
UNIVERSITY OF OSLO
Department of Informatics

Improving
performance of
STEP/EXPRESS
validation using
parallel processing

Cand Scient Thesis

André Næss

2nd August 2004

3

Preface
This is a thesis for the Cand. Scient. degree in computer science at the
Department of Informatics, University of Oslo.

I would first like to thank my supervisor associate professor Arne Maus,
for his encouragement and support which made this work possible.

I would also like to thank my supervisor at EPM Technology, Arne Tøn,
whose technical help has been invaluable.

Many thanks to EPM Technology for letting me use their office facilities,
and to the staff there for much appreciated help.

Thanks to all my friends for making my time as a student a pleasant and
fun time.

Thanks to SND and Kompetanseprogrammet for giving us money to buy
a cluster of computers.

And finally, thanks to my parents for moral as well as financial support.

Oslo, July 2004

André Næss

4

Contents

Contents 5

1 Introduction 13
1.1 Overview of the thesis . 13

2 Problem definition 15
2.1 Express Data Manager . 15
2.2 Parallel processing and cluster computing 16

2.2.1 Parallel processing in general 17
2.2.2 Motivations for cluster computing 17
2.2.3 Defining clusters . 18

3 An overview of STEP/EXPRESS 20
3.1 STEP . 20
3.2 The design of STEP . 22

3.2.1 Sharing versus Exchange 22
3.3 STEP building blocks . 23

3.3.1 Implementation methods 23
3.3.2 Data specifications . 25

3.4 Introduction to EXPRESS . 26
3.4.1 A brief history of EXPRESS 26
3.4.2 EXPRESS dialects . 27
3.4.3 EXPRESS Language elements 28

3.5 A summary of terminology . 32

4 Designing a parallel algorithm 34
4.1 Bottom-up versus top-down 35
4.2 Partitioning . 36

4.2.1 Available partitioning axes 37
4.2.2 Benchmark methodology 40
4.2.3 Metrics . 42

5

6 CONTENTS

4.2.4 E+R, too simple? . 43
4.2.5 E+R+P, an improvement over E+R? 45
4.2.6 E+P, now it gets interesting 46
4.2.7 The three schemes compared 47
4.2.8 The challenge of global rules 48

4.3 Communication . 50
4.4 Summary and conclusions . 51

5 Implementation 53
5.1 Choice of technology . 53
5.2 Overall architecture . 54

5.2.1 Distributing models . 55
5.2.2 Distributing schemas 57
5.2.3 Distributing tasks . 57

5.3 Error handling . 58
5.3.1 Disconnected slaves . 58
5.3.2 Handling other failures 59
5.3.3 Errors and task management 59

5.4 Writing applications using RMI 60
5.5 Modules . 61

5.5.1 The SlaveManager . 62
5.5.2 The TaskManager . 63
5.5.3 The Master . 63
5.5.4 The FileServer . 65
5.5.5 The Slave . 65
5.5.6 The ValidatorThread 66
5.5.7 Crosscutting issues . 66

5.6 Synchronization and state analysis 67
5.6.1 The master states . 67
5.6.2 The slave states . 68
5.6.3 Using barrier synchronization to ensure acceptable state

transitions . 69
5.6.4 Local synchronization requirements 70

5.7 Summary . 70

6 Performance analysis 72
6.1 Test environment . 72

6.1.1 Hardware configuration 72
6.1.2 Software setup . 73

6.2 Testing methodology . 73
6.2.1 Measuring execution times 74

CONTENTS 7

6.2.2 Test setup . 74
6.2.3 What to measure . 75
6.2.4 Data quality . 75

6.3 Findings . 76
6.3.1 Overall speedup . 76
6.3.2 The impact of partition size 79
6.3.3 Scalability . 80

6.4 Overhead . 82
6.4.1 Measuring overhead . 82
6.4.2 JNI overhead . 83
6.4.3 Transfer and import overhead 84
6.4.4 Load balance . 84

6.5 Reference data collection . 86
6.6 Summary . 87

7 Optimizing the system 88
7.1 Improving the import stage 88
7.2 Improving the partitioning scheme 90
7.3 Performance of the improved system 91

7.3.1 A new performance profile 92
7.4 Improving the file transfer . 93

7.4.1 A better server implementation 93
7.4.2 Model compression with GZip 94
7.4.3 Performance of the improved file transfer 94

7.5 Utilizing the master . 94
7.6 Final performance figures . 97

7.6.1 Why superlinear speedup? 97
7.6.2 Scalability revisited . 99
7.6.3 Task size distribution 100

8 Conclusion and ideas for future work 102
8.1 Summary . 102
8.2 Conclusion . 103
8.3 Concluding remarks . 103
8.4 Ideas for future work . 104

8.4.1 A general parallelization 104
8.4.2 Rule schema validation 105
8.4.3 More than one validation at the time 105
8.4.4 Spare cycle harvesting 105
8.4.5 A turnkey solution . 106
8.4.6 Tackling global rules 106

8 CONTENTS

A Sourcecode for the Master and Slave 108
A.1 RunMaster.java . 108
A.2 SlaveImpl.java . 117

List of Figures

2.1 The number of entries in the top 500 list classified as clusters
as of June 2004. 18

3.1 Data exchange by using system-to-system interface (left) and
a neutral interchange format (right). 21

3.2 Overview of the STEP documentation structure (adapted from
[Kemmerer99] page 49). 24

4.1 Partitioning the model into separate entity extents 38
4.2 Partitioning the entity extents into subpopulations 39
4.3 Average speedup factors for the different partitioning schemes. 47

5.1 System architecture overview 55
5.2 The general sequence of a validation using our task farming

approach. We have included only one slave, but each slave will
perform the same operations in the same order. 56

5.3 The layers of the RMI architecture 60
5.4 Using the Mediator design pattern to simplify the remote in-

terface . 64

6.1 Normalized semi-interquartile range of execution times 77
6.2 Best initial speedups achieved for the various models in our

test set. 78
6.3 Load distribution using partition sizes of 100 and 1000 on the

cpu model. The problem with a size of 1000 is evident for
slave 7, whose total execution time is much larger than any
others. 81

6.4 Relative efficiency in percent for the models in our test 83
6.5 Percentage of the total validation time spent transferring and

importing the model. 84

9

10 LIST OF FIGURES

7.1 A timeline showing the two approaches to model distribution.
On the left is the old approach, on the right is the new ap-
proach. The difference in length between the two blue bars in
the middle show the performance increase possible with the
new approach due to the increased parallelism. 89

7.2 Performance of the improved system relative to the initial ver-
sion. 92

7.3 Speedup of the new transfer stage relative to the old 95
7.4 Performance increase when utilizing the master for validation. 96
7.5 Final speedup results. 97
7.6 Task size variance for three entities in the part2-1 model mul-

tiplied 2, 4, 8, 16 and 32 times in size. 101

List of Tables

4.1 The nine most time consuming tasks performed when validat-
ing the bygga model using the E+R scheme. 43

4.2 Execution times in seconds using E+R partitioning with the
bygga model on hypothetical clusters. Upgrading from 8 to 12
or more nodes has no effect. 44

4.3 The nine most time consuming tasks when validating the bygga
model using the E+R+P scheme. With this partitioning scheme
the total number of tasks is significantly larger because each
E+R task is further broken down into tasks of ten instances
each. 45

4.4 Execution times in seconds using E+R+P partitioning with
the bygga model on hypothetical clusters 46

4.5 Table showing the execution times for a validation of variably
sized population with and without the R-axis. The times are
in milliseconds. Ratio is the size of With R-axis relative to
Without R-axis. 48

5.1 The states in which the master can be and the calls it can
receive. The master will always change between the states
from left to right, cycling back toReady when finishing Errors. 68

5.2 The states in which the slave can be and the calls it can receive. 69

6.1 Normalized semi-interquartile range of execution times 77
6.2 Measured speedup for a selection of models using a 8 node

cluster with 7 slaves and 1 master and partition sizes ranging
from 1 to 1000. 78

6.3 Difference in finishing time for the first and last slave, ex-
pressed in absolute terms (milliseconds), and as a percentage
of the total execution time. 85

7.1 Performance increase when utilizing the master for validation. 96
7.2 Final speedup results. 98

11

12 LIST OF TABLES

7.3 Relative efficiency using 1, 2, 4 and 8 nodes. 100

Chapter 1

Introduction

This thesis deals with using parallelization as a performance enhancing tech-
nique in an industrial context. The problem was put forward by EPM Tech-
nology, a Norwegian company specializing in tools used to manage data
stored using the STEP standard. STEP is an international standard de-
signed to be a neutral interchange format for product data, and it is used
throughout the world of engineering and manufacturing.

The STEP standard includes a data modeling language called EXPRESS.
EXPRESS is used to model various domains such as electronics, mechanical
engineering, construction etc. For each domain there is a set of entities as well
as rules applying to these. Based on these entities it is possible to describe a
product, for example a processor, a car or a house. This description is stored
as a STEP model.

Our goal is to speed up the validation of models, i.e. the process of
checking that the model adheres to the rules defined for the domain. The
validation process can be very time consuming due to the large amount of
data required to describe products and the complexity of the rules.

1.1 Overview of the thesis

In chapter 2 we define the problem and give an introduction to parallel
processing and cluster computing, differentiating clusters from other parallel
and distributed systems.

In chapter 3 we give an introduction to the STEP standard and the
EXPRESS language used to describe the rules we wish to execute faster.

In chapter 4 we then look at the structure of STEP models and consider
different approaches to breaking models down into smaller pieces that can
be executed in parallel. We also describe a benchmarking methodology that

13

14 CHAPTER 1. INTRODUCTION

we use to compare the approaches. Finally we look at the results from these
benchmarks.

In chapter 5 we move on to describe how the approach selected in chapter
4 can be implemented. We describe the technology we will use, and give an
outline of the architecture. We then give a more detailed description of the
various components that our system requires. The main goal of this chapter
is to describe a first version of the system that can be implemented fairly
quickly, allowing us to study the performance of this system to pick out
aspects of the implementation that need improvement.

Chapter 6 describes the environment in which we test the system, and
outlines a testing methodology. We then move on to test the system, with
focus on finding potentials for improvement. We also take a look at overhead
in the system.

Armed with the performance results from chapter 6 we attempt to im-
prove the system. Chapter 7 describes several improvements, showing how
each affect the performance of the system. We end this chapter with the
performance characteristics of the final, optimized system, and discuss some
interesting aspects of these results.

Finally, chapter 8 summarizes our experiences, and gives the final conclu-
sion of this thesis. We also discuss some things that could have been done
better, and give some ideas for possible future work.

Chapter 2

Problem definition

EPM Technology is a Norwegian company which supplies products used in
managing digital product data. Their tools use the EXPRESS data modeling
language, which supports several international standards for product data,
including ISO10303, also know as STEP. Among the products included in
the EDM Product Suite is a tool for validating data models against one or
more sets of rules, the EDMmodelChecker.

The process of validating a data set can take several hours, and EPM are
interested in reducing this. To achieve this will attempt to use parallelization.

2.1 Express Data Manager
The Express Data Manager product suite is a set of products developed by
EPM Technology to work with EXPRESS data models. The Express Data
Manager is a basically a Database Management System built for working
with EXPRESS data models. We will only look at one of the components,
the EDM ModelChecker, as this is the part of the suite used to validate
models.

As an example of a scenario we can consider automated building plan
approval where the data model for a construction project is validated against
rules defined by regulatory bodies like the fire department. Some example
rules may look something like this:

Clause 2.2.7 MinimumWidth No exit, exit staircase or other
exit facilities shall be narrower than the minimum width require-
ment as specified under Table 2.2A. The minimum clear width of
an exit door opening shall be not less than 850mm
Clause 2.2.9 - Measurement of width In the case of an exit
door opening, between the edge of the door jamb or stop and the

15

16 CHAPTER 2. PROBLEM DEFINITION

surface of the door when kept open at an angle of 90 degrees in
the case of a single leaf door; and in the case of a double leaf door
opening, between the surface of one leaf to the other when both
leaves are kept open at an angle of 90degrees.

Rules like these must of course be translated into EXPRESS. There are
many uses for such automated validation, and one can use them for business
rules as well as engineering rules. The important point is that the models
can be checked against any set of rules as long as they are written using
EXPRESS.

As the size and complexity of the models grow, so does the time it takes to
process them, and currently it is EPM Technology’s opinion that it takes too
long. Whenever computations take to long, there are basically three possible
solutions.

1. One can increase the speed of processing, i.e. the number of operations
the computer can carry out per time unit.

2. One can improve the algorithm, i.e. how the computation is performed.

3. One can increase the number of computers doing the computing, i.e.
parallel processing.

The first possibility eventually reaches physical limits, and even if the
speed of processors still grows year by year, it seems that the complexity of
our computations follow in its heels. As for the second solution, one must
presume that EPM Technology has optimized their system as far as possible,
and that improvements to the algorithm can only make a minor difference.

This leaves us with the third solution, parallel processing, which is the
path we wish to follow in this thesis. What we will attempt to do is to break
the models down into smaller parts. The validation of these parts can then
be executed in parallel, hopefully greatly speeding up the execution.

2.2 Parallel processing and cluster computing

The need for processing power seems insatiable. For every increase in pro-
cessing speed, applications grow to need more. Moore’s law has been holding
up for decades now, but recently processor manufacturers like Intel have
found it more and more difficult to increase the speed of their processors.

2.2. PARALLEL PROCESSING AND CLUSTER COMPUTING 17

2.2.1 Parallel processing in general

As sequential processors reach their limit, parallel processing offers the only
way to increase processing power. In it’s most general sense a parallel com-
puter is a collection of processors able to cooperatively perform a computa-
tion. This includes parallel supercomputers, distributed networks of work-
stations and multiprocessor workstations.

Traditionally parallel processing was applied to numerical simulations of
complex systems, but we are now seeing a growing interest for parallelism in
commercial application areas where processing of large amounts of data is
vital. Typical examples include multimedia systems and parallel databases.

While parallel processing in some form or other has been with us since
the dawn of the computing age, one approach which recently has received a
lot of attention is the use of clusters.

2.2.2 Motivations for cluster computing

[Buyya99-1] provides a good list of reasons why clusters have come to be
preferred over specialized parallel computers. The following is a slightly
abridged version of this list:

• Workstation performance is rapidly increasing.

• Communication bandwidth between nodes is increasing.

• A cluster is easier to integrate into an existing network than a special-
ized parallel computer.

• Development tools for workstations are generally more mature than
their counterparts in proprietary parallel systems.

• Clusters are cheaper and more available.

• It’s easy to make a cluster grow. You can both easily add nodes, and
upgrade existing nodes.

Today some of the most powerful computers in the world are clusters. At
the time of this writing the second fastest computer in the world according to
the “Top 500”1 is a cluster of Intel Itanium computers at Lawrence Livermore
National Laboratory 2. Of the 500 systems in the list, 291 are considered
clusters, and as figure 2.1 on the following page reveals the growth has been
tremendous.

1http://www.top500.org
2http://www.llnl.gov/

18 CHAPTER 2. PROBLEM DEFINITION

Figure 2.1: The number of entries in the top 500 list classified as clusters as
of June 2004.

2.2.3 Defining clusters

But what constitutes a cluster? Gregory F. Pfister provides a straightforward
definition[Pfister95]:

A cluster is a type of parallel or distributes system that:

• consists of a collection of whole computers

• and is utilized as a single unified computing resource

But this definition doesn’t make obvious the difference between clusters
distributed or parallel systems. Pfister regards clusters as a “subspecies or
subparadigm of distributed (or parallel) computing”, and provides some in-
sight into what differentiates clusters from parallel and distributed systems.

2.2. PARALLEL PROCESSING AND CLUSTER COMPUTING 19

Clusters and parallel systems

The most important difference between a cluster and a parallel system is
the fact that clusters are made from whole entities, computers. A parallel
system like an SMP on the other hand is made by replicating only a part
of the computer, the processor. A cluster is also more resilient to failure
because of it’s shared-nothing architecture, and it’s generally easier to add
computers to a cluster than adding processors to an SMP.

Pfister also notes that while many massively parallel multicomputers sup-
ply each processors with a memory and I/O system, there is usually less than
adequate memory for each node to work as a stand-alone machine. Nor has it
been common for such systems to provide access to normal operating system
facilities at each node.

Clusters and distributed systems

Clusters are a bit more difficult to differentiate from distributed systems. One
important difference is that a node in a distributed system has an individual
identity. In many cases it’s physical location is important to it’s operation.
For example a distributed payroll system will probably have each node store
information important to the branch in which the node is located. In many
cases the node can continue to function even if it’s disconnected from the
distributed system as a whole, there will just be some functionality missing.

In contrast to this, nodes in a cluster are anonymous. The cluster is gen-
erally viewed as a single system (hence “single unified computing resources”
in the definition) , with the nodes acting merely as “cogs in the system”. It is
however not uncommon to have certain nodes in the cluster perform special
functions.

Chapter 3

An overview of STEP/EXPRESS

In this chapter we give a brief overview of the STEP standard and the EX-
PRESS language. The EXPRESS language is object oriented, but the ter-
minology used is somewhat different from the OO norm, so we will introduce
this terminology and use it throughout this thesis.

3.1 STEP

In any sort of manufacturing, data about products must be kept somehow.
The representation of such product data has evolved from physical models
via technical drawings to digital representation manipulated by todays soph-
isticated CAD and CAM tools. But different CAD/CAM tools are rarely
compatible, and so a company that wishes to maximize benefits from the use
of such tools must enforce a common set of tools within their organizations.

For larger companies this may not be straightforward, and as companies
form joint ventures it becomes even harder. Also problematic is the fact that
the product data should be usable throughout the supply chain.

STEP—the STandard for the Exchange of Product model data—is a com-
prehensive standard for sharing of digital product data. The following quote
serves as the introductory paragraph to every part of the ISO 10303 standard:

ISO 10303 is an International Standard for the computer-interpretable
representation and exchange of product data. The objective is to
provide a neutral mechanism capable of describing product data
throughout the life cycle of a product, independent from any par-
ticular system. The nature of this description makes STEP suit-
able not only for neutral file exchange but also as a basis for
implementing, sharing product databases, and archiving.

20

3.1. STEP 21

Figure 3.1: Data exchange by using system-to-system interface (left) and a
neutral interchange format (right).

Digital data can be used in many different contexts throughout the en-
terprise, and consequently by many different computer systems. These com-
puter systems have their own legacy formats, so the need for conversion arises.
One could of course simply define interfaces between the systems, but as the
number of systems grow this becomes an increasingly difficult approach as
figure 3.1 illustrates.

The solution is to use a common format which acts as a data backbone
between all the different systems. Each system must have an interface to this
backbone, and need only convert data to and from the common format. This
is precisely what the STEP architecture provides. STEP is defined through
a large collection of documents, covering a large number of application areas.
Some examples of STEP in action include:

• the use of STEP to support the exchange of digital mock-ups between
Boeing and its engine suppliers in the process of integrating engines and
their complex plumbing into an airliner, replacing expensive physical
mock-ups.

• the use of STEP Draughting application protocol for the exchange of
technical drawing between Japanese companies and the Ministry of
Construction.

• the use of STEP in Singapore to facilitate electronic submission, pro-
cessing and approval of building project documents.

22 CHAPTER 3. AN OVERVIEW OF STEP/EXPRESS

STEP and the Norwegian Navy

In 2005, the Norwegian Navy receives it’s first new frigate of the Nansen class
from the manufacturer. This is one of five new frigates, and the total cost of
the project is about 20 billion Norwegian kroner.

The Norwegian Navy chose to use STEP heavily in this project. Together
with the frigates themselves comes a huge amount of data such as manuals,
specifications and maintenance descriptions. Information about every part
of the frigates must be available for maintenance purposes, and every part
has a unique serial number used to identify it.

All this data is stored using the STEP standard, and the data will be used
throughout the entire lifecycle of the frigates. Earlier such data have been
maintained using a combination of paper and digital media. The digital
information was then stored in proprietary formats rather than a neutral
format such as STEP.

3.2 The design of STEP
STEP was designed as the successor to various exchange standards, but in ad-
dition to exchange it also added support for sharing and archiving of product
data.

3.2.1 Sharing versus Exchange

Data exchange is the transfer of information from one software system to
another. The data being exchanged is a snapshot of the information at the
originating system. A good example of data exchange is when you receive
your monthly bank statement. These are characteristics of data exchange:

• Initiated by data originator

• Transformed in a neutral format

• Content determined by discrete event in time

• Redundant copy of data created.

The challenge lies in interpretation. Information coming from system A
must be understood by system B, otherwise there is no point to the exchange.

Data sharing on the other hand provides a single logical information
source, to which multiple software systems have access. An example of this
is internet banking where the customer accesses his accounts in real-time and

3.3. STEP BUILDING BLOCKS 23

works directly with the information source. Data sharing can be character-
ized by the following:

• Initiated by data receiver

• Data on demand

• Data access levels embedded in protocol

• Appears as a single data source

• Read (real-time) and update capabilities

Data sharing helps alleviate problems of version tracking and ownership
management. When data is exchanged, any changes made to copies held by
third parties must be merged back into the master copy. Data sharing is
clearly an ideal to strive for.

3.3 STEP building blocks
STEP is a comprehensive standard, comprised by a large number of doc-
uments covering the gamut of engineering practices. The standard is con-
stantly growing as new applications are embraced. To best facilitate data
exchange, sharing and archiving, the standard separates data definition, data
format and the data access language.

STEP has four major parts, as can be seen from figure 3.2. The descrip-
tion methods; the EXPRESS modeling language in it’s several variants will
be covered later in this chapter. We will not discuss the conformance testing
component as it is not really relevant to this thesis.

3.3.1 Implementation methods

Implementation methods are “standard implementation techniques for the
information structures specified by the only STEP data specification inten-
ded for implementation, application protocols.” An implementation method
defines a mapping between STEP data constructs and the implementation
method.

Early in the standards effort four levels of implementation methods were
described, from basic files to state-of-the-art multi-user knowledge database
management systems. The basic file mechanism was the first to be realized,
standardized as “ISO 10303-21 Clear Text Encoding of the Exchange File”,
also known as simply “Part 21” it specifies how the exchange file should

24 CHAPTER 3. AN OVERVIEW OF STEP/EXPRESS

Figure 3.2: Overview of the STEP documentation structure (adapted from
[Kemmerer99] page 49).

be derived from EXPRESS. However, as the name implies this offers little
support for data sharing.

The desire for supporting sharing fueled the efforts leading to SDAI—
Standard Data Access Interface. The intended purpose of SDAI is to provide
an Application Programming Interface (API) to data described by an EX-
PRESS information model. SDAI is in many ways similar to interfaces to
traditional database management systems such as SQL. However STEP data
often has the shape of networks, and the SDAI interface reflects this, mak-
ing traversal of links the predominant access method. SDAI is a family of
standards, including language bindings for Java, C, C++, and IDL.

3.3. STEP BUILDING BLOCKS 25

3.3.2 Data specifications

Data specification is split into four different series, but there are basically
three basic types of data specification: integrated resources, application pro-
tocols, and application interpreted constructs.

Integrated resources

Integrated resources are the basic building blocks that can be used by any
product description. There are two types of integrated resources, namely
generic resources and application resources. Generic resources are common
semantic elements, e.g. Cartesian point or date. The objective of integrated
generic resources is to support the common requirements of all the different
application areas.

The second type, application resources, represents concepts that are com-
mon to many application areas. Examples of such resources include drawing
sheet revision, drawing revision and dimension callout. These may be used
by any application that includes drawings.

Application protocols

Application protocols (APs) are the heart of STEP, and it’s architecture
is designed primarily to support the development of APs. APs are imple-
mentable data specifications, and include an EXPRESS information model
tailored to the application area in question. APs can be implemented using
any of aforementioned implementation methods. The documentation of an
application protocol adheres to strict regulations.

Since application protocols are specific to an application area, it is im-
portant to define their scope precisely. This is achieved through four different
components:

• The description of the functionality (AAM, Application Activity Model)

• An application-oriented reference model from a user’s point of view
(ARM, Application Reference Model)

• Representation of the reference model through objects from the Integ-
rated Resources as implementation view (AIM, Application Interpreted
Model)

• Implementation guidelines and conformance conditions for implement-
ations

26 CHAPTER 3. AN OVERVIEW OF STEP/EXPRESS

The AAM is developed to establish an understanding of the application
tasks, processes and the information flow of the application domain. This
then serves as a basis for the development of the ARM. The developers
attempt to capture the information most relevant to the application area—
what the AP must be able to “say”. The application interpreted model (AIM)
specifies a subset of the integrated resources to use with the AP.

Schemas and models

The AAM, ARM and implementation guidelines are primarily used during
the development of the application protocol. The final product which is
what users will work with is the AIM. To develop the AIM, the knowledge
discovered through the ARM and AAM are used. The AIM is basically
a schema defining entities and constraints for a particular domain. The
AIM is written in EXPRESS, allowing rules and constraints to be expressed
programmatically.

As an example consider “ISO 10303-210 – STEP Application Protocol
for Electronic Assembly, Interconnect, and Packaging Design” informally re-
ferred to as “AP210 STEP for Electronics”. Someone working on designing a
complicated electronic device, such as a CPU, might do this in a CAD tool.
The AP210 schema defines the necessary entities so that the CAD tool can
save the design using one of the implementation methods (in practice this
usually means a flat file). The CPU is thus stored as a population of the
AP210 schema, and this population is usually referred to as a model.

It is these models that we are going to deal with in this thesis, and because
the schemas are written in EXPRESS, we will here give a brief introduction
to EXPRESS.

3.4 Introduction to EXPRESS

EXPRESS is a textual computer interpretable language, and is used as the
information modeling language by the STEP standard (it is, however, ortho-
gonal to STEP as such). The use of EXPRESS as modeling language has
several advantages, but first we should have a look at other options that were
considered.

3.4.1 A brief history of EXPRESS

Some—by now at least—ancient modeling languages include ADM (Associ-
ative Data Modeling) and ER (Entity-Relationship). These influenced more

3.4. INTRODUCTION TO EXPRESS 27

recent languages like NIAM (now known as ORM), and UML. The choice
of modeling language was considered to be crucial to the STEP standards
effort, and at least three languages were under consideration at some point.
These were IDEF0, IDEF1X and NIAM. We won’t go into details about any
of these.

The developers of STEP realized early on that they needed a language
which would support automatic processing of models, preferably by well un-
derstood tools like a parser, as the models would surely grow large. IDEF1X
failed because it was strictly graphical in nature. It was also weak on spe-
cifying constraints. NIAM is strong on constraints, and does have a textual
representation but the diagrams were considered awkward and difficult to
produce. However in [Kemmerer99] p. 66 the following (unattributed) quote
appears: “A fair amount of rationalization and politics may also be blamed
on the desire to invent something new for it’s own sake.” Presumably familiar
words to anyone who has been involved in any sort of development. . .

In short, the STEP committee found the existing languages lacking in
some respect, and decided to develop their own language, based on existing
work by another group.

EXPRESS has provides STEP developers with several advantages: It
eliminates ambiguity, it eases the process of validating models, it’s user-
friendly and it is possible to generate software directly from EXPRESS.
However, over the course of time some flaws and weaknesses have been dis-
covered as well. Of course, one of the ideas behind standards is that they
shouldn’t change too often, so major improvements to EXPRESS shouldn’t
be expected.

3.4.2 EXPRESS dialects

EXPRESS is an object oriented data modeling language consisting of lan-
guage elements for precise, unambiguous data definition and constraint spe-
cification. It has a Pascal-like syntax, and is procedural in nature. [Kemmerer99]
(p. 133) notes that EXPRESS is a language developed by and for engineers,
something that has made the language conservative in some respect. Con-
straints are describe using functions and procedures, whereas mathematicians
would prefer a declarative approach.

EXPRESS is standardized in ISO10303-11, but there are several dialects
serving different purposes:

• EXPRESS (ISO10303-11) — The complete textual notation.

• EXPRESS-G (ISO10303-11) — A graphical notation similar to UML,
a subset of EXPRESS.

28 CHAPTER 3. AN OVERVIEW OF STEP/EXPRESS

• EXPRESS-I (ISO10303-12) — Instantiation language.

• EXPRESS-X (ISO10303-13) — Mapping and view language.

• Several proprietary dialects.

EXPRESS supports many well-known concepts from programming, like
loops, conditional branching, functions, procedures (methods) and a large set
of common operators to work on the built in data types. We won’t go into
details since we expect the reader to be familiar with these concepts. Instead
we shall look at the most important elements of the EXPRESS language, the
data modeling constructs.

3.4.3 EXPRESS Language elements

We will here give an overview of the various language elements usable within
EXPRESS, and in most cases give examples of their use.

Schemas

Schemas were introduced as the most important document in an application
protocol. Schemas are used as a grouping/partitioning mechanism for an
area of interest. We can think of it as a sort of ’module’. A schema defines a
scope for all it’s contained declarations. The modular ’building-block’ nature
of schemas supports simple reuse.

SCHEMA electronic_assembly;
... declarations

END_SCHEMA;

One can interface between schemas, for example to allow items declared
in ’foreign’ schemas to be used in the ’current’ schema. To interface with
other schemas one can use either the USE FROM declaration, which allows
one use ENTITY and TYPE declarations taken from the ’foreign’ schema, or
the REFERENCE FROM declaration which allows the use of CONSTANT, ENTITY,
TYPE, FUNCTION and PROCEDURE declarations.

Types

A type declarations creates a new ’defined type’ based on an ’underlying
type’ (built-in type). A type may thus be a simple alias for the underlying
type (representation) or in some cases a restricted version. This is used to
infuse the model with more semantics, and hence improve maintainability.
For example, one may want the type ’label’, which is represented as a string:

3.4. INTRODUCTION TO EXPRESS 29

TYPE label = STRING; END_TYPE;

To create a new type which is a restricted version of the underlying type
one can use a WHERE rule. E.g.:

TYPE age = INTEGER;
WHERE SELF >= 0;

END_TYPE;

EXPRESS also support SELECT types. A SELECT type is basically the
same as a union in C and variant records in Pascal. Finally there are enu-
merated types, the EXPRESS equivalent of C enums. The classical example
of month names goes like this:

TYPE month = ENUMERATION OF
(January,February,March, April, May, June, July,
August, September, October, November, December);

END_TYPE;

Entities

An entity is the EXPRESS version of a class. An entity defines a domain
of values by their common attributes and constraints. As with classes in
other object oriented languages, EXPRESS supports the notion of inherit-
ance, both single and multiple. EXPRESS also supports derived and inverse
attributes, uniqueness rules, and WHERE rules. Entities can also contain
procedures, which are analogous to methods in Java.

Entity attributes are analogous to attributes/properties in OOP, in addi-
tion to the well-known explicit attributes, EXPRESS supports the concept
of derived attributes. Derived attributes are simply attributes that can be
somehow derived from the other attributes of an entity. For example, given
a person’s date of birth and the current time one can derive his age. Inverse
attributes are used to declare that attributes are related to other attrib-
utes (either in the same entity or in some other entity). Let’s look at two
examples1:

SCHEMA Geometry;
ENTITY Circle;

x : REAL;
y : REAL;

1Taken from slides provided by EPM Technology

30 CHAPTER 3. AN OVERVIEW OF STEP/EXPRESS

Radius : REAL;
DERIVE
Area : REAL := PI*Radius**2;

END_ENTITY;
END_SCHEMA;

ENTITY Female
SUBTYPE OF(Person);

Husband : OPTIONAL Male;
END_ENTITY;

ENTITY Male
SUBTYPE OF(Person);
INVERSE

wife : Female FOR Husband;
END_ENTITY;

Attributes can be redeclared in subtypes according to the following prin-
ciples:

• The domain of an inherited attribute can only be specialized, i.e. re-
stricted rather than expanded.

• An explicit attribute can be changed to a derived one.

• An optional attribute can be made mandatory in a subtype, but not
the other way around.

• The bound specification of LIST, BAG or SET may be constrained,
ARRAY bounds may not be changed.

Entity constraints

Local rules (constraints) are assertions on the domain of entity instances and
applies to all instances of that entity type. There are two types of rules: the
uniqueness rule, which define a uniqueness constraint on individual or com-
binations of attribute values for all instances of this entity in a population
and WHERE-rules, which constrain the values of attributes for every entity in-
stance. WHERE rules must evaluate to either a logical value2, or indeterminate.

2LOGICAL is an atomic data type in EXPRESS and is basically BOOLEAN + the
value unknown, i.e. it’s domain is true, false and unknown

3.4. INTRODUCTION TO EXPRESS 31

Furthermore WHERE rules must refer to attributes declared within the entity
or any of it’s supertypes.

As an example, consider a representation of Person, having an identifier
Id. The Id must begin with a letter in either upper or lowercase. This can
be expressed as follows:

ENTITY Person
Name : STRING;
Id : STRING;

WHERE Legal_id :
(Id[1] >= ’a’ AND Id[1] <= ’z’) OR
(Id[1] >= ’A’ AND Id[1] <= ’Z’);

END_ENTITY;

Note that WHERE rule is named, this allows one to refer to a particular
WHERE rule.

Constants

Constant declarations are used to declare named constants, whose scope is
that of the immediately enclosing function, procedure, rule or schema. You
can declare several constants within a CONSTANT declaration, for example:

CONSTANT
Thousand : INTEGER := 1000;
Million : INTEGER := Thousand**2;

END_CONSTANT;

Functions and procedures

Functions and procedures encapsulate code, a FUNCTION is a function in the
mathematical sense, i.e. it is an algorithm which operates on arguments and
produces a single result value of a specific type, without any side-effects. A
PROCEDURE is an algorithm which operates on given arguments to produce
the desired end state. Procedures are the EXPRESS equivalent of methods
in Java, whereas functions are like static methods, except that they don’t
have to be declared within an entity.

Rule declarations

As we have seen, WHERE rules can be used both in type and entity declarations.
One can also declare rules using the RULE declaration. Such rules apply

32 CHAPTER 3. AN OVERVIEW OF STEP/EXPRESS

collectively to the entire domain of an entity type, or to instances of more
than one entity type.

If you are familiar with SQL, you may already be sensing a certain sim-
ilarity: a WHERE rule in a TYPE declaration compares roughly to a column
constraint in SQL. A WHERE rule within an ENTITY declaration mirrors the
SQL concept of table constraints, and a RULE declaration is similar to a SQL
database constraint.

The example used with entity constraints can be recast in terms of a RULE
declaration. This rule expresses the fact that there must not exist a Person
whose Id starts with anything but a letter, uppercase or lowercase:

RULE AllValidId FOR(Person)
WHERE AllValid :

SIZEOF(QUERY(p <* Person |
(p.Id[1] >= ’a’ AND p.Id[1] <= ’z’) OR
(p.Id[1] >= ’A’ AND p.Id[1] <= ’Z’))) = 0;

END_ENTITY;

A rule declared this way is usually referred to as a global rule. Also notice
the use of the query operator, this is a fairly common idiom in the world of
EXPRESS. A query is executed, and the size of the returning aggregate is
compared to zero or one, in other words a awkward way of saying “There
exists” or “There does not exist”. EXPRESS unfortunately does not have
built in functions with the meaning of the predicate calculus quantifiers.

The Query operator

EXPRESS has a query operator which allows one to formulate queries that
apply a given logical expression against all the elements of a source aggregate,
yielding a new aggregate with all those elements of the source aggregate for
which the logical expression evaluated to true.

Furthermore, one can operate on aggregate using use well-known oper-
ators such as intersection (*), union (+), difference (-), subset (<=) and
superset(>=).

3.5 A summary of terminology

The terminology of STEP/EXPRESS differs somewhat from the standard
OO terminology. For simplicity and future reference we shall here summarize
the terminology we will use in this thesis.

3.5. A SUMMARY OF TERMINOLOGY 33

An entity is the STEP equivalent of a class. A schema is a declaration
of entities, and the constraints that apply to them. A schema is much like a
database schema, or in OO terms a collection of class declarations.

The constraints that apply to a given entity are called local rules, whereas
a rule declared on it’s own is called a global rule. Finally, a uniqueness rule
is the EXPRESS equivalent of a candidate key in a database.

A model is a population of a given schema, i.e. a collection of entity
instances, or objects. We will use the terms entity instance and object inter-
changeably.

For our purposes the most important part of an application protocol is
the AIM. The AIM is what we refer to as the schema, and when we refer
to a particular application protocol, what we mean is the AIM, i.e. schema,
defined by this application protocol.

Chapter 4

Designing a parallel algorithm

Designing a parallel algorithm is a difficult task, and there are no simple
recipes to follow. However, a methodical approach to the design process can
help us maximize the number of options we explore. One such approach
is outlined in [Foster95], and this methodology is also cited in [Buyya99-2].
What Ian Foster suggests, is to divide the design process into four distinct
stages:

1. Partitioning The problem is decomposed into smaller task suitable for
parallel execution.

2. Communication The communication structures and algorithms needed
to coordinate task execution is defined.

3. Agglomeration The task and communication structures from the pre-
vious two stages are evaluated, and tradeoffs based on cost/benefit or
development time are made.

4. Mapping Tasks are assigned to processors in a manner which attempts
to balance the competing goals of maximizing processor utilization and
minimizing communication costs.

A slightly different approach can be found in [Culler99]. He uses the
term task to mean an arbitrary piece of work that is the smallest unit of
concurrency. A process is an abstract entity that performs tasks, and a
parallel program is thus composed of cooperating processes that each perform
a subset of the tasks. The following is a brief outline of Culler’s approach:

1. Decomposition of the computation into tasks.

2. Assignment of tasks to processes.

34

4.1. BOTTOM-UP VERSUS TOP-DOWN 35

3. Orchestration of the necessary data access, communication and syn-
chronization among processes.

4. Mapping or binding of processes to processors.

The assignment of tasks to processes is essentially the same as agglom-
eration, as the objective is to merge tasks into larger units. Hence the main
difference between the two approaches is that the communication and ag-
glomeration steps have been interchanged. However Culler uses the term
partitioning to mean the first two steps taken together.

We will not rigorously follow any of these methodologies, but they can
serve as a useful guide to our design process. Foster also remarks that while
his list presents algorithm design as a sequential process, it is in fact a “highly
parallel process, with many concerns being considered simultaneously”. We
should also point out that we don’t expect our design and analysis to be
exhaustive, and as we begin implementation we will certainly run into con-
siderations that influence the final design.

4.1 Bottom-up versus top-down
At a very early stage in this project we discussed how to approach the prob-
lem, and the decision we made here does have an impact on our final design.
There are basically two approaches, we can refer to them as bottom-up and
top-down, other suitable terms are glass-box and black-box.

The important difference is that in bottom-up/glass-box approach we
would look at how the EDM engine works internally, and attempt to par-
allelize its execution as a whole. Using a top-down or black-box approach
means that we look at how the EDM ModelChecker performs a validation,
and try to split this process into discrete tasks that can be performed separ-
ately, to do this we only use the interface exposed by the EDM engine.

The main benefit of a bottom-up approach is that we would parallelize
the database engine itself, resulting in a much more general solution. It
would allow for the parallelization of all the operations the EDM system
offers rather than just the ModelChecker. The main drawback is that we will
have to get our hands dirty with the nuts and bolts of what has so far been
a simple black box. This could prove to be a major challenge, depending on
how the kernel is actually implemented, for we must not forget that it was
not written with parallelization in mind.

Due to the limited time available for this project we had to make an
early choice, and seeing as the bottom-up approach would most likely be
much more complex to implement we chose a top-down approach. This will

36 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

obviously limit our freedom when designing a parallel solution, but we still
hope that it will be a viable approach. With that in mind we begin the first
phase.

4.2 Partitioning
The goal of this stage is to decompose the problem into fine-grained tasks to
allow for maximal flexibility and freedom in designing our algorithm. Since
we are working with an existing piece of software we have a sequential al-
gorithm to base our analysis on, and this algorithm can be stated very simply:

for each object in model:
for each constraint in constraints:

validate(object, constraint)

This is obviously a highly idealized version, and the internals of the
validate function may be fairly complex. But what we do know is that
each iteration of the inner loop is independent. And thus we should be able
to perform all the calls concurrently. In [Buyya99-2] a presentation of various
well-known parallel programming paradigms can be found, and one of these
is:

Iterative decomposition: Some applications are based on loop
execution where each iteration can be done in an independent
way. This approach is implemented through a central queue of
runnable tasks, and thus corresponds to the task-farming paradigm.

The task-farming paradigm is also known as master/slave or manager-
/worker, and it is conceptually very easy to understand, and should also
lead to a fairly simple implementation. It particularly simplifies communica-
tion, which is reduced to sending “orders” from the master to the slaves and
sending work results from the slaves to the master. There is no need for
communication between the slaves. The drawback is a lack of scalability, as
both the load on the network and on the master increases with the number
of slaves. This can be remedied by dividing the slaves into groups and have
one master manage each group, with one computer acting as a sort of master
for the masters.

The master/slave approach indeed seems fitting to our problem, but a
typical Express model usually contains tens of thousands to millions of ob-
jects, and as we know there are nine different constraints available. This
means that the number of tasks is many orders of magnitude larger than

4.2. PARTITIONING 37

the number of processors we expect to support. Because of this we need to
consider different ways of composing the tasks into bigger units. To do this
we must look at the structure of a typical model, and based on this define
what we will refer to as partitioning axes.

To evaluate the suitability of a decomposition Foster provides us with a
four point checklist. We reproduce the checklist here for reference.

1. Does your partition define at least an order of magnitude more tasks
than there are processors in your target computer? If not, you have to
little flexibility in subsequent design stages.

2. Does your partition avoid redundant computation and storage require-
ments? If not, the resulting algorithm may not be scalable to deal with
large problems.

3. Are tasks of comparable size? If not, it may be hard to allocate each
processor equal amounts of work.

4. Does the number of tasks scale with problem size? Ideally, an increase
in problem size should increase the number of tasks rather than the
size of individual tasks. If this is not the case, your parallel algorithm
may not be able to solve larger problems when more processors are
available.

5. Have you identified several alternative partitions? You can maximize
flexibility in subsequent design stages by considering alternatives now.
Remember to investigate both domain and functional decomposition.

Global rules and uniqueness rules

The simplified validation algorithm hides some important complications. In
addition the local constraints applying to each instance, there may also be
global rules. Global rules are basically pieces of code that perform some sort
of computation against an entire population. The API available to us does
not give us any way of partitioning the execution of these. For our purpose
a global rule must be seen as a single task to be executed. The same goes
for uniqueness rules.

4.2.1 Available partitioning axes

Splitting the validation into tiny tasks that validate a single instance imme-
diately seems a little too extreme as the number of instances in a model can
be in the millions. We therefore want to reduce the number of tasks, and to

38 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

achieve this we need to look at other ways of decomposing the validation that
merge the validation of several instances into single tasks. We will basically
perform partitioning and agglomeration in a single combined step. We refer
to a way of decomposing the data as an axis, and axes should be combinable.

However, having chosen a top-down approach we must work with the API
exposed by EDM. This means that we cannot validate instances of different
entities in a single operation. We can however validate one or more instances
of a given entity, and for each instance or group of instances we can test
the different rules separately. It is also possible to validate the entire model
against one or more rules.

A given schema often contains many hundred entity declarations, and as
we just saw the validation of a model can be split into the separate validations
of individual entity extents. For example, consider 4.1, if a schema declares
the entities Person, Car and House, and there are 6 instances of each, we can
split the validation into three tasks validating 6 instances each. We will refer
to this axis as the E-axis.

Car

Person

House

Validate

Car

House

Person

Validate

Validate

Validate

P

a
r

t
i
t

i
o

n
i

n
g

Figure 4.1: Partitioning the model into separate entity extents

Given an entity extent we can further partition it into smaller pieces. To
illustrate, if we have an extent of 16 cars, we can split this into 4 operations
of 4 cars each, like in figure 4.2 on the next page. Since this is a partitioning
of the population of an entity we refer to this as the P-axis.

Finally, when validating a single instance there are eight types of con-
straint we need to test. It is possible to test each such constraint by itself

4.2. PARTITIONING 39

Car

Car 4:7

Car 12:15

Car 7:11

Car 0:3

P

a
r

t
i
t

i
o

n
i

n
g

Validate

Validate

Validate

Validate

Figure 4.2: Partitioning the entity extents into subpopulations

using the available interface. We will think of these constraints as rules, and
hence refer to this as the R-axis. We must however stress that global rules,
although they are called rules, are not part of the R-axis. During a valid-
ation global rules must be validated by themselves, one by one. This note
is also valid for uniqueness rules because a uniqueness rule is a constraint
that applies to a collection as a whole. In fact, any uniqueness rule can be
expressed as a global rule.

Based on these axes we can define some partitioning schemes. We begin
by noting that a scheme based purely on either the E or R axis seems to be
a bad candidate, based on Foster’s fourth point. These schemes will offer
a rather limited number of tasks, and — more importantly — the number
of tasks is statically defined by the schema, and hence won’t scale with the
model size1. The P-axis doesn’t suffer from any of these problems, but in
order to apply it we are as we just saw forced to apply the E-axis first.
This is because we have no other way to define subpopulations than through
partitioning entity extents into smaller collections of instances.

This leaves us with just a few possible combinations. We can begin with
the E axis and split this further into subpopulation using the P-axis, some-

1This is not entirely true, as empty entity extents will not be tested, meaning that the
number of tasks for two models based on the same schema won’t necessarily be the same.
However, both schemes define an upper limit that does not depend on the model size, and
hence they do not scale

40 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

thing we will refer to as E+P. By further partitioning this scheme using the
R-axis, i.e. validating each type of constraint separately, we get the E+R+P
schema. Finally, by starting with the E axis and again using the R-axis we
get the E+R scheme.

To summarize, we now have three different schemes to try. Common to all
these is the fact that they define the validation of individual global rules and
uniqueness rules as separate tasks. This latter set of tasks is always statically
defined by the schema. The other tasks are a result of the partitioning scheme
being applied and the model in question. To find out which partition scheme
fares the best we need some empirical data, and we now turn to this analysis.

4.2.2 Benchmark methodology

To measure the performance of the selected schemes we have written a bench-
marking program. This program use the EDM C-interface to access and val-
idate a given model. The program must be told what partitioning scheme
to use, and based on the partitioning scheme the necessary tasks are created
and executed.

To measure execution time we use the Unix system call gettimeofday.
We call it once as we are about to perform a single validation task, and then
a second time once the validation is done. This way we avoid measuring
anything else than actual execution time. The resolution of gettimeofday
is microseconds, but we will only use a resolution of milliseconds in our
computations.

We must not forget that gettimeofday measure wall clock time rather
than CPU time. To ensure that the numbers are valid regardless of this fact
we will execute the tests on a computer running Linux with all nonessential
background jobs killed to avoid interference.

The measured execution times are written to a file. We can then process
this file in various ways to produce some interesting statistics:

• A list of all the task performed as well as the time and the percentage
of total execution time spent on each.

• A theoretical distribution of the tasks on computer clusters of varying
size, and it’s impact on execution time.

• Minimal, maximal and average execution times.

• The time spent on each instance.

4.2. PARTITIONING 41

Ensuring measurement validity

All the values in our statistics are computed. In particular the total execution
time is computed by summing up the time for each task. This has the
potential of introducing more errors due to rounding. We therefore need to
check if our computed values do in fact reflect reality. To do this we use
conditional compiling to create a second version of the benchmark program
that excludes all output code as well as all time measurements.

To see if our values represent reality we can see if the total execution
time for this program is close to the execution time we have computed. To
time the execution of our benchmark tool we use the unix utility time. time
prints out the total execution time (wall-clock time), the actual CPU time,
and the distribution between user and kernel. It also shows the percentage of
the CPU that our tool was given, a value that should be as close as possible
to 100% if we want to rule out interference from other programs or I/O,
as this means that the program had the CPU to itself. Each validation is
executed three times, and the average execution time is used.

The initial results were surprising, and revealed a bug in our code. For
most models the results were good, with very little difference between com-
puted and measured times. For the models based on the IFC2x2 schema
however we found differences as large as 27%. The IFC2x2 based models
generally consist of a large number of small tasks, and so we started to sus-
pect that the problem was due to a rounding error when translating from
microseconds to milliseconds. A majority of the tasks execute in less than
10ms, and so if we are truncating the numbers rather than rounding them
we should on average get a 0.5ms error for all tasks!

A quick calculation showed that the difference we were seeing did in fact
come close to this expected value. A look at the code revealed that the
translation from microseconds to milliseconds was performed using integer
division. We changed this to use floating point division, yet retaining the
millisecond precision. The result was that the difference for a model called
house2x2 using E+P dropped from 27.8% to 0.1%, and in the case of E+R+P
from 26.3% to 1.3%. We now have an average difference between measured
and computed value of 1.2% with a median of 0.5%. Based on this we are
fairly confident that our computed values can be used as a foundation for
further analysis.

As a an extra precaution we also measured the time it takes to performs
the necessary calls to gettimeofday, and this shows that 100,000 calls can
be performed in less than 10ms, in other words its contribution should be
negligible.

42 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

Partition size

One of the challenges with the P-axis is that we must choose a partition
size. By partition size we mean how many instances to validate in a single
task. Based on point 3 from Foster’s list the optimal size would be one that
made as many tasks as possible equally sized. How to achieve this is however
not a simple question, and the answer will probably rely on the analysis we
are about to perform. We therefore choose to use a fixed partition size of
ten instances, and postpone a further discussion of this problem till we have
more information.

4.2.3 Metrics

To compare the quality of our selected partitioning schemes we need some
metrics. The most important quantity is the speedup factor, i.e. how much
faster a parallel version is compared to it’s non-parallel counterpart. Given
that a sequential execution takes Tseq and that the same validation takes Tpar
using parallel execution, we define the speedup factor S simply as

S =
Tseq
Tpar

(4.1)

Other interesting metrics are the amount of overhead involved, and the
efficiency of a solution. The amount of overhead will become more important
as we look at communication. Efficiency, while an important factor in a
cost/benefit analysis is probably not important at this point. What we want
is to figure out which partitioning gives us the most speedup, the other
metrics will come into play later in the development.

We should also mention that while we will look at clusters ranging from
1 to 32 computers, the most important sizes are probably those between 4
and 16. We don’t expect that many of EDM clients will want to invest in
larger clusters, and so extra weight will be put on the results for these sizes.

What sort of speedup are we looking for then? While a near perfect
speedup is desirable, smaller speedups may be of great interest. If for example
a company has a computation that executes in 24 hours, a speedup of 3 will
make this computation execute in 8 hours, meaning that they suddenly can
run it overnight, which might be precisely what they require. If they need a
cluster of 16 computers to achieve this speedup, then they might be satisfied,
even though the solution is not particularly efficient.

Now it’s time to examine how the different partitioning schemes stack up
against each other.

4.2. PARTITIONING 43

Cml% % Time Validated what?
13.6% 13.6% 21258 IFCAXIS2PLACEMENT3D-LOCAL_RULES
25.2% 11.7% 18264 IFCAXIS2PLACEMENT3D-AGGREGATE_DATA_TYPE
36.9% 11.7% 18252 IFCAXIS2PLACEMENT3D-REQUIRED_ATTRIBUTES
48.6% 11.7% 18251 IFCAXIS2PLACEMENT3D-ATTRIBUTE_DATA_TYPE
60.2% 11.7% 18247 IFCAXIS2PLACEMENT3D-AGGREGATE_UNIQUENESS
71.9% 11.7% 18239 IFCAXIS2PLACEMENT3D-ARRAY_REQUIRED_ELMS
83.5% 11.6% 18178 IFCAXIS2PLACEMENT3D-AGGREGATE_SIZE
86.6% 3.1% 4884 IFCPLACEMENTNOTSHARED-GLOBAL_RULE
89.2% 2.6% 4044 IFCPROPERTYSINGLEVALUE-AGGREGATE_TYPE

Table 4.1: The nine most time consuming tasks performed when validating
the bygga model using the E+R scheme.

4.2.4 E+R, too simple?

E+R is not very flexible, in fact the number of tasks is completely fixed
by the schema. As was explained in the section introducing the partitioning
schemes, given a schema one can calculate the number of tasks as the number
of entities multiplied by the eight rules in the R-axis, plus the number of
global rules and uniqueness rules.

To see how much this inflexibility affects the E+R solution we turn to
the data we have collected. The individual partitioning schemes are tested
with a selection of different models based on varying Express schemas, but
we will not reproduce all the results here. Instead we will pick a selection of
data which we feel highlight important properties of each approach.

Let us begin by looking at some numbers. Table 4.1 shows a selection of
the results gathered when testing the E+R scheme. The headers have the
following meanings:

• Cml% : The cumulative percentage

• % : The percentage of total execution time spent on this particular
task.

• Time: The time spent executing the task, in milliseconds.

• Validated what? : A description of the task, the form is
<ENTITY_NAME>-<OPERATION>.

The bygga model is based on a schema called IFC2x22. This schema is
used to model buildings, and the bygga model is in fact a CAD-model of

2Industry Foundation Classes

44 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

a house. The schema defines 623 entities, and 3 global rules, this means
that we can have a total of 5610 tasks (8 local constraints, multiplied by
623 entities, plus the 623 entities that need to be checked for uniqueness and
finally the global rules, i.e: 623 ∗ 9 + 3 = 5610. However, because checking
local constraints on empty extents is pointless we avoid the execution of this.
Inspection reveals the real number of tasks to be 1090.

Looking at the figures in table 4.1 on the page before we notice that the
cumulative percentage for the last task is 89.2%, in other words 9 out of
1091 tasks are responsible for almost 90% of the total execution time. This
is clearly problematic, but how badly does it affect the suitability of E+R
partitioning?

Based on Amdahl’s Law[Foster95] we can calculate the maximum spee-
dup. From table 4.1 on the preceding page we know that the largest sequen-
tial component takes about 21.3 seconds to execute. If we let Fseq represent
this time as a fraction of the total execution time for the uniprocessor ref-
erence version we have Fseq = 21.3/31 ≈ 0.69. Amdahl’s Law then implies
that the maximum possible speedup is a miserable 1/Fseq ≈ 1.46.

But we are also interested in knowing how the schemes behave on a
cluster. To study this we simulate execution of the validation process on
clusters of 1 to 32 computers. We assume a best case scenario where the
longest tasks are executed first and tasks are always assigned to the next
available processor. We also disregard overhead from such things as task
management and communication. The numbers we acquire are thus lower
bounds, but they should provide us with some insight nevertheless. The
results are summarized in table 4.2.

Nodes 1 2 4 8 12
Time 157 78 39 21 21

Table 4.2: Execution times in seconds using E+R partitioning with the bygga
model on hypothetical clusters. Upgrading from 8 to 12 or more nodes has
no effect.

The execution time for a complete non-parallel validation of this partic-
ular model is about 31 seconds. Based on this we see that E+R seems to
introduce quite a lot of overhead as the single node version executes in 156
seconds, about five times as slow as its non-parallel counterpart. We will
come back to this in section 4.2.7. Furthermore we see that the parallel ver-
sion doesn’t get faster than the non-parallel version until we have 8 nodes,
and finally no further improvement can be achieved using more nodes. This
means that we can only achieve a maximum theoretical speedup of 1.4, and

4.2. PARTITIONING 45

Cml% % Time Validated what?
0.1% 0.1% 179.0 IFCPLACEMENTNOTSHARED-GLOBAL_RULE
0.2% 0.1% 172.0 IFCAXIS2PLACEMENT3D-AGGREGATE_DATA_TYPE
0.4% 0.1% 172.0 IFCAXIS2PLACEMENT3D-ARRAY_REQUIRED_ELMS
0.5% 0.1% 172.0 IFCAXIS2PLACEMENT3D-AGGREGATE_UNIQUENESS
0.6% 0.1% 170.0 IFCAXIS2PLACEMENT3D-ATTRIBUTE_DATA_TYPE
0.7% 0.1% 167.0 IFCAXIS2PLACEMENT3D-REQUIRED_ATTRIBUTES
0.8% 0.1% 132.0 IFCAXIS2PLACEMENT3D-LOCAL_RULES
0.9% 0.1% 129.0 IFCAXIS2PLACEMENT3D-LOCAL_RULES
1.0% 0.1% 129.0 IFCAXIS2PLACEMENT3D-LOCAL_RULES

Table 4.3: The nine most time consuming tasks when validating the bygga
model using the E+R+P scheme. With this partitioning scheme the total
number of tasks is significantly larger because each E+R task is further
broken down into tasks of ten instances each.

this at the price of 8 computers. We also note that this minimum execu-
tion time is in fact the execution time for the largest task (see table 4.1 on
page 43), which is what we would expect based on Amdahl’s Law.

The bygga model gives us the worst result for the E+R partitioning, using
the results from the other models we find that the possible speedup ranges
from 1.4 to 3.9 in the best case. A speedup of 3.9 isn’t too bad, but overall
the E+R scheme fares rather badly. This is mostly due to the fact that
a few key tasks dominate execution completely, as well as its static nature
and the great overhead involved. We are stuck with the same number of
tasks regardless of the size of the model, and as models grow this becomes
problematic. Our selected model — bygga — is a prime example of this, and
the few large tasks that dominate do so due to their large populations.

4.2.5 E+R+P, an improvement over E+R?

E+R+P retains the partitioning from the E+R scheme but adds the P-axis
which should make it a lot more flexible. In particular we expect that the
poor results for the bygga model with E+R should be greatly improved. We
will therefore again look at the numbers from the bygga model.

Table 4.3 shows some very interesting results. We notice that the largest
task only takes 179ms to execute compared to 22 seconds using E+R. The
total execution time for this model was 30807ms. According to Amdahl’s
law this means that we have a possible theoretical speedup of about 168,
which certainly is acceptable. We also note that the 9 first tasks now only
account for 1% of the total execution time. The total running time on a
single computer is now 144 seconds, a little bit faster than using E+R but

46 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

much slower than the non-parallel version.
Again we run a simulation of parallel execution, listing the results in

table 4.4. We see that nothing is gained from parallel execution until we have
8 computers available, at which point the E+R+P partitioning is slightly
faster than the E+R partitioning yielding a speedup of about 1.7.

Nodes 1 2 4 8 12 16 20 24 28 32
Time 144 72 36 18 12 9 7 6 5 5

Table 4.4: Execution times in seconds using E+R+P partitioning with the
bygga model on hypothetical clusters

To summarize the results from other models the E+R+P scheme allows
for a speedup in the range of 1.9 to 8, assuming a maximum cluster size of
8, which is better than with E+R. However, this speedup comes at a price,
E+R+P is generally worse than or similar to E+R for clusters of 4 computers,
and in several cases the difference between E+R and E+R+P on 8, 12 or 16
computers is minimal. This means that larger clusters are required to push
E+R+P to it’s potential, which is a strong argument against it.

4.2.6 E+P, now it gets interesting

Will removing the R axis and thus reducing granularity help? The results
seem to indicate this. Again looking at the bygga model we find that the
tasks are small, like with E+R+P. The big difference is that E+P executes
in only 30 seconds on a single computer, i.e. it executes in almost the same
time as the non-parallel reference version. This results in far better numbers
for the simulation, in fact E+P achieves a near linear speedup, and is able
to execute the entire validation in less than a second on 32 computers. It’s
also faster than E+R and E+R+P for all cluster sizes from 1 through 32.

But with other models the results are not so good, the worst case be-
ing a model named house151. This model is based on the IFC151 schema,
which the reader may have guessed is an older (and outdated) version of
the IFC schema. However, a closer look at the data for this model reveals
that the problem is caused by a single uniqueness rule, and after a discus-
sion with the EDM developers we have concluded that the bad results are
due to a combination of a weak hashing algorithm in the EDM kernel and
a badly generated identifier value in the IFC schema (this has been fixed
in the IFC2x2 schema, and here the same uniqueness constraint executes in
practically no time). In general we see that E+P is always faster than E+R
and E+R+P for equivalent cluster sizes.

4.2. PARTITIONING 47

0 2 4 6 8 10 12 14 16

4

8

16

C
lu

st
er

 s
iz

e

Speedup factor

E+R E+R+P E+P Perfect speedup

Figure 4.3: Average speedup factors for the different partitioning schemes.

4.2.7 The three schemes compared

To summarize the results we have found so far we need a comparison of the
different schemes on an equal basis. To do this we compute the average
speedup for each partitioning scheme across the models in our test. We do
this for cluster sizes of 4, 8 and 16 computers. As a reference we will also
include the perfect linear speedup. The results are shown in figure 4.2.7.
From this figure it is quite clear that E+P is superior to the other two
partitioning schemes.

Why does the R-axis perform so poorly?

These results are a little puzzling. E+R+P has a finer granularity than E+P,
but performs badly. Our theoretical analysis shows that E+P generally runs
almost as fast as the non-parallel program on a single-node cluster, whereas
E+R and E+R+P adds considerable overhead in the same situation. If we
let Tscheme denote execution time for a given validation scheme, and Tfull
denote the execution time for a normal full validation we can express the
overhead O for the validation scheme as O = Tscheme/Tfull. If we calculate
the average for this value across all schemes we get an overhead ratio of 2.99
for E+R, 1.19 for E+P, and 2.89 for E+R+P. This indicates that there is a

48 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

massive overhead incurred by using the R-axis.
To investigate this further we created two new benchmarking programs.

One validates a given entity type using the R-axis, and one without it. In
practice this means that the former executes eight calls to the validation
function with a different rule as argument for each such call, whereas the
latter only calls this function once, instructing it to validate all the constraints
that apply to instances. We performed this test on populations of 1, 1000,
10000 and 100000 instances of a single entity. The results are summarized in
table 4.5.

Instances Without R-axis With R-axis Ratio
1 71 73 103%

1000 116 153 132%
10000 543 967 178%

100000 4620 13643 295%

Table 4.5: Table showing the execution times for a validation of variably
sized population with and without the R-axis. The times are in milliseconds.
Ratio is the size of With R-axis relative to Without R-axis.

In this table the problem with the R-axis is evident. As the population
size grows it becomes more and more expensive to use this axis. Based on this
we believe that the problem with the R-axis is that the validation function
we are currently calling incurs too much overhead and so the more calls to
it we have, the more time is lost. This can be due to many things, and
without scrutinizing the EDM source code we cannot pinpoint the problem
more precisely at this point. For now we are content to have figured out why
E+R and E+R+P perform so poorly. The EDM developers will take a look
at this issue, and if a simply fix exists the R-axis may be introduced again
at a later stage.

4.2.8 The challenge of global rules

The speedup we’re seeing with E+P is definitely acceptable, yet all is not
well. The speedup varies greatly between models, and in some cases there
is little to gain on using clusters larger than 4. Based on the data we have
gathered, one problem stands out, and the data from a model called s214
based on the AP2143 schema offers a very good example of this problem.
This schema includes a global rule which is responsible for more than 65% of

3Core Data for Automotive Mechanical Design Processes

4.2. PARTITIONING 49

the total validation time. The validation of global rules cannot be broken up
any further using any of our current schemes, and the result is that this is
the largest sequential component in our algorithm. Based on Amdahl’s Law
this means that the highest possible speedup we can expect in this particular
case is about 1.5.

One way to attack the problem of global rules does seem promising
though. It is based on the observation that very frequently global rules are
declared for entities high up in the entity hierarchy, typically with no extent
(they are generally abstract entities). This means that the rule in practice
is declared for an extent which is a union of all the sub-entity extents. If we
could somehow push the rule down in the entity hierarchy we should be able
to achieve a finer granularity. For example, if a rule is declared for abstract
entity A, with sub-entities B, C and D, and each of these have 100 instances
we can split the validation of this rule into three operations on 100 instances
each instead of one operation on 300 instances. With some luck we should
be able to implement this solution using the EDM interface only, avoiding
any changes to the kernel.

A second possible approach to handling global rules comes from the fact
that each global rule frequently is composed of several where-rules. We should
therefore be able to split a global rule into its smaller component where-
rules. This approach is somewhat limited though, for example the global
rule responsible for the aforementioned problems with AP214 only consists
of two where-rules, and so even if they cost exactly the same to validate, we
still have a sequential component of 32.5%.

An inspection also reveals that in the case of AP214 the problematic
global rule is completely dominated by one of it’s where-rule components.
To make matters even worse, the push-down approach previously described
cannot be applied in this case because the rule is declared for an entity that
has no subentities. In other words, we currently have no sure remedy for the
terrible performance seen with AP214 based models.

The only possibility left is to rewrite problematic rules. The thing about
STEP Application Protocols is that they are developed by modelers rather
than programmers. The modelers focus on modeling — as they should —
rather than implementation, and frequently the result is constructs that are
extremely inefficient. This fact is frequently lamented by the EDM de-
velopers, and there are examples of simple rewrites that have reduced ex-
ecution times from hours to mere seconds. We cannot simply change the
Application Protocols as these are international standards and changes to
them require a fairly elaborate process possibly involving several commit-
tees. Instead, the rewrites should be automatically performed by the EDM
engine, for example a version of the schema optimized for validation could be

50 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

stored together with the normal schema, and used for validation purposes.
Implementing this automatic optimizer is however outside the scope of this
project and so as an approximation we can use manually rewritten schemas
in our tests. If time allows we should try to tackle the problem of global rules
more generally, so that we can handle global rules that even after optimiza-
tion execute too slowly, but doing so will most likely require direct changes
to the EDM kernel.

4.3 Communication

Having thoroughly analyzed different partitioning schemes and arrived at
what we hope is the best solution we must now consider the communication
needs of our application. The first thing we must do is figure out what the
communication needs for our tasks are. Based on the E+P partitioning there
are basically three types of tasks, those that deal with the local constraints
for an entity, those that deal with a particular global rule, and those that deal
with a particular uniqueness rule. To figure out the communication needs we
must look at what each node has to know in order to perform the assigned
task.

In order to perform a local constraint validation a node must receive the
collection of instances, and information saying which constraints apply to
these instances. Because we split the data into the individual entity extents
and then partition each extent into subsets we can assume that each collection
of instances received by the node is homogeneous. The description of the
constraints are meta-data contained in the schema underlying the model.

For global rules we need to transfer the global rule itself (i.e. the declara-
tion of the rule from the underlying schema), as well as the necessary entity
extent(s) which again is a collections of instances.

Once a validation has been executed, the results must be returned. Res-
ults will be simple structures, but their sizes may vary. The results of a local
rule validation will be a (possibly empty) collection of instances4 with the
error caused by each instance recorded. The result of a global rule is simply
a (possibly empty) collection of instances that violated the rule. Even if we
distribute global rules across sub-entities, as discussed in section 4.2.8 on
page 48, this simple scheme should work. We will just have to collect and
merge the lists of violating instances from different nodes.

But our description of the communication needs so far has glossed over a
major challenge. A model is a network of instances, and determining what

4By instances we here mean instance identifier, as that is really all we need to identify
a given instance

4.4. SUMMARY AND CONCLUSIONS 51

parts of the model are needed to validate a given instance is a very complex
enterprise. A single instance can be connected to thousands of instances
through references, and all of these instances must be made available to the
node before it can perform the validation. Furthermore, there exists func-
tions to retrieve all instances that reference a given instance. Because these
functions can be used everywhere, before a node can validate an instance it
must have available to it all instances that reference the instance.

Finally there are uniqueness rules, whose validation require that the entire
extent of the entity for which the uniqueness is declared are available. In the
end, the validation of a single instance may require that we transfer a very
large portion of the model, and the overhead involved in computing what
portion to transfer can become significant.

One possibility is to make sure that each node stores all the instances it
receives, essentially building a local copy of the model. This should presum-
ably reduce the communication needs as the validation proceeds. It would
however require that in addition to computing the set of nodes to transfer for
a given task, the master must also keep track of which nodes have received
which instances. The efficiency of this approach is very hard to analyze, and
it is complex to implement, meaning that we risk wasting precious time on
a possible dead-end.

A much simpler solution is to simply transfer the entire model to each
node at the beginning of the validation. Once this is done the communication
becomes very simple because a node just needs to know what task to perform,
all the required data is readily available. Because we expect that such a
simple scheme can be implemented very quickly we think it’s best to simply
give it a try and see how it fares.

4.4 Summary and conclusions

The first challenge in designing a parallel program is to look at the data
and computations and attempt to decompose these. After an initial inquiry
we found that the simplest approach is to decompose the validation process
instead of parallelizing the EDM engine as the latter could potentially be a
very complicated task. The limited time available to this project means that
we need to favor a fast solution over a more general one.

We analyzed three different ways to decompose the validation process, and
concluded that the E+P scheme is the best, and it is therefore this approach
we will attempt to implement. Due to the embarrassingly parallel nature of
the validation algorithm a master/slave architecture seemed natural. The
master/slave architecture means that communication will be very simple.

52 CHAPTER 4. DESIGNING A PARALLEL ALGORITHM

The master must inform the slaves of their tasks, and make sure tasks are
kept busy, while the slaves only need to return the results of each completed
task to the master. The master/slave approach also has a built-in mapping
and scheduling algorithm in that slaves simply receive new tasks as soon as
they finish their current. A remaining problem in this area is that tasks are
frequently of wildly varying sizes. We have not yet tried to find ways to
predict the size of tasks, and so this is currently an open problem.

The models we are working with are networks, and we saw that a large
amount of data may be necessary to validate a single instance. Because of
this we needed to consider ways to distribute the models to the nodes in the
cluster, and decided that the naive approach of transmitting the entire model
to each node in the cluster should be sufficiently efficient.

Although the theoretical analysis is promising so far, we still haven’t
solved the problem of complex global rules. We decided to postpone a solu-
tion to this problem for the time being, noting that we should be able to
find acceptable workarounds. We found that the problems with global rules
is mostly due to inefficiently written code, something that could be fixed
by using automatic code optimization. All in all the conclusion here is that
if we try to tackle the problem of global rules at all, we should do it the
algorithmic level, trying to improve the implementation of the global rules.
Parallelizing a bad algorithm is simply a waste of resources. A true paral-
lelization of global rule validation will require changes to the EDM engine,
something we have already deemed to be outside of the scope of this project.

Chapter 5

Implementation

In chapter 4 we saw that a simple master/slave approach suited or problem
nicely. This approach should also be fairly easy to implement and so it is
what we will attempt to use. We will begin this chapter by outlining the
requirements of our system. We will then look at how we will realize these
requirements in practice.

Our main goal is to develop a proof-of-concept implementation, and we
will thus aim for simplicity. This means that we should favor the simplest
possible design, even if it may not be the most efficient. We will use an iter-
ative design approach, where we first implement a straightforward solution.
This solution can then be tested and profiled, and based on the results we
can select parts of the system that may benefit from optimizations.

5.1 Choice of technology

Before we can begin actually implementing anything at all we need to con-
sider what technologies to use. In our case we are fairly limited by the fact
that the EDM library currently only offers a binding for C/C++, VB and
Java, so these are the languages to choose from. VB is out of the question
because we are using a Linux cluster and VB is Windows-only technology.

Task-farming has a client-server structure. While message passing can
be used to program such an interaction it’s not ideal because the two-way
communication must be explicitly programmed with messages going back
and forth. With RPC however each operation is a two-way communication
channel; the client sends a request, the server acts on the request, and the
result is then returned to the client.

RPC also has the advantage that writing a program in terms of procedure
calls is something programmers are used to, this is after all how one write

53

54 CHAPTER 5. IMPLEMENTATION

most programs. Explicit message passing on the other hand is a bit more
exotic.

Both C/C++ and Java have RPC implementations available. In the case
of Java it is called Remote Method Invocation (RMI), because procedures
in Java are called methods. When it comes to solving the task at hand
we believe both languages to be equally well-equipped. The author is most
experienced with Java, so this seems like the natural choice.

5.2 Overall architecture

Our system will be written using the EDM Java binding. This is basically a
library wrapping the EDM C-interface by using the Java Native Interface1. In
practice this means that we can base our design on the benchmark program
developed in the previous chapter, exchanging the C-calls with the equivalent
Java calls. The rest of the implementation will deal with the infrastructure
necessary to do a parallel validation.

The heart of a master/slave approach is a queue of tasks. The master
distributes tasks from this queue to the slaves, who process each task and
return the result. Task-farming is self-scheduling; tasks are simply distrib-
uted on demand. Once a slave completes it’s current task it can receive a
new. If the number of tasks is much larger than the number of processors
task-farming can result in good load-balance.

In some task-farming systems, slaves can generate new tasks while pro-
cessing the current task. This complicates matters slightly as the slaves must
be able to add tasks to the queue. Also, if the queue is empty, a slave must
be able to determine if any of the other slaves are working, as this may
lead to new tasks becoming available. This creates a dependency between
the slaves. We can avoid these complications altogether because our tasks
won’t create new tasks. The complete list of tasks can be generated before
execution begins.

Figure 5.1 on the facing page illustrates the overall architecture of the
system. Each node will be running an instance of the Express Data Manager,
and we access the database via this instance using the EDM Java interface.
The master is written against this interface, and exposes the necessary RMI
calls to the slaves, which are implemented in the same way as the master by
using the EDM Java interface.

The flow of our system is described using an UML like notation in fig-
ure 5.2 on page 56. First, the master receives a model to validate, this will

1http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html

5.2. OVERALL ARCHITECTURE 55

Database

Express Data

Manager

EDM Java Interface

Master

Gigabit Ethernet

Database

Express Data

Manager

EDM Java Interface

Slave

Database

Express Data

Manager

EDM Java Interface

Slave

Figure 5.1: System architecture overview

typically be in the form of a simple text file. The model must be made avail-
able for download through the FileServer. The model must then be imported
into the database, once this is done we can analyze the model and generate
tasks based on the partitioning scheme we have chosen. The list of tasks is
thus generated before the validation starts. Once the queue of tasks is set up
the slaves are ordered to start the validation. They will then connect to the
FileServer and download the model file. Once the file has been downloaded
it must be imported. The slaves then start requesting tasks from the master.
During the validation, results will be returned from the slaves containing in-
formation about any errors found. These must be stored at the master and
used to generate a final error report as the validation completes.

5.2.1 Distributing models

Slaves receive tasks as messages telling them what to do, but as was discussed
at the end of chapter 4 the slave must also have available to it the data on
which it should operate. As we saw, knowing what instances will be needed
to validate a given instance is very difficult due to the way instances can
arbitrarily refer to other instances in Express. Because of this, we found
that the simplest approach would be to distribute the entire model to all the
slaves at the beginning of the validation.

This naive solution seems rather wasteful, and certainly has the potential

56 CHAPTER 5. IMPLEMENTATION

Master
 Slave

readModelFile

FileServer

run

setFile

startValidation

importModel

generateTaskQueue

importModel

getTask

putTask

Repeat until getTask()

returns null

generateErrorReport

registerSlave

Wait until the last

task is returned

Figure 5.2: The general sequence of a validation using our task farming
approach. We have included only one slave, but each slave will perform the
same operations in the same order.

of becoming the largest sequential component in our solution. One would
expect that only a small part of the model changes between validations, and
so it would make sense to transfer only the changes. But this won’t work
because currently models are moved from the application used to build the
model—e.g. a CAD tool—and to the EDM database by exporting it to a
file and then consequently importing it from this file. While this is certainly
inefficient it is how the system is used today, and it is what we have to relate
to.

5.2. OVERALL ARCHITECTURE 57

5.2.2 Distributing schemas

In order for the master and slave to be able to import the models they must
know the schema used by the model. Because schemas are static entities
defined as international standard we make the assumption that the neces-
sary schemas will be available at the nodes when a model is submitted for
validation.

Hence our solution will not feature any schema management. A full-
blown solution will most likely offer this, although the schemas should be
managed by the cluster manager rather than the users submitting models for
validation. We should also note that in most cases a company works with
data from very few schemas. Companies involved in construction for example
will mostly use the IFC schema only.

We should also point out that it is possible to validate a model against
a specified rule schema. In this case it is necessary to distribute the rule
schema together with the model. We will not support rule schemas in our
implementation. Support for rule schemas should however be an integral
part of a complete solution because validation against rule schemas is a fairly
common operation.

5.2.3 Distributing tasks

Task farming is fairly straightforward, we use a central queue to hold all
available tasks and as slaves request new tasks they are removed from the
queue and sent out for processing. Once processed, the result is returned
and stored. When slaves request a task but find the queue empty they know
that the current validation is complete, and can idle until new orders arrive.

A slight variation is possible here; when there are no tasks left in the
queue, a task can be taken from the pool of tasks being currently processed.
If a slow slave has received a large task, this may be beneficial because a
faster slave may be available for processing almost at the same instant, and
can finish the task much faster. This could also make the system more
responsive to failed slaves. To finish the validation we would have to send a
terminate signal to all the slaves once all tasks have been completed as in this
approach slaves may be working on tasks that have already been completed
by other slaves.

This latter approach has some advantages, but as we shall see, practical
issues make it difficult to simply kill a slave once it’s in operation. Also, our
cluster is a homogeneous one, so for all practical purposes our slaves can be
considered equally fast. Because we use a fairly large number of tasks it is
also not likely to make any major impact as it will only make it possible

58 CHAPTER 5. IMPLEMENTATION

to finish the last few tasks of the validation slightly faster. The rest of the
validation will not benefit from such an approach.

5.3 Error handling

In a distributed application there are more sources of errors than in a normal
application. The network is a source of many possible errors as nodes can
lose their connection at any point during an execution. Concurrency is also
a source of many challenges. Writing concurrent programs is much harder
than writing sequential ones, and bugs can be very subtle and hard to track
down due to the indeterministic nature of concurrent programs. These are
issues we must deal with.

Ideally our solution should be able to run even if we unplug one or more of
the slaves. If a slave disconnects for some reason we should be able to discover
this and take the appropriate action. We will however not be able to handle
cases where the master crashes or loses it’s network connection. It is certainly
possible to write master/slave solutions of a more egalitarian nature, where
any of the machines in the cluster can act as master. Such solutions can
tolerate the loss of the currently acting master by somehow choosing a new
master which then must be set up with the necessary knowledge about the
state of the current computation. Such extreme fault-tolerance however adds
a lot of complexity, and we wish to keep things simple.

5.3.1 Disconnected slaves

It is important to know the state of the slaves. When a slave becomes
unavailable (either as the result of a network problem, or a software crash)
we must be able to detect this as soon as possible. There are basically two
approaches here, the master can poll the slaves at regular intervals, or the
slaves can send heartbeats to the master to assert their liveness.

We will use the heartbeat approach. Each slave sends a heartbeat once
every second, this can be implemented as a simple RMI call. When the call
arrives we record the timestamp of the heartbeat and maintain a mapping
between each slave and it’s most recent timestamp. The master should have
a routine which executes every three seconds (for example) and scans this
mapping to see if any timestamps are older than three seconds in which case
we assume the slave to be dead.

A polling approach is somewhat problematic. If a slave disconnects then
the attempt to poll it might hang until a timeout occurs. Java makes no
guarantees about the length of such timeouts by default, but it is possible

5.3. ERROR HANDLING 59

to define this timeout manually. It also requires us to make callbacks to the
slaves, thus adding methods to the slave interface. Because we want to keep
communication as simple as possible we prefer the heartbeat approach as it
goes from the slave to the master.

But this addresses only network errors or complete failures where the
slave simply crashes. What about other errors that may occur at the slave?

5.3.2 Handling other failures

There are numerous things that can go wrong at the slaves. But as a start
they can be grouped into fatal and non-fatal errors. The former are errors
that makes it impossible for the slave to continue executing. If for example
some unrecoverable error occurs while the slave is copying the model from the
master it will not be able to perform any subsequent validation operations at
all. The same is the case if errors occur during the import step. The simplest
way of handling these errors is probably to close down the slave. The master
will then detect this as outlined in the previous section.

This is a crude form of error handling, but for our proof-of-concept it
should suffice. In general we will be more interested in detecting and analyz-
ing errors once they occur rather than have the system handle them. After all
we want to measure performance in an error-free environment as this should
be the normal case.

5.3.3 Errors and task management

When a slave is disconnected this may just be temporarily, although this
is very unlikely in our cluster solution. If it finished a validation during it’s
disconnect it will send the result as soon as it gets back up. But if we assume
that the master has discovered that the slave is down it will have put the
task on which the slave was working back into the queue. This will result in
the master receiving a result for a task which is still in the queue. Clearly
the master must be able to detect this and remove the task from the queue
again. This also means that rescheduling tasks by inserting them at the back
of the queue can be advantageous because it should increase the chances
that the connection to the disconnected slave can be fixed before the task is
rescheduled. But even if we do so, we can also find ourselves in a situation
where some other slave has computed and returned the particular task while
the problematic slave was disconnected. In this case we must simply discard
the result from the disconnected slave should it reconnect.

Errors can occur during the execution of a task, meaning that the slave
in question is incapable of fulfilling the task. Because we are running in an

60 CHAPTER 5. IMPLEMENTATION

Client
 Server

Stub
 Skeleton

RMI Reference layer

RMI Transport layer

TCP/IP

Figure 5.3: The layers of the RMI architecture

homogeneous environment this probably means that no other slaves will be
able to execute the task. But if we keep resending failed tasks and none of
the slaves are able to execute them we will end up in a livelock. We can
of course maintain information about which slaves have tried to execute a
task and failed, and based on this stop trying once every slave has tried to
execute the task. But again, because we are mostly interested in detecting
and fixing errors as soon they occur we will just stop the slave and report
the error when it occurs.

5.4 Writing applications using RMI
This section is a very brief description of the usage of RMI, and is mostly
based on [Andrews00]. As a reference the architecture of RMI is depicted in
figure 5.3.

In it’s simplest form an application developed using RMI has three com-
ponents: an interface defining headers for remote methods, an implementa-
tion of this interface, i.e. the server, and one or more clients that call the
remote methods.

One usually starts by defining the interface, it must extend the Remote
interface defined in the java.rmi package. The server must then be written
as an extension of the UnicastRemoteObject, implementing the methods
in the interface. It must also contain code which instantiates the server and

5.5. MODULES 61

registers this under an appropriate name in the registry service (to be covered
shortly). Finally a client class can be written. To use the methods exposed
by the server the client must start by getting a reference to the server from
the registry. The rest of the client code can then make normal method calls
to this server object as if it was a local object.

When the client performs a remote call it must be handled differently
than a local call. For this interaction to happen transparently a program
called rmic is used to generate the server skeleton and the server stub. The
stub sits at the client and translates a remote call into a message (a process
called marshalling). This message is then sent to the server skeleton which
unmarshals the call and generates a local method invocation to the actual
server implementation. Once complete, the result is then marshalled and
sent back to the client. The stub and skeleton thus hides all the details of
the network communication.

Because clients and servers typically are on different hosts (though they
don’t have to be.) they must be able to refer to each other somehow. For
this purpose URL-like names are used, having the form
rmi://hostname:port/service. The hostname is the Internet domain name
for the host on which the server is running, or an IP address. port is the port
on which the registry service is running, by default 1099. Finally, service
is the name under which the server registered, so this name must be unique.

The registry service is a daemon running in the background on the server
host. The registry maintains a mapping between service names and the
code implementing the services. The server registers a new mapping by
calling Naming.bind(), the client fetches a reference to the server by calling
Naming.lookup().

According the RMI Specification [SunRMI] section 3.2, the server “may or
may not” execute an RMI call in a separate thread. This means that remote
method invocations on the same remote object may execute concurrently.
As a result a remote object implementation must take care to synchronize
access to shared data structured, making the implementation thread-safe.

5.5 Modules

To implement our solution we should define modules that have clear areas
of responsibility. The master must deal with two important entities, slaves
and tasks. To manage the slaves and keep track of which slaves are currently
connected we should write a separate SlaveManager. To handle the queue of
tasks we should write a separate TaskManager.

62 CHAPTER 5. IMPLEMENTATION

5.5.1 The SlaveManager

The SlaveManager is responsible for keeping track of the status of the slaves.
For this purpose it must maintain a list of slaves currently expected to be
alive, which we shall refer to as the live set. It must also maintain a list
of all the slaves that have registered with the master. This list should be a
mapping from the slave to a timestamp indicating when the last heartbeat
was received.

The SlaveManager must allow slaves to register and unregister with the
master. It must also expose methods for requesting information about what
slaves are alive, and methods for getting references to these slaves for the
purpose of callbacks.

Finally the SlaveManager must have a routine which scans the slave-to-
timestamp mapping looking for slaves that have not sent a heartbeat within
some defined time interval, and remove these from the live set on the as-
sumption that they are unreachable.

If a slave which has been removed from the live set sends a heartbeat
this event must either be detected by the routine which scans the list of
timestamps, or it can be handled by the function used to handle the heart-
beat. The former approach means that the routine scanning the timestamp
table must both add and remove slaves to the list of live slaves. The advant-
age of this is that the heartbeat handler is very simple because all it needs to
do is to update the timestamp. It is also a cleaner design, in that the scanner
has the sole responsibility of keeping track of which slaves are live and which
are not. The drawback is that a slave will not be known to be live until the
scanner discovers this, and depending on the frequency by which the scanner
runs this may take several seconds.

The other approach is to see if the slave is in the live set when a heartbeat
arrives. This will make the slave known as live as soon as it’s heartbeat
arrives, at a very slight extra cost to the heartbeat handler as this must check
whether the slave exists in the live set for every request. It also separates the
maintenance of the live set between the scanner and the heartbeat handler.
Furthermore, we don’t expect the disconnection and subsequent reconnection
of a slave to be a very frequent event. Because of this we opt for the cleanest
design and let the scanner handle all maintenance of the live set.

To make the scanner run at timed interval we can make us of Timer.scheduleAtFixedRate().
This method requires an instance of the TimerTask class as it’s argument, as
well as an interval in milliseconds. To run the scanner we pass an anonym-
ous instance of the TimerTask which simply calls the scanner routine in the
SlaveManager. Because the class is anonymous and within the scope of the
SlaveManager, it has direct access to the SlaveManager methods, allowing it

5.5. MODULES 63

to call the scanner routine.
Finally the SlaveManager must be able to notify other modules about

the death of a slave. In particular it must be able to notify the TaskMan-
ager about this event, as the TaskManager must have this information to
reschedule the task (if any) which the disconnected slave was working on.

5.5.2 The TaskManager

The task manager module is responsible for maintaining the queue of avail-
able tasks. It must offer methods to request new tasks as well as returning
finished tasks. It must also keep track of which slaves are doing what, and
take care of rescheduling tasks should a slave fail to execute it.

The TaskManager must also offer a method that is used to build the
internal list of tasks when a new validation is about to begin. This method
will be called from the master once the current model has been imported into
the database and is ready for analysis. The TaskManager thus implements
the partition scheme that we have chosen.

As results are returned from slaves they must be stored until the val-
idation is complete for the purpose of producing a final error report. The
TaskManager is responsible for storing the results, and should offer a method
to return these results. It is not natural for the TaskManager to produce the
final error report, so it simply holds the raw data needed to generate this
report.

5.5.3 The Master

Having modularized the master means that the slaves will need to know about
the modules to use their functionality. Furthermore, the modules must be
written as if they are remote services. Clearly this is not desirable. The
slaves should only need to know about one single service, not the modules
it is made up of. To achieve this we follow the Mediator design pattern
[Gamma et al 95], making the master act as a mediator between the slaves
and the TaskManager and SlaveManager. The interface exposed by the mas-
ter is the only thing the slaves need to know about. Whenever a remote call
is made to the master it must forward the call to the appropriate module.
This approach is visualized in figure 5.4 on the next page.

This means that the code implementing the Master interface will be ex-
tremely simple. But the master must also provide the user interface. For
this purpose we should have a class RunMaster, which is used to actually
run a master. It starts the different modules, connects to the EDM data-
base, creates the server used to serve the model files, creates a binding in

64 CHAPTER 5. IMPLEMENTATION

T

a

s

k
M

a

n

a

g

e

r

S

l
a

v

e

M

a

n

a

g

e

r

getTask()

putTask()

unregisterSlave()

registerSlave()

slaveKeepAlive()

Master

Network Boundary

Figure 5.4: Using the Mediator design pattern to simplify the remote inter-
face

the rmiregistry so that the slaves can access the master, and controls the
overall validation process. The source code listing for this class can be found
in Appendix A.1.

For our purposes testing is obviously very important. The testing will
require many executions, and this should be as automated as possible. The
master should offer both a batch mode and an interactive mode. A simple
approach to the batch mode is for the master to read a predefined configur-
ation file containing a list of models to validate. For data collection we wish
to validate models multiple times, and we wish to do this in random order.
But we must also make sure that the order is reproducible. We will therefore
use a simple utility to generate the list of models which guarantees that the
same input will always yield the same output.

The interactive mode simply waits for the user to input the name of a
model to validate. This can be used to investigate properties of selected
models. In a real implementation the models will probably arrive over the

5.5. MODULES 65

network or be selected through some sort of GUI.
When a model has been selected the master must import the file contain-

ing the model data. Once this is completed it must call the TaskManager to
make it build the list of tasks. Then it can instruct the slaves to start the
validation process.

5.5.4 The FileServer

The first stage in the validation process will be to transfer the model to all
the slaves. To achieve this we should have a tiny file server module running
at the master node. This module is responsible for accepting connections
from slaves and serving the current file to the slave.

When the validation of a model is about to start the model file is made
available for download from the file server. As the slaves are ordered to
start validation by the startValidation() call they connect to the file server
and download the file. This happens sequentially, i.e. each slave finishes
downloading a file before the next slave can connect and do the same.

5.5.5 The Slave

The slave is a lot simpler than the master. Basically it must retrieve a
reference to the master and register with the master. When it registers it
can send a reference to itself as a parameter, allowing the master to make
callbacks to the slave without manually going through the registry. It must
also connect to the database, and set up the heartbeat timer. We have
included a source code listing for the Slave in Appendix A.2.

While we prefer to have the communication be one-way, the slaves must
somehow know when they are to start a validation cycle. While they could
certainly poll the master at regular intervals, this is not very efficient. Instead
the slave should offer a remote method startValidation() which the master
can use to inform the slave that a new model is ready for validation. Once
the master calls this method the slaves connect to the master, reading the
model data file and writing it to a temporary file locally. This file must then
be imported. Once imported the slaves can start requesting and processing
tasks.

When called, startValidation() will block the master until it returns. Be-
cause of this the method must create a new thread which will deal with the
actual validation process, this way the startValidation() call can return im-
mediately. We will thus need a ValidatorThread class which contains the
actual validation code.

66 CHAPTER 5. IMPLEMENTATION

5.5.6 The ValidatorThread

Each slave runs the validation code in a separate thread. Once started,
this thread begins by reading the model from the master. It then executes
the model import, and enters a loop alternating getTask() and putTask()
requests.

Because validation errors are stored in the EDM database using a special
schema, the ValidatorThread is also responsible for querying this database
after every task has been executed. Should it find that any errors or warnings
have been created it must collect these and store them in some data structure.
We will simply use a ValidationError class to hold these errors, and putTask()
should return an array of ValidationError objects, which will be empty if no
errors or warnings were generated.

5.5.7 Crosscutting issues

The most important purpose of our system is to give us test results that
can tell us something about the performance of our approach. But to get
these results we will need to time different parts of the code, and we will also
need to generate miscellaneous logs. These are so called crosscutting issues
because they affect all parts of the system. To time the different steps in
a validation, timer code must wrap each step of the cycle. The timer and
logging code must be replicated wherever we need to time things, and the
this extra code will also clutter up the system code and make it harder to
read.

A more efficient way of dealing with such crosscutting issues is through
the use of Aspect Oriented Programming (AOP) [Kiczales et al 97]. AOP
adds another level of abstraction on top of OOP and for example allows us
to declare that calls methods matching some pattern should all be wrapped
by code which starts and stops a timer. This is only a very simple example
of what can be done with AOP, but it is what we will be using it for.

AOP is usually implemented by using a weaver. A weaver takes the
description of crosscutting code and weaves it into the original source files.
If we for example have two functions, get() and put(), and we wish to time
them both, we declare this in a file. The weaver will then modify both
methods to include the timing code.

For Java there are several implementations available. The most popular
seems to be AspectJ2, and Aspectwerkz3. Of these two, AspectJ is the most

2http://aspectj.org
3http://aspectwerkz.codehaus.org/

5.6. SYNCHRONIZATION AND STATE ANALYSIS 67

mature, so we will use it. AspectJ is a very small extension to the Java
language.

5.6 Synchronization and state analysis
Concurrent programming is hard. Making sure that the different processes
don’t interfere with each other is necessary to ensure the correctness of a
concurrent system. In our case there are two different issues to consider.
First, there is the relationship between the slaves and the master. These will
communicate using RMI, and when remote calls are made we must ensure
that the callee is in a suitable state to deal with the request. Secondly, both
the master and the slave makes use of threads. These must be carefully
designed so as to not interfere with each other. One of the nice features of
Java is that it offers simple constructs for working with threads.

We first begin by looking at the communication between the master and
the slave. By enumerating the states that the slave and the master can be
in, and relating these to the different calls that can be made, we can analyze
which combinations are acceptable and which are not, allowing us to decide
how to deal with erroneous combinations.

5.6.1 The master states

As the master begins it’s validation cycle it will first import the model and
build a list of task. This ensures that once the master instructs the slaves
to begin validation it is in a correct state to fulfill the requests that will
come from the slaves. When the slaves begin validation they will start by
importing the model. Once this is done they start calling getTask() and
putTask(), always in a strict alternating sequence. The master will not exit
the validation stage until the last task has been executed and returned. Once
this happens, the master will go back to the ready stage.

Table 5.1 on the following page show the states the master can be in and
relates these states to the possible calls it can receive. Combinations that
are acceptable have the value OK. The state are as follows:

Ready In the Ready state the master is ready to accept a new model for
validation. In our solution this either means that the user is expected
to supply a model, or that the batch system is about to select one.

Import Once a model has been selected it must be imported into the data-
base. This state also includes the processing needed to generate the
list of tasks based on the newly imported model.

68 CHAPTER 5. IMPLEMENTATION

State
Call Ready Import Validate Errors
registerSlave OK OK OK OK
unregisterSlave OK OK OK OK
slaveKeepAlive OK OK OK OK
getTask — — OK —
putTask — — OK —

Table 5.1: The states in which the master can be and the calls it can receive.
The master will always change between the states from left to right, cycling
back to Ready when finishing Errors.

Validate As the list of tasks has been built the master is ready to pro-
ceed with the validation. This implies ordering all the slaves to start
validating, and wait until the last task is finished.

Errors With the validation completed the only remaining task is to generate
an error report detailing any errors found with the model. Once this
state completes the master returns to the Ready state.

As is clear from table 5.1 we don’t have to worry about the registerSlave(),
unregisterSlave() and slaveKeepAlive() calls. The first two are used to
register and unregister a slave with the SlaveManager, and these should be
allowed to happen at any time without it causing problems.

The getTask() and putTask() calls on the other hand only make sense
in the Validation state. This is the only state in which the task queue
contains any tasks. But handling erroneous calls to getTask() or putTask()
shouldn’t be difficult. A call to putTask() in any other state should simply
be ignored. A call to getTask() can simply return null.

5.6.2 The slave states

The slave only accepts a single call, startValidation(). This makes the
call/state table very simple. The states are much the same as for the master,
except for the new Read state which means that the slave is downloading the
model file from the master.

As we can see from table 5.2 on the facing page there are three problematic
cases here, and they are a lot more difficult to handle than the ones in
the master. If the slave is in the Read state it is reading data from the
FileServer and writing this to a local temporary file. Should a new call to
startValidation() arrive at this point, the slave will enter the Read state,

5.6. SYNCHRONIZATION AND STATE ANALYSIS 69

State
Call Ready Read Import Validate
startValidation OK — — —

Table 5.2: The states in which the slave can be and the calls it can receive.

and thus two threads will be writing to the same file. This file is also being
read in the Import state, so if the slave is in the Import state and receives a
startValidation() call this will certainly cause problems. Finally, if the slave is
in the Validate state a call to startValidation() will cause the slave to run two
validation threads. This will cause the validation to break down completely
as the model data which the first thread operates on will be overwritten as
soon as the newly created thread reaches the Import state.

5.6.3 Using barrier synchronization to ensure accept-
able state transitions

A simple way of preventing all these problems is to use barrier synchroniz-
ation [Tanenbaum01] [Andrews00]. The master and all the slaves must all
come back to the ready state before they can start a new validation. Finish-
ing the validation of a single model is the barrier they all must reach.

By using barrier synchronization we can guarantee that as the master
reaches the Validate state, all the slaves will be in the Ready state. The
master can then safely call startValidation(), which will make the slaves
enter the Validation state. Until all slaves have finished the validation both
the master and the slaves are known to be in the Validate state. After the
slaves have finished, they will go back to the Ready state. The master will go
through the Errors state, safe from any unwanted requests from the slaves.
As the Errors state ends, the master goes back to the Ready state and a new
cycle can begin.

Barrier synchronization may however introduce inefficiencies. Consider
the situation in which some slaves are in the middle of reading or importing
a model, while others have already started validating. If the validating slaves
are able to process all the tasks before the reading or importing slaves are
able to finish reading or importing there is no point in continuing this reading
or importing. What we want is a way to instruct these slaves to simply stop
what they are doing and go back to the Ready state once the validation has
completed. The master should thus be able to inform the slaves of this event,
and the slaves must be written so as to allow them to abort the current read
or import.

70 CHAPTER 5. IMPLEMENTATION

But this is somewhat tricky. In Java threads can be interrupted, causing
them to raise an InterruptException and terminate. However, according to
[Lea02] nothing forces a thread to terminate once interrupted. This allows the
thread to do necessary clean-up, but also makes the interrupter responsible
for checking that the thread has actually been terminated before moving on.
In addition to this minor complication, the import process is performed by
a Java method wrapping a native call to a C routine. Abruptly aborting
this C routine may cause database corruption because it is in the process of
altering the database. Had the import process been a Java routine we could
have added the necessary clean-up code to allow for such sudden termination.

Due to these complications it is not a good idea to abort the thread.
Instead we simply have to wait for all the slaves to finish, i.e. reaching
the barrier. We also believe that the likelihood of this event occurring is
minimal. For it to happen the validation must be very short compared to
the read and import stage, in which case there is little or nothing to gain from
a parallelization anyway. It can also happen if one slave gets stuck importing
for a very long time, but because we are using a homogeneous cluster and all
slaves have the same operating environment this is also an unlikely event.

Finally we should note that while the read stage is implemented in Java
and can be gracefully aborted, the probability of a slave being in this state
as the other slaves finish the validation is very small. We therefore choose to
ignore it and stick with our simple strategy of simply waiting for all slaves
to finish before continuing with the next validation. Should this prove to be
a problem we may have to return to this point at a later stage.

5.6.4 Local synchronization requirements

The SlaveManager and the TaskManager both maintain internal data struc-
tures to keep track of the state of slaves and tasks. These data structures
must be protected from concurrent access. Here Java provides a very easy to
use mechanism. By making the methods that may access the data structures
concurrently synchronized we can ensure that they will be thread-safe. The
slave doesn’t maintain any such data structures, so here there is no danger
of concurrent access.

5.7 Summary

In this chapter we have tried to cover as many aspects of our design as
possible. Our approach is iterative, the design described here is the first
version, as we turn to the test phase we will gather performance data that

5.7. SUMMARY 71

will help us in making informed choices about which parts of the system will
need improvements4.

For the implementation we chose Java, using RMI for communication. We
discussed the overall structure of the system, and how to properly modularize
it. Testing the performance and correctness of our system is important, and
we have decided to use Aspect Oriented Programming for a simple way of
adding and removing timing and logging of the system as the need arises
during testing.

Designing a distributed system is complicated by the need for more error
handling due to the asynchronous nature of when and how errors can occur.
We discussed various strategies for how to deal with errors, but decided to
go with very simple error handling as we are writing a prototype. We also
looked at how to manage synchronization and ensuring that the different
parts of the system don’t end up in an erroneous state.

4Assuming of course that the system has potential of being a viable solution at all!

Chapter 6

Performance analysis

In this chapter we shall look at how we tested our parallel solution. The
main purpose is to find weaknesses in our solution that can be improved.
We begin by giving a description of the test environment. We then describe
how we will perform our tests, and discuss the quality of our test results.
We then turn to our results, and study several important aspects, such as
performance, overhead and scalability.

6.1 Test environment

For the purpose of this project we received a grant from “Komp-programmet”,
a program initiated to strengthen the cooperation between the University
of Oslo and the local industry. The grant was used to buy a cluster of 8
computers. The cluster was set up on site at EPM technology, and was
under our control for the duration of the project. No other people had access
to the cluster, it was solely dedicated to our purpose.

6.1.1 Hardware configuration

The cluster consists of 8 identical Dell computers. They are all equipped
with Pentium 4 2.4GHz processors and 1GB of main memory. The cluster
is connected through an 8-port gigabit switch, and hence has a dedicated
gigabit network available. One of the computers was designated as the mas-
ter and is the only computer with an extra network interface card allowing
this computer to access the rest of the local area network. The other 7 com-
puters are designated as slaves. The master was named Snow White, and
the slaves were named Dopey, Grumpy, Doc, Happy, Bashful, Sneezy and
Sleepy. Hopefully they will not display the same variances in mood as their

72

6.2. TESTING METHODOLOGY 73

namesakes.

6.1.2 Software setup

All the computers run a very minimal installation of RedHat Linux 9.01. We
have tried to avoid installing anything but the absolutely necessary software
to ensure that no computational resources are wasted. All the computers
were configured using RedHat’s kickstart installation system2 which allowed
us to easily do identical installations on all the computers via the network.

To manage the cluster we use Cluster Command and Control (C3)3, a
simple set of command line tools developed by the Computer Science and
Math Division at Oak Ridge National Laboratory. Most important is a
program which lets us distribute files to all the computers in the cluster, and
a program which lets us execute the same command on all the computers in
the cluster.

Since our initial study the EDM library has been upgraded to version 4.7
and we chose to use this version for our system, mainly because the Java
interface had seen some extensive improvements since version 4.5 which was
what we previously used. The EDM library has been compiled using gcc
without any optimization settings.

As for Java we are using version 1.4.2 of the Java SDK which at the time
of this writing is the most current version.

6.2 Testing methodology

For testing purposes we have gathered a collection of various models available
to us. This has been a bit problematic because Express models typically
contain data considered to be industrial secrets, and thus nobody wants to
give them away. But with some effort we have been able to find a collection
of models which should highlight the most interesting aspects of our solution.

There are several variables that may have an impact on performance of the
cluster. First of all the number of slaves can vary, and testing with different
cluster sizes should tell us something about the scalability of the solution.
We also expect to see performance vary greatly between models, and from
our initial survey we know that this is probably mostly influenced by what
schema the model is based on, so we have models based on different schemas.

1http://www.redhhat.com
2http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-

kickstart2.html
3http://www.csm.ornl.gov/torc/C3

74 CHAPTER 6. PERFORMANCE ANALYSIS

We should also have a selection of models based on the same schema that
vary in size as this will tell us something about how size affects performance.
Finally the validation can be executed using different task granularities by
varying the population partition size, and we are interested in knowing if
there is a single partition size which works well across the board, or if it
depends on the models.

6.2.1 Measuring execution times

To measure the execution times we simply insert timers into the code that
should give us the numbers we need. We want to know how long it takes
to transfer a model from the master to a slave, how long it takes to import
a model, and how long it takes to validate the entire model. Because we
want to be able to closely scrutinize examples of bad performance the slaves
will also time each operation they perform. The timing data is returned to
the master together with the standard return information for each completed
task, and written to a log file there. This simplifies data collection and will
allow us to find bottlenecks in the execution as well as keep track of which
slaves did what and in what order.

All these measurements are done in Java, using System.currentTimeMillis.
As with our initial studies this gives us a resolution of milliseconds4 which
should be adequate given that the sort of operations we are working with
generally takes minutes or more to execute.

6.2.2 Test setup

It is important that we are able to compare the two solutions on an equal
basis. We have already covered the hardware and software setup which will
be the same for all tests. We must also ensure that the two programs do the
same thing. The two programs will therefore validate the same models, the
same number of times, in the same order. To achieve this they both read the
list of models from the same configuration file.

To further improve the quality of our measurements, each model will
appear 10 times in this list allowing us to check the variance and to compute
averages. In a real world situation, models will typically arrive in random
order, and so to reflect this the list of models will be permuted so that the
models are validated in random order.

4While currentTimeMillis has a resolution of 1ms on Linux, it’s resolution under
Windows 2000 is only 10ms, despite the name.

6.2. TESTING METHODOLOGY 75

6.2.3 What to measure

Our implementation works by first importing the model on the master, which
then builds a list of tasks to be performed. Once this is done it informs the
slaves to start the validation process. The slaves then connect to the master
to read the model file and import the model. As they finish importing they
start the actual validation by requesting tasks from the master.

It is important to understand that when measuring the execution time
of our distributed solution we exclude the time it takes to import the model
at the master. The time it takes to validate a model in our distributed
environment is defined to be the time from the master is done importing the
model to the final task has been completed and returned to the master. This
means that transmitting the model to the slaves as well as importing the
model at each slave is part of the validation time.

The rationale behind this is the way models are generally used. As we
have previously discussed a user typically works with the model using dedic-
ated software like a CAD tool. When he or she deems it necessary to perform
a validation the model is exported from the CAD tool to a file. To validate
it using the Express Data Manager it must first be imported. This latter
import stage is thus necessary regardless of whether a sequential or paral-
lel validation is used. In the parallel case this import stage is the same as
importing the model at the master. Once the model is imported, validation
begins, and to the user there should be no difference between a parallel and
a sequential validation (except hopefully the time it takes).

6.2.4 Data quality

Before we can look at the test results we should look at the quality of our
measurements. If they vary greatly we may need to reevaluate our testing
methodology or possibly alter the test programs.

One must expect some variance due to factors out of our control, such as
the effect of other programs running. Paging and cache effects are also to be
expected. The execution times for the parallel system is further influenced
by the performance of the network and the task distribution, so a greater
variation in the parallel results is to be expected.

Sources of variance

One possible source of error is the many daemons that the Linux operating
system depends on. While we have made a very minimal install of the oper-
ating system, several daemons are essential to it’s operation and can cause

76 CHAPTER 6. PERFORMANCE ANALYSIS

problems for us. Because our tests take several hours to execute we must
expect that some of the daemons will start running during the tests and will
interfere with them. On the positive side it should however be noted that
most of the daemons require very little resources and generally only execute
for a very short time.

Models that are quick to validate will be most affected by these daemons
because the relative effect of the daemon running will be bigger. One of
the worst examples of this is the distributed validation of the house model
where the values generally show little variation, hovering around the median
of 950ms, but where one of executions took 2956ms to execute.

A second major source of variance is the effect of memory. EDM man-
ages it’s own memory, and uses a lot of caching in an attempt to speed up
execution. In chapter 7 we will discuss the effect of caching and the memory
management in more depth, as we look at some very interesting effects this
has.

Measured variance

To characterize the spread of our results we use the semi-interquartile range.
This is computed as one half the difference between the 75th and the 25th
percentile of the measured results. It is fairly resistant to extreme values
which inspection shows that our data contain some rare cases of. Because we
have several models, we need to normalize the computed ranges if we are to
compare the values across models. The easiest way to do this is to express
the semi-interquartile range as a percentage of the average execution time.
The resulting values are shown in table 6.1 on the next page and visualized
in figure 6.1 on the facing page. The relative semi-interquartile range has the
header % Variance.

6.3 Findings

6.3.1 Overall speedup

The first thing we want to look at is simply how well the distributed solution
performs. We measure execution times using partition sizes of 1, 10, 100 and
1000. The results are summarized in table 6.2 on page 78. We have also
extracted the best result for each model and these are shown in figure 6.2 on
page 78.

As we were expecting based on the theoretical analysis, the results span
a wide range. Two models (house and bygga) actually have a speedup of less
than 1, and thus perform worse in our distributed environment than on a

6.3. FINDINGS 77

% Variance
Schema Model Parallel Sequential

AP214 as214 1.4% 1.9%
io214 4.4% 0.7%

IFC2X2

bygga 3.8% 2.1%
condo 5.3% 1.5%
ginza 7.4% 0.4%
house 4.6% 3.1%

AP203
conrod 3.8% 2.2%
part21 1.4% 0.4%
s203 5.6% 0.2%

AP210 cpu 0.8% 0.1%

Table 6.1: Normalized semi-interquartile range of execution times

Figure 6.1: Normalized semi-interquartile range of execution times

78 CHAPTER 6. PERFORMANCE ANALYSIS

Partition size
Schema Model 1 10 100 1000

AP214 as214 1.60 1.57 1.59 1.59
io214 2.39 3.43 4.07 4.08

IFC2X2

bygga 0.18 0.83 0.98 0.78
condo — 1.45 4.61 4.77
ginza — 0.80 1.73 1.72
house 0.04 0.50 0.67 0.54

AP203
conrod 4.27 4.65 3.99 2.18
part21 0.86 3.90 5.55 4.72
s203 0.92 3.99 5.16 3.09

AP210 cpu 3.43 6.48 6.64 3.67

Table 6.2: Measured speedup for a selection of models using a 8 node cluster
with 7 slaves and 1 master and partition sizes ranging from 1 to 1000.

Figure 6.2: Best initial speedups achieved for the various models in our test
set.

6.3. FINDINGS 79

single computer. On the other end of the spectrum we find the cpu model,
which has a maximum speedup of 6.64, which is very close to the perfect
speedup given that we have 7 working slaves. We should also remark that
no data is available for ginza and condo using a partition size of 1 because
the Java VM ran out of memory due to the extreme amount of tasks this
generated.

The two worst performing models—bygga and house—are both instances
of the IFC2x2 schema. So is the ginza and condo model. But these four
models display very different performance. From the initial study we sus-
pected that the schema would influence performance to a great degree. But
with the four models in question there is one more variable to consider, and
this is size. The two problematic models, bygga and house are 2.3MB and
3.1MB respectively. ginza is 57MB, and condo is the largest at 122MB. This
is very interesting as performance seems to improve with model size.

For a user the absolute speedup is obviously also very important. For the
two smallest model there is very little to gain in terms of wall-clock time, they
execute in a few seconds anyway. But with condo the situation is different,
this model takes about 36 minutes to validate on a single computer. With
our distributed solution it validates in roughly 7 minutes. It is this type of
models that we want to tackle with our solution, and thus the results so far
seems very promising regardless of the terrible results for bygga and house.

The problem with IFC based models seems to be that they are computa-
tionally lightweight. This means that the import stage at the slaves tends to
dominate the execution, and thus performance suffers. This is unfortunate
as the IFC schema is one of the most used schemas in the industry.

The best performing model (cpu) is not particularly large in terms of
data, but it is computationally intensive. It takes 40 minutes to validate
on a single computer, and only 6 minutes to validate using the cluster. The
advantage with computationally intensive models is that overhead is reduced,
most importantly because the import stage becomes very small compared to
the validation stage.

6.3.2 The impact of partition size

From our results it is clear that no particular partition size works best overall.
There is one model that perform best with a partition size of 10, six models
come out best with a partition size of 100 and three models show best per-
formance with a partition size of 1000. This is no surprise, the models vary
greatly in their number of instances, and for the largest models a partition
size of 10 means that the task count grows extremely large, adding much
overhead due to task management. But this is not the sole cause. The cpu

80 CHAPTER 6. PERFORMANCE ANALYSIS

model provides a good case in point, this is actually our third largest model,
yet it comes out best with a partition size of 100. And the performance drop
going from 100 to 1000 is quite large, from a speedup of 6.64 to a speedup
of 3.67.

The problem here seems to be that certain entities have very complex
rules declared on them, and thus take very long to validate. When these are
grouped into chunks of 1000 instances the resulting tasks become larger in
terms of computation. Because of this the granularity of the tasks goes down,
and the load balance becomes less optimal. To verify this hypothesis we can
use the logs generated from our test runs and sum the execution times of all
the tasks for each slave. We expect to find that with a partition size of 100,
the slaves are doing pretty much the same amount of work, whereas with a
partition size of 1000 certain slaves are much more heavily loaded. Inspection
shows this to be correct, using a partition size of 100 the work done by the
slaves range from 315 seconds to 346 seconds. With a partition size of 1000
we find that one slave only works for 215 seconds, while a different slave
has to work for 641 seconds. The validation can’t be completed until this
latter slave is done, and thus most of the other slaves lie idle as the last slave
struggles to finish it’s final complex task. Inspection reveals that the last
task to be finished takes 541 seconds to validate in our test case. The results
are shown in figure 6.3 on the next page.

6.3.3 Scalability

Unfortunately we don’t have a very large cluster to test our solution on, and
this prevents us from testing scalability properly. However we decided to
test the solution with 6, 3 and 1 slave. Using only 1 slave should also tell us
something about the overhead incurred by our solution. We won’t go into
details here, the results showed that for most models using 6 models was
about twice as fast as using 3. For two models however this was not the
case, but these two models both suffer from the global rule problem we saw
in our initial survey. They are dominated by a single global rule, and the
slave executing this single rule is always the slowest slave. Because of this it
makes no difference if we use 3, 6 or 100 slaves for these models. They are
both limited to a speedup of less than 2, so anything beyond 2 slaves makes
no difference.

6.3. FINDINGS 81

Figure 6.3: Load distribution using partition sizes of 100 and 1000 on the
cpu model. The problem with a size of 1000 is evident for slave 7, whose
total execution time is much larger than any others.

82 CHAPTER 6. PERFORMANCE ANALYSIS

6.4 Overhead

A distributed solution must necessarily always carry some overhead due to
the extra management necessary. We will here discuss the possible sources
of overhead in our implementation. We have briefly touched this subject in
previous sections but a more complete discussion is desirable.

There are several possible sources of overhead in our system. We are
using Java with native calls to C, and one can expect some overhead due
to this. To perform a distributed validation several operations which are
not necessary on a single computer must be done. First, a model must be
analyzed, and tasks generated, these must be inserted into a queue. Next
the model must be transferred to all the slaves and imported there. Once
this is complete each slave must fetch and return tasks, something which
is done through RMI calls. As these calls are made the master must keep
track of which tasks are in what states. Once all tasks have been completed
the master must summarize any errors found. All of these operations must
considered as overhead as they are not necessary in a regular single computer
validation.

6.4.1 Measuring overhead

A simple approach to measuring overhead is to simply study the efficiency
of our solution. [Foster95] defines relative efficiency as

Erelative =
T1

PTP
(6.1)

where T1 is the execution time on one processor and TP is the execution
time on P processors. An efficiency of 1 clearly means there is no overhead,
and the lower the efficiency the more overhead. From this it is clear that
our solution has one major source of inefficiency—the use of a master which
does nothing but manage the slaves. In a cluster of 8 computers this means
that 1

8
of the computing resources are wasted5. This puts an upper limit on

the relative efficiency of our solution at 0.875, or 87.5%6. A second source
of inefficiency is load imbalance, something which we have already touched
upon several times.

Figure 6.4 on the facing page shows the relative efficiency of the models
in our test set. The results here shouldn’t be surprising as relative efficiency

5Of course, some of the computing resources are actually used for managing the slaves,
so this is a simplification

6Disregarding the possibility of superlinear speedup

6.4. OVERHEAD 83

Figure 6.4: Relative efficiency in percent for the models in our test

is closely related to the speedup which we have already studied. In fact, the
two can be defined in terms of each other.

But while relative efficiency gives us a birds-eye view of the overhead,
it doesn’t say anything about where the extra time is actually spent. To
study this we need to analyze the different sources of overhead and their
contribution to the total.

6.4.2 JNI overhead

There are really only three methods implemented with JNI that we call fre-
quently, these are the methods responsible for the different validation opera-
tions. These calls are fairly simple in that they merely wrap the C functions
which implements the validation. The native functions do not perform any
callbacks into Java nor do they access any Java objects except for the data
passed as arguments.

The overhead from JNI has been studied in [Kurzyniec, Sunderan 01],
and the findings here indicated that JNI incurs very little overhead if no
callbacks are made, and there are no uses of Java objects within the native
code. This is the case for our solution, hence we don’t expect the use of JNI
to have a noticeable effect on the performance of our solution, and therefore
choose to disregard it.

84 CHAPTER 6. PERFORMANCE ANALYSIS

Figure 6.5: Percentage of the total validation time spent transferring and
importing the model.

6.4.3 Transfer and import overhead

To get an idea of what impact the import stage has on the efficiency of our
solution we can compare the time spent performing the import to the total
validation time. By doing this we can express the import time as a percentage
of the total validation time. This gives us the results displayed in figure 6.5.

The overhead from the transfer and import of a model is very dominant
for many of the models, so this is certainly a target for optimization. We will
have more to say on this when we turn to making improvements in the next
chapter.

6.4.4 Load balance

Load imbalance is a source of inefficiency because it means some computers
are doing much more work than others, which in practice means that some
computers are idle as they wait for the harder working computers to finish.

Thanks to the self-scheduling nature of the master/slave approach we
know that slaves are working at their max as long as there are tasks available.
As soon as a slave finishes a task, it fetches the next and starts executing it.

When we looked at how the partitioning affected the performance of the

6.4. OVERHEAD 85

Schema Model Difference Relative

AP214 as214 29241 74%
io214 314 24%

IFC2X2

bygga 215 2%
condo 78 0%
ginza 390 0%
house 326 5%

AP203
conrod 19 1%
part21 999 7%
s203 737 13%

AP210 cpu 23705 7%

Table 6.3: Difference in finishing time for the first and last slave, expressed
in absolute terms (milliseconds), and as a percentage of the total execution
time.

cpu model we analyzed load balance by computing the total execution time
for each slave. But a simpler approach is also possible; we can timestamp
when a slave starts and stops a validation. These two timestamps can then
be used to calculate the time spent in the particular slave. An even simpler
approach is to timestamp only when a slave is done validating. What really
matters after all is when the slaves finishes, if one slave has to work twice
as much as the others, the others lie idle as they wait for the slave to finish.
If we choose the first slave to finish as our reference value we can calculate
the finishing times of the other slaves relative to this. We also express the
difference in execution time as a percentage of the total execution time as
this makes it easier to compare the various models.

We’ve already seen that as214 performs poorly, and based on the load
balance results it is clear that this is mostly due poor load-balance. The other
AP214 based model (io214) also seems to have rather poor load balance, but
here the absolute difference is only 314ms. The problem here is not a large
global rule as with as214 but rather that the validation of io214 is very fast
so that the relative effect is more pronounced. Looking at the two largest
models in our test set, condo and ginza, we see that the load balance here is
extremely good.

The way our solution is implemented, load balance is only influenced by
the partitioning scheme chosen. In cases where complex global rules domin-
ate execution time there is little we can do to improve the load balance. In
section 6.3.2 on page 79 we saw how much partition size influenced the per-
formance of the cpu model. A statically defined partition size is problematic

86 CHAPTER 6. PERFORMANCE ANALYSIS

because it doesn’t adapt to the model.

6.5 Reference data collection

To obtain our reference data we use a small C-program. Our first ver-
sion of this program was simply a program that called the API function
validateModel to validate the entire model. This call was then timed using
the same method as we did with our benchmark program in chapter 4.

As we were executing our tests we noticed something strange with condo,
the largest model in our test set. When validating the condo model using only
a single slave we found that it was 37% faster than using a single computer
and the validatemodel program. This is clearly not possible as the parallel
version should carry a lot of overhead, and so we decided to investigate
further.

We began by reviewing our code. The first thing we did was to reassure
ourselves that the two different executions actually perform the same val-
idation with the same data yielding the same result. The first is simple to
verify; the options sent to the validation API calls determine what is to be
validated, and using a debugger we could easily check that the same options
were used both in the distributed and single computer solution. We can also
be sure that the models are equal in both cases, because once again the same
C function is used to import the models (while we call a Java method in
the parallel version, it merely passes a filename to the C-function which per-
forms the actual import.). But the distributed solution partitions the data
into chunks, so a bug in the partitioning code could result in parts of the data
not being validated properly. We have used the same partitioning algorithm
as we did in the initial study, and nothing so far had indicated a bug in this
code. Further scrutiny of the logs reassured us about the correctness of the
partitioning. We also found that the validation results were the same in each
case.

At this point we were baffled. We decided to try the benchmarking tool
from our initial study. Because this program was the basis of our paral-
lel program it uses the same partitioning of the data as the distributed
solution, it then executes all the tasks generated and measures the time
for these. We will refer to this program as validatemodel-split. Using
validatemodel-split we validated the condo model, and the result was
surprising indeed. validatemodel-split validates the model twice as fast
as validatemodel which we had used as our reference so far.

6.6. SUMMARY 87

The resolution

The results for validatemodel-split prompted us to profile the code. We
recompiled both validatemodel and validatemodel-split to include pro-
file information and validated condo with both. The results were clear, in
validatemodel two functions responsible for internal memory management
account for a major percentage of execution time, this is not the case for
validatemodel-split. These findings were given to the lead engineer at
EPM, who after some studying could verify that this was indeed the problem.
What happens is that during a complete validation using no partitioning the
EDM memory manager keeps track of far too much data, it doesn’t discard
data quickly enough. This leads to certain internal data structures growing
very large, and thus slow. With a partitioned execution this is not a problem
because data are discarded between each function call used to implement the
partitioning. This is clearly a weakness in the EDM engine, and will be fixed.

But this is problematic from our point of view. For does it invalidate
all our results? Certainly we can claim that our current solution makes it
possible to validate the condo model faster than is currently possible with
the EDM software package. But once this weakness is fixed, our distributed
solution will most likely show much weaker performance for the condo model.
Luckily it looks like the other models are not affected by this problem, it is
the sheer size of the condo model which is the problem.

Because we feel that the validatemodel-split program best represents
reality we will use this as our reference program henceforth. We do not wish
to introduce the new EDM code into our system as that could potentially
introduce other problems. The version we currently have is a stable release
that has been thoroughly tested.

6.6 Summary
In this chapter we have described how we set up our cluster and how we went
about testing our implementation. We then looked at the measurements and
analyzed some aspects of how our implementation performs. We found that
certain models were difficult to speed up. Two models clearly suffered under
the global rule problem that we predicted in our theoretical analysis.

We also looked at overhead, and found that the sequential import stage
is slowing things down. We also saw that the use of a static partition size is
problematic. These are issues that need to be addressed.

Chapter 7

Optimizing the system

The first version of the system made some simplifying assumptions that made
writing the system easier. As the first testing phase came to an end it was
clear that there was room for some improvements. In this chapter we will
describe these improvements and how to implement them, as well as study
what performance gains we are able to achieve.

7.1 Improving the import stage

The first version of our system has one sequential stage which should be
possible to parallelize further. The import stage works by first importing
the model on the master, then distributing the model to the slaves who
finally import the model themselves. The transfer time is generally orders
of magnitude smaller than the import time, so in practice the slaves are
importing in parallel. But while the master is performing it’s import step the
slaves are completely idle, if we could begin by transferring the model to the
slaves and then start the import process in parallel on both the master and
all the slaves we should expect to see improved performance. In particular
we should see improved performance for the important class of models based
on the IFC schemas. These tend to have a relatively large import stage and
be computationally simple.

The two ways of distributing the models are shown using a timeline in
figure 7.1 on the next page. There are two sets of timelines, one for each
approach. Each set of timelines has the master timeline on the far left,
this is of course the only timeline without a transfer stage, as the master
already has the model data available. Note that we don’t begin to import
the model at the master until it has been transferred to all the slaves. This
is a pragmatic choice, if we were to both transfer and import at the same

88

7.1. IMPROVING THE IMPORT STAGE 89

time we would have to use a separate thread to import the model at the
master, and more threads means more complexity. We also don’t expect to
see any performance gains, in fact it is possible that such parallelism would
slow down the transfer stage so much that nothing is gained.

Transfer

Import

Total time new

Total time old

Figure 7.1: A timeline showing the two approaches to model distribution. On
the left is the old approach, on the right is the new approach. The difference
in length between the two blue bars in the middle show the performance
increase possible with the new approach due to the increased parallelism.

The reason why this wasn’t done initially has to do with simplicity. The
advantage with our current solution is that once the master is done import-
ing and setting up the list of tasks it is in a state which ensures that the
subsequent validation can begin. It then instructs the slaves to begin their
validation process which also is a sequential process beginning with the trans-

90 CHAPTER 7. OPTIMIZING THE SYSTEM

fer and import of the model, so when the slaves start validating they are also
guaranteed to be in the correct state.

If we are to perform the import in parallel, complexity increases because
the number of possible states increases. When a slave is done importing the
model we can no longer be sure that the master is ready to start handing
out tasks because the master may not have finished it’s import step, and we
thus have to implement wait states to handle this case. Once the master has
completed it’s import stage we can’t guarantee that all the slaves have fin-
ished theirs, and thus they might not be in a state that allows the validation
to start. This case also has to be catered for.

We should also mention that during the implementation of the first ver-
sion of the system an attempt at using this improved solution was made,
but it failed. The author has limited experience with this sort of program-
ming, and because of time constraints the improvement was discarded. As
our testing phased ended the author was more experienced with concurrent
programming and Java threads. A new attempt was made at implementing
the improved import stage, and this time it succeeded.

7.2 Improving the partitioning scheme

During the theoretical study a fixed partition size was used. Because the
theoretical study did not consider the effects of task management and com-
munication overhead the partition size had little impact. As our tests re-
vealed however the partition size can have a major effect on performance.
The problem is that no particular partition size is optimal, meaning that the
desired partition size must be specified up front. Because it’s impossible to
predict what size will work best this is now a very good solution.

A better approach would be to calculate the partitioning based on in-
formation from the model. This would make the partitioning scheme adapt
to the model and remove the need for a statically defined partition size. Be-
cause the tasks vary so much in complexity it is a good idea to have a fairly
large number of tasks as this should make load balancing easier. If we have
a small number of heavy tasks then some slaves are bound to do much more
work than others.

When the population of a given entity is subdivided into equally large
chunks, each chunk take about the same time to validate. This means that
if we have 8 slaves, and we subdivide a population of 800 instances that
normally take 8 seconds to validate into chunks of 100 instances each, we can
expect each such chunk to take about 1 seconds to validate.

Based on this observation we suggest to divide each population using the

7.3. PERFORMANCE OF THE IMPROVED SYSTEM 91

following formula:

chunkSize =
numInstances

2 ∗ numSlaves if numInstances ≥ 2 ∗ numSlaves

chunkSize =
numInstances

numSlaves
if numInstances ≥ numSlaves

chunkSize = numInstances if numInstances < numSlaves

We use a factor of two because this makes the partitioning somewhat
more finely grained and ensures that for large populations there are at least
two tasks available per slave for each population. For populations that have
less than 2 ∗ numSlaves instances we see if they have at least numSlaves
instances, if they do we simply don’t multiply by two in the divisor. If they
have less than numSlaves instances we generate one task to validate all the
instances. Once the chunkSize has been determined we proceed to generate
tasks based on this value.

The division used to calculate chunkSize is assumed to be integer divi-
sion. In other words the number of tasks generated (assuming numInstances
is larger than 2 ∗ numSlaves) will thus be

numTasks = 2 ∗ numSlaves+ (numInstances mod numSlaves) (7.1)

7.3 Performance of the improved system
The two different aspects of the system that we changed might have different
effects. The parallelization of the import stage should increase performance,
especially for models with much data but simple computations. The new par-
titioning isn’t expected to improve performance very much. It will however
make the system more practical in use, and prevent performance problems
due to badly chosen partition sizes from arising. The system will be able to
efficiently adjust the partitioning to the model.

The new partitioning solution is compared against the initial solution
using a partition size of 100 as this is the partition size which works best in
most cases.

Because the two improvements are different in effect we first implemented
them separately to test each by itself. Thee results are shown together in 7.2
on the following page. The figure shows the performance of the new solution
relative to the old. A value less than 1 indicates a performance decrease,
whereas a value above 1 indicates an improvement.

92 CHAPTER 7. OPTIMIZING THE SYSTEM

Figure 7.2: Performance of the improved system relative to the initial version.

The new import stage

As we can see the difference is quite amazing for models based on the IFC2x2
schema. We have previously seen that models based on IFC2x2 generally take
a long time to import compared to their computational requirements, so it
comes as no surprise that these model benefit enormously from this new
approach.

The new partitioning scheme

The new partitioning scheme has a very small impact on performance com-
pared to the best results in our previous tests. Most models take a very slight
performance hit, but this is certainly acceptable considering the benefits of
this new approach.

7.3.1 A new performance profile

With the new import stage in place we have removed the biggest source of
overhead, but this alters the performance profile of the system. We therefore
rerun our tests to see if there are any bottlenecks left.

7.4. IMPROVING THE FILE TRANSFER 93

The results show that the most obvious bottleneck now is the transfer
stage, for large models like ginza and condo this stage account for up to
30% of the total execution time. That is enough to warrant an attempt at
optimization.

Current transfer stage implementation

The way the models are currently transferred is simple, and not rather in-
efficient. As the master starts up a simple thread is created to act as a file
server (see section 5.5.4 in chapter 5). When a new model is selected for
validation the file server is informed of this fact, and prepares the model file
for download. Slaves then connect to this file server and download the model.

The file server is implemented in a way that prevents more than a single
slave to connect at the time, the distribution of the file to all the slaves thus
happens sequentially. One possible improvement here would be to create
one file server thread to serve each of the slaves. These threads could then
execute concurrently. But this approach still has a source of inefficiency in
that the entire model file must be read from file and written to a socket one
time for each slave. Due to the fact that model files can be very large, there
is no use in caching the model file.

7.4 Improving the file transfer

7.4.1 A better server implementation

What we want is to read through the entire file only once. We still have to
write to each of the slaves sockets. But if we for every block read from the
model file write the block to all the slave sockets before reading a new block,
each block would only be read once.

To achieve this we will be to wait for all the slaves to connect, and then
transfer the model file to all the slaves simultaneously. This would result in
the file only being read once. For this to work the server must be rewritten so
that it knows how many slaves that will connect, and doesn’t begin transfer
until all slaves have connected. A disadvantage of this approach is that it is
less fault tolerant as it will break if any of the slaves lose their connection.
The old solution simply served files on request, completely oblivious to what
sort of environment it was in.

Preliminary tests of this new approach showed that the transfer time
was cut in half for the largest models. But this still meant that it was a
dominating step. To make the transfer even faster we would have to reduce
the amount of data to transfer. This can be achieved through compression.

94 CHAPTER 7. OPTIMIZING THE SYSTEM

7.4.2 Model compression with GZip

We did some simple tests using the gzip utility that comes with Linux to see if
anything could be gained from using compression. If the cost of compression
was larger than the improvement in transfer time, little would be gained. It
was evident from these tests that performance could be improved, but only
if we used the least possible compression. The compression time increases
dramatically as we increase the level of compression, but the size of the
compressed data file is only marginally reduced.

Having found that gzip compression should improve performance we tried
to implement it using the java.util.zip package. One of the advantages
of the Java IO libraries is that you can interchange different stream imple-
mentations depending on your needs. In this case we could take the current
streams used to transfer the model file to the slaves and replace it with a
stream using GZip compression.

But this failed miserably, performance was drastically reduced instead of
increased. It seems that the Java implementation of gzip is a lot slower than
the implementation used by the gzip utility. We therefore decided to use the
gzip utility from within Java, which means that we must compress the STEP
file and write it to a temporary file which is then transferred to the slaves.
The Java way is certainly a lot more elegant.

7.4.3 Performance of the improved file transfer

The new transfer stage is a great improvement over the old, all models benefit,
although the improvement is very dependent on the size of the model. The
larger the model the greater the improvement. Results are summarized in
figure 7.3 on the next page.

7.5 Utilizing the master
As we previously noted one source of inefficiency is the fact that the master
performs no validation. If the master is working very hard to keep track
of the slaves and manage tasks then there is little to gain from making the
master do any validation. In fact, it may even slow down the validation as
the master may become so busy with validation that the task management
doesn’t get enough CPU cycles to handle returned task and distribute new
tasks efficiently. This will mean more idle time at the slaves, and consequently
decreased performance.

Making the master execute validations as well would mean increasing
processing from 7 to 8 nodes. This means a potential speed increase of 1

7
,

7.5. UTILIZING THE MASTER 95

Figure 7.3: Speedup of the new transfer stage relative to the old

or about 0.14. Implementation shouldn’t be difficult because the validation
process is implemented in a separate thread, a thread which can be executed
at the master as if it was a regular slave.

To compare solution with and without a validating master we express the
performance increase by dividing the time taken using no master on the time
taken using a master. The results are shown in figure 7.4 on the following page
and listed in 7.1 on the next page. We see a general increase in performance,
and for two models the increase is even larger than the potential increase of
14%, but this is due to measurement errors and the fact that we are working
with average values. In fact, if we subtract half the standard deviation for
io214 from the difference between using the master and not using the master,
we find that the increase is 13%.

The effect of using the master for validation is obviously greatly affected
by cluster size. The bigger a cluster the less can be gained from making
the master validate, and the higher the risk that doing so will slow things
down. Based on our results we can say that for clusters of 8 or less nodes it
is certainly worth it, and we will use the master for validation when doing
our final performance tests.

96 CHAPTER 7. OPTIMIZING THE SYSTEM

Schema Model Increase

AP214 as214 0%
io214 19%

IFC2X2

bygga 16%
condo 14%
ginza 11%
house 10%

AP203
conrod 8%
part21 13%
s203 9%

AP210 cpu 13%

Table 7.1: Performance increase when utilizing the master for validation.

Figure 7.4: Performance increase when utilizing the master for validation.

7.6. FINAL PERFORMANCE FIGURES 97

Figure 7.5: Final speedup results.

7.6 Final performance figures

With the optimizations in place we are now content with our system. It is
time to look at how well this system performs. We begin by looking at the
speedup for the models in our test set. The results are shown in figure 7.5
and listed in table 7.2 on the next page.

One immediately striking feature with these figures is that we have su-
perlinear speedups. The biggest model in terms data, conrod, is speeded up
by a factor of almost twelve.

7.6.1 Why superlinear speedup?

The speedup seen with condo, must have an explanation. We know that it’s
is not attributable to measurement variance, and the effect is too big to be
caused by cache effects1. The most likely explanation is memory. The IFC2x2
models all tend to be data-heavy but computationally lightweight. The result
of this is that a lot of memory is needed during validation. In chapter 6 we
saw that a weakness in the EDM memory management code caused terrible

1By cache we here mean the processor cache, as we will soon see, EDM operates with
it’s own cache, which makes matters a lot more interesting

98 CHAPTER 7. OPTIMIZING THE SYSTEM

Schema Model Speedup

AP214 as214 1.53
io214 3.66

IFC2X2

bygga 3.66
condo 11.71
ginza 5.62
house 1.92

AP203
conrod 3.97
part21 5.62
s203 4.86

AP210 cpu 7.05

Table 7.2: Final speedup results.

performance for the sequential validation of this model, and we changed to a
better reference program. Had we stuck with the old reference program, the
speedup for condo would have been more than 30! But our current reference
program does not suffer from this problem, something we are able to verify
through profiling.

Returning to the EDM Memory Manager

The true explanation must lie in the way the EDM kernel works. Consider
for example the validation of several instances of some entity. During the
validation of these objects, a lot of temporary memory structures will be
created. The intention for using these structures is to speed up the validation.
For example, derived attributes really only need to be computed once, after
which they can be kept in memory and referred whenever needed. Computing
a derived attribute can be expensive because the data needed to compute it
may reside on disk. Also, because the EDM manages it’s own memory it has
it’s own cache. If during validation of object A we visit object B, object B
can be loaded from disk. When we later need to validate object B or some
other object referencing object B it will be in memory and we save ourselves
the extra read.

When a validation is executed in parallel, each computer participating
in the validation will validate much fewer objects. This means that the
supporting in-memory data structures will be smaller and there is a reduced
chance that the total memory needed by EDM outgrows the physical memory
available. In addition, the chance that an object must be evicted from the
EDM cache and subsequently reloaded is much smaller. The net effect is

7.6. FINAL PERFORMANCE FIGURES 99

that less memory will be used, less paging will occur, and CPU utilization
thus increases.

As an example, consider the validation of 16,000 instances of some entity,
say Person. Let us say that each Person object has a derived attribute
age, and that the age is stored as an integer requiring 4 bytes. During the
sequential validation of these objects, the derived age must be computed
and stored in memory consuming a total of 16, 000 ∗ 4 = 64KB of memory.
During the parallel validation on the other hand, each node will ideally only
receive 2 tasks of 1000 objects each2. This means that at each slave there
will only be a need for 2, 000 ∗ 4 = 8KB of memory.

If we also say that each Person object requires 64 bytes, the sequential
version will have loaded 16, 000 ∗ 64 = 1MB from disk and into the EDM
cache. Each slave on the other hand will only have loaded 2, 000 ∗ 64 =
128KB. If we pretend that this is executed on rather ancient hardware
with only 1MB of memory available, the sequential version will have to start
evicting objects from the cache once it starts validating something else. If
this something else are objects that reference Person objects, the sequential
version might have to reload the Person objects from disk every time such
a reference must be resolved, whereas the parallel version still has plenty of
room in the cache.

But it’s not just the speed

One other interesting effect of this is that certain models may not be possible
to completely validate at all on a single computer3. The operation may simply
require to much memory. If the computer runs out of virtual memory, the
EDM Virtual Machine cannot continue to function. By using a cluster, there
is a much smaller chance that this happens, as the total virtual memory will
be much bigger. Because the nodes in a cluster will most likely use very
different amounts of memory during a validation one can’t say that a cluster
ofN homogeneous nodes has a total memory size ofN∗V irtualMemorySize,
but it should at least be an improvement.

7.6.2 Scalability revisited

In chapter 6 we looked at scalability by varying the node count. With the
master now also executing tasks we can test with node counts of 8, 4, 2 and 1.

2Assuming that there are 8 nodes in a cluster and that we use the partitioning algorithm
previously outlined

3Unless one manually validate different aspects of the model, much like doing a parti-
tioning along the R-axis, only by hand.

100 CHAPTER 7. OPTIMIZING THE SYSTEM

Node count
Schema Model 1 2 4 8

AP214 as214 70 % 55 % 37 % 19 %
io214 71 % 53 % 50 % 43 %

IFC2X2

bygga 68 % 57 % 53 % 46 %
condo 61 % 93 % 129 % 146 %
ginza 30 % 63 % 70 % 70 %
house 62 % 35 % 34 % 24 %

AP203
conrod 71 % 55 % 54 % 50 %
part2-1 67 % 75 % 74 % 70 %
s203 66 % 71 % 73 % 61 %

AP210 cpu 58 % 66 % 75 % 88 %

Table 7.3: Relative efficiency using 1, 2, 4 and 8 nodes.

We executed these tests in the normal fashion using the same batch sequence
of models as always. To see how the solution scales, it is best to look at the
relative efficiency for each node count. The results are listed in 7.3.

It should be noted that the single node execution was in no way optimized.
Using only one node means that the only node is the master. But the master
still compresses and prepares the model data for distribution, so some time
is lost there.

For the three largest models, ginza, condo and cpu we see that the relative
efficiency increases with the node count. This is probably mostly due to the
memory effect we covered in the previous section. For most other models,
efficiency decreases as we increase the number of nodes. This is what one
would expect as the overhead due to data transfer becomes higher and the
master becomes more loaded.

7.6.3 Task size distribution

It has so far been a somewhat unstated assumption that when the population
of a given entity is split into subpopulations which are validated separately
as tasks, each subpopulation will take about the same amount of time to
validate. This assumption is based on the fact that the same operations
needs to be performed on every instance in the population. But simply
assuming isn’t good enough, so we decided to collect some data to study the
task size distribution.

To do this we use a collection of models that are created by taking the
part2-1 model and multiplying it’s contents. We have versions of the model

7.6. FINAL PERFORMANCE FIGURES 101

which are multiples of 2, 4, 8, 16 and 32. Quick inspection found us three en-
tities that were quite numerous in this model: CARTESIAN_POINT, DIRECTION
and VERTEX_POINT. We chose these because they are not trivial to validate
and there are many instances of them in the models.

To study the variance of execution time we collected the execution times
for each of the tasks and simply computed the range for each entity type.
We then normalized this range by dividing it on the average task size, giving
us a percentage value. The results of this are plotted in 7.6.

Figure 7.6: Task size variance for three entities in the part2-1 model multi-
plied 2, 4, 8, 16 and 32 times in size.

Our assumption is clearly invalidated by these results, variance is rather
large, in particular for CARTESIAN_POINT. But the variance decreases as the
model (and hence subpopulations) grow. This seems to suggest that as mod-
els grow larger, tasks of the same entity will be of more and more comparable
size.

However, the variance between tasks of different entities is much lar-
ger than the variance between tasks of the same entity. For example, each
CARTESIAN_POINT task on average takes three times as much time to val-
idate as each VERTEX_POINT task. But because we generate so many tasks
compared to the number of nodes, and because our cluster is homogeneous,
this sort of variance shouldn’t cause any problems.

Chapter 8

Conclusion and ideas for future
work

8.1 Summary

Using clusters of cheap commodity hardware to speed up the validation of
STEP models may lead to increased productivity for companies that work
with large and complex models. Frequent validation is also an important
factor in ensuring data quality and consistency.

We have implemented a system which is based on the EDM product
suite and allows for the parallelization of data validation as performed by
the EDM ModelChecker component. Our approach required only the very
minor addition of a single function to the EDM kernel. Apart from this the
system runs on top of a standard edition of EDM and uses only the interface
exposed by EDM to perform it’s operations.

Our implementation is a proof-of-concept rather than a production-ready
system, error handling in particular is very simplified, and the user interface
is only the most basic needed to benchmark the system.

The solution is based on a master/slave approach, and works by splitting
up the validation of a model into a number of separate, independent tasks.
The tasks are then distributed using the task-farming principle, which means
that it is self-scheduling. The system is designed so that it should be possible
to insert as a piece of middleware between a client program and the EDM
suite. This means that the system will allow users to validate models without
any special considerations, the parallelization happens behind the scenes.

For implementation we chose to use Java with RMI for communication
allowing us to program at a comfortably high level of abstraction and benefit
from the use of Java threads. The system was developed by first creating

102

8.2. CONCLUSION 103

a straightforward implementation, and then tuning certain aspects of the
implementation based on feedback from performance testing and profiling.

8.2 Conclusion

Results have been both positive and negative. We have seen a range of
results from complete failure to superlinear speedup. But overall the results
are quite good, and the three largest models in our test set are also the three
best performing models.

The single biggest remaining issue is global rules. Many schemas contain
at least one complicated global rule whose computational cost grows expo-
nentially, meaning that the larger the model the more dominating this rule
becomes.

The excellent performance seen with large IFC-based models is interest-
ing not just because it shows good performance even for large, data-heavy
models. IFC is the schema used by companies involved in building and con-
struction, and there is a lot of activity in this area. Specialized systems to
deal with IFC data only (frequently referred to as IFC Model Servers) are
starting to appear, and such systems could definitely gain a lot from using our
approach. The most interesting result here is that very large models may be
almost impossible to validate on a single computer because of memory lim-
its. A cluster solution can remedy this because the total memory available
becomes larger.

It is also important to remember that most companies tend to work with
only one or a very few types of product data. If a company mainly works
with a schema that is not marred by the global rule problem, they could
certainly benefit from a system based on our approach.

Finally we should note that the global rule problem frequently is due to
poorly written rules. In most cases it is possible to rewrite a rule to execute
much faster, retaining semantic equivalence. A model server specialized for
a particular domain could be created that used our parallelization method
but used an optimized schema.

8.3 Concluding remarks

It would have been very interesting to test the solution on a really large
model from the industry, but this proved to be hard. On one occasion an
engineer at EPM Technology received a very complicated model that a client
was having problems with. But with the model came the orders to delete it

104 CHAPTER 8. CONCLUSION AND IDEAS FOR FUTURE WORK

as soon as the problem was fixed. No one else was to have access to it.
The code is not very clean, and the main class which is used to execute

the master is quite messy with user interaction code mixed with the normal
flow of validations. In addition the main master class and the main slave
class, although quite similar in overall structure, has been written in two
different ways. But after all, the system was developed with the intention
of being a prototype. A proper implementation will have to use a cleaner
design, do a lot more error handling, and offer a much better interface.

One of the major lessons learned during development was that debugging
this sort of application is very hard. Threads make debugging harder because
of the nondeterminism introduced by threads. So is the case with RMI. The
use of Java native calls also makes debugging harder because simply using a
normal Java debugger isn’t enough, you also have to use a debugger that can
interface with the underlying C code. Because our system uses threads, RMI
and native calls, debugging was quite painful. This, coupled with the lack
of experience, lead to a considerable slowdown in development. We should
probably have considered this in more detail before we started working on the
implementation. By spending more time on setting up an environment that
would ease debugging, we might have saved ourselves quite a few headaches.

The use of AOP to add logging and timing wasn’t a very good idea. This
is partially due to the less than optimal structure of the code. We had to
supplement the AOP code by adding logging and timing at certain points in
the actual code because it wasn’t possible to insert the necessary code using
AOP. This lead to a mix of the two approaches which made making changes
harder because timing and logging had to be maintained at two conceptually
different levels.

We also should have considered what we wanted to time and how more
thoroughly during the design phase. Our approach to this became rather
ad-hoc, and the timing data was written in several different formats. This
meant that we had to use different approaches to massage the timing data
into usable formats, something which probably slowed down testing a bit.

8.4 Ideas for future work

8.4.1 A general parallelization

When working with STEP product data there are other operations such as
the merging and mapping of models, and the execution of complex queries,
that tend to take quite some time to perform. If the EDM suite could be
entirely parallelized it would be possible to execute mergings, mappings and

8.4. IDEAS FOR FUTURE WORK 105

queries in addition to validations.
But implementing this can prove to be a major undertaking. While

the method of parallelization achieved in this thesis was fairly simple and
straightforward to implement, it still took quite some time to do.

8.4.2 Rule schema validation

Currently there is no support for rule schema validation. A rule schema
contains the same type of declarations that a normal schema does, and it
is always based on an underlying schema. A rule schema is basically a way
to extend an existing schema with more rules. Rules can only be added to
entities and types already declared in the underlying schema.

Implementing rule schema support shouldn’t be very hard. Because a rule
schema extends an existing schema, the set of entities will be the same. The
only thing that is needed is for the system to call on the underlying EDM to
validate against a given rule schema. Because additional global rules can be
declared in a rule schema these must also be extracted from the rule schema
and added to the task list, but this can be done in exactly the same manner
as in the current solution.

Rule schemas are becoming more and more important. In the introduc-
tion to STEP we had an example of automated building approval. The
rules that govern such an approval would probably be implemented as a rule
schema based on the IFC schema.

8.4.3 More than one validation at the time

The current system can only validate one model at a time. Work is underway
to create a multi-threaded version of EDM that can support multiple users
through a standard client/server approach.

One possible approach here is to let the client act as the master, keeping
copies of the necessary meta-data available at the client. The client can then
generate the tasks and send them as separate operations to the server. The
server must be responsible for

8.4.4 Spare cycle harvesting

Most companies involved with STEP data already have a network of fairly
powerful workstations, as this sort of work requires quite a bit of processing
power. The current system is tuned towards homogeneous clusters dedicated
to run validations. If the system could be improved to better support regu-

106 CHAPTER 8. CONCLUSION AND IDEAS FOR FUTURE WORK

lar networks of heterogenous computers, existing resources could be utilized
more efficiently.

We already discussed one change to the system that would facilitate such
usage in section 5.2.3 on page 57, where a slight variation on task distribution
was considered. In addition, the software which acts as the slave must be
nicer in terms of CPU usage. The current version tries to get as much
resources as possible, something that would surely annoy anyone using one
of the workstations.

The performance requirements of such a solution can probably be lowered.
If you have 15 computers in your network, and adding a little bit of software
allows you to speed up validation with a factor of 4, then that’s probably fine
because you got it almost for free. But if you go out and buy a cluster that
you will dedicate to speeding up validation you presumably expect a much
more efficient solution.

The biggest problem may be the speed of the network. The current
solution performs well because of the gigabit interconnect. Todays local area
networks normally offer no more than 100Mb/s. Data-heavy models such as
the IFC models will probably suffer quite a bit in such an environment.

A second problem is memory. Because the EDM kernel requires a lot of
memory to work well, the workstations that are executing a slave client may
become very unresponsive even if the slave client is nice in terms of CPU,
because memory runs it. It is possible to limit the memory usage of the EDM
virtual machine, but doing so may result some models not being possible to
validate at all.

8.4.5 A turnkey solution

Being a prototype, the current solution is not ready for the marketplace.
It must be integrated better with the rest of the EDM software so that
installation is painless. In addition, a special version of EDM that allows for
straightforward setup of an entire cluster would be nice.

In particular this would require that more monitoring and managing soft-
ware is included. There are already existing systems that offer this sort of
functionality, one could either integrate these into the EDM suite, or imple-
ment something similar.

8.4.6 Tackling global rules

Global rules is the Achilles Heel of the current implementation. For entities
the system works well, they are split into equally sized tasks and distributed.
If the global rule problem could be handled by parallelizing it from inside the

8.4. IDEAS FOR FUTURE WORK 107

EDM kernel, the current simple method used to parallelize the validation of
entities could still be used. This would hopefully be simpler than parallelizing
the entire EDM kernel. But it is also quite possible that doing so would
require almost the same as parallelizing the kernel.

As we have also seen, global rules can frequently be rewritten. It would be
interesting to see if it was possible to automatically optimize the execution of
global rules, much like queries in SQL are optimized. If proved to be possible
it could also benefit the execution of queries against models as these rely on
the same EXPRESS constructs as global rules.

Appendix A

Sourcecode for the Master and
Slave

A.1 RunMaster.java

1 import java . i o . ∗ ;
2 import java . rmi . ∗ ;
3 import java . u t i l . ∗ ;
4 import java . net . ∗ ;
5 import edm . edmi . ∗ ;
6 import edm . sda i . ∗ ;
7 import edm . u t i l . ∗ ;
8 import i so10303 . sda i . ∗ ;
9 import edm . a c c e s s . ∗ ;
10 import edm . ex tens i ons . ∗ ;
11

12 public class RunMaster {
13

14 // Flag i n d i c a t i n g whether a v a l i d a t i o n i s in progre s s .
15 private boolean running = fa l se ;
16

17 // Flag i n d i c a t i n g whether the master and s l a v e s are running on
18 // the same machine
19 private boolean l o c a l = fa l se ;
20

21 // Flag i n d i c a t i n g whether or not to run a v a l i d a t i o n thread on
22 // the master node
23 private boolean runVal idat ion ;
24

25 private boolean automode ;
26 private St r ing automodeCfg ; // Automode con f i g u r a t i on f i l e
27

28 // Login in format ion f o r the EDM Database

108

A.1. RUNMASTER.JAVA 109

29 private St r ing dbPath ;
30 private St r ing dbName;
31 private St r ing dbPass ;
32

33 private MasterImpl master ;
34 private SdaiModel model = null ;
35

36 private EDMDatabase database ;
37

38 public RunMaster (boolean l o c a l) {
39 this . l o c a l = l o c a l ;
40 this . dbPath = System . getProperty ("edm . dbpath" , "/home/databases/") ;
41 this . dbName = System . getProperty ("edm . dbname" , " c l u s t e r ") ;
42 this . dbPass = System . getProperty ("edm . dbpass" , "123") ;
43 this . automodeCfg = System . getProperty ("edm . automodecfg " ,
44 "/home/edm/automode . c f g ") ;
45 this . automode = System . getProperty
46 ("edm . automode" , " f a l s e ") . equa l s IgnoreCase (" true ") ;
47 this . runVal idat ion = System . getProperty
48 ("master . v a l i d a t e " , " f a l s e ") . equa l s IgnoreCase (" true ") ;
49

50 TaskManager taskManager = new TaskManager (this) ;
51 ModelLoader modelLoader = new ModelLoader () ;
52 SlaveManager slaveManager = new SlaveManager (this , taskManager) ;
53 slaveManager . i n i t () ;
54

55 // This w i l l s e r ve the s t ep f i l e s to the s l a v e s .
56 ServerThread s t epSe rve r = new ServerThread ("ServerThread" , 4000) ;
57 s t epSe rve r . s t a r t () ;
58

59 try {
60 master = new MasterImpl (slaveManager , taskManager) ;
61 Naming . reb ind ("Master" , master) ;
62 System . out . p r i n t l n ("Master␣ running ") ;
63 } catch (RemoteException e) {
64 e . pr intStackTrace () ;
65 System . e x i t (1) ;
66 } catch (MalformedURLException e) {
67 System . out . p r i n t l n (" Inva l i d ␣URL␣ in ␣ c a l l ␣ to ␣ reb ind () ") ;
68 e . pr intStackTrace () ;
69 System . e x i t (1) ;
70 }
71

72 openDatabase () ;
73

74 LineNumberReader u i = new LineNumberReader
75 (new InputStreamReader (System . in)) ;
76 while (true) {
77 System . out . p r i n t l n ("###␣Hit ␣ ente r ␣when␣ s l a v e s ␣have␣been␣" +

110 APPENDIX A. SOURCECODE FOR THE MASTER AND SLAVE

78 " connected") ;
79 St r ing modelFi le = "" ;
80 try {
81 modelFi le = ui . readLine () ;
82 } catch (IOException e) {
83 e . pr intStackTrace () ;
84 }
85

86 Set s l a v e s = slaveManager . g e tS lave s () ;
87 int numSlaves = s l a v e s . s i z e () ;
88

89 // Assuming a c l u s t e r s i z e o f 8 , i f the master a l s o runs a
90 // v a l i d a t i o n thread we need to act as i f t h e re are 8
91 // s l a v e s . But the ServerThread w i l l on ly see 7 c l i e n t s as
92 // the re i s no need to download the f i l e a t the master .
93 s t epSe rve r . s e tC l i e n t s (numSlaves) ;
94

95 i f (this . runVal idat ion)
96 numSlaves++;
97 i f (numSlaves == 0) {
98 System . out . p r i n t l n ("No␣ s l a v e s ␣ connected , ␣ p l e a s e ␣ connect ␣" +
99 "some␣ s l a v e s ␣and␣ try ␣ again ") ;

100 continue ;
101 }
102

103 i f (this . automode) {
104 St r ing [] modelList ;
105 try {
106 modelList = getModelList () ;
107 } catch (IOException e) {
108 System . out . p r i n t l n ("Couldn ’ t ␣ f i nd ␣" +
109 "/home/edm/automode . c fg , ␣ p l e a s e ␣" +
110 "make␣ sure ␣ i t ␣ e x i s t s ␣and␣ try ␣again ") ;
111 continue ;
112 }
113 for (int k = 0 ; k < modelList . l ength ; k++) {
114 modelFi le = modelList [k] ;
115 System . out . p r i n t l n ("\nSELECTED␣MODEL: ␣" + modelFi le) ;
116 St r ing modelName = "" ;
117 i f (modelFi le . indexOf (’ . ’) == −1) {
118 modelName = modelFi le ;
119 modelFi le = modelFi le + " . s tp " ;
120 } else {
121 modelName =
122 modelFi le . s ub s t r i n g (0 , modelFi le . indexOf (’ . ’)) ;
123 }
124 i f (! (new F i l e (modelFi le)) . e x i s t s ()) {
125 System . out . p r i n t l n ("WARNING: ␣Couldn ’ t ␣open␣" +
126 "model␣ f i l e ") ;

A.1. RUNMASTER.JAVA 111

127 continue ;
128 }
129

130 compressFi l e (modelFi le) ;
131 s t epSe rve r . s e t F i l e (modelFi le) ;
132 d i s t r i b u t eF i l e (s l a v e s) ;
133

134 try {
135 model = loadModel (modelFi le , modelName) ;
136 } catch (SdaiException e) {
137 e . pr intStackTrace () ;
138 // I f the model couldn ’ t be loaded we s top
139 // proce s s ing by break ing out o f the loop .
140 break ;
141 }
142

143 taskManager . bu i ldTaskLis t (model ,
144 this . database , numSlaves) ;
145

146 System . out . p r i n t l n ("" + taskManager . getTaskCount () +
147 "␣ ta sk s ") ;
148 System . out . p r i n t l n ("Va l ida t ing . . . ") ;
149

150 runVal idat ion (s l ave s , model , master , modelName) ;
151

152 L i s t va l i d a t i onEr r o r s =
153 taskManager . g e tVa l ida t i onErro r s () ;
154 i f (! v a l i d a t i onEr r o r s . isEmpty ())
155 summarizeErrors (va l i d a t i onEr r o r s) ;
156 System . out . p r i n t l n ("COMPLETED␣VALIDATION␣CYCLE") ;
157 }
158 // Exi t once the automated mode i s complete .
159 break ;
160 } else {
161 St r ing modelName = "" ;
162 i f (modelFi le . indexOf (’ . ’) == −1) {
163 modelName = modelFi le ;
164 modelFi le = modelFi le + " . s tp " ;
165 } else {
166 modelName =
167 modelFi le . s ub s t r i n g (0 , modelFi le . indexOf (’ . ’)) ;
168 }
169 System . out . p r i n t l n (modelFi le) ;
170 i f (! (new F i l e (modelFi le)) . e x i s t s ()) {
171 System . out . p r i n t l n ("Couldn ’ t ␣open␣model␣ f i l e ") ;
172 continue ;
173 }
174

175 compressFi l e (modelFi le) ;

112 APPENDIX A. SOURCECODE FOR THE MASTER AND SLAVE

176 s t epSe rve r . s e t F i l e (modelFi le) ;
177 d i s t r i b u t e F i l e (s l a v e s) ;
178

179 try {
180 long s tart_load = System . cur r en tT imeMi l l i s () ;
181 model = loadModel (modelFi le , modelName) ;
182 i f (model == null) {
183

184 }
185 long stop_load = System . cur r en tT imeMi l l i s () ;
186 System . out . p r i n t l n ("STEP␣ import␣ took␣" +
187 (stop_load − s tart_load) + "ms␣ (" +
188 ((stop_load − s tart_load) / 1000) +
189 " s) ") ;
190 } catch (SdaiException e) {
191 e . pr intStackTrace () ;
192 continue ; // Request new model f i l e
193 }
194

195 taskManager . bu i ldTaskLis t (model , this . database , numSlaves) ;
196 System . out . p r i n t l n ("" + taskManager . getTaskCount () +
197 "␣ ta sk s ") ;
198 System . out . p r i n t l n ("Va l ida t ing . . . ") ;
199

200 // The ta sk manager i s ready , the s l a v e s can s t a r t
201 // execu t ing .
202 runVal idat ion (s l ave s , model , master , modelName) ;
203

204 L i s t va l i d a t i onEr r o r s = taskManager . g e tVa l ida t i onErro r s () ;
205 i f (! v a l i d a t i onEr r o r s . isEmpty ())
206 summarizeErrors (va l i d a t i onEr r o r s) ;
207 System . out . p r i n t l n ("COMPLETED␣VALIDATION␣CYCLE") ;
208 }
209 }
210 }
211

212 private void runVal idat ion (Set s l ave s , SdaiModel model ,
213 Master master , S t r ing modelName) {
214 try {
215 for (I t e r a t o r i = s l a v e s . i t e r a t o r () ; i . hasNext () ;) {
216 Slave cur r en t = (S lave) i . next () ;
217 cur r en t . s t a r tVa l i d a t i on (modelName) ;
218 this . running = true ;
219 }
220

221 i f (this . runVal idat ion) {
222 MasterValidatorThread va l i d a t o r =
223 new MasterValidatorThread ("Val idator " , model , master) ;
224 va l i d a t o r . s t a r t () ;

A.1. RUNMASTER.JAVA 113

225 }
226

227 /∗ At t h i s po in t we want to wai t f o r the v a l i d a t i o n
228 ∗ proce s s to f i n i s h . This must be s i g n a l l e d by the ta sk
229 ∗ manager which coopera t e s wi th the s l a v e manager . When
230 ∗ the TaskManager see s t h a t the v a l i d a t i o n i s complete i t
231 ∗ c a l l s the method va l i da t i onComp l e t ed in t h i s c l a s s ,
232 ∗ r e s u l t i n g in a n o t i f y be ing c a l l e d on t h i s Objec t .
233 ∗/
234 synchronized (this) {
235 try {
236 wait () ;
237 } catch (InterruptedExcept ion e) {
238 e . pr intStackTrace () ;
239 }
240 }
241 } catch (Exception e) {
242 e . pr intStackTrace () ;
243 System . e x i t (1) ;
244 }
245 }
246

247 private St r ing [] getModelList () throws IOException {
248 L i s t conf iguredMode l s ;
249 BufferedReader in =
250 new BufferedReader (new Fi leReader ("/home/edm/automode . c f g ")) ;
251 St r ing l i n e ;
252 conf iguredMode l s = new LinkedLis t () ;
253 while ((l i n e = in . readLine ()) != null) {
254 conf iguredMode l s . add (l i n e) ;
255 }
256 in . c l o s e () ;
257 St r ing [] f i n a l L i s t = new St r ing [conf iguredMode ls . s i z e ()] ;
258 int c = 0 ;
259 for (I t e r a t o r i = conf iguredMode ls . l i s t I t e r a t o r () ; i . hasNext () ;) {
260 f i n a l L i s t [c] = (St r ing) i . next () ;
261 c++;
262 }
263 return f i n a l L i s t ;
264 }
265

266 private void d i s t r i b u t e F i l e (Set s l a v e s) {
267 for (I t e r a t o r i = s l a v e s . i t e r a t o r () ; i . hasNext () ;) {
268 Slave cur r en t = (S lave) i . next () ;
269 try {
270 cur r en t . l o adF i l e () ;
271 } catch (RemoteException e) {
272 e . pr intStackTrace () ;
273 System . e x i t (1) ;

114 APPENDIX A. SOURCECODE FOR THE MASTER AND SLAVE

274 }
275 this . running = true ;
276 }
277 }
278

279 public void a l lS l ave sDead () {
280 i f (this . running) {
281 va l idat ionCompleted (fa l se) ;
282 }
283 }
284

285 public void compressFi l e (S t r ing modelFi le) {
286 try {
287 Runtime r = Runtime . getRuntime () ;
288 St r ing [] cmdarr1 = {"mv" , "−f " , modelFi le , " tmp f i l e . s tp " } ;
289 Process p = r . exec (cmdarr1) ;
290 p . waitFor () ;
291 St r ing [] cmdarr2 = {" z ip " , "−1" , " tmp f i l e . z ip " , " tmp f i l e . s tp " } ;
292 p = r . exec (cmdarr2) ;
293 p . waitFor () ;
294 St r ing [] cmdarr3 = {"mv" , " tmp f i l e . s tp " , modelFi le } ;
295 p = r . exec (cmdarr3) ;
296 p . waitFor () ;
297 } catch (IOException e) {
298 e . pr intStackTrace () ;
299 System . e x i t (−1) ;
300 } catch (InterruptedExcept ion e) {
301 e . pr intStackTrace () ;
302 System . e x i t (−1) ;
303 }
304 }
305

306 public boolean i s Lo ca l () { return l o c a l ; }
307

308 public synchronized void va l idat ionCompleted (boolean s u c c e s s) {
309 i f (s u c c e s s) {
310 System . out . p r i n t l n ("VALIDATION␣COMPLETE") ;
311 } else {
312 System . out . p r i n t l n ("VALIDATION␣FAILED ! ! ") ;
313 }
314 no t i f y () ;
315 }
316

317 public void summarizeErrors (L i s t e r r o r s) {
318 // Note t h a t r e qu i r e d_a t t r i b u t e e r ror s have a l i s t o f miss ing
319 // requ i r ed a t t r i b u t e s , and t ha t the way EDM counts t h i s i s as
320 // the number o f miss ing a t t r i b u t e s . With the method used here
321 // however we s imply count how many in s t anc e s have miss ing
322 // requ i r ed a t t r i b u t e s , d i s r e g a r d i n g how many a t t r i b u t e s are

A.1. RUNMASTER.JAVA 115

323 // a c t u a l l y miss ing .
324 Map errorSummary = new HashMap () ;
325 for (I t e r a t o r i t e r = e r r o r s . i t e r a t o r () ; i t e r . hasNext () ;) {
326 Val ida t i onErro r cur = (Va l ida t i onErro r) i t e r . next () ;
327 i f (errorSummary . containsKey(cur . name)) {
328 int cnt = ((I n t e g e r)
329 errorSummary . get (cur . name)) . intValue () ;
330 cnt += 1 ;
331 errorSummary . put (cur . name , new I n t e g e r (cnt)) ;
332 } else {
333 errorSummary . put (cur . name , new I n t e g e r (1)) ;
334 }
335 }
336 for (I t e r a t o r i t e r = errorSummary . keySet () . i t e r a t o r () ;
337 i t e r . hasNext () ;) {
338 St r ing name = (St r ing) i t e r . next () ;
339 int count = ((I n t e g e r) errorSummary . get (name)) . intValue () ;
340 System . out . p r i n t l n (name + " : ␣" + count) ;
341 }
342 }
343

344 private void openDatabase () {
345 CUserAccessControl le r c o n t r o l l e r =
346 CUserAccessControl l er . g e tAcce s sCont ro l l e r () ;
347 this . database = c o n t r o l l e r . getDb () ;
348 try {
349 this . database . c r e a t e (this . dbPath , this . dbName , this . dbPass) ;
350 } catch (SdaiException e) {
351 // Triggered i f da tabase e x i s t s , which i s f i n e . What
352 // we want however i s a method l i k e dbEx i s t s () . The
353 // SdaiExcept ion i s a b s o l u t e l y u s e l e s s .
354 }
355

356 try {
357 this . database . open (this . dbPath , this . dbName, this . dbPass , true) ;
358 } catch (SdaiException e) {
359 e . pr intStackTrace () ;
360 }
361 }
362

363 private SdaiModel loadModel (S t r ing modelFi le , S t r ing modelName)
364 throws SdaiException
365 {
366 // S t a r t import ing the model
367 SdaiRepos i tory dataRep =
368 this . database . getRepos i tory ("DataRepository ") ;
369 dataRep . open (SdaiModel .READ_WRITE) ;
370 CReadStepFile reader = new CReadStepFile (modelFi le ,
371 null ,

116 APPENDIX A. SOURCECODE FOR THE MASTER AND SLAVE

372 "DataRepository " ,
373 null ,
374 modelName ,
375 null ,
376 null ,
377 0) ;
378 reader . se tOpt ions (CReadStepFile .DELETING_EXISTING_MODEL) ;
379 try {
380 reader . read () ;
381 } catch (SdaiException e) {
382 i f (e . getMessage () . indexOf ("Error/warning␣during ␣STEP␣ F i l e ␣" +
383 " read ␣ opera t i on") != −1) {
384 System . out . p r i n t l n ("Warning : ␣Error/warning␣during ␣STEP␣" +
385 " F i l e ␣ read ␣ opera t i on") ;
386 } else {
387 throw e ;
388 }
389 }
390 return dataRep . openModel (modelName , SdaiModel .READ_ONLY) ;
391 }
392

393 public stat ic void main (St r ing [] args)
394 {
395 try {
396 i f (args . l ength > 0 && args [0] . equa l s ("− l ")) {
397 RunMaster runner = new RunMaster (true) ;
398 } else {

A.2. SLAVEIMPL.JAVA 117

A.2 SlaveImpl.java

1 import java . rmi . ∗ ;
2 import java . rmi . r e g i s t r y . ∗ ;
3 import java . i o . ∗ ;
4 import java . net . InetAddress ;
5 import java . rmi . s e r v e r . ∗ ;
6 import java . net . ∗ ;
7 import java . u t i l . ∗ ;
8 import java . net . UnknownHostException ;
9 import java . t ex t . ∗ ;

10 import java . t ex t . Format . ∗ ;
11 import edm . edmi . ∗ ;
12 import edm . sda i . ∗ ;
13 import edm . u t i l . ∗ ;
14 import i so10303 . sda i . ∗ ;
15 import edm . a c c e s s . ∗ ;
16 import edm . ex tens i ons . ∗ ;
17

18 public class SlaveImpl
19 extends UnicastRemoteObject
20 implements Slave
21 {
22

23 public St r ing masterHost ;
24 private Master master ;
25 public int id ;
26 private St r ing ip ;
27 private boolean i s Lo ca l ;
28 private St r ing dbPath ;
29 private St r ing dbName;
30 private St r ing dbPass ;
31

32 public boolean importDone = fa l se ;
33 public boolean importRunning = fa l se ;
34 public SdaiModel model ;
35

36 private Sda iSe s s i on s e s s i o n ;
37 private SdaiRepos i tory dataRep ;
38 private EDMDatabase database ;
39

40 private stat ic f ina l St r ing reg i s t e rFa i l edMsg =
41 "Could␣not ␣ r e g i s t e r ␣with␣ the␣master . ␣ Please ␣ try ␣with␣a␣ d i f f e r e n t ␣" +
42 " s l a v e ␣name" ;
43 private stat ic f ina l St r ing badUrlMsg =
44 "The␣ supp l i ed ␣master␣hostname␣seems␣ to␣be␣ i n v a l i d " ;
45 private stat ic f ina l St r ing notBoundMsg =
46 "Fa i l ed␣ to ␣bind␣ the␣master , ␣make␣ sure ␣ the␣master␣ i s ␣ running . ␣" +
47 "This ␣ e r r o r ␣can␣ a l s o ␣occur ␣ i f ␣ the␣ rm i r e g i s t r y ␣ i s n ’ t ␣ running . " ;

118 APPENDIX A. SOURCECODE FOR THE MASTER AND SLAVE

48 private stat ic f ina l St r ing noRegistryMsg =
49 " Fa i l ed␣ to␣ contact ␣ the␣rmi␣ r e g i s t r y , ␣ i s ␣ rm i r e g i s t r y ␣ running ?" ;
50

51 public void ping () throws RemoteException {
52 }
53

54 public SlaveImpl (S t r ing masterHost , boolean i s Lo ca l)
55 throws RemoteException
56 {
57 super () ;
58 this . i s Lo ca l = i sLo ca l ;
59 this . masterHost = masterHost ;
60 this . dbPath = System . getProperty ("edm . dbpath" , "/home/databases") ;
61 this . dbName = System . getProperty ("edm . dbname" , " c l u s t e r ") ;
62 this . dbPass = System . getProperty ("edm . dbpass" , "123") ;
63

64 i f (this . i s Lo ca l) {
65 this . dbPath = this . dbPath + this . id ;
66 }
67

68 try {
69 this . ip = InetAddress . getLocalHost () . getHostAddress () ;
70 } catch (UnknownHostException e) {
71 e . pr intStackTrace () ; System . e x i t (1) ;
72 }
73

74 openDatabase () ;
75

76 try {
77 master = (Master) Naming . lookup
78 ("rmi : // " + masterHost + "/Master") ;
79 // r e g i s t e r S l a v e re turns a ne ga t i v e va lue i f a s l a v e
80 // a l r eady has r e g i s t e r e d wi th the same ip as t h i s
81 // s l a v e . Unless we are us ing the l o c a l v e r s i on .
82 id = master . r e g i s t e r S l a v e (ip , this) ;
83 System . out . p r i n t l n ("Received␣ id ␣" + id) ;
84 i f (id < 0) {
85 System . out . p r i n t l n (r eg i s t e rFa i l edMsg) ;
86 System . e x i t (1) ;
87 }
88 // I f we are us ing the l o c a l v e r s i on (t e s t i n g) , we must
89 // make sure t h a t the rm i r e g i s t r y name i s
90 // unique . Otherwise the s l a v e w i l l s imp ly r e p l a c e o the r
91 // s l a v e s wi th the same name .
92 St r ing slaveName = i sLo ca l ? " S lave" + id : " S lave" ;
93 System . out . p r i n t l n (" S lave␣ running ␣as ␣" + slaveName) ;
94 // As soon as the s l a v e i s up and running we s t a r t send ing
95 // h ea r t b e a t s to the master .
96 i n i tHear tBeat s () ;

A.2. SLAVEIMPL.JAVA 119

97 } catch (NotBoundException e) {
98 System . out . p r i n t l n (notBoundMsg) ;
99 e . pr intStackTrace () ;
100 System . e x i t (1) ;
101 } catch (RemoteException e) {
102 System . out . p r i n t l n (notBoundMsg) ;
103 System . e x i t (1) ;
104 } catch (MalformedURLException e) {
105 System . out . p r i n t l n (badUrlMsg) ;
106 System . e x i t (1) ;
107 }
108 }
109

110 public void s e tLoca l (boolean i s Lo ca l) { this . i s Lo ca l = i sLo ca l ; }
111 public boolean i s Lo ca l () { return this . i s Lo ca l ; }
112 public Master getMaster () { return this . master ; }
113 public int get Id () { return this . id ; }
114

115 public boolean s t a r tVa l i d a t i on (S t r ing modelName) throws RemoteException
116 {
117 System . out . p r i n t l n ("Beginning␣ va l i d a t i on ␣ o f ␣" + modelName) ;
118 try {
119 ValidatorThread va l i d a t o r = new ValidatorThread ("Val idator " ,
120 this ,
121 this . master) ;
122 va l i d a t o r . s t a r t () ;
123 } catch (Exception e) {
124 e . pr intStackTrace () ;
125 }
126 return true ;
127 }
128

129 public void i n i tHear tBeat s ()
130 {
131 Timer heartbeat = new Timer () ;
132 heartbeat . scheduleAtFixedRate
133 (new TimerTask () {
134 public void run () {
135 keepAl ive () ;
136 }
137 } , 0 , 1000) ;
138 }
139

140 private void keepAl ive () {
141 try {
142 this . master . s laveKeepAl ive (this . id) ;
143 } catch (RemoteException re) {
144 System . out . p r i n t l n ("KeepAlive ␣ r eque s t ␣ f a i l e d , ␣ e x i t i n g . ") ;
145 System . e x i t (1) ;

120 APPENDIX A. SOURCECODE FOR THE MASTER AND SLAVE

146 }
147 }
148

149 private void openDatabase () {
150 CUserAccessContro l l e r c o n t r o l l e r =
151 CUserAccessControl le r . g e tAcce s sCont ro l l e r () ;
152 this . database = c o n t r o l l e r . getDb () ;
153 try {
154 this . database . c r e a t e (this . dbPath , this . dbName , this . dbPass) ;
155 } catch (SdaiException e) {
156 // Triggered i f da tabase e x i s t s , which i s f i n e . What we
157 // want however i s a method l i k e dbEx i s t s () . But the API
158 // doesn ’ t conta in anyth ing l i k e t h i s .
159 }
160

161 try {
162 this . database . open (this . dbPath , this . dbName, this . dbPass , true) ;
163 } catch (SdaiException e) {
164 e . pr intStackTrace () ;
165 System . e x i t (1) ;
166 }
167 }
168

169 public boolean l o adF i l e () {
170 i f (this . importRunning) {
171 System . out . p r i n t l n (" I ’m␣ cu r r en t l y ␣ import ing . . . ") ;
172 int c = 0 ;
173 while (this . importRunning) {
174 try {
175 Thread . s l e ep (100) ;
176 c++;
177 } catch (InterruptedExcept ion e) {
178 e . pr intStackTrace () ;
179 }
180 }
181 System . out . p r i n t l n ("Waited␣" + c + "␣ times ␣ f o r ␣ import␣ thread ") ;
182 }
183 try {
184 ImportThread importer = new ImportThread ("ImportThread " , this) ;
185 importer . s t a r t () ;
186 System . out . p r i n t l n (" Importer␣ s t a r t ed . . . ") ;
187 } catch (Exception e) {
188 e . pr intStackTrace () ;
189 return fa l se ;
190 }
191 return true ;
192 }
193

194 public SdaiModel loadModel (S t r ing modelFi le)

A.2. SLAVEIMPL.JAVA 121

195 throws SdaiException
196 {
197 SdaiRepos i tory dataRep =
198 this . database . getRepos i tory ("DataRepository ") ;
199 St r ing modelName = "tempmodel" ;
200 CReadStepFile reader = new CReadStepFile (modelFi le ,
201 null ,
202 "DataRepository " ,
203 null ,
204 modelName ,
205 null ,
206 null ,
207 0) ;
208 reader . se tOpt ions (CReadStepFile .DELETING_EXISTING_MODEL) ;
209 try {
210 reader . read () ;
211 } catch (SdaiException e) {
212 // This e r ror i s OK as i t doesn ’ t have to be f a t a l , and we
213 // r e a l l y can ’ t d e t e c t i f i t i s u n t i l we t r y to v a l i d a t e
214 // the model .
215 i f (e . getMessage () . indexOf ("Error/warning␣during␣STEP␣ F i l e ␣" +
216 " read ␣ opera t i on") != −1) {
217 System . out . p r i n t l n ("Warning : ␣Error/warning␣during ␣STEP␣" +
218 " F i l e ␣ read ␣ opera t i on") ;
219 } else {
220 e . pr intStackTrace () ;
221 System . e x i t (1) ;
222 }
223 }
224 this . model = dataRep . openModel (modelName , SdaiModel .READ_ONLY) ;
225 return this . model ;
226 }

Bibliography

[Foster95] Ian Foster, “Designing and Building Parallel Programs”

[Buyya99-1] Rajkumar Buyya ed. “High Performance Cluster Computing
Volume 1: Architectures and Systems”

[Buyya99-2] Rajkumar Buyya ed. “High Performance Cluster Computing
Volume 2: Programming and applications”

[Culler99] David E. Culler & Jaswinder Pal Singh, “Parallel Computer Ar-
chitecture, a hardware/software approach”

[Andrews00] Gregory R. Andrews, “Foundations of Multithreaded, Parallel,
and Distributed Programming”

[Lea02] Doug Lea, “Concurrent Programming in Java - Design Principles and
Practices”

[Tanenbaum01] Andrew S. Tanenbaum, “Modern Operating Systems”

[Kiczales et al 97] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, John Ir-
win, “Aspect Oriented Programming” in proceedings of the European
Conference on Object-Oriented Programming (ECOOP).

[Gamma et al 95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlis-
sides, “Design patterns: Elements of reusable object-oriented software.”

[SunRMI] Sun Microsystens, “The Java Remote Method Invocation Specific-
ation”
(http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html)

[Kemmerer99] Sharon J. Kemmerer (Editor), STEP—The grand experience
(NIST SP939)

122

BIBLIOGRAPHY 123

[Kurzyniec, Sunderan 01] Dawid Kurzyniec and Vaidy Sunderan “Efficient
cooperation between Java and native codes – JNI performance bench-
mark” in In The 2001 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPDA), Las Vegas,
Nevada, USA, June 25-28 2001.

[Pfister95] Gregory F. Pfister “In Search of Clusters — the coming battle in
lowly parallel computing”

