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Abstract

This thesis presents an incremental proof search procedure based on a vari-
able splitting sequent calculus for first-order logic without equality. By
means of an index system for formulae, the calculus generates variable shar-
ing derivations in which γ-inferences for different occurrences of the same
formula introduce identical variables. Formula indices are utilized to keep
track of how variables are split into different branches of a derivation. This
allows closing substitutions to instantiate occurrences of the same variable
differently under certain conditions. We represent closing substitutions as
syntactic constraints and define an incremental method for calculating these
constraints alongside derivation expansion.



ii



Acknowledgments

During my first week as a MS student at Department of Informatics I at-
tended a presentation concerning possible thesis topics. One of the presen-
ters, Arild Waaler, talked for no more than three minutes about something
he called “automated theorem proving”, a subject which I at that time had
no prior knowledge of. Nevertheless, the way he held his short presentation
immediately caught my attention. When I later asked him to be my su-
pervisor, he accepted and invited me to attend his graduate course in logic.
It was the subtle and inspiring lectures of Arild and the excellent student
workshops led by teacher’s assistant Roger Antonsen which introduced me
to the fascinating world of logic. Roger later became my second supervisor.

The work culminating in the document you are now reading would not have
been possible without the inspiration and support provided by Arild and
Roger. When I have been overwhelmed by details and unable to see the big
picture, Arild has many a time rescued me from “drowning”. With Roger I
have had long and interesting conversations about logic and other subjects.
His consuming dedication to his work is very inspiring and his scrutinizing
attention to detail makes him the perfect proof reader. I sincerely hope to
continue working with them both in the future! I also want to thank Martin
Giese for some very helpful comments in the final stage of the writing process.

Researchers and fellow students at the PMA research group at Department of
Informatics have created an inspiring environment for learning and discovery,
for which I am grateful. I owe a special thank you to Ragnar Normann for
introducing me to theoretical computer science with his memorable lectures
on database theory.

My parents have always encouraged me to ask questions and, more impor-
tantly, find my own answers. For that I am eternally grateful! My sister,
with her no-mountain-too-high-to-climb attitude to life, has always been a
great inspiration to me. You are the best sister anyone can have, Anne, and
I dedicate this thesis to you. I love you very much!

Christian Mahesh Hansen
Oslo, 13th December 2004

iii



iv



Contents

1 Introduction 1

2 Sequent Calculi: Notation and Terminology 5

2.1 Ground Systems . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Sequent Calculi . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Proof Search Procedures . . . . . . . . . . . . . . . . . 13

2.1.5 The Sequent Calculus LK . . . . . . . . . . . . . . . . 14

2.2 Systems with Variables . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 The Sequent Calculus LKv . . . . . . . . . . . . . . . . 22

3 Incremental Proof Search 29

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Expansion Sequences . . . . . . . . . . . . . . . . . . . 30

3.1.2 New Connections . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Equation Sets and Unification . . . . . . . . . . . . . . 33

3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Constraint Language . . . . . . . . . . . . . . . . . . . 36

3.2.2 Global Constraints . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Incremental Constraints . . . . . . . . . . . . . . . . . 40

3.2.4 Correctness of Incremental Constraints . . . . . . . . . 43

3.2.5 Subsumption . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 52

v



4 Incremental Proof Search with Variable Splitting 53

4.1 The Variable Splitting Technique . . . . . . . . . . . . . . . . 55

4.1.1 Relations on Indices . . . . . . . . . . . . . . . . . . . 55

4.1.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 The Sequent Calculus LKvs . . . . . . . . . . . . . . . 59

4.1.4 Towards a Search Procedure . . . . . . . . . . . . . . . 62

4.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Constraints for Splitting Skeletons . . . . . . . . . . . . . . . 69

4.2.1 Constraint Language . . . . . . . . . . . . . . . . . . . 69

4.2.2 Global Constraints . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Incremental Constraints . . . . . . . . . . . . . . . . . 73

4.2.4 Incremental Cycle Check . . . . . . . . . . . . . . . . . 77

4.3 Concluding Remarks and Future Work . . . . . . . . . . . . . 81

A Listing of the LKvs-rules 85

Bibliography 87

Index 91

vi



Chapter 1

Introduction

Designing an efficient proof search procedure is by no means a trivial task,
especially not when entering the undecidable world of classical first-order
logic. The nondeterministic nature of a logical calculus must be converted
into a deterministic algorithm, which searches for a proof of an input formula
by systematically analyzing its intrinsic structure. It is desirable to reduce
the number of analyzation steps needed in order to find a proof, if it exists.
Optimizing a search procedure can be done by fine-tuning the analyzation
process, but just as important is improvement of the proof detection mecha-
nism, which controls termination of the procedure. Efficient proof detection
is the main topic of this thesis.

The logical system serving as basis for our proof search procedure is a free
variable sequent calculus for first-order logic without equality. By means of
an index system for formulae, the calculus generates variable sharing deriva-
tions, in which identical variables are introduced when analyzing different
occurrences of the same universally quantified formula. These derivations
are invariant under order of rule application, meaning that interchanging
the inference order in a derivation does not alter the leaf sequents. Vari-
able sharing derivations are closely related to matrix systems, facilitating
connection-driven proof search [31].

If the variables in a variable sharing derivation are instantiated rigidly, i.e.
every occurrence of a variable is instantiated with the same term, the search
space cannot be restricted branchwise. This prohibits early termination in
some cases of unprovability. It is however the case that some occurrences
of a variable are independent of others, in the sense that it is sound to
instantiate them differently. Formula indices can be utilized to keep track of
how variables are split into different branches of a derivation. Each variable
occurrence is labelled with a splitting history from which information needed
to determine variable independence can be extracted. This technique is
called variable splitting.
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With rigid variable instantiation, the question of whether a variable sharing
derivation is closed, and thus is a proof, can be formulated as a unification
problem. The closure check consists of finding a closing substitution, i.e. a
substitution unifying one connection from each leaf sequent of the deriva-
tion. Early proof detection during a proof search requires frequent closure
checks. Since the number of possible combinations of connections grows ex-
ponentially with derivation expansion, a global closure check is not feasible.
We can however utilize the context sharing nature of the inference rules of
the calculus to construct an incremental closure check. Satisfiable sets of
equations for partial connection sets are distributed as syntactic constraints
following the intrinsic structure of the derivation, and the constraints are up-
dated incrementally in parallel with derivation expansion. The proof search
is terminated as soon as a constraint represents a unifier for a spanning set of
connections, a set containing exactly one connection from each leaf sequent.

The task of identifying exactly when variable occurrences are independent
of each other is called the variable splitting problem. We present a variable
splitting calculus in which closing substitutions must unify a set of primary
and balancing equations generated from a spanning connection set. The
primary equations correspond the unification problem generated in the non-
splitting calculus, and the balancing equations reenforce broken identities
between variable occurrences caused by skewness in derivations. In addition,
every substitution induces a dependency relation on inferences in a derivation
according to how variable occurrences are split by the substitution. In order
for a substitition to be closing, the induced dependency relation must be
acyclic.

An incremental proof search procedure based on the splitting calculus must
reflect these extended requirements. We present two different approaches to
defining incremental constraints; one in which the generation of equations is
done incrementally and the cycle check is done globally, and one in which
both generation of equations and cycle checking is done incrementally. It is
shown that in order to determine whether a closing substitution exists, it is
sufficient to cycle check a most general unifier for the primary and secondary
equations.

The field of variable splitting is not yet fully explored. Among the unsolved
problems is to determine the weakest restrictions possible to put on closing
substitutions without compromising consistency. Because of this, calculus
correctness is not a central topic in this thesis. Instead we focus on defin-
ing incremental closure check procedures and showing their correctness, i.e.
whether the closure check captures the closure condition defined in the cal-
culus. It will become apparent that an incremental proof search procedure is
far more efficient than its counterpart utilizing frequent global closure checks.
Complexity analysis of the presented proof search procedures is however be-
yond the scope of this thesis.
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Chapter Guide

In Chapter 2 I present sequent calculus notation and terminology. Syntax
and semantics for ground sequent calculi are presented before the concept of
free variables is introduced. Here I also define the formula index system, an
important part of the syntax in later chapters. A reader familiar with free
variable sequent calculi or tableaux systems may skip this chapter entirely,
although I recommend reading Section 2.2.2 and 2.2.1. In Chapter 3 I de-
fine an incremental proof search procedure for variable sharing derivations
with rigid variable instantiation. I define a constraint language and present
both a global and an incremental closure check and show their correctness.
In Chapter 4 I present the variable splitting technique and define an incre-
mental proof search procedure incorporating variable splitting and show its
correctness.

Typographic Conventions

When a term or a concept is introduced for the first time it is emphasized
like this to indicate the place it is defined. Some definitions are enclosed in
an environment

1.1 Definition This is a definition.

and others occur within ordinary text, indicating the importance of the de-
fined concept.

Scientific Acknowledgment and Contribution

The variable splitting sequent calculus [1, 2, 32] is due to Arild Waaler and
Roger Antonsen at Department of Informatics, University of Oslo. The
incremental closure framework [17, 18] was originally presented by Martin
Giese. My contributions consist of an explication of parts of the incremental
closure framework in the context of a free variable sequent calculus with rigid
variable instantiation, and an adaptation of incremental proof search to a
variable splitting calculus.
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Chapter 2

Sequent Calculi: Notation and

Terminology

Although there are numerous publications written about the sequent calcu-
lus, I feel that it is important to be explicit about the terminology used in
this thesis. Proof search is essentially a matter of syntax manipulation, and
in order to avoid ambiguity in the discussion of search procedures it is fruitful
to clarify the syntactic notions. Fundamental concepts and a ground sequent
calculus is presented in Section 2.1. In Section 2.2 I shall introduce the free
variable sequent calculus which serves as a basis for our search procedures.
The free variable syntax differs slightly from common practice as it incorpo-
rates an index system [3] for formulae, forcing the generated derivations to
be variable sharing.

2.1 Ground Systems

I shall introduce syntax and semantics for closed first-order formulae and
sequents. Common notions regarding sequent calculi and proof search pro-
cedures are presented, and the ground sequent calculus LK is used as an
example to demonstrate concepts and to serve as a basis onto which the
free variable calculus is built. The calculus is similar to Gentzen’s Logische
Kalküle [15], from which the name LK is collected.

2.1.1 Syntax

The syntactic objects are built up of symbols from a first-order language. All
such languages have a common part consisting of a set of logical connectives
{∧,∨,→,¬,∀,∃}, a set of punctuation symbols {‘(’, ‘)’, ‘,’} and a countably
infinite set of quantification variables {v1, v2, v3, . . .}. The parts that vary
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from language to language and thus define a particular first-order language
are countable disjoint sets F of function symbols and P of predicate symbols1.
With each function and predicate symbol we associate a natural number
called the arity of the symbol, which indicates the number of arguments the
symbol takes. A function symbol with arity 0 is called a constant. Function
and predicate symbols with arity 1 (2) are called unary (binary) symbols. ∀
and ∃ are referred to as quantifiers, ¬ as a unary connective, and ∧, ∨ and
→ as binary connectives. The propositional connectives are ∧, ∨, → and ¬.

We will denote quantification variables by x, y, z, function symbols by f, g, h,
constants by a, b, c, d and predicate symbols by P,Q,R. The arities of func-
tion and constant symbols will be clear from the context. A first-order
language with a set of function symbols F and a set of predicate symbols P
will be denoted L(F ,P). Since first-order languages are not the main ob-
jects of study I will mostly refrain from defining the particular language used
from case to case. For simplicity, I will assume a fixed first-order language
L consisting of infinite sets of function and predicate symbols of all arities,
unless otherwise stated.

2.1 Definition The set of L-terms over a first-order language L(F ,P),
denoted T (L), is the smallest set such that:

• If x is a quantification variable, then x is in T (L).

• If f is an n-ary function symbol in F and t1, . . . , tn are in T (L), then
f(t1, . . . , tn) is in T (L).

A ground term is a term in which no quantification variables occur.

2.2 Example If a, f and g are function symbols of a language L and x
is a quantification variable, then a, f(a), x, g(f(a), x) and g(x, a) are all
L-terms, of which a and f(a) are ground. The function symbol f is unary,
g is binary and a is a constant.

I will mostly refrain from writing punctuation symbols when denoting terms,
as long as term parsing is unique from the context. The terms in Example 2.2
will thus be written a, fa, x, gfax and gxa. The symbol ~t is shorthand for
a finite term list t1, . . . , tn.

2.3 Definition An atomic basic L-formula over a first-order language L(F ,P)
is any object of the form P (t1, . . . , tn) in which P is an n-ary predicate symbol
in P and t1, . . . , tn are L-terms.

2.4 Definition The set of basic L-formulae over a first-order language
L(F ,P) is the smallest set such that:

1Predicate symbols are also referred to as relation symbols in the literature.
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• Any atomic basic L-formula is a basic L-formula.

• If ϕ is a basic L-formula, then ¬ϕ is a basic L-formula.

• If ϕ and ψ are basic L-formulae, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ)
are basic L-formulae.

• If ϕ is a basic L-formula and x is a quantification variable, then ∀x(ϕ)
and ∃x(ϕ) are basic L-formulae.

2.5 Example We extend the language L from Example 2.2 with the unary
predicate symbol P and the binary predicate symbol Q. Then P (a), (P (x) →
Q(x, y)), ¬(P (x) → Q(x, y)) and ∀x(∃y(¬(P (x) → Q(x, y)))) are basic L-
formulae in which P (a), P (x) and Q(x, y) are atomic basic L-formulae.

The notion ’basic formula’ defined here corresponds to the concept of a
formula commonly used in the literature. We reserve the word ’formula’ for
a certain extension of the set of basic formulae which will be defined later
in this chapter. I will however sometimes refer to basic formulae as just
formulae, since there is no risk of mixing the two concepts in the context of
the present section. Note that most of the notions defined in the following
regarding basic formulae also apply to formulae.

As for terms, we will omit unnecessary punctuation symbols when denoting
formulae. The formulae of Example 2.5 will be written Pa, Px → Qxy,
¬(Px → Qxy) and ∀x∃y¬(Px → Qxy). As one can see, it is no exaggera-
tion to state that this notation increases readability compared to the more
pedantic one in the example. As seen in Definition 2.4, I will use ϕ and
ψ as placeholders for formulae throughout this thesis. They are implicitly
universally quantified over the set of (basic) formulae. Likewise, ◦ spans over
the set of binary connectives and Q spans over the set of quantifiers.

Subformulae are defined according to [12]. The immediate subformula of ¬ϕ
is ϕ. The immediate subformulae of ϕ ◦ ψ are ϕ and ψ, and the immediate
subformula of Qxϕ is ϕ. Atomic formulae have no subformulae. The set of
subformulae of a formula ϕ is defined as the smallest set that contains ϕ and
contains with each member, the immediate subformulae of that member. A
formula is an improper subformula of itself. The main connective of a formula
of the form ¬ϕ is ¬, the main connective of ϕ ◦ ψ is the binary connective
◦. For a formula Qxϕ, the main connective is the quantifier Q.

The set of free variables occurring in a formula is recursively defined as
follows. The set of free variables in a formula of the form ¬ϕ is the set of
free variables in ϕ. The set of free variables in ϕ◦ψ is the union of the sets of
free variables in ϕ and ψ. The set of free variables in a formula Qxϕ is defined
as the set of free variables in ϕ with x removed. The set of free variables in
an atomic formula P (t1, . . . , tn) is the set of free variables occurring in the
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terms t1, . . . , tn. In a formula of the form Qxϕ, all free occurrences of x in ϕ
are bound by the quantifier Q. A formula is closed if the set of free variables
occurring in it is empty.

2.6 Example The set of free variables in Pxyzxy is {x, y, z}. The set of
free variables in Px → ∀xPx is the singleton {x}. Note that the leftmost
occurrence of x is free, but the rightmost occurrence is bound by the universal
quantifier. The formula ∀x∀yPxy is closed, since the set of free variables
occurring in it is empty.

A substitution is a function having the set of quantification variables as its
domain and a set of terms as its codomain. Throughout this section, the
codomain of all substitutions is the set T (L) for a first-order language L
given by the context. The support of a substitution σ is the set of variables
v in its domain such that σ(v) 6= v. A substitution has finite support if its
support set is finite. The notation {x1/t1, . . . , xn/tn} is shorthand for the
substitution σ having finite support and mapping the variables x1, . . . , xn
to the terms t1, . . . , tn respectively. A substitution σ is ground if σ(v) is a
ground term for all variables v in its support set.

Substitutions are extended to terms and formulae in the following way. tσ
(ϕσ) denotes the result of applying a substitution σ to a term t (formula ϕ).
For constants c, cσ = c. For terms of the form f(t1, . . . , tn), f(t1, . . . , tn)σ =
f(t1σ, . . . , tnσ). For atomic formulae we define P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ).
Further, we define (¬ϕ)σ = ¬(ϕσ) and (ϕ ◦ ψ)σ = (ϕσ) ◦ (ψσ), in which ◦
is a binary connective. For quantifiers Q, we define (Qxϕ)σ = (Qx)(ϕσx)
where σx is like σ except that σx(x) = x.

A variable is not allowed to become bound as a result of applying a sub-
stitution to a formula. Consider the formula ∀xPxy and the substitution
ρ = {y/x}. If we apply ρ in a naive way, the variable x replacing y becomes
bound by the universal quantifier. This problem is solved as follows. Let
σ be a substitution {x1/t1, x2/t2, . . .} in which the variable x occurs in one
of the terms ti and ϕ a formula of the form Qxψ. In such cases, we define
ϕσ = (Qz(ψ[x/z]))σ in which z is a variable not occurring free in ψ and not
occurring in any term ti. As a result of applying ρ to the example formula
∀xPxy above, we get for instance ∀zPzx. We sometimes denote the result
of applying a substitution having finite support {x1/t1, . . . , xn/tn} to the
formula ϕ as ϕ[x1/t1, . . . , xn/tn].

Let σ and τ be substitutions. The composition of σ and τ , denoted στ , is
defined as the substitution such that x(στ) = (xσ)τ for each quantification
variable x. If there is some substitution ρ such that τ = σρ, then σ is more
general than τ . A substitution σ is idempotent if σ = σσ.

2.7 Example Let σ = {u/fv}, τ = {u/fa, v/a} and ρ = {v/a} be substitu-
tions. Then, σρ = τ , and thus σ is more general than τ . The substitution
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σ = {u/fv, v/w} is not idempotent, since σσ = {u/fw, v/w}, but σσ is
idempotent, since (σσ)(σσ) = σσ.

2.8 Definition A sequent is an object of the form Γ ⊢ ∆, where Γ and ∆
are finite multisets of closed basic formulae. The formula set Γ (∆) is called
the antecedent ( succedent) of the sequent. If Γ′ ⊆ Γ and ∆′ ⊆ ∆, then
Γ′ ⊢ ∆′ is a subsequent of Γ ⊢ ∆.

The non-standard requirement that a sequent contains only closed formulae
simplifies the definition of sequent semantics in the next section. The symbol
‘⊢’ is called the sequent symbol. Since the antecedent and succedent are
defined as multisets, a formula can occur more than once in a sequent. Set
operations are extended to multisets in the usual way. If Γ is a multiset
of closed basic formulae and ϕ is a closed basic formula, then Γ, ϕ denotes
Γ ∪ {ϕ}.

2.9 Example Both

∀x(Px→ Qx), Pa ⊢ Qa

and

∀xPx,∀xPx ⊢ ∀xPx

are sequents. In the latter, the formula ∀xPx has three occurrences, two in
the antecedent and one in the succedent.

2.1.2 Semantics

In order to define validity for sequents, we need some basic semantical def-
initions. Truth values for closed formulae are defined using the concept of
an extended language, taken from [1]. Since consistency of sequent calculi is
not the primary issue in this thesis, consider this section a brief lineup of
the essentials. I refer to other sources for a more detailed discussion (e.g.
[12, 21]).

A model M for a first-order language L(F ,P) consists of a non-empty set
|M |, called a domain, and an interpretation function (·)M . For all n-ary
function symbols f in F and predicate symbols P in P, we require that fM

is a function from |M |n to |M | and PM is a relation over |M |n. L-terms are
interpreted recursively, i.e. f(t1, . . . , tn)

M = fM(t1
M , . . . , tn

M ).

2.10 Example Let M be a model having domain {0, 1} and interpreting
the function symbols a, b and f such that aM = 0, bM = 1, fM(0, 0) =
fM(1, 1) = 1 and fM(0, 1) = fM (1, 0) = 0. Then M interprets the term
f(fab, fbb) as 0.
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The extended language L(M) is like L, except that we have added a constant
symbol ā for each element a in |M |. We require that all models for L(M)
interpret ā as a. When evaluating closed basic L-formulae in a model M
we will use the extended language L(M) and assume M to be a model for
L(M) by interpreting ā as a. A closed basic L-formula ϕ is true in M or,
equivalently, M satisfies ϕ, written M |= ϕ, as defined in the following.

• For atomic formulae: M |= P (t1, . . . , tn) if 〈t1
M , . . . , tn

M 〉 ∈ PM .

• M |= ¬ϕ if it is not the case that M |= ϕ.

• M |= (ϕ ∧ ψ) if M |= ϕ and M |= ψ.

• M |= (ϕ ∨ ψ) if M |= ϕ or M |= ψ.

• M |= (ϕ→ ψ) if M |= ϕ does not hold or M |= ψ holds.

• M |= ∀xϕ if M |= ϕ[x/ā] for all a in |M |.

• M |= ∃xϕ if M |= ϕ[x/ā] for one a in |M |.

• For sets S of closed basic L-formulae, M |= S if M |= ϕ for all ϕ in S.

A closed basic L-formula ϕ or a set of closed basic L-formulae is satisfiable
if there exists a model satisfying it. M falsifies ϕ (equiv. ϕ is false in M) if
it is not the case that M |= ϕ.

2.11 Definition A sequent Γ ⊢ ∆ is valid if all models satisfying Γ also
satisfy a formula in ∆. A countermodel to a sequent Γ ⊢ ∆ is a model
satisfying all formulae in Γ and falsifying all formulae in ∆. A sequent
having a countermodel is falsifiable.

It follows that a sequent is valid if and only if it has no countermodel.

2.12 Example The sequent

∀xPx, Pa ⊢ Pa

is valid, since all models satisfying the antecedent also satisfies Pa in the
succedent. The sequent

∀x(Px ∨Qx) ⊢ ∀xPx

is not valid. A countermodel is for instance a model satisfying Qx and falsi-
fying Px for all elements x in its domain.

Any sequent Γ ⊢ ∆ can be represented as a closed basic formula ϕ such that
ϕ is true in all models if and only if Γ ⊢ ∆ is valid. Let Γ = {ϕ1, . . . ϕn} and
∆ = {ψ1, . . . , ψm}. Then, Γ ⊢ ∆ corresponds to the formula (ϕ1∧. . .∧ϕn) →
(ψ1 ∨ . . . ∨ ψm). Hence, the commas in the antecedent of a sequent are
conjunctive and the commas in the succedent are disjunctive.
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2.1.3 Sequent Calculi

A rule is a binary relation either on S or from S × S to S, where S is the
set of all sequents. A rule of the former (latter) type relates a premiss (pair
of premisses) to a conclusion and is called a one-premiss (two-premiss) rule.
The members of a rule θ are denoted

premiss

conclusion or

premiss1 premiss2

conclusion

and are called θ-inferences. A schema for a rule θ is an object contain-
ing placeholders such that each θ-inference is the result of replacing the
placeholders with formulae. Schemas have premisses and conclusion and
are denoted in the same way as inferences. We require that all premisses
and conclusions of schemas contain the symbols Γ and ∆, and we refer to
the formulae replacing them as extra formulae or context. Hence, rules de-
fined by schemas are context sharing. Conclusions and premisses of schemas
can contain formula placeholders with logical connectives and quantification
variables. The formula obtained by replacing placeholders with formulae is
called a principal formula if it occurs in the conclusion, and an active formula
if it occurs in a premiss.

2.13 Example The object

Γ ⊢ ϕ,∆ Γ ⊢ ψ,∆

Γ ⊢ ϕ ∧ ψ,∆
R∧

is a schema for the two-premiss rule R∧, and

∃xPx ⊢ ∀xPx,∃xRx ∃xPx ⊢ ∀xQx,∃xRx

∃xPx ⊢ ∀xPx ∧ ∀xQx,∃xRx
R∧

is a R∧-inference having principal formula ∀xPx ∧ ∀xQx, active formulae
∀xPx and ∀xQx, and context ∃xPx,∃xRx.

Throughout this thesis we only consider rules whose inferences are instantia-
tions of a given rule schema. Thus, all rules under consideration are context
sharing. In the following I will refer to a rule schema as just a rule. Also,
the concepts of principal formula, active formula and extra formula used for
inferences transfer to rule schemas in the obvious way.

Γ, ϕ, ϕ ⊢ ∆

Γ, ϕ ⊢ ∆
LC

Γ ⊢ ϕ,ϕ,∆

Γ ⊢ ϕ,∆
RC

Figure 2.1: The contraction rules.
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The rules in Figure 2.1, called left and right contraction (denoted LC and
RC), play a special role. Although they are not included as rules of their own
in any of the calculi we are presenting, their implicit presence2 is needed in
the rules handling universally quantified formulae to ensure that our calculi
are complete3.

All rules under consideration in this thesis have the property that a complex
formula in the conclusion is broken into its less complex subparts in the
premisses (as seen in Example 2.13). Rules of this kind are synthetic when
viewed from above as generating conclusions from premisses, and analytic
when viewed from below as generating premisses from conclusions. Both
point of views are of proof theoretic interest, but the latter is more suitable
for automated proof search. Hence, we will focus on the analytic point of
view.

Derivations are finitely branching trees regulated by the rules of the calculus
at hand. The nodes of a derivation are labelled by sequents. The sequent
labelling the root node is called the root sequent and the sequents labelling
the leaf nodes are called leaf sequents.

2.14 Definition For a fixed set R of rules we define inductively the set
of derivations generated by the rules as the least set satisfying the following
conditions.

• A sequent is a derivation.

• If π is a derivation with a leaf sequent l, θ is a one-premiss rule in R
and l is the conclusion of a θ-inference with premiss l′, then the result
of extending π with l′ above l is a derivation:

l
...
π

 

l′

l
...
π

• If π is a derivation with a leaf sequent l, θ is a two-premiss rule in R
and l is the conclusion of a θ-inference with premisses l′ and l′′, then
the result of extending π with l′ and l′′ above l is a derivation:

l
...
π

 

l′ l′′

l
...
π

2Se page 14.
3See Definition 2.15.
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In the above definition the process of extending π with the premisses of θ
is called a θ-expansion or just an expansion (of π). If ϕ is the principal
formula of θ, we equivalently say that we expand ϕ. The leaf sequent l
of π containing the expanded formula is called the expanded leaf sequent,
and the branch in π having l as leaf sequent is called the expanded branch.
Expansion by two-premiss inferences splits the expanded branch into two
new branches. Two-premiss rules (inferences) are thus sometimes referred to
as branching rules (inferences). One-premiss rules (inferences) are referred
to as non-branching rules (inferences).

A sequent calculus K consists of a set of rules R and a closure condition.
Derivations regulated by R are called K-derivations. The closure condition
of K is a condition K-derivations must meet in order to be closed. A closed
K-derivation is called a K-proof (of its root sequent). A sequent Γ ⊢ ∆ is
K-provable if it exists a K-proof having Γ ⊢ ∆ as its root sequent.

2.15 Definition A sequent calculus K is sound if every K-provable sequent
is valid. K is complete if every valid sequent is K-provable.

One can easily construct calculi that are sound but not complete and vice
versa. An example of the latter is the calculus stating that any sequent is
provable. This calculus is obviously complete, since all valid sequents are
provable. But since it also proves sequents which are not valid, it is not
sound.

2.1.4 Proof Search Procedures

The inference rules of a sequent calculus may provide several expansion op-
tions at each expansion step in a proof search process. This nondeterminism
is not desirable in the context of automated proof search. We need to con-
struct a deterministic procedure which controls derivation expansion and
checks whether the current derivation has reached a closable state.

A selection function utilizes the rules of a sequent calculus to return for
each derivation at most one successor derivation. A selection function is fair
if it expands every option in finite time. A proof search procedure takes a
sequent s as input and repeatedly applies some fixed selection function to
its own output using s as the initial derivation. A proof search procedure is
complete if it terminates for every valid input sequent. The sequent calculi in
this thesis are known to be proof confluent, meaning that no matter how we
choose the expansion steps in a proof search starting with a provable sequent,
it is always possible to reach a proof. A proof search procedure equipped with
a fair selection function based on a complete proof confluent sequent calculus
is complete. We require that a proof search procedure terminates as soon
as the output of the associated selection function is a proof of s. Hence, it

13



must incorporate a proof detection algorithm, referred to as a closure check.
In the following chapters we assume that the selection function of the proof
search procedure at hand is fair, and focus on how to design efficient closure
checks.

2.1.5 The Sequent Calculus LK

The rules of the sequent calculus LK are listed in Figure 2.2. They are divided
into four types, following Smullyan’s uniform notation [29]: The α-rules are
the non-branching rules in which the main connective of the principal formula
is propositional. The branching rules are called β-rules. The δ-rules handle
succedent (antecedent) occurrences of universally (existentially) quantified
formulae, and the γ-rules handle antecedent (succedent) occurrences of uni-
versally (existentially) quantified formulae. From now on, θ denotes a rule
(or an inference) of type α, β, δ or γ. The principal formula of a rule or
inference of type θ is called a θ-formula.

The δ and γ-rules, in which the principal formula is of the form Qxϕ, require
some extra explanation. The active formula of a δ-inference is generated by
substituting the constant symbol a for x in the quantified formula ϕ. The
symbol a is called an eigenparameter, and we require that a does not occur
in the conclusion of the δ-inference, i.e. neither in the quantified formula
ϕ nor in any for the formulae in Γ ∪ ∆. This requirement is called the
eigenparameter condition for LK. In γ-inferences, we substitute an arbitrary
closed term t of the first-order language at hand for x in the active formula.
The premiss in addition contains a copy of the principal γ-formula. This
feature of the γ-rules is called implicit contraction. It is obvious that all
LK-rules preserve the sequent property of containing only closed formulae.

2.16 Definition An axiom is a sequent of the form

Γ, P (t1, . . . , tn) ⊢ P (t1, . . . , tn),∆

2.17 Example The sequent

∀xPx, Pa ⊢ Pb,∃xQx

is not an axiom, since Pa and Pb do not have the same term as argument,
but the sequent

∀xPx, Pa ⊢ Pa

is an axiom.

2.18 Definition (Closure Condition of LK) A closed branch in an LK-
derivation is a branch having an axiom as leaf sequent. A branch is called
open if it is not closed. An LK-derivation is closed if all its branches are
closed.

14



α-rules β-rules

Γ, ϕ, ψ ⊢ ∆

Γ, ϕ ∧ ψ ⊢ ∆
L∧

Γ ⊢ ϕ,∆ Γ ⊢ ψ,∆

Γ ⊢ ϕ ∧ ψ,∆
R∧

Γ ⊢ ϕ,ψ,∆

Γ ⊢ ϕ ∨ ψ,∆
R∨

Γ, ϕ ⊢ ∆ Γ, ψ ⊢ ∆

Γ, ϕ ∨ ψ ⊢ ∆
L∨

Γ, ϕ ⊢ ψ,∆

Γ ⊢ ϕ→ ψ,∆
R→

Γ ⊢ ϕ,∆ Γ, ψ ⊢ ∆

Γ, ϕ→ ψ ⊢ ∆
L→

Γ ⊢ ϕ,∆

Γ,¬ϕ ⊢ ∆
L¬

Γ, ϕ ⊢ ∆

Γ ⊢ ¬ϕ,∆
R¬

δ-rules γ-rules

Γ ⊢ ϕ[x/a],∆

Γ ⊢ ∀xϕ,∆
R∀

Γ,∀xϕ,ϕ[x/t] ⊢ ∆

Γ,∀xϕ ⊢ ∆
L∀

Γ, ϕ[x/a] ⊢ ∆

Γ,∃xϕ ⊢ ∆
L∃

Γ ⊢ ∃xϕ,ϕ[x/t],∆

Γ ⊢ ∃xϕ,∆
R∃

Figure 2.2: The rules of the sequent calculus LK. We require that the symbol
a in the δ-rules is an eigenparameter not occurring in any formula in the
conclusion. For the γ-rules, t can be any closed term of the first-order language
at hand.
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2.19 Example The LK-derivation

∀x(Px ∧Qx), Pa,Qa ⊢ ∀xPx, Pa

∀x(Px ∧Qx), Pa ∧Qa ⊢ ∀xPx, Pa
L∧

∀x(Px ∧Qx) ⊢ ∀xPx, Pa
L∀

∀x(Px ∧Qx) ⊢ ∀xPx
R∀

∀x(Px ∧Qx), Pa,Qa ⊢ ∀xQx,Qa

∀x(Px ∧Qx), Pa ∧Qa ⊢ ∀xQx,Qa
L∧

∀x(Px ∧Qx) ⊢ ∀xQx,Qa
L∀

∀x(Px ∧Qx) ⊢ ∀xQx
R∀

∀x(Px ∧Qx) ⊢ ∀xPx ∧ ∀xQx
R∧

is closed since both leaves are axioms. Thus, it is an LK-proof of the sequent
∀x(Px∧Qx) ⊢ ∀xPx∧ ∀xQx. Note that the eigenparameter a is introduced
in both branches. This is possible since a does not occur in any of the
conclusions of the R∀-inferences. The LK-derivation

ϕ,Pbc, Poa ⊢ ψ,Pdc, Pba

ϕ, Pbc, Poa ⊢ ψ,∀yPyc, Pba
δd

ϕ,Pbc, Poa ⊢ ψ,Pba
γc

ϕ,∃yPby, Poa ⊢ ψ,Pba
δc

ϕ,Poa ⊢ ψ,Pba
γb

ϕ,Poa ⊢ ψ,∀yPya
δb

ϕ,Poa ⊢ ψ
γa

ϕ,∃yPoy ⊢ ψ
δa

∀x∃yPxy
︸ ︷︷ ︸

ϕ

⊢ ∃x∀yPyx
︸ ︷︷ ︸

ψ

γo

is not closable. Because of the eigenparameter condition of LK, it is impos-
sible to construct an axiom in its leaf sequent, no matter how we expand the
derivation. The formula ∀x∃yPxy (∃x∀yPyx) in the root sequent is under-
braced by ϕ (ψ), which means that the formula placeholder will be used to
denote the formula throughout the derivation. The inferences are labelled by
rule types subscripted by the terms introduced. These notations will be used
commonly throughout the thesis.

If we study the LK-rules in the context of the truth definition given in Sec-
tion 2.1.2, we see that the rules are designed in order to systematically satisfy
(falsify) formulae in the antecedent (succedent) of a sequent. Thus a proof
search in LK can bee seen as a systematic search for a countermodel for the
root sequent. When an axiom is encountered on a branch, the branch is
closed since it is of no use for constructing a countermodel. If all branches
are closed, it is impossible to construct a countermodel for the root sequent.

2.20 Proposition The sequent calculus LK is sound and complete.
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A proof can be found in any standard textbook on sequent calculi [13, 19,
20, 24]. The proof of soundness goes by induction on sequent depth4 in LK-
proofs. As an intermediate result, it is shown that every LK-rule preserves
validity downwards, i.e. that the conclusion is valid under the assumption
that the premisses are valid. The completeness proof is done as a reductio
argument from countermodel existence, i.e. that every unprovable sequent
has a countermodel. The countermodel existence proof is done construc-
tively from an open branch in a limit object (a possibly infinite derivation
object) generated by a proof search procedure equipped with a fair selection
function for LK. A model is constructed such that it satisfies (falsifies) every
atomic formula occurring in an antecedent (succedent) on the open branch.
One shows by structural induction on formulae in the open branch that the
constructed model satisfies (falsifies) every antecedent (succedent) formula
on the branch, and thus is a countermodel for the root sequent.

2.2 Systems with Variables

Since the γ-rules of LK introduce arbitrary closed terms, a selection function
for LK will have to deal with the problem of term selection in γ-expansions.
It is desirable to reduce the number of expansion steps needed to find a proof,
a measure which clearly is influenced by γ-term selection.

(Pa ∧ Pb), P c ⊢ ∃xPx, Pa, Pb, Pc

(Pa ∧ Pb), P c ⊢ ∃xPx, Pa, Pb
γc

(Pa ∧ Pb), P c ⊢ ∃xPx, Pa
γb

(Pa ∧ Pb), P c ⊢ ∃xPx
γa

(Pa ∧ Pb) ∧ Pc ⊢ ∃xPx
L∧

(Pa ∧ Pb), P c ⊢ ∃xPx, Pc

(Pa ∧ Pb), P c ⊢ ∃xPx
γc

(Pa ∧ Pb) ∧ Pc ⊢ ∃xPx
L∧

Figure 2.3: Two LK-proofs of the sequent (Pa ∧ Pb) ∧ Pc ⊢ ∃xPx. In the
leftmost proof, the number of rule applications is doubled compared to the
rightmost proof because of unfavorable selection of instantiation terms.

A free variable sequent calculus provides a solution to the problem of se-
lecting γ-terms by letting γ-inferences introduce free variables instead of
arbitrary closed terms. In order to close a branch in a free variable deriva-
tion, the free variables have to be instantiated with terms in such a way that
the arguments of two atomic formulae Pt, Ps occurring in different sides
of the leaf sequent become identical, or in other words one has to solve the
equation t = s in the space of terms [12]. As atomic formulae often have
more than one argument and derivations have more than one branch, clos-
ing a free variable derivation corresponds to simultaneously solving a set of

4The number of inferences to the farthest away leaf sequent above a sequent in a
derivation, see Definition 3.38 on page 47.
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equations. In this way, the problem of selecting γ-terms in LK is reduced to
a unification problem in a free variable calculus.

u/c

(Pa ∧ Pb), P c ⊢ ∃xPx, Pu

(Pa ∧ Pb), P c ⊢ ∃xPx
γu

(Pa ∧ Pb) ∧ Pc ⊢ ∃xPx
L∧

Figure 2.4: A free variable derivation for the sequent (Pa∧Pb)∧Pc ⊢ ∃xPx.
The γ-inference introduce the free variable u and the derivation is closed by
any substitution instantiating u with c.

Introduction of free variables by γ-inferences leads to difficulties in selecting
the terms introduced by δ-inferences. No matter how the free variables in
the conclusion are instantiated the introduced δ-term must be new, i.e. it
cannot occur in the conclusion. An excellent overview of different approaches
to define such δ-terms can be found in [1]. The δ-terms of our free variable
calculi are of the form f(x1, . . . , xn), in which x1, . . . , xn are the free variables
occurring in the δ-formula in the conclusion. How the function symbol f is
selected will become clear later in this chapter.

Pufu ⊢ Pab

∃xPux ⊢ Pab
δfu

Figure 2.5: Example of a δ-inference introducing the term fu.

In a variable pure derivation, each γ-inference introduces a free variable not
already occurring in the derivation. A reuse of free variables can be achieved
by letting different occurrences of the same γ-formula introduce the same
variable, producing variable sharing derivations. Variable sharing derivations
are invariant under order of rule application [1, 2, 31], meaning that their
leaf sequents are the same no matter which order we apply the rules in (for
intuitions, see Figure 2.6). This ensures a tight relation to matrix systems,
allowing the design of connection-driven proof search procedures [31].

We do not discuss connection-driven proof search in this thesis, but the free
variable calculus introduced is constructed bearing such selection functions
in mind [32]. Hence we need to provide invariance under order of rule appli-
cation by incorporating variable sharing in our calculi. To do this, we use an
index system for formulae inspired by the one used by Wallen in [33]. When
a formula is copied by means of implicit contraction its index is changed,
while indices of formulae copied as part of context are left untouched, as
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Pu ⊢ Pa

∀xPx ⊢ Pa

Pv ⊢ Pb

∀xPx ⊢ Pb

∀xPx ⊢ Pa ∧ Pb

Pu ⊢ Pa

∀xPx ⊢ Pa

Pu ⊢ Pb

∀xPx ⊢ Pb

∀xPx ⊢ Pa ∧ Pb

Pu ⊢ Pa Pu ⊢ Pb

Pu ⊢ Pa ∧ Pb

∀xPx ⊢ Pa ∧ Pb

(1) (2a) (2b)

Figure 2.6: Variable pure (1) and variable sharing (2) derivations for the
sequent ∀xPx ⊢ Pa ∧ Pb. (2a) and (2b) are permutation variants having
identical leaf sequents.

illustrated in Figure 2.7. By labelling a free variable with the index of the
principal formula in the γ-inference introducing it, variables introduced by
expansion of different occurrences of the same γ-formula are forced to be
identical.

∀xPxa
′

, Pac ⊢ ∀xPxb

∀xPxa ⊢ ∀xPxb
L∀

Figure 2.7: Let the superscripts be indices of some indexing system. In the

premiss of the L∀-inference, the formula occurrence ∀xPxb is copied as part of
the context and the occurrence ∀xPxa′

by implicit contraction. This is reflected
by their indices when compared to those of the corresponding occurrences in
the conclusion.

To distinguish free variables and terms introduced by δ-inferences from the
quantification variables and terms of a first-order language, we will refer
to them as instantiation variables5 [1, 32] and Skolem terms, respectively.
A derivation containing instantiation variables does not carry logical force,
meaning that the instantiation variables have to be instantiated in order to
interpret the formulae occurring in it. To emphasize this fact, derivations
containing instantiation variables are from now on called skeletons [31]. In
the rest of this chapter we extend the ground sequent calculus syntax to
include notions needed in order to construct the free variable sequent calculus
LKv. The v indicates that it is a free variable version of the sequent calculus
LK.

2.2.1 Syntax

The definition of a first-order language from Section 2.1.1 is extended such
that all first-order languages additionally contain a countably infinite set V
of instantiation variables of the form uκm and a non-empty set S of Skolem
functions of the form fm, in which m is a natural number and κ is a sequence
of natural numbers. The sets V and S are disjoint. The set S contains

5The terms meta variables and parameters are common in the literature.
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an infinite number of Skolem functions of different arities and is disjoint
from the sets of predicate and function symbols of the first-order language.
Skolem functions with arity 0, denoted am, are called Skolem constants.
Instantiation variables are denoted u, v,w. Skolem functions are denoted
f, g, h and Skolem constants a, b, c, as long as it is clear from the context
whether a symbol is a Skolem function or a function symbol.

2.21 Definition The set of instantiation terms for a first-order language
L, denoted TI(L), is the smallest set such that:

• Every instantiation variable u is in TI(L).

• If f is an n-ary function symbol in L and t1, . . . , tn are in TI(L), then
f(t1, . . . , tn) is in TI(L).

• If fm is an n-ary Skolem function and t1, . . . , tn are in TI(L), then
fm(t1, . . . , tn) is in TI(L).

An instantiation term is ground if it contains no instantiation variables.

Note that an instantiation term contains no quantification variables.

2.22 Definition The set of formulae over a first-order language L is de-
fined from the set of basic L-formulae by substitution:

• A basic L-formula is a formula.

• If a quantification variable x occurs free in a formula ϕ and t is an
instantiation term, then ϕ[x/t] is a formula.

A formula is closed if all quantification variables occurring in it are bound.

It is immediate that the set of formulae extends the set of basic formulae
defined in Section 2.1.1. Instantiation variables are never bound by quan-
tifiers. Formulae with instantiation terms are generated by the rules of the
calculus and do not exist outside such a context. Their purpose is to provide
a syntax for free variables and run-time skolemization6.

A substitution for instantiation terms is a substitution having the set of in-
stantiation variables as domain and the set of instantiation terms (over a
given first-order language) as its codomain. All notions regarding substitu-
tions defined in Section 2.1.1 apply to substitutions for instantiation terms.
The set of all substitutions for instantiation terms is denoted I. A sub-
stitution σ in I is ground if σ(u) is a ground instantiation term for each

6The introduction of Skolem terms by δ-inferences is a skolemization process.
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instantiation variable u in its support set. In the following, we refer to sub-
stitutions for instantiation terms just as substitutions when there is no risk of
misunderstanding. Note that substitutions are defined for all instantiation
variables in V. This will simplify some definitions in later chapters.

2.23 Definition (Unifier) If s and t are instantiation terms, σ is a sub-
stitution in I and sσ = tσ, then σ is a unifier for s and t. If ϕ and ψ are
formulae and ϕσ = ψσ, then σ is a unifier for ϕ and ψ.

2.24 Definition An equation is a tuple, written t1 ≈ t2, in which t1 and
t2 are instantiation terms. A substitution σ solves an equation t1 ≈ t2 if it is
a unifier for t1 and t2. An equation is solvable if there is some substitution
solving it. An equation set is a set of equations. Let S be an equation set
and σ a substitution. We say that σ satisfies S, written σ |= S, if σ solves
all equations in S. Further, S is satisfiable if there is some substitution
satisfying it.

2.25 Example The equation set {fu ≈ fv, v ≈ gaw, fw ≈ fb} is sat-
isfiable, since the equations are solved simultaneously by the substitution
{u/gab, v/gab,w/b}.

2.26 Definition An indexed formula is an object of the form ϕκ in which
ϕ is a formula and κ is a sequence of natural numbers called a copy history.
All subformulae of ϕ (this includes ϕ) are assigned distinct natural numbers,
called formula numbers. The index of an indexed formula ϕκ is the pair
κ
m consisting of the copy history κ of the indexed formula and the formula
number m of ϕ. An indexed formula ϕκ is closed if the formula ϕ is closed.

We write copy histories as strings whenever the parsing is clear from the
context; 〈t1, . . . , tn〉 is written t1 . . . tn. Concatenation of copy histories are
done by the ‘.’-operator. If κ = k1 . . . kn and τ = t1 . . . tm are copy histories
and p is a natural number, then κ.p = k1 . . . knp and κ.τ = k1 . . . knt1 . . . tm.
We also define the operator ′ for copy histories as κ′ := k1 . . . kn−1.(tn + 1),
i.e. a sequence identical to κ except that the last element is increased by
one.

2.27 Example The following are indexed formulae:

∀x
1
∃y
2

(Px
4

→
3
Qy
5

)1 and ∀x
10

(Qy
13

→
15
Px
7

)1.1.1.2.1

The former indexed formula is closed, the latter is not. As a convention,
we write the formula numbers below their respective subformulae and the
copy history superscripted to the right of the formula. The object

∃z
1

(Px
2

∧
1
Qx
3

)2

is not an indexed formula, since two subformulae have identical formula
numbers.
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Note that in order to be syntactically equal, two indexed formulae must
have identical copy histories and their underlying formulae must be assigned
formula numbers in the same way. Thus, neither

∀x
1
Px
2

1 and ∀x
1
Px
2

2

nor
∀x
1
Px
2

1 and ∀x
3
Px
4

1

are syntactically equal.

2.28 Definition An indexed sequent is an object Γ ⊢ ∆ in which Γ and ∆
are disjoint sets of closed indexed formulae.

Recall from Definition 2.8 that antecedents and succedents of sequents in
ground calculi are multisets of formulae. Although the antecedent and succe-
dent of an indexed sequent are defined as sets, a formula can still occur more
than once, provided that different occurrences are indexed differently. Hence,
in an indexed sequent different formula occurrences are distinguished syn-
tactically. We often refer to indexed sequents as just sequents and indexed
formulae as just formulae, assuming that they are indexed according to the
definitions given in this section.

2.29 Example The following is an example of an indexed sequent:

∀x
1
∃y
2

(Px
4

→
3
Qy
5

)1,∀x
6
Px
7

1 ⊢ ∀x
8
Qx
9

1,∀x
10
Qx
11

1

The indices of the indexed formulae in the sequent above are (from left to
right) 1

1,
1
6,

1
8 and 1

10. The object

∀x
1
Px
2

1 ⊢ ∀x
1
Px
2

1

is not an indexed sequent, since the antecedent and succedent are not disjoint.
We will refrain from writing formula numbers and copy histories of indexed
formulae when they are clear from the context.

2.2.2 The Sequent Calculus LK
v

The rules of the free variable sequent calculus LKv define relations on indexed
sequents. Therefore, the placeholders in an LKv-rule can only be instantiated
in such a way that the conclusion and premisses of the resulting inference
are indexed sequents. The α- and β-rules are just like the α- and β-rules
in LK, except that principal and active formulae in a rule have identical
copy histories. When generating premisses from conclusions, α- and β-rules
transfer the copy history of the principal formula to the active formulae in
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Pa
2

1, P b
3

1 ⊢ Pa
4

1

Pa
2

∧
1
Pb
3

1 ⊢ Pa
4

1
L∧

⊢ Pa
2

1, Pa
4

1 Pb
3

1 ⊢ Pa
4

1

Pa
2

→
1
Pb
3

1 ⊢ Pa
4

1
L→

Figure 2.8: Example of an α- and a β-inference of the LKv-system. The copy
history of the principal formula is transferred to the active formulae. Extra
formulae are copied unaltered.

the premisses. Extra formulae are copied into the premisses without being
altered. Figure 2.8 shows an α- and a β-inference.

The δ- and γ-rules of LKv are listed in Figure 2.9. A δ-inference having prin-
cipal formula Qxϕκ introduces the Skolem term fm~u, in which the number
m is the formula number of the principal formula and ~u are the instantiation
variables occurring in ϕ. If ϕ contains no instantiation variables, the Skolem
constant am is introduced. As for the α- and β-rules, the copy history of
the principal formula is attached to the active formula. Thus, δ-formulae
having the same formula number introduce identical Skolem functions when
expanded.

δ-rules γ-rules

Γ ⊢ ϕ[x/fm~u]
κ,∆

Γ ⊢ ∀xϕκ,∆
R∀

Γ,∀xϕκ
′

, ϕ[x/uκm]κ.1 ⊢ ∆

Γ,∀xϕκ ⊢ ∆
L∀

Γ, ϕ[x/fm~u]κ ⊢ ∆

Γ,∃xϕκ ⊢ ∆
L∃

Γ ⊢ ∃xϕκ
′

, ϕ[x/uκm]κ.1,∆

Γ ⊢ ∃xϕκ,∆
R∃

Figure 2.9: The δ- and γ-rules of LKv. The number m is the formula number
of the principal formula, and κ.1 denotes the concatenation of κ and 1. The
operator ′ is defined on page 22.

The γ-rules introduce instantiation variables of the form uκm in which m and
κ are the formula number and the copy history of the principal formula.
The last element of the copy history of the contraction copy of the principal
formula is increased by one, thus distinguishing it from the principal formula.
The copy history of the other active formula is extended with the number
1. As a result, γ-inferences whose principal formulae have identical indices
introduce identical instantiation variables.

2.30 Definition (Set of LKv-skeletons) The set of LKv-skeletons is de-
fined inductively with relation to the LKv-rules as follows.
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• If Γ ⊢ ∆ is an indexed sequent in which all copy histories are equal to
1 and no two subformulae of indexed formulae in Γ∪∆ have identical
formula numbers, then Γ ⊢ ∆ is an LKv-skeleton.

• The induction steps are defined like in Definition 2.14.

If a formula ϕ is part of the context in an inference in a skeleton, then all
occurrences of ϕ in that inference are copies of the same source. The source
is either a formula in the root sequent, or an active formula in an inference
farther below on the same branch. In a branching inference, the context is
copied into both branches. As a result, formula occurrences with identical
source may occur in different branches of a skeleton.

2.31 Definition (Source Identical) Occurrences of formulae in an LKv-
skeleton π are source identical according to the following conditions.

• If ϕ is an extra formula in an inference θ in π, then all occurrences of
ϕ in θ are source identical.

• If two source identical occurrences of a formula are principal in separate
inferences in π, then equal active formulae in the respective inferences
are source identical.

2.32 Example In the LKv-skeleton

s4 : ∀xPx2, Pu1.1 ⊢ Pa1

s2 : ∀xPx1 ⊢ Pa1

s5 : ∀xPx2, Pu1.1 ⊢ Pb1

s3 : ∀xPx1 ⊢ Pb1

s1 : ∀x
1
Px
2

1 ⊢ Pa
4

∧
3
Pb
5

1

u denotes the instantiation variable u1
1. The occurrences of ∀xPx1 in the

sequents s1, s2 and s3 are source identical, the occurrences of ∀xPx2 in s4
and s5 are source identical, the occurrences of Pu1.1 in s4 and s5 are source
identical, the occurrences of Pa1 in s2 and s4 are source identical, and the
occurrences of Pb1 in s3 and s5 are source identical. No other formula oc-
currences in the skeleton are source identical.

The following proposition is needed in later chapters.

2.33 Proposition Indexed formulae occurring in an LKv-skeleton have iden-
tical indices if and only if they are source identical.

The proof is simple and will be found in [3]. As a consequence of this
proposition, different occurrences of the same γ-formula in a skeleton have
identical indices, and thus introduce identical instantiation variables when
expanded.
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2.34 Definition Let π be a skeleton and l some leaf sequent in π. A con-
nection is a subsequent of l of the form

P~t ⊢ P~s

in which P~t and P~s are atomic formulae with identical predicate symbols. A
connection set is a set of connections. A connection set is spanning for a
skeleton if it contains exactly one connection from each of the leaf sequents
of the skeleton.

2.35 Definition For each connection c = P (t1, . . . , tn) ⊢ P (s1, . . . , sn) we
define a set of primary equations, denoted Prim(c), as follows.

Prim(c) := {ti ≈ si | 1 ≤ i ≤ n}

For a connection set C the set of primary equations is defined as

Prim(C) :=
⋃

c∈C

Prim(c)

2.36 Definition A substitution is closing for an LKv-skeleton π if it satis-
fies the set of primary equations generated for some spanning set of connec-
tions for π. A skeleton π is closable if there is some closing substitution for
it. This is the closure condition of LKv.

2.37 Definition (LKv-proof) A proof of a sequent Γ ⊢ ∆ in the calculus
LKv is a tuple 〈π,C, σ〉 such that π is a skeleton with Γ ⊢ ∆ as its root
sequent, C is a spanning set of connections for π and σ is a substitution
such that σ |= Prim(C).

2.38 Example Figure 2.10 shows two versions of an LKv-skeleton for the
sequent ∀x(Px∧Qx) ⊢ ∃xPx∧∃xQx. In skeleton (a) full syntax is used in
order to illustrate the copy history manipulation of the γ-inferences. Skeleton
(b) is written in simplified syntax, leaving out unimportant details. Through-
out the rest of the thesis we use mostly the simplified syntax in order to in-
crease readability. The skeleton is closable, since the substitution {u/v,w/v}
({u1

1/u
1
6, u

1
8/u

1
6} in full syntax) solves the primary equations for the spanning

connection set {Pu ⊢ Pv,Qu ⊢ Qw}.

Figure 2.11 displays two syntax versions of an LKv-skeleton corresponding
to the last LK-derivation in Example 2.19. The skeleton is not closable,
since any spanning connection set results in an unsatisfiable set of primary
equations.

2.39 Proposition The calculus LKv is sound and complete.
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ϕ2, P (u1
1)

1.1, Q(u1
1)

1.1 ⊢ P (u1
6)

1.1, ∃xPx2

ϕ2, (Pu1
1 ∧Qu

1
1)

1.1 ⊢ P (u1
6)

1.1, ∃xPx2
α

ϕ1 ⊢ (Pu1
6)

1.1, ∃xPx2
γu1

1

ϕ1 ⊢ ∃xPx1
γu1

6

ϕ2, P (u1
1)

1.1, Q(u1
1)

1.1 ⊢ Q(u1
8)

1.1, ∃xQx2

ϕ2, (Pu1
1 ∧Qu

1
1)

1.1 ⊢ Q(u1
8)

1.1, ∃xQx2
α

ϕ1 ⊢ Q(u1
8)

1.1, ∃xQx2
γu1

1

ϕ1 ⊢ ∃xQx1
γu1

8

∀x
1

(Px
3

∧
2
Qx
4

)

︸ ︷︷ ︸

ϕ

1 ⊢ ∃x
6
Px
7

∧
5
∃x
8
Qx
9

1
β

(a)

Pu,Qu ⊢ Pv

Pu ∧Qu ⊢ Pv
α

∀x(Px ∧Qx) ⊢ Pv
γu

∀x(Px ∧Qx) ⊢ ∃xPx
γv

Pu,Qu ⊢ Qw

Pu ∧Qu ⊢ Qw
α

∀x(Px ∧Qx) ⊢ Qw
γu

∀x(Px ∧Qx) ⊢ ∃xQx
γw

∀x
u

(Px ∧Qx) ⊢ ∃x
v
Px ∧ ∃x

w
Qx

β

(b)

Figure 2.10: Two versions of the same LKv-skeleton. In (a) full syntax is
used for implicit copies and indices, as opposed to the simplified syntax used
in (b). The inference γu illustrates how the indices impose the variable sharing
property. We mostly use the simplified syntax throughout the rest of this thesis.
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ϕ3, P (u2
1, f2u

2
1)

2.1, P (u1
1, f2u

1
1)

1.1 ⊢ ψ3, P (f5u
2
4, u

2
4)

2.1, P (f5u
1
4, u

1
4)

1.1

ϕ3, P (u2
1, f2u

2
1)

2.1, P (u1
1, f2u

1
1)

1.1 ⊢ ψ3, (∀yPyu2
4)

2.1, P (f5u
1
4, u

1
4)

1.1
δf5u2

4

ϕ3, P (u2
1, f2u

2
1)

2.1, P (u1
1, f2u

1
1)

1.1 ⊢ ψ2, P (f5u
1
4, u

1
4)

1.1
γu2

4

ϕ3, (∃yPu2
1y)

2.1, P (u1
1, f2u

1
1)

1.1 ⊢ ψ2, P (f5u
1
4, u

1
4)

1.1
δf2u2

1

ϕ2, P (u1
1, f2u

1
1)

1.1 ⊢ ψ2, P (f5u
1
4, u

1
4)

1.1
γu2

1

ϕ2, P (u1
1, f2u

1
1)

1.1 ⊢ ψ2, (∀yPyu1
4)

1.1
δf5u1

4

ϕ2, P (u1
1, f2u

1
1)

1.1 ⊢ ψ1
γu1

4

ϕ2, (∃yPu1
1y)

1.1 ⊢ ψ1
δf2u1

1

∀x
1
∃y
2
Pxy

3
︸ ︷︷ ︸

ϕ

1 ⊢ ∃x
4
∀y
5
Pyx

6
︸ ︷︷ ︸

ψ

1
γu1

1

(a)

ϕ,Pwfw,Pufu ⊢ ψ,Pgzz, Pgvv

ϕ, Pwfw,Pufu ⊢ ψ,∀yPyz, Pgvv
δgz

ϕ,Pwfw,Pufu ⊢ ψ,Pgvv
γz

ϕ,∃yPwy, Pufu ⊢ ψ,Pgvv
δfw

ϕ,Pufu ⊢ ψ,Pgvv
γw

ϕ,Pufu ⊢ ψ,∀yPyv
δgv

ϕ,Pufu ⊢ ψ
γv

ϕ,∃yPuy ⊢ ψ
δfu

∀x∃yPxy
︸ ︷︷ ︸

ϕ

⊢ ∃x∀yPyx
︸ ︷︷ ︸

ψ

γu

(b)

Figure 2.11: Two versions of a non-closable LKv-skeleton; full syntax in (a)
and simplified syntax in (b). The symbols in (b) correspond to the ones in
(a) as follows: u = u1

1, v = u1
4, w = u2

1, z = u2
4, f = f2 and g = f5. The γ-

inferences illustrate how contraction copies are made distinct due to the index
system.
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The standard soundness proof for free variable tableaux [12, 21] is applica-
ble the sequent calculus LKv with some minor changes. One has to define
semantics for formulae with instantiation terms and validity of sequents con-
taining such formulae. The proof goes by contraposition; one shows that any
skeleton having a falsifiable sequents as root has at least one open branch.
As an intermediate result, one has to show that all LKv-rules preserve coun-
termodels upwards. This property of LKv-rules corresponds to preservation
of ∀-satisfiability for tableaux-rules.

The completeness proof is similar to the one found in [31] and is done as a
reductio argument based on countermodel existence, i.e. that any sequent
unprovable in LKv has a countermodel. In order to show countermodel exis-
tence, a limit object is created for an unprovable sequent by means of a proof
search procedure equipped with a fair selection function. Since the selection
function is fair, every α, β and δ-formula and infinitely many contraction
copies of each γ-formula are expanded on every branch in the limit object.
The next step is to ground the limit object by a ground substitution. The
countermodel existence proof can then be done constructively in the same
way as in the completeness proof for LK. Care must be taken to ensure that
the grounding substitution meets the satisfiability condition for universally
quantified formulae; this property is, however, easily obtained.
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Chapter 3

Incremental Proof Search

A naive proof search procedure for the calculus LKv is one that alternates
between skeleton expansion and closure check until the skeleton is closable.
The closure check — in itself an NP-complete operation1 — is performed
after each expansion step, and the overall efficiency of such a proof search
procedure is appalling. One way to address this inefficiency problem is to
expand the skeleton within some limit, e.g. the maximum number of γ-
inferences allowed on a branch, and check for closability when the limit is
reached. If the skeleton is not closable, the proof search is continued with an
increased limit. With such an approach we would still have to cope with an
intractable closure check. In addition we might have to perform unnecessary
expansion steps in cases where the skeleton becomes closable before the limit
is reached.

An incremental proof search procedure, on the other hand, associates with
each sequent in a skeleton a syntactic constraint. The constraint for a sequent
s represents all closing substitutions for the part of the skeleton having s as
root sequent. Each time a skeleton is expanded, the relevant constraints are
updated in order to capture new closing substitutions due to the expansion.
Closing substitutions are defined in terms of satisfiability of spanning sets
of connections, and new closing substitutions may arise when new connec-
tions are introduced in leaf sequents. Since branching LKv-rules are context
sharing, all existing connections are copied into both branches. A closing
substitution for a skeleton will remain closing regardless of skeleton expan-
sion.

The above properties are exploited in order to update constraints in an in-
cremental way. Constraints for sequents are defined inductively following
skeleton expansion and new connections resulting from each expansion step.
Updates for non-leaf constraints are defined recursively, following the intrin-
sic structure of the skeleton, in such a way that unsatisfiable constraints are

1A proof is found in [18] on page 21.
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discarded. Thus, the closure check is reduced to testing whether the con-
straint associated with the root sequent of a skeleton is satisfiable, which is a
constant time operation. An incremental proof search procedure checks for
closability after each expansion step, in fact with relation to each new con-
nection resulting from an expansion, and therefore terminates as soon as a
proof is found. The incremental closure framework was originally introduced
by Giese in [17, 18]. We will in this chapter explicate his work and adapt it
to the free variable sequent calculus LKv. Before we dig into the details, we
introduce some basic notions.

3.1 Preliminaries

3.1.1 Expansion Sequences

During a proof search for a sequent, the selection function of the chosen
proof search procedure is repeatedly applied to its own output using the
input sequent as the initial value. This generates a sequence of skeletons,
starting with the input sequent.

3.1 Definition An LKv expansion sequence is a finite or infinite sequence
π0, π1, π2, . . . having the following properties.

• Each πk is an LKv skeleton.

• The initial skeleton π0 contains exactly one sequent.

• Each πk, k > 0, is obtained from πk−1 by one expansion step.

In the following, πk ranges over skeletons in expansion sequences unless oth-
erwise is clearly stated. Figure 3.1 illustrates the general form of the skeletons
in an expansion sequence. The symbol  denotes skeleton expansion.

Γ ⊢ ∆

l1 (l′1)

Γ ⊢ ∆

π1

l

l2 (l′2)

Γ ⊢ ∆

πk−1

l

lk (l′k)

Γ ⊢ ∆
π0  π1  π2  · · ·  πk

Figure 3.1: An LKv expansion sequence. The initial skeleton π0 contains
a single sequent Γ ⊢ ∆. The skeleton πk is obtained from πk−1 by expand-
ing some leaf sequent l in πk−1. If the expanding inference is non-branching
(branching), the expansion step produces one (two) new leaf sequents lk (lk
and l′k) in πk. The sequent l is leaf in πk−1, but not in πk.
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3.2 Definition Let s be a sequent in πk. We define Conn(s) to be the set
of connections in s, and Lvsk(s) to be the set of leaf sequents above s in πk.
If s is a leaf sequent, then Lvsk(s) := {s}. The set of leaf sequents in πk,
denoted Lvs(πk), is defined as

Lvs(πk) := Lvsk(r),

where r is the root sequent of πk.

3.1.2 New Connections

When a skeleton πk is expanded, new leaf sequents are introduced in the
subsequent skeleton πk+1. The number of new leaf sequents is determined
by the expanding inference, as illustrated in Figure 3.1.

3.3 Definition For each skeleton πk we define a set of new leaf sequents,
denoted NewLvs(πk), as follows.

• For an initial skeleton π0 containing a single sequent r we define

NewLvs(π0) := {r}.

• For k > 0 we define

NewLvs(πk) := Lvs(πk) \ Lvs(πk−1).

The leaf sequents in NewLvs(πk) are referred to as new to πk.

3.4 Definition Let πk+1 be obtained from πk by expansion of a formula in
some leaf sequent l of πk. Then, l is called the expanded leaf sequent of πk.

Γ, Pa ⊢ ∆ Γ, P b ⊢ ∆

Γ, Pa ∨ Pb ⊢ ∆

Figure 3.2: A branching inference in which both active formulae (Pa and
Pb) are atomic. Depending on the formulae in ∆, there might be connections
in the premisses which do not occur in the conclusion of the inference.

Whenever a premiss l of an expanding inference has an atomic active formula,
there might be connections in l which do not occur in the conclusion of the
inference. These connections are new to the expanded skeleton. Since a
sequent contains only a finite number of formulae, the set of new connections
resulting from an expansion is finite. Due to the indexing system introduced
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in the previous chapter, all new connections resulting from an expansion step
are distinct. In a new connection ϕ ⊢ ψ, either ϕ or ψ is an active formula
in the expanding inference. Otherwise, the connection would also be present
in the conclusion of the inference and thus not new. Since all subformulae of
the principal formula in a branching inference have distinct formula numbers,
the active formula in the left and right premiss have distinct indices, as
illustrated in Figure 3.3. Thus, it is possible to define a set containing all
new connections for a skeleton such that for each new connection there is a
unique leaf sequent.

Pa
1

κ, Qb ⊢ Pu,Qv Pa
2

κ, Qb ⊢ Pu,Qv

Pa
1

∨ Pa
2

κ, Qb ⊢ Pu,Qv
β

Figure 3.3: A branching LKv-inference. Since the formulae are indexed, it is
possible to distinguish the new connection in the left premiss from the one in
the right. Without the indexing system, these connections would have been
identical.

3.5 Definition For each leaf sequent l in πk we define a set of new connec-
tions, denoted NewConnk(l), as follows. For an initial skeleton π0 containing
a single sequent r, we define

NewConn0(r) := Conn(r).

For each skeleton πk, k > 0, let l′ be the expanded leaf sequent of πk−1.

• If l is new to πk, then

NewConnk(l) := Conn(l) \ Conn(l′).

• Otherwise,
NewConnk(l) := ∅.

For each connection c in NewConnk(l) we define Leaf(c) := l. The set of new
connections for πk, denoted NewConn(πk), is defined as follows.

NewConn(πk) :=
⋃

l∈NewLvs(πk)

NewConnk(l)

3.6 Example Let l be the conclusion of the inference in Figure 3.3, and let
l′ and l′′ be the left and right premiss, respectively. Assume that the inference
is expanding the skeleton πk into πk+1. Then,

NewConnk+1(l
′) = {Pa

1

κ ⊢ Pu}
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and
NewConnk+1(l

′′) = {Pa
2

κ ⊢ Pu}.

The set of new connections for the skeleton is

NewConn(πk+1) = {Pa
1

κ ⊢ Pu, Pa
2

κ ⊢ Pu}.

We will need the following definition in later proofs.

3.7 Definition Let πk be a skeleton in an LKv expansion sequence, and let
C ⊆ NewConn(πk). For each leaf sequent l in πk we define

C|l := {c ∈ C | Leaf(c) = l}

to be the restriction of C to l.

3.8 Example Let πk+1 and l′ be as in Example 3.6. Then,

NewConn(πk+1)|l′ = {Pa
1

κ ⊢ Pu}

The following lemma is a direct consequence of Definition 3.7.

3.9 Lemma Let πk be a skeleton in an LKv expansion sequence, and let l be
a leaf sequent in πk. Then, NewConn(πk)|l = NewConnk(l).

3.1.3 Equation Sets and Unification

A substitution is closing for a skeleton π if it satisfies the set of primary
equations generated from a spanning connection set for π. Thus, in order
to determine whether the current skeleton state is closable, a proof search
procedure will have to test satisfiability of equation sets. This is essentially
a unification problem; does a substitution exists which unifies the left and
right-hand side of each equation in the equation set. Unification is decidable
in linear time [26, 28], but known linear time algorithms have poor perfor-
mance in some cases. Martelli and Montanari present in [27] an algorithm
which performs well in practice. The algorithm terminates for all input equa-
tion sets S. If it terminates with failure, then S is not satisfiable. Otherwise,
it terminates with a unifier for S.

3.10 Definition (Solve-function) Let S be the set of all equation sets.
We define the function Solve : S → S∪{⊥} as follows. Let S be an equation
set. Use some efficient unification algorithm to check whether there exists a
unifier for S.

• If a unifier for S exists, then

Solve(S) := S
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• Otherwise,

Solve(S) := ⊥ .

As the Solve-function indicates, we are merely interested in the existence of
a unifier, not the unifier itself. In order to detect a proof, it is sufficient to
know that a closing substitution exists; we do not have to apply the closing
substitution to the skeleton. However, in the next chapter we present the
calculus LKvs in which closing substitutions must have a certain property
in addition to satisfying the set of equations generated from a spanning
connection set. Since the set of unifiers for a satisfiable equation set is
infinite, it is impossible to check whether the set of unifiers contains a closing
unifier (i.e. which has the additional property) by testing all unifiers. It
turns out that it is sufficient to check whether a most general unifier for an
equation set has the additional closing property.

3.11 Definition A substitution σ is a most general unifier (mgu) for an
equation set S if it satisfies S and is more general than any other substitution
which satisfies S.

Most general unifiers are unique up to renaming of variables [12].

3.12 Definition Equation sets are equivalent if they are satisfied by exactly
the same substitutions.

3.13 Definition A set of equations S is in solved form if it satisfies the
following conditions.

• S is of the form {u1≈ t1, . . . , un≈ tn}, in which ui is an instantiation
variable and ti is an instantiation term for 1 ≤ i ≤ n.

• All the variables u1, . . . , un are distinct, and none of them occur in any
of the terms t1, . . . , tn.

3.14 Example The equations sets

{u≈v,w≈gv} and {}

are in solved form. The equation sets

{u≈v,w≈gu} and {u≈v, u≈w}

are not in solved form. In the former set the variable u occurs in the left-
hand side of the first equation and the right-hand side of the last equation.
In the latter set the variable u occurs in the left-hand side of more than one
equations.
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An equation set S = {u1 ≈ t1, . . . , un ≈ tn} in solved form is a witness
of its own satisfiability. Since all the left-hand side variables are distinct,
S can be viewed as an equational representation of the substitution σ =
{u1/t1, . . . , un/tn}. Every equation in S is solved by σ, since none of the
variables u1, . . . , un occur in any of the terms t1, . . . , tn. For the same reason,
σ is idempotent. Further, σ is a most general unifier for S.

Whenever an input equation set is satisfiable, the unification algorithm of
Martelli and Montanari returns a dag solved form, which is a variant of the
solved form defined above. In a dag solved form, we only require that a
left-hand side variable ui does not occur in right-hand sides tj for j ≥ i.
A dag solved form can be transformed into an equivalent equation set in
solved form, but the cost of this transformation is an exponential worst case
complexity of the unification algorithm [23]. In the context of the next
chapter, equation sets in solved form are conceptually easier to work with
than dag solved forms, due to their tight relationship with most general
unifiers. Since complexity analysis is beyond the scope of this thesis, we
take the solved form approach to unifiers in cases where the actual unifier is
needed.

3.15 Definition (MGU-function) Let S be the set of all equation sets,
and S̄ be the set of all equation sets in solved form. We define the function
MGU : S → S̄∪{⊥} as follows. Let S be an equation set. If S is satisfiable,
the MGU(S) is an equation set in solved form equivalent to S. Otherwise,
MGU(S) is ⊥.

3.16 Example Let S = {fa≈fu, v≈u}. Then

MGU(S) = {u≈a, v≈a}

and

MGU(S ∪ {b≈v}) = ⊥.

3.2 Constraints

The closure check is an important part of a proof search procedure because
it regulates the termination of the proof search. If the current skeleton is
closable the search terminates with success. Otherwise, skeleton expansion
continues until the skeleton reaches a closable state. Recall from Section 2.2.2
that the closure condition for LKv-skeletons is defined in terms of unifiable
spanning connection sets. In order to ascertain that a skeleton is not closable,
one has to check every spanning connection set for unifiability. A naive
approach is to calculate all spanning connection sets each time the closure
check is performed. Since the number of possible combinations of connections
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grows exponentially with skeleton expansion, such a global closure check is
not feasible. The spanning connection sets for a skeleton πk are also spanning
for all subsequent skeletons in the expansion sequence. This is due to the
context sharing rules of LKv. We exploit this monotonicity in order to define
constraints inductively following the expansion sequence.

In Section 3.2.1 constraint syntax is presented along with the satisfiabil-
ity relation relating constraints and substitutions. In Section 3.2.2 we define
global constraints and prove that they are correct. In Section 3.2.3 we present
inductively defined constraints and define how they can be updated incre-
mentally. In Section 3.2.4 we show the correctness of incremental constraints,
and in Section 3.2.5 we present a way of preventing generation of redundant
constraints. In Section 3.2.6 we present an example showing that in some
cases incremental constraints are less redundant than global constraints.

3.2.1 Constraint Language

In this section the constraint syntax is presented and we define a satisfiability
relation between constraints and substitutions.

3.17 Definition The set of atomic constraints is the least set satisfying
the following conditions.

• The symbol ⊥ is an atomic constraint.

• A finite equation set is an atomic constraint.

3.18 Example The following are atomic constraints:

⊥, {}, {gu≈ga, v≈b}, {u≈ffgv}, {u≈v}.

3.19 Definition A constraint is a finite set of atomic constraints.

3.20 Example The following are constraints:

{}, {{}}, {⊥}, {{u≈a, v≈b}, {u≈ffgv}}.

Atomic constraints are conjunctive and constraints are disjunctive. This is
reflected by the satisfiability relation for constraints.

3.21 Definition (Satisfiability Relation) Let σ be a substitution for
instantiation terms, µ be an atomic constraint and χ a constraint.

• σ satisfies µ, denoted σ |= µ, if and only if µ 6= ⊥ and σ solves every
equation in µ.
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• σ satisfies χ, denoted σ |= χ, if and only if σ satisfies some atomic
constraint in χ.

The symbol ⊥ is referred to as the unsatisfiable atomic constraint.

3.22 Example The substitution {u/fa, v/a,w/gb} satisfies the constraints
{gu≈gfv, fw≈fgb} and {{}}. The latter is a trivial constraint satisfied by
any substitution. No substitution satisfies the constraints {} or {⊥}.

The atomic constraint {}, satisfiable by all substitutions, is syntactically
equal to the unsatisfiable constraint {}. In the following there will, however,
be no risk of mixing the two, since atomic constraints never occur outside
constraints. Recall from page 20 that I is the set of all substitutions for
instantiation terms.

3.23 Definition Let χ be a constraint. The satisfiability set for χ, denoted
Sat(χ), is defined as

Sat(χ) := {σ ∈ I | σ |= χ}.

Since substitutions are defined as total functions, the satisfiability set for
any satisfiable constraint is infinite. Thus, constraints are finite objects
representing possibly infinite sets of substitutions. The following lemma is a
consequence of the satisfiability relation for constraints.

3.24 Lemma Let χ1 and χ2 be constraints. Then, Sat(χ1 ∪ χ2) = Sat(χ1)∪
Sat(χ2).

3.25 Definition (Merging) The merging operator ⊗ is defined for atomic
constraints as follows. Let µ1 and µ2 be atomic constraints.

• If µ1 = ⊥ or µ2 = ⊥, then

µ1 ⊗ µ2 := ⊥.

• Otherwise,
µ1 ⊗ µ2 := Solve(µ1 ∪ µ2).

We extend the merging operator to constraints in the following way. Let χ1

and χ2 be constraints.

χ1 ⊗ χ2 := {µ1 ⊗ µ2 | µ1 ∈ χ1 and µ2 ∈ χ2}

3.26 Example Let χ1 = {{u≈v}, {u≈a}}, χ2 = {{u≈b}} and χ3 = {} be
constraints. Then,

χ1 ⊗ χ2 = {{u≈v, u≈b},⊥}

and
χ1 ⊗ χ3 = {}.
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It is obvious the the property of being an (atomic) constraint is preserved
by the merging operator. The following lemma is needed in later proofs.

3.27 Lemma Sat(χ1 ⊗ χ2) = Sat(χ1) ∩ Sat(χ2) for all constraints χ1 and
χ2.

Proof Let σ be some substitution. It is sufficient to show that σ satisfies
χ1 ⊗ χ2 if and only if σ satisfies χ1 and χ2.

σ |= χ1 ⊗ χ2 ⇔ σ |= {µ1 ⊗ µ2 | µ1 ∈ χ1, µ2 ∈ χ2} (by Def. 3.25)

⇔ σ |= µ1 ⊗ µ2 for some µ1 ∈ χ1, µ2 ∈ χ2 (by Def. 3.21)

⇔ σ |= Solve(µ1 ∪ µ2) for some µ1 ∈ χ1, µ2 ∈ χ2 (by Def. 3.25)

⇔ σ |= µ1 ∪ µ2 for some µ1 ∈ χ1, µ2 ∈ χ2 (by Def. 3.10)

⇔ σ |= µ1 and σ |= µ2 for some µ1 ∈ χ1, µ2 ∈ χ2

⇔ σ |= χ1 and σ |= χ2 (by Def. 3.21)

3.2.2 Global Constraints

A naive closure check for LKv-skeletons computes all possible spanning con-
nection sets and tests each of them for unifiability. This process is captured
in a global constraint. A constraint is defined for each leaf sequent of the
skeleton, in which each unifiable connection is represented by an atomic con-
straint. Then, the constraint for the whole skeleton is the result of merging
leaf sequent constraints. Since the merging operator tests for satisfiability,
the resulting constraint contains only satisfiable atomic constraints, each of
which corresponds to a unifiable spanning connection set for the skeleton.

In spite of being computationally inefficient, global constraint are included
for two reasons: (1) The correctness proof for global constraints facilitates the
correctness proof for incremental constraints, defined later in this chapter.
(2) Although we show that global and incremental constraints are equivalent,
i.e. that they are satisfied by exactly the same substitutions, there is a non-
trivial syntactical difference between them. Incremental constraints are less
redundant than global constraints.

3.28 Definition The Solve-function is extended to connections as follows.
For each connection c we define

Solve(c) := Solve(Prim(c)).

3.29 Definition (Global Constraints) For each sequent s in a skele-
ton πk we define a global constraint, denoted GCk(s), as follows.
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• If s is a leaf sequent, then

GCk(s) := {Solve(c) | c ∈ Conn(s)}.

• Otherwise, let Lvsk(s) = {l0, . . . , ln}. Then,

GCk(s) := (GCk(l0) ⊗ GCk(l1)) ⊗ · · · ⊗ GCk(ln)

We define the global constraint for πk, denoted GC(πk), as

GC(πk) := GCk(r),

where r is the root sequent of πk.

We now show that the global constraints are correct, i.e. that a substitution
σ satisfies GC(πk) if and only if it is closing for πk.

3.30 Lemma Let s be some sequent in a skeleton πk. Then,

Sat(GCk(s)) =
⋂

l∈Lvsk(s)

Sat(GCk(l)) .

Proof If s is leaf, the proof is trivial. Otherwise, assume without loss of
generality that Lvsk(s) = {l0, . . . , ln}. Then,

Sat(GCk(s)) = Sat[(GCk(l0) ⊗ GCk(l1)) ⊗ · · · ⊗ GCk(ln)]

=
⋂

l∈Lvsk(s)

Sat(GCk(l)) ,

in which the last step follows by applying Lemma 3.27 n times.

3.31 Lemma Let πk be a skeleton and σ a substitution. Then, σ satisfies
GC(πk) if and only if σ is closing for πk.

Proof “If”-direction: Assume σ is closing for πk. Then, there is a spanning
set of connections C for πk such that σ satisfies Prim(C). Pick an arbitrary
connection c in C. Since Prim(c) ⊆ Prim(C), σ satisfies Prim(c), and hence
Solve(c), and thus σ satisfies GCk(l) for a leaf l in πk containing c. Since C
is spanning for πk, σ satisfies GCk(l) for all leaf sequents l in πk. Then, by
Lemma 3.30 σ satisfies GC(πk).

“Only if”-direction: Assume σ satisfies GC(πk). Then, by Lemma 3.30 σ
satisfies GCk(l) for each leaf sequent l in πk. By Definition 3.29 σ satisfies
Solve(c), and hence Prim(c), for at least one connection c from each leaf
sequent. Thus, σ is closing for πk.
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3.32 Example Let π3 be the skeleton in Figure 3.4. The atomic constraints
for the connections in the leaf sequents of π3 are Solve(Pv ⊢Pa) = {v ≈
a}, Solve(Pu⊢Pa) = {u ≈ a} and Solve(Pu⊢Pb) = {u ≈ b}. The global
constraint for π3 is

GC(π3) = GC3(s0)

= GC3(s3) ⊗ GC3(s2′′)

= {{v≈a}, {u≈a}} ⊗ {{u≈b}}

= {Solve({v≈a, u≈b}),Solve({u≈a, u≈b})}

= {{v≈a, u≈b},⊥} ,

thus the skeleton is closable.

s3 : ∀xPx, Pv, Pu ⊢ Pa

s2′ : ∀xPx, Pu ⊢ Pa s2′′ : ∀xPx, Pu ⊢ Pb

s1 : ∀xPx, Pu ⊢ Pa ∧ Pb

s0 : ∀xPx ⊢ Pa ∧ Pb

Figure 3.4: A closable skeleton.

3.2.3 Incremental Constraints

We will now define the constraint for a skeleton πk inductively, following
the expansion sequence π0, π1, · · · , πk. A proof search procedure takes one
sequent as input, not an arbitrary skeleton. Thus, a proof search will always
start at π0 and expand one step at a time in order to reach the skeleton πk.
With an inductive constraint definition, skeleton expansion and constraint
calculation can be done in parallel. The constraint for the skeleton is up-
dated after each expansion step, and the closure check is reduced to checking
whether this constraint is satisfiable.

The context sharing rules of LKv ensures that a spanning connection set
for a skeleton πk is spanning also for all subsequent skeletons in the expan-
sion sequence. This monotonicity property is exploited in order to update
constraints incrementally. An overview of the symbols used for incremental
constraints is found in Figure 3.5. The incremental proof search process is
illustrated in Figure 3.6.

3.33 Definition For each skeleton πk in an LKv expansion sequence, for
each connection cik in NewConn(πk) = {c1k, . . . , c

nk

k }, and each sequent s in
πk we define inductively an incremental constraint, denoted Cik(s), as follows.
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For each skeleton πk:

nk number of new connections for πk

cik i’th new connection for πk

C(πk) constraint for πk

For each sequent s in πk:

INCik(s) increment set for s w.r.t. cik
Cik(s) constraint for s up to and including INCik(s)

Figure 3.5: An overview of the symbols used in the inductive constraint
definition (Definition 3.33). The subscript k refers to the skeleton πk of the
expansion sequence, and the superscript i refers to the i’th new connection for
πk.

C(π0) C(π1) · · · C(πk−1) C(πk)  · · ·

⇓

C(πk−1)  C(πk)

d
e
f

= d
e
f

=

C
nk−1

k−1 (r)  C0
k(r) → · · · → Ci−1

k (r) → Ci
k(r) → · · · → C

nk

k (r)

⇓

Ci−1
k (r) ∪ INCik(r)

def
= Cik(r)

Figure 3.6: Constraints for skeletons in an LKv expansion sequence, in which
r is the initial sequent. After an expansion step from πk−1 to πk, the con-
straint for πk is updated incrementally with the increment set INCi

k(r) for each
connection cik in NewConn(πk) = {c1k, . . . , c

nk

k }.
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Initialization (k = 0 and i = 0): The skeleton π0 contains a single sequent r.

The constraint for r before any connections are taken into account, C0
0(r), is

defined as follows.
C0

0(r) := ∅

Inductive step 1 (increase of k and reset of i to 0): Assume that nk−1 is the

number of new connections for πk−1, and that C
nk−1

k−1 (s) is known for all
sequents s in πk−1. Let l′ be the expanded leaf sequent of πk−1. For all k > 0
and all sequents s in πk we define C0

k(s) as follows.

• If s is new to πk, then s is a premiss of the inference having l′ as
conclusion. We define

C0
k(s) := C

nk−1

k−1 (l′).

• Otherwise, s is also a sequent in πk−1 and we define

C0
k(s) := C

nk−1

k−1 (s).

Inductive step 2 (increase of i): Assume that 0 < i ≤ nk, and that Ci−1
k (s) is

known for all sequents s in πk. Let B be the branch in πk defined by Leaf(cik).
We define an increment set w.r.t. the connection cik, denoted INCik(s), for
each s in πk in the following way.

• If s is not on B, then
INCik(s) := ∅.

• Otherwise, if s = Leaf(cik), then

INCik(s) := {Solve(cik)}

• Otherwise, if s is the conclusion of a non-branching inference with
premiss s′, then

INCik(s) := INCik(s
′).

• Otherwise, s is the conclusion of a branching inference θ. Let s′ and
s′′ be the premisses of θ, and assume s′ is on B. We define

INCik(s) := INCik(s
′) ⊗ Ci−1

k (s′′).

We define
Cik(s) := Ci−1

k (s) ∪ INCik(s).

Let r be the root sequent of πk and nk the number of new connections for πk.
The constraint for πk, denoted C(πk), is defined as

C(πk) := C
nk

k (r).
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3.2.4 Correctness of Incremental Constraints

We now prove that our definition of incremental constraints is correct. This
means two things:

1. If a substitution σ satisfies a constraint Cik(s), then σ is closing for the
subskeleton of πk with root s.

2. If σ is closing for the subskeleton of πk with root s, then σ satisfies the
constraint C

nk

k (s).

This ensures that the generated constraints are only satisfied by closing sub-
stitutions for the current skeleton, and that all closing substitutions for the
skeleton satisfy the constraint.

Remark. None of the proofs in this section are hard, but they are included for
the sake of completeness and for illustration of how incremental constraints
are calculated.

We first show correctness for leaf sequents. We show that after all new
connections are taken into account, the global and the incremental constraint
are equal for any leaf sequent in any skeleton. The correctness result then
follows by the correctness proof for global constraints.

3.34 Lemma Let πk be a skeleton in an LKv expansion sequence, and let
NewConn(πk) = {c1k, . . . , c

nk

k }. Then, for each leaf sequent l in πk, and for
each 0 ≤ i ≤ nk:

Cik(l) = C0
k(l) ∪ {Solve(c) | c ∈ {c1k, . . . , c

i
k}|l }

Proof By induction on i. The base case, i = 0, is trivial.

Induction step: Pick some 0 ≤ i < nk and assume that the claim holds for

Cik(l) (IH). We show that the claim holds for Ci+1
k (l). The proof depends on

whether

(1) Leaf(ci+1
k ) = l, or

(2) Leaf(ci+1
k ) 6= l.

In case of (1), {c1k, . . . , c
i
k}|l ∪ {ci+1

k } = {c1k, . . . , c
i+1
k }|l, and thus

Ci+1
k (l) = Ci

k(l) ∪ INCi+1
k (l) (by Def. 3.33)

= Ci
k(l) ∪ { Solve(ci+1

k ) } (by Def. 3.33)

= C0
k(l) ∪ { Solve(c) | c ∈ {c1k, . . . , c

i
k}|l } ∪ { Solve(ci+1

k ) } (by IH)

= C0
k(l) ∪ { Solve(c) | c ∈ {c1k, . . . , c

i
k}|l ∪ {ci+1

k } }

= C0
k(l) ∪ { Solve(c) | c ∈ {c1k, . . . , c

i+1
k }|l } .
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In case of (2), {c1k, . . . , c
i
k}|l = {c1k, . . . , c

i+1
k }|l, and thus

Ci+1
k (l) = Ci

k(l) ∪ INC
i+1
k (l) (by Def. 3.33)

= Ci
k(l) ∪ ∅ (by Def. 3.33)

= C0
k(l) ∪ { Solve(c) | c ∈ {c1k, . . . , c

i
k}|l } (by IH)

= C0
k(l) ∪ { Solve(c) | c ∈ {c1k, . . . , c

i+1
k }|l } ,

which concludes the proof.

3.35 Lemma Let πk be a skeleton in an LKv expansion sequence, and let
NewConn(πk) = {c1k, . . . , c

nk

k }. Then, for each leaf sequent l in πk:

C
nk

k (l) = {Solve(c) | c ∈ Conn(l) }

Proof By induction on k.

Base case (k = 0): π0 contains a single sequent r, which is the only leaf
sequent in π0. Thus,

Cn0

0 (r) = C0
0(r) ∪ { Solve(c) | c ∈ {c10, . . . , c

n0

0 }|r } (by Lemma 3.34)

= { Solve(c) | c ∈ {c10, . . . , c
n0

0 }|r } (by Def. 3.33)

= { Solve(c) | c ∈ NewConn(r) } (by Lemma 3.9)

= { Solve(c) | c ∈ Conn(r) } . (by Def. 3.5)

Induction step: Assume that the claim holds for πk (IH). We show that the
the claim holds for πk+1. Let l be some leaf sequent in πk+1. The proof
depends on whether

(1) l ∈ NewLvs(πk+1), or

(2) l /∈ NewLvs(πk+1).

In case of (1), let l′ be the expanded leaf sequent of πk. Then,

C
nk+1

k+1 (l) = C0
k+1(l) ∪ { Solve(c) | c ∈ {c1k+1, . . . , c

nk+1

k+1 }|l } (by Lemma 3.34)

= C0
k+1(l) ∪ { Solve(c) | c ∈ NewConn(l) } (by Lemma 3.9)

= Cnk

k (l′) ∪ { Solve(c) | c ∈ NewConn(l) } (by Def. 3.33)

= { Solve(c) | c ∈ Conn(l′) } ∪

{ Solve(c) | c ∈ NewConn(l) } (by IH)

= { Solve(c) | c ∈ Conn(l′) ∪ NewConn(l) }

= { Solve(c) | c ∈ Conn(l) } . (by Def. 3.5)
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In case of (2), NewConn(l) = ∅, and thus

C
nk+1

k+1 (l) = C0
k+1(l) ∪ { Solve(c) | c ∈ {c1k+1, . . . , c

nk+1

k+1 }|l } (by Lemma 3.34)

= C0
k+1(l) ∪ { Solve(c) | c ∈ NewConn(l) } (by Lemma 3.9)

= C0
k+1(l) ∪ ∅

= C
nk

k (l) (by Def. 3.33)

= { Solve(c) | c ∈ Conn(l) } , (by IH)

which concludes the proof.

3.36 Lemma Let πk be a skeleton in an LKv expansion sequence, and let nk
be the number of connections in NewConn(πk). Then, for each leaf sequent l
in πk:

Sat
(
C
nk

k (l)
)

= Sat(GCk(l))

Proof By Lemma 3.35 C
nk

k (l) = {Solve(c) | c ∈ Conn(l)}, which by Defini-
tion 3.29 equals GCk(l).

Having shown constraint correctness for leaf sequents, we now turn to non-
leaf sequents. Incremental constraint correctness for non-leaf sequents cannot
be shown by syntactical equality with global constraints, as was the case for
leaf sequents. Instead we show that the global and incremental constraint
for a sequent in a skeleton are equivalent, i.e. that their satisfiability sets
are identical.

3.37 Lemma Let πk be a skeleton in an LKv expansion sequence, and let
NewConn(πk) = {c1k, . . . , c

nk

k }. Then, for each 0 ≤ i ≤ nk and for each
non-leaf sequent s in πk:

• If s is the conclusion of a non-branching inference with premiss s′, then

Sat
(
Cik(s)

)
= Sat

(
Cik(s

′)
)
.

• Otherwise, s is the conclusion of a branching inference θ. Let s′ and
s′′ be the premisses of θ. Then,

Sat
(
Cik(s)

)
= Sat

(
Cik(s

′)
)
∩ Sat

(
Cik(s

′′)
)
.

Proof By induction on the pair 〈k, i〉. The base case, 〈k, i〉 = 〈0, 0〉, is
trivial, since the only sequent in π0 is a leaf sequent. For both induction
steps, let s be the conclusion of an inference θ. We must distinguish between
θ being a branching or non-branching inference. Since the two cases are
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similar, we will throughout this proof show the branching case only. Let θ
be of the form

s′ s′′

s θ .

Induction step 1 (increase of k): Assume that the claim holds for 〈k, nk〉.

(IH). We show that the claim holds for 〈k+1, 0〉. Let l′ be the expanded leaf
sequent of πk. The proof depends on whether

(1.1) s = l′, or

(1.2) s 6= l′.

In case of (1.1), s′ and s′′ are the leaf sequents new to πk+1, and thus
C0
k+1(s

′) = C0
k+1(s

′′) = C0
k+1(s) = C

nk

k (s) by Definition 3.33. We get

Sat
(
C0

k+1(s)
)

= Sat
(
C0

k+1(s)
)
∩ Sat

(
C0

k+1(s)
)

= Sat
(
C0

k+1(s
′)
)
∩ Sat

(
C0

k+1(s
′′)

)
.

In case of (1.2), both s′ and s′′ are sequents in πk, and thus C0
k+1(s

′) = C
nk

k (s′)

and C0
k+1(s

′′) = C
nk

k (s′′) by Definition 3.33. We get

Sat
(
C0

k+1(s)
)

= Sat(Cnk

k (s)) (by Def. 3.33)

= Sat(Cnk

k (s′)) ∩ Sat(Cnk

k (s′′)) (by IH)

= Sat
(
C0

k+1(s
′)
)
∩ Sat

(
C0

k+1(s
′′)

)
.

Induction step 2 (increase of i): Pick some 0 ≤ i < nk and assume that the

claim holds for 〈k, i〉 (IH). We show that the claim holds for 〈k, i + 1〉. Let
B be the branch in πk defined by Leaf(ci+1

k ). The proof depends on whether

(2.1) s is on B, or

(2.2) s is not on B.

In case of (2.1), assume without loss of generality that s′ is on B. Then, s′′
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is not on B, and thus (†) Ci+1
k (s′′) = Cik(s

′′) by Definition 3.33. We get

Sat
(
Ci+1

k (s)
)

= Sat
(
Ci

k(s) ∪ INC
i+1
k (s)

)
(by Def. 3.33)

= Sat
(
Ci

k(s)
)
∪ Sat

(
INCi+1

k (s)
)

(by Lemma 3.24)

=
[
Sat

(
Ci

k(s′)
)
∩ Sat

(
Ci

k(s′′)
)]

∪ Sat
(
INCi+1

k (s)
)

(by IH)

=
[
Sat

(
Ci

k(s′)
)
∩ Sat

(
Ci

k(s′′)
)]

∪

Sat
(
INCi+1

k (s′) ⊗ Ci
k(s′′)

)
(by Def. 3.33)

=
[
Sat

(
Ci

k(s′)
)
∩ Sat

(
Ci

k(s′′)
)]

∪
[
Sat

(
INCi+1

k (s′)
)
∩ Sat

(
Ci

k(s′′)
)]

(by Lemma 3.27)

=
[
Sat

(
Ci

k(s′)
)
∪ Sat

(
INCi+1

k (s′)
)]

∩ Sat
(
Ci

k(s′′)
)

= Sat
(
Ci

k(s′) ∪ INCi+1
k (s′)

)
∩ Sat

(
Ci

k(s′′)
)

(by Lemma 3.27)

= Sat
(
Ci+1

k (s′)
)
∩ Sat

(
Ci

k(s′′)
)

(by Def. 3.33)

= Sat
(
Ci+1

k (s′)
)
∩ Sat

(
Ci+1

k (s′′)
)
. (by †)

In case of (2.2), neither s′ nor s′′ are on B. Thus, Ci+1
k (s′) = Cik(s

′) and

Ci+1
k (s′′) = Cik(s

′′), and we get

Sat
(
Ci+1

k (s)
)

= Sat
(
Ci

k(s)
)

(by Def. 3.33)

= Sat
(
Ci

k(s′)
)
∩ Sat

(
Ci

k(s′′)
)

(by IH)

= Sat
(
Ci+1

k (s′)
)
∩ Sat

(
Ci+1

k (s′′)
)
,

which concludes the proof.

The depth of a sequent is the number of inferences on the path to the farthest
away leaf sequent above it, defined below.

3.38 Definition Let π be a skeleton. We define for each sequent s in π the
depth of s recursively as follows.

• If s is a leaf sequent, then Depth(s) := 0.

• If s is the conclusion of a non-branching inference with premiss s′, then
Depth(s) := Depth(s′) + 1.

• If s is the conclusion of a branching inference with premisses s′ and
s′′, then Depth(s) := max{Depth(s′),Depth(s′′)} + 1.

3.39 Lemma Let πk be a skeleton in an LKv expansion sequence, and let
nk be the number of connections in NewConn(πk). Then, for each non-leaf
sequent s in πk:

Sat
(
C
nk

k (s)
)

= Sat(GCk(s))
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Proof by induction on Depth(s). Let s be the conclusion of a branching
inference θ. The proof depends on whether θ is branching or not. The two
cases are similar, thus we will only show the branching case. Assume θ to
be of the form

s′ s′′

s θ .

Base case: Depth(s) = 1, and s′ and s′′ are leaf sequents in πk. We have
Lvsk(s) = {s′, s′′}, and thus,

Sat(Cnk

k (s)) = Sat(Cnk

k (s′)) ∩ Sat(Cnk

k (s′′)) (by Lemma 3.37)

= Sat(GCk(s′)) ∩ Sat(GCk(s′′)) (by Lemma 3.36)

= Sat(GCk(s′) ⊗ GCk(s′′)) (by Lemma 3.27)

= Sat(GCk(s)) . (by Def. 3.29)

Induction step: Assume that the claim holds for all non-leaf sequents in πk
having depth d (IH). We show that the claim holds for sequents s having
depth d+ 1. We get

Sat(Cnk

k (s)) = Sat(Cnk

k (s′)) ∩ Sat(Cnk

k (s′′)) (by Lemma 3.37)

= Sat(GCk(s′)) ∩ Sat(GCk(s′′)) (by IH)

=
⋂

l∈Lvsk(s′)

Sat(GCk(l)) ∩
⋂

l∈Lvsk(s′′)

Sat(GCk(l)) (by Lemma 3.30)

=
⋂

l∈Lvsk(s)

Sat(GCk(l))

= Sat(GCk(s)) , (by Lemma 3.30)

which concludes the proof.

3.40 Theorem Let πk be a skeleton in an LKv expansion sequence. Then,
Sat(C(πk)) = Sat(GC(πk)).

Proof Let r be the root sequent of πk, and let nk be the number of con-
nections in NewConn(πk). Then,

Sat(C(πk)) = Sat(Cnk

k (r)) (by Def. 3.33)

= Sat(GCk(r)) (†)

= Sat(GC(πk)) , (by Def. 3.29)

in which (†) follows by Lemma 3.36 if r is a leaf sequent, otherwise, it follows
by Lemma 3.39.

Finally, we formulate this corollary, which follows easily by Theorem 3.40
and Lemma 3.31.
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3.41 Corollary Let πk be a skeleton in an LKv expansion sequence, and
let σ be a substitution in I. Then, σ ∈ Sat(C(πk)) if and only if σ is closing
for πk.

As a result of the above corollary, both correctness properties stated at the
beginning of this section holds:

1. If a substitution σ satisfies a constraint Cik(s), then σ is closing for the
subskeleton of πk with root s.

2. If σ is closing for the subskeleton of πk with root s, then σ satisfies the
constraint C

nk

k (s).

The first property implies that we can terminate a proof search as soon
as the increment set for the root sequent is satisfiable. Thus, the closure
check is done not only after each skeleton expansion, but also for each new
connections resulting from an expansion. Incremental constraints allow for
a more fine grained closure check. The second property ensures that if we
have taken into account all new connections due to an expansion step and
the constraint for the root sequent is unsatisfiable, then the current skeleton
is not closable and more expansions are needed in order to find a proof.

3.2.5 Subsumption

The merging of two constraints is essentially a cross product operation; each
atomic constraint in the first is merged with each atomic constraint in the
second. When a new connection in a leaf sequent l is taken into account, this
operation is performed at each β-inference on the path from l to the root
sequent. The sizes of the existing constraints, i.e. the number of atomic con-
straints they contain, affect the overall efficiency of the merging operations.
Thus, it is desirable to keep constraints small. Constraints generated for new
connections do not necessarily have to represent new closing substitutions for
a skeleton. If we have a constraint χ = {{u≈a}} and an atomic constraint
µ = {u≈a, v≈b}, then the constraints χ and χ∪{µ} are satisfied by exactly
the same substitutions, due to the disjunctive constraint satisfiability.

3.42 Definition An atomic constraint µ1 is subsumed by an atomic con-
straint µ2 if Sat({µ1}) ⊆ Sat({µ2}). An atomic constraint µ is subsumed by
a constraint χ if Sat({µ}) ⊆ Sat(χ).

As a result, we can refrain from propagating constraints for new connections
if they are subsumed by the existing constraint for the leaf sequent. We
redefine increment sets as follows.
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3.43 Definition (Subsumption Checking) If s = Leaf(cik), then

INCik(s) :=

{

∅, if Solve(cik) is subsumed by Ci−1
k (s)

{Solve(cik)}, otherwise.

For all other cases the definition is like Definition 3.33.

It is also possible to adapt subsumption checking to non-leaf sequents. This
can be done in two ways: (1) When updating an existing constraint with an
increment set, we only add atomic constraints which are not subsumed by
the existing constraint. This is called forward subsumption. (2) When adding
an atomic constraint µ, we remove from the existing constraint all atomic
constraints which are subsumed by µ. This is called backward subsumption.
Experimental results in [18] indicate that while forward subsumption has a
favorable impact on the average proof search time, the computational over-
head caused by backward subsumption is greater than the benefits.

3.2.6 Example

One does not have to be an experienced logician to establish that the sequent

∀xPx,∀xRx ∨ ∀xQx ⊢ Pa,Qb,Ra ∧Rb,Rc

is valid. Unfortunate selection of expansion formulae may however generate
the skeleton π5 shown in Figure 3.7. The subscripted numbers in the sequent
labels indicate the order in which the skeleton is expanded. The skeleton π5

is obtained by expanding the formula ∀xRx in the sequent s1′ , introducing
the new connection c15=Rw ⊢Rc in the leaf sequent s5. The incremental
constraints for the sequents in π5 before the new connection is taken into
account are listed in Table 3.1. We now compute the increment sets with
relation to the connection c15. For the leaf sequent s5 we get

INC1
5(s5) = {Solve(c15)} = {{w≈c}}.

For the sequent s1′ we get

INC1
5(s1′) = INC1

5(s5).

For the root sequent s0 we get

INC1
5(s0) = INC1

5(s1′) ⊗ C0
5(s1′′)

= {{w≈c}} ⊗ {{u≈a}, {v≈b}}

= {{w≈c, u≈a}, {w≈c, v≈b}} ,

and thus the skeleton is closable.
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s5: ∀xPx,Rw⊢Pa,Qb,Ra∧Rb,Rc

s1′: ∀xPx,∀xRx⊢Pa,Qb,Ra∧Rb,Rc

s4′: Pu,Qv⊢Pa,Qb,Ra,Rc s4′′: Pu,Qv⊢Pa,Qb,Rb,Rc

s3: Pu,Qv⊢Pa,Qb,Ra∧Rb,Rc

s2: Pu,∀xQx⊢Pa,Qb,Ra∧Rb,Rc

s1′′: ∀xPx,∀xQx⊢Pa,Qb,Ra∧Rb,Rc

s0: ∀xPx,∀xRx∨∀xQx⊢Pa,Qb,Ra∧Rb,Rc

Figure 3.7: A closable skeleton π5. The subscripted numbers in the sequent
labels indicate the order in which the sequents were introduced.

s C0
5(s)

s0 {}

s1′ {}

s1′′ {{u≈a}, {v≈b}}

s2 {{u≈a}, {v≈b}}

s3 {{u≈a}, {v≈b}}

s4′ {{u≈a}, {v≈b}}

s4′′ {{u≈a}, {v≈b}}

s5 {}

Table 3.1: The incremental constraints for π5 before any new connections are
taken into account.
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We now calculate the global constraints for π5. The constraints for the leaf
sequents are

GC5(s5) = {Solve(Rw⊢Rc)} = {{w≈c}} ,

GC5(s4′) = {Solve(Pu⊢Pa), Solve(Qv⊢Qb)} = {{u≈a}, {v≈b}} and

GC5(s4′′) = GC5(s4′) .

The global constraint for the skeleton is

GC(π5) = GC5(s0)

= (GC5(s5) ⊗ GC5(s4′)) ⊗ GC5(s4′′)

= {{w≈c, u≈a}, {w≈c, v≈b}} ⊗ GC5(s4′′)

= {{w≈c, u≈a}, {w≈c, v≈b}, {w≈c, u≈a, v≈b}} .

Although the global and incremental constraint for π5 are equivalent, they
are not syntactically equal. The atomic constraint making them different,
{w ≈ c, u≈ a, v ≈ b}, is in fact subsumed by the incremental constraint for
π5. The phenomenon arises because the incremental constraint for s3 is
copied into both new leaf sequents s4′ and s4′′ in the expansion step from
π3 to π4. On the contrary, the identical global constraints for s4′ and s4′′

are merged when the global constraint is calculated. In the general case it is
easily shown that a constraint χ merged with itself is satisfied by exactly the
same substitutions as χ. The examples shows that incremental constraints
are in some cases less redundant than global constraints.

3.3 Concluding Remarks

In this chapter I have presented a proof search procedure in which the clo-
sure check is calculated in parallel with skeleton expansion. Partial spanning
connection sets are represented as syntactic constraints. When a skeleton is
expanded, the constraints are updated incrementally with new closing pos-
sibilities resulting from new connections in the leaf sequents. A satisfiability
relation between constraints and substitutions was defined, and I showed
that the incremental constraint definition is correct, i.e. that an incremental
constraint for a skeleton π is satisfied by exactly the substitutions which are
closing for π.
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Chapter 4

Incremental Proof Search with

Variable Splitting

The skeletons of the sequent calculus LKv are invariant under order of rule
application, meaning that all permutation variants of a skeleton have identi-
cal leaf sequents. This is achieved by letting the LKv-rules generate variable
sharing skeletons, in which there is a strong dependency among variable
occurrences. Since identical instantiation variables can occur in different
branches of a skeleton, the term universe cannot be restricted branchwise.
However, in some cases separate occurrences of the same instantiation vari-
able are independent, meaning that it is sound to instantiate them differently.
The task of detecting exactly when variable occurrences are independent is
called the variable splitting problem.

∀xPx, Pu ⊢ Pa ∀xPx, Pu ⊢ Pb

∀xPx, Pu ⊢ Pa ∧ Pb
β

∀xPx ⊢ Pa ∧ Pb
γu

Figure 4.1: A non-closable LKv-skeleton for the sequent ∀xPx ⊢ Pa ∧ Pb.

The skeleton in Figure 4.1 is regulated by the rules of LKv. It is not closable,
since we cannot instantiate u with both a and b. The γ-formula ∀xPx is
present in both branches. By re-expanding it in one of the them, we introduce
the extra instantiation variable needed in order to close the skeleton. In
Figure 4.2, the occurrences of u are marked differently in the two branches.
The variable u is split into u1 and u2, and the skeleton is closable without
re-expanding the γ-formula.

In Section 4.1 I shall introduce the variable splitting sequent calculus LKvs,
which is an extension of the calculus LKv. Skeletons of LKvs are variable
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∀xPx, Pu1 ⊢ Pa ∀xPx, Pu2 ⊢ Pb

∀xPx, Pu ⊢ Pa ∧ Pb
β

∀xPx ⊢ Pa
1

∧ Pb
2

γu

Figure 4.2: The splitting of u into u1 and u2 permits closure of the skeleton
without re-expanding the γ-formula.

sharing and they contain indexed formulae, like LKv-skeletons. In addition,
the indexing system is utilized to label formula occurrences according to
which branch they occur in. When spanning connection sets are generated,
instantiation variables occurring in a formula are colored by means of the
formula label. Variable instantiation is done at the level of colored variables.
This permits substitutions to split variables, i.e. to instantiate different
colorings of the same instantiation variable differently.

Care must be taken in order to avoid unsound variable instantiation. In LKvs

this is handled as follows. If a variable u occurs in two separate branches
of a skeleton π and a substitution instantiates them differently, then there
must exist a permutation variant of π in which the γ-formula introducing u
is present in both branches. For each pair of colorings of the same variable
instantiated differently by the substitution, new requirements are imposed
on the permutation variant. A substitution is closing for a skeleton only if
there is a permutation variant meeting all of the requirements imposed by
the substitution. Such a permutation variant π′ has the property that it can
be simulated in a variable pure sequent calculus, i.e. where each γ-inference
introduces a distinct variable. The check for existence of such a permutation
variant is referred to as a cycle check for the substitution.

The incremental constraint definition for LKvs-skeletons must capture the
additional requirements of the closure condition of LKvs. We will take two
different approaches to constraints for splitting skeletons. The first variant
will be an extension of the constraint language used in the previous chapter.
Atomic constraints are still defined as equation sets, and the cycle check is
performed in the root sequent only. The second approach performs the cycle
checking incrementally as constraints resulting from new connections are
propagated towards the root sequent. In order to achieve this, the equation
sets of atomic constraints are in solved form. This is due to the fact that a
most general unifier is needed in order to perform the cycle check.

The calculus LKvs is, with a few exceptions, identical to the free variable
sequent calculus with uniform variable splitting originally introduced by
Waaler and Antonsen in [32]. The parts on which they differ are improve-
ments and error corrections mostly due to Antonsen [3]. The subject of
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variable splitting is not yet fully explored. Among the open questions is
which is the weakest set of restrictions possible to put on closing substitu-
tions without compromising consistency [2]. Hence, we will assume that the
current version of the calculus is correct and use it as a basis for the design
of an incremental proof search procedure with variable splitting.

4.1 The Variable Splitting Technique

In this section I shall introduce the terminology used in the variable splitting
technique. In Section 4.1.1 a relation on indices is introduced, capturing
subformula dependencies between indices in a skeleton. In Section 4.1.2
syntax for variable splitting is defined, and in Section 4.1.3 the variable
splitting sequent calculus LKvs is introduced. In Section 4.1.4 I discuss some
concepts relevant for the design of proof search procedures for LKvs, and in
Section 4.1.5 I present some examples of the introduced concepts.

4.1.1 Relations on Indices

Recall from Proposition 2.33 that formulae occurring in an LKv-skeleton
have identical indices if and only if they are source identical. By definition
of source identicallity it follows that all source identical formula occurrences
are equal. Thus, formula occurrences have identical indices if and only if
they are equal. As a result, it is well-defined to refer to a particular formula
in an LKv-skeleton by its index. We say that an index is a θ-index or of
principal type θ in a skeleton π if the associated formula is of principal type
θ. Likewise, an index is principal in π if the associated formula is principal
in some inference in π. In the following, indices are often denoted i (possibly
subscripted).

4.1 Definition Let π be a skeleton. The immediate descendant relation for
π, denoted ≪π, is a binary relation on the set of indices occurring in π such
that i1 ≪π i2 if and only if there is an inference in π having principal formula
with index i1 and active formula with index i2. The transitive closure of ≪π,
denoted ≪+

π , is referred to as the descendant relation for π.

4.2 Example Let π be the following skeleton.

∀x
1
Px
2

2, Pu
2

1.1 ⊢ Pa
4

1

∀x
1
Px
2

1 ⊢ Pa
4

1
γu

∀x
1
Px
2

3, Pv
2

2.1, Pu
2

1.1 ⊢ Pb
5

1

∀x
1
Px
2

2, Pu
2

1.1 ⊢ Pb
5

1
γv

∀x
1
Px
2

1 ⊢ Pb
5

1
γu

∀x
1
Px
2

1 ⊢ Pa
4

∧
3
Pb
5

1
β
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Then, ≪π= {(13,
1
4), (

1
3,

1
5), (

1
1,

2
1), (

1
1,

1.1
1 ), (21,

3
1), (

2
1,

2.1
1 )}.

4.3 Lemma Let π be an LKv-skeleton. Then, ≪+
π is irreflexive.

Proof Assume ≪+
π reflexive, i.e. i ≪+

π i for some index i. Then, either
i ≪π i, or there are indices i1, . . . , in in π such that i ≪π i1 ≪π . . . ≪π

in ≪π i. In either case there must be formula occurrences in π with identical
indices and different sources, by Definition 4.1. But this is not possible, by
Proposition 2.33.

An immediate descendant relation for a skeleton captures dependencies be-
tween inferences due to the intrinsic structure of formulae in the skeleton.
It is not possible to expand a proper subformula (or an instance of a proper
subformula in case of δ- and γ-formulae) of a formula ϕ before ϕ itself is
expanded. This restricts the the set of possible permutation variants for a
skeleton.

4.4 Definition The following notions are defined relative to a skeleton π.

• An index i1 is a descendant of an index i2, and i2 is equivalently an
ancestor of i1, if i1 ≪+

π i2.

• An index i1 is an immediate descendant of an index i2, and i2 is
equivalently an immediate ancestor of i1, if i1 ≪π i2.

• An index i is a common descendant of indices i1 and i2 if i is a de-
scendant of both i1 and i2.

• An index i is the greatest common descendant of indices i1 and i2 if i
is a common descendant of i1 and i2 and i is an ancestor of all other
common descendants of i1 and i2.

It is evident that if two indices have a common descendant, then they have
a unique greatest common descendant.

4.5 Example Based in the immediate descendant relation in Example 4.2
the following statements hold:

• The immediate ancestors of 1
3 are 1

4 and 1
5, which are also the only

ancestors of 1
3.

• The descendants of 3
1 are 2

1 and 1
1.

• The indices 2
1 and 1

1 are common descendants of 3
1 and 2.1

2 . The greatest
common descendant of 3

1 and 2.1
2 is 2

1.
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4.6 Definition Indices i1 and i2 occurring in a skeleton π are β-related,
denoted i1 △ i2, if they are not ≪+

π -related and they have a greatest common
descendant of principal type β.

4.7 Definition If an index i is principal in a β-inference in a skeleton π,
then the immediate ancestors of i are referred to as the β-options for i, and
we equivalently say that the immediate ancestors of i are dual indices. For
all dual indices i1 and i2 in a skeleton we define β(i1, i2) to be the index for
which i1 and i2 are β-options.

As a result of this definition, dual indices are β-related.

4.8 Example The only dual indices in the skeleton of Example 4.2 are 1
4

and 1
5, and β(14,

1
5) = 1

3.

4.1.2 Syntax

In order label an instantiation variable according to which branch it occurs
in, we need to extend the LKv-syntax. As we shall see later, it is the indices
of the active formulae in β-inferences that contribute to the branch labels.

4.9 Definition A splitting set is a finite set of indices such that no two
indices in it are β-related.

Splitting sets are denoted A,B, . . . when the content is not explicitly dis-
played. As a convention, empty splitting sets are not displayed.

4.10 Definition A decorated formula is an object ϕA where ϕ is an indexed
formula and A is a splitting set. A decorated formula ϕA is closed if the
indexed formula ϕ is closed.

4.11 Example Assuming the indices 1
6,

1.1
11 are not β-related, the following

are decorated formulae.

∃x
1

(Px
3

→
2
∀x
4
Px
5

)1{1
6,

1.1
11 }, ∀x

19
Px
20

3

The splitting set of the latter decorated formula is empty.

4.12 Definition A decorated sequent is an object Γ ⊢ ∆ in which Γ and
∆ are disjoint sets of closed decorated formulae.

4.13 Example The following is a decorated sequent.

∀x
1
Px
2

2{1
4}, Pu

2

1.1{1
4} ⊢ Pa

4

1
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4.14 Definition A colored variable is an object uA where u is an instan-
tiation variable and A is a splitting set.

4.15 Definition Let A be a splitting set and u an instantiation variable.
The color assignment operator, denoted ⊕, is defined as

u⊕A := uA .

We extend ⊕ to instantiation terms and atomic formulae recursively in the
following way.

• If a is a constant symbol or a Skolem constant, then a⊕A = a.

• If f is an n-ary function symbol or Skolem function and t1, . . . , tn are
instantiation terms, then f(t1, . . . , tn) ⊕A = f(t1 ⊕A, . . . , tn ⊕A).

• If P is an n-ary relation symbol and t1, . . . , tn are instantiation terms,
then P (t1, . . . , tn) ⊕A = P (t1 ⊕A, . . . , tn ⊕A).

An instantiation term is colored if all variables in it are colored. We redefine
equations1 such that an equation from now on is an ordered pair of col-
ored instantiation terms. A substitution for colored instantiation terms is a
substitution having the set of colored variables as domain and the set of col-
ored instantiation terms (over a given first-order language) as its codomain.
Unification of colored instantiation terms and satisfiability of equation sets
are defined in terms of substitutions for colored instantiation terms. In the
following we will refer to substitutions for colored instantiation terms as
substitutions. For an equation set S, Var(S) denotes the set of all colored
variables occurring in the left-hand or right-hand side of some equation in
S.

4.16 Definition The merging of a splitting set A with a splitting set B,
denoted A�B, is defined as the union of A and the set containing all indices
in B which are not β-related to any index in A.

It it obvious that the operator � preserves the property of being a splitting
set. The operator is in general not commutative, as the following example
illustrates.

4.17 Example Let i1, i2, i3 and i4 be indices such that i1 △ i2 and i3 △ i4.
Let A = {i1, i3} and B = {i2}. Then, A�B = {i1, i3} and B�A = {i2, i3}.
In case there are no two β-related indices i1 ∈ A, i2 ∈ B, then A�B = B�A.

1Se Definition 2.24 on page 21.

58



4.18 Definition Let Γ be a set of decorated formulae and let ϕκ be an
indexed formula with formula number m. We define

Γϕ
κ

:= { ψ(A ∪ {κm}) | ψA ∈ Γ } ,

i.e. the set of decorated formulae obtained by adding the index of ϕκ to the
splitting set of every decorated formula in Γ.

4.1.3 The Sequent Calculus LK
vs

The rules of the sequent calculus LKvs define relations on decorated sequents.
In all the rules, the splitting set decorating the principal formula and the
active formulae are identical. The non-branching rules are like the non-
branching rules of LKv. The branching LKvs-rules are listed in Figure 4.3
and require some explanation. They are designed in such a way that they
increase the splitting sets of extra formulae in the premisses according to
which branch they are copied into. The indices of the left and right active
formula is added to the splitting set of each extra formula in the left and right
premiss, respectively. In this way, the splitting set of a decorated formula
can be viewed as a branch label. A complete listing of the LKvs-rules is found
on page 86.

β-rules

Γϕ
κ

⊢ ϕκA,∆ϕκ

Γψ
κ

⊢ ψκA,∆ψκ

Γ ⊢ (ϕ ∧ ψ)κA,∆
R∧

Γϕ
κ

, ϕκA ⊢ ∆ϕκ

Γψ
κ

, ψκA ⊢ ∆ψκ

Γ, (ϕ ∨ ψ)κA ⊢ ∆
L∨

Γϕ
κ

⊢ ϕκA,∆ϕκ

Γψ
κ

, ψκA ⊢ ∆ψκ

Γ, (ϕ→ ψ)κA ⊢ ∆
L→

Figure 4.3: The β-rules of LKvs. The symbol A is a splitting set. The index
of the left (right) active formula is added to the splitting set of each extra
formula in the left (right) premiss.

4.19 Definition (Set of LKvs-skeletons) The set of LKvs-skeletons is
defined inductively with relation to the LKvs-rules as follows.

• If Γ ⊢ ∆ is a decorated sequent in which all copy histories are equal to
1, no two subformulae of decorated formulae in Γ ∪ ∆ have identical
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formula numbers, and all splitting sets are empty, then Γ ⊢ ∆ is an
LKvs-skeleton.

• The induction steps are defined like in Definition 2.14.

The restriction on root sequents in LKvs-skeletons are like the one for LKv-
skeletons in Definition 2.30, except that all formulae are decorated with
empty splitting sets. Also, the LKvs-rules handle indices of principal and
active formulae in the same way as the LKv-rules. Hence, all notions and
results regarding the indexing system of LKv-skeletons, including Proposi-
tion 2.33 and the definitions in Section 4.1.1, transfer to LKvs-skeletons. The
splitting set of a branch in an LKvs-skeleton is defined as the union of all
splitting sets occurring in the branch.

4.20 Lemma The splitting set of a branch in an LKvs-skeleton contains no
dual indices.

Proof Suppose the splitting set of a branch B contains dual indices i′, i′′.
Then, there must be a β-inference θ in B in which the principal formula has
index i = β(i′, i′′). By Proposition 2.33 there can be at most one inference
in B in which the principal formula has index i. But i′, i′′ are introduced in
different branches by θ. Hence, they cannot occur in the same branch.

The motivation for labelling formulae in LKvs-skeletons with splitting sets is
to label different branch occurrences of an instantiation variable differently.
In the process of generating primary equations for a connection, a color is
generated from the splitting sets of the atomic formulae in the connection
and transferred to terms by means of the the color assignment operator ⊕.
Care must be taken when generating the color. Due to the context sharing
rules, a connection c resulting from an inference θ occurs in every leaf sequent
above θ in a skeleton. When c is copied as part of context in β-inferences,
the splitting sets of c are increased with different indices in the left and
right premisses. Thus, the splitting sets of every occurrence of c above θ are
different. Nevertheless, we want each leaf sequent occurrence of c to produce
identical primary equations. This is achieved as follows.

4.21 Definition A connection c is a sequent of the form

P (s1, . . . , sn)A ⊢ P (t1, . . . , tn)B .

The corresponding colored connection, denoted c̄, is

P (s1, . . . , sn) ⊕ (A \B) ⊢ P (t1, . . . , tn) ⊕ (B \A).

A colored variable u⊕ (A \B) is called a pruning of the unpruned variable
uA.
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4.22 Definition Let c be a connection P (s1, . . . , sn)A ⊢ P (t1, . . . , tn)B.
The set of primary equations for c, denoted Prim(c), is defined as

Prim(c) := {si ⊕ (A \B) ≈ ti ⊕ (B \A) | 1 ≤ i ≤ n} .

A set of connections is spanning for an LKvs-skeleton π if it contains exactly
one connection from each leaf sequent of π. The set of primary equations for
a spanning set C is defined like in LKv, i.e. Prim(C) :=

⋃

c∈C Prim(c). The
set Var(C) contains colored variables such that uA ∈ Var(C) if and only if
uA occurs in c̄ for some connection c ∈ C.

As mentioned in the introduction to this chapter, it is not sufficient for a
substitution to satisfy the set of primary equations generated from a spanning
connection set in order to be closing for an LKvs-skeleton. The following
notions provide a basis for the definition of closing substitutions.

4.23 Definition Let π be an LKvs-skeleton, and let C be a connection set
for π. The set of balancing equations for C, denoted Bal(C), is the set of
equations such that uA≈uB ∈ Bal(C) if and only if

• uA, uB ∈ Var(C), and

• A�B = B �A.

Source identical formulae may occur in different branches of a skeleton. If
two formula occurrences in different branches are source identical and one
is expanded and the other is not, then the skeleton is imbalanced ; there is
an inference in one branch which also could have been done in the other. A
skeleton is balanced if it does not have the above described skewness. If we
require skeletons to be balanced, we put undesirable restrictions on selection
of expansion formulae in a proof search process. However, in an imbalanced
skeleton too much liberty is given to substitutions in instantiating variables.
The main purpose of balancing equations is to simulate identities between
colored variables as they would have been if the skeleton was balanced. An
in-depth treatment of balancing equations will appear in [3].

4.24 Definition (≺σ-relation) Let π be an LKvs-skeleton, let C be a
spanning connection set for π, and let σ be a substitution. The dependency
relation induced by σ on π wrt. C, denoted ≺σ, is a binary relation on
indices in π such that i1 ≺σ i2 if and only if

• there are colored variables uA, uB in Var(C) such that u has index i2
and σ(uA) 6= σ(uB), and

• there are dual indices i′ ∈ A, i′′ ∈ B such that i1 = β(i′, i′′).
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4.25 Definition A substitution σ is closing for an LKvs-skeleton π if there
is a spanning connection set C for π such that σ satisfies Prim(C)∪Bal(C),
and the relation (≪π ∪ ≺σ)

+ wrt. C is irreflexive.

4.26 Definition An LKvs-proof is a tuple 〈π,C, σ〉 where π is an LKvs-
skeleton, C is a spanning set of connections for π and σ is a closing substi-
tution for π wrt. C.

4.27 Conjecture The sequent calculus LKvs is sound and complete.

As mentioned in the introduction to this chapter, an informal consistency
proof for LKvs is that a substitution is closing for a skeleton only if it induces
dependencies between inferences in such a way that there is a permutation
variant which can be simulated in a variable pure sequent calculus. The stan-
dard variable pure sequent calculus is known to be sound (it is equivalent to
the restricted free variable tableaux in [12]). Consistency and completeness
of the variable splitting calculus will be treated in [3].

4.1.4 Towards a Search Procedure

In a proof search process, the question of whether a skeleton is closable
controls termination of the proof search. A satisfiable equation set has an
infinite set of unifiers. If we have to check each of them for reflexivity in
order to determine that a skeleton is not closable, and thus perform the next
skeleton expansion, it is impossible to design a proof search procedure for
LKvs. It turns out that in order to determine closability it is sufficient to
check whether a most general unifier for the set of primary and balancing
equations induces a irreflexive relation on the skeleton.

4.28 Lemma Let π be an LKvs-skeleton, C a spanning connection set for
π and σ a most general unifier for Prim(C) ∪ Bal(C). Let uA, uB be col-
ored variables in Var(C). If the terms (uA)σ, (uB)σ are non-unifiable, then
(uA)σ′ 6= (uB)σ′ for all unifiers σ′ for Prim(C) ∪ Bal(C).

Proof Assume for a contradiction that (uA)σ′ = (uB)σ′. Since σ is a most
general unifier for Prim(C)∪Bal(C) and thus more general than σ′, there is a
substitution τ such that σ′ = στ . But then τ is a unifier for the non-unifiable
terms (uA)σ, (uB)σ.

Throughout the rest if this chapter we generate the ≺σ-relation as follows
when testing a most general unifier for irreflexivity.

4.29 Definition (≺σ-relation for mgus) Let π be an LKvs-skeleton, let
C be a spanning connection set for π, and let σ be a most general unifier
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for Prim(C) ∪ Bal(C). The dependency relation induced by σ on π wrt. C,
denoted ≺σ, is a binary relation on indices in π such that i1 ≺σ i2 if and
only if

• there are colored variables uA, uB in Var(C) such that u has index i2
and the terms σ(uA) and σ(uB) are non-unifiable, and

• there are dual indices i′ ∈ A, i′′ ∈ B such that i1 = β(i′, i′′).

4.30 Lemma Let π be an LKvs-skeleton, C a spanning connection set for π
and σ a most general unifier for Prim(C) ∪ Bal(C). If (≪π ∪ ≺σ)

+ wrt.
C is reflexive, then (≪π ∪ ≺σ′)

+ wrt. C is reflexive for all unifiers σ′ for
Prim(C) ∪ Bal(C).

Proof Let σ′ be some unifier for Prim(C) ∪ Bal(C), and assume that the
relation (≪π ∪ ≺σ)

+ is reflexive. Then, ≺σ must be non-empty. (Other-
wise, (≪π ∪ ≺σ)

+ is irreflexive by Lemma 4.3.) Pick some (i1, i2) ∈≺σ. By
Definition 4.29 there are variables uA, uB ∈ Var(C) such that u has index
i2 and the terms (uA)σ, (uB)σ are non-unifiable. Since σ is more general
than σ′, (uA)σ′ 6= (uB)σ′ by Lemma 4.28. But then (i1, i2) ∈≺σ′ by Defi-
nition 4.24. Since (i1, i2) was arbitrarily chosen, ≺σ is a subset of ≺σ′ , and
hence (≪π ∪ ≺σ′)

+ is reflexive.

As a consequence of Lemma 4.30, there are no two most general unifiers σ,
σ′ for an equation set Prim(C) ∪ Bal(C) such that (≪π ∪ ≺σ)

+ wrt. C is
reflexive and (≪π ∪ ≺σ′)

+ wrt. C is irreflexive. Lemma 4.30 also yields the
following proposition.

4.31 Proposition An LKvs-skeleton π is closable if and only if there is a
spanning connection set C for π such that the relation (≪π ∪ ≺σ)

+ wrt. C
is irreflexive for a most general unifier σ for Prim(C) ∪ Bal(C).

Another problem with the LKvs-definition of closing substitution is the ir-
reflexivity check itself. It is not conceptually intuitive. By Lemma 4.3 the
relation ≪π is irreflexive and ≺σ is irreflexive by definition (it relates β- and
γ-indices). Thus, in order for (≪π ∪ ≺σ)

+ to be reflexive, there must be
a sequence of indices i1, . . . , in such that (in, i1) and each (ik, ik+1) are in
(≪π ∪ ≺σ). An index graph is a directed graph where the nodes are the
indices occurring in (≪π ∪ ≺σ) and the edges are the relation (≪π ∪ ≺σ)
itself. Hence, the reflexivity check for (≪π ∪ ≺σ)

+ is reduced to a cycle
check of the index graph for (≪π ∪ ≺σ). I will in the following display index
graphs with the symbols in Figure 4.4.

Another observation is that the index graph constructed from ≪π alone
is acyclic. This follows by a simple argument based on Proposition 2.33.
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(Intuitively, the relation ≪π is a relation between (instances of) subformulae,
i.e. a set of formula trees [1].) Also, ≪π can be updated incrementally in
parallel with skeleton expansion. The cycle check can thus be performed by
adding the members of ≺σ to the index tree for ≪π one by one. If the index
tree was acyclic before a new edge e is added, then a cycle in the graph after
e is added includes e.

As a result of the contraction copies in γ-expansions, an index graph can
grow very large. However, we do not have to store the entire graph. A graph
structure keeping track of only relations between formula numbers in the
skeleton π is finite and can be constructed from the root sequent. The ≪π

relation can then be calculated directly for each index according to these
rules taken from [3].

Let κ = 〈k1, . . . , kn〉 and τ = 〈t1, . . . , tm〉. Then κ
m ≪π

τ
n holds if

• m is related to n or m = n in the formula number relation for π, and

• n ≤ m, and

• ki = ti for 1 ≤ i ≤ n, and

• kn ≤ tn.

Nodes

i Index of an atomic formula.

i θ Index of a formula with principal type θ.

Edges

i1 θ1

i2 θ2

i1 ≪π i2 i1 γ i2 β i2 ≺σ i1

Figure 4.4: The node and edge symbols used in an index graph.

4.1.5 Examples

In this section we present some examples illustrating the main concepts of
LKvs-skeletons and closability.

4.32 Example Let π be the LKvs-skeleton in Figure 4.5. Let C be the span-
ning connection set consisting of the connections

c1 : Pu1.1{1
4} ⊢ Pa1 and c2 : Pu1.1{1

5} ⊢ Pb1
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∀xPx2{1
4}, Pu

1.1{1
4} ⊢ Pa1

∀xPx1{1
4} ⊢ Pa1

γu
∀xPx2{1

5}, Pu
1.1{1

5} ⊢ Pb1

∀xPx1{1
5} ⊢ Pb1

γu

∀x
1
Px
2

1 ⊢ Pa
4

∧
3
Pb
5

1
β

σ = {u{1
4}/a, u{

1
5}/b }

1
1 γ

2
1

1.1
2

1
3 β

1
4

1
5

Abbreviations: u = u1
1

Figure 4.5: A closable LKvs-skeleton. See Example 4.32 for details.

from the left and right leaf sequent of π. The set of primary equations for
C is Prim(C) = {u{1

4} ≈ a, u{1
5} ≈ b}, and the set of balancing equations is

empty. The substitution σ = {u{1
4}/a, u{

1
5}/b} satisfies Prim(C) ∪ Bal(C).

The relation ≺σ wrt. C is {(13,
1
1)}, but the index graph for ≪π ∪ ≺σ wrt. C

is acyclic, as shown in Figure 4.5. Hence, σ is closing for π.

4.33 Example Let π be the LKvs-skeleton in Figure 4.6. The root sequent

∃x(Rx→ Px),∀xRx,∃xQx ⊢ ∃x(Px ∧Qx)

is not valid. A falsifying model is e.g. |M | = {0, 1} such that 0 ∈ PM ,
1 ∈ QM and 0, 1 ∈ RM . The connection set C containing

c1 : Ru1.1{1
3} ⊢ Ra1

c2 : Pa1{1.1
11 } ⊢ Pv1.1{1

4}

c3 : Qb1{1
4,

1.1
12 } ⊢ Qv1.1{1

4}

is the only spanning connection set for π. The set of primary equations for
C is

Prim(C) = {u{1
3}≈a, a≈v{

1
4}, b≈v}

and the set of balancing equations is

Bal(C) = {v≈v{1
4}} .

Let σ = {u{1
3}/a, v{

1
4}/a, v/b }, which is a most general unifier for Prim(C).

The relation ≺σ is empty, and thus the index graph for ≪π ∪ ≺σ is acyclic.
But since σ does not satisfy Bal(C), it is not closing for π. The set Prim(C)∪
Bal(C) is not satisfiable, and hence the skeleton is not closable.
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4.34 Example Let π be the LKvs-skeleton in Figure 4.7. The root sequent

∀x((Px ∧ Sa) ∨ (Qx ∧Rb)) ⊢ ∃x((Px ∨Rx) ∧ (Qx ∨ Sx))

is not valid. A falsifying model is e.g. |M | = {0, 1} such that aM = 1,
bM = 0, 0 ∈ PM , 1 ∈ QM , 0 ∈ RM and 1 ∈ SM . The connection set C
containing

c1 : Pu1.1{1.1
11 } ⊢ Pv1.1{1.1

3 }

c2 : Rb1.1{1.1
11 } ⊢ Rv1.1{1.1

6 }

c3 : Sa1.1{1.1
14 } ⊢ Sv1.1{1.1

3 }

c4 : Qu1.1{1.1
14 } ⊢ Qv1.1{1.1

6 }

is the only spanning connection set for π. The set of primary equations for
C is

Prim(C) = {u{1.1
11 }≈v{

1.1
3 }, b≈v{1.1

6 }, a≈v{1.1
3 }, u{1.1

14 }≈v{
1.1
6 }} ,

and the set of balancing equations for C is empty. The substitution

σ = {u{1.1
11 }/a, u{

1.1
14 }/b, v{

1.1
3 }/a, v{1.1

6 }/b }

is a most general unifier for Prim(C) ∪ Bal(C). The relation induced by σ
on π wrt. C is ≺σ= {(1.110 ,

1
1), (1.12 , 19)}, which generates a cycle in the index

graph for ≪π ∪ ≺σ as shown in Figure 4.7. Thus, σ is not closing for π.
Since σ is a most general unifier for Prim(C) ∪ Bal(C), the skeleton is not
closable.
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Ru1.1{1
3} , Qb

1{1
3} ⊢ Ra1 , ∃x(Px ∧Qx)1{1

3}

∀xRx1{1
3}, Qb

1{1
3} ⊢ Ra1, ∃x(Px ∧Qx)1{1

3}
γu

Pa1{1.1
11 } , ∀xRx

1{1
4,

1.1
11 }, Qb

1{1
4,

1.1
11 } ⊢ Pv1.1{1

4} Pa1{1.1
12 }, ∀xRx

1{1
4,

1.1
12 }, Qb

1{1
4,

1.1
12 } ⊢ Qv1.1{1

4}

Pa1, ∀xRx1{1
4}, Qb

1{1
4} ⊢ Pv ∧Qv1.1{1

4}

Pa1, ∀xRx1{1
4}, Qb

1{1
4} ⊢ ∃x(Px ∧Qx)1{1

4}
γv

Ra→ Pa1, ∀xRx1, Qb1 ⊢ ∃x(Px ∧Qx)1

Ra→ Pa1, ∀xRx1, ∃xQx1 ⊢ ∃x(Px ∧Qx)1
δb

∃x
1

(Rx
3

→
2
Px
4

)1, ∀x
5
Rx
6

1, ∃x
7
Qx
8

1 ⊢ ∃x
9

(Px
11

∧
10
Qx
12

)1
δa

σ = {u{1
3}/a, v{

1
4}/a, v/b }

1
1 δ

1
2 β

1
3

1
4

1
5 γ

1.1
6

1
7 δ

1
8

1
9 γ

1.1
10 β

1.1
11

1.1
12

Abbreviations: a = a1 b = a7 u = u1
5 v = u1

9

Figure 4.6: A non-closable LKvs-skeleton. Contraction copies of γ-formulae are not displayed. See Example 4.33 for details.
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Pu1.1{1.1
11 } ⊢ Pv1.1{1.1

3 }

Pu ∧ Sa1.1{1.1
11 } ⊢ Pv ∨Rv1.1{1.1

3 }

Rb1.1{1.1
11 } ⊢ Rv1.1{1.1

6 }

Qu ∧Rb1.1{1.1
11 } ⊢ Pv ∨Rv1.1{1.1

6 }

(Pu ∧ Sa) ∨ (Qu ∧Rb)1.1{1.1
11 } ⊢ Pv ∨Rv1.1

β

Sa1.1{1.1
14 } ⊢ Sv1.1{1.1

3 }

Pu ∧ Sa1.1{1.1
14 } ⊢ Qv ∨ Sv1.1{1.1

3 }

Qu1.1{1.1
14 } ⊢ Qv1.1{1.1

6 }

Qu ∧Rb1.1{1.1
14 } ⊢ Qv ∨ Sv1.1{1.1

6 }

(Pu ∧ Sa) ∨ (Qu ∧Rb)1.1{1.1
14 } ⊢ Qv ∨ Sv1.1

β

(Pu ∧ Sa) ∨ (Qu ∧Rb)1.1 ⊢ (Pv ∨Rv) ∧ (Qv ∨ Sv)1.1
β

(Pu ∧ Sa) ∨ (Qu ∧Rb)1.1 ⊢ ∃x((Px ∨Rx) ∧ (Qx ∨ Sx))1
γv

∀x
1

((Px
4

∧
3
Sa
5

) ∨
2

(Qx
7

∧
6
Rb
8

))1 ⊢ ∃x
9

((Px
12

∨
11
Rx
13

) ∧
10

(Qx
15

∨
14
Sx
16

))1
γu

σ = {u{1.1
11 }/a, u{

1.1
14 }/b, v{

1.1
3 }/a, v{1.1

6 }/b }

1
1 γ

1.1
2 β

1.1
3 α

1.1
4

1.1
5

1.1
6 α

1.1
7

1.1
8

1
9 γ

1.1
10 β

1.1
11 α

1.1
12

1.1
13

1.1
14 α

1.1
15

1.1
16

Abbreviations: u = u1
1 v = u1

9

Figure 4.7: A non-closable LKvs-skeleton. Contraction copies of γ-formulae are not displayed. See Example 4.34 for details.
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4.2 Constraints for Splitting Skeletons

The increased restrictions put upon closing substitutions by the closure con-
dition of LKvs must be reflected by the constraint definitions. I shall use two
different approaches. First, I present a constraint language almost identical
to the one for LKv-constraints. These constraints capture the primary and
secondary equations of spanning connections sets and calculates them induc-
tively. The cycle check is however only performed when a satisfiable atomic
constraint reaches the root sequent. Thus, while primary and secondary
equations are calculated incrementally, the cycle check is global. Then, I
present a variant of incremental constraints which calculates the dependency
relation and performs cycle checking incrementally during propagation of in-
crement sets. With this approach, a satisfiable atomic constraint reaches
the root sequent only if the induced index graph is acyclic. The notions de-
fined in Section 3.1 regarding expansion sequences, set of leaf sequents and
connections, new connections, etc. transfer to LKvs-skeletons in the obvious
way.

In Section 4.2.1 the constraint language is introduced, and in Section 4.2.2
global constraints are defined. In Section 4.2.3 I introduce incremental split-
ting constraints and present an example of constraint calculation. Finally,
and alternative constraint definition with an incremental cycle check is pre-
sented in Section 4.2.4.

4.2.1 Constraint Language

Constraints and atomic constraints are defined in the same way as in Sec-
tion 3.2.1. Also, the satisfiability relation for constraints is like in Defini-
tion 3.21. When two atomic constraints are merged, new balancing equations
are generated as follows.

4.35 Definition Let S1 and S2 be equation sets. Then, Bal(S1, S2) is the
set of equations such that uA≈uB ∈ Bal(S1, S2) if and only if uA ∈ Var(S1),
uB ∈ Var(S2) and A�B = B �A.

The merging operator is defined as follows.

4.36 Definition (Merging) Let µ1 and µ2 be atomic constraints. The
merging of µ1 and µ2, denoted µ1 ⊗ µ2, is defined as follows.

• If µ1 = ⊥ or µ2 = ⊥, then

µ1 ⊗ µ2 := ⊥ .
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• Otherwise,

µ1 ⊗ µ2 := Solve(µ1 ∪ µ2 ∪ Bal(µ1, µ2)) .

The merging operator is extended to constraints in the same way as in Defi-
nition 3.25.

As we showed in Section 3.1.3, equation sets in solved form can be utilized
as substitutions. This is formalized as follows.

4.37 Definition Let S be an equation set in solved form. The application
of S on a colored variable uA, denoted S(uA), is defined as follows.

• If there is an equation uA≈ t in S, then

S(uA) := t .

• Otherwise,

S(uA) := uA .

Since the left-hand sides of equations in an equation set in solved form are
distinct, the above definition is well-defined. The cycle checking operator is
defined as follows.

4.38 Definition For each LKvs-skeleton πk we define a cycle check opera-
tor, denoted Checkπk

, for atomic constraints as follows. Let µ be an atomic
constraint.

• If µ = ⊥, then

Checkπk
(µ) := ⊥ .

• Otherwise, let S = MGU(µ). If the index graph for ≪πk
∪ ≺S contains

a cycle, then

Checkπk
(µ) := ⊥ .

• Otherwise,

Checkπk
(µ) := µ .

The cycle check operator is extended to constraints as follows. Let χ be a
constraint.

Checkπk
(χ) := {Checkπk

(µ) | µ ∈ χ}
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4.2.2 Global Constraints

The global constraint definition and its correctness proof facilitates the cor-
rectness proof for the incremental constraints in the next section. When
generating atomic constraints for connections, we have to include both the
primary and secondary equations.

4.39 Definition For each connection c we define an atomic constraint, de-
noted Atom(c), as follows.

Atom(c) := Solve(Prim(c) ∪ Bal(c))

Global constraints are defined as follows.

4.40 Definition (Global Constraints) For each sequent s in a skele-
ton πk we define a global constraint, denoted GCk(s), as follows.

• If s is a leaf sequent, then

GCk(s) := {Atom(c) | c ∈ Conn(s)}.

• Otherwise, let Lvsk(s) = {l0, . . . , ln}. Then,

GCk(s) := (GCk(l0) ⊗ GCk(l1)) ⊗ · · · ⊗ GCk(ln)

We define the global constraint for πk, denoted GC(πk), as

GC(πk) := Checkπk
(GCk(r)),

where r is the root sequent of πk.

The following lemma is needed in the correctness proof for global LKvs-
constraints.

4.41 Lemma Let πk be an LKvs-skeleton, let C = {c1, . . . , cn} be a set of
connections, and let µ = (Atom(c1) ⊗ Atom(c2)) ⊗ . . . ⊗ Atom(cn). Then a
substitution σ satisfies µ if and only if σ satisfies Prim(C) ∪ Bal(C).

Proof By induction on n. The base case (n = 1) is trivial.

Induction step: Let µ′ = (Atom(c1) ⊗ Atom(c2)) ⊗ . . . ⊗ Atom(cn), let µ =
µ′⊗Atom(cn+1), let C ′ = {c1, . . . , cn}, and let C = C ′ ∪{cn+1}. We assume
the claim holds for µ′ (IH), and show that it holds for µ.

“If”-direction: Assume σ satisfies Prim(C) ∪ Bal(C). Then σ satisfies
Prim(C ′)∪Prim(cn+1). Since Bal(C ′) and Bal(cn+1) are subsets of Bal(C), σ
satisfies µ′ and Atom(cn+1) by IH and Definition 4.39. Pick some uA≈uB
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in Bal(µ′,Atom(cn+1)). Since the set of colored variables in C ′ and cn+1 are
subsets of Var(C), uA≈ uB is in Bal(C) and hence it is solved by σ. But
then σ satisfies µ = µ′ ∪ Atom(cn+1) ∪ Bal(µ′,Atom(cn+1)).

“Only if”-direction: Assume σ satisfies µ. Then, σ satisfies µ′, and hence
Prim(C ′) and Bal(C ′) by IH. σ also satisfies Atom(cn+1), and hence Prim(cn+1)
and Bal(cn+1). Then σ satisfies Prim(C). Pick some uA≈uB in Bal(C). If
uA≈uB is in Bal(C ′) or Bal(cn+1), then it is solved by σ. If uA≈uB is in
neither sets, then uA is in Var(C ′) and uB is in Var({cn+1}) or vice versa.
By Definition 4.35 uA≈uB is in Bal(µ′,Atom(cn+1)), and hence it is solved
by σ.

We cannot show correctness of global LKvs-constraints in the same way as for
LKv-constraints. The reason is that there are substitutions which satisfy the
global constraint for a skeleton πk, but are not closing for πk. Assume that
colored variables uA, uB in Var(C) contain dual indices, and that (uA)σ =
fv, (uB)σ = fw for a most general unifier σ for Prim(C) ∪ Bal(C). The
terms fv and fw are unifiable. If τ = σ{v/a,w/b} is a unifier for Prim(C)∪
Bal(C), then the terms (uA)τ , (uB)τ are non-unifiable, and the pair uA, uB
contributes to the ≺τ -relation. If the index graph for ≪πk

∪ ≺σ is acyclic
and the graph for ≪πk

∪ ≺τ is cyclic, then τ satisfies Prim(C) ∪ Bal(C)
without being closing for πk. In a proof search process, the important thing
is whether a skeleton is closable or not. This can be expressed by means of
satisfiability of global constraints as follows.

4.42 Lemma Let πk be an LKvs-skeleton. Then, GC(πk) is satisfiable if and
only if πk is closable.

Proof Let r be the root sequent of πk, and let Lvs(πk) = {l1, . . . , ln}.

“If”-direction: Assume σ is closing for πk. Then, there is a spanning
set C = {c1, . . . , cn} for πk such that σ satisfies Prim(C) ∪ Bal(C). Let
µ = (Atom(c1) ⊗ Atom(c2)) ⊗ . . .⊗ Atom(cn). By Lemma 4.41 σ satisfies µ,
and thus σ satisfies GCk(r). Since σ is closing for πk, the index graph for
≪πk

∪ ≺σ is acyclic. Then, by Lemma 4.30 the index graph ≪πk
∪ ≺σ′

for any most general unifier σ′ for Prim(C) ∪ Bal(C) is acyclic, and hence
Checkπk

(µ) = µ. But then σ satisfies GC(πk).

“Only if”-direction: Assume GC(πk) is satisfiable. Then, Checkπk
(µ) is sat-

isfiable for some µ in GCk(r), and hence the index graph for each most general
unifier for µ is acyclic. (If one is cyclic, then all are by Lemma 4.30.) Let σ be
a most general unifier for µ. By Definition 4.40 µ = (Atom(c1) ⊗ Atom(c2))⊗
. . .⊗Atom(cn) for some spanning set C = {c1, . . . , cn} for πk. By Lemma 4.41
σ satisfies Prim(C) ∪ Bal(C), and hence σ is closing for πk.

4.43 Example Let πk be the skeleton in Figure 4.7, let r be the root sequent
of πk, and let the leaf sequents of πk be (from left to right) l1, l2, l3 and l4.
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Let C = {c1, . . . , c4} be the connection set as listed in Example 4.34. The
global constraint for πk is

GC(πk) = Checkπk
(GCk(r))

= Checkπk
([[GCk(l1) ⊗ GCk(l2)] ⊗ GCk(l3)] ⊗ GCk(l4))

= Checkπk
({[[Atom(c1) ⊗ Atom(c2)] ⊗ Atom(c3)] ⊗ Atom(c4)})

= Checkπk
({Prim(C)})

= {⊥}

The set Prim(C) is the same equation set as in Example 4.34, for which
there is only one most general unifier. See the index graph in Figure 4.7 for
intuitions on why the cycle check fails.

4.2.3 Incremental Constraints

The definition of incremental constraints is similar to the one used in Sec-
tion 3.2.3. For convenience, I have included the complete definition and put
the differences from the LKv-definition in black boxes .

4.44 Definition For each skeleton πk in an LKvs expansion sequence, for
each connection cik in NewConn(πk) = {c1k, . . . , c

nk

k }, and each sequent s in πk
we define inductively an incremental constraint, denoted Cik(s), as follows.

Initialization (k = 0 and i = 0): The skeleton π0 contains a single sequent r.

The constraint for r before any connections are taken into account, C0
0(r), is

defined as follows.
C0

0(r) := ∅

Inductive step 1 (increase of k and reset of i to 0): Assume that nk−1 is the

number of new connections for πk−1, and that C
nk−1

k−1 (s) is known for all
sequents s in πk−1. Let l′ be the expanded leaf sequent of πk−1. For all k > 0
and all sequents s in πk we define C0

k(s) as follows.

• If s is new to πk, then s is a premiss of the inference having l′ as
conclusion. We define

C0
k(s) := C

nk−1

k−1 (l′).

• Otherwise, s is also a sequent in πk−1 and we define

C0
k(s) := C

nk−1

k−1 (s).

Inductive step 2 (increase of i): Assume that 0 < i ≤ nk, and that Ci−1
k (s) is

known for all sequents s in πk. Let B be the branch in πk defined by Leaf(cik).
We define an increment set w.r.t. the connection cik, denoted INCik(s), for
each s in πk in the following way.
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• If s is not on B, then

INCik(s) := ∅.

• Otherwise, if s = Leaf(cik), then

INCik(s) := {Atom(cik)} .

• Otherwise, if s is the conclusion of a non-branching inference with
premiss s′, then

INCik(s) := INCik(s
′).

• Otherwise, s is the conclusion of a branching inference θ. Let s′ and
s′′ be the premisses of θ, and assume s′ is on B. We define

INCik(s) := INCik(s
′) ⊗ Ci−1

k (s′′).

We define

Cik(s) := Ci−1
k (s) ∪ INCik(s) .

Let r be the root sequent of πk and nk the number of new connections for πk.
The constraint for πk, denoted C(πk), is defined as

C(πk) := Checkπk
(Cnk

k (r)) .

In order to show correctness for incremental constraints for LKvs-skeletons,
we need a definition of what it means for a connection set to be spanning
for a sequent in a skeleton.

4.45 Definition Let πk be a skeleton in an LKvs expansion sequence, let s
be a sequent in πk, let NewConn(πk) = {c1k, . . . , c

nk

k }, and let C be a set of
connections C.

• C is spanning for s if it contains exactly one connection from each leaf
sequent in Lvsk(s).

• C is spanning for s up to cik if it is spanning for s and does not contain
any of the connections ci+1

k , . . . , cnk

k .

The following lemma is needed in the correctness proof.

4.46 Lemma Let πk be a skeleton in an LKvs expansion sequence, let s be a
sequent in πk, let NewConn(πk) = {c1k, . . . , c

n
k}, and let σ be a substitution.

Then, σ satisfies Cik(s) if and only if σ satisfies Prim(C) ∪ Bal(C) for a set
of connections C spanning for s up to cik.
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Proof By induction on the pair 〈k, i〉, and on sequent depth within each
case. The base case 〈0, 0〉 is trivial, so is the induction step 〈k, nk〉 → 〈0, k+
1〉. In the induction step 〈k, i〉 → 〈k, i + 1〉, the proof is trivial for leaf
sequents (depth 0). The induction step depth d → d + 1 uses a similar
argument as that used in Lemma 4.41 for global constraints.

4.47 Theorem Let πk be a skeleton in an LKvs expansion sequence. Then,
C(πk) is satisfiable if and only if πk is closable.

Proof The proof is based on Lemma 4.46 and is similar to the correctness
proof for global constraints.

A proof search is terminated as soon as the constraint associated with the
root sequent represents a closing substitution. Hence, the cycle check can
be applied directly to the increment set for the root sequent for each new
connection, i.e. Checkπk

(INCik(r)).

4.48 Example Let π4 be the skeleton in Figure 4.8. The root sequent

∀xPx ⊢ ((Pa ∧ Pb) ∧ Pc) ∧ Pd

is valid. The incremental constraints for each sequent in the skeleton are
displayed in the table in Figure 4.8. Let NewConn(π4) = {c14, c

2
4}, where the

connections are

c14 : Pu1.1{1
4,

1
5,

1
6} ⊢ Pa1

c24 : Pu1.1{1
4,

1
5,

1
7} ⊢ Pb1

The increment set for the root sequent s0 resulting from the new connection
c24 is

INC2
4(s0) = INC2

4(s1)

= INC2
4(s2′) ⊗ C1

4(s2′′)

=
(
INC2

4(s3′) ⊗ C1
4(s3′′)

)
⊗ C1

4(s2′′)

=
((

C1
4(s4′) ⊗ INC(s4′′)

)
⊗ C1

4(s3′′)
)
⊗ C1

4(s2′′)

= {{u{1
4,

1
5,

1
6}≈a, u{

1
4,

1
5,

1
7}≈b, u{

1
4,

1
8}≈c, u{

1
9}≈d}} .

The substitution

σ = {u{1
4,

1
5,

1
6}/a, u{

1
4,

1
5,

1
7}/b, u{

1
4,

1
8}/c, u{

1
9}/d}

is a most general unifier for the only atomic constraint in INC2
4(s0). The

index graph for ≪π4
∪ ≺σ is acyclic, as illustrated in Figure 4.9.
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s4′ : Pu1.1{1
4,

1
5,

1
6} ⊢ Pa1 s4′′ : Pu1.1{1

4,
1
5,

1
7} ⊢ Pb1

s3′ : Pu1.1{1
4,

1
5} ⊢ Pa ∧ Pb1 s3′′ : Pu1.1{1

4,
1
8} ⊢ Pc1

s2′ : Pu1.1{1
4} ⊢ (Pa ∧ Pb) ∧ Pc1 s2′′ : Pu1.1{1

9} ⊢ Pd1

s1 : Pu1.1 ⊢ ((Pa ∧ Pb) ∧ Pc) ∧ Pd1

s0 : ∀x
1
Px
2

1 ⊢ ((Pa
6

∧
5
Pb
7

) ∧
4
Pc
8

) ∧
3
Pd
9

1
γu

C0
0 C0

1 C0
2 C1

2 C0
3 C1

3 C0
4 C1

4 C2
4

s0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {uA≈a, uB≈b, uC≈c, uD≈d}

s1 - ∅ ∅ ∅ ∅ ∅ ∅ ∅ {uA≈a, uB≈b, uC≈c, uD≈d}
s2′ - - ∅ ∅ ∅ ∅ ∅ ∅ {uA≈a, uB≈b, uC≈c}
s2′′ - - ∅ {uD≈d}
s3′ - - - - ∅ ∅ ∅ ∅ {uA≈a, uB≈b}

s3′′ - - - - ∅ {uC≈c}
s4′ - - - - - - ∅ {uA≈a}
s4′′ - - - - - - ∅ ∅ {uB≈b}

Abbreviations:
A = {1

4,
1
5,

1
6}

B = {1
4,

1
5,

1
7}

C = {1
4,

1
8}

D = {1
9}

u = u1
1

Figure 4.8: A closable LKvs-skeleton and a table showing the incremental constraints for each skeleton expansion and for each new
connection. Contraction copies of γ-formulae are not displayed. For a description, see Example 4.48.
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1
1 γ

1.1
2

1
3 β

1
4 β

1
5 β

1
6

1
7

1
8

1
9

σ = {u{1
4,

1
5,

1
6}/a, u{

1
4,

1
5,

1
7}/b, u{

1
4,

1
8}/c, u{

1
9}/d}

Figure 4.9: The acyclic index graph for the relation ≪π4
∪ ≺σ, where π4 is

the skeleton in Figure 4.8.

4.2.4 Incremental Cycle Check

The incremental constraints in Section 4.2.3 provide a way of calculating
constraints for LKvs-skeletons in parallel with skeleton expansion. When an
increment set is generated for a new connection in a leaf sequent and prop-
agated towards the root, the necessary balancing equations are generated at
each β-inference by the merging operator. In comparison, cycle checking is
done only when an increment set reaches the root sequent. I shall in this
section outline an alternative constraint definition in which cycle checking of
constraints is done at β-inferences by the merging operator.

As shown in Lemma 4.30, it is sufficient to cycle check a most general unifier
for an equation set in order to determine whether the equation set represents
closing substitutions for a skeleton. In Section 3.1.3 we defined equation
sets in solved form and defined the MGU-function, which returns for each
satisfiable equation set an equivalent equation set in solved form. Atomic
constraints will in this section be defined as equation sets in solved form2.
Since an equation set in solved form is an equational representation of a
most general unifier for itself, the equations in the atomic constraint can be
utilized directly in order to generate members of the ≺-relation. We define
atomic constraints as follows.

4.49 Definition The set of atomic constraints is the least set satisfying
the following conditions.

• The symbol ⊥ is an atomic constraint.

2For now we ignore the fact that unification algorithms with equation sets in solved
form as output have exponential worst case complexity. This issue is briefly addressed in
Section 4.3.
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• A tuple 〈S,≺〉, in which S is an equation set in solved form and ≺ is
a binary relation on indices, is an atomic constraint.

Constraints are defined in the same way as in Section 4.2.1. When two atomic
constraints µ1, µ2 are merged in a β-inference, their equation sets are given
as input to the MGU-function generating the equation set for µ1 ⊗ µ2.

4.50 Lemma Let σ be a substitution, and let u and v be variables in the
domain of σ. If the terms uσ, vσ are non-unifiable, then uσ′, vσ′ are non-
unifiable for all substitutions σ′ such that σ is more general σ′.

Proof Assume for a contradiction that uσ′, vσ′ are unifiable. Then, (uσ′)ρ =
(vσ′)ρ for some substitution ρ. Since σ is more general than σ′, σ′ = στ for
some substitution τ . But then τρ is a unifier for the non-unifiable terms uσ,
vσ.

If we view equation sets in solved form as substitutions, then the equation
sets of µ1 and µ2 are both more general than the equation set of µ1 ⊗ µ2.
Hence, non-unifiability of terms (uA)σ, (uB)σ is preserved when atomic
constraints are propagated towards the root sequent. It is this monotonicity
which makes an incremental cycle check worthwhile. In the same way as
we generate necessary balancing equations, merging of atomic constraints
must also generate the necessary members of the ≺-relation. The definition
is relative to an LKvs-skeleton πk, since we need the ≪πk

-relation in order to
determine β-options and β-indices.

4.51 Definition Let S, S1 and S2 be equation sets in solved form. Then,
Gen(S, S1, S2) is the binary relation on indices such that 〈i1, i2〉 ∈ Gen(S, S1, S2)
if and only if

• there are colored variables uA, uB in Var(S) such that the index of u
is i2 and the terms S(uA), S(uB) are non-unifiable, and

• the terms S1(uA), S1(uB) are unifiable and the terms S2(uA), S2(uB)
are unifiable, and

• there are dual indices i′ ∈ A, i′′ ∈ B such that i1 = β(i′, i′′).

We must of course redefine the merging operator in order to incorporate cycle
checking and incremental generation of the ≺-relation. Again, the definition
is relative to an LKvs-skeleton.

4.52 Definition (Merging) Let µ1 and µ2 be atomic constraints. The
merging of µ1 and µ2, denoted µ1 ⊗ µ2, is defined as follows.
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• If µ1 = ⊥ or µ2 = ⊥, then

µ1 ⊗ µ2 := ⊥ .

• Otherwise, let µ1 = 〈S1,≺1〉, µ2 = 〈S2,≺2〉 and S = MGU(S1 ∪ S2 ∪
Bal(S1, S2)). If S = ⊥, then

µ1 ⊗ µ2 := ⊥ .

• Otherwise, let ≺ = ≺1 ∪ ≺2 ∪ Gen(S, S1, S2). If the index graph for
≪π ∪ ≺ contains a cycle, then

µ1 ⊗ µ2 := ⊥ .

• Otherwise,

µ1 ⊗ µ2 := 〈S,≺〉 .

The merging operator is extended to constraints in the same way as in Defi-
nition 3.25.

Incremental constraints incorporating the new cycle checking merging oper-
ator are defined like in Definition 4.44, except that the cycle check in the
root node is no longer necessary. Figure 4.10 shows part of an LKvs-skeleton
πk obtained by expanding a leaf sequent l in πk−1. The β-inference is on the
path from l to the root sequent of the skeleton. The increment set for s is
the result of merging the increment set for s′ with the incremental constraint
for s′′.

π′

l

l1 l2

s′

π′′

s′′

s β

...
µ1 ∈ INCik(s

′)
µ2 ∈ Cik(s

′′)

Figure 4.10: Part of an LKvs-skeleton πk. The β-inference is on the path
from the expanded leaf sequent l of πk−1 to the root sequent. The increment
set for s is the result of merging the increment set of s′ with the incremental
constraint for s′′.

Let µ1 = 〈S1,≺1〉 and µ2 = 〈S2,≺2〉 be atomic constraints in INCik(s
′) and

Cik(s
′′), respectively. The equation set component S of µ1 ⊗ µ2 is generated

in the same way as with the merging operator in Section 4.2.1. If S is not
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satisfiable, then µ1 ⊗ µ2 is ⊥. Otherwise, a relation ≺ is generated, which
contains ≺1 and ≺2 as subsets. This is justified by the monotonicity property
mentioned earlier in this section; if the terms Sj(uA), Sj(uB) for j ∈ {1, 2}
are non-unifiable, then so are S(uA), S(uB), since Sj is more general than
S. In addition, ≺ contains new members resulting from the merging of S1

and S2. Let uA, uB be colored variables such that i1 ∈ A, i2 ∈ B are dual
indices. If the terms S1(uA), S1(uB) and the terms S2(uA), S2(uB) are
unifiable and the terms S(uA), S(uB) are non-unifiable, then uA, uB give
rise to a member of ≺ which is not in ≺1 or ≺2. The Gen-function generates
exactly those members. Finally, the relation ≺ is cycle checked. If it contains
a cycle, then µ1 ⊗ µ2 is set to ⊥. As a result, µ1 ⊗ µ2 is satisfiable only if
the ≺-relation is acyclic.

The new definition of atomic constraints requires a new function for gener-
ating atomic constraints from connections in leaf sequents. As the following
lemma suggests, we do not have to generate the ≺-relation when generating
atomic constraints for connections.

4.53 Lemma Let π be an LKvs-skeleton, let C = {c} be a connection set,
and let σ be a substitution. Then, ≺σ wrt. C is empty.

Proof A connection c is a sequent of the form P~sA ⊢ P~tB. The corre-
sponding colored connections is P~s ⊕ (A \ B) ⊢ P~t ⊕ (B \ A). The colors
(A \B) and (B \ A) are subsets of the splitting set for the branch the con-
nection is in. By Lemma 4.20 the splitting set for the branch contains no
dual indices, and thus there are no dual indices in the two colors. Then, by
Definition 4.24 ≺σ wrt. {c} is empty.

We define the Atom-function as follows.

4.54 Definition For each connection c we define an atomic constraint, de-
noted Atom(c), as follows. Let S = MGU(Prim(c) ∪ Bal(c)).

• If S = ⊥, then
Atom(c) := ⊥ .

• Otherwise,
Atom(c) := 〈S, ∅〉 .

4.55 Conjecture Let πk be an LKvs-skeleton. Then, C(πk) is satisfiable if
and only if πk is closable.

The correctness proof is done by induction on 〈k, i〉 and the sequent depth,
similar to the proof for the incremental constraints in Section 4.2.3 . The
only problem is the generation of balancing equations. In the constraint def-
inition where the atomic constraints are equations sets, all colored variables
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occurring in a spanning connection set is also in the corresponding atomic
constraint. This is however not the case when equation sets are represented
as equivalent equation sets in solved form. Let Prim(C) contain trivial equa-
tions uA ≈ uA, uB ≈ uB such that the colored variables uA, uB do not
occur in any other equation in Prim(C), and let S be the equation set in
solved form corresponding to Prim(C). Then, uA, uB are in Var(C) but
not in Var(S). If A � B = B � A, then the balancing equation uA≈ uB
is included when generating balancing equations for C. Since the variables
uA, uB are not in Var(S), we have no guarantee that uA≈uB is solved by
a most general unifier for S.

The equations uA≈uA, uB≈uB are trivial, and intuitively they should not
contribute to restrictions put upon closing substitutions. This may suggest
that the definition of closing substitutions for LKvs is too strict and that
the above described problem can be solved by a new definition of closing
substitutions for the calculus.

4.3 Concluding Remarks and Future Work

The variable splitting calculus LKvs [1, 32] is a free variable sequent calculus
generating variable sharing skeletons, which provide invariance under order
of rule application and facilitates connection driven proof search [31]. Due to
the context sharing rules of the calculus, instantiation variables are copied
into different branches in a skeleton by β-inferences. With rigid variable
instantiation, every occurrence of a variable is instantiated with the same
term. This prohibits branchwise restriction of the term search space, and
thus early detection of unprovability in some cases. By means of an index-
ing system and branch labels for formulae, the calculus LKvs labels different
branch occurrences of a variable differently. Thus, substitutions may instan-
tiate different branch occurrences of a variable with different terms. This is
called variable splitting.

Naive instantiation of variable occurrences easily leads to an unsound cal-
culus, as is illustrated by the examples in Section 4.1.5. Thus, in order for
a substitution to close an LKvs-skeleton, it must have additional properties
besides satisfying the primary equations generated from a spanning connec-
tion set. The requirements are defined in terms of balancing equations and
dependency relations induced by substitutions on LKvs-skeletons.

In Chapter 3 the concept of constraints was introduced, inspired by the in-
cremental closure framework of Giese [18]. Constraints are syntactic objects
generated from unification problems corresponding to the closure condition
of a calculus. Constraint semantics is defined by means of a satisfiability re-
lation between constraints and substitutions. With an inductive constraint
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definition for sequents in skeletons, the question of whether a skeleton is clos-
able can be expressed as a satisfiability check for the constraint associated
with the root sequent. Further, the inductive constraint definition facilitates
an incremental calculation of constraints alongside skeleton expansion.

Skeleton expansion may introduce new connections in the leaf sequents of a
skeleton. For each new connection, an increment set is defined recursively
for the root sequent, following the structure of the skeleton. Hence, a proof
search can be terminated as soon as the increment set for the root sequent
wrt. a new connection is satisfiable.

The requirements put upon closing substitutions for LKvs-skeletons is more
strict than those for LKv-skeletons. This affects the way constraints for LKvs-
skeletons are defined. In addition to the primary equations for partially
spanning connection sets, constraints must represent the corresponding bal-
ancing equations. This is solved by letting atomic constraints consist of both
primary and secondary equations. In this way, the satisfiability of both equa-
tion sets is tested when constraints are merged at β-inferences. The merging
operator must however generate new balancing equations resulting from the
merging process. In addition, a constraint definition for LKvs must have a
way of cycle checking the dependency relation induced by the equation set.

In Section 4.2.3 I presented an incremental constraint definition for LKvs-
skeletons and showed that it is correct, i.e. that the incremental constraint
associated with a skeleton is satisfiable if and only if the skeleton is clos-
able. However, with this definition the cycle check is performed only at the
root sequent of a skeleton. Hence, while primary and secondary equations
are generated incrementally by constraint merging at each β-inference, the
dependency relation is generated and cycle checked globally at the root se-
quent. The cycle check will however only be preformed whenever a satisfiable
atomic constraint reaches the root sequent.

I addressed this problem in Section 4.2.4, motivated by the fact that the de-
pendency relation generated for an atomic constraint grows monotonically
when the constraint is propagated towards the root sequent. A new con-
straint language was introduced, in which atomic constraints consist of an
equation set in solved form and a dependency relation. The merging opera-
tor was redefined in order to generate new members of dependency relations
resulting from constraint merging. Also, the cycle checking is performed at
each β-inference. Hence, the cycle check is performed incrementally, and a
satisfiable constraint reaches the root sequent only if the induced dependency
relation is acyclic. Another effect of this approach is that when two atomic
constraints are merged, the input to the unification algorithm consists of
two equation sets, which are already in solved form, and a set of balancing
equations. In this way, the work done by a unification at one β-inference can
be utilized by a unification further below on the branch.
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The constraint definitions given in this chapter are by no means the final
answer to how incremental proof search in the splitting calculus should be
conducted. There are several questions to be answered, some of which are
listed below.

Dag solved form. The definition of equation set in solved form used
throughout this thesis results in a unification algorithm with exponential
worst case complexity [23]. Since unification is performed very frequently
during an incremental proof search, it is desirable to reduce the running
time of unification. In the incremental constraint definition in Section 3.2.3,
the unifier itself is of no importance. Here we are merely interested in the
existence of a unifier. On the contrary, the incremental constraint definitions
in Chapter 4 utilizes the equivalence between equation sets in solved form
and most general unifiers in order to calculate dependency relations in the
cycle check. The efficiency of the unification algorithm in [27] is partly due to
the use of dag solved form, in which a certain reuse of terms is introduced in
order to reduce the worst case space requirement. I believe that it is possible
to define the equation sets of atomic constraints as dag solved forms, and
define the operations which generates dependency relations as operations on
dag solved forms.

Complexity analysis. A proof search procedure utilizing an incremental
constraint definition is undoubtedly far more efficient than the naive proce-
dure incorporating a global closure check after each expansion step. Exactly
how much more efficient is it? How does it compare to other proof search
procedures? The answers to these questions are closely related to the com-
plexity of the splitting calculus itself. Variable splitting reduces the need for
expanding contraction copies of γ-formulae. A variable splitting proof search
procedure will perform at its best on valid input sequents which require heavy
re-expansion of γ-formulae in a calculus without variable splitting.

Implementation. A prototype implementation will indicate how well the
search procedure performs in practice, and it would facilitate fine-tuning of
the underlying algorithms and data structures. Which approach performs
best in practice; the incremental or the global cycle check?

Dependency relation (≺) represented as equations. It is worth in-
vestigating whether the dependencies expressed by the ≺-relation can be
expressed with disjunctive equations or sets of equations. In Example 4.34
the cycle in the index graph is introduced because the two variables are split
by an ancestor of the γ-formula introducing the other variable. Equations
expressing that a closing substitution may split one of the variables but
not both would have prevented closure in this case. Can this be applied in
general?

New closure conditions for LKvs. As mentioned in the introduction to
this chapter, the variable splitting calculus has not reached its final form.
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Further research on this field will probably result in a refined closure condi-
tion for the calculus, which may result in improvements of the search proce-
dure.

Other logics. Work is underway with the goal of adapting the variable
splitting technique to sequent calculi for intuitionistic and modal logic among
others. Is it possible to design efficient proof search procedures for such
calculi based on incremental constraint definitions?

I sincerely hope to continue working with these topics and, hopefully, con-
tribute to shed light on some of the open questions. Finally, I close this
thesis with the saying of a Buddhist Master in the film Himalaya:

“Whenever there are two trails open in front of you, always choose
the hardest one; the one which will squeeze the best out of you.”
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Appendix A

Listing of the LK
vs-rules

See Figure A.1 on page 86.
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α-rules β-rules

Γ, ϕκA,ψκA ⊢ ∆

Γ, (ϕ ∧ ψ)κA ⊢ ∆
L∧

Γϕ
κ

⊢ ϕκA,∆ϕκ

Γψ
κ

⊢ ψκA,∆ψκ

Γ ⊢ (ϕ ∧ ψ)κA,∆
R∧

Γ ⊢ ϕκA,ψκA,∆

Γ ⊢ (ϕ ∨ ψ)κA,∆
R∨

Γϕ
κ

, ϕκA ⊢ ∆ϕκ

Γψ
κ

, ψκA ⊢ ∆ψκ

Γ, (ϕ ∨ ψ)κA ⊢ ∆
L∨

Γ, ϕκA ⊢ ψκA,∆

Γ ⊢ (ϕ→ ψ)κA,∆
R→

Γϕ
κ

⊢ ϕκA,∆ϕκ

Γψ
κ

, ψκA ⊢ ∆ψκ

Γ, (ϕ→ ψ)κA ⊢ ∆
L→

Γ, ϕκA ⊢ ∆

Γ ⊢ (¬ϕ)κA,∆
R¬

Γ ⊢ ϕκA,∆

Γ, (¬ϕ)κA ⊢ ∆
L¬

δ-rules γ-rules

Γ ⊢ ϕ[x/fm~u]
κA,∆

Γ ⊢ ∀xϕκA,∆
R∀

Γ,∀xϕκ
′

A,ϕ[x/uκm]κ.1A ⊢ ∆

Γ,∀xϕκA ⊢ ∆
L∀

Γ, ϕ[x/fm~u]κA ⊢ ∆

Γ,∃xϕκA ⊢ ∆
L∃

Γ ⊢ ∃xϕκ
′

A,ϕ[x/uκm]κ.1A,∆

Γ ⊢ ∃xϕκA,∆
R∃

Figure A.1: A complete listing of the LK
vs-rules. Legend: κ is a copy history

(see page 21), A is a splitting set (see page 57), m is the formula number

of the principal formula (see page 21), fm is a Skolem function and uκ
m is

an instantiation variable (see page 19), ~u is the set of instantiation variables
occurring in the principal formula (see page 22), κ.1 denotes the concatenation
of κ and 1, and κ′ denotes the copy history like κ except that the last element
is increased by one (see page 22). Γϕκ

denotes the set of decorated formulae
obtained by adding the index of ϕκ to the splitting set of every decorated
formula in Γ, see page 59.
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β-related, 57
β-rules, 14
δ-rules, 14
γ-rules, 14

active formula, 11
analytic, 12
ancestor, 56

-immediate, 56
antecedent, 9
arity, 6
atomic constraint, 36, 77

-unsatisfiable, 37
axiom, 14

balancing equation
-set of, 61

basic formula
-atomic, 6

basic formulae
-set of, 6

binary, 6
binary connectives, 6
bound variable, 8
branch

-splitting set of, 60
branching rule, 13

closable, 25
closed, 13
closed branch, 14
closed formula, 8
closure check, 14
closure condition, 13, 25
color assignment operator, 58

colored connection, 60

colored variable, 58

complete, 13

conclusion, 11

connection, 25, 60

connection set, 25, 61

connections set

-spanning, 25

constant, 6

constraint, 36

-satisfiability set, 37

context, 11

context sharing, 11

contraction, 12

copy history, 21

countermodel, 10

cycle check operator, 70

dag solved form, 35

decorated formula, 57

decorated sequent, 57

derivation

-expansion of, 13

-set of, 12

descendant, 56

-common, 56

-greatest common, 56

-immediate, 56

descendant relation, 55

domain, 9

dual, 57

eigenparameter, 14

eigenparameter condition, 14

equation, 21

equation set, 21
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-in solved form, 34

equation sets

-equivalent, 34

expanded branch, 13

expanded leaf sequent, 13, 31
expansion sequence, 30

-initial skeleton, 30

extended language, 10

extra formulae, 11

false, 10

falsify, 10

first-order language, 5
formula, 20

-closed, 20

-expansion of, 13

formula numbers, 21

free variable, 7

function symbol, 6

global constraint, 38, 71
ground, 20

ground term, 6

idempotent, 8

immediate descendant relation, 55

immediate subformula, 7

implicit contraction, 14
improper subformula, 7

increment set, 42, 73

incremental constraint, 40, 73

independent, 53

index, 21

index graph, 63

indexed formula, 21

-closed, 21

indexed sequent, 22

inference, 11

instantiation term
-colored, 58

instantiation terms

-set of, 20

instantiation variable, 19

interpretation function, 9

invariant under order of rule applica-
tion, 18

leaf sequent, 12
-new to skeleton, 31

leaf sequents
-set of, 31

main connective, 7
model, 9
most general unifier, 34

non-branching rule, 13

open branch, 14

predicate symbol, 6
premiss, 11
primary equation, 61
primary equations, 25
principal formula, 11
proof, 13, 25

-splitting, 62
proof confluent, 13
proof search procedure, 13

-complete, 13
propositional connective, 5
propositional connectives, 6
provable, 13
pruning, 60
punctuation symbol, 5

quantification variable, 5
quantifiers, 6

reduction ordering, 61, 63
root sequent, 12
rule, 11

-one-premiss, 11
-two-premiss, 11

satisfiable, 10, 21
satisfy, 10, 21
schema, 11
selection function, 13
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sequent, 9
-depth of, 47

-falsifiable, 10
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sequent calculus, 13

sequent symbol, 9
set of new connections, 32

-restriction of, 33

set of new leaf sequents, 31
skeleton, 19, 23, 59

-balanced, 61
-variable pure, 18

-variable sharing, 18
Skolem Constant, 20
Skolem function, 19

Skolem term, 19
solvable, 21

solve, 21
sound, 13

source identical, 24
splitting set, 57

-merging of, 58

subformula, 7
subsequent, 9

substitution, 8
-closing, 25, 62

-composition of, 8
-for colored instantiation terms,

58
-for instantiation terms, 20

-ground, 8
-having finite support, 8

-more general, 8
-support of, 8

subsumption, 49

-backward, 50
-forward, 50

succedent, 9
synthetic, 12

terms

-set of, 6
truth, 10

unary, 6
unary connective, 6
unifier, 21
unpruned variable, 60
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