space over target distributions.
σ The Sigmoid function.
gT Composition of σ ◦ f , where f is a flow.

6

CHAPTER 2

Preliminaries

2.1 Introduction

In this chapter, we start by introducing some topics that may be unfamiliar and
play an important role in normalizing flows, while also serving as an introduction
to the notation. Namely, in Section 2.2 we define what a divergence on probab-
ility distributions are, and in particular discuss the Kullback-Leibler divergence.
In Section 2.3 we introduce variational inference (Blei et al. 2017), its pros
and cons compared to other sampling schemes such as MCMC, and variational
inference using the Kullback-Leibler divergence. Although normalizing flows
can be used both in Bayesian inference as well as density estimation, we focus
more on the former in this thesis, and therefore focus on variational inference
here. Finally, these two sections can easily be skipped for readers who are well
versed in the topics at hand. However, we do take the opportunity in this
introduction to state the following:

We will for the most part of this text work with continuous distributions,
and unless otherwise specified, we let the distributions be implicitly continuous.

Moving onto Section 2.4, we introduce deep learning and neural networks
(LeCun, Bengio et al. 2015; Schmidhuber 2015). We define more rigorously
multilayer perceptrons, and give a recap of the most famous results concerning
the flexibility of neural networks. Although it may be familiar to many, we do
recommend reading it, as we shall rely heavily on the notation we define.

Finally, in the last section, Section 2.5, we introduce a quintessential tool for
normalizing flows, which we also introduce a new concept. We build on neural
networks, and introduce a new architecture called conditional neural networks.
Conditional neural networks are a generalisation of masked autoencoder for
distribution estimation (MADE) (Germain et al. 2015), which is, as far as we are
aware, the first time this is done. The problem put forth for conditional neural
networks to solve is the following: create neural networks where each output
variable is constrained to a corresponding subset of input variables. That is,
any output variable can be computed using only a specific subset of the input
variables, where the subset is assumed to be known, and the subset may differ
for each output variable. The question then becomes how to enforce neural
networks to oblige to the aforementioned restriction. MADE solves this for a
subset of the problems, and we generalise this to every problem as specified.
The conditional neural networks flexibility is then studied in Chapter 4.

7

2. Preliminaries

2.2 Divergence

Recall the problems described in the introduction, with density estimation and
variational inference. Each model that tries to solve either of the tasks, have a set
of parameters/trainable parameters, that is estimated through optimisation. An
important question regarding the models underlying distribution is what losses to
use to minimise the distance between the true and the approximated distribution.
The question is answered by measures of divergence (Bhattacharyya 1946), or
simply divergence.

Definition 2.2.1. Let P be a space of distributions with equal support. A
divergence is a function DI : P×P → R such that DI(p, q) ≥ 0 where equality
holds if and only if p = q, for all p, q ∈ P. A dual divergence is defined as
DI∗(p, q) = DI(q, p).

Remark 2.2.2. There is a slight abuse of notation, as we are speaking of a
space of distributions, but refer to each distribution’s density instead, due to
the aforementioned assumption in the introduction of this chapter. However,
we do need to refer to the actual probability measure as well, and hence let p
correspond to a distribution with probability measure µ and equivalently for q
and ν.

Although it lacks both symmetry and triangle inequality, and can therefore
not be seen as a metric, it can confirm if the distributions are the same, and a
space to optimise over.

A myriad of divergences has been proposed, and are actively being deployed
or researched. We have added in Appendix A.1, an overview of this and the
three major classes one typically sorts divergences in. The Kullback-Leibler
divergence is often utilised, and in particular when it comes to the optimisation
of models. This thesis is no exception, and we therefore spend some extra time
on said divergence.

Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL) (Kullback et al. 1951) has been used in
both statistics, statistical learning, and machine learning. Not only in the sense
of optimising a model to approximate some distribution, but, for example, as
quantifying information gain, that is, how much one learns about a random
variable by observing another variable and its value. It has ties to entropy and
information theory, which is highlighted when considering Bregman divergences
(see Appendix A.1 for more). For our purpose it is a tool to fit models, either
in a maximum likelihood fashion or in a Bayesian posterior fashion. We shall
denote the divergence as

KL (p || q) =
∫
X
p(x) log

(
p(x)
q(x)

)
dx,

assuming the corresponding probability measure to the density p is absolutely
continuous to the corresponding probability measure of density q, i.e. µ� ν.

Consider the divergence as a loss function optimising a model, where we let
q be the induced density of the model and p be the true underlying density. We

8

2.2. Divergence

have that

KL(p || q) = −
∫
X
p(x) log q(x)dx+ const. = H(p, q) + const.,

where H(p, q) is the cross-entropy (and H(p) = H(p, p) is the entropy). We are
minimising the cross entropy between our model and the true distribution, as

H(p, q) = −
∫
X
p(x) log

(
p(x) q(x)
p(x)

)
dx

= −
∫
X
p(x) log p(x)dx+

∫
X
p(x) log

(
q(x)
p(x)

)
dx

= H(p)−KL(p || q),

means the global minimum of cross entropy is when log p(x) = log q(x), which
agrees with the optimum of KL-divergence (per the definition of divergence).
One can typically not compute H(p, q), as we usually do not know p(x), and
we rather have observations X which we use to estimate H(p, q) through

Ĥ(p, q) = − 1
|X|

∑
x∈X∼p

log q(x).

When q is the corresponding density of a model with parameters θ, optimising
q through minimising Ĥ gives us the maximum likelihood estimate (MLE) of
the models, i.e

θ̂MLE = arg min
θ

Ĥ(p, q).

Considering the dual divergence and using it as a loss function, we get a different
but similar view.

KL(q || p) =
∫
X
q(x) log q(x)dx−

∫
X
q(x) log p(x)dx = −H(q) +H(q, p).

If q is an approximation of a posterior, we can estimate the equation above by
Monte Carlo (sampling from q),

1
|X|

∑
x∈X∼q

(log q(x)− log p(x)). (2.1)

It appears that we have more of a compromise between the entropy of the model
and the cross entropy between the model and the true distribution. However,
ultimately—if the model space includes the true distribution—the global optima
is the same for both losses. In some sense, optimising KL(p || q) fits the model
to some data, while using KL(q || p) fits the model to the density through
changing the parameters and resample X. That is, in the former we have X
and want to find the parameters which makes our density fit the data. In the
latter, we try to find the parameters θ of q such that the resulting samples
from the model fits the true distribution as well. One can think of log q(x) in
Equation (2.1) as a bit irrelevant, as the samples will obviously fit the models
log-likelihood well, and then be left with a quite similar optimisation where we
have swapped the source of data and the log-likelihood we evaluate the data on.

9

2. Preliminaries

Yet, for any non-zero case, one cannot simply ignore log q(x), as one would end
up with an optimisation problem where q is centred at the largest peak of p,
with q’s mass gathered all at said centre (granted the model can approximate
such distribution). This is avoided in Equation (2.1) as log q(x) would become
much larger than log p(x), and hence will not be the optimum.

Which of the two divergences to use is typically context based, as one usually
has either data from p or can evaluate the likelihood, but not both. If both are
the case, one could symmetrize the divergence and simply let the loss function
be KL(p || q) + KL(q || p). Even though it is problem specific, it can be useful
to think of the differences between the two versions of KL-divergence. During
optimisation, KL(p || q) prioritise more that q assign density across p, and
rather undershoot the peaks. This can be seen from the fact that, assuming X
represents p adequately, low density on a data point is much more detrimental
than not maximising log-likelihood for a large chunk of the data, as the former
quickly makes the divergence go towards ∞, while the latter results in a finite
value of the divergence function. On the other side, KL(q || p) prioritise high
density on the high density parts of p, and avoid overshooting the density on
low density places in p. The reason is that not avoiding the said overshooting
leaves − log p(x) rapidly approaching ∞, while overshooting the peaks is not as
detrimental. Tad simplified, KL(p || q) weights cover the tail area more, while
KL(q || p) prioritise the mode area. They are opposite in where they overshoot
and undershoot p, yet given enough data X, computational power, and that
the model space includes p; the models are both capable of approximating p
arbitrarily well, using either of the two KL-divergences. That being said, in
reality we may experience differences between the two as we rarely acquire
optima, and even more crucial is that we are, as mentioned earlier, often forced
into using either one due to the availability of data X and density p. In this
thesis we are in need of both, one for when density estimation is the problem at
hand, and the other when we are applying our models to a variational inference
setting (see Section 2.3).

2.3 Variational Inference

When it comes to the task of approximating posterior distributions, as mentioned
in the introduction of this thesis, we have some really powerful methods to
sample from the posterior, e.g., MCMC. As mentioned already, they do have
high computational and time cost for many complex distributions and high
dimensional once. A different approach to approximately sample from the
posterior is to instead choose a class of distributions which one can easily
sample and evaluate the density of, and then find the distribution that best fits
the true posterior. Usually finding the best distribution is through choosing
the member of the class of distributions which minimises a divergence as we
discussed previously, which means we find the distribution that is closest to the
true posterior. That is, we turn the problem of generating accurate samples
which we in turn can use to estimate the distribution and its quantities (MCMC),
to an optimisation problem which gives us a complete distribution that we can
generate samples from, evaluate the density of samples, and any statistics we
are interested in. The strategy to phrase the problem through optimisation is
referred to as variational inference.

10

2.3. Variational Inference

Definition 2.3.1. Let Q be a class of continuous distributions, (Z,B(Z), µ) be
a continuous probability distribution with density p, and DI be a divergence.
Variational inference is a method that approximate (Z,B(Z), µ) by optimising

q∗ = arg min
q∈Q

DI(p, q), (2.2)

where q∗ and q are the densities corresponding to their respective distributions
in Q.

Remark 2.3.2. Typically one sees variational inference in the context of
approximating Bayesian posterior as we are about to discuss—some also refer to
variational Bayesian methods—and where the divergence is the KL-divergence.
Yet there are many other combinations of target distribution and divergence
that give rise to optimisation. This was also noted by some of the key researchers
in this area (Wainwright et al. 2008), in which for something to be referred to
as variational inference, one only requires it to be an approximation derived
through optimisation. We compromises by defining it through some class of
distributions and using a divergence as the criterion for what to optimise for.

Approximating through optimisation instead of sampling will usually give
us different results, and there are both pros and cons to this change of strategy.
Some of the pros are;

• The result is a fully complete distribution which typically can easily
generate new samples if need be, evaluate the density of observations,
and—depending on the class of distributions—more interpretable than a
collection of samples.

• It is possible to vary the complexity of the distributions we are searching
through, and therefore limit the class to allow for faster optimisation when
the dimension of the true posterior is large or the distribution is intricate.

• As we are optimising for the closest distribution to the true posterior,
means we can set any threshold—although not necessarily trivial to set
such thresholds—for what is acceptable for the purpose we have and still
obtain a well-defined distribution. Compared to sampling using MCMC,
in which the result of stop sampling early can be catastrophic.

• Turning the problem of approximating the true posterior to an optimisa-
tion problem allows us to take advantage of a large collection of optimisa-
tion schemes such as stochastic gradient descent (SGD).

As one can see, many of the pros were associated with the computational burden
and this was indeed the purpose from the start. The cons on the other hand
are;

• The class of distributions usually does not contain the distribution we
seek to approximate. And to allow for any distribution in the class makes
the optimisation harder and at a certain point will be comparable to other
sampling techniques.

• This typically means there are also no asymptotically guarantees that the
resulting samples we collect through the density q are exact samples from
the true distribution.

11

2. Preliminaries

• There tend to be limitations in terms of what class of distributions to
choose from, as it is not straightforward to optimise for a given class of
distributions. This is in general for any true distribution, but the true
likelihood can also create problems in itself (for example, the posterior
distribution of the weights of a neural network). This limitation gives
surely an additional weight to the two cons above.

A point worth mentioning, but hard to assign as pro or con, is the fact that
variational inference—in theory at least—is a deterministic method contrary
to MCMC for example. Stochasticity can add stability and effectiveness to a
method, yet it does introduce unpredictability, so there is no clear cut answer
to whether such a quality is good or not (we for instance introduce stochasticity
into optimisation schemes such as SGD).

There is definitely a place and time for variational inference, but one must
be aware of its shortcomings. If the true distribution allows for something akin
to MCMC given reasonable computational power and the estimates acquired
have a large impact and even detrimental if it is off by much, then there is no
doubt that other sampling techniques have the upper edge, and it ought to
be preferred over variational inference. However, there are many applications
where methods such as MCMC are infeasible and demand an alternative. If
not for methods such as variational inference, the options left tends to be point
estimates.

Bayesian Inference and KL-divergence

Even though there are many scenarios where variational inference can be applied,
there has been quite a surge of interest in regard to approximating true posterior
distributions. Some of the explanation for this is simply that their is a need
for posterior distributions over models with a large parameter space, instead
of opting for point estimates that can often convey false confidence based off
limited data/evidence. The divergences of choice have often been the Kullback-
Leibler divergence. There happens to be a bound on this divergence that has
made it possible to use the divergence, and indeed quite handy to use.

The goal of variational inference under Bayesian inference and KL-divergence
can be written as

q∗ = arg min
q∈Q

KL(q(z)‖p(z | x)) (2.3)

= arg min
q∈Q

∫
Z

log
(

q(z)
p(z | x)

)
q(z)dz. (2.4)

A problem with optimising using KL-divergence directly is the fact that we are
still in need of computing p(x), i.e. the evidence. This can easily be seen by
rewriting the KL-divergence as follow,

KL(q(z)‖p(z | x)) =
∫
Z
q(z) log q(z)dz −

∫
Z
q(z) log p(z | x)dz

=
∫
Z
q(z) log q(z)dz −

∫
Z
q(z) (log p(z,x)− log p(x)) dz

= Eq(log q(z))− Eq(log p(z,x)) + log p(x). (2.5)

12

2.3. Variational Inference

We can therefore not optimise directly with the divergence, but the choice of q
does not affect p(x), hence we may ignore the term as a constant and optimise
without it. As p(x) ≥ 0, means we are optimising using a lower bound of
the KL-divergence as an objective function. The lower bound is known as the
evidence lower bound and is defined as

ELBO(q) = Eq(log p(z,x))− Eq(log q(z))
= Eq(log p(x | z)) + Eq(log p(z))− Eq(log q(z))
= Eq(log p(x | z))−KL(q(z) || p(z)), (2.6)

where we have also flipped the signs of the original lower bound, which means
our new objective is

q∗(z) = arg max
q∈Q

ELBO(q). (2.7)

Equation (2.6) reveals the familiar trade-off between the new information
represented through the likelihood and our prior belief. The first term wants
to have high density around z’s that explain the data well, i.e. where the
likelihood is high. The second term incentives find a approximation similar to
the prior distribution and hence make the divergence small. The more data
we acquire, the more concentrated the likelihood is, the more we must tailor
our approximation towards the likelihood—and therefore the posterior—due
to the aforementioned reasons, putting less weight on the prior. Hence, using
the objective function aligns with the Bayesian framework and gives a similar
interpretation.

There is clearly no real difference between minimising Eq(log q(z)) −
Eq(log p(z,x)) or maximising ELBO, but the latter gives us another reason to
use the KL-divergence, which is the fact that ELBO is a lower bound of the log
evidence, log p(x). This can be seen through

log p(x) = log
∫
Z
p(z,x)dz

= log
∫
Z
q(z)p(z,x)

q(z) dz

= logEq
(
p(z,x)
q(z)

)
≥ Eq

(
log
(
p(z,x)
q(z)

))
= ELBO(q),

where the inequality is Jensen’s inequality (Jordan et al. 1999). Alternatively,
we can see the lower bound of log evidence using Equation (2.5) (Blei et al.
2017). That is,

KL(q(z) || p(z | x)) = Eq(log q(z))− Eq(log p(z,x)) + log p(x)
log p(x) = KL(q(z) || p(z | x)) + ELBO(q).

As a divergence by definition is greater than or equal to zero implies

log p(x) ≥ ELBO(q).

13

2. Preliminaries

The first approach relates the bound to the Jensen gap, which in our case is

Eq
(

log
(
p(z,x)
q(z)

))
− log

(
Eq
(
p(z,x)
q(z)

))
,

and how close to zero it is. At the same time, the other approach confirms that
our objective in Equation (2.3) gives the tightest bound with respect to the
evidence. Regardless, ELBO is a lower bound on the evidence (hence its name
evidence lower bound), which is why it has also been used for model selection
(Cherief-Abdellatif 2019).

Mean-Field Variational Inference

The most common variant of variational inference is the mean-field variational
family. The core idea behind all the classes of distributions Q which are included
in the mean-field variational family, which is to restrict them to be independent
of each other. That is, with z ∈ RD,

q(z) =
D∏
d=1

qd(zd), q ∈ Q.

This is a quite crude restriction and will in most cases not reflect the true
posterior, on the flip side, it allows for fast and cheap optimisation. Its
effectiveness computational wise is also reflected by the fact that the earliest
variational inference research focused on this particular family (Saul et al. 1996).
The independence means that when fixing the value of all other terms than zd,
the ELBO can be rewritten as

ELBO(q) = Eq (log p(z,x))− Eq (log q(z))

=
∫
Z
q(z) log p(zd | x, z−d)dz −

∫
Zd
qd(zd) log qd(zd)dzd + const.

where −d indicates all but dimension d. Maximising w.r.t. to zd and take the
derivative on each side,

∂

∂zd

(∫
Zd
qd(zd) log qd(zd)dzd

)
= ∂

∂zd

(∫
Z
qz log p(zd | x, z−d)dz + const.

)
log qd(zd) =

∫
Z−d

q−d(z−d) log p(zd | x, z−d)dz−d.

Which gives us, taking into account normalisation,

q∗d(zd) = exp [E−d (log p(zd | x, z−d))] . (2.8)

Hence, the independence in q bring about a way to optimise, which is
to iteratively update each variable following Equation (2.8), repeating the
procedure until we meet some stopping criterion based on ELBO. This
optimisation scheme is called Coordinate ascent variational inference (CAVI)
(Bishop 2006).1

1There are some striking similarities between CAVI and a sampling technique; Gibbs
sampling. Gibbs sampling iteratively samples from its conditional distribution, conditioned
on the other dimensions and where the other dimensions are held fixed. This is outside the
scope of this text, but for the curious ones, see Blei et al. 2017

14

2.4. Neural Networks

In theory, one can use any class of distributions, as long as it includes inde-
pendence. However, there are practical considerations regarding optimisation
and so forth, which limits our choices.

Finally, there are plenty of issues to pertain to regarding mean-field. One is
scaling the method to larger and larger data sets, in which lot of work has been
done introducing stochastic optimisation (Zhang et al. 2019). The independence
requirement is quite strict, and this leads to problems. To illustrate this we
can consider a two dimensional independent Gaussian q and highly correlated
Gaussian as the true distribution. Using KL-divergence, one can show that
the optimal q finds the correct variance to each dimension, but struggle with
covering the density induced by the correlation, i.e., it struggles with the tails.
Opposite if we reverse the terms in the KL-divergence (sometimes referred to as
expectation propagation), as we covers tails, but overshoot the variance (Bishop
2006). Hence, there are considerations to be made on different divergences.
These are all important issues, but in this thesis we will expand on the flexibility
of the class Q.

2.4 Neural Networks

We now shift gears to introduce neural networks, which is heavily used in the
rest of the thesis. Deep learning, and in particular deep neural networks, have
sprung up in recent decades as a powerful tool in approximating a diverse
set of functions. Although its development can be traced back much further
(McCulloch et al. 1943), the advancements, in terms of computational power,
made the last half of a century have allowed for high dimensional parameterized
models such as neural networks to flourish. As the years have passed, the
number of different models that are considered deep learning models have
increased (Goodfellow et al. 2014; Hochreiter et al. 1997; LeCun, Boser et al.
1990; Vaswani et al. 2017), and it is hard to give an all-encompassing definition.
Vaguely, a common theme is to transform the input through combining linear
combinations and simple nonlinearities, which are often elementwise functions.

The different architectures/models can in some sense be seen as adding
inductive biases. Inductive biases are essentially any assumptions you make and
build into the model, typically domain or problem specific. On a macro level it
can be assumptions relating to locality in images (LeCun, Boser et al. 1990), the
sequential nature of language and relations of words further apart (Hochreiter
et al. 1997) etc., or more on a problem specific level. Indeed, one may even see
priors as inductive biases. These assumptions are of great value and have made
deep learning excel on a diverse field of domains and problems; they can also
be seen in the light of the no-free-lunch theorem, namely that inductive biases
may help to delegate more weight to specific problems at hand, and decrease
performance in other areas (Wolpert et al. 1997). Although it is out of the
scope of this thesis to present a comprehensive introduction to different deep
learning models, we will define the ones we are in need of. Sometimes it is
useful to refer to other models, say convolutional neural networks (CNN), and
we assume that the reader is versed in the basics of the most well-known deep
learning schemes to follow a comparison or reflection etc.

Thinking generally of neural networks as compositions of linear combinations
and rather simple elementwise nonlinearities, one may raise the question of what

15

2. Preliminaries

the network can approximate. We shall later see the results prompted by this
question for specific architectures, but we first take a step back and consider
the case of elementwise functions combined with additions. It turns out that
one can approximate any continuous function while only allowing elementwise
functions and addition. As an answer to part of the thirteenth problem stated
by Hilbert 1902, the Kolmogorov-Arnold representation theorem was proven
(we use ID to mean unit cube in D-dimension):

Theorem 2.4.1 (Arnold 2009; Kolmogorov 1957). We define the continuous
functions γd,t : I1 → I1 and γt : R → R. When D ≥ 2, for any continuous
multivariate functions f : ID → R, there exists functions γd,t and γt, such that
f can be represented as

f(x) =
2D+1∑
t=1

γq

(
D∑
t=1

γd,t(xd)
)
.

Although the theorem demonstrates the potential expressiveness of linear
combinations combined with univariate functions, the functions γd,t, γt on
the right-hand side turns out to be very nonsmooth and complex, hence in
reality they are hard to utilise. It turns out that changing the addition to
linear combinations, the γ’s with simpler nonlinearities, and compensating by
increasing the number of summations, leads to neural networks and which
have similar results, but now as an approximation of f , as the theorem above
(Cybenko 1989).

Construction of Networks

An essential part of a neural network is the activation function, which provides
the nonlinearity aspect mentioned previously.2

Definition 2.4.2 (Kidger et al. 2020). An activation function γ : R→ R is any
function that includes the following properties:

• The function is continuous.

• Nonaffine, i.e. γ(x) 6= a · x+ b.

• There exist at least one point in the domain, such that at that point,
∂
∂xγ(x) is continuous and not equal zero.

Remark 2.4.3. There are many ways to define an activation function and
many functions have been designed and tested. We restrict ourselves to the
requirements above due to the theoretical considerations we discuss later, and
this definition is still quite broad and captures all state-of-the-art functions
used.

In practice, we often see an activation function that includes some extra
properties, which typically are continuously differentiable almost everywhere
and monotone. We have included some of the most common functions in
Table 2.1.

2We refer to a neural network both as a general concept and as a multilayer perceptron—
which we define in this section—relying on context to separate the two.

16

2.4. Neural Networks

Table 2.1: Some of the most common activation functions used in neural
networks.

Name Function
Sigmoidal logistic γ(x) = 1

1+e−x
ReLU γ(x) = max{x, 0}

Leaky ReLU γ(x) = max{x, 0}+ α ·min{x, 0}
ELU γ(x) = max{x, 0}+ α ·min{(ex − 1), 0}

Definition 2.4.4. A hidden layer is a continuous function Ψl : RDl−1 → RDl
which comprises of an activation function γ, weight matrix Wl ∈ RDl,Dl−1 , and
a bias bl ∈ RDl . It is defined as

xl = Ψl(xl−1) = γ(Wlxl−1 + bl),

where the activation function is applied elementwise.

We can now construct a neural network using hidden layers as building
blocks.

Definition 2.4.5. An L-layered neural network is a continuous function
Ψ: RD0 → RDL+1 of the form

Ψ(x0) = WL+1 (ΨL ◦ΨL−1 ◦ · · · ◦Ψ1(x0)) + bL+1,

where WL+1 ∈ RDL+1,DL and bL+1 ∈ RDL+1 . We denote the space of networks
as NN [L,D,γ], where

D = D1

∨∧

D2

∨∧ · · · ∨∧ DL−1

∨∧

DL,

is the dimension of the hidden layers, i.e., D1 dimension in the first hidden layer
and so on. If equal for all layers, we write NN [L,D,γ], where D ∈ Z+.

We remind the reader that each xl,d, and with slight abuse of notation Ψl,d,
for all d ∈ Dl and l ∈ {1, . . . , L} is called a neuron or a node. Moreover, the
notation ∨∧ , which granted is not common, is used to represent the number of
nodes in each layer. That is, if a network has 256 neurons in the first hidden
layer, 512 in the second, and 128 in the third, we can represent it by simply
writing 256 ∨∧ 512 ∨∧ 128. This comes in handy during empirical testing with
different sizes of the network.

We typically find the weights and biases of the neural networks through
optimising a loss function L, on a data set D . In an unsupervised setting, e.g.
generative models, the data set is D = {x1, . . . ,xN}. And in a supervised
setting, or a generative setting with a latent set for example, the data set is
D = {(x1,y1), . . . , (xN ,yN)}. Importantly, one partition the data set into
two, or possibly three parts; a training set, test set, and possibly a validation
set if model selection is required (e.g. tuning hyperparameters like amount of
regularisation), unless the data set is quite limited, in which case we deploy
cross-validation (J. Friedman et al. 2001). Assuming a supervised setting, the
weights can then be chosen as

Ŵ = arg min
W

{L(yn,Ψ(xn)) : (xd,yd) ∈ D},

17

2. Preliminaries

where we let W = {W1, b1, . . . ,WL+1, bL+1}.
Typically, the connections, i.e., arrows in Figure 2.1, goes from one layer

to the next. We can also add connections from a node Ψl,d to another Ψl′,d′ ,
where l < l′ − 1, in which we refer to it as a residual connection.

Definition 2.4.6. A residual block is any layer Ψl in a neural network Ψ such
that every node in Ψl contains a residual connection to every node in another
layer Ψl′ , where l < l′ − 1. Every residual block is also associated with a weight
matrix and bias Wres ∈ RDl′ ,Dl , bres ∈ RDl′ , with an intermediate layer Ψres

l′

added between l′ and l′ + 1,

Ψres
l′ = Ψl′ +Wres Ψl + bres.

We may have residual blocks where not every node contains a residual
connection to another, by simply constricting the relevant weight in Wres to be
0. As a final note, it is often assumed that a residual block are done with no
affine transformation, i.e. Wres = I and bres = 0, but this may not be the case
and are problem dependent. We have illustrated residual blocks in Figure 2.2,
in a vectorized fashion.

Universality

As noted earlier, the combination of linear combinations and univariate functions
can represent a large class of functions. Restricting the univariate function, but
adding more terms in the summation, can asymptotically—w.r.t. the number
of terms in the summations—approximate any real continuous function.

Definition 2.4.7. Let F be a set of models which approximate a class of functions
G. F is a universal approximator for G if it is dense in G. That is, given any
G ∈ G and ε > 0, there exist a model F ∈ F such that

‖F (x)−G(x)‖ < ε,

for all x in the given domain and w.r.t. a given norm. Unless otherwise specified,
the norm is understood to be the uniform norm ||·||∞.

Input node

Hidden node

Output node

Trainable weights

x1

x2

x3

Ψ1,1

Ψ1,2

Ψ1,3

Ψ1,4

L1

Ψ2,1

Ψ2,2

Ψ2,3

Ψ2,4

L2

Ψ3,1

Ψ3,2

Ψ3,3

Ψ3,4

L3

y1

y2

Figure 2.1: A neural network Ψ with 4 ∨∧ 4 ∨∧ 4 dimensions of hidden layers.
Each hidden node is calculated according to Definition 2.4.4, with the arrows
indicating weights and bias omitted from the graph.

18

2.4. Neural Networks

x Ψ1

L1

Ψ2

L2

Ψ3

L3

+ y

WresΨ1 + bres

Figure 2.2: Vectorized view of a neural network, with a residual block from
hidden layer 1 to the last hidden layer before output.

In a neural network context, we have two different sets of models, one with
arbitrary width and bounded depth, and one with arbitrary number of hidden
layers and bounded width. That is,

Fwidth =
∞⋃
D=1

{
NN [L,D,γ]

}
,

for some finite L. And equivalently for the arbitrary depth,

Fdepth =
∞⋃
L=1

{
NN [L,D,γ]

}
,

for some finite number of neurons D in every hidden layer. The original result
is with respect to arbitrary width and shows neural networks ability regarding
continuous functions.

Theorem 2.4.8 (Cybenko 1989; Hornik 1991; Pinkus 1999). Let γ be any
activation function which is also nonpolynomial. Let Fwidth have 1 hidden
layer, and X ⊆ RD0 be compact. Then Fwidth is a universal approximator for
C(X ,R).

A quite recent result extends the universality to depth and to any activation
function (per what we defined). There are other results regarding arbitrary
depth (Lu et al. 2017), but we deploy the following result.

Theorem 2.4.9 (Kidger et al. 2020). Let Fdepth have D0 +DL+1 + 2 neurons
in each hidden layer and X ⊆ RD0 be compact. Fdepth is then a universal
approximator for C

(
X ,RDL+1

)
.

Hence, we can approximate any continuous function arbitrarily well, as long
as we can extend our network with more layers. Additionally, if we constrain
our activation function to be ReLU, we can drop the two extra neurons in the
theorem above, but prefer the result above as it is more general (Hanin et al.
2017). However, we must stress to interpret the results with some caution.
That is to say, this is by no means a guarantee for neural networks trained
with finite width and depth, and more importantly, with finite data and any
particular optimisation scheme. This does not mean the results are useless
by any stretch of the imagination. We reflect more on universality and its
usefulness in Section 3.6.

19

2. Preliminaries

2.5 Conditional Neural Network

In this section we start by introducing a well known type of neural network,
called the masked autoencoder for distribution estimation (MADE) (Germain
et al. 2015). We then generalise the idea of MADE, and introduces a new type
of neural network called conditional neural network. An important network
architecture which is heavily relied on in the following chapters.

MADE started out as a variant of an autoencoder.

Definition 2.5.1. An autoencoder is a neural network consisting of a encoder
Ψenc : X → Z and decoder Ψdec : Z → X , with Z being the latent representation
of X . An autoencoder is the function

Ψ(x) = Ψdec ◦Ψenc(x).

The loss used for autoencoders is typically the reconstruction loss, i.e

L(x) = ||x−Ψ(x)||22.

Focusing on vectors x ∈ X where each component is binary, either one or zero,
and adding a logistic function at the output of the decoder, one may consider
the cross-entropy loss instead of reconstruction loss. The new loss is then given
by

L(x) =
D0∑
d=1
−xd log x̂d − (1− xd) log(1− x̂d), (2.9)

where x̂ = Ψ(x). However, the expression above does not necessarily constitute
a log-likelihood, which is the problem MADE is made for. This is to create a
log-likelihood estimated for the binary case, and hence turn the autoencoder into
a generative model (one can sample knowing the probability for when it is one
and when it is zero). They enforce the loss function to be negative log-likelihood
by rewriting Equation (2.9)—applying the autoregressive property—by simply
changing x̂d = Ψ(xd | x<d). That is, the autoencoder computes the value for
xd using only itself and dimensions before it. Which means we can interpret
the output value as x̂d = p(xd = 1 | x<d), and the loss function is then equal to
the negative log-likelihood. Hence, the question that needs an answer is how to
construct an autoencoder, or more generally a neural network, which ensures
the output follows the autoregressive property.

We generalise the concept given above from the binary autoencoder case
used in the original paper, to any neural network with any outputs which wish
to compute each output value yd based on specific dimensions of the input (i.e.
not only for the autoregressive case). Letting Ψl,d represent the node in layer
l and component d in the network, we define a function for each hidden layer
and output layer l ∈ {1, . . . , L+ 1},

ml : {1, . . . , Dl} → P ({1, . . . , D0}) , (2.10)

where P(S) is the power set of a set S, i.e., the set with all possible subsets of
S. We also add a mapping to input layer m0(d) = {d} for all d ∈ {1, . . . , D0}.
A node Ψl,d can only be connected to a node in the previous layer Ψl−1,d′ if
and only if ml−1(d′) ⊆ ml(d). This is equivalent to restricting weight matrices

20

2.5. Conditional Neural Network

to have nonzero values at row d and column d′ if and only if ml−1(d′) ⊆ ml(d).
Which is equivalent to creating a mask Ml ∈ {0, 1}Dl,Dl−1 for every hidden
layer and output layer, such that

(Ml)d,d′ =
{

1, if ml−1(d′) ⊆ ml(d)
0, otherwise.

We can then redefine the hidden layer to be

Ψl(xl−1) = γ ((Wl �Ml)xl−1 + bl) ,

and the complete network becomes

Ψ(x0) = (WL+1 �ML+1) (ΨL ◦ΨL−1 ◦ · · · ◦Ψ1(x0)) + bL+1,

where � is the Hadamard product. It is typically the latter definition, namely,
using masks that are implemented and hence the name masked autoencoder for
density estimation.

The view above is quite general, and it is often not very interesting to have
the image of ml to be the whole power set. We therefore proceed to specify
the problem, which guides us to an adequate range for the mappings ml, and a
fully fledged definition of conditional neural networks.

Masks

We are making models that compute each output variable restricted to a subset
of the input variables, in an efficient manner. We therefore have a mapping
which informs us of the relationship between input and output for every variable,
respectively. Let such a mapping be denoted by c(yd) = {d′ : yd | xd′} (note
that we are not necessarily talking about this condition in terms of probability).
With this in mind, we can shrink the range of the functions ml and define first

Cmin =
DL+1⋃
d=1

c(yd) (2.11)

which is the smallest possible range where every output variable can be computed
using all its dependencies. The range is then set to be

C =

DL+1⋃
d=1
P(c(yd)) \ {∅}

⋃ Cmin, (2.12)

where the last union is there to ensure the empty set is included if the output
variable is to be calculated by a constant. Otherwise, we exclude the empty set
as it enforces neurons to have no connections from the last layer, and hence be
a constant. The range also allows for output variables that depend on all input
variables, akin to a regular neural network.

The largest and perhaps most impactful difference between Cmin and C is the
fact that one can choose sets that are subsets of several c(yd) sets. If for instance
a pair of output variables yd and yd′ depend on the exact same input variables

21

2. Preliminaries

apart from one each, it may make sense to assign the shared subset to more
nodes in the start of the network, and more at the end of the network assign
more nodes which lets each node use every possible input variable available to
yd and yd′ respectively. However, there are still many sets in C that is a subset
of just one c(yd), which means that it restricts nodes to use fewer of the input
variables available. This can have a regularisation effect, as you are effectively
setting some weights that can take any value to zero, yet they may simply be
in the way sometimes and make the generating of masks more clouded. It can
therefore be beneficial to shrink the range more to

Cs =

 ⋃
D∈P(D)

{⋂
d∈D

c(yd)
}
\ {∅}

⋃ Cmin,
where D = {1, 2, . . . , DL+1}. The set Cs combines the sharing aspects by
including all intersections between the different output variables dependencies,
but also every set c(yd). This is one of the most efficient ways to ensure what
was previously discussed about sharing information complemented with using
all information available for each output variable. In the remaining part of this
chapter we will simply use C, but the theoretical results to follow in Chapter 4
holds for any arbitrary set Ca as long as Cmin ⊆ Ca.

CONN

We can now give a reasonable definition of conditional neural networks.

Definition 2.5.2. For all input dimensions we set m0(xd) = {d}, for l ∈
{1, . . . , L} we set ml : {1, . . . , Dl} → C, and for every d ∈ DL+1 we have
mL+1(yd) = c(yd). A conditional neural network (CONN) is a L-layered neural
network where each hidden layer is of the form

ΨCONN
l (xl−1) = γ ((Wl �Ml)xl−1 + bl)

and the network is of the form

xL+1 = ΨCONN (x0) = (WL+1 �ML+1) (ΨL ◦ΨL−1 ◦ · · · ◦Ψ1(x0)) + bL+1,

where all masks Ml are induced by the mappings ml.

One can easily confirm that the corresponding output yd of a CONN model
is actually computed using only {xd : d ∈ c(yd)}. The first hidden layer has
nonzero weights at exactly row d and column d′ iff m0(d′) ⊆ m1(d), by the
definition of CONN and how the masks are used. As m0(d′) = {d′}, means the
nonzero weights are exactly the set that connects Ψ1,d to {xd′′ : d′′ ∈ m1(d)}.
This means Ψ1,d is computed using at most the input variables corresponding
to m1(d).

Assuming every node Ψl−1,d′ is computed using at most {xd′′ : d′′ ∈ ml−1(d′)},
for any arbitrary layer l − 1 ≥ 0. Nodes in the next layer Ψl,d has nonzero
weights exactly where the corresponding mapping fulfills

ml−1(d′) ⊆ ml(d), (2.13)

22

2.5. Conditional Neural Network

again by the definition of CONN and masks. Due to the assumption made
earlier, Ψl,d is computed using⋃

d′:ml−1(d′)⊆ml(d)

{xd′′ : d′′ ∈ ml−1(d′)} .

By Equation (2.13), we have that this is at most ml(d). Hence, by induction,
Ψl,d is computed using {xd′ : d′ ∈ ml(d)}, for all layers l and dimension d.

As mL+1(d) = c(yd), by induction, we can safely state that the output yd is
computed using at most {xd′ : d′ ∈ c(yd)}.

The setting of CONN, in which becomes of utmost importance for our usage
later, is where we wish to compute one or more output variables per input
variable, which means we need to add a constraint to the output dimension
DL+1 to be the multiple of the input dimension, i.e. DL+1 ≡ 0 (mod D0). We
then partition the output vector into K = DL+1/D0 parts, and assign each its
unique variable xd referred to as yd. To further clarify the point and illuminate
CONNs generally, we illustrated the CONN model, with said constraint, in
Figure 2.3.

x1 x2 x3

y1 y2 y3

M1 =

M2 =

M3 =

x1 x2 x3

y1 y2 y3

Ψ Masks
⊙

ΨCONN=

Figure 2.3: Illustration of the application of masks to a 2-layered neural
network (left) and the resulting CONN (right). The example has a conditional
structure (c(y1), c(y2), c(y3)) = ({2, 3}, {1, 3}, {2}) and K = 2. The
mappings are the following: m0 = ({1}, {2}, {3}), m1 = ({2, 3}, {1}, {3}),
m2 = ({2, 3}, {3}, {1}, {2}), m3 = (c(y1), c(y2), c(y3)).

If we are considering the autoregressive property as with MADE, i.e. c(yd) =
{d′ : d′ < d}, the mappings and masks can be rewritten as m̂l(d) = max(ml(d))
and

(M̂l)d,d′ =
{

1, if m̂l−1(d′) ≤ m̂l(d)
0, otherwise.

This is similar to the masks in the original paper (Germain et al. 2015), but
they have defined the functions ml slightly differently. This is the main idea
behind MADE and CONN, which will become apparent as very useful when we
have defined flow-structures Section 3.3 and conditioners Section 3.4.

23

2. Preliminaries

Agnostic Training

A final part that the original paper (Germain et al. 2015) discussed, and which
we include is agnostic training. Shuffling the input variables before running them
through the network is known as order-agnostic training. This can according to
Germain et al. 2015 be beneficial for cases when some value of the input vector
is missing in a particular observation, where one can still calculate the output
by having the known values first in the vector. Secondly, one can generate some
form of ensemble, i.e., a collection of models which can be averaged through
simply sending in the input vector with different ordering. This can make sense
for conditional structures such as the autoregressive one, as every ordering is a
valid one. In the more general setting, one can only consider shuffling variables
xd when the two conditionals are both valid. We will not consider this property
when using CONN in our work, but one ought to know of it and its potential
usage.

These networks play an important role in a large class of normalizing flows,
yet have not been properly studied theoretically, as far as we are aware. In
Chapter 4 we investigate the universality of such networks, and we also apply
such networks in Chapter 5. We are now ready to introduce normalizing flows.

24

CHAPTER 3

Normalizing Flows

3.1 Introduction

Normalizing flows are a rather new invention and comes with both promising
attributes and many unanswered problems. It is hard to give a detailed definition
of normalizing flows, but as an attempt, an all-encompassing definition can
be given as sampling from a simple distribution, applying a transformation f ,
which ought to allow for easy computation as well as easy inversion, and where
one can evaluate the exact density—preferably with ease. Such a definition is
quite broad and vague, but what it certainly emphasises is that normalizing
flow transforms samples and aligns itself with methods such as Whitening
transformations (J. H. Friedman 1987; Johnson 1966) and Copulas (Sklar 1959).
The requirement for both fast computation, inversion, and density evaluation
lets normalizing flows lend itself to both density estimation and variational
inference, as alluded to in the first chapter. In this chapter we do not emphasise
much the differences between the two, but it is more highlighted empirically
in Chapter 5. Specifying the flows we are interested in, roughly speaking, are
normalizing flows which exploits the power of neural networks, but without
compromising properties such as exact density evaluation. That is not to say
we do not consider other flows which do not leverage deep learning, but that
most of the flows we study do.

Our main goal in this chapter is to both introduce normalizing flow, but
also attempt to make a coherent theory around flows. We therefore attempt to
split flows into components, analysing them, before putting them together into
flows that we recognise in the literature. We also try to give a better definition
of what it means for a flow to be flexible or expressive.

The chapter can be outlined as follows. In Section 3.2 we define normalizing
flows in a general manner, discussing what transformations we allow, and
ending with a canonical example that hopefully concretise flow and also can be
helpful moving onward. In Section 3.3 we start dissecting normalizing flows into
components, introducing structure. Informally, it tells what variables influences
the transformation of another variable. We give a new formal definition of
this concept and we both analyse and show neat new results that follows. In
Section 3.4 and Section 3.5 we introduce the last parts of our dissection, defining
how one transform the variable and give an overview of what transformations
exists in the literature. In this part our only contribution is completing our new
theory and analyse the different transformations that have been introduced in

25

3. Normalizing Flows

the literature. In Section 3.6 we aim to define what it means for a flow to be
universal, and then give a comprehensive review of existing results—both in
terms of universality and limitations.

In the end we have a fully fledged framework of normalizing flows, while
also having introduced the reader for the current literature. We then proceed
to develop the theory further in Chapter 4.

3.2 Flows

The first part of a normalizing flow is the base distribution. Simply put, any
distribution Q = (Z0,B(Z0), µ), are known as the base distribution or base
probability space if it can efficiently evaluate the density and effectively generate
samples. The most common ones in the literature today are the Gaussian
distribution, the Student-t distribution, and uniform.

The second part of a normalizing flow are the transformations of a sample
z0 from base density to a different and hopefully more complex distribution.
The aim of this section is to define normalizing flow formally, which we start by
defining a pushforward measure.

Definition 3.2.1 (Kobyzev et al. 2020). If (Z0,ΣZ0), (X ,ΣX) are measurable
spaces, f is a measureable mapping between them, and µ is a measure on Z0,
then one can define a measure on X as

f∗µ(X) = µ
(
f−1(X)

)
, for allX ∈ X . (3.1)

The measure f∗µ(X) is known as the pushforward measure.

Let (X ,ΣX , ν) be the measure space we are interested in. Normalizing
flows can be seen as a framework that describes classes of functions f and a
simpler measure space (Z0,ΣZ0 , µ), such that f∗µ = ν. When µ is a probability
measure implies that the pushforward measure w.r.t f is also a probability
measure. This can easily be proven by the fact that

f∗µ(X) = µ
(
f−1(X)

)
= µ(Z0) = 1

and by letting {Xi : i = 1, 2, 3, . . . } be sets with pairwise disjoint elements, we
have

f∗µ

(∞⋃
i=1

Xi

)
= µ

(∞⋃
i=1

f−1(Xi)
)

=
∞∑
i=1

µ
(
f−1(Xi)

)
=
∞∑
i=1

f∗µ(Xi).

Hence, we have countable additivity, which means both the requirements for
a probability measure are fulfilled. Normalizing flows can therefore be seen
as, starting with a simple probability space (Z0,ΣZ0 , µ), applying f on it to
achieve a pushforward distribution (X ,ΣX , f∗µ). The goal being to find f such

26

3.2. Flows

that the pushfoward distribution is as close as possible to (X ,ΣX , ν), w.r.t. a
divergence measure.

The view above is quite general and does not lend itself directly to finding
an exact density of the pushforward distribution. To achieve this, we need to
constrain the class of functions f and the probability space. The probability
space is already constricted to continuous distributions and is not a concern.

Limiting the function f will be the other necessary component, such that
we can evaluate the density of the pushforward measure.

Definition 3.2.2. A function f : RD → RD is a diffeomorphism if it is bijective
and both itself and its inverse are differentiable. If f and f−1 is r times
continuous differentiable, we define it as a Cr-diffeomorphism.

Restricting ourselves to f being at least a C1-diffeomorphism is unnecessary
and limiting. We therefore define piecewise diffeomorphisms w.r.t. some
distribution.

Definition 3.2.3. Let (X ,B(X), µ) be a probability space with a density p.
Let Xi for i = 0, 1, 2, . . . , k be a partition of X such that µ(x ∈ X0) = 0. A
piecewise-diffeomorphism f : X → RD is continuous and restricted to Xi is a
diffeomorphism. That is, fi : Xi → RD is a diffeomorphism, for all i = 1, 2, . . . , k.
All fi’s are Cr-diffeomorphisms makes f a piecewise Cr-diffeomorphism.

Hence, we shall restrict our choices of f to be piecewise C1-diffeomorphisms.
We can now easily evaluate the density of the pushforward measure, by this
well known theorem.

Theorem 3.2.4. Let Z0 ⊆ RD and (Z0,B(Z0), µ) be the base probability space.
Let f be a C1-diffeomorphism, where qz0 is the density of the base probability
space. Then the density of the pushforward distribution induced by f , is defined
as

qx(x) =
k∑
i=1

qz0(f−1
i (x)) |det(Jf−1

i
(x))|, (3.2)

where Jf−1
i

(x) is the Jacobian of the function f−1
i evaluated at x.

Hence, we can always evaluate the density of the transformed data, which is
one of the major advantages normalizing flows has compared to other popular
generative models such as GAN. A special case of the Theorem 3.2.4 is when
k = 1, which gives us the well-known formula

qx(x) = qz(f−1(x))|det
(
Jf−1(x)

)
|.

From the fact that the transformation is invertible, allows us also to rewrite
the Jacobian above to [Jf (z0)]−1, where z0 stems from the base distribution.
This follows from the fact that the Jacobian of the identity function f−1(f(z0))
is simply the identity matrix. Applying the chain rule, we have

ID = Jf−1◦f (z0) = Jf−1(f(z0)) Jf (z0)
[Jf (z0)]−1 = Jf−1(x),

where the inverse exists as the function is inverse, which means that the
determinant of the Jacobian is nonzero, which means the matrix is inverse.

27

3. Normalizing Flows

This is a minor point, but is essential in regard to training. As in a maximum
likelihood situation, we wish to send the data backwards towards the base
density, and we can then calculate the Jacobian of the inverse simultaneously.
While in a variational inference situation, we wish to sample the data and
transform it so we can evaluate the target likelihood. It is then computationally
wise to compute the Jacobian of the forward flow. Hence, the equality can be
important in terms of computational speed when implemented.

Strengthening the normalizing flow, we divide into several less complex
transformations. That is, using T ∈ Z+ transformations, compose the flow

f(z0) = fT ◦ fT−1 ◦ · · · ◦ f2 ◦ f1(z0)

=
T

©
t=1

ft(z0).

We let f be the flow and zt,d be the dth dimension transformed t times.
Equivalently, we let zt be the vector transformed t times.

The benefit of less complex transformations ft is that we can use rather
simple, often computationally faster functions, and often scale linearly in terms
of composition, i.e., increasing T . It also allows for sharing of information
between the dimensions, while allowing for quick evaluation of the density,
which we shall come back to in Section 3.3. Using several transformations,
where each transformation may give an easy to calculate Jacobian, means that
we can easily find the density of the pushforward measure (as long as we keep
the dimension of each time step t equal). Applying the chain rule, we have

det
(
J©1

t=T f
−1
t

(x)
)

= det
(
Jf−1

1
(z1) · · · Jf−1

T−1
(zT−1) · Jf−1

T
(x)
)
,

where zt = f−1
t+1 ◦ · · · ◦ f

−1
T−1 ◦ f

−1
T (x). Using then the fact that for square

matrices A,B we have det (A ·B) = det(A) · det(B), we get

det
(
J©1

t=T f
−1
t

(x)
)

=
T∏
t=1

det
(
Jf−1

t
(zt)

)
.

In terms of density, one could have obtained the same result with regard to the
determinant of compositions through observing that the input zt−1 to ft also
have a density. We can then apply recursively Equation (3.2), and when k = 1
for all transformations, we have the base density times

∏T
t=1 det

(
Jf−1

t
(zt)

)
.

We can now define normalizing flows formally for the purposes of this thesis.
This will not be all-encompassing, as we are working with a specific probability
space and discrete time steps in our flow, i.e., t ∈ Z+. There are other flows
defined for continuous time and with discrete distributions, but is beyond the
scope of this thesis.

Definition 3.2.5. Let Q = (Z0,B(Z0), µ) be a probability space with Z0 ∈ RD.
Let ft be a piecewise C1-diffeomorphism for all t = 1, 2, . . . , T . A normalizing
flow (NF) is defined by (Q, f), where Q is the base probability space and
f = ©T

t=1ft is the flow. If the dimensions after each transformation ft is

28

3.2. Flows

constant, the induced density by letting a sample z0 from Q flow through f is
then given by

qzT (zT) =
kT∑
iT=1

· · ·
k1∑
i1=1

qz0

(1

©
t=T

f−1
t,it

(zT)
)

T∏
t=1

det(Jf−1
t,it

(zt)), (3.3)

where ft,it is the diffeomorphism of transformation t over partition it.

When f is a C1-diffeomorphism, we get the induced density

qzT (zT) = qz0

(1

©
t=T

f−1
t (zT)

)
T∏
t=1

det(Jf−1
t

(zt)).

Notice that in the definition of NF we have not included anything regarding
the target distribution. Even though we often speak about a flow and a target
distribution, the flow is simply defined by transforming samples from a base
distribution in such a manner that we can also evaluate the induced density.
The application of flows will necessarily be concerned with target distribution
and the minimisation of a measurement between target and flow induced density.
One can also ask questions about a particular flow and its capability/flexibility
w.r.t. target distribution. Ultimately, any combination of (Q, f) defined as
above is a flow, no matter how trivial or impractical the resulting distribution
is. We do, however, wish to find transformations f by considering the following
points.

• Flexible and expressive, such that we can always transform from Q to
any target distribution as described above.

• Limit the number of parameters to estimate.

• Computation wise, cheap to compute both inverse and the Jacobian
determinants.

Clearly, there may be some compromise between the first and the other two
points. Our goal is then to construct flows such that one can allow for high
expressitivity while remaining computationally feasible.

An Example of a Flow

Before we start deconstructing a normalizing flow into components, we find it
useful to introduce an example and deconstructing the example. This gives the
reader a certain sense of where we are headed, and a more complete picture, as
well as something less abstract. The terms introduced here may be unfamiliar to
the reader, but tying the concept to the word will ease the experience through
the next sections.

Example 3.2.6. A flow often referred to as an inverse autoregressive flow
(Kingma, Salimans et al. 2016), transforms every variable zt−1,d to zt,d, by
applying two parameters a, b. The two parameters are calculated by something
we define as a conditioner Ht,d. The domain of the conditioner is given by a
structure S. The structure tells which variables, including zt−1,d, to use when
transforming zt−1,d into zt,d. In IAF, we use

S(t, d) = {(t− 1, d′) : d′ ≤ d}.

29

3. Normalizing Flows

The conditioner uses all variables given by the structure except for zt−1,d to
compute at,d, bt,d, i.e.,

at,d, bt,d = Ht,d({(t− 1, d′) : d′ < d}).

We then apply these parameters to zt−1,d following a transformation

zt,d = ft,d(zt−1,d) = at,d · zt−1,d + bt,d.

The form/parametrization of computing zt,d, which in this case is an affine
transformation, is called a transformation. Hence, we have the structure that
tells us to use the d− 1 first variables from the last time step t− 1, to compute
the parameters using a conditioner, which then is applied to the variable zt−1,d
defined by the transformation.

We return to this example later on, when it is fruitful. We also take the
opportunity to address the overload of the term transformation. We both use it
when speaking about the transformation of z0, as in applying f , but also for
each step ft,d. We rely on context to differentiate between the two, but also try
to use ft,d consequently when discussing the transformation of each variable.
Furthermore, we shall refer to the parameters that actually transform zt−1,d,
e.g. (at,d, bt,d) in the example above, as the parameters of the transformations,
and the parameters attached to the conditioner, e.g. the neural network in
the example above, as conditioners parameters or trainable parameters. If the
flow does not use an conditioner, which we do encounter, then the two types of
parameters are the same. To conclude, it is the trainable parameters that we
can optimise, and the parameter of the transformation we apply to a variable
to transform it.

We are now ready to start dissecting the flow into different parts, analysing
each part by itself, before we finally put them together again to make flows
such as the IAF.

3.3 Flow Structure

When constructing transformations f one has to choose the form of the function
or the transformation, as well as the structure. By structure we mean which
variables zi,j is needed to calculate the transformation. The form of the
function is how the variables, given by the structure, are used. That is, when
transforming zt,d we apply ft,d(zt−1,d, . . .), where the dots indicate what other
variables needed to compute ft,d. There are two things we need to define, one
is what variables other than zt−1,d are needed, and the other is how we then
use these variables to compute ft,d. Some of the most popular flows can use a
myriad of structures, which we shall formalise here, and give rise to different
models. Therefore, while some transformations in the literature only allows for
a specific structure, others allow for a larger class of them. It is therefore useful
to explore what structures give different properties such as fast computation
of the Jacobian determinant. Usually, there are some popular choices that
are used, which we define later, which are often very well motivated, but we
are looking to generalise this to family of structures that can obtain certain
properties, and which we hence try to shed some light on in this section.

We introduce, for ease of readability, T = {1, 2, . . . , T}, T0 = {0} ∪ T , and
D = {1, 2, . . . , D}. Although the flow must start and end with the dimension D,

30

3.3. Flow Structure

this does not mean the t’th transformation must oblige to the same constraint.
As long as the flows follow Definition 3.2.5, then there is no problem. We
therefore define a set of sets, which contains the indices for each transformation
t ∈ T , namely Dt ∈ N,

DT := {D1, . . . ,DT−1,DT }
:= {{1, 2, . . . , D1}, . . . , {1, 2, . . . , DT−1}, {1, 2, . . . , D}}

where all Dt ≥ D and the last set oblige to the requirement of D dimensions in
the first and last transformation. Similarly to T , we also include a set for time
step 0,

DT0 = DT ∪ D0 = DT ∪ {1, 2, . . . , D},

where D0 = D to comply with the D dimensions in the first layer.
We also need to define a cross product between T and DT , which does

not follow the well-known Cartesian product. We therefore define another
cross-product,

T0 ⊗DT0 := {(t, d) : t ∈ T0, d ∈ Dt},

and similarly,

T ⊗ DT := {(t, d) : t ∈ T , d ∈ Dt},

Now we are ready to define what the structure of a flow is, in which we use
P(·) to mean the power set of the given argument.

Definition 3.3.1. Let (Q, f) be a normalizing flow. A flow-structure is defined
as a mapping

S : T ⊗ DT → P(T0 ⊗DT0),

The output S(t, d) for any particular (t, d) in the domain, is the set indicating
which variables in the flow that are used to calculate zt,d i.e., .

zt,d = ft,d({zi,j : (i, j) ∈ S(t, d)})

A structure is also required to have the following properties

• for any t ∈ T , d ∈ Dt, and d ≤ D, then (t− 1, d) ∈ S(t, d),

• for any t ∈ T , d ∈ Dt, and d > D, there exists a d′ ∈ Dt−1 such that
(t− 1, d′) ∈ S(t, d).

The to properties restrict the structure to contain a certain order of the
variables, hence we have a variable from last time step that is used when
applying ft,d. This means we can talk about a variable being transformed, or
more formally:

Definition 3.3.2. Let (Q, f) be a normalizing flow with structure S. For any
variable zt,d, t > 0, its predecessor is defined as

• zt−1,d if d ≤ D.

31

3. Normalizing Flows

• zt−1,i for some i ∈ Dt−1 if d > D.

Any variable must have one and only one predecessor. We let Sint(t, d) = (t−1, i)
where zt−1,i is the predecessor of zt,d, and Sext(t, d) = S(t, d)\{(t− 1, i)}.1

The point with flow structures is to give us information on what variables
influence what variables. That is, the transformation of zt−1,d is given by

zt,d = ft,d({zi,j : (i, j) ∈ S(t, d)})
= ft,d({zt−1,j : (t− 1, j) ∈ Sint(t, d)} ∪ {zi,j : (i, j) ∈ Sext(t, d)})

We will often write ft,d(zt−1,j), where zt−1,j is the predecessor, as a shortening,
knowing that we have a structure to inform which variables are needed to
compute the transformation. In addition, we abuse the notation somewhat and
allow to write zi,j ∈ S(t, d). Finally, we often use layer t or transformation layer
t when referring to all the variables in which have first index t, i.e. {zt,d : d ∈ Dt}.

It is very useful to interpret S as a graph. Let (Q, f) be a normalizing
flow with an accompanied flow structure S. We define a graph G with vertices
V = T0 ⊗DT0 and directed edges E given as

E = {((t′, d′), (t, d)) : (t′, d′) ∈ S(t, d) and (t, d) ∈ V }.

That is, there is an edge to (t, d) from all vertices in S(t, d). Equivalent to the
set definition above, there are two types of edges. We have Eint and Eext, with
E = Eint ∪Eext. These have the same interpretation as for the set definition,
i.e., edges from the predecessor and edges from "assisting" variables, respectively.
Continuing the Example 3.2.6, we have added a graph of the corresponding
structure S when D = 4 and T = 3 in Figure 3.1.

We hence allow S to both be referred to as the mapping in Definition 3.3.1
and also the graph it induces, with the context deciding which one. Typically,
if we speak about S itself, we tend to do it through graph G. When we are
talking about a specific variable and what it is dependent on, we refer to the
map S and the set it outputs for a given variable.

Transformation node

Exterior edges

Interior edges

z0,1

z0,2

z0,3

z0,4

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

z3,1

z3,2

z3,3

z3,4

Figure 3.1: The structure corresponding Example 3.2.6, with T = 3, D = 4,
and Dt = D for all t ∈ T .

1int is short for interior and refers to the fact that zt,d is directly transformed from the
interior variable. While other variables "assist" with the transformation from the "outside",
hence exterior (ext).

32

3.3. Flow Structure

DAGs

There are certain possible structures which give flows that either make little
sense, or at least not executable. For instance, structures that need each
other to calculate the next transformed variable, that is, (t, d) ∈ S(i, j) and
(i, j) ∈ S(t, d). This means that one needs to compute zi,j to compute zt,d,
and vice versa. One could perhaps think of it as repeating the transformation,
alternating between updating the two variables, however, this leaves unspecified
how many times to repeat and can simply be rewritten into a structure by
increasing the number of transformations. The issue does not only pertain to
two variables directly dependent on each other, but also chains of variables.
If we think of it through a graph perspective, one can easily restrict possible
structures such that we avoid the aforementioned issue. By ensuring that the
structure induces a direct acyclic graph (DAG), means we completely eradicate
the issue at hand. Through this extra requirement, we can ensure that the flow
is computable. By this we mean that we can compute any variable forward and
backwards, as well as evaluate the induced density in finite time. We therefore
introduce valid structures.

Definition 3.3.3. A flow-structure S corresponding to a flow (Q, f) is valid if
the induced graph of S is a directed acyclic graph (DAG).

We shall assume, if not explicitly stated, that every structure we consider is
valid. The validity of the structures allows us to state the following.

Proposition 3.3.4. Assume the flow f is such that each transformation ft,d can
be computed in finite time, where (t, d) ∈ T ⊗ DT . A flow f is computable if
and only if the structure S is valid.

Proof. The proof is quite straightforward. Assume the structure is not valid.
Then there must exist at least one cycle in the induced graph of S. This means
that one cannot in finite time compute a variable from the base distribution to
zT . As there are at least two variables zi,j and zk,l, which both require each
other to compute.

Assume now that the structure is valid. This means that the induced graph
has at least one topological ordering. This means that if we transform each
variable in the ordering given, means we transform zt,d after we have transformed
all necessary variables needed to compute it. This is because there are no edges
to (t, d) that is after the said node in the ordering, per the definition of the
topological ordering. As this holds for all (t, d) ∈ T0 ⊗ DT0 , the definition of
the transformation is a piecewise diffeomorphism, and the assumption of finite
time computing each transformation, implies the flow must be computable. �

This connects a link between our structure and the work of Wehenkel et al.
2020, as they note the connection between normalizing flows and Bayesian
networks, which also depends on the graph being a DAG. Obviously, the
Bayesian networks have their own interpretation, while we are merely working
on what variables each transformation are using, disconnected from any real
dependencies in the target distribution. In addition, the work with structures
was done independently from Wehenkel et al. 2020.

33

3. Normalizing Flows

We have now established a class of structures which in one sense is all
we need, as the goal for normalizing flows is to be able to send any sample
forward and backward, and evaluating its density. In another sense there are
still problems in terms of speed and computational power, ease of invertibility,
and computing the log determinant of the Jacobian. There are some questions
that deserve consideration:

• What structure, combined with what transformations, produces fast to
invert flows?

• What structures allow for vectorization of many transformations, and the
trade-off between these and other structures?

• What structure allows for quick computation of the log determinant of
the Jacobian? This will clearly also depend on the transformations we
choose. However, we shall see that the structure plays the larger part in
this.

When it comes to comparing different structures, a natural interpretation of this
is how much information each of the transformation can use, or are available.
Many edges directed to a variable means that it can utilise more information
and potentially be more flexible. This comes at the cost of increasing the
computational burden, both with inversion and with the Jacobian determinant,
and potentially making it less stable.

Crossing Paths

Regarding the question of invertibility and how efficient it can be done, how
we transform a variable, i.e., how ft,d is defined, will play a big role. There is
therefore hard to state any general results based solely on the structure. That
being said, one problem that can cause issues when calculating the inverse of
the flow, can be defined as crossing paths.

This can be intuitively thought of as a graph where the edges form a cross.
More formally:

Definition 3.3.5. Let S be a structure in a flow (Q, f). A crossing path is when
at least two variables zt,d and zt,d′ , where d 6= d′, such that there exists t′ < t
and t′′ < t, and zt′,d ∈ S(t, d′) and zt′′,d′ ∈ S(t, d).

A crossing path can be seen as transforming variables by using each others
predecessors as input. This is by no means inherently negative w.r.t. invertibility,
there are indeed many transformations that can calculate the inverse, yet contain
one or more crossing paths. However, the lack of them typically give easier
computation of the inverse. To conclude, we generally want to avoid crossing
paths.

Triangular

Although the invertibility is hard to investigate without a specific group
of transformations, we can in contrast guarantee fast computation of the
determinant of the Jacobian. When we have computed the Jacobian, there is an
upper bound on the time complexity of computing the determinant, as we can

34

3.3. Flow Structure

apply LU-decomposition to the matrix and calculate the determinant easily from
the two triangular matrices, this method still have an asymptotic complexity
of O(D3) 2 This is also considering the computation of the determinant after
obtaining the Jacobian, which itself can also add an extra cost. Considering
the flow typically have several transformations, and we use structures such that
the transformation of zt does not use any variables other than zt−1, means we
can split the computation of the determinant up in T parts, as described in
Section 3.2. We then have a complexity of O(T ·D3), assuming the calculation
of the Jacobian for each time step are less than or equal to O(D3), which they
tend to be when we divide the transformation into T steps.

One of the most efficient and stable methods we have is to simply ensure
that the Jacobian J is triangular. The determinant det(J) is then equal
to the multiplicative trace

∏D
d=1 Jd,d, and we get rid of both evaluating the

Jacobian matrix and general computation of determinants. We are therefore
interested in finding structures that make the Jacobian, regardless of the
transformation, is triangular. This will in turn speed up immensely the density
evaluation and increase its stability (speed and stability will of course depend
on transformations, but it holds true generally speaking).

Our aim for the rest of this part is twofold. We show that any flow with
any corresponding structure can be split up into T parts, where every edge
goes from t− 1 to t transformation step, while the final distribution of the flow
remains the same. Secondly, we give the requirements of structures to obtain
a triangular Jacobian, when the structures have constant dimension D, i.e.,
DT = {D,D, . . . ,D}.

Flow-isomorphism

We first start by defining the identity node and the notion of flow-isomorphism,
which is useful to alter the structure, but not the output (as we do not transform
any variable).

Definition 3.3.6. Let S be flow-structure. A node (t, d) in the graph S is an
identity node IdS if and only if Sext(t, d) = ∅ and the transformation associated
with the node is the identity function ft,d(zt,d) = zt,d.

In any structure, one can easily remove or add an identity node zt,d and
the graph will remain mostly the same. The operations simply reroute edges
between two nodes when adding, and the other way around for deleting.

We are about to define an isomorphism between flows, where we want to
be exclude identity nodes and therefore create the following restriction on a
flow-structure S, by restricting the nodes in the corresponding vertices V ,

V̄ = V \ {(t, d) : (t, d) ∈ V and (t, d) is a identity node IdS}.

We also wish to denote, given an identity node, the first ancestor in the graph
which is not an identity node. This can be done by the following recursive

2We choose to compare with LU-decomposition, as it is commonly used, stable and easy
to understand. There are other alternatives, yet most of them run in O(D3). Other methods
such as Arnoldi iteration is quicker, but is only an approximation.

35

3. Normalizing Flows

function: for any node (t, d)

pred((t, d);S) =
{

(t, d), if (t, d) is not an identity node
pred[Sint((t, d));S], otherwise.

Finally, we also denote, for any pair of vertices (t, d) and (t′, d′) in a
structure,(t, d) <Top (t′, d′) denotes that (t, d) is an ancestor of (t′, d′) in every
topological sorting.

We may now define a flow-isomorphism, which we can more informally state
as any two flows where one can achieve equality between them by allowing only
to add/remove identity nodes.

Definition 3.3.7. Let (Q, f) be a NF with structure S = (V,E) and equivalently,
(Q, f∗) with structure S∗ = (V ∗, E∗). The two structures are weak flow-
isomorphic if there exist a bijection g : V̄ → V̄ ∗ such that for all (t, d) ∈ V̄ and
(t′, d′) ∈ V̄ ,

(i) g(0, d) = (0, d) for every d ∈ D (which is always possible due to the same
base distribution).

(ii) (t, d) <Top (t′, d′) ⇐⇒ g1(t, d) <Top g1(t′, d′), i.e., preserves the
topological ordering in some sense.

(iii) There exists a bijection

h : S(t, d)→ S∗(g(t, d))

s.t for every node (i, j) ∈ S(t, d)

g[pred((i, j);S)] = pred(h((i, j));S∗).

(iv) ft,d is equal to f∗g(t,d), i.e.,

ft,d(z) = f∗g(t,d)(z), z = R|S|

We define two structures to be flow-isomorphic if g also fulfills

(v) g(pred[(T, d);S]) = pred((T, d);S∗) for every d ∈ D.

We denote the weak flow-isomorphism between two structures as S 'W S∗ and
flow-isomorphism as S ' S∗.

Remark 3.3.8. When the structures have no identity nodes, the definition
above is very similar to graph isomorphism, but with the added constraint that
the transformations are equal as well. Giving some intuition on the different
properties of g, we have that (i) simply preserves the order of z0, and (ii)
prevents unnatural mappings such as g((1, 2)) = (T, 2). The reason behind the
first two will also become more apparent during the proof of Proposition 3.3.10.
The points (iii) makes sure that the mapping of edges is a very natural extension
of graph isomorphism, which can be written as ei ∈ E ⇐⇒ g(ei) ∈ E∗. As
g is not a bijection over the whole set of vertices, we cannot simply require
ei ∈ E ⇐⇒ g(ei) ∈ E∗. Roughly speaking, (iii) states that the nonidentity

36

3.3. Flow Structure

z0,1

z0,2

z0,3

z1,1

z1,2

z1,3

S1

z0,1

z0,2

z0,3

z1,1

z1,2

z1,3

z2,1

z2,2

z2,3

S2

z0,1

z0,2

z0,3

z1,1

z1,2

z1,3

z2,1

z2,2

z2,3

z3,1

z3,2

z3,3

S3

Transformation node

Exterior edges

Interior edges

Identity node

Figure 3.2: Example of three structures that are all flow-isomorphic.

ancestor to any exterior edge exists in S iff it exists in S∗, and we have the same
number of edges. Point (iv) states that the transformation under g is equal,
which means that when the input is equal, the transformation is equal. The final
point (v) is similar to (i) and preserves the output ordering, where we also handle
that case when there are identity transformations as final transformations.

It is trivial to check that (weak) flow-isomorphism constitutes an equivalence
relation, as both g and h are bijections. One may also be interested in subset
of flows, which in some sense can be interpreted as everything the flow with a
subset structure can approximate, so can the superset. More formally:

Definition 3.3.9. Let S and S ′ be two flow-structures. We say S is an subset
of S ′, if by removing edges in S ′ and changing nodes into Identity nodes, the
resulting structure is flow-isomorphic to S. We denote this by S ⊆ S ′.

As we are removing edges, and effectively removing transformations, the
flow with structure S ′ should be able to approximate every distribution S can,
and potentially more distributions—this is not trivially obvious, but we later
show for a certain class of flows Lemma 3.6.11, that such interpretation holds.
The claims above relies on the fact that two flows that are flow-isomorphic can
approximate the same distributions, which we now show.

Proposition 3.3.10. Let (Q, f) be a NF with structure S and (Q, f∗) be a NF
with structure S∗. If S 'W S∗, then the induced densities, i.e. the densities
corresponding to zT = f(z0), qf and qf∗ are equal. That is,

qf (f(z0)) = qf∗(f∗(z0)), z0 ∼ qz0

If S ' S∗, then we also have f(z0) = f∗(z0).

Proof. Assume first that S 'W S∗. Start by first confirming z0,d = zg(0,d) for
d ∈ D, which holds due to (i) in Definition 3.3.7. Assume inductively that
zt′,d′ = zg(t′,d′) for every nonidentity node (t′, d′) up to, but not including, the
node (t, d) in an arbitrary topological ordering of S. Due to (ii) we have that
every node in S(t, d) and S∗(g(t, d)) is before the node (t, d) and g(t, d), in

37

3. Normalizing Flows

every topological ordering of S and S∗, respectively. Combining the inductive
hypothesis and (ii) with point (iii), we have zi,j ∈ S(t, d) = zh(i,j) ∈ S∗(g(t, d)),
for all (i, j) ∈ S(t, d). Due to (iv), we know that zt,d = zg(t,d). By induction we
know that zt,d = zg(t,d) for all nonidentity nodes (t, d) ∈ V̄ .

We can then conclude that for every (T, d) ∈ S, there exists a (T, d′) ∈ S∗,
such that f(z0)d = zT,d = z∗T,d′ = f∗(z0)d′ . This from the fact that
g[pred((T, d);S)] must be mapped to one of the last nonidentity nodes in
S∗, due to bijection of g and (ii), and hence must be pred((T, d′);S∗) for
some d′ ∈ D. Using the induction and the fact that any added nodes after
pred((T, d);S) and pred((T, d′);S∗) are identity transformations, as per the
definition of pred, implies f(z0) = P f∗(z0), for some permutation matrix P .
We then have,

f(z0) = P f∗(z0)
∂

∂z0
f(z0) = P

∂

∂z0
f∗(z0)

Jf (z0) = P Jf∗(z0).

We can then write the two densities as, letting x = f(z0) and x∗ = f∗(z0)

qf (x) = qz0(f−1(x)) · |det
(
Jf−1(x)

)
|

= qz0((f∗)−1(x∗)) · |detP
(
J(f∗)−1(x∗)

)
|

= qz0((f∗)−1(x∗)) · |det(P) det
(
J(f∗)−1(x∗)

)
|

= qz0((f∗)−1(x∗)) · |det
(
J(f∗)−1(x∗)

)
|

= qf∗(x∗),

where we used the fact that detP = ±1. The densities are equal, and the
probability distributions induced by the flows are equal.

If we also have S ' S∗, the proof above holds. Additionally, we also have
that zT,d = z∗T,d. Using the same argument as earlier in the proof concerning
g[pred((T, d);S)], it must now be mapped to pred((T, d);S∗)], due to (v), that
is, d′ = d. Applying the inductive argument leads us to zT,d = z∗T,d for all
d ∈ D. �

This allows us to rewrite any structure to a flow-isomorphic one, and the
corresponding flows have the same distribution, and possibly same output.

Triangular Structures

We can now proceed to the second part, which is to prove some requirements
to ensure a triangular Jacobian. First, we define locality in a structure.

Definition 3.3.11. Let S be a flow-structure. The structure is a local flow-
structure if every edge in the structure is between neighbouring layers or itself,
i.e., there are no edge ((t, d), (t′, d′)) such that |t− t′| > 1. We say S is forward
local flow-structure if every edge ((t, d), (t′, d′)) goes from the previous layer to
the next, i.e., t′ − t = 1.

38

3.3. Flow Structure

We can then create a function which reduces the number of possible
structures to a smaller space contains only forward local structures, and then
show that every other structure is flow-isomorphic to the aforementioned space.
The following transformation might be a bit hard to grasp at first, but keep
in mind that it only takes an arbitrary structure S and create a forward local
structure out of it.

Definition 3.3.12. Let S be the set of all valid flow-structures, and let Sloc

be the set of all forward local flow-structures. Let Λ: S → Sloc be a function
outputting a new structure Λ(S) = Ŝ, and is described as a composition of two
functions Λ = Λ2 ◦ Λ1 (see Figure 3.3 for visual explanation), as follows,

(i) Λ1: For every layer t > 0:

• Every node in the layer which does not contain edges from other nodes in
the same layer; add an identity node between layer t and t + 1 for that
node (there exists at least one such node due to valid structure).

• Every node with an edge from another node in the same layer, replace the
node with identity and add the node between t and t+ 1. Repeat until
nodes in the new layer have no edges in between layer t.

(ii) Λ2: Wherever there are edges from node (t, i) to another (t′, j), with layers
in between:

• If t′ > t, we expand the next layer t+ 1 with an identity node, where (t, i)
is the predecessor. This node serves as storage of zt,i. Keep the new node
using identity nodes until layer t′ − 1, and then add edge down to (t′, j).

• If t′ < t, i.e., edge from the layer ahead to the previous layer. We know
i 6= j due to valid structure, and we simply add identity nodes between t
and t′ until t′ − t = 1 for all dimensions except i. This can be done due
to the validity of the structure. Repeat the process until no edge exists
except from layer t to t+ 1.

Following the function described above, we may therefore turn any structure
into a forward local structure. We have illustrated an example of applying Λ in
Figure 3.3. A neat little result follows, as a culmination of the definition and
flow-isomorphism.

Proposition 3.3.13. Let (Q, f) be any normalizing flow with a valid flow-
structure S. Then there exists a flow (Q, f) with a valid structure Ŝ which is
forward local-structure, and the corresponding flows induce the same distribution.

Proof. We first apply Ŝ = Λ(S). It is trivial to check that it is forward local-
structure. As the function only changes the structure by adding identity nodes,
we have that the two structures are isomorphic, and due to Proposition 3.3.10,
that the induced distributions of the two flows are the same. �

This means that the results regarding structures with edges only between
nodes apply to all flows with valid structures, which is an easy consequence of
Proposition 3.3.13 and the function Λ.

Turning to the second task we wanted to investigate, which is for what
structures which gives a triangular structure. As this leads to fast evaluation of

39

3. Normalizing Flows

Λ1(S
)

Λ
2 ◦ Λ

1 (S)

z0,1

z0,2

z0,3

z1,1

z1,2

z1,3

z2,1

z2,2

z2,3

z3,1

z3,2

z3,3

z0,1

z0,2

z0,3

z1,1

z1,2

z1,3

z2,1

z2,2

z2,3

z3,1

z3,2

z3,3

z4,1

z4,2

z4,3

z0,1

z0,2

z0,3

z1,1

z1,2

z1,3

z1,4

z1,5

z1,6

z1,7

z2,1

z2,2

z2,3

z2,4

z2,5

z2,6

z3,1

z3,2

z3,3

z3,4

z3,5

z4,1

z4,2

z4,3

Figure 3.3: Starting with the structure top left, S, we apply Λ1, and achieve
the graph below. Notice how the edge from z1,3 to z1,2, have been shifted to an
edge from layer 1 to layer 2. Applying Λ2 gives us the graph top right, which
extends the graph to use the extra identity nodes as storage. The resulting
structure is local with edges from previous layer to next.

density, generally, and is therefore very important when creating flows that are
feasible to train and compute. We first define a set of structures which we proof
induces a triangular Jacobian, before we discuss a path to find the broadest
class of structures, which means any structure outside of this set must give a
non-triangular Jacobian.

Definition 3.3.14. Let S be a valid flow-structure accompanying a normalizing
flow (Q, f), which is local and have D nodes in each layer. The structure is a
triangular flow-structure if and only if there exists no crossing paths.

Theorem 3.3.15. Let S be a triangular flow-structure accompanying a normal-
izing flow (Q, f). Then the density induced by the flow is equal to

q(x) = qz0(f−1(x))
∏

(t,d)∈T ×D

∣∣∣∣ ∂

∂zt−1,d
f−1
t,d (zt−1,d)

∣∣∣∣ , (3.4)

Proof. Let, for an arbitrary time step t > 0,

Zt−1:t = {(t′, d′) : t′ ∈ {t− 1, t} and d′ ∈ D}.

As S is a triangular flow-structure, we know that for any time step t > 0 we
have the following. We start by showing that there must exist a pair (t, d) where
(t − 1, d) = Zt−1:t ∩ S(t, d), i.e., Sext(t, d) = ∅. Firstly, the only nodes in the
graph S with edge to (t, d) are in Zt−1:t as the structure is local by assumption.
In addition, as there are only D nodes in each time step t by assumption, this

40

3.3. Flow Structure

means (t−1, d) ∈ Sint(t, d) by the definition of flow-structures (Definition 3.3.1)
and predecessor (Definition 3.3.2). Furthermore, for any node (t, d), every node
with an edge from the same layer (t, d′) to (t, d), cannot have an edge from (t, d)
to (t, d′), as this would create a cycle and hence the structure would not be valid,
which it is by assumption. This allows us to consider only structures with edges
from t− 1 to t, as for any node (t, d) with edge from (t, d′), a transformation

ft,d(zt−1,d, zt,d′ ,Sext(t, d) \ zt,d′)

can be rewritten as

ft,d(zt−1,d, ft,d′(zt−1,d′),Sext(t, d) \ zt,d′)

hence we only need consider only structures with edges from t− 1 to t. Now
assume that there exists no node (t, d) such that Sext(t, d) = ∅. Then, there
must exist at least one pair of nodes, (t− 1, d′) and (t− 1, d), where there exists
an edge from ((t− 1, d), (t, d′)) and ((t− 1, d′), (t, d)), which means we have a
crossing path. This is not possible by assumption. We can conclude that there
exists at least one node (t, d) where Sext(t, d) = ∅. Then the corresponding
row to (t, d) of the Jacobian of ft = (ft,1, . . . ft,D) contains one nonzero value,
namely ∂ft,d

zt−1,d
.

We can then state that there exists at least one node (t, d′) which can at
most only have edges from (t − 1, d) and (t, d), with equivalent argument as
above. The row corresponding to (t, d′) of the Jacobian of ft = (ft,1, . . . ft,D)
contains at most two nonzero values (as we can rewrite the contribution of (t, d)
to ft,d(zt−1,d), following the previous argument), where one of them is ∂ft,d′

zt,d′
.

Inductively, we can then claim that the Jacobian of ft can be written as the
product of an permutation matrix P and a triangular matrix, with the diagonal
containing ∂ft,d

zt−1,d
. The corresponding determinant is then the multiplicative

trace, and as the permutation matrix simply changes the sign, which does
not matter as we are interested in the absolute value, we conclude that the
determinant of the Jacobian of ft is∏

d∈D

∣∣∣∣ ∂

∂zt−1,d
ft,d(zt−1,d)

∣∣∣∣ .
Using that the inverse of the product is equal to

∏
d∈D

∣∣∣∣ ∂

∂zt−1,d
f−1
t,d (zt,d)

∣∣∣∣ ,
and that we have D nodes in each layer of the structure, as well as the product
of triangular matrices is closed, implies by Definition 3.2.5 that Equation (3.4)
holds. �

Definition 3.3.16. Let S be a flow-structure accompanying a normalizing flow
(Q, f), which is local and have D nodes in each layer. The structure is a
triangular flow-structure if and only if there exists an flow-isomorphic structure
S ′ which transform one variable per time step t.

41

3. Normalizing Flows

The equivalence follows by applying Λ to the structure with local and D
nodes in each layer, and contains no crossing paths.

The foundation we have laid out with flow-isomorphism, Proposition 3.3.10,
and the results given with Λ, can also give insight into the requirements to
ensure a triangular Jacobian for all DAGs that is also allowing for different
dimensions through the structure and edges spanning multiple layers. There
are much more details, as we can for instance not rely on separating the flow
into t steps, as we cannot split the determinant into product of determinant
Jacobians, as the Jacobians may not have equal dimension. We suspect that
the class of structures that allows for fast computation of the determinant of
the Jacobian, consists of structures that do not contain too many paths from
node (t, d) to node (t′, d′), as well as the alternative definition Definition 3.3.16,
which will rely on our function Λ as well. For now, we leave this as future
research

Ending this part with a restatement of the definition of normalizing flow, by
also including the structure. This is an equivalent definition to Definition 3.2.5
as the structure was then implicitly defined by f , but we now also want to
express the importance of structures.

Definition 3.3.17. Let Q be a probability space, ft,d be piecewise C1-
diffeomorphisms, and S be a valid flow-structure. Then a normalizing flow is
defined by the 3-tuple (Q,S, f).

Autoregressive Structure and Coupling Structure

We introduce three structures that are typically the ones used in the literature.
The first two structures are referred to as autoregressive structures, and allow
for a triangular Jacobian and every dimension is transformed (i.e., no identity
nodes). The structures have also been used in some of the more popular and
well-studied flows (Papamakarios et al. 2017, Kingma, Salimans et al. 2016,
Huang, Krueger et al. 2018).

Definition 3.3.18. Let (Q,S, f) be a NF. S is an autoregressive flow-structure
(AR flow-structure) if for every t ∈ T and d ∈ D we have

Sext(t, d) = {(t, i) : i < d ∈ D}.

An inverse autoregressive flow-structure (IAR flow-structure) is a structure S
where for every t ∈ T and d ∈ D we have

Sext(t, d) = {(t− 1, i) : i < d ∈ D}.

In Figure 3.4 we give example of AR and IAR structures represented as
graphs.

Both structures above are triangular structures which gives a trian-
gular Jacobian, and one can also motivate such a structure by the fact
that one can always factorise any distribution into a similar form, e.g.
p(x1, x2, x3) = p(x3 | x2, x1)p(x2 | x1)p(x1). This fact makes AR/IAR useful in
regard to proving the flexibility of flows later on. They are also flow-isomorphic,
which can easily be shown and Figure 3.2 illustrates. However, the two struc-
tures differ and the distinction is quite important. When computing the flow

42

3.3. Flow Structure

z0,1

z0,2

z0,3

z0,4

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

z3,1

z3,2

z3,3

z3,4

z0,1

z0,2

z0,3

z0,4

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

z3,1

z3,2

z3,3

z3,4

AR IAR

Figure 3.4: Example of an autoregressive flow-structure (left) and an inverse
autoregressive flow-structure (right).

forward, all variables needed to compute zt are already computed when using
IAR, while the opposite is true when computing backwards, and vice versa with
AR. Hence, one is preferred above the other based on whether forward or back-
ward of the flow is important. In a variational inference case we optimise the
flow by sampling latent variables which makes computing f is important, hence
IAR is preferred. While in density estimation we optimise by creating a flow
that transform observations from target distribution to the base distribution
and therefore f−1 is needed, hence AR is preferred. It is also worth noting that
IAR and AR both uses every variable from zt−1 and zt respectively, and still
induces a triangular Jacobian.

There is no problem in using the structures above with different ordering for
each transformation t. This can be quite useful in "sharing" information more
efficiently, and with more simple transformations it is necessary to achieve a
flexible flow (Kingma, Salimans et al. 2016; Papamakarios et al. 2017). One can
easily justify the different ordering by adding a transformation between each
t, which applies a permutation matrix Pt to zt−1. We know that det(Pt) = 1
and is easily invertible, hence, as long as the permutation is fixed, we can use
the flow without any added problems. A more complete definition can then be
written as:

Definition 3.3.19. Let (Q,S, f) be a NF. If there exists a permutation πt : D →
D for all t ∈ T such that

Sext(t, πt(d)) = {(t, i) : i ∈ D and πt(i) < πt(d)},

then S is an autoregressive flow-structure (AR flow-structure). Equivalently
with S being an inverse autoregressive flow-structure (IAR flow-structure) with

Sext(t, πt(d)) = {(t− 1, i) : i ∈ D and πt(i) < πt(d)},

We have included graphs of IAR and AR with permutations in Figure 3.5.
Unless specified, when we say a flow with a particular structure, e.g., IAR,
we mean including structures with permutations. Whenever we talk about
permutations of the flow, we refer to the permutation of the structure π.

When thinking about the difference between IAR and AR as mentioned
previously, we have not resolved the issue when both direction of the flows
are important to compute fast. It is not possible to vectorize IAR when
going backwards, and vice versa with AR and forward. The compromise often

43

3. Normalizing Flows

z0,1

z0,2

z0,3

z0,4

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

z3,1

z3,2

z3,3

z3,4

z0,1

z0,2

z0,3

z0,4

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

z3,1

z3,2

z3,3

z3,4

AR IAR

Figure 3.5: Example of AR (left) and IAR (right), with permutations. The
permutations are: π1(i) = i, π2 = {(1, 4), (2, 3), (3, 2), (4, 1)}, and π3 =
{(1, 4), (2, 2), (3, 1), (4, 3)}. We have excluded interior edges for readability.

employed will be referred to as coupling flow-structures, and which we have
given an example of in Figure 3.6.3.

Definition 3.3.20. Let (Q,S, f) be a NF. If there exists a permutation πt : D →
D for all t ∈ T such that

Sext(t, πt(d)) =
{
{(t− 1, i) : i ∈ D and πt(i) ≤ D̂}, if πt(d) > D̂

Id, otherwise,

where D̂ ∈ D, then S is a D̂-coupling flow-structure.

z0,1

z0,2

z0,3

z0,4

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

z3,1

z3,2

z3,3

z3,4

z0,1

z0,2

z0,3

z0,4

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

z3,1

z3,2

z3,3

z3,4

D/2 D − 1

Figure 3.6: Two examples of coupling flow-structure. Left one with D̂ = D/2
and right one with D̂ = D − 1.

In short, a coupling structure divides the variables into two parts, one part
of size D̂ which is simply transformed using the identity function, and the rest
is transformed using the D̂ part as input. This makes it less efficient than
AR/IAR regarding sharing information and transforming variables, as it requires
several transformations t to change all variables (that is, excluding identity
transformations). However, as we can easily invert the identity transformation,
means we can easily vectorize the flow both ways, and hence is more efficient
than AR/IAR in that sense.

Finishing up this part by introducing quickly a structure that will be useful
later on.

3The use of coupling structures were actually introduced before IAR and AR, but as it
exploits less information for each t, means we consider it as a compromise.

44

3.3. Flow Structure

Definition 3.3.21. Let (Q,S, f) be a normalizing flow. The structure S is a
fully connected structure if for every t ∈ T and d ∈ D,

S(zt,d) = {zt−1,i : i ∈ D}.

We also refer to such structures as Sfull
This is the most powerful structure, when not considering edges in structures

that go from layer t to t′ and |t− t′| > 1, although it often puts more restraint
on the transformation f to achieve fast inverse/density evaluation.

Improvement with Structures

An important question to ask is how different structures affect the flow. One
way to approach the question is to look at the difference between the structures,
e.g., IAR compared to AR and coupling. This have been studied extensively
empirically, often tied together with the transformation. There are also some
comparisons theoretically (Papamakarios et al. 2017), but for the most part
it comes down to empirical results and practicalities already discussed, e.g.,
vectorization.

The second approach is to consider the permutations of the structures,
πt. The typical approach is to either use the identity permutation, randomly
permute, or reverse, i.e., map one to D, 2 to D − 1 and so forth. It may be
reasonable to think that, at least between the latter two, there is not much
difference unless you have very specific information about the correlation in
a dataset. As long as you have a mixing between the variables, one achieves
adequately good results relatively. This does not, however, hold true in general,
and there are in particular two papers that contradict the notion, where focusing
on the structure gives better performance at the task considered in the two
papers. We give a recount of their work here.

Kirichenko et al. 2020 points out that, using D/2-coupling structures on
images, normalizing flows often fail in the task of detecting out-of-distribution
data. They propose that the inductive biases in flows are the structure. Hence,
picking good structure, even a priori, can have benefits. They also show that a
typical split in the coupling structure with every alternating pixel, leads the flow
to learn more of the patterns in the image and not the semantic information.
Changing the permutation to split the image pixels in the top half and bottom
half, i.e., splitting the image horizontally in the middle, results in a significant
improvement of out-of-distribution detection.

Another case that highlights the importance of permutation in the structure
πt is done by learning the structure from the observation one has, i.e. training
data. One way to use the data as guidance is to add permutation matrices
to the flow, and let the matrices be parameterized. However, learning a
permutation matrix is quite difficult computationally due to its combinatorial
nature. Another approach that both lends itself to continuous optimisation, and
not necessarily a particular structure (simply that it is triangular), is to employ
NO TEARS (Zheng et al. 2018). Essentially, one can introduce an adjacency
matrix A, where the nodes correspond to x. Loosening up on the binary part
of A, and allow it to take on any real value (turning it more into a structural
equation model (SEM)). One can then apply A as a mask, and by minimising a

45

3. Normalizing Flows

loss function over the flow and A such that

tr
[
eA�A

]
−D = 0,

where e is the matrix exponential. Minimising the loss function with the added
constraint can be solved relatively efficiently with the augmented Lagrangian
method. Without going into too much detail, considering the binary adjacent
matrix A, one have that trAk, where k ∈ N, specifies the number of k-closed
walks in the graph. As a DAG does not contain any cycles, one must enforce
the trace to be zero for any k > 0. This can then be developed to the constraint
given above, and also holds for A ∈ RD×D. Wehenkel et al. 2021 explores this
method with normalizing flows, using a similar constraint (Yu et al. 2019), and
re-binarize the matrix afterwards (using the Gumbel-Softmax trick (Jang et al.
2017)). Using the re-binarized matrix as a mask, they did experiments with
conditioner transformations (see Section 3.4), although limited to T = 1, it
showed promising results that confirm the potential importance of structure.

Conclusion

We have now introduced structures and shown some properties necessary for
efficient computation of both inversion and the Jacobian determinant. By
decoupling the flow into transformations and structures, it allows us to think
more broadly on different structures and how they differ, without muddling
it with the efficiency or flexibility of the transformations. It seems reasonable
to postulate that having structures which resemble the correlation in target
distribution better, can give significant differences, and learning such structures
is an interesting research path, including integrating Wehenkel et al. 2021 work
with CONNs.

3.4 Conditioner

In many flow architectures, and in particular the ones we shall study, the
transformation of zt−1,d to zt,d is done by first computing parameters of
the transformation, where the parameters are computed using the variables
Sext(t, d), and then applying these parameters to zt−1,d. In Example 3.2.6, we
first compute a and b, and then transform zt,d = a · zt−1,d + b. The function
that computes the parameters is referred to as a conditioner, as we are in a
certain sense conditioning zt,d on Sext(t, d).

Definition 3.4.1. Let (Q,S, f) be a NF, where each ft,d is parameterized by
pt,d parameters. A conditioner is any function H where

Ht,d : Sext(t, d)→ Rpt,d

The transformation can then be written as ft,d(zt−1,d,θt,d), where θt,d =
Ht,d(Sext(t, d)).

The positive side of such a separation between Sint(t, d) and Sext(t, d) is
that we can potentially use quite simple transformations, and rather include
the complexity through H. In particular, with triangular structures, the
transformations given the parameters can be easy to invert and evaluate
its derivative, while the conditioner can be as complex as one like with no
requirement of its inverse and derivatives. This thanks to Theorem 3.3.15.

46

3.4. Conditioner

Neural Networks as Conditioner

We can observe that Ht,d does not have to be invertible or allow for easy
computation of the Jacobian when using triangular structures. This is due
to the fact that such structures contain at least one variable zt,d which is
transformed through identity or constant parameters. Finding the inverse
zt−1,d, means any variable that only depends zt−1,d can be computed, as we
can find its parameters through the conditioner and input zt−1,d. This can
then easily be iterated over, and eventually invert zt without every finding the
inverse of the conditioner. As the structure is triangular, means the determinant
of the Jacobian does not depend on the conditioner, and hence we can have
arbitrary complexity in the conditioner.

Although the conditioner can be any function, it is through the conditioner
we introduce deep learning and its flexibility. There are a few ways to do this
depending on what type of structure. If one split one part as input to neural
network and another part to be transformed, such as coupling structures, we
can simply use a feedforward network. In any other case, such as IAR/AR, we
have to do things differently. The naive way is to model each Ht,d as its own
neural network, as it leads to both an immense amount of parameters, but also
a sequential problem, as we need D neural networks for every transformation
step t. Hence, even when the structure allows for vectorization, we still end up
with sequential computations as we have D networks for every step t.

Another approach which reduces the number of weights required, is to use a
recurrent neural network (RNN) (Schmidhuber 2015). The gist of a RNN in
our context is as follows: to initiate a state s0 ∈ Rk for some k ∈ N, and input
said state to a feedforward network. The network outputs both the parameters
we need to transform zt−1,1 and a new state s1 ∈ Rk. Next we input both
zt−1,1 and state s1. The states is carrying the information from zt−1,1:d−2.
This continues until we have parameters to transform zt−1,D and sD. Note
that the state for step d is computed only using zt−1,1:d−1, hence we retain the
autoregressive structure and typically the RNN will perform as well as D neural
networks, but with fewer weights needed. RNN can also be summarised as

θd, sd = Ψd(zt−1,d−1, sd−1), for d ∈ D,

where θd are the parameters used to transform zt−1,d. The solution using RNNs
has been studied (Oliva et al. 2018), but it tends to be slow due to the sequential
nature, i.e., we have to calculate the first state and parameters, then the second
one, and so forth.

The third option, which has become the preferred one, is to use MADE/-
CONN. MADE have been used for AR/IAR, but with the introduction of CONN,
means we can speedily compute H for any triangular structure. Obviously, this
does not solve for the vectorization problem, which we illustrate in Figure 3.7,
where we indicate in what order each node is computed. For example, using
CONN with a IAR structure backwards, we simply need to pass a 0-vector to
the network to acquire the first set of parameters, then pass in zt−1,1 to acquire
parameters necessary to invert zt−1,2, and so forth, simply ignoring the rest of
the output. The use of MADE/CONN does at least fix partially the number of
weights and allows for vectorization wherever the structure allows for it.

47

3. Normalizing Flows

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

10

11

12

13

6

7

8

9

2

3

4

5

1

1

1

1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4

f f−1

AR

IAR

Figure 3.7: The numbers indicate in what order the associated values to the
structures can be computed, where equal number implies vectorization/parallel
computed. Forward computed on the left and inverse computed on the right,
AR-structure above and IAR-structure below. For example, once we have z4,
we can in AR compute the parameters needed to compute layer 3.

3.5 Transformations

The second part of a flow is the transformation. It is typically the source of,
together with the conditioner, complexity in the flow. This is also what much
of the literature focuses on, and many transformations have been proposed over
the years, coupled with one of the three structures we defined above. In this
section we are covering a few of the most prominent transformations, where we
first take a look at the non-conditioner transformations, i.e., the ones that do
not employ a conditioner, and then concentrate on the ones using a conditioner.
There are too many transformations, such that it would be unproductive to
introduce them all, hence we group them in different categories with the most
prominent examples of each group. This is to both give the reader an overview
of the field and for comparison later on.

Non-conditioner Transformations

We start off with transformations that do not require a conditioner. Typically,
these do have quite a few more parameters in the actual transformations (in
a conditioner transformation, we offset the heavy number of parameters in
the conditioner instead). This also means that the structures often are fully
connected structures and implicitly chosen through the parameter space.

48

3.5. Transformations

Linear Transformations

The first transformation we encounter is the linear transformation. For it to
fulfil the requirements of a flow Definition 3.2.5, we constrict the choice of linear
transformations, and we therefore remind the reader of the general linear group
defined as

GL(D) = {A : A ∈ RD×D and A−1 exists}

and the operation is matrix multiplication, and the general orthogonal group
defined as

O(D) = {A : A ∈ GL(D) and A′A = AA′ = ID}.

Definition 3.5.1. Let (Q,S, f), with S ⊆ Sfull. A linear transformation is
defined as

zt = Azt−1, A ∈ GL(D).

An orthogonal-linear transformation, or simply orthogonal transformation, is
defined as

zt = Azt−1, A ∈ O(D).

The first to consider regarding linear transformations, is that they are quite
limited in their capacity. This stems from both its linearity and the fact that
the matrices are constant, e.g., the matrix does not change based on what value
the variables are—as they would with a conditioner—. Its inadequacy can easily
be demonstrated by letting the base distribution be Gaussian, with mean µ and
covariance Σ, then we have A = ATAT−1 · · ·A1

x = zT ∼ N (Aµ,AΣA′).

Allowing for translation does not improve immensely on the transformations
capacity. This does not necessarily mean that linear transformations are useless,
but flows employing only linear transformations are limited. However, one
can imagine mixing transformations, and even think of it as a way to find a
good permutation πt of the structure, as we can rotate the input through such
a transformation (another way to look at it is that every single permutation
matrix is a subset of the parameter space), and such tactics has given interesting
results (Kingma and Dhariwal 2018). Also, linear transformations—depending
on its parametrization—offers few parameters to train and can be efficient in
computing inverse/the Jacobian determinant.

The other point, aside from capacity, is the parametrization of the matrices.
There are a few ways to tackle this, but a straightforward way of optimising
over GL is not possible. One approach is to limit the matrices to triangular,
making sure that the diagonal contains no zeros. This has a fast evaluation
of Jacobian determinant and O(D2) inversion. One can also interpret this
through Example 3.2.6, where a being a constant and b being a weighted sum
of the previous 1 : d− 1 variables, i.e., a very stringent and weak conditioner.

49

3. Normalizing Flows

Another option is to use orthogonal transformations. Clearly, a fast inversion
by transposing and its Jacobian determinant is simply ±1 as

1 = ΠD
d=1Id,d = det(I) = det(AA′) = det(A) det(A′) = (det(A))2

,

using the fact that the sign does not matter as we are interested in the absolute
value means no computation is needed. To optimise the flow to approximate
some target distribution using orthogonal matrices, we need to choose what
parametrization to use. Several has been proposed, such as the Householder
matrices (Tomczak et al. 2016) and Cayley transform (Golinski et al. 2019).
Without going into too much details, the former spans the complete O(D),
but only by using D matrix multiplications, which in turns makes it hard to
scale and it introduces potential instabilities. As an upside, one still have
orthogonal matrices with K < D multiplications, hence there is a trade-off
between performance and computational cost by choosing K. On the other
side, Cayley transform only spans the special orthogonal group (SO(D)), and
when computing the matrix needs one multiplication and one inversion, i.e.
A = (I + As)(I − As)−1, where As is a skew-symmetric matrix. This adds
substantially to the computation during training, withO(D3), while Householder
matrices uses O(K × D). However, as pointed out by Golinski et al. 2019,
using Householder matrices in flows can both induce local minimas4 and also
numerical instabilities due to the multiplication of many matrices, e.g., exploding
gradients.

Although there are some other approaches such as LU-decomposition, for
the sake of brevity, we end it here.

Residual Transformations

Similar to residual connections introduced in Chapter 2, we have residual
transformations. They follow the same type of principal as residual connections,
that is, the transformation consists of zt−1 adding to an output of another
function g(zt−1).

Definition 3.5.2. Let (Q,S, f) be a flow with S ⊆ Sfull. A residual
transformation is defined through a residual function g, which is a C1-
diffeomorphism, and the transformation is of the form

zt = f(zt−1) = zt−1 + g(zt−1).

In theory, this class of transformations can use every other type of
transformation we introduce in this section, as we simply let g be the
transformation instead of f . However, there are a few transformations that rely
on the residual form given above and we shall present two of them here.

In Chapter 2 g would be a neural network, but this is not necessarily as
straightforward to employ here, as we need to both ensure invertibility and
preferably a method to invert it as well. In general, if one can make g be a
contraction, i.e., Lipschitz constant s less than 1, that is,

dg(g(zt−1), g(ẑt−1)) ≤ sdz(zt−1, ẑt−1),

4This is relevant more so when orthogonal matrices are used in transformations with
non-linear elements, such as Sylvester transformation (introduced later).

50

3.5. Transformations

for all zt−1, ẑt−1 ∈ Zt−1 and metrics dz : Zt−1 → R and dg : Zt → R. This
implies two things, the residual transformation zt−1 + g(zt−1) is a contraction,
and more importantly f−1(zt) = zt − g(z∗t−1) is a contraction, where
z∗t−1 ∈ Zt−1 is an arbitrary chosen value. By utilising Banach’s fixed point
theorem (Lindstrøm 2017, Ch. 3, p. 61)—assuming we are working with complete
metric space (Zt−1, dz) and Zt−1 = Zt—then f−1 has a unique fix point z̃t−1
and regardless of starting point z∗t−1, iterating

z∗(k)
t−1 = f−1

(
z∗(k−1)

t−1

)
,

where k > 0, converges towards z̃t−1. Also,

z̃t−1 = f−1(z̃t−1) = zt − g(z̃t−1),

which implies by rearranging

zt = f(z̃t−1) = f(zt−1),

hence f is invertible due to the uniqueness of the fixed point. This also means
finding the inverse is equivalent to finding the fixed point and can be done
through iterating from a starting point z∗t−1. Through proving Banach’s
fixed point theorem, one also discovers the convergence rate through iterations,
namely

dz(z∗(k)
t−1, z̃t−1) ≤ sk

1− sdz(z∗
(0)
t−1, z∗

(1)
t−1).

This means that if g contracts a lot, we can find the inverse exponentially faster,
and vice versa.

This allows us for instance to use a subset of neural networks as g, namely
the ones where both the linear layers and each activation function have Lipschitz
constant less than or equal to one—where at least one of them has less than one
as Lipschitz constant—as contractions are closed under composition. Which
means, contracting linear layers and activation functions with aforementioned
Lipschitz constant, makes the neural network contractive.

Invertible Residual Networks (Behrmann et al. 2019) deploy such networks,
where the weightsWl are constrained to be less than one under the spectral norm,
and activation functions are ReLU, ELU, Leaky ReLU, etc. This guarantees
that the transformation g is Lipschitz continuous with Lipschitz constant s < 1.
Even with such constraint on g, it still performs well empirically. However,
there are noteworthy drawbacks. The first is the nonanalytical inverse, as we
estimate it with a finite number of iterations. The second is concerning neural
networks when used as g, and it is high cost when computing the Jacobian
determinant. Behrmann et al. 2019 proposes to alleviate the issue stochastically,
and ultimately ends up with an unbiased estimate (biased in the original paper,
but improved upon by Chen et al. 2019). In addition to this, the computation of
the Jacobian relies upon several runs of backpropogation. Hence, both inverse
and the density are estimated in the end.

There are several other residual transformations that do not rely on Banach’s
theorem, such as transformations used in planar flows, radial flows, and Sylvester

51

3. Normalizing Flows

flows (Berg et al. 2018; Rezende et al. 2015). Sticking to the last introduced, a
Sylvester transformation can be written as

zt = zt−1 +QRγ
(
R̃Q′zt−1 + b

)
, (3.5)

where R, R̃ are upper triangular RM×M matrices, Q ∈ RD×M is an orthonormal
matrix, and γ is typically an invertible non-linearity, e.g. leaky ReLU. Here,M is
a hyperparameter M ≤ D. The determinant, using the Sylvester’s determinant
identity, one can compute the Jacobian determinant in O(M). Hence, shrinking
the parameter space allows for faster computation of the determinant, and
vice versa, but in all practicalities it ought not matter too much (unless D
is very big). However, to ensure invertibility and nonzero determinant, some
constraints are needed.

Theorem 3.5.3 (Berg et al. 2018). Let γ be a smooth function with bounded
positive derivatives. If R̃ is invertible, and the diagonal elements

Rm,mR̃m,m > − 1
‖γ′‖∞

,

then the transformation Equation (3.5) is invertible.

The pros of Sylvester transformations are that they allow for full structure,
added complexity to linear transformations through γ, and fast evaluation of
the Jacobian determinant. The cons are problems with orthonormal matrices
and training (as previously discussed), fulfilling the constraints above, which
ultimately restricts the parameter space, and no easy method to obtain
invertibility (we shall discuss later when finding the inverse and lack thereof
may not be a hindrance). An additional point of interest is the fact that the
transformation is one hidden layer in a neural network, with a restriction on
the weights, similar to previous residual transformations. However, compared
to the contractive network, it is bounded by dimension D in number of nodes
and constitutes only one hidden layer. Similar pros/cons analysis can be given
to planar flows, radial flows, etc.

Conditioner Transformations

Moving onto transformations that employ conditioners. As a reminder;
we parameterize the transformation of zt−1,d, with the parameters be-
ing computed through a function, the conditioner Ht,d, with input being
{zi,j : (i, j) ∈ Sext(zt,d)}. To allow for H to be as powerful as possible, with
easily computable inverse/Jacobian determinant, we constrict ourselves to trian-
gular structures. The Jacobian determinant becomes simply the transformations
derivative, as shown in Theorem 3.3.15. If the transformations are easy to invert
once we have the parameters, then inverting the flow is easy due to the fact that
there must exist an ordering such that a variable zt−1,d can be found directly,
and then we can iteratively find the others, as described in Section 3.4. This
in turn makes even the simplest of transformation very powerful, as one com-
bine flexible models for H with permutations in triangular structures. Further
explorations of the capacity are presented in the next section.

We start out by extending the definition of flows to include conditioners.

52

3.5. Transformations

Definition 3.5.4. For every t ∈ T and d ∈ D, let ft,d be a transformation
parameterized by a conditioner Ht,d. Then a conditioner normalizing flow is a
flow with such transformation f , and is denoted by the 4-tuple (Q,S,H, f).

As with non-conditioner transformations, there have been a myriad of
different transformations proposed in the literature, and we therefore try to
group them sensibly and present a varied selection of the most prominent and
relevant to our work. We start off with both one of the earliest and simplest
form of transformations.

Affine

One of the first transformations that was introduced was a simple affine
transformation, componentwise. We introduce the transformation assuming an
arbitrary t ∈ T and d ∈ D.

Definition 3.5.5. Let (Q,S,H, f) be a normalizing flow. An affine transforma-
tion has the form

zt,d = ft,d(zt−1,d) = at,d zt−1,d + bt,d,

with (at,d, bt,d) = H(Sext(t, d)), where at,d > 0.

It started out by introducing it strictly through translation, i.e. no at,d
(Dinh, Krueger et al. 2015), which we refer to as additive transformation, and is
obviously volume preserving. The full affine transformation was then introduced,
first using D/2-coupling structure (Dinh, Sohl-Dickstein et al. 2017), and then
also with IAR and AR structures (Kingma, Salimans et al. 2016; Papamakarios
et al. 2017). Due to few parameters used in the actual transformation, makes
the transformation incredible easy to invert and find the analytical derivatives,
which again have made the transformation very popular.

At the surface level, it may seem as a weak form of a linear transformation,
i.e., a matrix with diagonal elements only, but it is certainly not the case. The
conditioner, given a flexible one such as neural networks, can quickly give rise
to a very nonlinear flow. To understand this, it is enough to point out that
z0,1 6= z′0,1 means z0,2 and z′0,2 can be transformed in drastically different ways.
They may swap ordering or even become equal even when starting of as unequal.
However, in a triangular flow-structure, there is at least one dimension which
is transformed through constants a, b, and will of course change linearly. The
glaring weakness can easily be resolved by allowing for several transformations
T , and permutate the structures.

Although the model space corresponding to flows with affine transformations
and neural networks as a conditioner function, using permutations and
multiple transformations, is very large (more on that next section), it still
has limitations due to its simplicity. It has therefore been natural to suggest
different transformations, to improve expressiveness, and which does not rely
on permutations nor on multiple transformations.

Neural Network Transformation

Similar to what was done in residual transformations, neural networks have
been proposed here as well. That is, each variable zt,d is transformed through a

53

3. Normalizing Flows

one dimensional input/output neural network. The weights in said network are
computed by the conditioner H. To avoid any confusion, we emphasise the fact
that each variable zt,d is transformed through a one input one output neural
network, where the weights are computed through the conditioner, which itself
can be another neural network that takes as input Sext(t, d). Before we move
on, we remind the reader of the notation NN [L,D̂,γ], means the space of neural
networks with L hidden layers, D̂ dimensions in each hidden layer, and γ as
activation function. We then have Ψ ∈ NN [L,D̂,γ] is a neural network with
specific weights set.

As with residual transformations, the weights and activation functions we
use to transform zt,d must be restricted to guarantee invertibility. One way to
assure this was done by Huang, Krueger et al. 2018, where they constrain the
model space that transforms zt,d to networks with bijective activation functions
and nonnegative weights. We denote networks with an added plus sign, that is,
NN+

[L,D̂,γ] and Ψ+.

Definition 3.5.6. Let (Q,S,H, f) be a normalizing flow. A neural network
transformation has the form

zt,d = ft,d(zt−1,d) = Ψ+(zt−1,d),

with the weights of the network{Wl, bl : l ∈ {1, 2, . . . , L}} = H(Sext(t, d)), where
Ψ+ has L layers.

Alternatives have been proposed to eliminate the restrictions we put on Ψ+.
Unconstrained Monotonic Neural Networks (Wehenkel et al. 2019) restricts their
neural networks only by forcing the output to be positive, and the transformation
is then written as

zt,d =
∫ zt−1,d

0
Ψ(y)dy + β,

where Ψ(y) is positive and constant β. The transformation is done through
numeric integration, with added tricks to speed up backpropogation. For
brevities sake, we focus on Ψ+, with much of the analysis applying to UMNN
as well.

Inverting such a transformation is not straightforward, and the preferred
way is to do a form of bisection search, which means it both is an estimate and
is computationally heavier than analytically inverse transformations such as
the affine transformation. Depending on the size of the network, it may be
computationally heavy to run backpropagation and find the derivative as well.
As the number of weights increases, generally, the larger the neural networks
used to compute H must be. Otherwise, one inevitably tries to preserve
information between a low dimensional space and high dimensional one, using
only a simple elementwise nonlinearity and an affine transformation, which
becomes impossible as the output dimension increases. Hence, increasing the
complexity of the transformation, increases the amount of trainable parameters
in H, which means the additional capability comes with the need for more
computational power. On the other hand, such transformations are indeed
quite flexible and performance wise have shown to do better than with affine
transformations, and is certainly a viable option if one can bear the brunt of
the added computational power.

54

3.5. Transformations

Spline Transformations

The final class of transformations we include in this section are the ones using
any form of splines. Roughly speaking, a one dimensional spline is defined
by letting κ1 < κ2 < · · · < κK+1 ∈ R be knots, and Pk : [κk, κk+1] → R be a
polynomial with parameters αk, where k ∈ {1, . . . ,K}. As we are applying
splines to transform each dimension by itself, we are only interested in one
dimensional ones and refer to it as simply splines. We allow for κ1 and κK+1
to be −∞ and ∞ respectively.

Definition 3.5.7. Let (Q,S,H, f) be a normalizing flow. A spline transforma-
tion is any transformation on the form

zt,d = f(zt−1,d) =

P1(zt−1,d) if κ1 ≤ zt−1,d < κ2

P2(zt−1,d) if κ2 ≤ zt−1,d < κ3
...
PK(zt−1,d) if κK ≤ zt−1,d ≤ κK+1

with {αk, κk, κk+1 : k ∈ {1, . . . ,K}} = Ht,d(Sext(t, d)).

Splines have been studied extensively, and it has naturally led to proposals
of many different splines in the context of flows as well. The focus has been on
monotonically increasing splines, although nothing prevents us from using other
splines, but to do so, we have to spare extra memory and power to evaluate all
terms in the new density as described by Definition 3.2.5. Another argument
for using monotonic splines are when evaluating or inverting the transformation,
one can do so in O(logK) time through binary search.

In many ways, spline transformations can be squeezed in between affine
transformations and neural network transformations, its inverse—depending on
the spline chosen—is analytical, yet need binary search to find it (although binary
search over discrete values). It also has the option of scaling the complexity of
each transformation, similar to neural network transformations, by increasing K.
The same dynamic with increasing complexity in the transformation, demand
change in size of H, is also applicable here, yet provides less dependency on T
being larger as is the case with affine transformations.

Examples of monotonic splines proposed in the literature are linear splines
(Müller et al. 2019), cubic splines (Durkan et al. 2019a) and rational quadratic
splines (Durkan et al. 2019b). We give a brief insight to the latter, which is one
of the most flexible ones researched so far. They let the tails outside of [−B,B]
be linear and create a polynomial between [−B,B] by using two parameters
for each knot, and a third parameter as the knots derivative, with 1 at the
boundary points. Hence, one require 3K − 1 parameters to be output of Ht,d,
and choose a B. Reason for two parameters for each knot is to use it as width
and height of each bin, which can then be used through cumulative sums to find
the knots. Using the parameters, one can proceed to find the right bucket for
a given value zt−1,d and calculate the rational quadratic. Deriving the actual
transformations/inverse/derivative quickly becomes laborious and is avoided
for brevity and clarity sake.

Polynomials with a monotonicity requirement may not seem to be immensely
flexible, and one may wonder if the transformations are as powerful as, e.g.,
neural networks. The point which disproves such concerns can be seen through

55

3. Normalizing Flows

combining the fact that the polynomials are dense in C(X ,R)5 due to the
Stone-Weierstrass Theorem (Lindstrøm 2017, Ch.4, p.127), with the fact that
the conditioner allows for a lot of flexibility when considering the transformation
of zt. Hence, spline transformations are quite comparable in ability compared
to neural network transformations, where both have an added restriction to
achieve monotonicity. Empirically, it performs well, but the tests done have
been with alternating linear transformations and spline transformations, hence
the performance on its own is left unanswered (Kobyzev et al. 2020).

Mixing transformations

Having introduced a bouquet of transformations, we like to point out that we
do not necessarily need to use only one transformation in a flow. As alluded
to with linear transformations, we may mix them. The transformation f is
defined through its components ft,d, and we can then let each transformation
ft,d be a different transformation (the non-conditioner transformations dictate
the same transformation for every d ∈ D, but the point still stands for different
t ∈ T). When we refer to a flow with a certain transformation, we assume each
transformation ft,d has the same transformation type. When we study flows
theoretically, we often put one specific transformation under the magnifying
glass. However, with the possibility of mixing, we may for example have a
more complex transformation for t = 1 or t = T and simpler transformations
otherwise. The only study we have seen that incorporates this is alternating
between linear transformations and conditioner transformations (Durkan et al.
2019b), which we shall return to in Chapter 5.

Conclusion

To conclude the section, we find it useful to consider a few paradigms. Firstly,
reliance on complexity through transformations rather than through the
conditioner. What we typically gain through the latter is a larger portion
of fast computation of the inverse/Jacobian determinant, often incredibly
simple transformations that become highly flexible due to the flexibility of
the conditioner. On the other hand, non-conditioner transformations allow
for interaction between all dimensions at the same transformation, i.e., a fully
connected structure, a stark contrast to the AR/IAR structures for example. The
lack of fully connected structures in conditioner transformations are something
we explore more in Chapter 4.

It is crucial to point out that the number of parameters used in the
transformation are typically far fewer with a conditioner, however, this does
not mean there are fewer parameters overall. One must count the number of
parameters used to transform, but also all trainable parameters such as the
ones used to compute the conditioner H. Often, the number of parameters in
the conditioner transformations far exceeds the ones in non-conditioners.

Another paradigm worth considering is between transformations requiring
more than one transformation T > 1 to extract its full potential versus one
T = 1. Here we find the affine transformation and Sylvester transformation
in one corner (T > 1) and neural networks/spline/linear transformations in

5Assuming (X , d) is a compact metric space.

56

3.6. Universality

the other. Aside from the linear transformation, which is quite limited in its
capacity, the key differences between the former and latter groups are the fact
that the number of parameters used in the actual transformation are bounded
in the former (affine/Sylvester). This paradigm is something we shall explore
further in Chapter 4.

Wrapping up transformations, we have now introduced all the important
components in a (discrete) flow, namely structures, conditioner, and trans-
formations. We can now proceed to putting them together, and study their
capacity/flexibility as flows.

3.6 Universality

It is quite natural to ask questions concerning flexibility. That is, what model
space does the flow induce. Until very recently, the question was largely settled
for the transformations with unbounded number of parameters, e.g., neural
network transformations, and largely unknown for affine transformations. This
came to an end with Teshima et al. 2020, and proofs concerning a large number
of conditioner based transformations. We do introduce other results given
previously as well, as they are fruitful for further discussion in Chapter 4.
We are also concerning ourselves with the structure, and any results given
specifies both structure and transformation. Obviously, even the most complex
transformations struggles if Sext(t, d) = ∅, as long as the variables in the target
distribution are correlated. However, before we can introduce the fields current
understanding when it comes to universality, we must first define this concept
formally.

As any results we concerns us with, depends on the universality of neural
networks, we need to make sure the input space to the neural networks are
compact (Kidger et al. 2020). To do this, we need to make sure the input space
of flows are compact, and as the flows we concern ourselves with are continuous,
means any input space inside the flow—either to a neural network conditioner
or the transformation itself—is compact.

Definition 3.6.1. Let Q be a base distribution and Z ∈ RD be compact. Q is
a compact base distribution if for any z ∈ Z

qz0(z) > 0

and for any z 6∈ Z

qz0(z) = 0.

That is, Z0 = Z.

In any universality results we rely on the base distribution to be a compact
one. This, however, is not a problem as compactness is not related to the target
distribution, and can therefore be set a priori.

Similar to the results concerning neural networks, we want to tie the flows
to something akin to universal approximators. However, as we are interested in
distributions, it becomes natural to consider what distributions the flow model
space covers. To make the definition as broad as possible, we let Φ be the

57

3. Normalizing Flows

set of parameters of a flow. This includes both trainable parameters, such as
weights in the conditioner, but also hyper parameters. These are typically the
number of transformations, the number of knots in splines, the width of hidden
layers in neural network transformation, the size of neural networks regarding
conditioners, etc. They vary from model to model and are specified in the
results we present. We sometimes want to emphasise a flow with a specific set
of parameters φ ∈ Φ, and denote this by (Q,S, f)φ. We let NF be a class of
normalizing flows, i.e

NF =
⋃
φ∈Φ

(Q,S, f)φ.

The definition of universality of flows is partially based off Teshima et al. 2020,
but in our framework and with the added detail of specifying what set of
distribution a particular class of flows can arbitrarily well approximate.

Definition 3.6.2. Let P be a class of target distributions and µ be the
probability measure of a compact base distribution Q. NF is a universal
distribution approximator (UDA) for P iff for every distribution P ∈P with
probability measure ν, there exists a sequence of flows

[
(Q,S(i), f (i))φ

]∞
i=1 such

that f (i)
∗ µ converges weakly to ν, i.e

zT = f (i)(z0) d−→ x ∼ P, z0 ∼ Q,

when i→∞.

Remark 3.6.3. We concern ourselves with weak convergence here, and we are
clearly not guaranteed a precise density evaluation. In earlier iterations of this
concept, it was referred to as a universal density approximator (Huang, Krueger
et al. 2018). This can be misleading, exemplified through the density

pn(x) =
{

1− cos(2πnx), if 0 < x < 1
0, elsewhere

This does clearly not converge to any density, but the CDF of pn is equal to
x − sin(2πnx)

2πn which converges to x when n → ∞. Hence, it converges to the
uniform distribution between 0 and 1, while the density does not converge to 1.
The implication the other way is valid and is proven through Scheffé’s Theorem,
which states that convergence in density a.e implies convergence in distribution
(Scheffe 1947). As the results so far in the literature prove convergence in
distribution, we avoid universal density approximator as a term.

Although the results that follow are limited to a weak convergence, the
perhaps even bigger limitation is the existence part. There are typically many
parameters in normalizing flows and proving the existence of a flow bears no
guarantee that we find such a flow (similar complaints can be raised around
universal approximators). To systematise it, we can divide such results into
three groups.

• Asymptotic results where, by increasing some parameters, one converges
guaranteed.

58

3.6. Universality

• Asymptotic results are similar to the above, but with the additional
information of convergence rate.

• Asymptotic results where, by increasing some parameters, we know there
exists a solution which converges.

This divide is of importance when considering the differences between sampling
schemes such as MCMC and sampling through normalizing flows, for example.
Both can perform bad or good approximating the posterior by samples, in
a finite setting. Both can improve by choosing better hyperparameters, but
MCMC has a guarantee that no matter what, the samples converge eventually.
This is not to say that existence proofs are of no use, it certainly confirms the
particular flows capabilities and their potential reach. The reason for using
existence proof can mostly be traced back to the use of neural networks. Its
flexibility and complexity which makes them popular, also makes it hard to
study theoretically.

When we are studying the properties concerning conditioner transformations,
one specific type of flow has been central, and therefore given its own definition.

Definition 3.6.4. Let (Q,S, f) be a normalizing flow. If the structures for every
transformation are IAR-structures without permutation, the flow is a triangular
flow and denoted by τ . If also, for every t ∈ T and d ∈ D, ft,d is increasing
w.r.t. zt−1,d whenever zt−1,i<d is held fixed, it is an increasing triangular flow,
denoted by τ̂ .

Triangular maps (Bogachev et al. 2007) can be seen as the general definition,
which we have defined in the scope of flows. Also, any class of normalizing flows
NF , where every possible flow in said class is a triangular flow, we denote by
NFτ and equivalently NF τ̂ .

Many flows are triangular flows, as the transformations we have introduced
are increasing w.r.t. to the variable being transformed, when the parameters
used in transforming the variable are held fixed. Combining this with a triangular
structure gives us a triangular flow.

One of the reasons why triangular flows are often used in proofs can be
illustrated through a result concerning canonical triangular maps defined by
Bogachev et al. 2007.

Definition 3.6.5 (Bogachev et al. 2007). Let µ and ν be absolutely continuous
distributions with CDF Fµ and Fν respectively and

F−1
ν (ud | xi<d) = inf{s : Fν(s | xi<d) ≥ u}

A canonical triangular map g is an increasing triangular map defined as

xd = g(zd) = F−1
ν ◦ Fµ(zd | z1:d−1) (3.6)

Remark 3.6.6. The limits of F−1
ν may not exist, and we then adjust the domain

of the mapping g to a interval of supp(µ)—i.e., support of the probability
measure.

Theorem 3.6.7 (Bogachev et al. 2007). Let µ and ν be probability measures
defined on RD. If they are absolutely continuous Borel probability measures,

59

3. Normalizing Flows

there exists a canonical triangular map g such that ν = g∗µ, where g∗µ is unique
up to null sets of µ.

The definition and result above indicates that triangular flows can be quite
expressive. It is also an insightful tool when thinking of proofs, where studying a
particular triangular flow’s ability to approximate Fµ and F−1

ν . However, it also
highlights limitations with regards to flows. We know that flows are continuous,
and that the conditioner typically is bounded by continuous functions (e.g.,
neural networks). The canonical triangular map is not continuous, but by
limiting ν to be equivalent6 to the Lebesgue measure λ, we have continuity in
Equation (3.6). Essentially, we require the distribution to have a strictly positive
density over its domain. This allows for the inverse of Fν to be continuous.
Hence, the scope of the target distribution is limited to distributions with strictly
monotonically increasing CDF. It is also not enough to simply prove that a
particular transformation can approximate any continuous canonical triangular
maps. One also need to show that the parameters used in the transformation
change continuously w.r.t. zt−1,i<d, to allow forH to be approximated by neural
networks. Yet, Equation (3.6) outlines strategy for proving the universality of
flows.

Finally, as many of the results to follow are specified for a particular type
of structure, e.g., IAR, it is useful to keep in mind that the results are not
limited to the particular structure. By using flow-isomorphism, we can extend
the definition of UDA to classes of flows that are flow-isomorphic.

Definition 3.6.8. Let NFS and NFS′ be two classes of flows, where the only
difference between the two classes are the structure they use. We say S is
flow-isomorphic to S ′ w.r.t. the classes iff for every (Q,S, f) ∈ NFS and
(Q,S ′, f) ∈ NFS′ we have S ' S ′.

Lemma 3.6.9. Let NFS and NFS′ be classes of normalizing flows with
structures S and S ′ respectively. If NFS is a UDA for P, S ' S ′ w.r.t.
NFS and NFS′ , then NFS′ is also an UDA for P.

Proof. For any distribution P ∈ P, by the definition of UDA, there exists a
sequence of flows from NFS , [(Q,S, f)φ]∞i=1 which converges weakly to P. We
know that NFS′ contains the sequence of flows [(Q,S ′, f)φ]∞i=1, due to the
fact that S ' S w.r.t. NFS and NFS′ . By Proposition 3.3.10, we know that
for each i, the corresponding flows in both sequences induce the same density.
This also means that the induced probability measures for each flow are equal.
By the definition of weak convergence, this must mean that [(Q,S ′, f)φ]∞i=1
converges weakly to P. �

Remark 3.6.10. For brevity, we say that a sequence of flows converges weakly to
a probability distribution. By this we mean that the sequence of pushforward
measures corresponding to the sequence of flows, converges weakly to the
probability measure corresponding to P.

We also find that any universality results concerning flows with conditioners
and structures that are subset of another set of structures, when the
transformation ft,d can approximate arbitrarily well the identity function,
i.e., there exist a set of parameters such that ft,d is an identity function, and

6Two measures µ and ν are equivalent if µ� ν and ν � µ.

60

3.6. Universality

the conditioners are neural networks, implies universality for the latter class of
flows.

Lemma 3.6.11. Let NFS and NFS′ be classes of normalizing flows with
conditioner transformations and structures S and S ′ respectively. In addition,
every flow in each class uses neural networks as conditioners, and every
transformation ft,d can approximate the identity function arbitrarily well. If
NFS is an UDA for P, S ⊆ S ′ w.r.t. NFS and NFS′ , then NFS′ is also an
UDA for P.

Proof. Assume NFS is an UDA for P. By noticing that setting the weights
to 0 in the neural network for a particular conditioner Ht,d is equivalent to
removing an exterior edge from the structure. Changing a transformation to
an Identity node can be done by combining the 0 weights to remove edges
and that every transformation can approximate an identity function arbitrarily
well by assumption. This means there exists flows (Q,S ′,H, f) ∈ NFS′ that
are equivalent to flows obtained by removing edges and changing nodes into
Identity nodes. Using the fact that S ⊆ S ′ means for any flow in NFS′ , there
exist a flow (Q,S ′,H, f) ∈ NFS′ that are flow-isomorphic to the former flow,
and hence by Lemma 3.6.9, we have that NFS′ is an UDA for P. �

As every transformation we have encountered can approximate the identity
function arbitrarily well, and we rely on neural networks as conditioner, means
that the following UDA results in this thesis, for a particular structure S, also
holds for structures S ′, where S ⊆ S ′. Now before we look at examples of
universality of flows, we take a look into its limitations.

Limitations

Before we present universality results, it is worth noticing the limitation of
different flows. Linear transformation has already been discussed, and it is quite
clear that a flow where all transformations are linear cannot be a UDA for any
notable class of distributions.

When D = 1, flows with affine transformations, regardless of structure and
conditioner, is not an UDA for any notable class either. This can be seen
through this observation.

Observation 3.6.12. Let the target distribution P, with D = 1, and base
distribution differ in number of modes. Then a flow with only affine
transformations cannot approximate the density of P, regardless of number
of transformations.

Proof. This is due to the fact that all the parameters {at,1, bt,1}Tt=1 in the flow
are constants as the set Sext(t, 1) = ∅ for all t ∈ T . This means that the induced
density of the flow is

qzT = qz0(f−1(zT))
T∏
t=1
|at,1|−1.

which shows that the number of modes that we originally have in qz0 is preserved,
as we are multiplying by the same constant for all f−1(zT). This means we
need to know a priori the number of modes the target distribution have, so we

61

3. Normalizing Flows

can shape our base distribution accordingly, which we clearly cannot in general.
Hence, the flow f cannot approximate the density of P. �

Now this does not necessary imply limitations for D > 1, but independence
among variables may also seem like an issue. To this one may point out
that flows with affine transformations can easily go from independent base
distributions to nonindependent distributions—e.g. independent Gaussian as
the base distribution transformed to correlated Gaussian—and as the flows are
invertible and the inverse makes up a new flow with affine transformations,
there must exist flows with affine transformations that decorrelates distributions.
Hence, the question that until very recently was unanswered (Teshima et al.
2020), cannot be reduced to issues with independence. However, in practice,
when the target distributions have variables independent from the others,
intuitively finding flows which do not need other variables is probably easier
than correlating/decorrelating them.

Another limitation is whenever the flows are Lipschitz continuous, as Jaini,
Kobyzev et al. 2020 demonstrates one such consequence are problems with
the tails of target distributions, in particular when the flows are increasing
triangular. Starting by defining light and heavy tailed distributions (Foss et al.
2011), extended to multidimensional case (Jaini, Kobyzev et al. 2020).

Definition 3.6.13. Let P be an arbitrary distribution on RD and P‖·‖ be the
induced distribution on R by applying a norm y = ‖x‖, with x ∼ P . P is heavy
tailed if

Ey∼P‖·‖
[
eλy
]

=∞, ∀λ > 0,

i.e., no finite higher order moments. Similarly, P is light tailed if there exists a
λ > 0 such that

Ey∼P‖·‖
[
eλy
]
<∞.

One can extend these to quantify the amount of heaviness of the tail, but
this is beyond the scope of this thesis.

We let Lip : NF → R+ denote Lipschitz constant of the flow, which can be
unbounded.

Theorem 3.6.14 (Jaini, Kobyzev et al. 2020). Let Q be light tailed and P have
at least one heavy tailed distribution P. If NF τ̂ have

sup{Lip(f) : f ∈ NF τ̂} <∞,

then NF cannot be a UDA for P.

Other subsequent results state similar results for other flows and generative
models at large (Wiese et al. 2019). This is not a problem for most flows
in general. For instance, a flow with IAR-structure, neural network as the
conditioner, and affine transformations with compact base distribution is
Lipschitz continuous for a specific set of weights. However, the class of such
flows over all possible weights has an unbounded Lipschitz constant. That is,
we can find weights for any arbitrarily large Lipschitz constant. The result is
still relevant, as many have enforced Lipschitz continuity through bounding
parameters when transforming data, e.g., using a sigmoid function on a in

62

3.6. Universality

affine transformation. This is done to stabilise the training, but also ruins the
possibility of approximating heavy tailed distributions from a light tail one. The
solution is either to allow for any parameter value in the actual transformation,
or use heavy tail base distributions.

These three results are the only ones, as far as we are aware of, that speaks
to the limitation of normalizing flows. The rest of the section is devoted to
results of the opposite manner.

Neural network transformations

The earliest result concerning normalizing flow and universality was done by
Huang, Krueger et al. 2018. They proved universality for increasing triangular
flows with NN+

[L,D̂,γ] as transformation and neural networks as conditioner H.

Theorem 3.6.15 (Huang, Krueger et al. 2018). Let NF be the flow space with

• IAR structure,

• NN+
[L,D̂,γ] as transformation,

• NN [L̃,D̃,γ̃] as conditioner space,

• {D̂, D̃} ⊆ Φ, i.e. the width of hidden layers in both the transformation
and the conditioner.

Let P = {P : P with the corresponding density p ∈ C(RD,R+
∗)}, i.e. distribu-

tions with positive continuous densities. NF is then a universal distribution
approximator for P.

As {D̂, D̃} ⊆ Φ, the universality rely upon extending the number of nodes
in the hidden layers of the transformation Ψ+, and the number of nodes in the
hidden layers of the networks that approximate the conditioner.

It is worth noting, as alluded to in the previous section, the flow given
above does not require more than one transformation (T = 1), and therefore no
permutation in the structure as well. In return, we have to allow for arbitrarily
large hidden layers in the transformation. The second hyperparameter is the
size of the network used as the conditioner, which is always a part of conditioner
transformation universality results.

The class of distributions P is quite broad, and can be extended further as
we do in Chapter 4. However, with the type of proof that was used, it is difficult
to include densities with 0 in arbitrarily many intervals. This comes from the
fact that the conditioner cannot estimate non-continuous functions as we are
using neural networks, so the weights in Ψ+ must change continuous w.r.t.
Sext(t, d). As the crutch of the proof is based on dividing up the conditional
CDF of xd, means 0 in its density creates plateaus that makes it difficult to
maintain continuity w.r.t. Sext(t, d), which is essential for neural networks
to be able to approximate the conditioner. However, as the proof allows for
arbitrary small positive values of its density, it is not detrimental to the flow
(also worth mentioning that it does not exclude the possibility of 0 density, it
is just not been proven when T = 1). To extend it to all continuous target
distributions explicitly, the current literature supports the claim that we have

63

3. Normalizing Flows

to allow for T > 1 and permutations.

Similar result has been shown for polynomials. A particular transformation
used by Jaini, Selby et al. 2019 can be written as

zt,d = c+
∫ zt−1,d

0

K∑
k=1

(
R∑
r=0

al,ku
l

)2

du, (3.7)

where R,K ∈ N. They then state that any univariate real polynomial is
increasing iff it can be written as Equation (3.7). Furthermore, they state that
the set of increasing real univariate polynomials are dense in the space of real
univariate increasing continuous functions. Combining this with continuous
increasing triangular functions and Theorem 3.6.7, implies flexibility in flows
with Equation (3.7) transformations. Spline transformations have less clearly
stated universality results, but typically rely on the same results as increasing
polynomials, e.g., relying on Stone-Weierstrass Theorem (Lindstrøm 2017, Ch.4,
p.127). Although they do not, as far as we are aware, show directly continuity
in the parameters w.r.t. Sext(t, d), it should still hold, and follows pretty easily
from (Huang, Krueger et al. 2018) anyway.

Affine transformations

Let the conditioner be a neural network of some sort (vanilla, CONN, etc.). One
may take the view that the normalizing flow is another type of neural network,
where two of the components in the network are the conditioner followed by a
special type of cell that corresponds to the transformation. Combining these
two blocks with invertible matrices, and allowing z0 to not necessarily stem
from a base distribution, creates a invertible neural network. This changes
the angle from strictly normalizing flows to a special type of invertible neural
networks (INN) (Ardizzone et al. 2019). This has then allowed for Teshima
et al. 2020 to study the universality of such INNs. To be more specific, we have
linear transformations with matrices Wt ∈ GL(D), and arbitrary conditioner
transformation ft with corresponding structure S, which is a (D − 1)-coupling
structure without permutations. The invertible neural network being studied
can then be written as a stack of layers T ,

ΨINN
t (zt−1) = ft(Wtzt−1),

where the conditioner transformation can be seen as the "non-linearity" γ. From
here they consider a myriad of conditioner transformations showing different
universality results (not necessarily distributional). For our purpose, we consider
the affine transformation and the UDA property.

Theorem 3.6.16 (Teshima et al. 2020). Let NF be the flow space with

• a (D − 1)-coupling structure without permutation,

• each transformation ft is a composition of a linear transformation with
matrix Wt ∈ GLD, and an affine transformation,

• NN L̃,D̃,γ̃ as conditioner space,

64

3.6. Universality

• {D̃, T} ⊆ Φ, i.e., the width of the hidden layers in the conditioner, and
the number of transformations T .

Let P = {P : P is any distribution}, then NF is a UDA for P.

The proof of the theorem is quite complex and consists first of a series of
reductions from the original space to simpler spaces. The details are beyond
the scope of this thesis, but comparing them to the proofs discussed in the last
section, we gain less insight into what we are approximating, e.g., the canonical
triangular transformation. The final stroke of genius in the paper by Teshima
et al. 2020, is that they show theWt matrices, when using affine transformations,
only need to comprise of permutation matrices (Teshima et al. 2020, Lemma
18). This means one can rewrite Theorem 3.6.17 to a more familiar flow.

Theorem 3.6.17 (Teshima et al. 2020). Let NF be the flow space with

• a (D − 1)-coupling structure with permutation,

• affine transformations,

• NN L̃,D̃,γ̃ as conditioner,

• {D̃, T} ⊆ Φ, i.e., the width of the hidden layers in the conditioner, and
the number of transformations T .

Let P = {P : P is either a continuous distribution or discrete distribution},
then NF is a UDA for P.

Hence, affine transformations with the given coupling structure and including
permutations, are UDA for practically every distribution. Clearly, as most
conditional transformations include the affine transformation (by using a specific
set of parameters), and therefore most conditional transformations have the
same result.

The second drawback of the proof is the fact that they rely on a very
stringent structure. By that we mean we can only transform one variable at
a time. The result also holds for structures such as IAR, but where the affine
transformation is the identity function for the D − 1 first dimensions, w.r.t.
permutation πt. Compared to the results for neural network transformation,
where one exploit the maximum number of exterior edges in S, while still
being a triangular structure, this result is more constricted. Hence, both the
limit regarding information sharing for each transformation and the lack of
interpretability are drawbacks of such results. In return, it shows that almost
all conditional transformations are UDA for practically every distribution, by
extending the number of transformations and allowing for permutations in the
structure.

65

CHAPTER 4

Piecewise Affine Flows

4.1 Introduction

In this chapter we use the review of transformations in the literature in
the previous chapter, to introduce new transformations that aims to fill the
gap between the more complex conditioner transformations such as neural
network transformations and spline transformations, and the less complex
affine transformation. We start by recognising what traits that make affine
transformations attractive. We have also written a small classification of the
existing transformations that also emphasis this, but is beyond the scope of the
main part, and is added in Appendix A.3. Having pointed out this traits, we
introduce a new class of transformations, called affine extended transformations.
We then move on to creating a few new transformation in under the class of
affine extended transformations, which main motive is to be close to affine
transformations, yet more expressive.

We then consider CONNs, and implicitly MADE as it is a generalisation,
universal approximator properties. We find that CONNs with arbitrary width
and one layer are universal approximators, while arbitrary depth are not. Then
we show how to remedy the problem for arbitrary depth of the network by
enforcing constraints on the masks and sampling, and prove universality under
such constraints.

After this we proceed to show that one of the transformations introduced
in Section 4.2 are UDA for a large class of distributions, following similar
strategy as Theorem 3.6.15 (Huang, Krueger et al. 2018). We both highlight the
additional bonus of our transformation compared to the affine transformation,
in particular for independency and dimension D = 1. We also remark that
the transformations and proofs were done before we were aware of the brilliant
work of Teshima et al. 2020, but we argue in Section 4.4 that it still has a place
and adds to the current literature. We also combine the results we showed for
CONNs to our UDA result, which implies that every known UDA result still
holds when applying CONN/MADE.

At the final part we consider how to apply a function that can be applied to
output of conditioners to enforce strictly positive values, as for instance affine
transformations and our new transformations introduced in Section 4.2 requires
scale parameters at,d to be strictly positive, otherwise the resulting model is
not a flow, by Definition 3.2.5. The function is rather important when applying
normalizing flows, as poor choice leads to unstable training. We review the
functions used in the literature, before we introduce two new functions, Slowplus

67

4. Piecewise Affine Flows

and Slowabs.

4.2 Affine Extended Transformations

Affine and additive transformations can be seen as the simplest transformation
one can apply in regard to flows that compute parameters through the
conditioner. That is, excluding non-conditioner transformations such as linear
transformations, etc. Despite their simplicity, they can be quite expressive
with certain structures and they can also be quite useful when it comes to
dimension and scaling, as both transformations have few parameters and closed
form forward, inverse, and derivative. Few parameters also affect the size of
the network corresponding to the conditioner, as already noted, the larger the
output space is, the larger the network needs to be to get a good approximation.
There is also a case to be made regarding interpretation, in as far as that is
possible at all, and ease of implementation. That being said, they are quite
limited both in a finite context, but also asymptotically under many structures
and when the dimension D = 1. They also need more than one transformation
to produce nonlinearity. This leads us to generalise these transformations to
classes that capture some of the scalability, while alleviating flexibility issues.

Affine Extended Transformations

When considering classes of functions which can capture our requirements above,
there are some characteristics that in general seem to conflict with the said
goal. In particular, transformations where the variable is in multiple terms, i.e.,
summation. For instance, neural network- and residual transformation must
deploy different non O(1) methods to invert. There are of course exceptions,
such as quadratic polynomials or the addition of multiple affine transformations
(which obviously can be rewritten as another affine transformation). Another
typical problem occurs when piecewise functions are in use, i.e., splines—in
particular when there are more than one piece, where one has to search for the
right piece or bucket before transforming. Listing all characteristics that can be
problematic is of course not fruitful, yet it illustrates typical transformations
that are not included in the definition below.

Definition 4.2.1. Let (Q,S,H, f) be a flow. An affine extended transformation
is on the form

ft,d(zt−1,d) = ct,d · ht,d[at,d · zt−1,d + bt,d] + dt,d, (4.1)

where ht,d are piecewise C1-diffeomorphisms. Moreover, ht,d must have the
following property: when the parameters (at,d, bt,d, ct,d, dt,d) are known, the
transformation has analytically and closed form invertible, and where the
forward, inverse, and derivative w.r.t. zt−1,d can be computed in O(1) time.
The parameters are computed by the conditioner

(at,d, bt,d, ct,d, dt,d) = Ht,d(Sext(zt,d)).

A flow consisting of only affine extended transformations is an affine extended
flow.

68

4.2. Affine Extended Transformations

The name affine extended refers to the added—potentially nonlinear—
function h, separating two affine transformations. Clearly, the affine
transformation is included in affine extended transformations, as one can set ht,d
to be the identity function, ct,d = 1, and dt,d = 0. It is also worth noting that for
the most part any affine extended transformations are bounded parametrisation-
and non-inflection transformations. The following result is mostly included to
combine our structure theory and affine extended transformations. We ignore
the computational cost of the conditioner, as it is the same for flows with
different transformations, but similar conditioners.

Proposition 4.2.2. Let (Q,S,H, f) be an affine extended flow with triangular
flow-structure. Then the flow can be computed both ways in O(T · D) time,
including computing the density which is

qzT (zT) = qz0(z0) ·
T∏
t=1

D∏
d=1

∣∣∣∣ ∂

∂zt,d
ft,d(zt,d)

∣∣∣∣−1

Proof. This follows from Theorem 3.3.15, the fact that triangular structures
allow for knowing the parameters (at,d, bt,d, ct,d, dt,d) for every t ∈ T and d ∈ D,
and the definition of an affine extended transformation. �

The result also emphasises an important fact that the final computation
of the forward/inverse flow and its density, is O(T · D). This means that
the computational burden of some more complex transformations, e.g., spline
transformations, with only one transformation has better time complexity
than affine extended ones with many transformations. However, often the
more complex transformations also uses several time steps, time complexity O
does not illuminate the whole picture, and reflections around the size of the
conditioner, etc. are still important. It is nevertheless important to point out
the full computational burden.

Piecewise Affine Transformations

To make a more fruitful inquiry, both theoretically and empirically later on,
we introduce transformations with an explicitly stated ht,d. The following
transformation—and the ones introduced at the end of this section—can in
some sense be seen as adding slight flexibility to some of the more well-known
activation functions in the deep learning literature, to create simple yet effective
nonlinearities in ht,d. This to add extra flexibility to the flow, yet keep it
close to affine transformations in terms of the number of parameters and the
computational cost associated with it.

Definition 4.2.3. Let (Q,S,Hf) be a normalizing flow. A piecewise affine
transformation is defined as

ft,d(zt−1,d) = ht,d(zt−1,d − bt,d) + bt,d (4.2)

where

ht,d(x) =
{
at,d · x, if x > 0
ct,d · x, else.

(4.3)

69

4. Piecewise Affine Flows

The parameters are computed (at,d, bt,d, ct,d) = Ht,d(Sext(zt,d)), where
at,d, ct,d > 0. Any flow using only piecewise affine transformations is referred
to as an piecewise affine flow (PAF).

This small change creates a "breaking point", where the derivative is not
defined. However, as this is simply a single point means the transformation is
still a piecewise C1-diffeomorphism and it does not break with the definition of
a normalizing flow. However, practically we may run into issues during training
due to discontinuity and we return to this point in Chapter 5.

We first show that the transformation we are creating indeed is an affine
extended transformation, and therefore follows Proposition 4.2.2 for example.
To do this, we need to show that the PAF has a closed form inverse and can
be computed in constant time, as it is clear from Definition 4.2.3 that the case
holds for the forward transformation. Assume we know the value of zt,d and all
the variables (at,d, bt,d, ct,d, dt,d)—the latter is, for instance, possible to acquire
if the structure is triangular. As

lim
zt,d→b−t,d

f−1
t,d (zt,d) = lim

zt,d→b+
t,d

f−1
t,d (zt,d,

means it is continuous. As the derivative when constrained to zt−1,d < bt,d is
equal to ct,d > 0, and equivalentlyzt−1,d > bt,d is equal to at,d > 0 means it is a
piecewise C1-diffeomorphism.

The inverse can easily be written in closed form due to the fact that
zt−1,d > bt,d ⇐⇒ zt,d > bt,d. Hence, the inverse can be written as

f−1
t,d (zt,d) =

{
zt,d−bt,d
at,d

+ bt,d, if zt,d − bt,d > 0
zt,d−bt,d
ct,d

+ bt,d, otherwise.

This shows that the transformation is analytically invertible. Hence, a piecewise
affine transformation is an affine extended transformation.

A limited or simplified version of the piecewise affine transformation is when
ct,d = 1. This version is used to show universality for PAF in Section 4.4 and
we also use it in the empirical part in Chapter 5. The reason why we also use it
when running experiments are that the limited version only have two parameters
and put it very close to affine transformations, where we can see what a very
simple nonlinearity ht,d adds to the expressiveness, both theoretically and
empirically as well. We therefore find it useful to define it properly.

Definition 4.2.4. Let (Q,S,H, f) be a normalizing flow. A limited piecewise
affine transformation is defined as

ft,d(zt−1,d) = ht,d(zt−1,d − bt,d) + bt,d (4.4)

where

ht,d(x) =
{
at,d · x, if x > 0
x, else.

(4.5)

The parameters are computed (at,d, bt,d) = Ht,d(Sext(zt,d)), where at,d > 0.
Any flow using only limited piecewise affine transformations is referred to as an
limited piecewise affine flow (lPAF).

70

4.2. Affine Extended Transformations

We end this part by introducing a couple more affine extended transforma-
tions to explore empirically in Chapter 5.

Definition 4.2.5. Let (Q,S,H, f) be a flow. A transformation ft,d is an affine
piecewise affine transformation if it is of the form

ft,d(zt−1,d) = a
(2)
t,d · ht,d(zt−1,d) + b

(2)
t,d ,

with ht,d being a piecewise affine transformation and a(2)
t,d > 0. The parameters

comprises of (a(1)
t,d , b

(1)
t,d , a

(2)
t,d , b

(2)
t,d), where a(1)

t,d and b(2)
t,d are the parameters used

in the piecewise affine transformation ht,d. Any flow using only affine piecewise
affine transformations is referred to as an affine-piecewise affine flow (AfPAF).

Considering the fact that piecewise affine transformations are affine extended
easily justifies that affine piecewise affine transformations are as well. A
timely question is whether there is a difference—apart from the number of
conditioners/size of the conditioner—to alternate between piecewise affine- and
affine transformations instead of an affine-piecewise affine transformation, which
it turns out to be, and which we explore further in Chapter 5.

Finally, the last transformation we introduce is to eliminate the discontinuity
in the derivative of the aforementioned transformations. An analogy can be
drawn to what ELU does for ReLU, for example. We construct a function
that is still linear for most of R, but non-linear around 0 to make the function
have continuity in its derivative. We start by introducing some functions, then
defining the transformation, and then explain the different parts and shine some
light on the transformation. Firstly, we let at,d ∈ R, so not simply greater than
0, and then define a+

t,d = |at,d|/2 + 1. We are creating a transformation which
will use a+ for values outside an area (−∞, k], for some k ∈ R and k > 0. That
is, we want to have a limited piecewise affine transformation as zt−1,d → ∞,
where a+

t,d acts as at,d in the limited piecewise affine transformation.
Next, we need a function which acts upon the area [0, k], where again k ∈ R

and k > 0. The following two functions is used,

g(+)(x) = β[e
x
β − 1]

g(−)(x) = β ln[x
β

+ 1],

where β > 0 is a hyperparameter discussed later. We can now introduce the
ht,d used as according to affine extended transformations (Definition 4.2.1),
which we split into two parts h(+)

t,d and h(−)
t,d , and is defined as follows:

h
(+)
t,d (x) =

a+
t,d(x− c1) + c2, x > c1

g(+)(x), 0 ≤ x ≤ c1
x, otherwise,

and

h
(−)
t,d (x) =

(x−c2)
a+
t,d

+ c1, x > c2

g(−)(x), 0 ≤ x ≤ c2
x, otherwise,

71

4. Piecewise Affine Flows

5.0 2.5 0.0 2.5 5.0 7.5 10.05

0

5

10

15
at, d = − 2

at, d = − 1

at, d = 0

at, d = 1

at, d = 2

5.0 2.5 0.0 2.5 5.0 7.5 10.05

0

5

10

15
β= 0

β= 1

β= 2

β= 5

β= 10

β= 20

Figure 4.1: continuous piecewise transformations plotted for different at,d, where
a+
t,d = a2

t,d+ 1 and β = 2, on the left. Equivalently for different βs with at,d = 2,
on the right. Towards 0 it we have something smooth, while at the positive end
we get something akin to an affine transformation, and identity transformation
for zt−1,d < 0.

where

c1 = β ln(a+
t,d), c2 = β(a+

t,d − 1).

We shall explain why c1 and c2 is defined as they are, βs role and so on, but
we first introduce the transformation the components above make out.

Definition 4.2.6. Let (Q,S,H, f) be a flow. A transformation ft,d is an
continuous piecewise transformation if it is of the form

ft,d(zt−1,d) = ht,d(zt−1 − bt,d) + bt,d

where

ht,d(x) =
{
h

(+)
t,d (x), at,d > 0
h

(−)
t,d (x), at,d ≤ 0.

Here (at,d, bt,d) ∈ R2 is the two parameters calculated by Ht,d. β > 0 is a
hyperparameter.

Although we still have the same amount of parameters—one may also want
to consider β as parameter calculated by the conditioner, but for now is a
hyperparameter—we have added some complexity and restriction to allow for
the transformation to have continuous derivative as well. The effect of the
added g(+) and g(+) can be seen in Figure 4.1, where we have plotted the
transformations for different at,d and βs.

To shine some light on the function including c1, c2, we first see that the
inverse of ht,d is

h−1
t,d (y) =

{
h

(+)
t,d (y), a ≤ 0
h

(−)
t,d (y). a > 0.

As we see, we simply swap the cases in ht,d to invert it. Hence, if ht,d has
continuous derivative, the same applies for the inverse. We therefore concentrate
on ht,d.

72

4.2. Affine Extended Transformations

We may start by acknowledging that continuous piecewise transformation
is an affine extended transformation, which can be trivially checked. Further,
the reason for c1, c2 is to make the derivative in ht,d continuous. That is, such
that the derivatives are continuous where the different functions in h(±)

t,d meets.
Firstly, we note that we already have continuity in the derivative of ht,d at
x = 0, regardless of at,d. Finding the derivative w.r.t x for both h(+)

t,d and h(−)
t,d ,

and also g(+) and g(−) implicitly, we find the derivatives

(
h

(+)
t,d

)′
(x) =

a+
t,d, x > c1

ex/β , 0 ≤ x ≤ c1
1, otherwise,

and

(
h

(−)
t,d

)′
(y) =

1
a+
t,d

, y > c2
β
y+β , 0 ≤ y ≤ c2
1, otherwise.

t

We then find the appropriate c1 by solving the equality
a+
t,d = ex/β =⇒ x = β ln(a+

t,d) =: c1,
and similarly for the inverse and c2,

1
a+
t,d

= 1
y/β + 1 =⇒ β(a+

t,d − 1) =: c2.

By setting the two c1 and c2 accordingly, we know that h(+)
t,d and h(−)

t,d have con-
tinuous derivative. This implies ht,d has continuous derivative as when at,d = 0,
we have a+

t,d = 1 and ht,d is the identity function, and hence obviously has
continuous derivative. We can therefore summarise continuous piecewise trans-
formation as ht,d acts as a piecewise linear transformation for negative number
and larger positive ones, but contains forward and inverse continuous derivatives.

We also find it useful to introduce affine continuous piecewise affine
transformations, defined similarly to affine piecewise affine transformations.

Definition 4.2.7. Let (Q,S,H, f) be a flow. A transformation ft,d is an affine
continuous piecewise affine transformation if it is of the form

ft,d(zt−1,d) = a
(2)
t,d · ht,d(zt−1,d) + b

(2)
t,d ,

with ht,d being a continuous piecewise affine transformation and a
(2)
t,d > 0.

The parameters comprises of (a(1)
t,d , b

(1)
t,d , a

(2)
t,d , b

(2)
t,d), where a(1)

t,d and b(2)
t,d are the

parameters used in the continuous piecewise affine transformation ht,d.

We end with a note on β and its role. It controls, roughly speaking, how
much of the nonlinear part in h(+)

t,d and h(−)
t,d covers, e.g., the β(ex/β − 1) part is

extended longer into the positive part of h(+)
t,d when β is larger. However, a+

t,d also
plays a role of this, as with a small a+

t,d we have close to linear transformation for
the whole ht,d, and thus not much room for the nonlinear part as well. We can
therefore only conclude that finding the right β must be explored empirically,
and perhaps even include it into the parameter space of the conditioner Ht,d.

73

4. Piecewise Affine Flows

Related Work

We discuss related work to affine extended transformation, and in particular
our new transformations. The only result that we are familiar with is the work
of Oliva et al. 2018. They explore the composition of a few transformations.
Two of them can be translated to our framework as linear transformations and
additive transformations (affine transformation without the scale term). The
third transformation they use is of the following form

zt,d = rα(a(1)
t,d · zt−1,d + v′t,ds1:d−1 + b

(1)
t,d),

where rα is the Leaky ReLU function, i.e.,

rα(y) =
{
y if y ≥ 0
α · y otherwise,

a
(1)
t,d , b

(1)
t,d ∈ R, and vt,d ∈ Rk for some pre-chosen k ∈ N. Finally, s1:d−1 is a

state computed by

s1:d−1 = r(a(2)
t,d · zt−1,d−1 +w′t,ds1:d−2 + b

(1)
t,d),

where r is the ReLU function, a(2)
t,d , b

(2)
t,d ∈ R, and w ∈ Rk. Note that st,0 is

a known constant. Combining this with linear- and additive transformations
has given good empirical results on certain datasets, doing density estimation
(Oliva et al. 2018).

There are some differences compared to ours.

(i) (a(1)
t,d , b

(1)
t,d , a

(2)
t,d , b

(2)
t,d) are all trainable parameters, which means they are

not computed through a conditioner. This makes the transformation less
complex, as after training the parameters are constant regardless of input.

(ii) The conditioner part is a RNN, and give us a state, s1:d−2, which then
influences the transformation through addition, as v, w are also trainable
parameters. The transformation also enforces the structure to be IAR or
AR, and it also suffer computationally due to the inherent sequentiality.

(iii) Piecewise affine transformation allows for the "break point" to be decided
by bt,d in ht,d, while this is constant at 0 for rα. To us, the constant 0
works fine due to the combination of linear/additive transformations.

(iv) There are no universality proven around deploying these type of
transformations as far as we are aware, while piecewise affine flows are
(see Section 4.4).

This was in no way a criticism of the transformations considered by Oliva et al.
2018, but simply to show that there is clearly quite a large difference between
these methods. However, the nature of adding nonlinearities seems promising.

4.3 Universality of CONN

Before we move to proving universality for piecewise affine transformations, we
turn to CONN and its universal approximator properties. We find that it is a

74

4.3. Universality of CONN

universal approximator for arbitrary width and one layer, but not for arbitrary
depth with finite width.

The question of universality when it comes to MADE, has yet to be
discovered, as far as we are aware. In this section we are concerned with
the issue of universality in the general sense, i.e. inspecting the CONN model.
The results will vary based on how one generate masks, and we concentrate
our effort around uniform sampling when initiating the whole network, as it
is by far the most widespread one, hence every node which samples does so
according to Uniform(C). We avoid any agnostic training and comment on
them in the end of the section. The results below applies to every model where
at least one output dimension is dependent on at least one input dimension.
As MADE is simply a special case of CONN fulfilling said assumption, means
everything below applies to MADE as well. As we are sampling the masks,
we are introducing stochastic elements into the equation, and therefore the
question of universality for a space must be considered as the probability of the
model space being dense in it, and we assign the model space as a universal
approximator for another space, if the probability of it is one, i.e. almost surely.

Firstly, we ensure us that we will always be able to sample all the different
masks infinitely many times each, as long as we increase the number of samples.

Lemma 4.3.1. Let A = {1, 2, . . . , N}, where N can be any fixed positive integer.
Let A ∼ Uniform(A) be a set with M independently drawn samples. The
probability of a finite k ∈ N number of samples with value a ∈ A goes to 0 when
M →∞.

Proof. We consider the case of k > 0. We rewrite every other element in A as a′
except for a. We then have a binary case with probabilities p = 1/N for a and
q = (N − 1)/N for a′. The M samples means we have a binomial distribution
Bin(M,p). Let X be number of a, and consider the limit

lim
M→∞

Pr(X = k) = lim
M→∞

(
M

k

)
pkqM−k

≤ lim
M→∞

(
eM

k

)
pkqM−k

∝ lim
M→∞

Mk qM = 0

The case of k = 0 leaves us with pkqM−k and obviously goes to 0. �

Let NNC
[L,D,γ] be defined similar to earlier, but using CONN instead of

neural networks, and equivalently for the two set of models FCwidth and FCdepth.
We let C(X ,RDL+1 ; c) be the space of continuous functions from X to RDL+1 ,
where each d ∈ DL+1 is computed using the input dimensions c(yd).

Theorem 4.3.2. Let γ be any activation function which is also nonpolynomial.
Let FCwidth have 1 hidden layer with every node in the layer using uniform
sampling of masks, and X ⊆ RD0 be compact. Then FCwidth is almost surely a
universal approximator for C

(
X ,RD2 ; c

)
.

75

4. Piecewise Affine Flows

Proof. For all d ∈ D2, let Ψ(d) be a 1 hidden layered regular neural network
with input {x′d : d′ ∈ c(yd)} and one dimensional output. For any ε > 0 and
any G ∈ C

(
X ,RD2 ; c

)
, we have the following: there exists a D(d)

1 for every
dimension such that there exist a set of weights for each Ψ(d) which gives
|Ψ(d)(c(yd))−Gd(c(yd))| < ε, due to Theorem 2.4.8.

We then construct a network ΨCONN : X → RD2 with D1 =
∑D2
d=1D

(d)
1

number of nodes in hidden layer. We increase the number of hidden nodes
until we have D(d)

1 nodes with mask c(yd) for all d ∈ D2, which has probability
equal to one of happening as the number of nodes are increasing, according
to Lemma 4.3.1. We simply let weights be 0 for nodes which is not used in
any Ψ(d), and have effectively made a network which stacks all the Ψ(d) on top
of each other. This implies that with probability equal to one, there exists a
network ΨCONN ∈ FCwidth with specific weights such that∥∥ΨCONN (x)−G(x)

∥∥
∞ < ε.

�

Typically, we are not content with using a 1 hidden layer neural network,
and would rather extend it into a bounded number of nodes in each layer, but
with arbitrary depth. As it turns out, this is not straightforward, and the
results above does not transfer to FCdepth.

Proposition 4.3.3. Let FCdepth have some arbitrary fixed width D, and X ⊆ RD0

be compact. Regardless of D, FCdepth is not a universal approximator for
C
(
X ,RDL+1 ; c

)
.

Proof. For each hidden layer, one can think of sampling uniformly from a set
with D|C| elements, where |C| is the cardinality of C. Due to Lemma 4.3.1, we
know that the number of times a hidden layer l samples results in ml(d′) * c(yd)
for all d′ ∈ D and for an arbitrary output dimension d—assuming not every set
in C is a subset of c(yd)—has no bounds as the number of hidden layers grows.
A sample as described results in a node with only a bias term b next time one
sample ml′(d′) ⊆ c(yd). Which means we will arbitrarily many times start off
by a constant in approximating any output that corresponds yd. The exception
is if every set in C is a subset of c(yd). In that case, there are arbitrarily many
times where ml(d′) = c(yd) and ml+1 6= c(yd), which means layer l will not
have a connection to any node in the next layer. Hence, it cannot be a universal
approximator for any large class, let alone C

(
X ,RDL+1 ; c

)
. �

Remark 4.3.4. In the proof we assume that we can sample uniformly from C,
but in MADE one only allow to sample masks that does not allow for constant
nodes as above. This does not however improve upon the situation, but rather
the opposite. As every time we exclude the set c(yd) for some d, we assign a
constant to the output yd (or an affine transformation if we include a residual
block from input to last hidden layer).

The obvious remedy to the problem is to create distributions which cannot
randomly exclude at least one occurrence of ml(d′) ⊆ c(yd) in each layer. One
possibility is to create groups of sets from C where for each element there exist
a larger element of which it is a subset of, e.g. all subsets of c(yd) in one group

76

4.3. Universality of CONN

etc. And then sample from each of these groups at least once for each hidden
layer. This does not render the issue moot, as there are problems with the
smaller subsets, but it might be a reasonable trade-off between the problem
described in the last proof, and what we are about to introduce.

For a perhaps more crude way to deal with the issue is to assign a certain
number of nodes in each hidden layer to a deterministic mapping ml, which
guarantees that the values computed by c(yd) can be passed on to the next
layer in some form or another. We propose here to let the first D0 + DL+1
nodes in every hidden layer to be chosen deterministically and from here show
that it relieves the problems revealed in Proposition 4.3.3.

To show universality for our altered arbitrary depth case, we first introduce
a result of identity function and neural networks capability of approximating
them. An enhanced node refers to an affine transformation, followed by an
activation function, and another affine transformation. It basically means we
refer to the node as both the weights/bias applied before and after the activation
function, and the activation function itself.

Lemma 4.3.5 (Kidger et al. 2020). Let γ be an activation function and X ⊆ RD0

be compact. A single enhanced node Ψl,d with γ as activation function, can
uniformly approximate the identity function arbitrarily well.

This result means we can treat some of the nodes as storage units, and
therefore take a similar approach as Kidger et al. 2020 does when they prove
Proposition 4.2 in their paper, i.e., universality of regular neural networks.

Theorem 4.3.6. Let γ be a nonpolynomial activation function, X ⊆ RDL+1 be
compact. Let NNC

[L,D0+DL+1+1,γ] be limited to all CONNs where for each hidden
layer all but the last node is set accordingly: for each dimension d ∈ DL+1, we
require at least one of the nodes d′ in every hidden layer l to use the mapping
ml(d′) = c(yd) and similarly for each dimension d ∈ D0 and a node d′ with
ml(d′) = {d}. The final node in each hidden layer is uniformly sampled from C.
The resulting FCdepth is almost surely dense in C

(
X ,RDL+1 ; c

)
.

Proof. In the same manner as the proof for the arbitrary width case, we create
DL+1 single layered arbitrary width networks, Ψ(1), . . . ,Ψ(L+1), one for each
output. Due to Lemma 4.3.5, we can now dedicate D0 nodes in each hidden
layer to simply store the input, the ones with mapping ml(d′) = d, and the
DL+1 nodes with mapping ml(d′) = c(yd) can store the output. Whenever
c(yd) is sampled in the node which samples masks, we can compute one of the
nodes in Ψ(d) using the input storage nodes as input to the sampling node
and store the result in the appropriate output storage node. As the output
storage nodes has mapping equal to c(yd) means there is no issue with the
masking. At the final layer, the output storage nodes and output nodes both
have c(yd) as mapping and can therefore transfer the values over. As the list
with single layered arbitrary width networks can approximate any function in
C
(
X ,RDL+1 ; c

)
due to Theorem 2.4.8, means the constructed ΨCONN can also

do it, as we can always sample nodes with mapping c(yd), arbitrarily many
times as we extend the depth of the network due to Lemma 4.3.1. Hence, with
probability one, FCdepth is dense in C

(
X ,RDL+1 ; c

)
. �

We can therefore achieve the same results compared to regular neural
networks, with the same amount of nodes in each hidden layer. One could

77

4. Piecewise Affine Flows

of course have made a neural network Ψ for each d ∈ DL+1, but applying
Theorem 2.4.9 to each one would require more nodes in the hidden layers, hence
the use of CONN is to first and foremost increase speed and memory efficiency,
instead of creating DL+1 neural networks. This must surely compromise the
accuracy of the network some, given finite depth, compared to the naive approach
of DL+1 networks, but we can now conclude that it still provides the flexibility
we often seek when employing neural networks.

Thinking of the Theorem 4.3.6, we may swap the role of the deterministic
nodes in the network, with residual connections. That is, wherever a node have
no edges from the last layer, we add residual connections from input layer to
said node, and add residual connection from a node with no outgoing edges
to the output layer. We have explored this with a universality proof, together
with a different sampling scheme of masks, in Appendix A.2.

A final note on the role of order-agnostic training and connectivity-agnostic
training, as we excluded them previously. It is certainly so, that if one can spare
the expenditures, it can improve the results by implementing the aforementioned
schemes, but it does not improve on the results above. That is, if the model
space is not an universal approximator, the addition of agnostic training does
not change that. As already noted, we can look at the result of agnostic training
as making many models. However, when the width and depths is finite, there
are only a finite number of models one can create through agnostic training.
Hence, it can be seen as a model with simply larger hidden layers than the
original model, yet finite. This means that Proposition 4.3.3 still applies, as it
is arbitrary fixed width. The same argument implies that the theorems given
above also holds, as we are simply expanding models that are already universal
approximators.

4.4 Universality

In this section we prove universality for flows with limited piecewise transform-
ation, IAR structure without permutation, and neural networks as conditioner,
where we first prove using T ·D neural networks—i.e. one neural network for
each Ht,d—and then combine universality results with result from the previous
section regarding CONNs.

We preface these results with a note on universality results concerning affine
transformations in Teshima et al. 2020. There are obvious differences from the
results we are about to present, where both that Teshima et al. 2020 requires
D > 1, a more stringent structure, and permutations. Other differences has
already been discussed in Section 3.6. It is fair however, to also note that the
results by Teshima et al. 2020 appeared after we started working on this section,
and was not seen by us before we finished the universality proofs. In fact, one
of the reasons for us to introduce the transformations we have, was to mimic
affine transformations as close as possible yet be able to prove universality. This
was rendered somewhat moot with the paper by Teshima et al. 2020, yet the
results is still a new and useful contribution through different structure which
can transform each variable for time step t, valid for D = 1, no permutations
in the structure etc.

78

4.4. Universality

Before we can outline the proof of universality results and introduce
probability classes P we need to preface with the following. For this section,
the compact subset supported by the base distribution—remember the compact
distribution assumed in any UDA results—is a cube [k0, k1]D, for k0 < k1 and
k0, k1 ∈ R. It makes the proof easier to follow, and we do not lose anything of
value by such an assumption (also keep in mind that such an assumption is an
a priori assumption about the base distribution, and introduces no problems in
that regard). We also remind the reader of the Sigmoid function, denoted by
σ : (−∞,∞)→ (0, 1).

For a large portion of the proof, we are interested in showing that
the transformation and conditioner combined with the Sigmoid function,
can approximate different functions which goes from [k0, k1]d to [l0, l1] for
0 ≤ l0 < l1 ≤ 1 and d ∈ D. We therefore denote

gT (z0) = σ ◦ f(z0),

for flows (Q,S,H, f).

Classes of Target Probabilities

We start by introducing the classes of target distributions we show universality
for. We have two different classes of probabilities to concern ourselves with.
The first only applies to certain special cases, that is, with independence or
dimension D = 1. The class is

P1 = {P : P is a continuous distribution and the variables are independent.}

Note that for D = 1, the distribution above is merely every continuous
distribution.

The other distributions do not require independence, but is limiting in
other ways. As a comparison, we denote P+ to be the same class that Huang,
Krueger et al. 2018 shows universality for neural network transformations.

P+ = {P : P with the corresponding density p ∈ C(RD,R+
∗)}.

Our class of probabilities further extend this to, what seems to us, as the
broadest class we are able to prove directly with the current strategy. It is
slightly more intricate to state, and thus is defined as follows.

Definition 4.4.1. Let X ⊆ RD be a connected subset. The strictly conditionally
continuous distribution is a distributions P such that the density px ∈ P
follows {

p(x) > 0, if x ∈ X
p(x) = 0, if x /∈ X .

Also, the conditional CDF of the density, Fd(xd | x1:d−1), is continuous w.r.t.
x1:d−1.

Using this definition we may specify the third class of distributions we want
to prove universality for,

P2 = {P : P is a strictly conditional continuous distribution.}

79

4. Piecewise Affine Flows

The biggest difference between P+ and P2 is that in the latter we include
distributions with density 0 in the tails and discontinuity in the density. It also
follows that P+ ⊂P2. This is in no way saying that the neural network trans-
formation is weaker than the limited piecewise affine transformation. Indeed, it
does seem possible to extend the results in Huang, Krueger et al. 2018 to P2
through the same way we show it for our transformation. Also, even though
one do not prove universality for a larger class than the aforementioned ones
directly—here directly is for example to construct transformations explicitly
as we do—one may argue for universality of larger classes in indirect ways.
For instance, argue that universality of P2 implies universality where the
density is allowed to be 0, as we can have distributions in P2 which take
arbitrarily small positive values ε > 0 (although we have not seen a proof
of this and are hence cautious with our claims). Another case of indirectly
showing it is the fact that absolutely continuous distributions (w.r.t Lebesgue
measure) are dense in the set of all distributions (Teshima et al. 2020, Lemma 5).

The two main reasons why we choose to specify probability classes in
universality results are as follows. The first is to highlight for what distributions
the proof is valid for. This also elucidates what the transformations constructed
in the proof are able to express, as well as show limitations of different proof
strategies. Secondly, specifying the distribution class allows for universality
results with added specification, e.g., bound the number of transformations
we need to reach a certain precision etc. It is also useful if one want to use
more limited conditioners, which may lead to universality results for smaller
probability classes, but the resulting flow can have other useful properties—we
discuss this particular idea further in Section 6.2.

Outline of Proof

We give a short outline of the proof to both motivate the reader and ease
the experience. We use a similar strategy as Huang, Krueger et al. 2018 did,
relating closely to convergence of flows to canonical triangular transformations
(Bogachev et al. 2007). We wish to show, for any target distribution in Pi

with CDF F , to first show uniform convergence of gT towards σ ◦ F−1, when
T →∞, using neural networks as conditioner. Then use the fact that we have
convergence for f = σ−1 ◦ gT and applying the following lemma to show we
have weak convergence of flow to target distribution:

Lemma 4.4.2 (Lemma 4, Huang, Krueger et al. 2018). Let Z ⊆ RD and
X ⊆ RD, with each being the sample space of a probability space, i.e.
(Z,B(Z), µ) and (X ,B(X), ν). Let J : Z → X be any function and Jn
be a sequence of functions such that Jn converges pointwise to J . Then a
transformation of the form xn = Jn(z) converges in distribution to x = J(z).

The proof is quite straightforward by introducing a bounded continuous
function h, and show convergence in expectation of h(zn) to h(z) by the
dominated convergence theorem. Then simply finish it by applying the
Portmanteau’s lemma.

The showing of convergence to σ ◦ F−1 takes some steps and we therefore
give a small outline of the steps here.

80

4.4. Universality

• We start by showing universality for dimension 1. This makes the end
goal and the different lemmas for the generalised case more clear, as well
as we show universality for P1.

• We then proceed to introduce a function G = (G1, . . . , GD), where each
Gd can at the end be substituted with a composition of the canonical
triangular maps followed by the Sigmoid function σ.

• We then show uniform convergence of gT towards G, constructing a f
using a non-specific conditioner Ht,d.

• Showing some continuity and compact properties of the flow, we can
then show that the non-specific conditioner Ht,d can be approximated
arbitrarily well by a neural network, and still give uniform convergence to
G.

• We can then first show universality for P2, by showing pointwise
convergence towards the canonical triangular map, for any distribution
P ∈P2.

Universality when D = 1
We start by showing universality for D = 1, where some of the results are
needed for the general case, and also goes to show the differentiating strength
between limited piecewise affine transformations and affine transformations.

Lemma 4.4.3. Let (Q,S,H, f) with an IAR-structure, limited piecewise
transformation, a neural network as conditioner, and dimension D = 1. Let
g : [k0, k1]→ [l0, l1] be a monotonically increasing function with g(k0) = l0 and
g(k1) = l1, and 0 ≤ l0 < l1 ≤ 1 . There exists a flow such that gT converges
uniformly to g when T →∞, for z ∈ [k0, k1].

Proof. For any ε > 0, we set M = d 1
ε e. Start by dividing [l0, l1] into M + 1

subsets(
l0, l0 + l1 − l0

M + 1

)
,

(
l0 + l1 − l0

M + 1 , l0 + 2(l1 − l0)
M + 1

)
, . . . ,

(
l0 + M(l1 − l0)

M + 1 , l1

)
.

We shall denote the boundary points ym := l0 + m(l1−l0)
M+1 for m ∈ {1, 2, . . . ,M}.

We can also find xm = g−1(ym), where

g−1(ym) = inf{xm : g(xm) = ym, ∀xm ∈ [k0, k1]}.

We cover the case with l0 > 0 and l1 < 1 first, but in the case of l0 = 0 we
discard the first transformation defined here, and similarly with l1 = 1 and the
last transformation (one may simply think of discarding as letting the first/last
transformation to approximate the identity function, i.e., use at,1 = 1).

Let the number of transformations be T = M + 2. The goal now is
to show that there exist a mapping (at, bt)Tt=1 = H(Sext(t, 1)), such that
|gT (z0) − g(z0)| < ε for all z0 ∈ [k0, k1]. This means, we need to specify
parameters first, and then also show that a neural network can approximate
these parameters. The latter can be dealt with quite straight forward. As D = 1
means that the conditioner takes no input and output constants (at, bt)Tt=1, i.e.,

81

4. Piecewise Affine Flows

for all x ∈ [k0, k1] we have Sext(t, 1) = ∅. This also means that the function
Ht,1 is continuous w.r.t Sext(t, 1), as constants are continuous with input from a
compact set, hence we can approximate it arbitrarily well with a neural network
following Theorem 2.4.9.

Let b1,1 = min(σ−1(l0), k0)− 1 and

a1,1 = σ−1(l0)− b1
k0 − b1

,

where we have that a1 > 0, due to σ−1(l0) > b1,1 and k0 > b1,1. We can then
proceed with setting the next t ∈ {2, . . . , T − 1} parameters as

bt,1 =
{
σ−1(yt−2), if t > 2
σ−1(l0), otherwise.

The scaling parameter is then set to,

at,1 = σ−1(yt−1)− bt,1(
©t−1
j=1fj,1(xt−1)

)
− bt,1

.

Here
(
©t−1
j=0fj,1(xt−1)

)
applies the previous t − 1 transformations using the

parameters we define, which means
(
©t−1
j=0fj(xt−1)

)
> bt,1. We also have

that σ−1(yt−1) > bt,1 due to how bt,1 is defined, ym > ym−1 > l0, and σ is
monotonically increasing, which implies that at,1 > 0. The last transformation
t = T have the parameters

bT,1 = σ−1(yM)

and

aT,1 = σ−1(l1)− bT,1(
©t−1
j=0fj,1(k1)

)
− bT,1

,

with aT,1 > 0 using similar argument as for the other at,1.
We now have the final transformation with the property that for all xm with

m ∈ {1, . . . ,M}, we have

gT (xm) = ym,

and if l0 > 0 we have gT (k0) = l0 and equivalently with l1 < 1 and gT (k1) = l1.
To show convergence of gT and g, we simply see that gT (xm)− gT (xm−1) =

l1−l0
M+1 for all m ∈ {1, . . . ,M} and gT (x1)− l0 = l1 − gT (xM) = l1−l0

M+1 . We also
know that l0 ≤ gT (z0) ≤ l1, for all z0 ∈ [k0, k1]. Using the fact that both
functions gT and g are monotonically increasing and l1 − l0 ≤ 1, means that for
all z0 ∈ [k0, k1],

|gT (z0)− g(z0)| ≤ l1 − l0
M + 1 <

l1 − l0
M

≤ 1
M

= 1
d 1
ε e
≤ ε

�

82

4.4. Universality

Following this result we can prove universality for P1. We remind the
reader that the flow space contains all flows parameterized by Φ, which is both
hyperparameters and trainable parameters. We also remind the reader of the
notation NN [l,n,γ] as the space of neural networks with l hidden layers, n nodes
in each hidden layer, and γ as activation function. So any Ψ ∈ NN [l,n,γ] is a
network with l hidden layers, n nodes in each hidden layer, γ as an activation
function, and with a specific set of weights.

Theorem 4.4.4. Let NF be the flow space with

• an IAR structure without permutation,

• limited piecewise affine transformations,

• NN [L,D̃,γ] as conditioner space,

• {D̃, T} ⊆ Φ, i.e., the width of the hidden layers in the conditioner, and
the number of transformations T .

NF is a UDA for P1 when D = 1.

Proof. For any distribution P ∈ P1, let FP be the corresponding CDF. We
have that F−1

P (u), for u ∈ [0, 1], is monotonically increasing, by definition of the
CDF. Similarly, the CDF of the base distribution FQ(z0,1), for z0,1 ∈ Z0
where Z0 is the sample space for the base distribution, is monotonically
increasing by definition. Let g be the canonical triangular mapping, i.e.,
g(z0,1) = F−1

P ◦ FQ(z0,1). As σ is also monotonically increasing, means σ ◦ g is
monotonically increasing and its image is [l0, l1], with 0 ≤ l0 < l1 ≤ 1 (open set
if l0 = 0 and equivalently for l1 = 1). From Lemma 4.4.3, we have that when
T → ∞ and the number of neurons in each hidden layer increases D̃ → ∞,
there exists a set of T neural networks, due to Lemma 4.4.3,

A = {Ψ(t) : Ψ ∈ NN [L,D̃,γ] and t ∈ T }

such that gT = σ ◦ f uniformly converges towards σ ◦ F−1(u). This
implies f converges towards F−1(u), and due to Lemma 4.4.2, we have that
f(z0,1) = zT,1

d−→ x = F−1
P ◦ FQ(z0,1). �

This shows that with limited piecewise affine transformation, we can
approximate any continuous distribution arbitrarily well—in terms of weak
convergence that is. While affine transformations are inherently poor, as we
have seen through observations earlier. Hence, adding a small change in the
transformation makes a lot of difference in the one dimensional case.

Generalising to Multidimensional Case

We now wish to extend the results above for higher dimensions, while also
including the IAR-structure. We define a new function for each d ∈ D,
Gd(z0,d, z0,1:d−1), where z0 ∈ [k0, k1]D. When z1:d−1 is fixed, it is assumed the
function Gd is a strictly monotonically increasing function w.r.t. z0,d, where

83

4. Piecewise Affine Flows

ld0 ≤ Gd(z0,d, z0,1:d−1) ≤ ld1 , with 0 ≤ ld0 < ld1 ≤ 1. It is also assumed continuous
w.r.t. z0,1:d−1, i.e. given z0,1:d−1, for all ε > 0 there exist a δ > 0 such that

||z0,1:d−1 − z̃0,1:d−1||∞ < δ (4.6)
=⇒ |Gd(z0,d, z0,1:d−1)−Gd(z0,d, z̃0,1:d−1)| < ε,

where z̃0,1:d−1 ∈ [k0, k1]d−1. In addition to this, we allow for the end points
ld0 , l

d
1 to change when z0,1:d−1 changes. However, they must be between 0 and 1

including, and ld0 < ld1 and due to the continuity, the changes must be continuous
as well. To be more precise, there must be continuity for the point k0, i.e.
Gd(k0, z0,1:d−1) = ld0 , and equivalently for k1, l

d
1 . To quickly summarise the

properties of Gd:

• For each z0,1:d−1:

– ∃ ld0 , ld1 ∈ [0, 1] such that ld0 < ld1 and Gd : [k0, k1]→ [ld0 , ld1].
– Gd is strictly monotonically increasing.
– Gd(k0, z0,1:d−1) = ld0 and Gd(k1, z0,1:d−1) = ld1

• Gd is continuous w.r.t. z0,1:d−1, fulfilling Equation (4.6).

• The boundary points in the image of Gd may change when z1:d−1 changes,
but according to the points above, must do so continuously, with regards
to Equation (4.6).

We wish to show gT can converge towards G = (G1, G2, . . . , GD) using limited
piecewise affine transformation, similarly as in Lemma 4.4.3. We do not
assume a neural network as the conditioner yet, as we first need to make
sure (at, bt)Tt=1 = Hd(z1:d−1) are continuous w.r.t. z1:d−1. We then have to
show a few properties regarding compactness and continuity before we can
confirm that we may approximate H, as specified below, arbitrarily well using
a neural network.

Lemma 4.4.5. Let (Q,S,H, f) be a flow with limited piecewise affine trans-
formations and an IAR-structure. Let the function G be defined as the function
where each of the D outputs is defined by Gd, i.e. G = (G1, G2, . . . , GD). Then
there exist a flow such that the transformation gT = σ ◦ f , with continuity in
Hd(z0,1:d−1) for all d ∈ D, converges uniformly to G.

Proof. For all z0,1:d−1 and for all ε > 0, setting M = d 1
ε e and letting Ht,d

output the parameters specified in the proof of Lemma 4.4.3, gives uniform
convergence to Gd due to Lemma 4.4.3. Using the same M for all d ∈ D and
designing Ht,d as mentioned, gives uniform convergence for all Gd’s, hence there
exist a flow (Q,S,H, f) such that the transformation gT = σ ◦ f converges
uniformly towards G. We therefore only need to show continuity in Ht,d as
described, for all d ∈ D and t ∈ T .

We show continuity for an arbitrary d ∈ D \ {1}, see Lemma 4.4.3
for continuity when d = 1. We remind the reader that we have M + 2
transformations, with the first and last transformation depending on whether
0 < ld0 and ld1 < 1 respectively, similar to the proof of Lemma 4.4.3.

Let ε1 > 0. For all ε2 > 0 there exist a δ2 > 0 such that that whenever

||z0,1:d−1 − z̃0,1:d−1||∞ < δ2

84

4.4. Universality

implies |ld0− l̃d0 | < ε2, with an equivalent argument for ld1 , due to continuity in Gd.
This means we can choose δ2 such that |ym − ỹm| < ε2, where ym is similarly
defined as in the proof of Lemma 4.4.3. Combine this with the fact that σ−1 is
continuous, which means we can choose ε2 such that |σ−1(ym)− σ−1(ỹm)| < ε1
for all m ∈ {1, 2, . . . ,M}. Setting then δ1 = δ2 gives us

||z0,1:d−1 − z̃0,1:d−1||∞ < δ1 =⇒ ||b− b̃||∞ < ε1,

where b and b̃ are vectors with the corresponding (bt,d)T−1
t=2 for Gd(z0,d, z0,1:d−1)

and Gd(z0,d, z̃0,1:d−1) respectively. The same argument holds the two special
transformation, i.e., when 0 < l0 < l1 < 1 there is continuity in b1,d and bT,d.
This is due to the constraint of Gd, that the boundary points may change, but
only continuously.

Moving onto the a’s. When we know that the bt,d are continuous w.r.t
zt,1:d−1, it follows quickly that

a1,d = σ−1(l0)− b1,d
k0 − b1,d

is continuous, as σ−1 is continuous and k0 > b1,d. It then follows inductively
that for t ∈ {2, . . . , T},

at,d = σ−1(yt−1)− bt,d(
©t−1
j=1fj,1(xt−1)

)
− bt,d

.

is continuous with similar arguments as for a1,d in addition to the fact that
limited piecewise affine transformations are continuous.

We can then conclude that for any zt,1:d−1 with t ∈ T , and for all ε > 0, we
can find a δ > 0 for each parameter (then simply pick the smallest δ of them),
such that

||zt,1:d−1 − z̃t,1:d−1||∞ < δ =⇒ ||Ht,d(zt,1:d−1)−Ht,d(z̃t,1:d−1)||∞ < ε

As d was arbitrarily chosen, and d = 1 is covered by Lemma 4.4.3, means it
holds for all d ∈ D and hence H as specified by Lemma 4.4.3, is continuous. �

Before we can complete convergence of gT to G with the additional part of
H being a neural network, we need to show a small result of continuity of ft,d
w.r.t bt,d.

Lemma 4.4.6. Let (Q,S,H, f) be a flow with limited piecewise affine transform-
ations and an IAR-structure. Then, for all d ∈ D and t ∈ T , the transformation
ft,d is continuous w.r.t. bt,d.

This is a minor proof, done quite straightforward using cases. It is, however,
a bit long and technical without any real insights, and hence the proof has been
relegated to Appendix A.4.

We can now combine Lemma 4.4.5 and the universality of neural networks,
to let Ht,d as specified in Lemma 4.4.5 be approximated by a neural network.
To differentiate between the conditioner specified in Lemma 4.4.5 and a neural
network, we write gT,d(z0,d;H) and gT,d(z0,d;A), where A is a set of T · D
neural networks, which indicated the use of the specified conditioner and neural

85

4. Piecewise Affine Flows

networks respectively (gT,d is the output after applying σ to zT,d). We write
equivalently for a transformation, with ft,d(zt−1,d;Ht,d) and ft,d(zt−1; Ψ), where
Ψ is a neural network.

Lemma 4.4.7. Let (Q,S,H, f) be a flow with limited piecewise affine trans-
formations and an IAR-structure. For every t ∈ T and d ∈ D, let Ht,d be
approximated by a neural network Ψ ∈ NN [ld,d+3,γ]. Then there exist a flow of
(Q,S,H, f) such that gT converges uniformly toward G as T →∞ and ld →∞.

Proof. We start by showing convergence for an arbitrary d ∈ D and Gd. Firstly,
as the input z0,1:d−1 is compact and the function itself is continuous by the
definition of an affine extended transformation, the input to any Ht,d is compact.
We can then, for any δ > 0 and any t ∈ T , find a Ld such that whenever ld > Ld
implies there exists a network Ψ ∈ NN [ld,d+3,γ] where

‖Ψ(z0,1:d−1)−Ht,d(z0,1:d−1)‖∞ < δ,

due to Theorem 2.4.9.
We now wish to show convergence, by picking an arbitrary t ∈ T , of a

transformation ft,d between the two conditioner. We first show that ft,d is
uniformly continuous w.r.t. to its parameters (at,d, bt,d), regardless of the
conditioner. The line of arguments goes as follows:

1. The derivatives of ft,d (Definition 4.2.3) w.r.t. at,

∂ft,d
∂at,d

=
{
zt,d − bt,d, if zt,d − bt,d > 0
0, otherwise.

2. As the derivative of at,d always exists and using Lemma 4.4.6 for continuity
in bt,d, means ft,d is continuous w.r.t. its parameters.

3. The input to either Ht,d or Ψ is, as already noted, compact. Both
conditioner are continuous, Ht,d due to Lemma 4.4.5 and Ψ follows from
Definition 2.4.5.

4. Compactness and continuity of function implies compactness w.r.t. output,
hence the parameter space—or output space of the conditioner—-is
compact.

5. Continuity in ft,d w.r.t. the parameters combined with the fact that
the parameters are compact, implies uniform continuity of ft,d w.r.t.
(at,d, bt,d).

Uniform continuity combined with convergence of the network, means there
exist for all z0,d ∈ [kd0 , kd1] and for every ε/2 > 0, a δ > 0 (by picking ld > Ld
large enough), there exists a network Ψ ∈ NN [ld,d+3,γ] such that

‖Ψ(z0,1:d−1)−Ht,d(z0,1:d−1)‖∞ < δ

=⇒ |ft,d(z0,d; Ψ)− ft,d(z0,d;Ht,d)| <
ε

2

where Ht,d is as specified in Lemma 4.4.5.

86

4.4. Universality

By combining this with Lemma 4.4.5, we see that for all z0,1:d ∈ [k0, k1]d
and for every ε > 0, there exist a Td ∈ N and Ld ∈ N such whenever T > Td
and ld > Ld, there exists a set of T networks

A = {Ψ(t,d) : Ψ(t,d) ∈ NN [ld,d+3,γ] and t ∈ T }

s.t.

|gT,d(z0,d;A)−Gd(z0,d, z0,1:d−1)|
≤|gT,d(z0,d;A)− gT,d(z0,d;Ht,d)|+
|gT,d(z0,d;Ht,d)−Gd(z0,d, z0,1:d−1)|

<
ε

2 + ε

2 = ε.

A small note on A. Each network approximate their own Ht,d, which is indicated
by the superscript of the networks in A.

Finally, we combine the results above for each d ∈ D and acquire the
following result. For all z0 ∈ [k0, k1]D and for every ε > 0 there exists a
L = max{Ld}Dd=1 and T̃ = max{Td}Dd=1, such that (ld > L)Dd=1 and T > T̃ ,
there exists a set of T ·D networks

A = {Ψ(t,d) : Ψ(t,d) ∈ NN [ld,d+3,γ] and t ∈ T }

s.t.

‖gT (z0;A)−G(z0)‖∞ < ε.

�

Before we comes to the final theorem, we need to make sure the canonical
triangular map is continuous and increasing w.r.t z0,d, but also continuous w.r.t
z0,1:d−1. It is fine for the first part of the canonical triangular map, as it is
the conditional CDF FQ(z0,d | z0,1:d−1). We need to make sure the same holds
for the second part, the inverse of F−1

P . As the result is more about a class
of probabilities, the proof is a bit technical, and does not regard flows and
therefore gives no insight to flows, we have relegated the proof to Appendix A.5.

Lemma 4.4.8. For any probability distribution P ∈P2, let the conditional CDF
be denoted by FP(xd | x1:d−1) for any d ∈ D. Then the inverse F−1

P (ud | x1:d−1),
where ud ∈ (0, 1) is strictly increasing and continuous w.r.t both ud and x1:d−1.

Once we have this continuity and strictly increasing, we can prove the main
theorem using the canonical triangular map, i.e., we can prove universality for
P2.

Theorem 4.4.9. Let NF be the flow space with

• an IAR structure without permutation,

• limited piecewise affine transformations,

• NN [L,D̃,γ] as conditioner space,

87

4. Piecewise Affine Flows

• {D̃, T} ⊆ Φ, i.e., the width of the hidden layers in the conditioner, and
the number of transformations T .

Then NF is a UDA for P2.

Proof. Let P ∈ P2, F (d)
Q be the conditional CDF for z0,d conditioned on

z0,1:d−1, and equivalently for F (d)
P . By Lemma 4.4.8, the definition of a CDF,

and the fact that z0 ∈ [k0, k1]D, we have that the canonical triangular map
[F (d)
P]−1 ◦ F (d)

Q (z0,d | z0,1:d−1) is continuous w.r.t both z0,d and z0,1:d−1, and
strictly increasing. Then we have that Gd = σ ◦ [F (d)

P]−1 ◦ F (d)
Q fulfills the

requirements we specified at the start. From Lemma 4.4.7, we know that
gT = σ ◦ f can approximate G = (G1, . . . , GD) arbitrarily well using neural
networks as conditioner, and it converge uniformly towards G. This implies
pointwise convergence towards σ−1 ◦ G = (σ−1 ◦ G1, . . . , σ

−1 ◦ GD), which
implies due to Lemma 4.4.2 that

f(z0) = zT
d−→ x = G(z0) ∼ P.

�

With this result we have shown that with a slight modification on the affine
transformation, we have universality for broad classes of distributions, for both
D = 1 and structures without use of permutations. Although the results were
of larger importance before Teshima et al. 2020 were published and before
we became aware of their excellent results, it still has its place as the first
proof using arbitrary many time steps T , rather than number of parameters in
transformations (e.g. number of knots in spline transformations), while using
no permutations in the structure. Now, as already discussed before, universality
of flows does not imply good performance in a finite situation. Both due to the
asymptotic nature, but also due to the existence part, i.e., there exists a flow
and there exists a set of neural networks.

In the end of this section, we have a couple of results that follows quickly
from the theory above, and are neat in their own right. Firstly, we can combine
the UDA results above with the universality of CONNs. We implicitly assume
that any CONNs we use follows the way they are described in Theorem 4.3.2,
Theorem 4.3.6, or Corollary A.2.1.

Corollary 4.4.10. Let NF be normalizing flow space which is UDA for a
distribution space P and the conditioner space is comprised of neural networks.
Then the same normalizing flows space where the conditioner space comprises
of CONNs is a UDA for P almost surely.

Another result stems from the fact that flows with limited piecewise affine
transformations are UDA for P1 when D = 1, can easily be extended to
multidimensional, as P1 specifies independence between the variables in all
distributions P ∈P1. We can then think of simply letting each dimension in
the flow approximate its own one dimensional distribution. This is equivalent
to setting the weights in the first layer of the neural network that computes
the conditioner, to 0. It then becomes easy to prove that each dimension can
approximate its own independent distribution, with similar approach as in
Theorem 4.4.4. We therefore have:

88

4.5. a-activation function

Corollary 4.4.11. Let NF be the flow space with

• an IAR structure without permutation,

• limited piecewise affine transformations,

• NN [L,D̃,γ] as conditioner space,

• {D̃, T} ⊆ Φ, i.e., the width of the hidden layers in the conditioner, and
the number of transformations T .

NF is a UDA for P1.

This again highlights the difference between affine and the small change we
introduce. If the target distribution contains independent dimensions, there
is a more direct way to approximate it with our flows (at least theoretically),
compared to first correlating and then de-correlating variables. It also highlight
the possibility, if we know something about the dependence of different
dimensions—either through learning from observations or a priori—we can
use simpler structures such as Sext(t, d) = ∅ for all t ∈ T , when d is independent
from the others.

We are now done with the universality part of this thesis. Before we move
on to the empirical testing, we take a look at how to enforce positive parameters
as output of the conditioner.

4.5 a-activation function

In the last section of this chapter, we turn our focus toward a small, yet
important part of transformations, namely when the parameter computed by
the conditioner needs to be positive, e.g., at,d in the affine transformation.
There are many valid options here, and many of them are theoretically they
are equivalent, but practically can be extremely important. For instance, any
function ga : R→ R+

∗ is theoretically sufficient, but using for instance exp, any
small change of the parameters in the conditioner, can drastically alter at,d in
the transformation. We therefore find it useful to investigate and introduce
some useful functions.

Definition 4.5.1. Let (Q,S,H, f) be a flow, and where ft,d contains parameter
at,d > 0. We then define a-activation function ga : R → R+

∗ as the function
applied to outputs of the conditioner at,d.

The activation function part of the name comes from the fact that the
conditioner typically is a neural network, and then ga becomes the last activation
function in the network.

The two most prominent a-activation functions when it comes to affine
transformation, and the parameter at,d, has been exp (Papamakarios et al.
2017) or σ (Kingma, Salimans et al. 2016). The former often invoke highly
unstable flows during training, as small fluctuations in the weights give high
values at,d, which result in extreme values in the loss and the gradient, and we
end up with exploding gradients. The latter, σ, creates very stable flows during
training, but of course limits the output space to 0 < at,d < 1, and can have
damaging effects, as seen in Section 3.6.

89

4. Piecewise Affine Flows

Another of the well known a-activation function is the Softplus, which is
defined as

Softplus(at,d) = log(1 + exp(at,d)).

This allows for at,d ∈ R+
∗ , while the growth is a lot slower than exp, hence not as

rapid change when optimising weights in the network/conditioner. However, this
can still induce exploding gradients, and as another alternative, we introduce
an even slower growing function Slowplus

Slowplus(at,d) =
{
arcsinh(at,d) + 2 log(2), at,d ≥ 0
2 · Softplus(at,d), at,d < 0,

where arcsinh is the inverse hyperbolic sine log(at,d +
√
a2
t,d + 1). The ad-

ded constants in Slowplus is there to align the two pieces at at,d = 0, with
also same derivative (1). This can be an extra tool to apply before settling for σ.

In continuous piecewise affine, the a-activation function is a little bit different,
as we let the value pre a-activation function decide how to apply a+

t,d, where we
want it to be symmetric for positive and negative side, as the prea-activation
function value at,d uses a+

t,d when at,d > 0 and 1/a+
t,d otherwise. Hence,

using similar functions as described above, makes it hard to approximate the
transformation when the gradient of the linear piece is less than one. However,
using simply the absolute value enforce similar exploding gradient problems,
and we therefore want to give a smaller growth in the a-activation function for
continuous piecewise affine transformation as well (a+

t,d). We therefore introduce
Slowabs as

Slowabs(at,d) = |arcsinh(at,d)|.

The arcsinh stretches the input out, enforcing smaller growth before we apply
the absolute value, while still mapping R to R+

∗ .

Conclusion

We are now at the end of this chapter, where we have seen a few important
distinctions between larger groups of transformations. We then took this
concept, and introduced some transformations that tries to fill the gap between
the simpler ones in one group of transformations, and the more complex ones in
the other two groups (unbounded parametrisation/inflection transformations).
Also showing both universality to the important group of networks, CONNs,
and the UDA of limited piecewise affine transformation, as the first to be
shown where we required number of transformations to increase, while using no
permutations. At the end we considered a few different parametrisations of at,d,
which needs to be carefully considered in the next chapter, which is testing our
new introduced parts in empirically.

90

CHAPTER 5

Empirical Results

5.1 Introduction

In this chapter we take the theory developed, and put it into practice, by
running 4 different experiments. We start off by giving an overview of of
the implementation used for the experiments, notes on optimising matrices in
SO(D), and general information on how the experiments were run.

We then move on to experiment 1 and 2, which is performed by testing 42
different flows on some known target distribution, to find general patterns and
broad stroke conclusions. We then find a set of few flows that perform well
and continue testing them in experiment 3 and 4, where experiment 3 run our
proposed transformation on some benchmark, and we compare it to results
from the literature. Experiment 4 contains a Bayesian model, were we test the
variational inference side of flows.

In addition to testing our proposed transformations, we also experiment
with alternating linear transformations and ours/affine transformations. This
have had remarkable results with more complex transformations such as spline
transformations (Durkan et al. 2019b), and we are interested in seeing if this
have similar effect for simple transformations such as continuous piecewise affine
transformations and affine transformations.

5.2 Implementation

In the following experiments we have run, we have written a code base that
reflects the formal definitions introduced through this thesis. We found it
not only necessary to reflect our work, but as existing code online were very
much different complete flows, hard to change or create new flows out of. This
means that we have separated the code into several parts, with transformations,
structures, conditioners, permutations, and base distributions are separated.
With this, one can easily implement new transformations for instance, and
pass whatever already implemented structures etc. one wish to use into the
main flow class and run. This makes it possible to rapidly create different
models, and therefore be able to better test each component, e.g., run similar
models but change the permutation scheme. The entirety of the code can be
found here https://github.com/Watakani/Master, while we run through
the implementations components in broad strokes here.

91

5. Empirical Results

Before we delve into our contribution we run through the use of existing
code. The core framework is written on PyTorch v.1.10.0, which we use to
compute the underlying computational graphs, parts of the neural networks
models, e.g., normal, noisy, MADE/CONN, and functions like exponential etc.,
as well as the base distribution to sample and evaluate density. We are also
using a R package (Vehtari, Gabry et al. 2020) to calculate some variational
statistic, by piping the python code into R and run the package, returning the
results into python.

We can now move onto what we have contributed to the code. We have
a two classes on top, namely a class that is the flow, which then takes as
input a list with T structures/transformations, with the classes main task is
to compute forward and backward flow—both when updating parameters and
after training—and also add base distributions log density to the final log
density. The second large part is the training code, which allow user to pass a
flow, an updating scheme which are implemented in PyTorch (e.g., Stochastic
Gradient Descent, ADAM), and other hyperparameters such as number of
epochs, batch sizes etc., and the code then train the flow, and can also save the
best model/checkpoints.

The first two parts described above, allows us to implement the different
part of flows, and assemble them into a list and pass them on to the parts
described above. We are now giving an overview of what exactly is implemented
in the code.

• Base distribution: A class that simply takes in any PyTorch implemented
distribution, and allow for both sampling and evaluating log density.
If nothing is explicitly stated, it assumes a joint independent standard
Gaussian distribution.

• Conditioner: We have implemented two conditioners, depending on what
structure, and are initiated from the classes of structures. They all take in
a dimension D, and number of parameters ρ needed in the transformation,
and output D · ρ vector. The following conditioners are implemented:

– Vanilla neural network to be used in coupling structures, and one
dimensional cases.

– MADE/CONN, one very specific version of MADE with Uniform
sampling of the masks at the initialisation, and a CONN class that are
more general and can take any mapping c, as described in Section 2.5.
The former is a bit faster, and is preferred in the autoregressive case
as of now, as it easier to implement and the implementation was
based of Kaparthy 2018.

• Transformations: Any transformation must inherit from the Transforma-
tion class, which means there is very little that needs to be implemented
for each transformation. Only forward and inverse transformation, taking
input z or x and parameters, which the structure class takes care of. The
following transformations have been implemented:

– Affine Transformation,
– limited Piecewise Affine Transformation,

92

5.2. Implementation

– Continuous Piecewise Affine Transformation,
– Affine limited Piecewise Affine Transformation,
– Affine Continuous Piecewise Transformation,
– Constant Affine Transformation, simply letting the parameters

(at,d, bt,d) be constants, which together with a independent Gaussian
base distribution gives a similar model to the standard mean field.

– Linear Transformation, with translation, and where the matrix A is
in SO(D), i.e., orthonormal. We discuss further how we train such
matrices later.

• Structure: As the flow class described in the last paragraph as composing
of T structures/transformations, we implement structure as taking in a
specific transformation for step t, and hyper parameters to the conditioner,
and initialise conditioners. The structure takes in z or x, depending on
forward or inverse computing, and compute the correct parameters before
passing everything on to the specific transformation. The structures
implemented are:

– TwoBlock, is a D/2-coupling structure,
– AR,
– IAR,
– Identity/Fully Connected.

• Permutations: We have implemented three different permutation schemes
to use in the structures, which are the identity permutation, alternating
(the first dimension becomes the last, the last becomes the first, the
second becomes the second to last...), and random which generates the
permutation through sampling.

This comprises the main parts of our implementation. We need to discuss some
details concerning the linear transformation.

Linear Transformation Implementation

The challenge with linear transformations are first to consider what group A
should adhere to—as it is unfeasible to optimise over the general linear group
(invertible matrices)—and secondly choose how to optimise over the group we
pick. We ended up with orthonormal matrices A, that is, optimising over the
SO(D) group. Secondly, how to actually optimise over it.

The actual method is beyond the scope of this thesis, however, we give a
rough intuition for it here. One can parameterise a matrix B with constant
0 in the lower triangular, constant 0 along the diagonal, and parameters in
the rest. One can then calculate a skew-symmetric matrix Bs = B + −B′
(where skew-symmetric is when Bs = −B′s, i.e., it is equal to the negative of the
transposed). With this skew-symmetric matrix, taking the matrix exponential
maps A = exp(Bs) to the space of SO(D), i.e., space of orthonormal matrices.
This means that we can optimise over the (D2/2−D) parameters in B, where
each parameter can be any real value, and end up with a special orthonormal
matrix. Due to recent improvements, the matrix exponential function has

93

5. Empirical Results

become feasible (Bader et al. 2019). To acquire a well-performing optimisation,
one use Riemannian gradient descent on B, which details can be found by
Casado 2019. We rely on an implementation from Aasan 2021.

Experiments

Couple of notes on the experiments: Every experiment, and hence every result
in tables, was written in a Jupyter Notebook, and are available at the same place
as the code. This heightens the experiments reproduceability. The notebooks
can be found in the source code, in the first folder, where the start of the name
indicates which experiment, e.g., experiment_1_*.ipynb.

We trained each model minimising log-likelihood for density estimation, and
minimising negative ELBO for variational inference experiment, as described in
Section 2.2.

The final model in any training is chosen to be the best one during the run,
relying on regularisation/learning rate/number of epochs to avoid overfitting.
We use PyTorch’s AdamW as an optimiser.

Also, all the experiments were done on the University of Oslo’s machine
learning nodes (ML nodes).

5.3 Experiments 1 & 2

We start off by testing different flows on toydata, also referred to as generated
data. The objective of these two experiments is to be able to test many different
flows, and gather a large overview of what properties good vs. worse models
have. We therefore get conclusions that are broad, and through this we narrow
down the number of flows to a few, which we proceed to test further.

We have chosen two target distributions, one that are relatively easy and one
rather difficult distribution. The first target distribution P1 is a multivariate
Gaussian with 25 dimensions, with randomly sampled means between 0 and 8,
variance for each dimension of 3, and 0.8 in covariance between every dimension
(the covariance matrix have 0.8 everywhere except for diagonal, which contains 3.

The second target distribution P2 is a 50 dimensional, all independent, with
every dimension being an Exponential distribution, where the rate is randomly
sampled between 0.5 and 3 for each dimension. These are quite tricky, as the
marginal distribution differs much more from the base distribution than in P1.

A small remark on how we generated the data: With P1, we sampled both
the mean and the dataset of 10 000 samples for each bulk of models. We ought
to have sampled one dataset, however, it did not seem to affect the results due
to the high number of samples. With P2, we use the same parameters, but also
generate 10 000 new samples for each bulk of models. However, as long as the
parameters are the same, with such high number of samples, it seems like it
also here have not affected the results. Also, due to the number of models we
test here, it was not possible to re-run them all, and we therefore mention it,
while it do not seem to affect the results.

We have gathered up the different components we have implemented,
i.e., all the structures, transformations, and permutations, and created many

94

5.3. Experiments 1 & 2

combinations, which we now list Table 5.1, where each model may have several
different permutations (permutation πt in the structure), which means we have
tested flows with all every permutation listed. Hence, flow 3 has 3 different
flows, one with identity permutation, alternating permutation, and random
permutation (i.e., sample πt uniformly).

When two structures, two transformations or two permutations, are
separated by / means we alternate between them. For example, flow 15,
when t = 1 we apply affine transformation, t = 2 applies limited piecewise
affine transformation, and so on. Every flow will still have the same number of
transformations, regardless of alternating or not.

Table 5.1: List of all models tested in experiment 1 and 2.

Structure Transformations Permutations
Flow 1: Identity Affine Id.
Flow 2: Fully Linear (SO(D)) Id.
Flow 3: D/2-coupling Affine Id., Alt., Random
Flow 4: AR Affine Id., Alt., Random
Flow 5: D/2-coupling Piecewise Affine Id., Alt., Random
Flow 6: AR Piecewise Affine Id., Alt., Random
Flow 7: D/2-coupling Affine Piecewise Affine Id., Alt., Random
Flow 8: AR Affine Piecewise Affine Id., Alt., Random
Flow 9: D/2-coupling Cont. Piecewise Affine Id., Alt., Random
Flow 10: AR Cont. Piecewise Affine Id., Alt., Random
Flow 11: D/2-coupling Affine Cont. Piecewise Affine Id., Alt., Random
Flow 12: AR Affine Cont. Piecewise Affine Id., Alt., Random
Flow 13: D/2-coupling Affine/Piecewise Affine Random
Flow 14: AR Affine/Piecewise Affine Random
Flow 15: ID/(D/2)-coupling Linear/Affine Id., Random
Flow 16: ID/AR Linear/Affine Id.,Random
Flow 17: ID/(D/2)-coupling Linear/Piecewise Affine Random
Flow 18: ID/(D/2)-coupling Linear/Cont. Piecewise Affine Random
Flow 19: ID/(D/2)-coupling Linear/Affine Piecewise Affine Random
Flow 20: ID/(D/2)-coupling Linear/Affine Cont. Piecewise Affine Random

For each model, we calculate the mean log-likelihood for both the training
set and a test set, that is,

ˆ̀
tr = 1

ntr
Σx∈XtrqzT (x),

where Xtr is the training set with ntr examples. Similarly with test set,

ˆ̀
ts = 1

nts
Σx∈XtsqzT (x).

We run each model 5 times, and calculate the statistic with a 95% confidence
interval, estimated using the t-score, i.e.,

[ˆ̀(0.025)
tr , ˆ̀(0.975)

tr] = ˆ̀
tr ± t0.975

s
√
ntr

where s is the unbiased standard deviation estimate, and t0.975 is the 0.975
percentile of a Student-t distribution with ntr − 1 degrees of freedom—with
similar statistic calculated for test set. This gives us a rough estimation on how
the flow is affected by the initiation of weights in the conditioners etc.

95

5. Empirical Results

Table 5.2: Overview of hyperparameters in experiment 3, for the two datasets

HEPMASS BSDS300
Ntrain 10 000 10 000
Ntest 1000 1000

Dimension 20 50
Learning rate 1e-4 1e-4 (1e-3*)
Weight decay 1e-3 1e-2 (1e-1*)

Size of conditioner 100 ∨∧ 100 ∨∧ 100 200 ∨∧ 200 ∨∧ 200
T 6 8

Num. Epochs Until convergence 25

Combining all models and the 5 runs, means we train 42 · 5 = 210 flows.
This is of course way too many to present all, and also too many to use time
tuning hyper parameters etc., so we found a standard set of parameters while
running the experiments.

Results

We have added the results for every model given in Table 5.1 in Appendix A.6.
There are some takeaways to get from the experiments:

• Nearly every flow estimate the multivariate Gaussian in experiment one
perfect, in terms of mean log-likelihood. It is in experiment two that we
find the real differences.

• Even though we have implemented D/2-coupling structures, such that we
transform the complete zt−1 in one transformation step (first zt−1,D/2:D
and then use the new transformed variables tot transform zt−1,1:D/2),
which means effectively have twice the amount of transformations as AR-
structures, yet it do seem that AR generally performs as good or better.
There are some flows that did better with D/2-coupling layer, but there
are other factors that may alter this such as a-activation function, and
more testing must be done to conclude. However, generally AR perform as
well or better, which is supported in the literature as well (Papamakarios
et al. 2017). Taken into account the conditioner have the same number of
weights, with AR having in effect fewer weights due to the use of masks,
reaffirm that the the structures are important.

• There seem to be no significant difference between the permutations in the
structure, however, where we find difference is in affine transformations,
which do slightly better with permutations that are non-identity. The
lack of difference can also stem from the fact that experiment 1 was too
easy, and we have independence in experiment 2 which means permuting
the structure from time step to time step is not necessary.

• limited piecewise affine transformations (Flow 5-6) struggles in experiment
2. There are two issues we suspect. The first is the fact that it struggles
to move points around, as compared to affine transformations, it relies
too much on at,d to do the heavy lifting. In affine transformations we can

96

5.3. Experiments 1 & 2

Table 5.3: The best results for experiment 2, in addition to the best among
the flows using only affine transformations. Mean log-likelihood, which means
higher is better.

Train exp. 2 True train value Test exp.2 True test value
Flow 4-Alt −48.60± 0.768 −30.70 −48.86± 0.674 −30.77
Flow 11-Alt −31.76 ± 0.442 −30.68 −33.74 ± 0.134 −30.77
Flow 15-Id −39.84± 1.328 −30.78 −44.58± 0.202 −30.72
Flow 20 −37.67± 0.707 −30.74 −44.12± 0.440 −30.84

move points around with bt,d in a much freer way than in lim. piecewise
affine. However, as affine lim. piecewise affine transformations (Flow 7-8),
as well as alternating with linear transformations (Flow 17 & 19), also
struggle seems to imply that there are more than one issue. We suspect
it comes down to the discontinuity in the derivative, in particular due to
the next point.

• Continuous piecewise affine transformations also struggle alone, however,
affine continuous piecewise affine transformations perform much better,
and is clearly the best in experiment 2, both w.r.t training set and test set.
It therefore seems like the addition of continuity in the transformations
derivative helps, as lim. piecewise affine did so poorly.

• Alternating linear layers and conditioner transformations is immensely
helpful, even though it has way fewer parameters (half the number of
conditioners required and linear layer have fewer than D2 trainable
parameters). In experiment 2, Flow 15-20, performs best except for
affine continuous piecewise affine transformations.

The conclusion above must be interpreted as broad conclusions, and that each
point deserve further study to really confirm and specify the points above.
The experiments still highlight some important points, and in particular how
piecewise affine transformations perform poorly, while the continuity added
improve the performance a lot. We have added the best results from experiment 2
(only considering one permutation for each group of transformations/structures),
as well as the best using only affine transformations in Table 5.3.

When the different flows were trained, we also tested with different a-
activation functions, where we tried to use the ones with high growth first, e.g.,
exp and Softplus, and downgrading to slower growing functions if the training
was too unstable (exploding gradients). However, this may also give a skew
view of the results, even though one can view the models ability to handle
different a-activation functions as a good characteristic. The slower growing
functions may also not be worse, even if the faster growing works for a particular
flow. We therefore re-run experiment 2 with affine transformations and affine
continuous piecewise affine transformations, with the a-activation functions
used in the latter, namely, Slowplus (remember that the affine-continuous
piecewise transformation is a composition of continuous piecewise affine and
affine transformation after. We use Slowplus on the affine transformation part,
and we use Slowabs for the scale parameter in the continuous piecewise part).

To allow for better comparison, more one to one comparison, we tested
four models, one with affine transformations and D/2-coupling structure, and

97

5. Empirical Results

Table 5.4: Results from experiment 2, with the same a-activation function.
Mean log-likelihood, which means higher is better.

Train exp. 2 True train value Test exp.2 True test value
Affine-D/2 −41.47± 0.771 −30.82 −45.41± 0.546 −30.97
Affine-AR −48.51± 0.222 −30.81 −48.77± 0.2447 −30.54

Aff-Cont.-D/2 −31.47 ± 0.477 −30.82 −34.24± 0.232 −30.97
Aff-Cont.-AR −32.65± 0.114 −30.81 −32.69 ± 0.440 −30.84

one with AR structure. Equivalently with affine-continuous piecewise affine
transformation. The permutation used were alternating. The results can
be found in Table 5.4. They still show a significant improvement for our
proposed transformation compared to affine transformations, and although our
proposed transformation have 4 parameters in its transformation, compared
to two, the number of parameters in the conditioner are the same, hence
the two extra parameters increases the complexity of the flow by very little.
This confirms both the Observation 3.6.12 pointing out problems with affine
transformations and independence and how our—considering all transformations
introduced in Section 4.2 are close to being lim. piecewise affine transformations—
transformations UDA properties support independence by Theorem 4.4.4 and
Corollary 4.4.11.

As already mentioned, D/2-coupling structures essentially have twice the
amount of transformations due to how they are implemented, and also seem
to overfit slightly, and a bit more unstable to initial flows. Compared to the
previous results in Table A.3, the largest difference are between Affine-D/2,
which used the Sigmoid function as a-activation function—Softplus was too
unstable—while Affine-AR is almost exactly the same, which used Softplus in
the first run. Hence, Slowplus do not seem to hamper the performance, but can
be used also when Softplus is too unstable.

5.4 Experiment 3

In experiment 3 we have run two different datasets from UCI repository, which
was chosen as they are used for testing of flows in the literature. There are
typically 5 of them, but we managed only to run 2 of them, both due to
time constraint and unstable training, which we discuss further in Section 6.2.
The dataset, with the appropriate pre-processing according to Papamakarios
et al. 2017, can be found by running get_data.sh in the first folder of
our code, and initialise the class of the corresponding dataset in the folder
NormalizingFlowssrcdata/density. This will then save the pre-processed
data to NormalizingFlowsdatapreprocessed.

We run three different flows, running 3 of each to estimate the confidence
interval, where we estimate the CI in the same manner as with the previous
two experiments. The models are the following:

• Affine continuous piecewise affine with AR structure, and alternate
permutation of structures (AffCon-AR).

• Alternating with linear transformation and affine transformations, with
AR structure and alternate permutation of structures (AltLinAff-AR).

98

5.4. Experiment 3

Table 5.5: Overview of hyperparameters in experiment 3.

Experiment 1 BSDS300
Ntrain 315 123 1 000 000
Ntest 174 987 250 000

Dimension 21 63
Learning rate 1e-4 1e-4
Weight decay 0 0

Size of conditioner 512 ∨∧ 512 512 ∨∧ 512
T 10 10

Num. Epochs 20 8
Batch size 32 32

Table 5.6: The best results for experiment 3. Number in parenthesis indicates
number of time steps T used, and * indicates results are copied from Huang,
Krueger et al. 2018. Mean log-likelihood, which means higher is better.

Train HEPMASS Test HEPMASS Train BSDS300 Test BSDS300
AffCon-AR −17.02± 0.116 −17.58± 0.215 164.69± 0.295 155.11± 0.215

AltLinAff-AR −18.77± 0.141 −19.18± 0.191 160.71± 0.537 151.56± 0.146
AltLinCon-AR −18.30± 0.080 −18.71± 0.114 161.33± 0.516 151.92± 0.308
Aff-AR* (5) — −17.70± 0.02 — 155.69± 0.28
Aff-AR* (10) — −17.73± 0.02 — 154.93± 0.28

Ψ+* (5) — −15.09 ± 0.40 — 157.73 ± 0.04
Ψ+* (10) — −15.32± 0.23 — 157.43± 0.30

• Alternating with linear transformation and affine continuous piecewise
affine transformations, with AR structure and alternate permutation of
structures (AltLinCon-AR).

With every scale parameter at,d in the affine transformation parts uses Slowplus
and the scale parameter at,d in the continuous piecewise affine part uses Slowabs.

The two datasets we are working with, is denoted in the literature as
HEPMASS and BSDS300. The hyperparameters used for each dataset, is given
in Table 5.5, where most of the hyperparameters were chosen to match Huang,
Krueger et al. 2018.

The results are given in Table 5.6, where * indicates results from Huang,
Krueger et al. 2018. We included both the best affine transformations results
we are aware of, but also neural network transformations as a comparison to the
much more complex transformations. We find that affine continuous piecewise
affine transformations are working pretty well, with even beating the best affine
transformation results in HEPMASS that we are aware of. In addition, the
results from the literature indicates that T = 5 performs better than with our
T = 10, and we also find that there are signs of overfitting slightly, and applying
some hyperparameter tuning may aid this and improve test results.

The much higher uncertainty, although not every uncertainty is calculated
the same way, is concerning. We have similar uncertainty with neural network
transformation Ψ+, which can indicate that more complex transformations
carries with more uncertainty in how they are initiated. We have, similarly
to Huang, Krueger et al. 2018, used no regularisation, which can also be an

99

5. Empirical Results

explaining factor as the weights in the conditioner is much more free to roam
the space induced by the loss function, and hence may lead to quite different
flows depending on what weights we start with. However, considering both this
and the previous two experiments as well, we find that affine transformations
can achieve similar large confidence intervals, and in particular AltLinAff has
large intervals as well, which may indicate difference in how the uncertainty
estimates are measured. This implies that further investigation is needed, and
that we cannot conclude that more complex transformations are prone to more
uncertainty w.r.t initialisation and stochasticity in the optimisation.

The much poorer performance when alternating with linear layers is a bit
contradictory compared to how well they work with splines (Durkan et al. 2019b).
One must add that flows such as AffCon uses more trainable parameters, as
each conditioner have 512 neurons in each hidden layer, while each linear layer
has only D2/2−D trainable parameters in total. It is therefore slightly more
difficult to acquire a one-to-one comparison between, for instance, AltLinAff-AR
and AffCon-AR. As of now, using the same T favours the latter, while double T
for AltLinAff-AR would favour it. There might also be difficulties by working in
SO(D), that are too limiting. We thought that combining linear transformation
with matrices in SO(D), together with more expressive transformations would
render the limitation of SO(D) moot, but perhaps not.

All in all, we see that our proposed affine continuous piecewise affine performs
as good as state of the art results for affine transformations, but with room for
improvement as well. The results for Aff-AR (Papamakarios et al. 2017) uses
faster growing a-activation functions and incorporating batch normalization.
Hence, there may be improvements switching our a-activation function that
gives us stable training, with Softplus/exp and batch normalization.

5.5 Experiment 4

In this last experiment we run a small variational inference experiment. The
flows we test are the following:

• Affine transformations with identity structure (Base)—as a baseline.

• Affine transformations with IAR structure, and alternate permutation of
structures (Aff-IAR).

• Affine continuous piecewise affine with IAR structure, and alternate
permutation of structures (AffCon-IAR).

• Alternating with linear transformation and affine transformations, with
IAR structure and alternate permutation of structures (AltLinAff-IAR).

• Alternating with linear transformation and affine continuous piecewise
affine transformations, with IAR structure and alternate permutation of
structures (AltLinCon-IAR).

We use IAR structures, and not AR structures, due to the fact that we
train by sampling, and therefore want to vectorize the forward flow part to
have fast training. Furthermore, with every scale parameter at,d in the affine
transformation parts uses the Sigmoid function σ (except for Base which uses
Softplus) and the scale parameter at,d in the continuous piecewise affine part

100

5.5. Experiment 4

Table 5.7: Overview of hyperparameters in experiment 4.

Experiment 4
Ntrain 10 000
Ntest 1000

Dimension 101 (100 β and σ)
Learning rate 1e-4
Weight decay 1e-2

Size of conditioner 300 ∨∧ 300 ∨∧ 300
T 8

Num. Epochs 10
Batches/Batch size 2000/32

uses Slowabs. The Sigmoid function was necessary to stabilise the training—we
did attempt with faster growing a-activation function with resulting instabilities.

The model for the experiment is of linear regression following the same
setup as section 4.1 in Yao et al. 2018. Let D = 100 and x are standard normal
random vector (sampled from multivariate Gaussian with 0 mean an identity
matrix as covariance)

β = {βk}Dd=1 ∼ N (0, 1), σ ∼ gammma(0.5, 0.5)
y ∼ N (xTβ, σ2)

We report two statistics for this experiment. The first is the well-known ELBO.
However, as pointed out by Yao et al. 2018, it is hard to interpret too much out
of this, as firstly it can drastically change by different parametrisation of models
(due to the the unknown marginal probability term in p(β, σ, y | x). Secondly,
the ELBO is both not an measure, nor is it possible to interpret what values are
good or not, i.e., when the approximation is useful to use as an approximation
of the posterior. It is therefore suggested (Yao et al. 2018) to use Pareto
smoothed importance sampling (PSIS) as a diagnostic. Briefly, importance
sampling uses weights p(β, σ, y | x)/q(β, σ), where q is the approximation of
the posterior—which is a flow in our case. After finding an approximation q,
PSIS adjust the largest weights, by fitting an generalised Pareto distribution
to the set of M (empirically set) largest weights, and replaces the original M
weights by the expectation of the fitted distribution. This is done to improve
the variance of any estimates using importance sampling. The main point in
our case is that the shape parameter k in the generalised Pareto distribution
can say something of how well the approximation is. Lower k̂, where k̂ is the
estimated shape parameter, is better. Vehtari, Simpson et al. 2021 argues that
k̂ < 0.5 is optimal, while 0.5 < k̂ < 0.7 implies useful approximations, but
slower convergence rate w.r.t number of samples in the importance weight
estimate, and when k̂ > 0.7 implies that the model ought to be changed to
have any usefulness. We used the loo package in R (Vehtari, Gabry et al.
2020) to estimate k̂. With this in mind, we can move on to the results of the flows.

The results are given in Table 5.8 and the hyperparameters can be found
in Table 5.7. The models tested did converge, but had some fluctuations
around 12.5 to 13 in ELBO, hence the results must be seen in the light of

101

5. Empirical Results

Table 5.8: Results for experiment 4, with ELBO (higher is better), and the
estimated k̂ (lower is better), for both training set and test set. Every statistic
is computed by sampling 10 000 new samples from given flow, and each models
confidence interval is computed by 3 flows.

ELBO train k̂ train ELBO test k̂ test
Base −12.56 ± 0.475 0.57± 0.534 −12.34 ± 0.376 0.42± 0.216

Aff-IAR −13.30± 0.159 0.64± 0.097 −13.11± 0.124 0.55± 0.132
AffCon-IAR −12.95± 0.108 0.46± 0.170 −12.76± 0.10 0.47± 0.323

AlfLinAff-IAR −12.60± 0.065 0.27 ± 0.304 −12.41± 0.036 0.30 ± 0.056
AltLinCon-IAR −12.71± 0.156 0.31± 0.121 −12.52± 0.163 0.397± 0.067

this. In addition, the estimated confidence intervals are awfully large for some
of the models, where we also should have used more flows to estimate—we
used 3 due to time constraints. It is also fair to note that we did little to
none hyperparameter tuning. It does however demonstrate a few things worth
delving into.

The base flow does reasonably well, which implies that the posterior
distribution is not the most complex. It is interesting, however, that the
base flow performs best ELBO wise, but not k̂ wise, which suggest the analysis
of Yao et al. 2018 is important.

The flow with affine transformation performs worse than every other flow
tested—although it is likely that they partly do worse than Base due to different
a-activation function. This is quite complementary to Dhaka et al. 2021, which
looked at flows with affine transformations and D/2-coupling structure (Dinh,
Sohl-Dickstein et al. 2017). They found that, when the dimension of latent
variables increases, the flows struggle with finding a good approximation of
posterior, in terms of k̂, at least without tuning of hyperparameters. We have
also done little to no tuning, and even though this posterior is less complex
than theirs, in our results we find that affine transformations struggles with AR
structures as well.

What is more surprising is perhaps that the slightly more complex
transformations do not have this problem. This is surprising due to Dhaka
et al. 2021 findings, as already mentioned. In particular, alternating with linear
transformations performs well, with affine transformations performing the best.
It is difficult from this to speculate exactly why, but again Dhaka et al. 2021
shows that flows with affine transformations and D/2-coupling structure in a
2-dimensional setting where the posterior is similar, but almost rotated— see
Figure 3 in Dhaka et al. 2021. We postulate that the linear layers might be
helpful in rotating the posterior density, solving the problem demonstrated by
Dhaka et al. 2021, however without further testing this is simply conjecture. It
is hard to conclude anything concretely from this experiment, but is a promising
start into investigating performance of more complex flows, and how they might
not suffer as badly as the less complex ones demonstrated both here and in
Dhaka et al. 2021.

102

5.6. Conclusion

5.6 Conclusion

In this chapter we have performed 4 experiments, the first two were more broad
scope experiments, where we tested many flows, while the last two focused
more on giving a better one-to-one comparisons of a few flows. Following
the results, we found that piecewise affine transformations struggle, although
they are UDA, which simply goes to show that asymptotic behaviour—and
in particular the existence of flows with good asymptotic behaviour—does
not necessarily imply well functioning flows with finite T and approximating
through finite amount of data. We outlined two possible reasons for this: the
lack of the ability of translation is one, as we saw similar poor performance
with continuous piecewise affine transformations. Another reason for it seems
to be the non-smooth derivative of piecewise affine transformations, which
is motivated by the very good performance of affine continuous piecewise
affine transformations which contains a smooth derivative. However, there are
examples of transformations of non-smooth derivatives performing well, e.g.
Oliva et al. 2018 which we discussed as Related Work in Section 4.2, hence the
explanation behind the poor performance of piecewise affine transformations
might be a combination of the two reasons above.

We also saw that affine continuous piecewise affine transformations perform
well, in particular for independent distributions such as experiment 2, but also
with state of the art results in experiment 3 which indicates that this type
of transformations can fill a gap between complex transformations and affine
transformations. There are however some additional time added by changing
affine transformations with ours. It is hard to measure exactly, but we do
find a bump in training time, although each model was trained in reasonable
time. The additional time training can also be a bit misleading, as affine
transformations are straightforward to implement, while continuous piecewise
affine transformations is in total a function of 6 pieces—although the identity
part for values less than 0 is practically free—the others are not. We did run
some optimisation of code, and made it a lot faster than at the start, however,
we find that the biggest time sinker is the sorting of pieces, not the actual
computation of each value. There are plenty of piecewise functions in PyTorch
that runs quickly and is coded in lower level languages, more directly to the
hardware, hence we are confident there is much time to be gained by more
optimisation of our code.

Although alternating with linear transformations did not perform as well
as we anticipated, it did show remarkable results in experiment 4, which we
also saw that more complex transformations may not suffer as badly as less
complex ones outlined in Dhaka et al. 2021. There is many more experiments
to be done in this are, before we can conclude anything, however interesting
and promising results nonetheless.

There are problems with the results produced in this thesis. Firstly, the lack
of a reasonable amount of hyperparameter tuning can give quite misleading
potential of the different flows, in addition to the fact that each flow had the
same hyperparameter that might have favoured some flows over others. The
confidence intervals are potentially quite large, although we did see Ψ+ had
similar intervals, but also need higher number of flows trained when estimating
the standard deviation, and therefore also the confidence intervals. There is
an imbalance and lack of tests on real data, and hence is something discussed

103

5. Empirical Results

in Section 6.2. Finally, the instabilities we got during training, is problematic
as we start to depend on the particular sample of data, and can be favourable
to some flows. We have tried to mitigate this by re-running experiments with
fewer flows, that differs by only one component, such as the transformation, but
it nevertheless is problematic with high instability and we discuss this further
in Section 6.2.

104

CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

We started out this thesis by laying out the description of the problem described
in the project description:

(i) Formalise normalizing flows where the literature lacks,

(ii) Explore new ways to transform data that leans toward the simplistic
transformations, yet tries to be as flexible as possible compared to the
more complex transformations.

We tackled (i) in Chapter 3 by introducing the formalisation of flows through
introducing four components: base distribution Q, structure S, conditioner H,
and transformations f . In particular, the introduction of structures provided
a fruitful new component to describe parts of flows with, which partially
lacked in the literature. We further developed structures and defined useful
theoretical properties such as flow-isomorphism, which is a useful theoretical
tool to analyse and equate different flow-structures. This insight gives us tools to
equate larger structures with a smaller class of structures, namely forward-local
flow-structures, and these types of proofs can simplify new theoretical proofs
regarding structures, as we shrink the space we need to concern ourselves with.
In addition, we found requirements for structures, such that we are guaranteed
triangular Jacobian. By introducing the concept of structures, together with
the generalisation of MADE, i.e. CONN, allows for future work with many
more interesting structures. We also adapted current literature into the new
formalisation, including conditioner transformations and a new definition of
UDA.

In Chapter 4 we address point (ii). We introduce four new transformations
that contains the same number of parameters in the transformation – with
a maximum addition of two parameters – which keeps the linearity of affine
transformations almost everywhere. The proposed transformations thus retains
attractive properties such as fast computation, both forward and backward, and
with triangular structures, fast evaluation of density, where all three operations
scale linearly with the number of dimensions or number of time steps. We
then showed showed how such transformations fills the gap between affine
transformations and the more complex ones, in terms of expressiveness. In
particular, that our proposed transformations are UDA for similar structure
as the more complex ones, also for dimension one and under independence in

105

6. Conclusion and Future Work

target distribution, compared to affine transformations. Hence, it compares well
asymptotically with more complex transformations, while keeping the attractive
practical qualities of affine transformations, which we defined through the class
of affine extended transformations. Proving that CONNs can also be universal
approximators, means future theoretical and practical work with CONNs and
structures can rely on neural networks capabilities.

Finally, in Chapter 5 we perform several experiments to investigate the
applicability of our proposed transformations, including our new a-activation
functions. We find that our new a-activation functions aid in the stability of
training flows, but it is certainly not enough as we still experience instability. We
also found that translation and rotation are important elements, both through
alternating linear transformations and conditional transformations, but also as
both piecewise affine and continuous piecewise affine performs badly. However,
it also seems to be that smoothness in the in the derivative of a transformation
plays an important role, where affine continuous piecewise affine transformations
performed better, even significantly better, in some experiments than both affine
transformations and in affine piecewise affine transformations—where the latter
has a non-smooth derivative. Confirming that our proposed transformations
also fills the gap empirically between affine transformations and more complex
ones, as was the goal for (ii). However, there are still gaps in terms of how well
our proposed methods work compared to alternating linear transformations and
affine transformations, in particular as training linear transformations are not as
expensive due to Bader et al. 2019, as we had varying result in which performed
best over the experiments. As already noted, there are much improvements to
be made empirically, which we come back to in the next section.

All in all, we have formalised flows and laid ground work for new theory to be
developed, with a hopefully adequate terminology, where we have already shown
several results, and also invite more a more diverse use of structures combined
with CONNs. Furthermore, we have started bridging the gaps between complex
transformations and simpler ones, that can be useful when the complex ones
are too computationally burdensome.

6.2 Future Work

In this section we propose ideas we wish to investigate further, which also
highlights shortcomings of the thesis.

Empirical Part

The empirical part of this thesis is by far the part that needs further work.
Partly due to time, but also due to difficulties in implementation/instabilities in
flows during training. We propose the following points of improvement/future
work:

• Tests that involves more complex and difficult target distributions is
needed. In particular test our new methods running all of the most
common benchmarks for density estimation, as well as many more difficult
variational inference problems, to be able to better compare more complex
flows with the simpler ones studied in Dhaka et al. 2021. In addition,
resample several times sets of parameters (β, σ) followed by new data

106

6.2. Future Work

(x,y). This to uncover any chance when generating the data that may
affect the flows. Also increase number of runs of each flow, to improve
the confidence intervals.

• For the experiments we did run, several important statistics lack. First
of, in density evaluation, we also need to see how well the new generated
samples fits the true model, which is possible when the target distributions
density is known. We did run such an experiment for experiment 1, but
as the target distribution was too simple, gave us too little information
to conclude alone. For experiment 1, the new samples did well however,
but more experiments are needed. In addition, we think it would be
very fruitful to investigate the tail behaviour for the experiments we ran.
Typically the tails are the largest problem in many approximations, and
is not necessarily captured perfectly by mean log-likelihood. A good
investigation could also give insight into how well they perform compared
to Copulas.

• Amore comprehensive study of the a-activation functions, as we now tested
lots of different models with different a-activation functions, depending
on the stability required by the experiment. However, the one-to-one
comparison lacks, and hence we can only find general patterns, such as
Slowplus seem to be a valid choice when Softplus leads to instability,
while performing better than σ. A proper comparison would have to
involve several flows, where each is trained with every possible a-activation
function we wish to investigate.

• As we did little to no hyperparameter tuning, we need to investigate further
how well the models perform under a reasonable amount of tuning. This
may give different results and change the view on which transformations
in our experiments are better, but also to give a more apt comparison to
results reported in the literature.

• Investigate further how linear transformations, where the matrix is in
SO(D), can minimise the problems with flows and variational inference
which are outlined by Dhaka et al. 2021. In particular how rotating can
help when the dimension of the latent space increases.

• We struggled quite a bit with exploding gradients, sometimes even with
σ as a-activation function. There are three methods we would like to
explore more. First is pre-training, using very restrictive a-activation
functions, as many times the exploding gradients happened from the very
beginning, which may imply problems with initialisation. The second
approach is to do a study over different ways to initialise the weights in
the conditioners. Perhaps there are methods suited better to normalizing
flows, which is not among the standard methods—this can also include a
more theoretical approach in combination. Thirdly, is to clip the values of
a-activation functions such as Slowplus, but allow for significantly higher
values than Sigmoid σ, as σ often seem to perform worse, finding a better
balance between Sigmoid and Slowplus/Softplus can be fruitful. Gaining
both the performance part, and yet induce stability during training. We
should also explore batch normalization (Papamakarios et al. 2017).

107

6. Conclusion and Future Work

• Another idea that combats instability, which we managed to implement
in flows.py, but not test, were to train first a certain number of the
transformations t < T , and then train another part and so on, until
the whole flow is trained, where one can then train the whole model for
final tuning of the parameters. This makes it less likely to get exploding
gradients, as there are fewer transformations stacked, and hence fewer
parameters to alter the log-likelihood.

• A comprehensive study of the β parameter in continuous piecewise affine
transformations is necessary, as we till now have only used β = 5 in every
experiment.

• We had issues implementing CONN, and was a bit too slow for usage. To
properly implement it, and test it empirically is something deeply missed
in this thesis. With a well-working CONN, we are able to test interesting
structures. In particular, generate data where we know the underlying
correlations, testing flows with IAR/AR, and structures that correspond
to the underlying correlations, is very interesting prospect.

Theoretical Part

For the more theoretical parts we propose the following as future work:

• To continue working towards finding the class of all valid structures that
guarantees triangular Jacobian, which then shows exactly what structures
we can explore empirically, without increasing the computational burden
when evaluating the density of the flow. Our work so far is to consider only
structures that are flow-forward, due to our Proposition 3.3.13, but where
Dt > D. It seems quite clear that every flow with triangular Jacobian have
a structure that only transform one variable at each time step (Identity
node for the others), but not all such structures that transform on variable
at each time step induces a triangular Jacobian. Finding out when it
fails, is the key to finding the complete class that guarantees triangular
Jacobian.

• Replacing neural networks with other functions is an interesting prospect.
One can then start investigating functions that have much better conver-
gence properties, i.e., some guarantees for finitely many transformations,
or asymptotically convergence which is states more than existence, as we
commented on previously. This potential functions may be more limited,
and to further investigate for which classes P the class of flows with
limited conditioner are UDA for.

• As we proved universality for a class that contains distributions with
compact support, and we have a relation between the number of
transformations and ε (through M in Lemma 4.4.3), where ε is w.r.t the
canonical triangular map followed by the Sigmoid function. Combining
compactness of target distribution and continuous function σ, means we
should be able to state number of transformations T , and that there exist
a flow approximating the target distribution withing some function of ε
well.

108

6.2. Future Work

Valid Structures and Noisy Conditioner

As we were not able to test properly this part, due to time constraints, but the
idea was already quite developed and proven, we choose to introduce the idea
here, and let the testing be put as future work.

We want to explore structures, and how we can move away from the
triangular structures, yet easily compute the density. In return we give up the
ease of computing the inverse of the flow, which can be fine especially in a
variational inference setting.

In a variational inference setting, we are most concerned with sampling the
latent variables, evaluating its density, and evaluating the likelihood. None
of these requires us to evaluate the inverse, for as long as we can evaluate
the density forward, i.e. while we sample, there are usually no case where we
have samples from the latent space that has not been sampled through our
flow. That is, we usually do not observe latent observations—hence the name
latent—and as long as we have the density of the latent samples generated by
our flow, we have everything we need. When we ease on the requirement of a
computable inverse of the flow, we find ways to expand on structures outside
triangular structures, that still allows for easy density evaluation and complex
conditioners.

Even though we have CONNs that can compute quickly the parameters
needed for any transformation step t, and still oblige to the triangular structure,
it is still limiting. Due to the masks, it cannot use all possible weights in a
fully connected neural network, and the structure is also limiting as it cannot
allow all the variables to affect each other in any given time step t ∈ T . We
therefore propose a new type of neural network that allows to input the whole
zt−1 into the conditioner Ht = (Ht,1, . . . ,Ht,D), yet allows for evaluation of
density similar to triangular structures.

Definition 6.2.1. LetNN [L,D̃,γ] be a space over fully connected neural networks
with L hidden layers, D̃ a vector with number of hidden nodes in each layer
l ∈ {1, . . . , L}, activation function γ, and input size K. Then NN (Noise)

[L,D̃,γ] is a
space of noisy fully connected neural networks, where for any neural network
Ψ ∈ NN [L,D̃,γ], we have Ψ(n) ∈ NN (Noise)

[L,D̃,γ], where

Ψ(n)(z) = Ψ(z + u).

Here u is a vector with uk ∼ U(−ε, ε), with ε > 0 and U is the Uniform
distribution..

The definition of a noisy neural network is simply to add a small uniformly
distributed component to each dimension before we apply a regular neural
network. The noise can be arbitrarily small, i.e., ε can be arbitrarily small, and
hence ought to have a very little effect on the networks output. However, it
gives us new structures to use.

For the next part we still assume that the structure has the same number of
nodes in each layer t ∈ T , however we allow for every valid structure S, where
the fully connected structure Sfull is a subset Sfull ⊆ S (see Figure 6.1 for an
example of such structures), and where S has the same number of nodes in

109

6. Conclusion and Future Work

z0,1

z0,2

z0,3

z1,1

z1,2

z1,3

z2,1

z2,2

z2,3

z3,1

z3,2

z3,3

z0,1

z0,2

z0,3

z1,1

z1,2

z1,3

z2,1

z2,2

z2,3

z3,1

z3,2

z3,3

Sfull S

Figure 6.1: Example of a fully connected structure and a structure S, such that
Sfull ⊆ S.

each layer. Hence, we abandon most of the requirements enforced to create
triangular structures. As we want to be able to compute the conditioner for
each time step, by using at least zt−1, means we need to alter the definition of
a conditioner slightly, but which makes it even more expressive.

Definition 6.2.2. Let (Q,S, f) be a NF, where each ft,d is parameterized by
ρt,d parameters. An extended conditioner is any function H where

Ht,d : S(t, d)→ Rρt,d .

for all (t, d) ∈ {(t, d) : t ∈ T and d ∈ DT }.

The only difference between conditioner and extended conditioner, is that
we allow for the variable that is transformed to be input to the extended
conditioner as well, i.e., we allow for Sint(t, d) to be part of the input.

We are now ready to prove that using noisy neural networks as an extended
conditioner, we allow for structure S, such that Sfull ⊆ S and easy to compute
density. We denote U as a set with uniform noise for a specific ε, which includes
every u = (ut)Tt=1. This is the noise used in each neural network that is used to
compute the extended conditioner Ht = (Ht,1, . . . ,Ht,D) for every t ∈ T .

Theorem 6.2.3. Let (Q,S,H, f) be a flow with S being a valid structure with
Dt = D for all t ∈ D and Sfull ⊆ S. For each t ∈ T , assume Ht is computed by
a noisy fully connected neural network, with conditioner space being NN (Noise)

[L,D̃,γ].
Then the induced density of the flow can be written as

qzT (f(z0, U)) ∝ qz0(z0) ·
∏
t∈T

∏
t∈D

∣∣∣∣ ∂

∂zt−1,d
f−1
t,d (zt−1,d)

∣∣∣∣
Proof. The proof is to rewrite the flow above into a regular flow with neural
network as conditioner and regular conditioner (not extended). This shows that
we end up with same density, and claim equivalence between the two models.

We start by swapping the noisy neural networks with normal neural networks
and apply Λ1—the first part of the function transforming S into a forward-local
flow-structure—to S, and hence concern ourselves with only edges that move
from t to t′, where t < t′ (the result still stand for other structures, due to

110

6.2. Future Work

z0,1

z0,2

z1,1

z1,2

z2,1

z2,2

z0,1

z0,2

z0,1

z0,2

z1,1

z1,2

z1,1

z1,2

z2,1

z2,2

u0,1

u0,2

u1,1

u1,2

û0,1

û0,2

u1,1

u1,2

û0,1

û0,2

u1,1

u1,2

û0,1

û0,2

û1,1

û1,2

û0,1

û0,2

û1,1

û1,2

→

Figure 6.2: To illustrate how we rewrite the flow with noisy neural network/ex-
tended conditioner and structure on the left, to the new structure with aug-
mented base distribution and non-extended conditioner using neural networks.

flow-isomorphism). As we are working with a regular neural network, we use
the regular conditioner, so we exclude interior edges.

We then make a small adjustment by augmenting the base distribution
with T ·D uniformly distributed variables ut,d ∼ U(−ε, ε), these corresponds
to the noise we use in noisy neural networks. We then alter the flow as
follows: before each transformation step t, we add a new layer where every
node is an identity transformation except for ut,d, which is transformed as
ût,d = f(ut,d) = zt,d + ut,d. Then for the next time step t, we erase every
exterior edge from variables zt′,d′ , where t′ < t, and rather use edges from the
corresponding ût′,d′ , where the edge goes from the corresponding Uniform node
in the last layer to the next. We have illustrated this rewriting in Figure 6.2.

We then achieve a triangular Jacobian for each time step t, the structure has
D + T ·D nodes in each layer (which means we can split the computing of the
determinant Jacobian into T steps), the noise is Uniform, and the transformation
of the noise is volume preserving. The density of our new constructed flow is
therefore

qzT (f(z0, U)) ∝ qz0(z0) ·
∏
t∈T

∏
d∈D

∣∣∣∣ ∂

∂zt−1,d
f−1
t,d (zt−1,d)

∣∣∣∣ .
As the new flow is equivalent to dropping the augmented base distribution, and
rather use noisy neural networks, we are done. �

Remark 6.2.4. A couple of remarks are in order. Firstly, notice that each
variable zT,d is not affected by the noise in any way other than through the
parameters in the transformation ft,d for every t ∈ T . Secondly, we may
evaluate exact density and not just proportional, by simply multiplying the
density with (1/2ε)T ·D. Also note that we are not storing the uniform noise as
in the proof, we only apply it as input to the neural network, i.e., using noisy
neural networks.

A reason behind only caring about the proportional density, is the fact
that we are most interested in the likelihood and evaluating posterior through
importance sampling, where the term (1/2ε)T ·D disappears as it is constant

111

6. Conclusion and Future Work

when D and T is decided.

A few alternatives to the flow above is possible. We may rather use structures
similar to AR, i.e., edges from nodes to nodes in the same time step t, to make
it usable for density estimation (where the sampling is then not possible,
only evaluation). This is not as interesting, as we often want to sample new
observations and we want the exact density, not a proportional one with added
Uniform variables.

One may also use CONNs with noise added to the input, and use some
masks. For example, if you do want to use non-extended conditioner, but fully
connected structure, you can use D masks where each include all the dimensions
but one, and therefore have output exclude the interior input. This is not
something we wish to pursuit, as once the ability to compute the inverse is
broken, we find no use in enforcing non-extended transformations.

Finally, there is an opportunity to learn triangular structure with optimal
permutations/dependencies among variables. Loosely, in a training setting,
optimise trainable parameters using the structures described above, i.e., have
fully connected structure as part of it. Then apply pruning of the structure,
which can be seen as taking the structure to the right in Figure 6.2, change one
of the ût,d] node into an identity node. Then any flow-isomorphic structure to
the resulting structure after swapping with identity nodes, is a pruned structure.
Having the new structure have then implicitly chosen a mask in CONN, which
one can enforce, and then continue pruning. Continuing this until some end
criteria (e.g. some unacceptable jump in loss), while also ensuring the final
pruned structure is a triangular structure as we saw in Section 3.3, in particular
methods close to NO TEARS (Zheng et al. 2018). The added bonus of this, is
that the training can then find what variables to emphasis on when computing
zt,d, as it is allowed to use any zt−1 as input to the conditioner, i.e., the
importance of the different dimensions to compute zt,d can be decided by the
conditioner/neural network itself. After finishing pruning, one can then stop
adding noise, and run as flows with triangular structure. This was loosely put
the idea behind first training with fully connected structure, and then enforce
triangular, but need more work to crystallise.

Related Work

In the recent years more research has been done towards exploring flows with
augmented space, which is how one can interpret our noisy neural network
conditioner (Cornish et al. 2020). The closest to our proposed method is done
by Huang, Dinh et al. 2020, where they do similar augmentation as we do in
the proof, but they only double the dimension and sample Gaussian distributed
variables, which they alternate transforming. First transforming the sample we
are interested in, then transforming the augmented part, and so on. Using each
other as input to a conditioner, as an augmented D/2-coupling structure. This
was intended to study universality of affine transformations, and was the closes
universality result for affine transformations before Teshima et al. 2020. Our
proposed method is different, in that we do not care about transforming the
noise, and do not need to store it, only sample it before computing a conditioner
Ht. Our method is also the only that have a realistic path to acquire a triangular
structure after training, and removing the augmented part.

112

Appendices

APPENDIX A

Additional Resources

A.1 Classes of Divergences

The three major classes of divergences are the f-divergence, Bregman divergence,
and integral probability metrics (IPM), and we quickly run through them. The
f-divergence is perhaps the most common of the three, which is any divergence
of the form

DIf (p, q) =
{∫
X q(x)φ

(
p(x)
q(x)

)
dx, if µ� ν

∞, otherwise,

where φ : [0,∞) → (−∞,∞] is convex and φ(1) = 0. The prime example
of a f-divergence is when φ(r) = r · log(r), which is the well-known Kullback-
Leibler divergence, and one we shall return to later on. There are many other
known f-divergences such as Hellinger distance φ(r) = (

√
(r)− 1)2, exponential

divergence φ(r) = log(r)−2 etc.
Bregman divergences are any divergence of the form

DIB(p, q) = φ(p)− φ(q)− 〈∇φ(q), p− q〉,

where φ : P → R is a continuously differentiable, strictly convex function
defined on a closed convex set P. The classic example is when φ(r) = ‖r‖22
which gives DIB(p, q) = ‖p− q‖22, but perhaps more pertinent is the negative
entropy (more specifically the negative differential entropy),

φ(r) =
∫
X
r(x) log r(x)dx.

This turns out to be connected to the f-divergence, namely,

DIB(p, q) = φ(p)− φ(q)− 〈∇φ(q), p− q〉

=
∫
X
p(x) log p(x)dx−

∫
X
q(x) log q(x)dx

−
∫
X
p(x) log q(x)− p(x) + q(x) log q(x) + q(x)dx

=
∫
X
p(x) log p(x)− p(x) log q(x)dx−

∫
X
p(x)dx+

∫
X
q(x)dx

=
∫
X
p(x) log

(
p(x)
q(x)

)
dx,

115

A. Additional Resources

which one recognize as the KL-divergence. Hence, KL-divergence is a member
of both f-divergences and Bregman divergences.

The last one has played a more relevant role when it comes to machine
learning, compared to Bregman divergences (except for KL-divergence), namely
IPM. Any IPM divergences are on the form

DII(p, q) = sup
φ∈Φ

∣∣∣∣∫
X
φ(x)p(x)dx−

∫
X
φ(x)q(x)dx

∣∣∣∣ , (A.1)

where Φ is a class of functions φ : X → R which are bounded. Under certain
constrains w.r.t separability one can for instance choose Φ such that the
divergence is the Wasserstein distance, total variation distance, or maximum
mean discrepancy. In a empirical approximation, some of IPM-divergences
can have better convergence, that is, converging faster to the true divergence
using Equation (A.1) (Sriperumbudur et al. 2009), and recent years some of
the divergences have seen rise in popularity (Goodfellow et al. 2014).

A.2 CONN: Non-Independent Sampling and Residual
Blocks

Considering the problems described in Section 4.3, we now develop new ways
to both sample masks and add residual blocks, in the hope of increasing the
CONNs reliability. In this context, reliability refers to how reliably the model
are in terms of using its input variables, both in a universal setting, but also in
a finite setting. For example, we wish to avoid letting outputs that depends on
some input variable, to be computed as a constant.

There are three parts in the new scheme, and can be incorporated by
themselves or as a whole. The three parts address the following problems
respectively:

1. Nodes that are computed through its bias alone, i.e. no connections from
the previous layer.

2. Nodes that have no connections to any node in the next layer.

3. Minimize occurrences of (1) and (2) through sampling.

The first two can be effectively solved through residual connections. Concen-
trating on (1) first, we add a residual connection from a set of input variables
to any node Ψl,d′ which has no connections from previous layers, where the set
of input variables is {xd : d ∈ ml(d′)}. One could think of it as extending the
hidden layer Ψl−1 with nodes that contain the values of the input variables
in question. Then simply assign the mapping the new nodes {d} for every
d ∈ {d : d ∈ ml(d′)}. We can solve (2) in a similar manner, where every time a
node does not have connection to any node in the next layer, we add a residual
connection from said node the the last layer. That is, if a node Ψl,d does not
contain a connection to any nodes in Ψl+1, we add ΨL,DL+1 as a node where
its mapping and value is equal to Ψl,d.

Another solution to (1) and (2) are to restrict the sampling such that (1)
and (2) cannot happen. Not particularly hard to enforce, however, there are
two problems with this approach. Firstly, if there are many disjoint sets in

116

A.2. CONN: Non-Independent Sampling and Residual Blocks

Cmin, the dimension of the hidden layers must typically be quite high relative
to D0 to avoid many outputs equalling constants. Secondly, the networks, with
said restrictions on the sampling, prefers larger sets in C, hence again leaving
many outputs to be computed by constants. Both problems stems from not
being able to go from one node to another, when the former node’s mapping is a
superset of the latter node’s mapping. We may be able to patch up parts of the
problems put forward, but adding more and more restrictions on the sampling
reduces it to something close to deterministic, and by that point gains very
little than our more crude design in the previous section. We ought, however,
not to throw the baby out with the bathwater, as the idea with altering the
sampling scheme may have some merit. Indeed, it can be combined with the
residual connections discussed above. For example, we may enforce certain
nodes to have connections to the next layer, if the node is computed by the
last T layers or fewer, with T being a threshold. The idea is in fact embedded
somewhat in our proposed sampling scheme.

We now aim to tackle (3) through making the sampling scheme more
dynamical. The goal is both to spur on diversity among the mappings, and to
avoid too many residual connections. There are two points of interests we have
considered. The first is that for every hidden layer, we take into account the sets
in C that are supersets of last layers mappings and adjust the probability for
such sets accordingly. That is, for a layer l, we increase the chance of sampling
a set ci ∈ C if there exists a d ∈ {1, . . . , Dl−1} such that ml−1(d) ⊆ ci. This
can then limit the number of residual connections.

Second point of interest concerns long term diversity in samples. When
sampling mappings for a new layer, we want to take into consideration which
mappings have been sampled in the previous layers, and adjust the probabilities
thereafter. In other words, we want to impose more long term memory into the
sampling scheme, as well. We want to discourage sampling the same mappings
as the one sampled recently, with the relevance of layers diminishing as we
add more and more layers. This lead us to the following proposed sampling
scheme. We start by defining an order on C for convenience, with elements
ci ∈ C for i = 1, . . . ,M , and with M = |C|. We then sample sequentially
layer-wise. Assuming we have sampled up to layer l− 1 and each previous layer
l′ < l is associated with a vector

v(l′) = [a1, a2, . . . , aM],

where ai is the number of times ci was sampled in layer l′. We also define a
vector with element i being

s
(l)
i =

{
1, if ∃d such that ml−1(d) ⊆ ci
0, otherwise.

We then assign weight to each set in C, as

p(l) = α1s
(l) −

l−2∑
l′=1

α
(l−l′−2)
2 v(l′),

where α1, α2 ∈ [0, 1) are fixed parameters which decides how well we wish to
impose connections between layer l − 1 and l, and how much the past should

117

A. Additional Resources

influence the current samples. We can then define the probability for any node
in hidden layer l to be ci is equal to

Pr(ci) =
exp

(
pli
)∑M

j=1 exp
(
p

(l)
j

) . (A.2)

Sampling then becomes generating observations for each layer from a multi-
nomial distribution with the probabilities according to Equation (A.2). This
scheme also includes the uniform distribution by setting α1 = α2 = 0. To avoid
storing too much information, we add a cut-off 0 < δ < 1 such that

p(l) = α1s
(l) −

l−2∑
l′=a

α
(l−l′−2)
2 v(l′),

where a is the first layer where αl−a−2
2 > δ. The described sampling scheme

will be referred to as layer-dependent sampling and residual connections used in
the manner discussed previously are referred to as connectionless-residuals.

Corollary A.2.1. Let γ be a nonpolynomial activation function, X ⊆ RDL+1 be
compact. Let NNC

[L,1,γ] be limited to all models which employs layer-dependent
sampling and connectionless-residuals. The resulting FCdepth is almost surely
dense in C

(
X ,RDL+1 ; c

)
.

Proof. Let n be maximum number of layers we use, which is finite and depend
on what α2 and δ are. Let D be the maximum number of nodes in a hidden
layer, which is also finite, and in the corollary is equal to 1. Then we can bound
p(l) for any arbitrary layer l as

p(l) <

n∑
i=1

α2D.

This means Lemma 4.3.1 holds for layer-dependent sampling as well, as the
probability for any mapping is always greater than 0. The residual connections
given by connectionless-residuals acts in the same manner as the deterministic
chosen nodes in Theorem 4.3.6, and hence the results readily follows. �

Remark A.2.2. One could in theory deploy any sampling scheme that fulfills gives
rise to same similar result as in Lemma 4.3.1, as it is the residual connections
that does the heavy lifting. The proposed sampling scheme is there simply to
avoid too many residual connections. It does not, however, seem to be any
foolproof way to use a purely sampling based CONN without connections, and
without scaling the width of the network immensely and rendering the sampling
method to almost deterministic.

With this we conclude the chapter and introduce normalizing flows next.
As we shall see, the usage of CONN models plays a large role in many models
concerning normalizing flows, and the new theoretical results gained here can
then be incorporated into the theoretical work of normalizing flows.

118

A.3. Classifying Transformations

A.3 Classifying Transformations

In the main part of this thesis, we have introduced specific transformations,
which have been a quite narrow classification. They have mostly consisted of a
specific parametrization, and the class it has belonged to are the space of values
the specific parametrization can take. For example, affine transformations are
parameterized by (a, b), applied in a specific way, and the only classification
we may recognise is affine transformations with different values (a, b) and (ã, b̃).
Although there may be some differences other than the parameter values,
for instance neural network transformations with Ψ+ (Huang, Krueger et al.
2018) and Unconstrained Monotonic Neural Networks (Wehenkel et al. 2019),
these differences are to aid computationally and not particularly interesting
theoretically.

Inflection Transformations

To differentiate between transformations, we begin by addressing their associated
inflection points.

Definition A.3.1. Let (Q,S, f) be a normalizing flow where each transformation
has ρt,d number of parameters, and is parameterized by θt,d ∈ Rρt,d . The
transformation ft,d with predecessor zt−1,i is an inflection transformation if it
is a piecewise C1-diffeomorphism where

gt,d(zt−1,i;θt,d) = ∂2

∂z2
t−1,i

ft,d(zt−1,i)

such that there exists two different parameters θ(1)
t,d ,θ

(2)
t,d ∈ Rρt.d and a zt−1,i,

such that

gt,d(zt−1,i;θ(1)
t,d) 6= gt,d(zt−1,i;θ(2)

t,d).

Informally, inflection transformations are able to change the second derivative
through trainable parameters. Restricted to conditioner transformations, we
have the additional aspect that Sext(t, d) affect the second derivative. The
reason we concern ourselves with inflection points can be seen through the
induced density and its modality. It was first pointed out comparing neural
transformations Ψ+ with affine transformations (Huang, Krueger et al. 2018).
We expand on their comment here.

Observation A.3.2. Let (Q,S,H, f) be a flow with the base density qz0 , where
the derivative exists w.r.t a points predecessor, for all points in its domain and
S is an IAR-structure without permutations Figure 3.4. The derivative of the
induced conditional density qzT (zT,d | zT,1:d−1) can be written as

∂

∂zT,d
qzT (zT,d | zT,1:d−1) = ∂

∂zT,d

[
qz0(f−1(zT,d) | f−1(zT,1:d−1))

]
|det(J)|

(A.3)

+ qz0(z0,d | z0,1:d−1)| ∂

∂zT,d
[det(J)]|

119

A. Additional Resources

where

|det(J)| =
∏
t∈T

∣∣∣∣ ∂

∂zt−1,d
f−1
t,d (zt−1,d)

∣∣∣∣ ,
and the Jacobian is w.r.t the composition of functions ft,d, with t ∈ T . We can
then see the following, when zT,1:d−1 is held fixed and comparing the modes
from the base distribution:

(i) Non-inflection transformations that contains more than one piece in the
piecewise diffeomorphism definition, cannot add continuous modes to the density
qzT (zT,d | zT,1:d−1), through its parametrisation.

(ii) If the non-inflection transformation consists of one piece, then it cannot
change number of modes to the density qzT (zT,d | zT,1:d−1), through its
parametrisation.

Proof. Firstly note that the function, due to no permutation in the structure, is
one dimensional once z0,1:d−1 is known. The observation then follows from the
fact that the Jacobian in the last term of Equation (A.3), is a constant if it is
not an inflection transformation, hence the added "through its parametrisation".
Without loss of generality, consider when the constants in the last term are
0. Inside any piece of the transformation, we have that |det(J)| > 0, and the
piecewise transformation simply multiplies the base distribution with something
positive. That means the derivative of the density is still 0 where it is 0 in the
the corresponding area of the base distribution. In the boundary points of the
pieces, we may add discontinuities, where |det(J)| are different from one point
to next, which opens up for adding more modes. When the transformation
consists of one piece, i.e., the whole real line has the same |det(J)|, we see that
Equation (A.3) is 0 only when it is 0 in the corresponding point in the base
distribution. �

The observation also highlights the difference between transformations and
their complexity that often vanishes in universality claims. We could continue
looking at the third derivative of the transformation and its parametrisation,
which can be interpreted as being able to influence the change in curvature of
the density through learnable parameters. This would elevate transformations
such as spline transformations with cubic splines. However, it is not a useful
characteristic to classify transformations at this point, as the transformations
in the literature do not create new classes with regard to the third derivative,
when first classified through inflection transformations. Hence, we leave it as it
is.

Bounded and Unbounded Parametrisation Transformations

Moving on to the second property we concern ourselves with.

Definition A.3.3. Let (Q,S, f) be a flow.

(i) A transformation ft,d is an unbounded parametrisation transformation if
the number of parameters needed to transform zt−1,d can be any ρt,d ∈ N.

120

A.3. Classifying Transformations

(ii) A transformation where there exists a constant ρ̂t,d ∈ N such that the
number of parameters do not exceed the constant ρt,d < ρ̂t,d, is called a bounded
parametrisation transformation.

An example of unbounded parametrisation transformations are spline
transformations, which can set the amount of knots, hence amount of parameters,
arbitrarily high.

With this distinction, we have spline-, neural network-, and residual
transformations as unbounded parametrisation transformations. Likewise,
linear- and affine transformations are bounded parametrisation transformations.
The unbounded parametrisation transformations may scale the number of
parameters to fit the need, and in this specific term, have arbitrary complexity.
The ρt,d can therefore be seen as a hyperparameter that may be tuned according
to the flow’s performance. The bounded parametrisation transformations can
also add complexity, but must do so by adding compositions t.

The difference between bounded and unbounded parametrisation can at first
glance seem vacuous, as for unbounded transformations we may simply set the
number of transformations to a certain number and achieve transformations
that act as a bounded parametrisation transformation. However, there are two
points worth consideration. Firstly, although an unbounded parametrisation
can act as to be bounded, that does not mean the reverse is true. Hence, there
is a separation in complexity, where bounded parametrisation transformations
are limited. Secondly, the distinction of unbounded/bounded parametrisation is
useful to analyse the difference of simpler bounded transformations and several
time steps t, or rather include the complexity through increasing the number of
parameters. There are a couple of features to consider:

(i) The added computational burden of more parameters w.r.t. forward/in-
verse and the Jacobian determinant vs. the added benefits of a more
flexible transformation.

(ii) When using a neural network as a conditioner, a larger network to
accompany larger output space vs. smaller but several networks using
several time steps t.

Point (i) is has partially been dealt with in Chapter 3, as we discussed the added
computational burden with the more complex transformations, e.g., searching
for bucket in splines, inverting Ψ+ and computing its Jacobian determinant,
etc. The added benefits of added complexity in the transformation itself was
partially addressed under universality. Any other comparisons possible is of
empirical nature and left for Chapter 5.

For point (ii), we deliberate further and consider conditioner transformations.
The question becomes—given that bounded parametrisation transformations
are typically fast to compute, invert, and compute the derivative—how does
the conditioner handle the added complexity through a number of time steps
compared to a number of parameters. Assuming the conditioner is a neural
network, when increasing the number of parameters in a transformation, one
needs to also extend the size of the network, particularly the number of nodes
in each hidden layer. If we wish to still have universal approximation, following
Theorem 2.4.9, we need to add a neuron in each hidden layer for each added
parameter in the transformation—preferably more due to not having arbitrary

121

A. Additional Resources

depth. However, the number of weights added, given D̃ number of neurons
in each hidden layer with L layers, is (L − 1)(2D̃ + 1). Adding an extra
transformation adds (L−1)D̃. It is also worth considering the strain put on the
neural network when the input size is much lower than the output size, in other
words, finding mappings from a low-dimensional space to a high-dimensional
one. Hence it seems like the added benefit of adding new parameters drops off
compared to adding new transformations, which is also supported empirically in
the literature—although this also include permutations which play a big role vs.
only one transformation—(Kobyzev et al. 2020). A combination seems therefore
to be perfect, but of which disregard the cases where bounded parametrisation
transformations are the only option due to computational limits (e.g. high
dimensional data).

A small summary of the classifications and some of the transformations we
have countered so far, is given in Table A.1.

Table A.1: A summary of bounded- or unbounded parametrisation transforma-
tions and inflection transformations, with every transformation introduced in
Chapter 3 classified accordingly.

Bounded Param. Unbounded Param.
Non-Inflection Affine, Linear Linear Splines

Inflection — Rational Quadratic Splines, Cubic Splines,
Neural Networks, Residual

A.4 Proof of Continuity of bt,d

We prove the lemma that claims continuity of ft,d w.r.t bt,d.

Lemma A.4.1. Let (Q,S,H, f) be a flow with limited piecewise affine transform-
ations and an IAR-structure. Then, for all d ∈ D and t ∈ T , the transformation
ft,d is continuous w.r.t. bt,d.

Proof. We only focus showing continuity for ht for one t, as the identity function
of bt is continuous, as well as we have preservation of continuity when it comes
to addition and function composition. What we are going to show holds is the
following. For every zd, for each ε > 0, and for each a, there exist a δ > 0,
namely δ = ε/2a, such that

|b− b̃| < δ =⇒ |hd(zd − bd)− hd(zd − b̃d)| < ε.

To show that this is true, we consider four different cases.
Case 1: Consider when both zd−bt > 0 as well as zd−(bt±δ) > 0 (obviously

it might only hold for +δ, in which case we only consider that one). Then we
have

|at(zd − bt)− at(zd − (bt ± δ))| = |±δ| =
ε

2a < ε,

where we use δ = ε/2a.
Case 2: Consider when both zd − bt ≤ 0 and zd − (bt ± δ) ≤ 0. Then we

have

|(zd − bt)− (zd − (bt ± δ))| = |±δ| =
ε

2a < ε.

122

A.5. Continuity of Target Inverse CDF

Case 3: Consider when zd − bt > 0 and zd − (bt + δ) ≤ 0, which also means
bt < zd ≤ (bt + δ). We then have

|at(zd − bt)− (zd − (bt + δ))| = |zd(at − 1)− bt(at − 1) + δ|.

We can here consider three subcases. The first is when at = 1, then obviously
have

|zd(at − 1)− bt(at − 1) + δ| < |δ| = ε

2a < ε.

If at > 1, we have, keeping in mind the bounds on zd, we have

|zd(at − 1)− bt(at − 1) + δ| ≤ |(bt + δ)(at − 1)− bt(at − 1) + δ| = |atδ| =
ε

2 < ε.

And finally, if at < 1, we have

|zd(at − 1)− bt(at − 1) + δ| < |bt(at − 1)− bt(at − 1) + δ| = |δ| = ε

2a < ε.

Case 4: Finally, consider when zd − bt ≤ 0, while zd − (bt − δ) > 0, which
gives us the bounds (bt − δ) < zd ≤ bt. We then have

|(zd − bt)− at(zd − (bt − δ))| = |zd(1− at)− bt(1− at)− atδ|.

Considering again three subcases. When at = 1, we have

|zd(1− at)− bt(1− at)− atδ| = |−atδ| =
ε

2 < ε.

When at > 1 we have, keeping in mind the boundaries given above,

|zd(1− at)− bt(1− at)− atδ| ≤ |bt(1− at)− bt(1− at)− atδ| = |−atδ| =
ε

2 < ε.

And finally, when at < 1, we have

|zd(1− at)− bt(1− at)− atδ| < |(bt − δ)(1− at)− bt(1− at)− atδ| = |−δ| =
ε

2a < ε.

Hence, ht(zd − bt) is continuous w.r.t. bt for all t ∈ T and d ∈ D. By the
argument in the start of the proof, it follows that fd is continuous w.r.t. bt for
all t ∈ T and d ∈ D. �

A.5 Continuity of Target Inverse CDF

We here prove the following lemma.

Lemma A.5.1. For any probability distribution P ∈P2, let the conditional CDF
be denoted by FP(xd | x1:d−1) for any d ∈ D. Then the inverse F−1

P (x̂d | x1:d−1),
where x̂d ∈ (0, 1) is strictly increasing and continuous w.r.t both x̂d and x1:d−1.

Proof. Let F : RD → [0, 1]D with the dth output defined as the conditional
CDF to px, i.e. x̂d = Fd(xd | x1:d−1) = Pr(Xd < xd | x1:d−1). With x ∈ [0, 1]D.
When we are working with x1:d−1, we are implicitly restricting possible values
such that px(xd | x1:d−1) > 0 for some xd ∈ R. Due to P, we have that the set
of possible values x1:d−1 is a connected subset of Rd−1, hence when we have a

123

A. Additional Resources

x1:d−1 and talk about ||x1:d−1 − x̃1:d−1||∞ we talk about the set which fulfill
the inequality and also are possible values. They in themselves comprise of a
connected subspace which is never empty nor only x1:d−1. Going forward we
are implictly adding this restriction.

When x1:d−1 is fixed, we have two numbers ld0 < ld1 (we allow for ±∞), such
that it is strictly monotonically increasing when xd ∈ [ld0 , ld1] (obviously the set is
open when ±∞) per the requirement of strictly positive density, 0 when xd < ld0
and 1 when xd > ld1 . We can also see, due to continuity in the conditional, that
the boundary points when restricted to the strictly monotonically increasing
part can change, but only continuously in the same manner as with Gd. Think
of it as the part that is 0 and 1 in the Fd can only change slightly and only
the part that is close to the stricly increasing part, otherwise we break the
continuity of Fd w.r.t. x1:d−1.

Let F−1
d (x̂d | x1:d−1) be defined as the inverse of Fd(xd | x1:d−1), where the

image of the inverse is simply the values mapping to the strictly increasing part.
We call this interval for I ⊆ R, so Fd : I → [0, 1] is strictly increasing. We now
show continuity for the inverse w.r.t. both x̂d, and also w.r.t. x1:d−1. When
x1:d−1 is fixed, means the inverse F−1

d is continuous w.r.t. xd, as Fd restricted
to the interval that is the image of F−1

d is strictly increasing and continuous.
This is easy to see, as for any ε > 0 and any xd ∈ I, we have

Fd(xd − ε | x1:d−1) < Fd(xd | x1:d−1) < Fd(xd + ε | x1:d−1),

which by setting δ to be the minimum of |Fd(xd ± ε | x1:d−1 − Fd(xd | x1:d−1)|
(some small minor details when xd is a boundary point in I or if xd ± ε /∈ I,
however this is easy to handle by considering left/right continuity in the
boundary case and simply picking some points closer towards Fd(xd | x1:d−1)
in the second case).

Next we look at continuity w.r.t. x1:d−1. Let ε > 0 and for any x1:d−1 we
have the following. Let δ1 > 0 be set so that

|x̂d − x̂′d| < δ1 =⇒ |F−1
d (x̂d | x1:d−1)− F−1

d (x̂′d | x1:d−1)| < ε.

Using continuity in conditional CDF, we can find δ2 > 0 such that whenever
||x1:d−1 − x̃1:d−1||∞ < δ2 we have

|Fd(xd | x1:d−1)− Fd(xd | x̃1:d−1)| < δ1. (A.4)

Let

X̃ = {x̃1:d−1 : ||x̃1:d−1 − x1:d−1||∞ < δ2}

a mapping η : X̃ → (0, 1] defined as

η(x̃1:d−1) = sup{δ : ∀x̂′d : |x̂d − x̂′d| < δ =⇒ |F−1
d (x̂d | x̃1:d−1)− F−1

d (x̂′d | x̃1:d−1)| < ε}.

This mapping simply take the larges δ that fulfills continuity w.r.t. x̂d or 1,
if the value can be larger than one. We know at least one such δ exist, as we
know there continuity when what we condition on is fixed. Let then δ3 > 0 be
defined as

δ3 = inf{δ : x̃1:d−1 ∈ X̃ and δ = η(x̃1:d−1)}

124

A.6. Experimental Results

and set δ4 equivalently to how we set δ2 using Equation (A.4), but replacing
δ1 with δ3. For any x̃1:d−1, let x̂d = Fd(xd | x1:d−1) and x̂′d = Fd(xd | x̃1:d−1),
then whenever |x1:d−1 − x̃1:d−1| < δ4 we have

|F−1
d (x̂d | x1:d−1)− F−1

d (x̂d | x̃1:d−1)|
≤|F−1

d (x̂d | x1:d−1)− F−1
d (x̂′d | x̃1:d−1)|+ |F−1

d (x̂′d | x̃1:d−1)− F−1
d (x̂d | x̃1:d−1)|

= 0 + |F−1
d (x̂′d | x̃1:d−1)− F−1

d (x̂d | x̃1:d−1)|.

Due to continuity w.r.t. x1:d−1, we have |x̂d − x̂′d| < δ3, hence we have

|F−1
d (x̂′d | x̃1:d−1)− F−1

d (x̂d | x̃1:d−1)| < ε.

�

A.6 Experimental Results

Experiments 1 & 2

We include results for every of the 42 models, for both experiment 1 and 2,
where every model have calculated mean log-likelihood of the 5 different runs,
for training and test set, with confidence intervals. We also include the true
mean log-likelihood in each experiment as an extra comparison. As we sampled
data for different flows, the true log-likelihood is then placed at the bottom of
every group of flows which used the same sample. First, we refresh the reader
with the table of the different models in Table A.2. All the results of the 42

Table A.2: List of all models tested in experiment 1 and 2.

Structure Transformations Permutations
Flow 1: Identity Affine Id.
Flow 2: Fully Linear (SOD) Id.
Flow 3: D/2-coupling Affine Id., Alt., Random
Flow 4: AR Affine Id., Alt., Random
Flow 5: D/2-coupling Piecewise Affine Id., Alt., Random
Flow 6: AR Piecewise Affine Id., Alt., Random
Flow 7: D/2-coupling Affine Piecewise Affine Id., Alt., Random
Flow 8: AR Affine Piecewise Affine Id., Alt., Random
Flow 9: D/2-coupling Cont. Piecewise Affine Id., Alt., Random
Flow 10: AR Cont. Piecewise Affine Id., Alt., Random
Flow 11: D/2-coupling Affine Cont. Piecewise Affine Id., Alt., Random
Flow 12: AR Affine Cont. Piecewise Affine Id., Alt., Random
Flow 13: D/2-coupling Affine/Piecewise Affine Random
Flow 14: AR Affine/Piecewise Affine Random
Flow 15: ID/(D/2)-coupling Linear/Affine Id., Random
Flow 16: ID/AR Linear/Affine Id.,Random
Flow 17: ID/(D/2)-coupling Linear/Piecewise Affine Random
Flow 18: ID/(D/2)-coupling Linear/Cont. Piecewise Affine Random
Flow 19: ID/(D/2)-coupling Linear/Affine Piecewise Affine Random
Flow 20: ID/(D/2)-coupling Linear/Affine Cont. Piecewise Affine Random

flows are given in Table A.3.

125

A. Additional Resources

Table A.3: Results of experiment 1 and 2, identity (Id), alternating (Alt)
and random (Ra) permutation (higher is better).

Train exp. 1 Test exp.1 Train exp. 2 Test exp. 2

Flow 1 −49.58± 0.190 −49.43± 0.194 −51.66± 0.000 −51.73± 0.001
Flow 2 −60.36± 0.008 −59.80± 0.011 −65.63± 0.003 −65.92± 0.012

True value (1,2) −46.45 −46.45 −30.74 −30.63
Flow 3-Id −46.32± 0.042 −46.74± 0.009 −51.92± 0.216 −55.78± 0.281
Flow 3-Alt −46.31± 0.066 −46.74± 0.035 −51.95± 0.150 −55.86± 0.130
Flow 3-Ra −46.22± 0.023 −46.69± 0.056 −52.15± 0.306 −55.79± 0.171

True value (3) −46.53 −46.38 −30.68 −30.59
Flow 4-Id −46.84± 0.046 −46.94± 0.054 −51.28± 0.076 −51.67± 0.080
Flow 4-Alt −46.60± 0.020 −46.67± 0.013 −48.60± 0.768 −48.86± 0.674
Flow 4-Ra −46.53± 0.032 −46.61± 0.040 −48.48± 0.771 −49.03± 0.637

True value (4) −46.46 −46.42 −30.70 −30.77
Flow 5-Id −47.00± 0.140 −47.28± 0.125 −57.35± 0.847 −59.09± 0.965
Flow 5-Alt −46.96± 0.077 −47.24± 0.130 −57.86± 0.681 −60.30± 0.962
Flow 5-Ra −47.20± 0.175 −47.49± 0.214 −56.78± 0.501 −59.04± 0.579

True value (5) −46.51 −46.47 −30.87 −30.61
Flow 6-Id −49.23± 0.393 −49.17± 0.366 −51.04± 0.111 −51.72± 0.162
Flow 6-Alt −47.27± 0.129 −47.23± 0.141 −57.90± 0.462 −58.29± 0.427
Flow 6-Ran −47.28± 0.065 −47.23± 0.069 −57.32± 0.191 −57.71± 0.145

True value (6) −46.46 −46.35 −30.62 −30.51
Flow 7-Id −46.82± 0.054 −46.63± 0.028 −56.86± 0.172 −57.23± 0.153
Flow 7-Alt −46.77± 0.067 −46.61± 0.036 −56.87± 0.145 −57.29± 0.158
Flow 7-Ra −46.72± 0.060 −46.56± 0.056 −56.82± 0.220 −57.18± 0.210

True value (7) −46.56 −46.24 −30.72 −30.90
Flow 8-Id −46.79± 0.020 −46.71± 0.307 −51.04± 0.111 −51.72± 0.162
Flow 8-Alt −47.14± 0.318 −47.02± 0.327 −57.90± 0.462 −58.29± 0.427
Flow 8-Ra −48.18± 0.438 −48.06± 0.470 −57.32± 0.191 −57.71± 0.145

True value (8) −46.62 −46.43 −30.62 −30.51
Flow 9-Id −47.26± 0.156 −47.52± 0.175 −50.79± 1.84 −53.56± 1.88
Flow 9-Alt −47.31± 0.138 −47.57± 0.118 −53.48± 1.336 −55.96± 1.518
Flow 9-Ra −47.39± 0.157 −47.68± 0.160 −50.40± 2.057 −53.84± 2.053

True value (9) −46.51 −46.48 −30.76 −30.67
Flow 10-Id −50.25± 0.647 −50.45± 0.657 −56.76± 1.350 −56.98± 1.365
Flow 10-Alt −46.94± 0.134 −47.05± 0.157 −55.57± 0.49 55.89± 0.464
Flow 10-Ra −46.95± 0.082 −47.07± 0.087 −55.09± 1.005 −55.47± 0.987

True value (10) −46.46 −46.41 −30.82 −30.93
Flow 11-Id −46.60± 0.062 −46.90± 0.071 −31.61± 0.288 −33.75± 0.183
Flow 11-Alt −46.63± 0.062 −46.89± 0.055 −31.76± 0.442 −33.74± 0.134
Flow 11-Ra −46.52± 0.059 −46.83± 0.044 −31.45± 0.655 −33.90± 0.249

True value (11) −46.51 −46.34 −30.68 −30.77
Flow 12-Id −47.25± 0.088 −47.37± 0.077 −49.81± 0.77 −49.89± 0.773
Flow 12-Alt −46.74± 0.026 −46.87± 0.023 −50.50± 0.552 −50.48± 0.639
Flow 12-Ra −46.65± 0.017 −46.80± 0.019 −49.56± 0.694 −49.53± 0.742

True value (12) −46.39 −46.45 −30.64 −30.59
Flow 13 −46.55± 0.067 −47.12± 0.085 −56.67± 0.116 −56.91± 0.140
Flow 14 −46.93± 0.086 −47.18± 0.114 −65.61± 0.647 −65.40± 0.630

True value (13,14) −46.39 −46.57 −30.94 −30.27
Flow 15-Id −46.57± 0.063 −46.79± 0.075 −39.84± 1.328 −44.58± 0.202
Flow 15-Ran −46.52± 0.055 −46.74± 0.0361 −40.29± 1.578 −44.84± 0.213
Flow 16-Id −46.94± 0.112 −46.94± 0.141 −47.99± 0.507 −48.47± 0.439

126

A.6. Experimental Results

Flow 16-Ra −46.88± 0.049 −46.90± 0.069 −48.17± 0.405 −48.62± 0.378
True value (15,16) −46.47 −46.46 −30.78 −30.72

Flow 17 −46.77± 0.070 −47.08± 0.070 −58.03± 2.286 −59.12± 1.972
Flow 18 −47.33± 0.085 −47.60± 0.129 −40.51± 0.189 −45.06± 0.198
Flow 19 −46.64± 0.044 −47.032± 0.066 −45.002± 1.645 −47.21± 0.95
Flow 20 −46.51± 0.033 −46.90± 0.029 −37.67± 0.707 −44.12± 0.440

True value −46.47 −46.60 30.74 −30.84

127

Bibliography

Ardizzone, L. et al. (2019). ‘Analyzing Inverse Problems with Invertible Neural
Networks’. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Arnold, V. I. (2009). ‘On functions of three variables’. In: Collected Works:
Representations of Functions, Celestial Mechanics and KAM Theory, 1957–
1965, pp. 5–8.

Bader, P., Blanes, S. and Casas, F. (2019). ‘Computing the Matrix Exponential
with an Optimized Taylor Polynomial Approximation’. In: Mathematics
vol. 7, no. 12.

Behrmann, J. et al. (2019). ‘Invertible Residual Networks’. In: Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA. Ed. by Chaudhuri, K. and Salakhutdinov,
R. Vol. 97. Proceedings of Machine Learning Research. PMLR, pp. 573–582.

Berg, R. van den et al. (2018). ‘Sylvester Normalizing Flows for Variational
Inference’. In: Proceedings of the Thirty-Fourth Conference on Uncertainty
in Artificial Intelligence, UAI 2018, Monterey, California, USA, August
6-10, 2018. Ed. by Globerson, A. and Silva, R. AUAI Press, pp. 393–402.

Bhattacharyya, A. (1946). ‘On a Measure of Divergence between Two
Multinomial Populations’. In: Sankhyā: The Indian Journal of Statistics
(1933-1960) vol. 7, no. 4, pp. 401–406.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag.

Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017). ‘Variational Inference: A
Review for Statisticians’. In: Journal of the American Statistical Association
vol. 112, no. 518, pp. 859–877.

Bogachev, V., Kolesnikov, A. and Medvedev, K. (Oct. 2007). ‘Triangular
transformations of measures’. In: Sbornik: Mathematics vol. 196, p. 309.

129

Bibliography

Casado, M. L. (2019). ‘Trivializations for Gradient-Based Optimization
on Manifolds’. In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by
Wallach, H. M. et al., pp. 9154–9164.

Chen, T. Q. et al. (2019). ‘Residual Flows for Invertible Generative Modeling’. In:
Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada. Ed. by Wallach, H. M. et al., pp. 9913–
9923.

Cherief-Abdellatif, B.-E. (Feb. 2019). In: Proceedings of The 1st Symposium
on Advances in Approximate Bayesian Inference. Vol. 96. Proceedings of
Machine Learning Research. PMLR, pp. 11–31.

Cornish, R. et al. (2020). ‘Relaxing Bijectivity Constraints with Continuously
Indexed Normalising Flows’. In: ICML, pp. 2133–2143.

Cybenko, G. (1989). ‘Approximation by superpositions of a sigmoidal function’.
In: Mathematics of Control, Signals and Systems vol. 2, no. 4, pp. 303–314.

Dhaka, A. K. et al. (2021). ‘Challenges for BBVI with Normalizing Flows’. In:
ICML Workshop on Invertible Neural Networks, Normalizing Flows, and
Explicit Likelihood Models.

Dinh, L., Krueger, D. and Bengio, Y. (2015). ‘NICE: Non-linear Independent
Components Estimation’. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop
Track Proceedings. Ed. by Bengio, Y. and LeCun, Y.

Dinh, L., Sohl-Dickstein, J. and Bengio, S. (2017). ‘Density estimation using Real
NVP’. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Durkan, C. et al. (2019a). ‘Cubic-Spline Flows’. In: CoRR vol. abs/1906.02145.
arXiv: 1906.02145.

— (2019b). ‘Neural Spline Flows’. In: Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada.
Ed. by Wallach, H. M. et al., pp. 7509–7520.

Foss, S., Korshunov, D. and Zachary, S. (2011). An introduction to heavy-tailed
and subexponential distributions. English. Springer Series in Operations
Research and Financial Engineering. Springer.

Friedman, J., Hastie, T., Tibshirani, R. et al. (2001). The elements of statistical
learning. Vol. 1. 10. Springer series in statistics New York.

130

https://arxiv.org/abs/1906.02145

Bibliography

Friedman, J. H. (1987). ‘Exploratory projection pursuit’. In: J. Amer. Statist.
Assoc. vol. 82, no. 397, pp. 249–266.

Germain, M. et al. (July 2015). ‘MADE: Masked Autoencoder for Distribution
Estimation’. In: Proceedings of the 32nd International Conference on
Machine Learning. Ed. by Bach, F. and Blei, D. Vol. 37. Proceedings of
Machine Learning Research. Lille, France: PMLR, pp. 881–889.

Golinski, A., Lezcano-Casado, M. and Rainforth., T. (2019). ‘Improving
normalizing flows via better orthogonal parameterizations’. In: ICML
Workshop on Invertible Neural Networks and Normalizing Flows. ICML.

Goodfellow, I. et al. (2014). ‘Generative Adversarial Nets’. In: Advances in
Neural Information Processing Systems. Ed. by Ghahramani, Z. et al. Vol. 27.
Curran Associates, Inc.

Hanin, B. and Sellke, M. (2017). ‘Approximating continuous functions by relu
nets of minimal width’. In: arXiv preprint arXiv:1710.11278.

Hilbert, D. (1902). ‘Mathematical problems’. In: Bulletin of the American
Mathematical Society vol. 8, no. 10, pp. 437–479.

Hochreiter, S. and Schmidhuber, J. (Nov. 1997). ‘Long Short-Term Memory’.
In: vol. 9, no. 8, pp. 1735–1780.

Hornik, K. (1991). ‘Approximation capabilities of multilayer feedforward
networks’. In: Neural Networks vol. 4, no. 2, pp. 251–257.

Huang, C.-W., Dinh, L. and Courville, A. C. (2020). ‘Augmented Normalizing
Flows: Bridging the Gap Between Generative Flows and Latent Variable
Models’. In: CoRR vol. abs/2002.07101. arXiv: 2002.07101.

Huang, C.-W., Krueger, D. et al. (Oct. 2018). ‘Neural Autoregressive Flows’.
In: ed. by Dy, J. and Krause, A. Vol. 80. Proceedings of Machine Learning
Research. Stockholmsmässan, Stockholm Sweden: PMLR, pp. 2078–2087.

Jaini, P., Kobyzev, I. et al. (2020). ‘Tails of Lipschitz Triangular Flows’. In:
Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine
Learning Research. PMLR, pp. 4673–4681.

Jaini, P., Selby, K. A. and Yu, Y. (2019). ‘Sum-of-Squares Polynomial
Flow’. In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Ed.
by Chaudhuri, K. and Salakhutdinov, R. Vol. 97. Proceedings of Machine
Learning Research. PMLR, pp. 3009–3018.

Jang, E., Gu, S. and Poole, B. (2017). ‘Categorical Reparameterization
with Gumbel-Softmax’. In: 5th International Conference on Learning

131

https://arxiv.org/abs/2002.07101

Bibliography

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net.

Johnson, R. M. (1966). ‘The minimal transformation to orthonormality’. In:
Psychometrika vol. 31, pp. 61–66.

Jordan, M. I. et al. (1999). ‘An Introduction to Variational Methods for
Graphical Models’. In: Machine Learning vol. 37, no. 2, pp. 183–233.

Kaparthy, A. (2018). pytorch-made. https://github.com/karpathy/pytorch-made.

Kidger, P. and Lyons, T. (Sept. 2020). ‘Universal Approximation with Deep
Narrow Networks’. In: ed. by Abernethy, J. and Agarwal, S. Vol. 125.
Proceedings of Machine Learning Research. PMLR, pp. 2306–2327.

Kingma, D. P. and Welling, M. (2014). ‘Auto-Encoding Variational Bayes’.
In: 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by
Bengio, Y. and LeCun, Y.

Kingma, D. P. and Dhariwal, P. (2018). ‘Glow: Generative Flow with Invertible
1x1 Convolutions’. In: Advances in Neural Information Processing Systems.
Ed. by Bengio, S. et al. Vol. 31. Curran Associates, Inc.

Kingma, D. P., Salimans, T. et al. (2016). ‘Improved Variational Inference with
Inverse Autoregressive Flow’. In: Advances in Neural Information Processing
Systems 29. Ed. by Lee, D. D. et al. Curran Associates, Inc., pp. 4743–4751.

Kirichenko, P., Izmailov, P. and Wilson, A. G. (2020). ‘Why Normalizing Flows
Fail to Detect Out-of-Distribution Data’. In: Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by
Larochelle, H. et al.

Kobyzev, I., Prince, S. and Brubaker, M. (2020). ‘Normalizing Flows: An
Introduction and Review of Current Methods’. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1.

Kolmogorov, A. N. (1957). ‘On the representation of continuous functions of
many variables by superposition of continuous functions of one variable and
addition’. In: Doklady Akademii Nauk. Vol. 114. 5. Russian Academy of
Sciences, pp. 953–956.

Kullback, S. and Leibler, R. A. (1951). ‘On information and sufficiency’. In:
The annals of mathematical statistics vol. 22, no. 1, pp. 79–86.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). ‘Deep Learning’. In: Nature
vol. 521, no. 7553, pp. 436–444.

132

https://github.com/karpathy/pytorch-made

Bibliography

LeCun, Y., Boser, B. et al. (1990). ‘Handwritten Digit Recognition with a
Back-Propagation Network’. In: Advances in Neural Information Processing
Systems. Ed. by Touretzky, D. Vol. 2. Morgan-Kaufmann.

Lindstrøm, T. L. (2017). Spaces: An Introduction to Real Analysis. American
Mathematical Society.

Lu, Z. et al. (2017). ‘The Expressive Power of Neural Networks: A View from
the Width’. In: Advances in Neural Information Processing Systems. Ed. by
Guyon, I. et al. Vol. 30. Curran Associates, Inc.

McCulloch, W. S. and Pitts, W. (1943). ‘A logical calculus of the ideas immanent
in nervous activity’. In: The bulletin of mathematical biophysics vol. 5, no. 4,
pp. 115–133.

Müller, T. et al. (2019). ‘Neural Importance Sampling’. In: ACM Trans. Graph.
vol. 38, no. 5, 145:1–145:19.

Oliva, J. B. et al. (2018). ‘Transformation Autoregressive Networks’. In:
Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed.
by Dy, J. G. and Krause, A. Vol. 80. Proceedings of Machine Learning
Research. PMLR, pp. 3895–3904.

Papamakarios, G., Pavlakou, T. and Murray, I. (2017). ‘Masked Autoregressive
Flow for Density Estimation’. In: Advances in Neural Information Processing
Systems 30. Ed. by Guyon, I. et al. Curran Associates, Inc., pp. 2338–2347.

Pinkus, A. (1999). ‘Approximation theory of the MLP model’. In: Acta Numerica
1999: Volume 8 vol. 8, pp. 143–195.

Rezende, D. J. and Mohamed, S. (2015). ‘Variational Inference with Normalizing
Flows’. In: Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015. Ed. by Bach, F. R.
and Blei, D. M. Vol. 37. JMLR Workshop and Conference Proceedings.
JMLR.org, pp. 1530–1538.

Saul, L. K., Jaakkola, T. and Jordan, M. I. (1996). ‘Mean field theory for
sigmoid belief networks’. In: Journal of artificial intelligence research vol. 4,
pp. 61–76.

Scheffe, H. (Sept. 1947). ‘A Useful Convergence Theorem for Probability
Distributions’. In: Ann. Math. Statist. vol. 18, no. 3, pp. 434–438.

Schmidhuber, J. (Jan. 2015). ‘Deep Learning in Neural Networks’. In: Neural
Netw. vol. 61, no. C, pp. 85–117.

Sklar, A. (1959). ‘Fonctions de répartition à n dimensions et leurs marges’. In:
Publ. Inst. Statist. Univ. Paris vol. 8, pp. 229–231.

133

Bibliography

Sriperumbudur, B. K. et al. (2009). ‘On integral probability metrics,φ-
divergences and binary classification’. In: arXiv preprint arXiv:0901.2698.

Teshima, T. et al. (2020). ‘Coupling-based Invertible Neural Networks Are
Universal Diffeomorphism Approximators’. In: Advances in Neural Inform-
ation Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed.
by Larochelle, H. et al.

Tomczak, J. and Welling, M. (Nov. 2016). ‘Improving Variational Auto-Encoders
using Householder Flow’. In:

Vaswani, A. et al. (2017). ‘Attention is All you Need’. In: Advances in Neural
Information Processing Systems. Ed. by Guyon, I. et al. Vol. 30. Curran
Associates, Inc.

Vehtari, A., Gabry, J. et al. (2020). loo: Efficient leave-one-out cross-validation
and WAIC for Bayesian models. R package version 2.4.1.

Vehtari, A., Simpson, D. et al. (2021). ‘Pareto smoothed importance sampling’.
In: arXiv preprint arXiv:1507.02646.

Wainwright, M. J. and Jordan, M. I. (2008). ‘Graphical Models, Exponential
Families, and Variational Inference’. In: Found. Trends Mach. Learn. vol. 1,
no. 1-2, pp. 1–305.

Wehenkel, A. and Louppe, G. (2019). ‘Unconstrained Monotonic Neural
Networks’. In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by
Wallach, H. M. et al., pp. 1543–1553.

— (2020). ‘You say Normalizing Flows I see Bayesian Networks’. In: arXiv
preprint arXiv:2006.00866v2.

— (2021). ‘Graphical Normalizing Flows’. In: The 24th International Conference
on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021,
Virtual Event. Ed. by Banerjee, A. and Fukumizu, K. Vol. 130. Proceedings
of Machine Learning Research. PMLR, pp. 37–45.

Wiese, M., Knobloch, R. and Korn, R. (2019). Copula and Marginal Flows:
Disentangling the Marginal from its Joint. arXiv: 1907.03361 [cs.LG].

Wolpert, D. H. and Macready, W. G. (Apr. 1997). ‘No Free Lunch Theorems
for Optimization’. In: Trans. Evol. Comp vol. 1, no. 1, pp. 67–82.

Yao, Y. et al. (2018). ‘Yes, but Did It Work?: Evaluating Variational Inference’.
In: Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by

134

https://arxiv.org/abs/1907.03361

Bibliography

Dy, J. G. and Krause, A. Vol. 80. Proceedings of Machine Learning Research.
PMLR, pp. 5577–5586.

Yu, Y. et al. (Sept. 2019). ‘DAG-GNN: DAG Structure Learning with Graph
Neural Networks’. In: Proceedings of the 36th International Conference on
Machine Learning. Ed. by Chaudhuri, K. and Salakhutdinov, R. Vol. 97.
Proceedings of Machine Learning Research. PMLR, pp. 7154–7163.

Zhang, C. et al. (2019). ‘Advances in Variational Inference’. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence vol. 41, no. 8,
pp. 2008–2026.

Zheng, X. et al. (2018). ‘DAGs with NO TEARS: Continuous Optimization for
Structure Learning’. In: Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Ed. by Bengio, S.
et al., pp. 9492–9503.

Aasan, M. (2021). Invertible Encoders. https://github.com/PolterZeit/invertible_
encoders.

135

https://github.com/PolterZeit/invertible_encoders
https://github.com/PolterZeit/invertible_encoders

	Abstract
	Acknowledgements
	Contents
	Introduction
	Notation

	Preliminaries
	Introduction
	Divergence
	Variational Inference
	Neural Networks
	Conditional Neural Network

	Normalizing Flows
	Introduction
	Flows
	Flow Structure
	Conditioner
	Transformations
	Universality

	Piecewise Affine Flows
	Introduction
	Affine Extended Transformations
	Universality of CONN
	Universality
	a-activation function

	Empirical Results
	Introduction
	Implementation
	Experiments 1 & 2
	Experiment 3
	Experiment 4
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Additional Resources
	Classes of Divergences
	CONN: Non-Independent Sampling and Residual Blocks
	Classifying Transformations
	Proof of Continuity of bt,d
	Continuity of Target Inverse CDF
	Experimental Results

	Bibliography

