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The analysis of single crystal electron magnetic resonance (EMR) data has traditionally been performed
using software in programming languages that are difficult to update, are not easily available, or are
obsolete. By using a modern script-language with tools for the analysis and graphical display of the data,
three MatLab� codes were prepared to compute the g, zero-field splitting (zfs) and hyperfine coupling
(hfc) tensors from roadmaps obtained by EPR or ENDOR measurements in three crystal planes.
Schonland’s original method was used to compute the g- and hfc -tensors by a least-squares fit to the
experimental data in each plane. The modifications required for the analysis of the zfs of radical pairs with
S = 1 were accounted for. A non-linear fit was employed in a second code to obtain the hfc -tensor from
EPR measurements, taking the nuclear Zeeman interaction of an I = ½ nucleus into account. A previously
developed method to calculate the g- and hfc -tensors by a simultaneous linear fit to all data was used in
the third code. The validity of the methods was examined by comparison with results obtained experi-
mentally, and by roadmaps computed by exact diagonalization. The probable errors were estimated using
functions for regression analysis available in MatLab. The software will be published at https://doi.org/10.
17632/ps24sw95gz.1, Input and output examples presented in this work can also be downloaded from
https://old.liu.se/simarc/downloads?l=en.

� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction of free radicals. Data from the low frequency branch can be anal-
The structure and reactions of paramagnetic defects in solids
have been extensively examined by electron magnetic resonance
(EMR) methods for more than 60 years. Methods to extract the
g- tensor by regular electron paramagnetic resonance (EPR) mea-
surements on single crystals were presented in early work [1],
and further developed in software containing error analyses and
modifications to treat electron-nuclear double resonance (ENDOR)
data [2–5]. However, these codes may no longer be available or
maintained. Sophisticated software packages have since then been
developed to aid the interpretation of EMR data [6,7], but proce-
dures to extract the coupling tensors from single crystal experi-
ments do not seem to be available. The short MatLab� codes
presented here do for simplicity or practical reasons neglect some
options accounted for in more extensive software [2–5], like to
include data obtained at different spectrometer frequencies, or at
different electronic states, e. g. at mS=±½ in ENDOR measurements
ysed if required but the intensity was often low, and only the data
of the high frequency branch could be employed in the present
work. To improve the accuracy of the g- and hfc-tensors a slightly
simplified method was implemented for the correction of errors
due to crystal misorientation than those considered in [3,5]. The
programs presented here may be of interest in applications con-
cerned with radiation research, biochemical and biophysics appli-
cations and other fields where mainly free radicals and triplet state
molecules in organic substances are observed. In the following and
in the software we therefore limit the treatment to cases with elec-
tron spin S = ½ and 1. The spin-Hamiltonian Eq. (1) with electron
and nuclear Zeeman terms, an hfc term and for S = 1 a zfs term S.
D.S, containing only quadratic terms, has then been employed [8
pp 225–253], see also [9 pp 197–199].

H ¼ lBB:g:S þ S:D:S þ S:A:I � lNgNB � I ð1Þ
The determination of the g and A (in fact g2 and A2) and D ten-

sors in general requires EPR and/or ENDORmeasurements with the
magnetic field vector B in a set of 2–4 planes followed by fitting of
the data to ellipsoidal surfaces. The selection of these planes
depends on the specific samples available, their crystal symmetry
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and the local site symmetry (LSS) determined by the specific defect
or radical geometry in the crystal. Obviously the LSS is usually
lower than the crystal symmetry. Often these factors will naturally
lead an experienced experimentalist to the choice of a laboratory
axis system (LAS) labeled xyz to describe the measurement data
(EPR magnetic fields and/or ENDOR frequencies). Examples will
be discussed below. The raw experimental data depend on one or
more of the symmetric second rank tensors mentioned above
[10,11]. When the second rank properties can be determined for
a sufficient number of orientations of the magnetic field, the tran-
sition from the LAS to the principal axis system (PAS) of the tensor
involved is mathematically straightforward (reduction of an ellip-
soid) and will lead to diagonalization and knowledge of the princi-
pal values and the corresponding principal axes. In the simple case
where S = ½ and where hfc interactions are absent (I = 0) or negli-
gible, the g-values can be simply calculated from the EPR experi-
mental values and the complete g-tensor can be easily
determined, of course, with some experimental uncertainty. In
the next section, a possible practical procedure is described in
more detail (Schonland).

When hfc and/or zfs interactions become important, the analysis
of the experimental data, influenced by more than just the g-
tensor, becomes more difficult [11,12]. Historically a number of
practical methods have been developed and the spectroscopist
has to decide which one to use, taking into account the relative
strengths of the interactions, the theoretical approximations used,
also in comparison with the experimental data available and their
unavoidable experimental errors.

In the LAS the S.D.S term in eq. (1) can be expanded in a series of
diagonal and off-diagonal terms or, alternatively, the HZFS can be
written as [11,16,17]:

HZFS ¼
X

kq
Bq
kO

q
k ð2Þ

In the PAS of the D-tensor, the following equivalent forms have
been reported in terms of the Extended Stevens operators :

HZFS ¼ DxS
2
x þ DyS

2
y þ DzS

2
z ¼ D S2z �

1
3
S Sþ 1ð Þ

� �
þ E S2x � S2y

� �

¼ B0
2O

0
2 þ B2

2O
2
2 ð3Þ

With [13]:

D ¼ 3
2
Dz ¼ 3B0

2 ¼ b0
2;
1
2

Dx � Dy
� � ¼ E ¼ B2

2 ¼ 1
3
b
2

2
ð4Þ

The bq
k are scaled parameters that are also often used [11,13].

In cases of tetragonal, hexagonal or trigonal LSS symmetry, the
D-tensor becomes axial and only one zfs-parameter is required (D
or B0

2). When the LSS symmetry is orthorhombic or lower, it is
advisable to take the standardization into account as recom-
mended by Rudowicz and Bramley [14], see also [13]. This allows
a correct comparison between data. To keep the ratio k = E/D in
the range 0–1/3, the D-tensor principal values should be ordered
as follows:

jDzj � jDxj � jDyj
Important in this respect is the fact that, if more than one tensor

has to be taken into account (e.g. g and A), the PASs do not neces-
sarily coincide anymore. E.g. in cases of monoclinic or triclinic local
symmetry, low symmetry effects may occur [15].

In the original (and present) software and for the radical sys-
tems mainly envisaged, situations with non-coincident tensors
were not included. The software was less intended for high spin
systems and therefore S was considered to be not larger than 1.
The influence of the g-anisotropy on the values of the hfc - and
zfs -tensors discussed in Section 5 was systematically assumed to
be negligible, avoiding problems with non-coincident PAS and
more complex Hamiltonians.
2

Moreover, it has to be considered that further theoretical
approximations were made, including 1st or 2nd order perturba-
tion formulas, allowing to access g, A and D-values (via experimen-
tal splittings) more easily (but less accurately). A nice
demonstration of (the advantage of) perturbation theory is the
determination of the g-values from central line positions when
hfc interaction is present (see SAR-example below). Thereafter
the determination of the g-tensor is again straightforward.

Also for the A and D-tensors, this leads to mathematical treat-
ments that are very similar or even identical to single (g) tensor sit-
uations. Examples will also be given in the next section.

Historically introduced by lack of fast computers, the approxi-
mate formulas provide a lot of insight in the experimental data
patterns to be analyzed, and it has to be borne in mind that the
errors introduced are often smaller than the experimental error.
E.g., the 2nd order correction for a hfc coupling of about 20 MHz
was estimated to be of the order 0.01 MHz [8 pp 193–194]. An
analysis of the ENDOR data of a weakly interacting proton and of
the relatively large Ha splitting typical of an aliphatic radical has
indicated for example (Table 5 in this work) that the errors caused
by the use of 1st order perturbation theory were of the order 0.05
and 0.2 MHz, respectively. The smaller values are considered as
acceptable errors, while the larger deviation might be reduced by
modelling the resonance frequencies by 2nd order perturbation
theory [23] as suggested in Section 5. Of course, the potential users
of the software have to decide whether the advantages (ease of use,
direct availability, transparency, insight, . . .) cancel or even out-
weigh the disadvantages.

A further development of the software based on the more gen-
eral Hamiltonians used e. g. in [6,7] is desirable to establish a com-
mon standard for the determination of tensor quantities in single
crystal EMR studies. This subject is not within the scope of the pre-
sent work, however.

In the next section, a first possible practical procedure is
described in more detail.
2. The Schonland method

The Schonland method to obtain the g-tensor [1] involved EPR
measurements in three crystal planes, by rotating the crystal about
an axis perpendicular to the magnetic field. The crystal symmetries
that are considered are orthorhombic, monoclinic or trigonal but
the LSS will in most cases lead to a triclinic g2 and A2 tensor.

A set of measurements obtained by rotation of the magnetic
field in a certain plane can be represented by the intersection of
this plane with the tensor representation ellipsoid, i.e. an ellipse.
The latter can be easily fitted with three parameters, the maximum
and minimum g-values in the plane and the angle at which the
maximum g-value occurs [1]. When the rotation plane contains a
principal axis, the corresponding principal value can be directly
determined. In general three sets of measurements (three ellipses)
will allow the reconstruction of the ellipsoid and thus the g-tensor.
When g anisotropy is neglected, as will be assumed in the present
paper, also the A and D-tensors can be determined in the same
way, using formulas requiring no further approximations.

The (x,y,z) LAS that we used for the measurement of
orthorhombic crystals is the natural orthogonal (a, b, c) system
(crystal axes system, denoted by CAS). For the crystals with a
monoclinic space group, the (a, b, c*) or (a*, b, c) axes, with c* or
a* perpendicular to b and to a or c (denoted by CAS*) were chosen
to analyze the experimental data, as will be demonstrated below.

As explained above, the g-factor depends on the direction of the
magnetic field according to the formula in Eq. (5) or an equivalent
one in terms of the maximum and minimum g-values in the plane
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and the angle at which the maximum g-value occurs [1]. The orien-
tation of themagnetic field B in eachplane is specifiedby the angle h.

g2 ¼ aþ b cos 2 hþ c sin 2 h ð5Þ
The maximum and minimum values g2

� of this expression are
given by Eq. (6) and are found for values of h that are 90� apart.

g2
� ¼ a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

q
ð6Þ

For an orthorhombic crystal, the elements of the tensor T = g2

were expressed in the CAS (x, y, z) = (a, b, c) and calculated by a
least-squares fit of Eq. (5) to the data in the bc, ac and ab crystal
planes respectively. The principal g-values were calculated as the
square root of the corresponding g2 values. As is well-known, the
principal directions of g2 and g coincide [1]. For a monoclinic crys-
tal, measurements in the ab, ac, and bc planes were employed with
the tensor elements specified in the CAS* (a, b, c*) system, Fig. 1 [1].
The procedure to evaluate the tensor elements frommeasurements
in crystal planes (bc*, ac and a*b) perpendicular to the a, b and c
crystal axes, i.e. the three non-orthogonal rotation axes with orien-
tations as in Fig. 1, is analogous. The tensor elements were then
eventually expressed in the orthogonal LAS (x, y, z) = (a*, b, c).
All tensor elements except Tyz were obtained from rotations about

the b and c axes. The quantity T
0
yzwas measured in the bc* plane

and expressed in terms of the already determined elements, Eq.
(7), taking in account the transformation properties of Cartesian
tensors. The Tzz value in Eq. (8) was obtained in an analogous man-
ner and employed as a consistency check. The angle e = b� 90�was
introduced in Eqs. (7) and (8) to emphasize the similarity with the
equations in [1].

Tyz ¼
T

0
yz � Txysine

cose
ð7Þ
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Fig.1. Performance test of the Schonland function to obtain the g-tensor from the g-fac
(b = 110�). The fits in solid lines, using the MatLab functions regress and robustfit to the s
axes employed in the Schonland method are indicated, b is perpendicular to a and c.
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Tzz ¼ T
0
zz 1þ tan2e
� �� Txxtan2e� 2Txztane ð8Þ

The orthorhombic case corresponds with the case e = 0.
The procedure was verified using simulated calculated g-tensor

roadmaps. The fits obtained with constant and adjustable weights
of the data with the Matlab functions regress and robustfit then
overlapped. The principal values and direction cosines used to gen-
erate the roadmap data in Fig. 1 were recovered with negligible
error from the rotations about the a, b and c axes of a monoclinic
crystal with an angle b = 110� between the a and c axes.

Performance: The data in [18] were reanalyzed in order to test
the performance on the experimental g-factor data of the stable
alanine radical (SAR) marked with o in Fig. 2.

The g-tensor in Table 1a, obtained using regress fits in rotations
about the a, b and c orthorhombic axes, deviated somewhat from
the reported ones. Good agreement with Ref. [18] was obtained
by reversing the sense of rotation about c, Table 1b. In this and
tables below the tensor orientation with respect to the LAS was
specified with the eigenvectors for each principal value. The corre-
sponding Euler angles, displayed on the computer screen at run-
time, can also be stored if required.

The analysis of ENDOR roadmaps was tested for a typical a-H
tensor of an orthorhombic crystal [19] and for a weaker 1H cou-
pling with principal values A = [-0.94, 2.81, 14.90] MHz [20] of a
monoclinic crystal with b = 92.4�. The calculated a-H principal val-
ues differed by the order 0.1 MHz from those used to obtain the
roadmaps by exact theory [6]. The difference is probably due to
the use of first order theory to obtain the ENDOR frequencies in
the Schonland function. The tensor obtained by analyzing the road-
maps of the weaker coupling generated by 1st order theory agreed
to within 0.01 MHz for the principal values and to at least 3 deci-
mal places for the direction cosines. The higher order corrections
for the weaker coupling were assumed to be insignificant.
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Fig.2. Performance test of the Schonland function for the analysis of the g-factor variation in three orthogonal planes (o) of the SAR radical in an irradiated L-alanine crystal
[18]. The fits in solid lines obtained with constant and adjustable weights of the data employing the Matlab functions regress and robustfit did nearly coincide.

Table 1
The g-tensor of the alanine SAR (R1) radical by the Schonland method (regress fit) with two different senses of rotation about the crystalline c-axis.

Principal values Error Eigenvector Cosine errors

a b c a b c

a) 2.00252 0.00012 �0.0828 0.8623 �0.4995 0.1035 0.0444 0.0911
2.00301 0.00008 �0.7163 0.2971 0.6315 0.0380 0.1223 0.0763
2.00452 0.00008 0.6929 0.4101 0.5931 0.0375 0.0364 0.0381

b) 2.00219 0.00010 �0.4280 �0.7202 0.5460 0.0378 0.0449 0.0424
2.00367 0.00009 �0.4263 0.6935 0.5807 0.1052 0.0467 0.0846
2.00419 0.00008 �0.7969 0.0158 �0.6039 0.0560 0.0914 0.0760
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The procedure to extract the hfc tensors of organic radicals with
the Schonland method by analysis of the ENDOR frequencies was
extended in [5, 8 Ch. 4] and works cited therein. Simple expres-
sions for the hfc tensor elements were obtained by employing data
for the high as well as the low frequency branch. Errors due to the
uncertainty of the frequencies and the crystal orientation were
both accounted for. The Schonland function used in this work
was designed to obtain the hfc tensor by analysis of the high fre-
quency branch, given that the signal intensity of the low frequency
branch was usually weak. Data from the low frequency branch can,
however, be analyzed if required, as verified using simulated road-
maps for the analysis. The probable errors were estimated using
functions for regression analysis available in MatLab.

The performance for the analysis of ENDOR data was investi-
gated by reanalyzing the data of an X-irradiated ammonium tar-
trate crystal. The measurements were performed by rotation of
the crystal about the a, b and c crystal axes, with monoclinic angle
b = 92.4� [20]. Fits with constant and adjustable weights of the data
were obtained using the Matlab functions regress and robustfit. The
fits were nearly identical, Fig. 3. The principal values and directions
of the R1(3) tensor obtained by the Schonland function in Table 2
coincided exactly with those computed with the Nelson function in
Table 8, indicating that the two methods were consistent provided
4

that the orientation of the magnetic field with respect to the crystal
axes is accurately known. The automatic method to correct for
crystal misalignment described in Sections 2 and 3 is not applica-
ble with the Schonland method, however, and the angle adjust-
ments calculated by the Nelson function (Table 8) were therefore
inserted manually. Note also that the principal values of the hfc -
tensor in Table 2 were obtained with reversed signs to those
reported in [20] for the R1(3) tensor. This is not unreasonable con-
sidering that the absolute signs were not determined by the anal-
ysis. The Euler angles specifying the orientation of the fitted tensor
in Table 2, (-5.76 50.16 –131.34)�, were nevertheless in good
agreement with the experimental values, (-5.53 48.39 –131.41) �
[20] (see the actual data for the R1(3) tensor presented in Table 5).

The performance of the Schonland function for the analysis of
the zero-field-splitting (zfs) of a radical pair was investigated by
employing the data of an X-irradiated potassium dithionate crystal
[21]. The X- and Q-band spectra observed by rotation about an axis
(x) perpendicular to the trigonal axis of the crystal contained a
weak signal assigned to a (SO3

�)2 radical pair with an axially sym-
metric zfs, Fig. 4. The analysis was made with a slight modification
of the Schonland method, by fitting of the a, b and c values (see
formula (2)) to the splitting between the mS = 1?0 and 0?�1
transitions rather than to its square.



Fig.3. Performance test of the Schonland function for the analysis of the high frequency branch of the proton ENDOR signal R1(3) of irradiated ammonium tartrate crystal [20]
in rotations about the a, b and c monoclinic axes. The fits in solid lines, obtained with constant and adjustable weights of the data employing the Matlab functions regress and
robustfit, overlapped closely.

Table 2
1H hfc-tensor (MHz) of radical R1(3) in X-irradiated ammonium tartrate crystal [20] by the Schonland function.

Principal values Error Eigenvector Cosine errors

a* b c a* b c

�8.45 0.008 �0.4964 0.4123 0.7640 0.0025 0.0027 0.0019
14.25 0.003 �0.7045 �0.7055 �0.0770 0.0082 0.0092 0.0104
17.17 0.003 0.5072 �0.5765 0.6406 0.0113 0.0113 0.0026
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Fits were obtained using the Matlab functions regress with
equal weights of the data, and robustfit, which gives lower weight
to points that do not fit well by an iteratively reweighted least
squares algorithm. Assuming that the axis of the radical pair coin-
cides with the trigonal crystal axis, axial D-tensor symmetry was
assumed [21]. In axial symmetry the smallest splitting always cor-
Fig.4. Roadmap of the zfs of an (SO3
�)2 radical pair in an irradiated potassium

dithionate crystal [21]. The solid lines were fitted using the MatLab functions
regress and robustfit, to the zfs-data marked with circles,1 G = 0.1 mT.

5

responds to -D. The perpendicular component can in principle be
directly obtained from the data in Fig. 4, but due to the restricted
data set and the substantial extrapolation, only an approximate
value of D=|F-|= 3.23 mT was estimated using an expression analo-
gous to Eq. (6) to calculate the maximum and minimum zfs, F±.
3. The Fouse/Bernhard method: EPR spectra featuring direct
field effects.

The hfc EPR data of organic free radicals can in many cases be
analyzed by neglecting the influence of the nuclear Zeeman inter-
action. There are, however, exceptions where the term is not neg-
ligible, like for the proton couplings in p-electron radicals; another
case is radicals containing fluorine atoms. An outer and inner dou-
blet of EPR lines due to the hfc of 1H or 19F nuclei (I = ½) were
observed in these cases. A non-linear fitting procedure (EPR6) to
the outer doublet splitting was developed to obtain the a-H proton
tensor of the free radical formed by H-atom abstraction in c-
irradiated single crystals of barbituric acid monohydrate [2]. We
have previously employed the theory derived by Weil and Ander-
son [22] to extract the principal values and orientations of the
hyperfine coupling tensors of nuclei with I = ½ in an analysis of
the EPR spectra of irradiated crystals [4]. A similar treatment was
adopted here, using the formulae due to Iwazaki [23, 8 pp 175–
181] in an arbitrary coordinate system to compute the separation,
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S (mT), of the outer doublet lines. A is the hfc -tensor, b = -gN�lN�B/
(g�lB) the nuclear Zeeman splitting, both in mT units, V a unit ten-
sor and l a unit vector oriented along the magnetic field.

S ¼ Gþ þ G�; G2
� ¼ lT : ��Aþ bVð Þ2:l ð9Þ

Eq. (9) was obtained by neglecting the g-anisotropy in [23]. The
direction cosines employed in the fits were obtained from Eq. (10),
by adapting a formula in classical mechanics to compute the new
position of a point after rotation about a fixed axis N [24].

l ¼ l0cosðh� h0Þ þ N � l0ð Þsinðh� h0Þ ð10Þ
The direction of l, upon rotation over an angle h about N, was

measured relative to an initial reference direction l0 of the mag-
netic field. Following the convention in [1], I0 is a unit vector direc-
ted along x, y and z, respectively, upon rotation about the z, x, and
y axes. The angle h0 corresponds to l||l0. The corresponding refer-
ence direction for an arbitrary crystal plane must be provided by
its direction cosines.

The method was tested by analysis of the hfc splittings due to
the a-H proton of radical III in irradiated L-asparagine. Simulated
EPR roadmaps were calculated at a microwave frequency of
9.7 GHz, using the hfc tensor reported in [19], either by adopting
the first order treatment in [22], or the matrix diagonalization
method in Easyspin [6]. To simplify the analysis the nuclear Zee-
man frequency was held fixed at mH = 14.7 MHz. The results in
Table 3 were obtained using the Matlab functions regress and
lsqcurvefit to perform fits to the data. The errors in the principal
values were computed as described in [2,3].

The smallest principal value in a), obtained by linear regression
and neglecting the nuclear Zeeman term, differed by 5.9 MHz from
the correct value. The calculated errors in a) are therefore expected
to be underestimated. The principal values and the eigenvectors
obtained by a non-linear fit to the 1st order roadmaps and includ-
ing the nuclear Zeeman term in Table 3b agreed exactly with those
used to generate the 1st order roadmaps. The residuals were also
considerably reduced, Fig. 5. The tensor data in Table 3c differed
slightly from the true values, probably because the roadmaps were
calculated exactly while the analysis is based on 1st order theory in
this and previous works [2–5]. The slight deviations of the princi-
pal values from the true ones indicate that the high field approxi-
mation does not strictly apply in this case.

The method was originally intended for the analysis of hfc data
of S = 1/2 and I=½ particles. The method is also applicable for
nuclei with I = 1, provided that the nuclear quadrupole interaction
is negligible and that the 1st order theory employed in [2] applies.
An analysis of the X-band hfc data due to 14N (I = 1) with principal
hfc constants AN = [7, 7, 77] MHz is presented in Table 4. A fixed
value was employed for the 14N Larmor frequency, mN = 1.05 MHz.
Simulated roadmaps, accurately calculated by matrix diagonaliza-
tion [6], were employed. The Matlab functions regress and lsqcurve-
Table 3
Hfc tensor of an a-H proton [19] a) excluding, b- c) including the nuclear Zeeman energy. a)
lsqcurvefit to analyze 1st order roadmaps, c) Using Matlab function lsqcurvefit to analyze ex

Principal values (MHz) Error

a) 33.32 0.172
55.54 0.110
86.07 0.059

b) 27.42 2*10�5

55.42 2*10�5

85.81 2*10�5

c) 27.72 6*10�5

55.36 6*10�5

85.74 6*10�5
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fit were used to obtain fits to the data. The assumed axial
symmetry was approximately retained in the analysis, and the
principal values were close to the correct ones, even by neglecting
the nuclear Zeeman term. The small errors that do occur may in
part be due to the differences in evaluating the hfc splittings,
exactly in the roadmap data, to 1st order in the fits. The direction
cosines of the axial component were correctly calculated. The
directions of the other components were inaccurate as expected
for the nearly axially symmetric tensors in Table 4.

The results support the assumption [8 pp 185–187] that the
nuclear Zeeman term might be neglected in the analysis of the
EPR data due to the hfc of 14N and other nuclei with low nuclear
g-factors, at least at X-band microwave frequency and lower.
4. The Nelson method: Analysis of EPR and ENDOR spectra of
organic radicals

The method presented in [3] involved a simultaneous fit to the
experimental data in three crystal planes. A FORTRAN code
(Magres) was developed to obtain the g- and hfc-tensors of organic
radicals by a linear fitting procedure including an analysis of the
probable errors.

The tensors were assumed to be symmetric with components
calculated from Eq. (11) by a standard linear regression analysis.

yn ¼ Tzz þ ðTxx � TzzÞl2x þ ðTyy � TzzÞl2y þ 2Txylxly þ 2Tyzlylz

þ 2Tzxlzlx

¼ A0 þ
X5
i¼1

AiXi ð11Þ

The predictor functions X1-5 in Eq. (11) were expressed in terms
of the polar angles specifying the direction cosines (lx ly lz) of the
magnetic field in the LAS. The parameters A0-5 were estimated by
simultaneous fitting to the experimental data in three crystal
planes.

The g–tensor was estimated by analyzing the g2-values, (n = 2 in
Eq. (11)), obtained in single crystal EPR measurements by employ-
ing Eq. (12).

g2 ¼
X

i;j¼x;y;z
g2
ijlilj ð12Þ

Hfc tensors were determined in a similar way in single crystal
ENDOR measurements by fitting to the quantity m2� � m2N where
mN is the nuclear Zeeman frequency, m± the ENDOR

frequencies corresponding to mS = ±½. A set of angles was intro-
duced in a final step to allow for the experimental uncertainties in
the direction cosines and optimized by a non-linear procedure. The
software is also applicable for obtaining the hfc-tensor from EPR
data, provided that the nuclear Zeeman energy is negligible, other-
wise the procedure by Fouse and Bernhard [2] might be used. The
Using Matlab function regress to analyze 1st order roadmaps b) Using Matlab function
act roadmaps.

Eigenvector

a b c

�0.4860 �0.6896 0.5370
�0.6465 0.6971 0.3101
�0.5881 �0.1964 �0.7845
�0.4918 �0.6848 0.5378
�0.6418 0.7025 0.3076
�0.5884 �0.1939 �0.7850
�0.4918 �0.6848 0.5378
�0.6418 0.7025 0.3076
�0.5884 �0.1939 �0.7850
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Fig. 5. Hfc residuals (indicated by o) and uncertainties (indicated by the lengths of the bars) obtained using the Fouse/Bernhard method by including (top diagram) and
excluding (bottom diagram) the nuclear Zeeman term. The Case Number represents data of increasing crystal orientation angles with respect to the external magnetic field in
three mutually orthogonal rotation planes. The corresponding tensors obtained are given in Tables 3a and 3b, respectively.

Table 4
Calculated hfc tensor (MHz) of a 14N nucleus (I = 1). a) Excluding the nuclear Zeeman term using Matlab function regress. b) Including the nuclear Zeeman term using Matlab function
lsqcurvefit.

Principal values Error Eigenvector Cosine errors

a b c a b c

a) 6.84 0.31 0.0000 �1.0000 0.0000 14.7717 0.0000 0.0005
6.84 0.28 1.0000 0.0000 0.0000 0.0000 14.7717 0.0005
77.07 0.03 �0.0000 0.0000 1.0000 0.0005 0.0005 0.0000

b) 7.12 0.06 0.0000 �1.0000 0.0000 16.0699 0.0000 0.0008
7.12 0.06 �1. 0000 �0. 0000 �0. 0000 0.0000 16.0699 0.0008
76.62 0.03 0. 0000 �0. 0000 �1. 0000 0.0008 0.0008 0.0000

Table 5
Calculated principal values (MHz) and directions of a) an a-H and b) a weak b-H coupling using three different procedures.

Principal values Eigenvectors Principal values Eigenvectors Principal values Eigenvectors

a* b c a* b c a* b c

Nelson.m Magres.for Assumed tensor
a) 27.65 �0.4912 �0.6853 0.5378 27.65 0.4912 0.6848 �0.5383 27.42 0.4918 0.6848 �0.5378

55.51 �0.6411 0.7023 0.3095 55.52 0.6410 �0.7026 �0.3090 55.42 �0.6418 0.7025 0.3076
85.86 �0.5897 �0.1927 �0.7843 85.86 0.5898 0.1933 0.7841 85.81 0.5884 0.1939 0.7850

b) �9.29 �0.5093 0.4320 0.7442 �9.29 �0.5093 0.4321 0.7442 �9.31 �0.5094 0.4321 0.7442
14.24 �0.7043 �0.7063 �0. 0720 14.24 0.7042 0.7063 0.0719 14.29 0.7043 0.7062 0.0720
16.99 0.4945 �0.5608 0. 6640 16.99 0.4945 �0.5607 0.6640 17.04 0.4944 �0.5608 0.6641
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method was adopted in several applications involving EPR mea-
surements of g-tensors and ENDOR studies of organic radicals with
hfc due to nuclei with I = ½ [19,20,26].

Equivalent expressions were employed in the present work
with n = 2 for the g-factors, hfc-splittings and ENDOR frequencies.

Based on the Hamiltonian HZFS = S.D.S in the LSS, Eq. (13) was
applied for the zero-field splitting F in an arbitrary direction (lx ly
lz), assuming that the high field approximation was valid (and
the g-anisotropy negligible).
7

F ¼ 3�
X

i;j¼x;y;z
Dijlilj ð13Þ

Note that n = 1 in Eq. (11) for this case and that the condition
Trace(D) = 0 was not imposed.

The hfc tensor was obtained from the high frequency branch of
the ENDOR roadmaps in three crystal planes. The principal hfc con-
stants Ai in Eq. (14) with errors dAi were calculated by assuming
that the roadmaps corresponded to the mS = -½ state. The eigenval-

ues ti of the tensor T ¼ A2

4 þ mNA with errors dti were obtained by
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fitting to the quantity m2� � m2N; where m- and mN are the ENDOR and
nuclear Zeeman frequencies. The principal values Ai with errors dAi

were obtained from Eq. (14):

Ai ¼ 2 � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti þ m2N

q
� mNÞ;dAi ¼ dti=ðAi=2þ mNÞ ð14Þ

The procedure was adopted from the Magres software [3] and
implemented in the Nelson as well as the Schonland functions.
Simulated roadmaps of an 1H hfc tensor typical for organic radicals
were analyzed in order to validate the method. The principal val-
ues calculated with (11) agreed with the assumed values A = [�5
30 40] MHz to within four decimal places; the direction cosines
were also in excellent agreement with the assumed ones. The case
with ti < �m2Ncan at present not be handled by the Nelson and
Schonland functions, however.

The orientation of the sample can in general not be observed
during measurements and the angle h0 in Eq. (10) can be difficult
to determine precisely. We therefore assumed that the angles h0
at B||y, z and x upon rotation about x, y and z, respectively, should
be treated as parameters, employing Eq. (15) and Eq. (16) in a non-
linear fit. The corrected field direction h in Eq. (16) is expressed in
terms of the uncorrected direction h0. Following the convention in
[1], I0 is along x, y and z, respectively, under rotations about each of
the z, x and y, axes.

h0 ¼ l0cosðhÞ þ N � l0ð ÞsinðhÞ ð15Þ

h ¼ h0cosðh0Þ þ h0 � Nð Þsinðh0Þ ð16Þ
The equations are equivalent to Eq. (10) as verified by inserting

Eq. (15) in Eq. (16) and applying trigonometric and tensor identi-
ties. The procedure was numerically validated by observing that
h0 angles deviating from the true values by a few degrees were
automatically corrected by the fitting to simulated roadmaps with
known parameters.

Performance: The performance was initially studied by analyz-
ing simulated ENDOR roadmaps of the 1H hfc due to ana-H coupling
Fig.6. Fits (+) to ENDOR frequency data (o) due to a weakly coupled proton by four metho
xy (right) planes of successively increasing crystal orientation angles (5� intervals) with
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[19], andaweaker coupling [20]with theassumedtensors inTable5.
The roadmaps were calculated exactly with Easyspin [6], and by 1st
order theory [22]. In the latter case the tensors computed with the
Nelson function were identical to those used to generate the maps
and are not presented. The tensors obtained with the Magres pro-
gram [3] using the Easyspin roadmaps were included in Table 5 for
comparison with those computed by the Nelson function.

The tensors obtained by the Matlab functions regress, robustfit
and lsqcurvefit employed in the Nelson program agreed closely;
the data displayed in the table were calculated by fits with the re-
gress function. The calculated tensors were also in good agreement
with those computed by the Magres program, indicating a satisfac-
tory performance of the Nelson function for the studied cases. The
deviation of the principal values from those assumed to obtain the
roadmaps is larger for the a-coupling than for the weaker coupling,
indicating that the deviations are due to the inaccuracy of the 1st
order theory used in the Nelson function as well as in the Magres
program. One might conclude that the analysis is slightly inaccu-
rate at X-band for the relatively large proton couplings that may
occur in aliphatic radicals.

The fits to the roadmaps in Fig. 6 of the weaker coupling in
Table 5 yielded a tensor in good agreement with the assumed ten-
sor indicating that the high field approximation applied in this
case.

The performance was further examined by reanalysis of the
experimental g-factor data of the Stable Alanine Radical (SAR)
[18]. The fitted curves (+), using the regress, robustfit and lsqcurvefit
functions in Fig. 7 were slightly shifted in angle compared to
experiment, indicating that the angles h0 were not exactly posi-
tioned, as displayed more clearly on the computer screen at run
time. The fit was improved by simultaneously optimizing the three
h0 angles and the six tensor elements using the lsqcurvefit function.
The obtained principal values were only slightly affected by this
treatment and agreed well with those obtained by the Magres pro-
gram [18] and the Schonland function (Table 2), while the direction
cosines were somewhat changed as seen in Table 6.
ds. The Case number in each subplot represents data for the yz (left), zx (centre) and
respect to the external magnetic field in the three rotation planes.



Fig. 7. Fits to the g2-factors of the Stable Alanine Radical (SAR) [18] by four different methods. The Case number in each subplot represents data of successively increasing
crystal orientation angles with respect to the external magnetic field in the yz (left), zx (centre) and xy (right) mutually orthogonal rotation planes.
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An attempt was made to reanalyse the experimental ENDOR
data of the a-H8 proton of radical III in X-irradiated L-asparagine
[19]. The fit was improved by simultaneously optimizing the three
h0 angles and the six tensor elements using the lsqcurvefit function.
The principal values and direction cosines in Table 7 were some-
what affected by this treatment.

The residuals, mexp2 - mfit2 , were significantly reduced by optimiz-
ing the h0 angles in the three crystal planes. The residuals marked
with o vary considerably in the upper diagram of Fig. 8 whereas
they are closer to the zero line in the lower diagram.
Table 6
g-tensor of the Stable Alanine Radical (SAR) [18] using Nelson’s method. a) Results with Matlab

Principal values Error Eigenvector

a b

a) 2.00219 7*10�5 �0.4413 �0.7
2.00367 7*10�5 �0.4710 0.69
2.00418 7*10�5 �0.7638 �0.0

b) 2.00213 5*10�5 �0.5333 �0.6
2.00371 5*10�5 �0.5196 0.71
2.00420 5*10�5 �0.6675 0.00

Angle adjustments (�): �5.130 14.2

Table 7
Hfc tensor of the a-H8 proton of radical III in X-irradiated crystalline L-asparagine [19] a) Resul
adjustment.

Principal values Error Eigenvector

a b

a) 19.40 0.36 �0.5354 �0.61
56.36 0.19 �0.5913 0.763
86.49 0.15 �0.6031 �0.20

b) 23.35 0.15 �0.5356 �0.63
54.31 0.10 �0.6004 0.751
86.26 0.05 �0.5939 �0.19

Angle adjustments (�): �3.55 1.15
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The roadmaps of the experimental, (o), and fitted ENDOR data,
(+) shown in Fig. 9 were less suitable to elucidate the quality of
the different fits because of the lower graphical resolution. It
appeared, however, that the experimental and fitted data overlap
most closely by employing the lsqcurvefit function with optimiza-
tion of the angles h0 in Eq. (10).

The performance was further investigated by reanalysing the
experimental ENDOR data of irradiated tartrate crystals. For the
decarboxylated Rochelle salt radical R2 [25] in Table 8a the resid-
uals were significantly reduced by the simultaneous optimization
function regress, b) results with Matlab function lsqcurvefit + rotation angle adjustment.

Cosine errors

c a b c

171 0.5395 0.0337 0.0335 0.0335
69 0.5409 0.1017 0.0345 0.0879
154 �0.6452 0.0630 0.0937 0.0726
991 0.4762 0.0225 0.0223 0.0228
50 0.4678 0.0690 0.0218 0.0762
20 �0.7446 0.0536 0.0736 0.0468
35 9.969

ts with Matlab function lsqcurvefit b) Results with Matlab function lsqcurvefit + h0 angle

Cosine errors

c a b c

37 0.5803 0.0092 0.0108 0.0062
0 0.2612 0.0105 0.0090 0.0124
33 �0.7713 0.0080 0.0101 0.0049
17 0.5605 0.0050 0.0059 0.0030
6 0.2733 0.0051 0.0050 0.0058
01 �0.7818 0.0033 0.0041 0.0021

0.04
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Fig. 8. Residual plots showing mexp2 - mfit2 ENDOR data without and with optimization of the h0 angles in the upper and lower diagram in three crystal planes. Residuals are
indicated by o, uncertainties by the lengths of the bars. The Case Number represents data of increasing crystal orientation angles with respect to the external magnetic field in
three mutually orthogonal rotation planes.
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of the tensor elements and the angles h0, using the lsqcurvefit func-
tion. The tensor in Table 8b was similarly obtained by analyzing
the data of radical R1(3) in irradiated ammonium tartrate [20].
Fig. 9. Fits (+) to the ENDOR frequencies (o) of the a-H8 proton of radical III in X-irradiate
of successively increasing crystal orientation angles with respect to the external magneti
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The hfc-tensor in Table 8b agreed exactly with the tensor obtained
by the Schonland function using the same experimental data of the
R1(3) coupling. The direction cosines in the table were also in good
d L-asparagine single crystal [19]. The Case number in each subplot represents data
c field in the yz (left), zx (centre) and xy (right) mutually orthogonal rotation planes.



Table 8
Hfc tensors (MHz) in irradiated tartrate crystals. a) a-H hfc of decarboxylated Rochelle salt radical R2, a*=a [25]. b) b-H hfc of ammonium tartrate radical R1(3) [20].

Principal values Error Eigenvector Cosine errors

a* b c a* b c

a) 17.89 0.26 0.4025 0.6385 �0.6560 0.0061 0.0101 0.0084
47.37 0.15 0.2335 �0.7645 �0.6008 0.0105 0.0085 0.0098
82.10 0.09 �0.8851 0.0887 �0.4568 0.0034 0.0087 0.0073

Angle adjustments (�): �1.15 �16.34 18.81
b) �8.45 0.008 �0.4964 0.4123 0.7640 0.0031 0.0032 0.0021

14.25 0.004 �0.7045 �0.7055 �0.0770 0.0107 0.0121 0.0136
17.16 0.004 0.5072 �0.5765 0.6406 0.0147 0.0147 0.0029

Angle adjustments (�): 89.1 15.4 �21.4
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agreement with previous results [20]. The magnitudes of the prin-
cipal values were in fair agreement with those reported previously
although the signs were reversed. The absolute signs were not
determined in this work, however.

Procedures to further improve the performance of the software
are discussed below.
5. Discussion

The three Matlab functions presented in this work for the deter-
mination of the g-, hfc- and zfs-tensors were prepared mainly for
the analysis of data obtained by EPR and ENDOR measurements
of organic free radicals and triplet molecules trapped in single crys-
tal matrices. The software was based on established theory [1–3]
and validated by analysis of experimental data and roadmap data
simulated from known magnetic couplings. By using the available
functions for regression and error analysis the number of program
lines was reduced to ca 200, i.e. by an order of magnitude in com-
parison with the older Fortran and Basic programs used for this
purpose [2–5].

Code (I) was modelled according to Schonland’s method [1],
which was the first usable technique to determine the g-tensor
of a paramagnetic complex in a monoclinic crystal by least squares
fits to the data in three crystal planes. For crystals with an
orthorhombic space group the monoclinic angle was set to
b = 90�. An option to obtain the tensor by rotation about the axes
of the non-cartesian monoclinic CAS was employed for the analysis
of experimental data like those in Fig. 3. Slight extensions were
also necessary to obtain the zfs-tensor by EPR and the hfc-tensor
by ENDOR measurements. The separate analysis of each crystal
plane in this method was advantageous in the special case of local
axial symmetry. The distance between two SO3

� radical anions
forming a pair (S = 1), was estimated from measurements in a sin-
gle plane of the line splitting attributed to the magnetic dipolar
interaction between the radicals.

The analysis of the EPR roadmaps due to a strongly anisotropic
hfc of a nucleus with I = ½ required a non-linear treatment in the
case when the nuclear Zeeman interaction is not negligible, like
for the a-proton couplings in p-electron radicals, [26], see also
[8 pp 175–181] and references cited therein. Code (II) was pre-
pared following the method used by Fouse and Bernhard [2]. It
might be employed in place of previously available software [4]
to obtain the hfc tensor of I=½ nuclei.

Linear fitting was employed in code (III) following the method
in [3] to obtain the g-, hfc - and zfs -tensors by analysing EPR and
ENDOR roadmap data. A simplified procedure to correct crystal
misalignment was applied in certain cases to improve the fitting
to experimental data by a non-linear method. Data were supplied
interactively in the three codes employing tools available in
Matlab.
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The error analysis presented by Fouse and Bernhard [2] was fur-
ther developed in [3,5] to account for the uncertainties in the ori-
entation of the rotation axes and of the angle of rotation about each
axis. The former corrections were minimized by crystal alignment
employing X-ray methods [3b,25] and were at present not
accounted for. The uncertainty of the angle of rotation was,
however, retained in the Fouse/Bernhard and Nelson functions by
including an additional parameter h0 in Eq. (10). The treatment
resulted in better fits to the experimental data in several cases,
indicating that the h0 value was not always accurately located
experimentally. The treatment is not applicable in the Schonland
function, where each roadmap is analysed separately. This
limitation can be partly overcome by the analysis of the maxima
and minima of the roadmaps in three orthogonal crystal planes [1].

Accurate modelling is particularly important in ENDOR mea-
surements, often with measurement errors of 0.02 MHz or lower,
while the 2nd order corrections might be an order of magnitude
larger under unfavourable conditions [27, Toriyama]. The compu-
tations in this and earlier works [2–5] were based on 1st order per-
turbation theory, rather than by the matrix diagonalization
technique employed in modern software [6,7]. Detailed procedures
to obtain these tensors by the latter technique seem to be unavail-
able in the documentation [6], while the method used here was
close to that originally applied for the g-tensor [1]. On one hand
only slight modifications were thus required to obtain the hfc-
and zfs-tensors [2–5,8], on the other the development of software
based on matrix diagonalization would have been an elaborate
task even by employing the tools of modern software [6]. Indeed,
in principle, writing the programs using exact diagonalization is
nowadays quite straightforward. However, the fact that these
options do not yet exist, indicate that, in practice, it is not so simple
to realize such general (albeit still with limitations, e.g. high spin
systems) programs with a broad applicability as has the software
discussed in the present paper. It was nevertheless necessary to
estimate the loss of accuracy for some typical examples. Errors of
the order 0.01 MHz were previously estimated in the analysis of
ENDOR data for principal values up to ca 20 MHz [8 pp 193–194]
in agreement with the data of Table 3. These errors may be
neglected in comparison with other errors considered below. Lar-
ger errors of the order 0.2 MHz were obtained for the hfc-
splitting of methyl radicals [27]. The shift might not be neglected
in single crystal ENDOR but be insignificant in EPR due to the larger
linewidth. The zfs of organic triplets are usually larger [8]. Accord-
ing to the formulae in [23], see also [9 pp 197–199] the observed
splitting for S = 1 is correct to 2nd order, however. The items con-
sidered below might also help to improve the accuracy in the
determination of the tensor values.

� Modeling of ENDOR resonance frequencies by 2nd order pertur-
bation theory

� Adjustment of ENDOR frequencies obtained at different
magnetic field settings



A. Lund, F. Callens and E. Sagstuen Journal of Magnetic Resonance 325 (2021) 106956
� Influence of g-anisotropy on the values of the hfc - and zfs -
tensors

� Influence of crystal misorientation on the values of the g-, hfc-
and zfs -tensors

Equations to treat the first case have been obtained for the
ENDOR transition energies correct to 2nd order of a species with
S = 1/2, I=½ taking the g-anisotropy in account [23]. The formulae
in [8, Eqs. 5.3.11 and 5.4.23], adapted to yield the transition fre-
quencies to 1st and 2nd order may serve to improve the fit.

The second issue was taken in account in the Magres program
by the late William Nelson [3]. The variation of the nuclear Zeeman
frequencies, depending for instance on changes of the Bobs value
during the recording of an ENDOR roadmap, was considered. The
issue was treated in a different manner by Magoub et al in an
ENDOR study of the SO3

� anion radical interacting with a 133Cs
nucleus. Since the ENDOR frequencies were determined at differ-
ent Bobs values, the nuclear Zeeman frequency differed slightly.
The ENDOR frequencies were therefore adjusted to a common
nuclear frequency m0Nemploying Eq. (17).

m0� 	 m� � @m�
@mN

mN � m0N
� � ð17Þ

A simple expression for the derivative @m�
@mN

was obtained when

the m+ and the m- frequency branches were experimentally deter-
mined [28].

The third issue was considered in an early paper by taking in
account the effect of g-anisotropy on the EPR splitting due to zfs
and hfc interactions [29]. The nuclear Zeeman splitting was
ignored, however. The option was therefore not implemented.
The effect of g-anisotropy in ENDOR was further discussed by
Atherton [8, pp 187–189] for the case when the high and low fre-
quency branches were both determined.

Several treatments have been suggested to allow for the effects
of misorientation of the crystal [1, 3, 12 pp 206–210]. This issue is
of interest in order to accurately establish the electronic and geo-
metric structure of the studied species.

Another type of error may occur in practical applications of the
Schonland, Fouse/Bernhard and Nelson methods [1–3]. The crystal
might for instance unintentionally be rotated in the wrong sense
(or equivalently, so-called site splitting is occurring [31]). One can
show that this ambiguity gives rise to only two distinct sets of
principal values [1]. A procedure to resolve this so-called Schon-
land ambiguity by additional EPR measurements was proposed. A
simpler method is applicable in ENDOR when the high and low fre-
quency branches of an S = ½ species are both observed. Only one of
the two tensors was in general compatible with the observed angu-
lar dependence of the two frequencies, which resolves the Schon-
land ambiguity [30]. The issue may be further analysed when the
g-anisotropy is negligible in which case Eqs. (18) and (19) apply
under rotation about the z axis [8 pp. 181–184].
Table 9
Software for the determination of g-, hfc-, zfs-tensors, nzc = nuclear Zeeman coupling.

Program name Order Ref.

EPR6 1 [2]
MAGRES 1 [3]
Alpha 1 [4]
Tensor 1 [5]
ENDPAQ 1 [31]
X32 2 [32]
I: Schonland 1 [1]
II: Fouse/Bernhard 1 [2]
III: Nelson 1 [3]
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2 m2þ þ m2� � 2m2N
� � ¼ A2

� �
xx
cos2hþ A2

� �
yy
sin2h

þ 2 A2
� �

xy
sinhcosh ð18Þ

m2� � m2þ
2mN

¼ Axxcos2hþ Ayysin
2hþ 2Axysinhcosh ð19Þ

The quantities (A2)xx, (A2)yy, Axx, and Ayy are not affected by a
wrong sense of rotation (or wrong choice of site) while Axy and
(A2)xy would both be obtained with opposite signs. The value of
(A2)xy in Eq.(20), obtained by matrix multiplication differs
from -(A2)xy in the sign of the 3rd term, however.

A2
� �

xy
¼ �Axx � Axy � Axy � Ayy þ Axz � Azy ð20Þ

The obtained tensors are therefore not identical in the case the
rotation was in the wrong sense in a single plane. We refer to the
literature [30] for a discussion of the applicability and limitations
of the method from a numerical point of view.

The programs presented here might be of interest in applica-
tions concerned with radiation research, biophysics, biochemistry
and other fields where free radicals and triplet state molecules in
solid materials are mainly observed. However, a further develop-
ment of the software to include an analysis based on a more gen-
eral Hamiltonian like in [6,7] seems desirable, in order to establish
a common standard for the determination of tensor quantities.

6. Summary

Three Matlab functions based on established theory [1–3], (I)
Schonland, (II) Fouse/Bernhard, (III) Nelson have been validated
by analysis of experimental data and simulated roadmap data from
known magnetic couplings. By using the available functions for
regression and error analysis the number of program lines was
reduced to ca 200, i.e. by an order of magnitude in comparison with
the older Fortran and Basic programs in Table 9. The source and
executable codes of the MAGRES and ENDPAQ programs are still
available, the other are either unavailable or in obsolete code, indi-
cating that software in traditional languages may no longer be
maintained, while codes developed in specialized laboratories are
not easily available. The software presented in this work might
therefore be of interest for the analysis of EPR and ENDOR single
crystal measurements, particularly for organic paramagnetic spe-
cies with S=½ and S = 1 states. Code (III) is generally applicable,
codes (I) and (ii) for special cases described in the text.

7. Source codes

The source codes in Ref. [33] can be downloaded fromMendeley
Data. To run the codes the MatLab and EasySpin [6] software must
also be available. Additional information is available at https://old.
liu.se/simarc/downloads?l=en.
Application Code

hfc + nzc (EPR) Fortran
g, hfc (EPR, ENDOR) Fortran
hfc + nzc (EPR) Fortran
hfc (EPR, ENDOR) Quickbasic
hfc, nqc (ENDOR I � 1) Fortran77
g + hfc, g + zfs (EPR) Quickbasic
g, zfs (EPR), hfc (ENDOR) Matlab
hfc + nzc (EPR, I=½) Matlab
g, zfs (EPR), hfc (ENDOR) Matlab
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