
Neuroevolution of Central Pattern
Generators

Using the NEAT algorithm for the discovery
of Continuous-Time Recurrent Neural

Networks with CPG-like behaviour

Andrei Faitas

Thesis submitted for the degree of
Master in Robotics and Intelligent Systems

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2021

Neuroevolution of Central
Pattern Generators

Using the NEAT algorithm for the
discovery of Continuous-Time Recurrent

Neural Networks with CPG-like
behaviour

Andrei Faitas

© 2021 Andrei Faitas

Neuroevolution of Central Pattern Generators

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract
Locomotion for legged robots has been a long standing problem in
robotics. The ambition is to see the realisation of control systems that
will allow machines to move with the same adaptability to terrain and
task as that observed observed in biological life forms.

A promising proposal to achieve this is the design of Central
Pattern Generator (CPG) models, inspired by neural networks found
in vertebrate and invertebrate animals. These CPG neural networks
generate rhythmic patterns that underlie the rhythmic behaviour that
guide activities such as walking, running, breathing etc. Experimental
attempts to apply CPG-based control systems to robotic locmotion has
seen interesting results and a rise in academic interest over the past
two decades. The experiments over these decades show an ability
for CPGs to express different gait patterns, and flexible adaptation to
perturbations in terrain.

To aid in the design of CPG models for robotic control, this
thesis argues for an Evolutionary Computing approach; specifically
neuroevolution of a Continuous-Time Recurrent Neural Network. As
such neural networks have seen success in evolutionary robotics before,
and is designed for the very purpose of modelling dynamical systems,
this choice seems apt.

For the experiments described herein, the NeuroEvolution of
Augmented Topologies (NEAT)[18] evolutionary algorithm is used. The
experiments feature eight configurations of the NEAT genome, and two
different fitness functions. Each of the genome configurations is tested
with each of the two fitness functions, creating 16 different experiment
paradigms. The object of the experiments is to show which of the two
fitness functions define a better suited fitness space by comparing the
variation that occurs when the genome configuration is altered.

The experiments show that the first fitness function, the Root-
Mean-Square-Error is unsuited for discovering CTRNNs that are able
to modulate the frequency of the output. However it is sufficiently
suited for discovering CTRNNs that output rhythmically oscillation
without the need for rhythmic input. The experiments for the second
fitness function, a negative exponential function, are inconclusive, but

i

the thesis still provides some insight into why it performs the way that
it does. With respect to the variables experimented with in the genome
configuration, the thesis finds statistically significant evidence that the
CTRNN time constant and tanh activation function have a meaningful
impact on NEATs ability to discover oscillator CTRNNs, while network
size does not.

ii

Acknowledgements
The author would like to express the sincerest gratitude to his
supervisors, Kyrre H. Glette and Frank Veenstra, not only for their
guidance and insights, but for their enthusiasm which always made
it feel like there was a bright side to all the set backs. To his
friends, family and fellow students who were always willing to have
enlightening discussions and words of encouragement. The author
also wishes to acknowledge that no man is an island, and that so
many support systems were in place that made this at all possible.
Social and academic systems built by predecessors and maintained by
contemporaries across the country. The debt of gratitude is deep.

iii

Contents

1 Introduction 1
1.1 Introduction . 1

1.1.1 Motivation . 1
1.1.2 Research goals . 3
1.1.3 Thesis outline . 4

2 Background 6
2.1 Evolutionary Computing 6
2.2 Neuroevolution . 8

2.2.1 Direct Representations 9
2.2.2 Developmental Representations 9
2.2.3 Implicit Representations 10

2.3 NeuroEvolution of Augmented Topologies 10
2.3.1 Genotype and Genetic Encoding 11
2.3.2 Speciation . 11

2.4 Central Pattern Generators 12
2.5 Continuous-Time Recurrent

Neural Networks . 13

3 Methods 15
3.1 Chapter Introduction . 15
3.2 Definition of rhythmic behaviour 17
3.3 Fitness function . 20

3.3.1 Frequency analysis 22
3.3.2 Fitness Evaluation 25

3.4 Simulation environment 26
3.5 Experiment paradigms and details 29

3.5.1 Configuration file and Default Configurations . . 32

iv

3.5.2 Time Constant . 36
3.5.3 Activation Function 37
3.5.4 Network Topology mutation probability 38

4 Experiments and Results 40
4.1 Chapter Introduction . 40
4.2 Results from RMSE based paradigms 43

4.2.1 Default genome configuration A 46
4.2.2 Default genome configuration B 48
4.2.3 Default genome configuration C 50
4.2.4 Default genome configuration D 52
4.2.5 Default genome configuration E 54
4.2.6 Default genome configuration F 56
4.2.7 Default genome configuration G 58

4.3 Results from NEE based paradigms 60

5 Conclusions 61
5.1 Chapter Introduction . 61
5.2 Discussion . 61

5.2.1 RMSE fitness function and fitness space exploration 63
5.2.2 NEE fitness function and fitness space exploration 67
5.2.3 Activation Function 69
5.2.4 Time Constant . 70
5.2.5 Network size and growth rate 70

5.3 Future Work . 71

A Appendix 74
A.1 Appendix I - Winner Genome Visualisations 74

A.1.1 Default Genome Configuration Z - RMSE 75
A.1.2 Default Genome Configuration A - RMSE 80
A.1.3 Default Genome Configuration B - RMSE 85
A.1.4 Default Genome Configuration C - RMSE 90
A.1.5 Default Genome Configuration D - RMSE 96
A.1.6 Default Genome Configuration E - RMSE 101
A.1.7 Default Genome Configuration F - RMSE 106
A.1.8 Default Genome Configuration G - RMSE 111
A.1.9 Default Genome Configuration Z - NEE 116

v

A.1.10 Default genome configuration A - NEE 121
A.1.11 Default Genome Configuration B - NEE 126
A.1.12 Default Genome Configuration C – NEE 131
A.1.13 Default Genome Configuration D – NEE 136
A.1.14 Default Genome Configuration E - NEE 141
A.1.15 Default Genome Configuration F - NEE 147
A.1.16 Default Genome Configuration G - NEE 152

A.2 Appendix II - Critical values for Mann-Whitney U Test . 157

vi

List of Figures

3.1 Three examples of high fitness CPG-like behaviour. . . . 16
3.2 Possible fitness scores from NEE over all frequencies for

three values of c. Dashed lines indicate the region of
interest. 28

3.3 Samples of four winner CTRNNs; two under the RMSE
fitness paradigm and two under NEE. Dashed lines
separate control variable regions; c = 25, 50, 75, 100. . . . 31

3.4 Plots of the two activation functions. 37

4.1 Rank 4 winner example of output and network graphs. . 42
4.2 Boxplot of the distribution of all-time highest fitness from

each genome default configuration. Low values indicate
better fitness. Orange lines denote medians and circles
denote outlier samples . 44

4.3 CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 5 47

4.4 CTRNN Output and network topology of the qualita-
tively worst winner. Evolved in run number 2 48

4.5 CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 9 49

4.6 CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 7 50

4.7 CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 6 51

4.8 CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 1 52

4.9 CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 1 53

vii

4.10 CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 2 54

4.11 CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 8 55

4.12 CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 3 56

4.13 CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 2 57

4.14 CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 1 58

4.15 CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 6 59

4.16 Distributions of winner genome fitness scores from each
NEE based experimental paradigm 60

5.1 Curves showing squared errors for each target frequency
derived from the value of input control variable c. Each
dashed line shows the target frequency with its color
corresponding to an error curve. 64

5.2 All squared error curves averaged. 65
5.3 RMSE fitness space defining the optimal solution as a

constant oscillation at ∼ 5.5Hz with RMSE score ∼ 2.9. . 65
5.4 The two best fit winners across all 8 RMSE based

paradigms. 67
5.5 Fitness space of NEE when focusing on a single dimen-

sion of frequency where the target frequency is 5Hz. . . . 68
5.6

sin(| fi− fci |)
| fi− fci |

with target frequency fci = 5Hz. The small
local maxima across the frequency range may improve
exploration. 72

5.7 Introducing a scaling factor to the difference term gives
control over the number of local maxima and width of the
bell around the target frequency. Here β = 4. 72

5.8 Squaring the difference gives yet another profile. 73

A.161Table of critical values for the Mann-Whitney U test. . . 157

viii

List of Tables

3.1 Values of control variable c at each simulation run 22
3.2 Tables showing the default genome configuration for each

experiment. Rows highlighted in gray indicate which
variables have been altered with respect to the baseline Z. 33

3.3 Default genome configuration. An in depth explanation
of the configuration file can be found here [14] 35

4.1 Table of qualitative categories and their rankings for
the purpose of this study’s qualitative review of results.
Oscillation in the context of the study is any curve with
at least one clear peak. 41

4.2 Companion table to fig. 4.2 showing the precise value
for the statics shown in the figure. Configurations
that contain the global best fitness RMSE = 3.16 are
highlighted in gray. 45

4.3 Table of findings with the Mann-Whitney U test when
comparing the baseline Z fitness distribution to the fit-
ness distributions of the other genome configurations.
Distributions from configurations C and F are high-
lighted for cross reference with table 4.2. 45

4.4 Table of the number of winner genomes in each rank
within each genome configuration distribution. It is
notable that configurations Z, A, B have no winners with
rank higher than 4, while the rest have no winners
of rank 5. Configurations C - G all employ the tanh
activation function. 46

4.5 Table of the number of winner genomes at each qualita-
tive rank in the distribution of configuration A. 48

ix

4.6 Table of the number of winner genomes at each qualita-
tive rank in the distribution of configuration B. 50

4.7 Table of the number of winner genomes at each qualita-
tive rank in the distribution of configuration C. 52

4.8 Table of the number of winner genomes at each qualita-
tive rank in the distribution of configuration D. 54

4.9 Table of the number of winner genomes at each qualita-
tive rank in the distribution of configuration E. 56

4.10 Table of the number of winner genomes at each qualita-
tive rank in the distribution of configuration F. 58

4.11 Table of the number of winner genomes at each qualita-
tive rank in the distribution of configuration G. 60

x

Chapter 1

Introduction

1.1 Introduction
This chapter will explain the motivation behind this body of work and
the goals it hopes to work towards. It will also feature a rough outline
of the entire thesis.

1.1.1 Motivation

Multipedal locomotion has long been a problem of great interest in the
field of robotics. A robotic platform that can solve such a problem
at a level reminiscent of biological lifeforms, may be employed to
perform complex tasks in a real-life environment. Machines that
can move automatically and maintain effective mobility in the face of
unforeseen variations in the environment, introduces the possibility of
applying them to tasks we currently require a human agent to perform.
Particularly interesting in this regard, are tasks that are dangerous
for humans to perform, or tasks in environments hostile to human life.
Examples such as search and rescue, high strain manual labour, or
extra planetary exploration are typical of the imagined possibilities.
Indeed, such tasks involve much more than locomotion, but the ability
to walk on legs is a good place to start.

Interestingly, the field of neuroscience has, in the last century,
gained enlightening insights into how nature solves this problem.
Neural networks that produce coordinated, rhythmic patterns, termed
Central Pattern Generators (CPGs) were found to underlie many of the

1

rhythmic behaviours present in vertebrate and invertebrate animals;
behaviours such as for example walking. These CPGs show the ability
to generate this rhythmic activity without receiving any rhythmic
input from sensory systems or control centers in the brain. This allows
control centers to engage rhythmic movement with simple signals to
the CPG, which then in turn only adapts its rhythmic pattern in
response. This way, a control centre is not required to parameterise
complex muscle contractions across time.

In his review paper [8], Ijspeert describes the history of applying
Central Pattern Generators (CPGs) to the field robotics. Ijspeert
observes a rise in interest the past two decades, in trying to create
machine analogies to CPGs to allow for stable and flexible gaits in
robots. His own work has seen interesting successes [2, 10], with CPGs,
showing robots with multiple gaits and the ability to switch between
them continuously.

In the above examples, the CPGs were modelled by human
designed oscillators. Intuitively, such an approach limits the range
of possibilities and the ceiling of success. Compared to its biological
counterpart, these oscillators are relatively simple, and arguably must
lack the expressive power to reach the levels of adaptability necessary
for the ambitious goals imagined. The utilisation of a machine learning
approach may further extend the range of possibilities for CPG-based
robot control.

Continuing in the vein of biological inspiration, applying Evolution-
ary Computing (EC) to the task of automatic design of CPGs is an in-
teresting proposal, and showed early success in Ijspeert[9]. Here, re-
searchers applied a style of EC called Genetic Programming to evolve
an Artificial Neural Network (ANN) that would model a CPG-based
control system. However, the robot it was meant to control was a de-
sign based on a lamprey; a type of eel. It could be argued that the task
of swimming is simpler than walking, and so the success of the ex-
periments may not be directly applicable to robots designed for legged
locomotion. Additionally, early algorithms for evolving ANNs typically
were unable to evolve network topology, exclusively evolving connec-
tion weights in a fixed size substrate of neurons.

This thesis is motivated by continued effort to develop automatic

2

methods of designing control systems for multipedal locomotion
through EC. It seeks to add to the understanding of how EC may
be used to discover CPG-based control systems, and to take an
incremental step towards creating machines with the locomotive
flexibility and expressiveness of biological life.

This thesis aims to explore the automatic creation and tuning of a
CPG by way of neuroevolution (NE). NE is a category of Evolutionary
Computing (EC) in which the objective of the evolutionary process is to
create Artificial Neural Networks (ANN) without manually tuning hy-
per parameters through trial an error. ANNs have been used to model
CPGs in earlier work, for example Tran et. al. [19], often as Recurrent
Neural Networks (RNN).

To apply NE to the problem of creating an ANN CPG, the study
will make use of the NeuroEvolution of Augmenting Topologies (NEAT)
[18] algorithm. With this algorithm, experiments will be performed to
evolve Continuous-Time Recurrent Neural Networks (CTRNN)[20]; a
kind of RNN whose hidden neuron outputs are calculations of the rate
of change of their input. The experiments are designed to investigate
what evolutionary circumstances er necessary or helpful when trying
to evolve a CTRNN with CPG-like behaviour, particularly with respect
to how one should define evolutionary fitness.

1.1.2 Research goals

The primary goal of the thesis is to gain an understanding of the
conditions that promote CPG-like behaviour in an ANN. Based on
works like [16, 17, 19], a Continuous-Time Recurrent Neural Network
(CTRNN) was decided upon for the type of ANN to evolve. Thus
the thesis assumes CTRNNs is at least a suitable, if not necessary
condition to evolve CPGs.

Further specification of the research goals require some definition
of the properties of a CPG:

• Ability to produce rhythmic output without rhythmic input

• Ability to adapt output rhythm to fit changes in envirnoment

3

The latter point is frequently termed neuromodulation. In biologi-
cal CPGs, this property is connected a wide range of sensory input, to
be able to respond to a multitude of situations. For the scope of this
thesis, neuromodulation will be restricted to a change in output fre-
quency, as a response to change in input. The former point on the other
hand will be covered in its entirety in the experiments.

In any EC approach, the choice or fitness function, i.e selection
pressure, is both difficult and crucial. The domain of the fitness
function defines a fitness space in which the evolution takes place. It
is very often hard to predict what sort of behaviour a given fitness
function will encourage, and so special care is often needed when
selecting one or designing one. To try and understand what makes
a suitable fitness function for this problem, this thesis performs
experiments with two different fitness functions. One is the Root-
Mean-Square-Error function commonly used to measure the prediction
error of statistical models. The other is an exponential function,
naively designed especially for the purpose of these experiments.

In specific terms, the questions this thesis seeks to answer are as
follows:

1. Is there a meaningful difference in likelihood to produce high
fitness CTRNN solutions from one fitness function to the other?

2. Is there an identifiable feature that fitness functions should
possess in order to motivate selection of CPG-like CTRNNs?

Any insight into these two questions may help towards the auto-
mated design of robust control systems for robotics pedal locomotion.

1.1.3 Thesis outline

The thesis consists of four chapters; background, methods, experiments
and results, and conclusions. Chapter 2 gives an overview of the main
background material the thesis builds on, including the basics of EC,
principles and examples of NE, the NEAT algorithm, the biological
CPG and CTRNNs.

4

Chapter 3 states important definitions and assumptions used in the
experiments, and motivates these. It explains the limitations of the
simulation environment and frequency analyses and how it impacts
the study. Finally, it details the experiments performed.

Chapter 4 presents the experimental results from the 16 different
paradigms. These results are analysed and interpreted both quanti-
tatively and qualitatively to evaluate the importance of the variables
changed between experiments.

Chapter 5 discusses whether the experiments did indeed add under-
standing of the fitness functions used, and what that understanding is.
It reviews the experimental results in light of the research questions
posed in this introduction, and discusses in what way, and to what ex-
tent, these questions can be considered answered. To end, it suggests
some concrete next steps in the form future work.

The appendix contains all visualisations of winner CTRNN outputs
from all experiments, along side the corresponding graph of the
network topology. It also contains the table of critical values used in
the Mann-Whitney U test for analysis of experimental results.

5

Chapter 2

Background

2.1 Evolutionary Computing
In observing natural evolution, one perspective is that the evolutionary
process is essentially a search through the very large space of possible
genetic combinations to find an expression of genes that is optimized
for survival in a given environment. However, this search is not
exhaustive, meaning that evaluating the survivability, or fitness, of
every possible combination is not necessary. Instead, the individual
expressions of a genome are selected, meaning the search is guided
by some general rule to determine which individuals (i.e which
permutation of genes) is likely to lead to an improvement in the species.

In Darwin’s On the Origin of Species [7], he introduces the term
"natural selection" to describe the guiding rule as he observed it in
nature. By this rule, only the selected individuals are subjected to
mechanisms such as genetic reproduction and mutation, effectively
narrowing the search by focusing on the more apparently viable
subjects and deprecating the rest.

With Evolutionary Computing (EC), the goal is to mimic these
mechanisms and apply them to structures of data in order to search
through a large space of possible permutations of these structures in
a similar, non-exhaustive manner. Consider any sort of formal data
structure, for example a vector of n elements. The formalization gives
a generalized way of looking at any given instance of this structure,
comparable to a biological genotype, and any realised instance is

6

considered an individual expressed by the genotype; a phenotype. With
the application of defined genetic operators, the selected individuals
are permuted to create new individuals that may represent solutions
closer to the optimum we are searching for. Finally and crucially, some
sort of fitness function, a selection rule, must be designed in order to
evaluate and rank the individuals in a population from strongest to
weakest. Often in EC, creating a fitness function is the most difficult
part as it requires the designers to attempt to predict what sort of
rule will successfully select for the desired solutions. Such predictions
become increasingly hard with higher genome dimensionality, and
complexity of behaviour. The field of robotics in particular exhibit both
of these traits.

As a more concrete example, consider a genotype in the form of a
6-element vector v ∈ N6. It formally encodes all expressions of that
genotype to have the form (n0, n1, n2, n3, n4, n5) where each element is a
gene. Assuming a given problem defined on the same space has an
optimal solution, one specific individual (a phenotypic expression of
a genome) must be this solution. Applying an individual v0 to some
fitness function F(v) gives v0 a fitness score with which to compare it
to other individuals in a population of individuals vk, k = 1, 2, ..., K,
where K is the population size. The top ranked individuals may
then have their genes recombined, typically by employing some cross-
over operator that combines genes from two parents to create a new
permutation. These offspring permutations are then subjected to
a mutation operator that has a set probability of changing a gene,
thereby creating novel genes in the population. Finally, the cycle of
selection, recombination and mutation is repeated until a solution is
found. It is however important to note that due to the stochasticity
involved, there is no guarantee that the solution is truly optimal.

In summary, an implementation of EC needs to define a genotype
that somehow encodes phenotypes; it needs a well designed fitness
function that quantifies how well a genome is suited to the problem;
and it must employ recombination and mutation operators to incre-
ment genomes towards the optimal solution. With these in place the
EC algorithm can perform a non-exhaustive search for an optimum in
a space of permutations.

7

2.2 Neuroevolution
A data structure that is applicable to EC is an ANN; a non-exhaustive
search through the space of network weights and topologies to opti-
mize it for some defined problem. Knowing that optimizing hyperpa-
rameters for ANNs remains an unformalized task (one is typically left
tuning manually without knowing what the effects will be), applying
EC to achieve this autonomously is a tempting proposition. Known
as Neuroevolution (NE), the design and optimization of ANNs through
evolution has seen some remarkable contributions to solving problems
of robot control, artificial life and general game playing. The success
of an NE approach is very much dependent on the fitness function,
which poses a substantial challenge as this needs to be designed in a
way that ensures both improvement and a desired behavior. Predicting
what the effect of a fitness function will be is hard given the complex
space that multi-DOF robots operate in, and training time overheads
may be large. Indeed, the fitness landscape is usually so complex and
filled with local optima, that premature convergence is a problem that
must be solved for any evolutionary algorithm that produces ANNs.

One is also faced with the task of selecting an appropriate encoding
for the genotype; how do we represent an ANN in a compact way,
that may be decoded into some specific expression of ANN? From the
background material provided with this work, we can define three
styles of encoding:

a) Direct Representations, a one-to-one relationship between ele-
ments in the encoding and the actual parameters they represent
in the ANN

b) Developmental Represenations, a specification of a process which
constructs the ANN

c) Implicit Representations, the expression of a given gene is
implied by the context in which it will exist.

The choice of encoding scheme becomes particularly important
when applying evolutionary computing to the development of ANNs,
due to the potential complexity of a network.

8

2.2.1 Direct Representations

A direct representation encodes explicitly the topology and weights of
the network, requiring some encoded symbol for each separate element
in the network. In the simplest cases, the genotype is represented as a
string of real numbers or a string of characters, encoding the weights
and connections over some fixed topology. Though this representation
has shown excellent results in forming smaller, fixed size networks,
limitations in regards to genome length and symbol variation indicate
that this is not suitable for larger networks where the topology and/or
architecture is also to be evolved and optimized.

A successful venture into co-evolving both the weights and archi-
tecture of a network is the NeuroEvolution of Augmenting Topologies
(NEAT) method, proposed by [18]. In it, the authors include genetic
operators that can introduce new genes and disable old ones, thus al-
lowing the topology of the network to evolve. Additionally, the genes
include a historical marker to track the gene’s first appearance. This
allows the evolutionary search to utilize the recentness of genetic in-
novations to create sub populations (speciation), while also solving the
problem of competing conventions.

2.2.2 Developmental Representations

A developmental representation, or indirect encoding, has the genome
describe a process that in turn builds the network, establishing the
connections between nodes and their weight. The compactness of these
representations allow for the evolution of much larger networks that
in turn may solve more complex problems.

An example is an extension of the NEAT method; HyperNEAT [15].
Instead of using NEAT to directly construct the ANN, NEAT creates
a Compositional Pattern Producing Network (CPPN), which serves as
the genome for the ANN. Along with being an indirect encoding, the
CPPN exhibits structural repetitions and symmetries reminiscent of
the neural structures of the biological brain.

9

2.2.3 Implicit Representations

Implicit representations is a style of encoding that perhaps most closely
resembles the way genomes encode genetic information in biology.
The inspiration comes from the discovery of gene regulatory networks
(GRN), where we see that interactions between genes is not explicitly
encoded. Instead they implicitly follow from the physical and chemical
environments in which the genes exist.

An application of this to ANNs is the Analog Genetic Encoding
(AGE) [12]. The genome consists of symbols from some alphabet of
characters, where certain sequences are prescribed certain interpre-
tations. Each gene in a genome is thus encoded to express a neuron
(i.e describing its activation function) and its terminals (i.e its connec-
tion to other neurons). The weights however, are not encoded at all,
but are calculated by an interaction map I whenever two neurons are
connected.

2.3 NeuroEvolution of Augmented
Topologies

The evolutionary algorithm used in this thesis is called NeuroEvolu-
tion of Augmented Topologies (NEAT) [18]. As the name implies, it is
an algorithm that searches for an optimal network topology, as well as
optimizing values for weights and other hyperparameters. This is in
contrast to earlier NE approaches, where a network topology is defined
before subjecting it to an EA, thus excluding the search for a topology
from the evolutionary process.

Though it is known that a fully connected ANN can in principle
approximate any continuous function, it remains a difficult and time
consuming task to guess at exactly which ANN architecture will
produce the desired approximation. By leaving the task of finding
the right network topology to the EA, a significant amount of time
and effort is saved. Furthermore, an exploratory search such as EA
might discover architectures that simply do not come easily to a human
designer.

10

2.3.1 Genotype and Genetic Encoding

The genotype in NEAT algorithm is a pair of lists, one for connection
genes, and one for node genes. Each connection gene describes a
connection between two nodes, including cases when both nodes is the
node (recurrent connection). It provides the ID of the in-node, the out-
node, connection weight, disabled/enabled status and an innovation
number. This last element is a historical marker used to track
genes and avoid the problem of competing conventions, where different
networks topologies compute the same function (see [18] for details).
The node gene contains a list of input, output and hidden nodes in the
network that the node may connect to.

2.3.2 Speciation

As a way to protect genetic innovation, NEAT features a speciation
scheme. This allows for genomes with very recent topological mutation
to compete in a niche of genomes similar to themselves, thus protecting
them from being pushed out of the reproductive pool before having a
chance to optimise the new structure. To achieve this, the historical
marking of genes comes into play again. Under the assumption
that the larger difference between two innovation numbers, the less
evolutionary history they share, this difference can be used to quantify
a genetic distance between two genes. Researchers in [18] propose
measuring compatibility distance δ

δ =
c1E
N

+
c2D
N

+ c3 ·W

where E and D is the number of excess (matching) and disjoint
genes respectively, and W is the average weight differences of matching
genes, including disabled ones. The coefficients c1, c2, c3 are adjustable
importance weights to the terms and N is number of genes in the larger
genome to normalise in cases where genome sizes are very different.

By defining some compatibility threshold δt, the algorithm manages
to maintain an ordered list of species that do not overlap.

11

2.4 Central Pattern Generators
Central Pattern Generators (CPG) are biological networks of neural
circuits that produce rhythmic, coordinated output patterns. By
generating these rhythmic signal patterns, they cause most all
vertebrates to display periodic motor functions such as breathing,
walking, running chewing etc. Interestingly, this is done without
the need of a rhythmic input pattern, meaning input signals may be
substantially simpler than the produced patterns. A high level control
center (motor cortex, cerebellum, basal ganglia) may therefore induce
these complex patterns without itself having to generate complex
signals to a given CPG.

In many vertebrates [8], these neural circuits are found distributed
along the spine, where shorter segments contain networks that all are
capable of producing rhythmic activity. Examples of this is seen in
studies of the lamprey fish and the salamander [1, 13]. The prevailing
model conceptualizing the rhythm generation of neurons is the half-
center model, proposed by G.T Brown [3] in 1914. A pair of neuron
populations are coupled with inhibitory connections that exhibit an
excite and fatigue mechanism. This coupling causes activity from
the neurons to take on an oscillatory profile that alternates between
stimulating extensor and flexor muscles, in turn creating rhythmic
motion.

Furthermore, there is clear evidence that rhythms are generated
centrally without requiring sensory information; extracting a spinal
chord from a body will still generate patterns of activity when
stimulated directly with simple electric of chemical stimuli [5].
Instead, sensory information serves to modulate (neuromodulation) the
patterns produced, shaping them in order to better suit changes in the
environment. This allows vertebrates to adapt their gait to changes in
the terrain, increase respiratory rate to support increased activity, or
drastically change locomotion style from walking to swimming.

12

2.5 Continuous-Time Recurrent
Neural Networks

CTRNNs are a type recurrent neural network in which each neuron
computes the differential of the input with respect to time. Their
definition is given by the differential equation. in Eq. 1.

τi
dyi

dt
= −yi +

N

∑
j=1

Wijσ(yj + θj) + I(t) (2.1)

where:

• yi represents the current stat of neuron i

• τi is the time constant for neuron i

• θj the bias of neuron j

• I(t) is the external sensory input. Only non-zero for input
neurons.

• Wij is the weight connection from neuron j to neuron i

• σ(x) = 1
1+e−x is the activation function

Thus, a CTRNN is characterised as a system of Ordinary Differen-
tial Equations, where each neuron represents an equation in the sys-
tem. The time constant τ is factor unique to the CTRNN. It scales the
rate of change, effectively deciding how sensitive a neuron is. Higher
values of τ means a heavier damping of the neurons rate of change,
and so is less responsive. The reverse is true for lower values of τ.

In contrast to the common feed forward structure of most ANNs,
a CTRNN is a network in which any given neuron can be connected
to any of the other neurons in the network, including itself. A feed
forward network only connects neurons in layer n to neurons in layer
n + 1. The recurrent connections are what allow the CTRNN to have
internal states through time, modelling a system that takes previous
states into account when calculating the next output, which is what
allows the calculation of differential with respect to time.

13

The CTRNN features frequenctly in evolutionary robotics, and was
therefore selected for its successes in the field, but also for the ability
to model complex behaviour in continuous time. This will a be nice
feature with respect to neuromodulation and transitioning between
modes of rhythm.

14

Chapter 3

Methods

3.1 Chapter Introduction
In order, this chapter contains:

• a detailed description of the definition of rhythmic oscillation used
and how it is derived

• a description and short discussion of fitness functions

• a description of the simulation environment

• an overview of the experiment paradigms and their motivation

The experiments outlined in this chapter are designed with the
intent to shed light on what conditions are required to promote CPG-
like behaviour in CTRNNs. Specifically, the goal is to obtain networks
that:

1. produce rhythmic output when given constant input

2. modulate the frequency of the output in response to change in the
input

To give an idea on what this thesis is working towards, figure 3.1 shows
an imagined ideal of how these CTRNNs should behave. Each figure
is made to illustrate outputs when some input control variable c is sig-
nificantly increased around the halfway point of the time axis. 3.1a
shows a pure cosine wave that doubles the frequency at the time of in-
put change with no other side effects. To show that certain side effects

15

(a) Example output 1:
constant amplitude

(b) Example output 2: re-
duced amplitude

(c) Example output 3:
less significant frequency
component unaffected.

Figure 3.1: Three examples of high fitness CPG-like behaviour.

are both expected and acceptable, figure 3.1b shows the same cosine,
but with a drop in amplitude as the frequency is increased. Lastly, 3.1c
shows a cosine with an added, lower amplitude, frequency component.
The increase of the control input primarily affects the frequency of the
prominent component, and only affects the lesser component as a side
effect.

The primary target of investigation is the fitness function, as this is
known to be difficult to design and has a large impact on the results of
any EC approach. The functions in question are the Root-Mean-Square
Error (RMSE), and a second, naively designed function based on the
negative exponential of the error. For the sake of brevity, this function
will be referred to as NEE in this thesis. A detailed explanation of
these two functions are in section 3.3.

The space of the function essentially defines the landscape in
which the genomes evolve through in order to reach an optimum.
Intuitively, the shape of this landscape has a significant impact on the
direction of the evolution and how difficult it is to move through it. A
deeper discussion of the shape of the fitness space and the associated
challenges can be found in chapter 5.

The simulation environment used in the experiments is relatively

16

simple, and unchanged across all the experiments. Further details,
including a comment on side effects the simulation settings may have
on the fitness space, can be found in section 3.4

To evolve the CTRNNs, the experiments utilise the NEAT neuroevo-
lution algorithm as implemented by McIntyre et al. [14]. As such, a
secondary target of investigation is the impact of a selection of hyper-
parameters of the algorithm. This is deemed secondary because the
findings associated with the NEAT parameters, while interesting, may
not be generally applicable to other neuroevolution algorithms. A more
detailed description of the parameters and experiment set up is given
in section 3.5.

Due to the stochastic nature of EC, each experiment is an
evolutionary run of NEAT for 500 generations. This is repeated ten
times per experiment to make possible some estimation of whether
the results of a particular configuration are consistent. Specifically,
the analysis of each experiment is to estimate which variable in
the configurations consistently impact the fitness value of the best
performing genome. If the impact of configuration variables are greater
under one fitness function than the other, then the claim can be made
that one defines a better suited fitness space than the other. Thus this
thesis only applies quantitative analyses to the best genome from each
evolutionary run. For a more detailed overview of each experiment and
their configurations, see the subsections of section 3.5.

3.2 Definition of rhythmic behaviour
In order to represent a biological CPG, the evolved CTRNNs must
exhibit a rhythmic, oscillatory output behaviour [8]. This means the
fitness function must quantitatively express what such behaviour is,
in order to rate the fitness of each genome. For the purpose of these
experiments, rhythmic output behaviour will be defined as a repeating
pattern of extrema, appearing at fixed intervals in time. Any local
minimum or maximum will be considered to be extrema of the time-
series, a local minimum being defined as a point f (t) where any given
point f (t± ε) are strictly greater, and vice versa for maxima.

17

It can be tempting to equate rhythmic output with the notion of pe-
riodicity, as a periodic function will repeat itself every period P, which
is essentially a rhythm. From calculus we have:

A function f is considered periodic if for some non-zero constant P

f (t + P) = f (t)

However this definition of periodicity must be considered too rigid
for the purpose of these experiments. Within such a definition, a
sinusoid with a decaying amplitude would be considered non-periodic
as each peak has a lower function value then the preceding peak, hence
f (t + P) 6= f (t). Similarly, the presence of some stochastic noise in a
time-series analysed in this way will also disqualify the signal. In this
study it is desirable to consider the above mentioned time-series output
as applicable to the notion of rhythm (the peaks occur at fixed intervals
in time), rendering this particular definition of periodicity somewhat ill
suited.

In signal processing, it is common to use auto-correlation to find
periodic or repeating structures in noisy time-series signals. It allows
for discovering patterns that are close to periodic and quantifying the
degree of periodicity. Correlation is an analytic measurement of how
closely one sequence of data resembles another by applying a slightly
modified convolution operation on the two sequences. By measuring
the correlation of a sequence with a delayed copy of itself (hence auto-
correlation), we can measure how many time shifts before the sequence
resembles itself the most, i.e repeats itself. The number of time shifts
the signal must be lagged by is the period P of the signal. Finally, it
is common practice to normalise the correlation measurement to avoid
high variance elements skewing the result to misrepresent the mea-
surement.

The normalized auto-correlation ρ at lag l for a discrete-time signal
y[n] is

ρyy(l) =
∑n=∞

n=−∞ y[n] ∗ y[n− l]

2
√

∑n=∞
n=−∞ y2[n]

18

Normalisation scales down the correlation measurement to a value
in [1,−1] ∈ R, where 1 means perfect correlation, and -1 means perfect
anti-correlation.

The weakness in this description of periodicity with respect to
rhythm, is that it will also consider a constant or mostly constant time-
series periodic, and so cannot be used directly. Consider the case where
the CTRNN output is perfectly constant, visually speaking a horizontal
line. Regardless of what the lag l is, y[n] and y[n − l] will be exactly
equal, yielding a perfect correlation score for any given value of l, even
though it is clear that a horizontal line is not oscillating. In order
to use auto-correlation to capture the desired behaviour, there must
simultaneously exist a condition that enforces oscillation.

From calculus and real analysis, there is a concept of oscillation in
which one measures oscillation as the difference between a function
supremum (also known as least upper bound, LUB) and infimum (also
known as greatest lower bound, GLB). The definition of oscillation of
a function on an open set should apply, since a time-series is simply a
function of time:

Let f be a real-valued function of a real variable. The oscillation ω

of f on an interval I is defined as

ω f (I) = sup f (t)− inf f (t)

where t ∈ I.

In the case of this body of work, the interval I is the set of time
steps over which a CTRNN generates output. Within this interval
of time, the supremum and infimum are the upper and lower bounds
of the output respectively. This consideration of oscillation does not
explicitly capture the notion of rhythm either, as the definition does
not require the function to oscillate more than once, yet an event that
only occurs once conflicts with the idea of rhythm. Using this definition
means CTRNNs with behaviour similar to functions such as f (t) = 1

t or
f (t) = at + b will be considered to have a non-zero oscillation, without
exhibiting the rhythmic behaviour indicative of a CPG.

19

Of the three possibilities explored above, capturing periodicity by
way of auto-correlation seems like the best option due to being flexible
enough to discover repeating patterns in potentially noisy time-series.
To be considered rhythmic in a CPG-like fashion, however, the follow-
ing additional conditions will be applied in this study:

Take P to express the logical statement "The signal is periodic."

P⇔ ∃l | ρ(l) ≥ 0.5

f ′(t) = 0⇒ f ′(t + 1) 6= 0

{t | f ′(t) = 0} 6= ∅

The first condition sets a minimum requirement for how highly
the time-series must auto-correlate (ρ) at a given lag l in order to be
considered periodic.

The second condition demands that any point with a zero rate of
change cannot be adjacent to another point with a zero rate of change.
This rule inhibits constant output CTRNNs.

Finally, the last condition says the set of time points t that
correspond to an extrema cannot be empty. This rule inhibits output
time-series that have no defined extrema like linear and exponential
functions.

Any time-series output that simultaneously meets all three condi-
tions will be considered rhythmic in this thesis.

3.3 Fitness function
The evaluation of a genome’s fitness is a process of subjecting the
CTRNN expressed by the genome to the simulation, producing an
output sequence, and applying this output to a fitness function to
quantify its performance. For each genome, the simulation is run
several times, each time increasing the input control variable c linearly

20

by sampling from the set of control variables C = (0, 100] ⊂ R (see table
3.1). However, the simulations are only run if the output sequence
is considered rhythmically oscillating under the conditions given in
section 3.2.

The fitness calculation itself can be divided into two parts; a
frequency analysis part, and a fitness assignment part. The former is
tasked with analysing the output from the genome’s CTRNN to decide
the frequency of the most prominent frequency component, and then
measuring an error between this frequency a desired target frequency
(see subsection 3.3.1). This part is the same regardless of which fitness
function is used. The latter is tasked with calculating a total fitness
measurement as a function of the error from each simulation run
(see subsection 3.3.2). In summary, the evaluation loop for a CTRNN
individual is as follows:

• Simulate with input c to produce output x(n)

• Test for rhythmic oscillation

If x(n) tests positive for rhythmic oscillation:

• Perform frequency analysis to determine dominant frequency

• Measure error between dominant frequency and target frequency

• Sample new value for c and repeat

This loop produces 10 error values (there are 10 values of c) that
must be somehow summarised into one quantity that describes the
genome’s total fitness. As previously noted, this thesis experiments
with two fitness evaluations:

NEE =
i

∏ | fi − fti |
−1 (3.1)

RMSE =

√
∑i | fi − fti |2

N
(3.2)

where i = 1, 2, 3, . . . , 10 and indexes each of the 10 input control
variables c. For example ft1 is the target frequency inferred by the
first value of c1 = 10. Finally N = 10 is the total number of

21

simulation runs, and fi is the measured frequency of the CTRNN’s
output given input ci. In both equations, the error term | fi − fti |
expresses the difference between the measured frequency and the
target frequency, both obtained with the same input control variable.
A clearer explanation of how fi and fti are obtained is given below
in subsection 3.3.1. The important distinction is that Eq. 1 is a
product of errors, while Eq. 2 is a normalised average of errors.
The former models a 10-dimensional multi-objective problem with a
simultaneous solution in each dimension. The latter in contrast the has
only one objective in a 2-dimensional space, which is to minimise the
average error. A second important difference is that optima in NEE are
maxima, while optima in RMSE are minima. This means high values
indicate better fitness in NEE, while the opposite is true for RMSE.

It is notable that Eq. 1 is not defined for | fi − fti | = 0. In the
practical implementation, Eq. 1 is broken into a two-sided piecewise
function to ensure the algorithm makes use of definite values only.
For an explanation of its implementation and further details on both
functions, see subsection 3.3.2 below. Lastly, it should be made clear
that neither of these function explicitly reward rhythmic oscillation.
This behaviour is implicitly motivated by not applying the fitness
functions at all if the output of a CTRNN is not rhythmic, thus making
any reward gain for such CTRNNs impossible.

Simulation No. 1 2 3 4 5 6 7 8 9 10
c 10 20 30 40 50 60 70 80 90 100

Table 3.1: Values of control variable c at each simulation run

3.3.1 Frequency analysis

In order to motivate the NEAT algorithm to discover genomes for
CTRNNs that feature a strong relationship between input value and
output frequency, the evaluation of each CTRNN requires a frequency
analysis of their outputs. It is to be expected that any output time-
series will contain multiple frequency components that define the wave
form, but only the frequency component with the largest contribution
(i.e greatest amplitude) will be given any consideration. Given that

22

the objective is to control frequency, and not specifically the shape of
the wave, this study deems it reasonable to focus on the dominant fre-
quency in the output.

Subjecting a CTRNN to the simulation once, produces one discrete
time-series x(n) of length N = T

∆t , where T is the total simulation time
in seconds, and ∆t is length of each time step in seconds. To inspect the
frequency components that make up x(n), the Fast Fourier Transform
(FFT) [6] algorithm is employed. The FFT algorithm computes the
Discrete Fourier Transform (DFT),

Xk =
N−1

∑
n=0

xne−i2πkn/N

where Xk is the amplitude of discrete frequency component k.
However, it is important to note that most implementations of the FFT,
including the one used in this study, normalises the frequency range
by dividing the frequencies by the sampling frequency Fs = 1

∆t . The
effect is that all frequencies given by the DFT are mapped on to a
unit free range of values [0, 1] ∈ R, thus expressing the frequencies
relative to Fs where 1 represents the highest frequency Fs can capture.
Specifically, the Nyquist-Shannon sampling theorem [11] shows that Fs

must be at least twice the rate of the highest frequency of the sampled
signal in order for the DFT to avoid so-called aliasing. In other words,
1 represents a frequency f = Fs

2 . Details about the sampling frequency
used in the simulation can be found in section 3.4.

A final note on the effect of normalisation, is that the NumPy im-
plementation of the FFT shifts the range to be centered on 0, mak-
ing the actual range of normalised frequencies [−0.5, 0.5]. Because the
frequencies are represented as complex exponentials on the form eix,
any real valued time-series x(n) will have its frequency components
described as a complex conjugate pair [11]. The negative half of the
normalised frequency range represents the complex conjugates of the
positive half. As the DFT is defined for both real and complex signals,
such 0-centering is common in signal processing.

Applying the FFT to a CTRNN output time-series x(n) produces a

23

spectrum of frequencies from which the one with the largest amplitude
may be extracted. Denoting this frequency as f , it is compared to a
target frequency ft by measuring the error given some input control
value c

Ec = | fc − ftc |

To relate ft to any c ∈ C, a simple transformation of c is necessary
as the frequency domain is out of scale with the domain of C. Indeed,
the range of C is (0, 100] and the range of normalised frequencies is
[−0.5, 0.5].

In the attempt to make the fitness space easier to explore,
and to make C easier to relate to the frequency domain, certain
transformations have been applied to the frequency domain as well.
Firstly, by exploiting the fact that all time-series produced will be real
valued, and that it is not the object of the fitness evaluation to restore
the time-series from the frequency components, the frequency range
has been redefined as [0, 0.5] by simply omitting the negative half. As
previously stated, the negative frequencies are the complex conjugate
pairs of the positive ones and therefore impart no added information
about the frequencies themselves beyond the fact they are derived from
a real valued time-series. The conjugate pairs would only be necessary
if the time-series was to be reconstructed.

Secondly, the aforementioned, bisected, normalised frequency range
has been scaled up by a factor of Fs, undoing the normalisation. The
normalisation is only in place to make viewing the spectrum more
convenient when dealing with signals with components in the kHz
end of the scale. Because a CPG is mainly concerned with controlling
robotic limbs, oscillations at even 10Hz is pushing the limits of what
is realisable. In this regard, the normalisation is not necessary, and
possibly detrimental to the search. A brief inspection of performance
with normalised frequency range is covered in section 3.4.

Finally, by scaling down any c by Fs
2 , the input control variable can

be directly compared to any non-normalised frequency f ∈ [0, Fs
2], giving

the relationship,

ftc =
c
Fs
2

=
2c
Fs

Performing this rescaling of the control variable specifically when

24

comparing to a measured frequency, allows domain of C to remain suf-
ficiently large so as to not lose significance when applied as input to a
CTRNN that may evolve an arbitrarily large topology.

3.3.2 Fitness Evaluation

As previously stated, this study features two approaches to fitness eval-
uation; the RMSE and the negative exponential error. This section
discusses their motivation, and in the case of the latter, adds further
precision to its definition.

The RMSE evaluation was opted for based on the immediate
understanding of the problem; to minimise the difference between
CTRNN output frequencies and desired target frequencies. RMSE is
a somewhat obvious choice for measuring and minimising a range of
errors.

RMSE =

√
∑N

i=1 |x1,i − x2,i|2
N

It is typically used in statistics to measure the error of a predictive
model against measured data, which is arguably the very circumstance
for these experiments where the output frequencies are the predictions,
and the targets are the data the CTRNNs must be fitted to. In
more precise terms, it measures the standard deviation across the
10 simulation runs. Thus the proposed objective for the RMSE is to
minimise the standard deviation of predicted frequencies with respect
to target frequencies.

A known weakness of the RMSE measurement is its sensitivity to
outlier data points. However, because the space of predicted frequen-
cies and target frequencies are transformed to identical spaces, as de-
scribed in section 3.3.1, no outliers can exist. All frequencies, predic-
tions and targets, are within the [0Hz, 10Hz] range.

In the case of the negative exponential function, the error Ec for
each applied c is used in an exponential function to calculate a score

25

with respect to the current input ci.

Fci = E−1
ci

= | fci − fti |
−1

where ci is the ith c from the set of input control variables, and fti is
the target frequency related to ci by fti =

2ci
Fs

as seen in section 3.3.1.
To be able to compute Fci , the function is implemented as a piecewise

function to avoid evaluation as | fci − fti | approaches 0.

Fci =

10 Eci < 0.1
1

Eci
Eci ≥ 0.1

As the error becomes smaller, the fitness score Fci approaches
infinity. The function is designed to clamp this value to 10 if the
predicted frequency fci gets within 1

10th of the target frequency fti . If
the error is greater than 1, the score is also less than 1, contributing to
a reduction of the total fitness score. The total fitness F of the genome
is the aggregated product of the scores related to each ci.

NEE =
i

∏ Fci

Expressing the total fitness as a product of Fci creates a strong penalty
for failing to achieve low errors, as opposed to sums where each Fci

would be an isolated contribution to F. This way, every Fci with a
sufficiently large error will scale down the total fitness, as opposed
to simply adding low values. The only way to avoid penalty is for a
CTRNN to predict correct output frequencies for all 10 control inputs.

3.4 Simulation environment
Each genome is tested for their fitness in an environment designed to
stimulate the CTRNN derived from the genome with a range input
control variables c (see table 3.1). The simulation is simple; each
individual is subjected to a constant input c for T seconds to produce a
time-series output. The simulation is repeated 10 times with a linearly
incremented c each time, from c = 10 to c = 100. The simulation is thus

26

designed to highly motivate a linear relationship between input values
and output frequencies.

Every CTRNN is simulated for T = 25.6s seconds with time steps
∆t = 0.05. This produces a time-series with N = T

∆t = 512 number of
time steps. The motivation for this choice is purely practical; the FFT
algorithm has minimal computational overhead for sequences of length
N = 2n ∀n ∈N [11].

Furthermore, the choice of ∆t and T have an important impact on
the resolution and, by extension, both the results and fitness space post
FFT. The time step ∆t is effectively the sampling interval, giving us a
sampling frequency Fs = 1

∆t = 1
0.05 = 20Hz. By the Nyquist limit, the

FFT cannot resolve any frequencies higher than F = Fs
2 . In other words,

the configuration of the simulation environment limits the obtainable
frequencies to 10 Hz. For one, this means that aliasing may occur
for CTRNNs that produce outputs with higher frequencies than 20Hz,
which is presumed to be possible due to the continuous nature of the
network. With respect to evolution, the consequence is that rewards
may be gained from CTRNNs that output higher frequencies than
the control variable actually demands, but that have alias frequencies
sufficiently close to the target frequency. Potential aliasing aside,
considering the fact the ultimate goal of the CPG is to provide motion
control to the limbs of a robot, a maximum output frequency of 10Hz
seems otherwise reasonable. Possibly more consequential than aliasing
is how the sampling frequency defines the frequency domain. As the
sampling frequency sets a limit to the frequencies that can be obtained
from any sequence, the range in the frequency domain is always [0, Fs

2].
If the experiments had been performed with a higher value for Fs, the
frequency domain range would obviously be wider. Keeping in mind
that the frequency domain is a dimension of the fitness space, the
choice of Fs also impacts the shape of this space.

27

Figure 3.2: Possible fitness scores from NEE over all frequencies for
three values of c. Dashed lines indicate the region of interest.

Figure 3.2 shows how this may create unexpected problems, here vi-
sualized with the exponential fitness function. Here Fs = 100Hz, mak-
ing the frequency domain range [0, 50Hz]. This is a problem because
the experiment only targets frequencies in the [0Hz, 10Hz] range, cre-
ating a large "no mans land" of fitness scores 0 < Fci < 1. When a
population of genomes is generated, there are random variations to the
genomes. The figure makes an intuitive argument that the majority
of the genomes will land somewhere in the "no mans land", with no
incentive to explore in any direction. Even if the frequency domain
range was normalised by the sampling frequency, as is common, the
"promised land" would only be narrowed down in proportion. Some-
what counter to intuition, this indicates that a high resolution time
step in the simulation has an adverse effect on the results. It is this
observation that motivates the choice of ∆t = 0.05, in turn giving a
Fs = 20Hz.

For the purpose of testing the winner CTRNNs at the end of
evolution, the simulation is reconfigured to apply different input
control variables than the ones used during simulation. Sampling the
control variable space C = (0, 100] ⊂ R with intervals of 25 yields the
set of control variables Csampled = {25, 50, 75, 100}. Given the continuous

28

definition of the CTRNN, the simulation should result in continuous
change in the output as the control variable changes through Csampled.
The motivation for this choice is to see that the CTRNNs do not entrain
to the specific values of c used during evolution, but are able to infer
correct frequency outputs when given novel control inputs.

3.5 Experiment paradigms and de-
tails

The experiments performed have the purpose of attempting to discover
the conditions under which CPG-like CTRNNs appear during the evo-
lutionary process of the NEAT algorithm. More specifically, the scope
is that the CTRNNs discovered should exhibit the ability to modulate
the output frequency in proportion to a control variable c drawn from
the set of control variables C = (0, 100] ⊂ R. To this end, 16 different
experimental paradigm have been devised for this thesis, each with the
same goal to see what may beneficially influence the algorithm’s ability
to create CTRNNs with the aforementioned features. The motivation
for such a set up is that in comparing the results gained under each
paradigm, it should be possible to say something about what condi-
tions make neuroevolved CTRNNs possible, and/or what improves the
process of evolving them.

Each experimental paradigm consists of ten runs of the evolution-
ary algorithm, each running for 500 generations. Each of the ten runs
returns one all time best genome; a winner genome. It is the fitness of
these winner genomes that will be used as the quantified variable for
comparing paradigms.

A paradigm is defined by:

• a choice of fitness function

• a choice of value for the time constant τ

• a choice of default genome configuration which in itself contains
several variables

29

The 16 paradigms are split into RMSE based and NEE based
paradigms. For each fitness function, eight configurations of the de-
fault genome are applied to the evolutionary runs (table 3.2). Repeat-
ing the genome configurations for both fitness functions allows for the
comparison of the functions and their respective fitness spaces. If the
genome configurations generally shows a lower ability to obtain good
fitness scores under one fitness function, but manages significantly bet-
ter scores in the other, this implies something about the suitability of
the fitness functions themselves.

A highly fit individual, is a genome that successfully and propor-
tionately increases the frequency of the output time-series, and whose
output is always rhythmic, for all input values c ∈ C. The details for
the fitness evaluation can be found in section 3.3 of this chapter.

30

(a) Typical winner CTRNN output
with baseline configuration.

(b) Oscillating winner is less common,
but possible with baseline configura-
tion.

(c) The first of two categories of out-
put seen with baseline genome con-
figuration and NEE fitness function.
Essentially constant with a transient
starting phase.

(d) Constant output is one of two cat-
egories of output seen with baseline
genome configuration and NEE fit-
ness fuction.

Figure 3.3: Samples of four winner CTRNNs; two under the RMSE
fitness paradigm and two under NEE. Dashed lines separate control
variable regions; c = 25, 50, 75, 100.

The default CTRNN genome essentially defines a evolutionary
starting point, and the configuration specifies parameters for how
evolution may change it. The configuration space for the neat-python
implementation is quite large (See table 3.3), and so a selection of
variables has been made to focus the scope of the study. The variables
investigated are as follows:

• Activation function

• Add connection probability

31

• Remove connection probability

• Add node probability

• Remove node probability

All these are accessible in the configuration file used by the neat-
python implementation. A notable absence from the file is anything re-
lated to the time constant. This is simply because there exists no gene
in the NEAT genotype for this variable, and means that in this im-
plementation, this variable is not subjected to transformation through
evolution, and remains both constant and equal for all neurons in all
genomes throughout a run. The time constant is instead changed be-
tween each evolutionary run. Table 3.3 shows the different default
genome configurations used in each paradigm.

To form a baseline for comparing experimental results, the pre-
existing default configuration of a CTRNN genome is used. This config-
uration was created by the neat-python developers [14] as an example
of a configuration that could successfully evolve a CTRNN to solve a
robotics benchmark pole balancing problem in 2D space. Figure 3.3
shows samples of RMSE and NEE winners with the baseline configu-
ration. Further analysis and review of these and many other results
can be found in chapter 4. The measured performance of this config-
uration in the evolutionary framework proposed in this thesis will be
the foundation from which it measures improvements with regards to
creating the desired CTRNN.

3.5.1 Configuration file and Default Configurations

The configuration file allows the specification of certain constraints and
initial values of the genomes as well as the evolutionary process itself.
The configuration file represented by table 3.3 is the configuration for
the default genome used to solve the pole balancing problem and that
serves as the baseline configuration. As noted, only a subset of these
will be investigated for their effect on generating a CPG-like CTRNN.

32

BASELINE CONFIGURATION Z DEFAULT CONFIGURATION D
Activation function Sigmoid Activation function tanh

Add conn. prob. 0.2 Add conn. prob 0.2
Remove conn. prob 0.2 Remove conn. prob. 0.2

Add node prob. 0.2 Add node prob. 0.2
Remove node prob. 0.2 Remove node prob. 0.2

Time constant τ 0.1 Time constant τ 0.25
DEFAULT CONFIGURATION A DEFAULT CONFIGURATION E
Activation function Sigmoid Activation function tanh

Add conn. prob. 0.2 Add conn. prob. 0.2
Remove conn. prob 0.2 Remove conn. prob. 0.2

Add node prob. 0.2 Add node prob. 0.2
Remove node prob. 0.2 Remove node prob. 0.2

Time constant τ 0.25 Time constant τ 0.5
DEFAULT CONFIGURATION B DEFAULT CONFIGURATION F
Activation function Sigmoid Activation function tanh

Add conn. prob. 0.2 Add conn. prob. 0.8
Remove conn. prob 0.2 Remove conn. prob. 0.6

Add node prob. 0.2 Add node prob. 0.8
Remove node prob. 0.2 Remove node prob. 0.6

Time constant τ 0.5 Time constant τ 0.1
DEFAULT CONFIGURATION C DEFAULT CONFIGURATION G
Activation function tanh Activation function tanh

Add conn. prob. 0.2 Add conn. prob. 0.8
Remove conn. prob 0.2 Remove conn. prob. 0.6

Add node prob. 0.2 Add node prob. 0.8
Remove node prob. 0.2 Remove node prob. 0.6

Time constant τ 0.1 Time constant τ 0.5

Table 3.2: Tables showing the default genome configuration for each
experiment. Rows highlighted in gray indicate which variables have
been altered with respect to the baseline Z.

33

In addition to the configurable elements in the genome itself, there
are sections in the configuration file not present in the table, that
deal with controlling the evolutionary process, speciation, stagnation
of species and reproduction. The only of those settings adjusted in
these experiments are from the evolutionary control section, where
a statement has been set to avoid halting the evolution when some
fitness threshold has been met. This ensures that all 500 generations
are run, regardless of how high the fitness in previous generations have
reached.

34

Input nodes 1
Hidden nodes 1
Output nodes 1

Initial connection Partial direct 0.5
Feed forward False

Compatibility Disjoint coefficient 0.1
Compatibility Weight coefficient 0.6

Add connection probability 0.2
Remove connection probability 0.2

Add node probability 0.2
Remove node probability 0.2

Activation default Sigmoid
Activation options Sigmoid

Activation mutate rate 0.0
Aggregation default Sum
Aggregation options Sum

Aggregation mutate rate 0.0
Bias initial mean 0.0

Bias initial standard deviation 1.0
Bias replace rate 0.1
Bias mutate rate 0.7

Bias mutate power 0.5
Bias maximum value 30.0
Bias minimum value -30.0

Response initial mean 1.0
Response initial standard deviation 0.0

Response replace rate 0.0
Response mutate rate 0.0

Response mutate power 0.0
Response maximum value 30.0
Response minimum value -30
Weight maximum value 30
Weight minimum value -30

Weight initial mean 0.0
Weight initial standard deviation 1.0

Weight mutate rate 0.8
Weight replace rate 0.1

Weight mutate power 0.5
Enabled default True

Enabled mutate rate 0.01

Table 3.3: Default genome configuration. An in depth explanation of
the configuration file can be found here [14]

35

The default genome configurations for each experiment, as listed in
table 3.2, otherwise have the same values as seen in table 3.3. Further
explanation and motivation for the subset of values that are changed
can be found in the subsections below.

3.5.2 Time Constant

As a reminder, the time constant factors into the differential equation
that models the CTRNN neuron.

τi
dyi

dt
= −yi +

N

∑
j=1

Wijσ(yj + θj) + I(t)

From the differential equation, τ should be interpreted as a scaling
factor to the differential of yi. In essence it affects the neuron’s sensitiv-
ity to change; a high value of τ implies a lowered sensitivity by scaling
down the rate of change and vice versa. Special consideration must be
taken with regards to the relationship between the value of τ and the
size of the time steps with which we advance time during stimulation
if the network. The time step ∆t is essentially the sampling rate with
which the simulation samples values from a given CTRNN. Should τ

be too small, thereby scaling up the rate of change, the network may
produce oscillations that are too fast to be captured by the sampling
rate, adding a risk of aliasing as explained in section 3.3.1. Oversen-
sitivity may also produce CTRNNs with noisy, unstable outputs, that
struggle with yielding low frequency output. On the other hand, too
large a τ will make the neurons sluggish so that high frequency out-
puts become unobtainable. This relationship is non-trivial however,
and so analytically expressing the optimal value is problematic. How-
ever the assumption is that τ should be greater than ∆t. For a closer
look at the simulation and sampling rate, refer to section 3.4.

Because of the clear effect τ has on the output rate of change, it
by extension should have an impact on frequency, with lower values of
τ implying a tendency toward high frequency output, and inversely
for higher values of τ. This makes it an interesting candidate for
experimentation.

36

(a) The sigmoid function spans from 0
to 1.

(b) The tanh function spans from −1
to 1.

Figure 3.4: Plots of the two activation functions.

With respect to the chosen time step ∆t = 0.05, the experiments will
test values for τ = 0.1, τ = 0.25 and τ = 0.5 in the hopes of empirically
deciding a suitable value.

3.5.3 Activation Function

Though the field of artificial neural networks feature an abundance
of different activation functions that are applicable, only two will
be investigated in these experiments; the sigmoid function and the
hyperbolic tangent (tanh) function function. The two are defined
respectively as:

σ(x) =
1

1 + e−x

and

tanh(x) =
e2x − 1
e2x + 1

Though in terms of shape they appear similar, the tanh function
maps argument values to a space between [−1, 1], while the sigmoid
maps to the space [0, 1]. Intuitively, there is an expectation for the tanh
to outperform the sigmoid in this case, as the lack of negative values
may bias the neurons toward positive rates of change.

The sigmoid activation function has roots in the early days of
machine learning. It models an early understanding of the neuron as
being inactive, until its potential crosses a threshold and it fires. This
is reflected in the function’s co-domain of [0, 1]. However, biological
CPGs are thought to be clusters of neurons consisting of inhibitory

37

and excitatory networks that in combination produce the characteristic
rhythmic pattern [8]. Given this duality of excitation and inhibition,
this study posits CTRNN neurons with a tanh activation function may
emulate the neuron clusters of biological CPGs more accurately. The
reasoning being that the co-domain of tanh is [−1, 1], thus modelling
the inhibitory neurons with values < 0.

From table 3.3 it is notable that the genome is configurable to allow
for mutation of the activation function, meaning that the evolutionary
process itself discovers which activation function provides the higher
fitness scores, provided that a list of activation options is supplied and
a mutation rate µ > 0 is set. In order to compare the effects these
activation function have, however, the experiments are designed to be
performed with only one option available at a time.

3.5.4 Network Topology mutation probability

A set of four variables influence how quickly the topology changes
throughout an evolutionary run.

1. Add connection probability

2. Remove connection probability

3. Add node probability

4. Remove node probability

The experiments in which these probabilities are altered (F and G)
are designed to see if large networks are typical of high performing
genomes. To achieve this, the genome configuration for these
experiments sets the probability of adding structure high (0.8) and the
probability of removing structure slightly below is (0.6). In other words,
the mutation operation will add a connection or a node slightly more
often than it will remove them. This obviously motivates the genomes
to grow large in size.

For clarity, the genotype used by the NEAT algorithm has genes
that identify both individual neurons and the connecting weights
between them. Since the ability to evolve both weights and neuron
topology is a defining feature of the NEAT algorithm, this study makes

38

sure to take advantage of that. As the emergence of Deep Learning
has shown us that topology can have a great significance for network
performance, the motivation for experimenting with these variables
should be apparent. For a better understanding of the genotype, refer
to chapter 2

39

Chapter 4

Experiments and Results

4.1 Chapter Introduction
The following chapter presents the experimental results produced.
Initially, it will show the effects of the different genome configurations
presented in chapter 3. The chapter contains both a quantitative
analysis of the results by way of a Mann-Whitney U test, and a
qualitative review of the wave forms produced.

As detailed in chapter 3, section 3.5, there are a total of 16 experi-
mental paradigms in this study. It features 8 different default genome
configurations, A, B, C, D, E, F, G and a baseline configuration Z. Each
of these are tested with the RMSE and the NEE fitness functions,
thus composing the 16 paradigms. The experiment performed under
each paradigm is repeated 10 times to obtain a distribution of win-
ner genomes fitness scores from the evolutionary runs, the definition of
winner being the best fit genome throughout the 500 generations. The
distribution of winners should indicate something about how likely it is
to discover highly fit genomes, and how susceptible (if at all) the fitness
space is to genome configuration variations.

To quantify the impact the genome configurations have on the
results, the Mann-Whitney U test will be employed to compare the
distributions obtained from the genome configurations A - G, to the
distribution obtained with the baseline genome configuration Z. This
comparison will not be performed across fitness functions, as the fitness
scores gained through each will not be reasonable to compare; RMSE

40

optima are minima, while NEE optima are maxima. Additionally, since
the fitness functions do not explicitly reward for rhythmic oscillation, a
qualitative review of the output time-series is also included. Table 4.1
shows how the study categorises winner outputs in terms of qualitative
features. In the sections below, only visualisations of the qualitatively
best and worst ranked samples from the corresponding distribution
will be shown and reviewed. The remaining graphs will be left in the
appendix for the reader to review at their own leisure.

Qualitative
rank

Rank explanation

Rank 1 Output shows rhythmic os-
cillation and a response to
change in input

Rank 2 Output shows response to
change in input

Rank 3 Output shows rhythmic oscil-
lation

Rank 4 Output is non-constant, but
not oscillating

Rank 5 Output is constant.

Table 4.1: Table of qualitative categories and their rankings for the
purpose of this study’s qualitative review of results. Oscillation in the
context of the study is any curve with at least one clear peak.

The reader is reminded that the main objects of study are the fitness
functions. Even though it may appear that much of the focus is directed
at the different default genome configurations, these variations are
primarily meant to implicitly elucidate the fitness functions’ suitability
to solve the problem.

A note on winner genome visualisations

The neat-python [14] implementation used comes equipped with visu-
alisation scripts that draw directed graph representations of the win-
ner CTRNN networks. A brief explanation of the graph components is
necessary.

41

Figure 4.1 shows an example of how a winner genome of interest is
presented. Subfigure (a) features dashed lines that indicate at which
point during the simulation the input control value c was changed,
implicitly defining four regions in which this value is constant. This
highlights whether or not the input has the desired effect on the
frequency of the output. It is emphasised that this output graph is
obtained from the final test simulation of the winner genome after
evolution. In these post evolution tests, there are only four samples
of c instead of ten as during the evolution. This is motivated in chapter
3.4.

Subfigure (b) features the nodes of the CTRNN network and the
connecting weights. Each connection is represented as an arrow with
certain variations:

• Green, weight w > 0

• Red, weight w ≤ 0

• Full, enabled

• Dotted, disabled

(a) Dashed lines separate regions of
control input value. First quarter has
c = 25, second c = 50, third c = 75, and
fourth c = 100.

x

426

dx control

(b) Directed graph shows nodes and
connections. Gray boxes indicate
input nodes, light blue circle indi-
cates output node, and white circles
indicate hidden nodes.

Figure 4.1: Rank 4 winner example of output and network graphs.

42

The enabled/disabled identifiers is in reference to the gene that
represents the connection in question. The NEAT algorithm may
switch off genes as part of mutation, with a set chance of it being
switched back on in a later generation. A disabled connection does not
transfer any values, regardless of what the weight of said connection
may be.

The gray coloured boxes indicate the input nodes, meaning the
symbol x represents what this thesis has consistently called c. An
interesting feature is the differential of x, dx has its own separate
connection, showing that the CTRNN has the ability to use the input
and its differential disjointly.

The light blue circle labeled "control" is the output node, while
white nodes are hidden nodes. The number featured on the hidden
nodes is a reference to an ID number each gene carries. This is a
feature of the NEAT algorithm [18] that allows the recording of genetic
innovation by giving each new gene a uniquely identifying integer.
This is primarily used to measure genetic distance for the purpose of
speciation. Consequently, a high number should be interpreted by the
reader as an indication of genetic novelty.

4.2 Results from RMSE based paradigms
Figure 4.2 shows the distribution of all-time best fitness scores under
the RMSE based paradigms. In the case of the RMSE experiments, the
evolutionary goal is to minimise the RMSE error, meaning that lower
RMSE scores imply a better fitness.

From this it is clear that the baseline configuration Z has the
highest variance of winner fitness, ranging from a best case of RMSE =

5.9 to a global worst RMSE = 20.0, the latter being the worst possible
error in the experiment.

43

Figure 4.2: Boxplot of the distribution of all-time highest fitness from
each genome default configuration. Low values indicate better fitness.
Orange lines denote medians and circles denote outlier samples

Experiments with genome configurations B, E, G are on the opposite
end of the scale, where all the ten winner genomes have the same
fitness, thus making the median represent the entire distribution.
The plot reports outliers in E and G, but even these are very close
to the median value. Table 4.2 gives a more quantified appraisal of
the distributions. In terms minimal error across all the experiments,
we find two configurations that outperform the others. Both genome
configuration C and F are able to find an optimum of 3.16 in the
RMSE fitness landscape. A closer look at what might explain this is
provided in the sections below dedicated specifically to each genome
configuration.

44

Config Median Min Max
Z 9.4 5.92 20.0
A 18.09 18.09 8.45 (outlier)
B 5.92 5.92 5.92
C 4.67 3.16 7.09
D 5.92 4.18 8.45
E 5.91 5.56 (outlier) 5.92 (outlier)
F 4.06 3.16 5.92
G 5.91 5.91 5.92 (outlier)

Table 4.2: Companion table to fig. 4.2 showing the precise value for
the statics shown in the figure. Configurations that contain the global
best fitness RMSE = 3.16 are highlighted in gray.

Config U p
Z - A 15.5 0.0089
Z - B 10.0 0.0007
Z - C 5.0 0.0007
Z - D 14.5 0.0071
Z - E 2.0 0.0002
Z - F 2.0 0.0003
Z - G 1.0 0.0001

Table 4.3: Table of findings with the Mann-Whitney U test when com-
paring the baseline Z fitness distribution to the fitness distributions of
the other genome configurations. Distributions from configurations C
and F are highlighted for cross reference with table 4.2.

Table 4.3 gives insight into whether the differences in the distri-
butions fitness could be considered meaningful. The Mann-Whitney U
test measures the probability that two distributions is sampled from
the same population. The assumption of this thesis as that if a distri-
bution of fitness scores obtained under a given configuration X can be
show to be sampled from a different population than the baseline Z,
then the variables in X that differ from Z must explain the difference
in fitness distribution.

The Mann-Whitney U test used here is two-sided, so it provides two
test statistics U1 and U2. If the lowest of the two is below the test’s
critical value, the null hypothesis (the populations are equal) can be
rejected. As it is a type of rank sum test, the critical value is defined by

45

the number of sampled in the distributions. A table showing these crit-
ical values with respect to sample size can be found in Appendix II. The
critical value for a 99% confidence interval is 16. Thus table 4.3 shows
that all genome configuration variations have a statistically significant
impact (all p-values p < 0.01) on the fitness distribution, changing it to
such a degree that is almost certain that the fitness scores are not from
the same population.

Having shown a high likelihood that the changes the genome
configuration have a meaningful effect, the inquiry can move on to look
at why they are different, and to some extent why some configuration
variables have a more positive impact than other.

Config No.
Rank 1

No.
Rank 2

No.
Rank 3

No.
Rank 4

No.
Rank 5

Z 0 0 0 0 0
A 0 0 0 6 4
B 0 0 0 6 4
C 0 0 1 9 0
D 0 0 1 9 0
E 0 0 4 6 0
F 0 1 3 6 0
G 0 0 2 8 0

Table 4.4: Table of the number of winner genomes in each rank
within each genome configuration distribution. It is notable that
configurations Z, A, B have no winners with rank higher than 4, while
the rest have no winners of rank 5. Configurations C - G all employ the
tanh activation function.

4.2.1 Default genome configuration A

DEFAULT GENOME CONFIGURATION A
Activation Sigmoid

Add conn. prob. 0.2
Remove conn. prob. 0.2

Add node prob. 0.2
Remove node prob. 0.2

Time constant τ 0.25

46

Genome configuration A shows a strong tendency for very high errors
as seen in figure 4.2. The only variable changed from the baseline
genome configuration is the time constant τ. The observation that this
configuration performs the worst, implies both that τ has an import im-
pact on the what fitness scores are possible to obtain. However, genome
configuration A is not the only to have a τ = 0.25. Genome configura-
tion D has the same τ, but the activation function is changed to tanh.
The improvement is quite drastic (the median changes from 18.09 in A
to 5.92 in D), implying the activation function may be even more im-
portant.

The configuration does not satisfy in a qualitative perspective either
(figures 4.3, 4.4), and is quite aligned with the quantitative evaluation.
The best ranked does show an effect on the output amplitude rather
than frequency, and the majority of the samples are of the lowest rank
(4.5. It can be tempting to explain the better sample’s success with the
fact that the input node is directly connected to the output node, but
this is featured in the network graphs of the worse sample as well.

(a) Rank 2 output.

x

control dx

2419

2252

(b) CTRNN topology

Figure 4.3: CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 5

47

(a) Rank 5 output.

x

control

dx

7168

(b) CTRNN topology

Figure 4.4: CTRNN Output and network topology of the qualitatively
worst winner. Evolved in run number 2

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
0 1 1 1 7

Table 4.5: Table of the number of winner genomes at each qualitative
rank in the distribution of configuration A.

4.2.2 Default genome configuration B

DEFAULT GENOME CONFIGURATION B
Activation Sigmoid

Add conn. prob. 0.2
Remove conn. prob. 0.2

Add node prob. 0.2
Remove node prob. 0.2

Time constant τ 0.5

Genome configuration B show a potent tendency towards the RMSE
fitness score of 5.92 as none of the ten winners have been scored differ-

48

ently, essential showing 0 variance. This implies the genomes of this
type gravitate very heavily to this local optimum. Curiously, where in-
creasing τ from 0.1 in Z to 0.25 in A seemed to reduce the performance
significantly, further increasing τ to 0.5 in B has improved the fitness
distribution to surpass both Z and A.

In a qualitative view, however, configuration B has a much less
impressive advantage over Z and A. Like A, the majority of the samples
are categorised as rank 5 (4.6), though it also has the remaining
samples exclusively in rank 2. In the best cases, the input’s apparent
effect seems to also include the amplitude of the output, though only
for input values c < 50. Figures 4.5 and 4.6 show samples of best
and worst cases respectively. Figure 4.6 b) shows an unusually large
network for this configuration. Considering both it’s qualitative rank
and the quantitative measurements, this might suggest that having
larger networks has a low impact on the fitness.

(a) Rank 2 output.

x

control

dx

9364

9463

(b) CTRNN topology

Figure 4.5: CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 9

49

(a) Rank 5 output.

x

control

dx

9356

8639

8942

9296

8445

(b) CTRNN topology

Figure 4.6: CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 7

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
0 3 0 0 7

Table 4.6: Table of the number of winner genomes at each qualitative
rank in the distribution of configuration B.

4.2.3 Default genome configuration C

DEFAULT GENOME CONFIGURATION C
Activation tanh

Add conn. prob. 0.2
Remove conn. prob. 0.2

Add node prob. 0.2
Remove node prob. 0.2

Time constant τ 0.1

50

Genome configuration C is the first to sport the tanh activation func-
tion. The analysis of the distributions (4.2, 4.2) indicate that this con-
figuration is one of two top performing configurations. Qualitatively it
shows no samples of constant output, but also none that are affected
by any input value; both an improvement and a worsening (table 4.7).

In observing the network topology graphs 4.7, 4.8, a distinct trait
can be seen that is typical for all the networks in this distribution.
There is a lack of any connection from the input node x to any other
node in the network. Other networks may show the connection as
disabled (with a dotted line in the arrow), but they all exhibit an input
node that for either reason cannot transmit values to the rest of the
network. The reader may find visualisations of this in the appendix.

(a) Rank 3 output.

x dx control

1581

1139 825

1368

(b) CTRNN topology

Figure 4.7: CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 6

51

(a) Rank 4 output.

x dx

control1784

1848

1884

(b) CTRNN topology

Figure 4.8: CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 1

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
0 0 9 1 0

Table 4.7: Table of the number of winner genomes at each qualitative
rank in the distribution of configuration C.

4.2.4 Default genome configuration D

DEFAULT GENOME CONFIGURATION D
Activation tanh

Add conn. prob. 0.2
Remove conn. prob. 0.2

Add node prob. 0.2
Remove node prob. 0.2

Time constant τ 0.25

Like in configuration A, the analysis of the distribution shows a loss in
performance for configuration D. This configuration also changes the
value of τ to 0.25, but the loss in performance relative to the configura-
tions that also use the tanh activation function is is not as pronounced
as the disparity between Z and A, or A and B. This reinforces the ear-
lier suggestion that the activation function is more important to the

52

fitness scores achieved than the value of τ.

Figure 4.9 shows another interesting effect the value of τ may
have. The frequencies generated are generally lower. This is in line
with the a priori observation that τ controls neuron responsiveness by
scaling the rate of change. A higher value for τ should decrease the
responsiveness, as we may confirm here with the lowered frequency.

(a) Rank 3 output.

x

control

4

dx

238

221

(b) CTRNN topology

Figure 4.9: CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 1

53

(a) Rank 3 output.

x

control

4489 4474 dx

4217

4446

(b) CTRNN topology

Figure 4.10: CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 2

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
0 0 10 0 0

Table 4.8: Table of the number of winner genomes at each qualitative
rank in the distribution of configuration D.

4.2.5 Default genome configuration E

DEFAULT GENOME CONFIGURATION E
Activation tanh

Add conn. prob. 0.2
Remove conn. prob. 0.2

Add node prob. 0.2
Remove node prob. 0.2

Time constant τ 0.5

Configuration E is quantitatively outperformed by C and F, but has an
interesting and quality that the two rivals do not. Though only one

54

sample in the distribution oscillates rhythmically, this configuration
consistently produces CTRNNs that clearly modulate the output when
the input value changes. Like with earlier examples of this behaviour,
it affects amplitude and not frequency, but it is interesting and surpris-
ing that specifically adjusting τ to 0.5 has a higher chance to ensure a
relationship between input and output. The why behind this behaviour
has not been an insight gained in the study, but it is an interesting phe-
nomenon.

The type of network topology seen in figure 4.11 b) features
somewhat regularly in this distribution. They are small and usually
with a direct connection between input node and output node, but with
very few other connections. The network in figure ??, while also quite
small, has no connection from the input node to speak of, but has
otherwise more connectivity.

(a) Rank 2 output.

x

control

dx

6086

(b) CTRNN topology

Figure 4.11: CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 8

55

(a) Rank 3 output.

x dx

control

524

(b) CTRNN topology

Figure 4.12: CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 3

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
0 9 1 0 0

Table 4.9: Table of the number of winner genomes at each qualitative
rank in the distribution of configuration E.

4.2.6 Default genome configuration F

DEFAULT GENOME CONFIGURATION F
Activation tanh

Add conn. prob. 0.8
Remove conn. prob. 0.6

Add node prob. 0.8
Remove node prob. 0.6

Time constant τ 0.1

The configuration F has augmented rates of node and connection cre-
ation, resulting in a tendency to create larger networks quickly. Look-
ing at the distribution performances in figure 4.2 however, it seems to

56

produce genomes that perform similarly to configuration C. While con-
figuration F is designed to grow large networks, it otherwise shares
configuration values with C. This indicates that larger networks does
not create an added advantage to solving the problem. A further simi-
larity to C is they both reached the same top score of 3.16. Figure 4.13
b) shows a large network, but a higher interconnectivity appearing be-
tween the output node and its two neighbour nodes. Stripping away all
the other nodes creates a topology more reminiscent of topologies found
in C. This further indicates that the number of connections is more im-
portant to explain better fitness than than the number of nodes.

Qualitatively it shares the same characteristics as C and D, where
the winners are focused around rank 3 type solutions. All winners are
self sustaining oscillator solutions with no connection from the input
node.

(a) Rank 3 output.

x dx control

11106

12621

12811

12971

14350

14575

1396814639

13909

(b) CTRNN topology

Figure 4.13: CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 2

57

(a) Rank 3 output.

x dx control

23713

(b) CTRNN topology

Figure 4.14: CTRNN output and network topology of the qualitatively
worst winner. Evolved in run number 1

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
0 0 10 0 0

Table 4.10: Table of the number of winner genomes at each qualitative
rank in the distribution of configuration F.

4.2.7 Default genome configuration G

DEFAULT GENOME CONFIGURATION G
Activation tanh

Add conn. prob. 0.8
Remove conn. prob. 0.6

Add node prob. 0.8
Remove node prob. 0.6

Time constant τ 0.5

Like F, configuration G is made to have greater tendency towards large
networks. Also like F, it has shows clear signs of being more similar,
both qualitatively and quantitatively speaking, to configurations that
share its value of τ and activation function; namely configuration E.
The quantitative and qualitative similarity to E, a configuration that
does not feature increased topology growth rate, indicates that the size

58

of the network does not play an important role in explaining the fitness
scores obtained. This is much in the same way that the similarities
between F and C implies the same for F.

Though topologically vastly different in size, much like the net-
works in E, the winner networks in F seem to often feature a direct
connection betwee input and output nodes.

(a) Rank 3 output.

x

control 17134

dx

21018

17609

20856

18439

18696

16182

182631943120113

21075

19353

15518

12390 21166

16693

1878115975

15416

20412

19010

20189

20803

17354 19285

18390

19669 19817

16629

20725

20347 14462

(b) CTRNN topology

Figure 4.15: CTRNN output and network topology of the qualitatively
best winner. Evolved in run number 6

A figure of the qualitatively worst winner has been omitted since
they all have the same rank.

59

Figure 4.16: Distributions of winner genome fitness scores from each
NEE based experimental paradigm

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
0 10 0 0 0

Table 4.11: Table of the number of winner genomes at each qualitative
rank in the distribution of configuration G.

4.3 Results from NEE based paradigms
As in section 4.2, the first step of the analysis is to consider the
fitness score distribution of the ten winner genomes resulting from
each default genome configuration. Though the boxplot in figure 4.16
is distinctly lacking any interesting variation, it is included to show
why any further quantitative analysis is meaningless. All ten runs of
all ten configurations failed to discover a single genome that received a
fitness score not equal to 0. The orange lines identify the median value
of the distribution but since all ten NEE fitness scores are all equal,
the median defines the entire distribution.

As analysis of the genome configurations and their effect on the
fitness is impossible, this section focuses its attention on the fitness
function with suggestions as to what brought about these results.
Figures showcasing the CTRNN outputs are left in the appendix.

60

Chapter 5

Conclusions

5.1 Chapter Introduction
This chapter concludes the study with the following findings:

• The RMSE fitness function is unsuited for the problem

• The NEE fitness function is not suitable in its current form, but
may possibly be better suited with a few proposed changes.

• tanh activation function outperforms the sigmoid for creating
oscillating responses in CTRNNs

• The selection of time constant τ has a significant impact on
obtainable fitness

• Large network size is insignificant, but a high amount of
connections between nodes may have a positive effect

The evidence and/or motivation for these conclusions will be
discussed in the immediately following section. The end of the chapter
will be dedicated to a discussion of how resolve the issues discovered
through future work.

5.2 Discussion
First point of order is to discuss the results relating to the two fitness
functions, as they were the main focus. The reader is reminded of the

61

research questions posed in the introduction:

1. Is there a meaningful difference in likelihood to produce high
fitness CTRNN solutions from one fitness function to the other?

2. Is there an identifiable feature that fitness functions should
possess in order to motivate selection of CPG-like CTRNNs?

Neither of the proposed fitness functions show great weaknesses,
and ultimately do not seem well suited to produce CPG-like CTRNNs.
However, with regards to the first question, one could say the answer
is yes.

In looking solely at the distribution of fitness scores, it is clearly
a trivial answer when the NEE fitness function never rewarded a
single genome with a fitness different from 0. At the same time,
the findings from the NEE experiments were inconclusive, so the
comparison between them is not truly fair. Ultimately, the conclusion
must be that the thesis fails to find a satisfactory answer to question 1.

The second is answered with something of a reversal. Rather than
finding a feature that should be present, the thesis finds features the
functions should not have in order to be successful. This is properly
argued in the next two subsections.

Second to considering the fitness functions, the thesis dedicates a
portion to discuss the genome configuration variables used to investi-
gate the fitness functions, though the insight into these primarily say
something about evolving CTRNNs, rather than CPGs. Though all the
NEE based experiments failed, the results from the RMSE based ex-
periments provides interesting insight into what genome configuration
promoted aspects of CPG-like behaviour. Firstly, every winner fitness
distribution from the genome configurations showed statistically sig-
nificant indication that they were not distributions from the same pop-
ulation as the baseline configuration (see table 4.3). This means that
the variable changes that make up the configurations are very likely
to be impactful. From the results presented in chapter 4, it can be
concluded that the choice of value for time constant τ and activation
function had significant impact on the achieved fitness distributions
and qualitative rank, while network growth rate and size did not.

62

The end of the discussion covers each genome configuration
variables and the findings related to these.

5.2.1 RMSE fitness function and fitness space explo-
ration

Investigating the results from the RMSE based experiments offers
some clues toward understanding the RMSE’s suitability for this
problem. Of particualar note is the tendency of the CTRNNs that
output rhythmic oscillation to entrain to a single frequency, and not
have any sort of relationship between the input control variable c
and the output, be it frequency or otherwise. From a high level
perspective it seems strange; the fitness function incorporates a
range of 10 different target frequencies to hit, yet across all RMSE
based experiments the oscillating solutions always maintain one single
frequency. Not one shows any tendency towards frequency modulation
between for example just two frequencies. This single frequency
entrainment is ultimately a pervasive pattern, and so it warrants
scrutiny. Across all the eight RMSE based paradigms, there are ten
winner CTRNNs, for a total of 80 winners. Of these 80, 28 have been
qualitatively categorized (Rank 3) as rhythmically oscillating, all with
the aforementioned single frequency entrainment.

Knowing this, it should be enlightening to attempt a visualisation
of the RMSE fitness space. The reader is reminded of the RMSE
definition in this study:

RMSE =

√
∑i | fi − fci

N
i = 1, 2, 3, . . ., N

where N is the total number of simulations, and therefore equal to
the number of cs, fi is the measured output frequency from simulation
i and fci is the target frequency derived from the ith c. Figure 5.1
visualises the square error term of the RMSE for all input values
c ∈ [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], which is the sample of control
inputs used during simulations of a CTRNN. Each error curve has
a corresponding dashed line indicating the target frequency fci For
example the dashed line at F = 1Hz (remember that ftc = 2c

20Hz ,

63

0 2 4 6 8 10
F (Hz)

0

20

40

60

80

100

Er
ro

r

Error² for each c

Figure 5.1: Curves showing squared errors for each target frequency
derived from the value of input control variable c. Each dashed line
shows the target frequency with its color corresponding to an error
curve.

3.3.1) indicates the 1Hz target frequency. The error curve of the same
colour shows the error getting exponentially larger the further away
one moves from this target. In other words, the dashed lines show the
point where each curve tangentially reaches Error = 0, i.e a perfect hit.

However, when we include the mean term, computing the mean
between each curve, these target frequency tangents are smoothed
over. This transforms the fitness landscape to a space that only has one
single optimum at one single point on the frequency axis at F ≈ 5.5Hz.
Figure 5.2 visualises the issue. As one might expect, the square root
term does not improve things.

64

0 2 4 6 8 10
F(Hz)

10

15

20

25

30

35

40

Er
ro

r

Mean of errors across c

Figure 5.2: All squared error curves averaged.

0 2 4 6 8 10
F(Hz)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Er
ro

r

Root-Mean-Square error

Figure 5.3: RMSE fitness space defining the optimal solution as a
constant oscillation at ∼ 5.5Hz with RMSE score ∼ 2.9.

Adding the square root term actually sharpens the "valley", creating
an even stronger motivation towards the 5.5Hz minimum (figure 5.3).
Making note of the scale of the errors in the RMSE fitness space, the
fitness scores of the top two winners across all RMSE based paradigms

65

can be reviewed in light of the shape of RMSE fitness space.
Relative to the total time they are visualised over, the frequencies in

figure 5.4 are quite high, making it understandably hard for the reader
to interpret. However, the fitness scores should be noted as being quite
close to the minimal value of the RMSE space, shown in figure 5.3 to
be ∼ 2.9. Counting the oscillations reveals that they both oscillate with
a frequency of ∼ 5Hz. These values correspond very well to the fitness
space shape visualised in figure 5.3.

The next thing to explain then, is the relatively low number of
winner genomes that approaches this optimum of ∼ 2.9. Indeed, the
most common error score across all eight distributions is a fitness
score of ∼ 5.9. The number of winners with this exact fitness is
driven sharply up by the distributions from configuration B, E and
G, the boxplot in figure 4.2 essentially showing these distributions
containing exclusively the ∼ 5.9 fitness value or values very close to
it. Observe that these genome configurations all have a time constant
τ = 0.5, and that the higher this value is, the more sluggish the neuron
response is. In other words, a higher τ the less able it is to express
higher frequencies. Referencing again figure 5.3, it can be seen that an
RMSE value of ∼ 5.9 roughly corresponds to 1Hz. The genomes from
distributions B, E and G are simply unable to oscillate fast enough to
approach higher frequencies, thus only being able to obtain the fitness
associated with the lowest frequency target.

The conclusion is that the RMSE fitness function is unsuited and
simply cannot produce CPG-like CTRNNs in the set up used for
this thesis due to the averaging over all the errors obtained in one
simulation. This averaging works against the very essence of what
the task is, which is to target specific frequency values, not find a
compromise between them all. A consequence of the optimum being
one single frequency, is the lack of evolutionary incentive to maintain a
connection from the input nodes; hitting the target frequencies does not
award good fitness values, so genomes that ignore the input do better.
This is in direct conflict with the desired function. Therefore the thesis
argues that the RMSE function is not suited.

66

(a) Top winner genome from configu-
ration C using RMSE fitness function.

(b) Top winner genome from configu-
ration F using RMSE fitness function.

Figure 5.4: The two best fit winners across all 8 RMSE based
paradigms.

5.2.2 NEE fitness function and fitness space explo-
ration

To begin with the reader is first reminded of the fitness function from
chapter 3.3

NEE =
i

∏ Fci

which is the product of a CTRNN’s scores produced with a range of
different control inputs ci, where each score Fci is calculated with the
piecewise exponential function

Fci =

10 Eci < 0.1
1

Eci
Eci ≥ 0.1

where Eci is the error between the ith CTRNN output frequency, and
the target frequency derived from the ith sample of input control
variables c. Each CTRNN is simulated with the same 10 input control
values, hence i iterates over the range [1, 10], and consequently NEE→
R10. This 10-dimensional function space (the domain of NEE is the set
of scoring functions F) is difficult to explore, but looking closer at the
score functions elucidates deeper challenges.

All experiments using the NEE fitness function yielded results that

67

show no ability to search for any kind of optima regardless of genome
configuration, as seen in figure 4.16. The consequence is that it is
not possible to use the fitness results to implicitly discern anything
in particular about the fitness space under NEE.

0 2 4 6 8 10
F (Hz)

0

5

10

15

20

25

30

35

40

Sc
or

e

NEE fitness space in one frequency dimension
c=50

Figure 5.5: Fitness space of NEE when focusing on a single dimension
of frequency where the target frequency is 5Hz.

Figure 5.5 shows the distribution of obtainable points given c = 50.
As the error Ec = | f − ft| increases, where ft = 2c

20Hz (see 3.3.1) is
the target frequency, the score approaches 0 asymptotically. While it
creates a space that yields high rewards for near correct estimates of
output frequencies, the space also mostly contains scores 0 < NEE < 1.
Consider a randomly initialised population of genomes. Some fraction
of this population may represent genomes for oscillating CTRNNs, and
thus by random chance scores points for matching one of the target
frequencies. However, if it matches one target, it is very likely to miss
all the other targets, scoring nine different scores between 0 and 1.
The function definition says to multiply all these scores together, thus

68

scaling the total score down by a factor of 10−9, due to the nine misses.
This shows why all NEE based experiments exclusively obtained a

score of 0. The only way to see scores > 0, is if there exists at least one
genome in the initial population that by chance already partly solves
the problem for enough frequencies that the points from the hits are
not drowned out by the misses. This is however highly unlikely to
happen. In other words, success with the NEE fitness function is highly
dependant on random initialisation, possibly so much so that it reduces
the NEAT algorithm to a random search. Possible solutions to this are
further discussed in section 5.3.

Still the study cannot conclude whether the NEE function is
unsuited or not. Because all of the NEE based experimental
paradigms failed, it leaves little grounds to explain fitness function
features through genome configuration fitness scores. On one hand,
a distribution of 80 winner genomes all scoring 0 points is quite
substantial evidence, but since all the different genome configurations
had no impact on performance, there is no way to infer information
about the NEE fitness space from how genomes respond to it.

5.2.3 Activation Function

The results from the RMSE based experiment showed clear tendencies
with regards to the choice of activation function. Genome configura-
tions with the tanh activation function were more likely to produce
CTRNNs with rhythmically oscillating output than those with the sig-
moid activation. This tendency faded however in the paradigms where
the time constant τ was set to 0.5. Disregarding this, comparing the
winner genomes from the RMSE based paradigms that had τ = 0.1
and τ = 0.25, the improvement due to the tanh activation is still con-
vincing. Observe the winner fitness distributions from configurations
Z and A, and compare them to the distributions from configurations C
and D. Z and A had sigmoid activations, while C and D had tanh. While
Z and C both had τ = 0.1, Z sports two rhythmically oscillating winner
outputs, while C has nine. Similarly, A and D both had τ = 0.25, but A
has no rhythmically oscillating winner outputs, while D has eight.

Combining this observation with the fact that the top two winner

69

genomes both came from configurations with tanh activation and τ =

0.1, this suggests that the tanh function is significantly better for
solving the problem given that the time constant is low enough allow a
suitable rate of change.

5.2.4 Time Constant

In combination with the activation function, the time constant τ was
shown to be impactful. An expected result was the effect it would have
on frequency; it stands to reason that more responsive neurons are able
to express higher frequency outputs.

The major obstacle for low τ configurations seemed to be maintain-
ing, or even rediscovering, a connection to the input neuron. Without
this connection, it is obvious that there can be no input driven control
of the output. However, as discussed in 5.2.1, the main reason for this
disconnect is likely to be the RMSE fitness function.

The initially surprising result was that experiments where τ = 0.5
had a much higher tendency to maintain a connection between the
output and the input neurons. From the same discussion on RMSE
fitness exploration, it seems plausible that the value of τ indirectly
affects the exploration by setting restrictions on rate of change, and by
extension the maximum frequency of oscillation.

5.2.5 Network size and growth rate

The genomes that were part of network growth experiments showed
little variation, neither quantitatively nor qualitatively, from the
genomes in experiments that had baseline growth rates and otherwise
had the same configuration of genome variables. Inspecting the
network graphs in distributions from genome configurations that
heavily featured oscillators (configurations C, D and F), reveals a
possible pattern relating a high number of connections to oscillating
output.

70

5.3 Future Work
First and foremost, future work must be focused on continuing the
search for a fitness function that is well suited. RMSE should be
disregarded, but since findings pertaining to NEE were inconclusive,
there are changes that could be interesting. To solve the issue of
the fitness space being very sparse, it could be worthwhile to test if
replacing the | fi − fci |−1 term with a sinc(x) term

sin(| fi− fci |)
| fi− fci |

will make
the space easier to explore. The new sinc(x)-based fitness function
would then be

S =
i

∏
sin(| fi − fci |)
| fi − fci |

Figure 5.6 shows an example where the target frequency is 5Hz.
Firstly, this function is defined over the entire domain. The conse-
quence is, among other things, that the optimum is exactly at the target
frequency. The NEE is not defined at the target frequency, and so had
to be implemented with a tolerance band around the desired target.
Secondly, this redefinition deals with the large areas of close-to-zero
values that the NEE suffered from. The sinc(x) distributes lesser local
maxima across the frequency range that become increasingly better
the closer to the target frequency. Thirdly, the sinc(x) term makes the
highest possible score for S a maximum of 1, with the possibility of
easily rescaling it by adding a scaling factor α > 0 to the sinc(x) term
α

sin(| fi− fci |)
| fi− fci |

. Figures 5.7 and 5.8 show two other simple transformations
that give further control over the shape of the fitness space.

71

0 2 4 6 8 10
F(Hz)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

sin
c(

F
- f

t)

Figure 5.6: sin(| fi− fci |)
| fi− fci |

with target frequency fci = 5Hz. The small local
maxima across the frequency range may improve exploration.

0 2 4 6 8 10
F(Hz)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

sin
c(

F
- f

t)

sinc(|fi fci|)

Figure 5.7: Introducing a scaling factor to the difference term gives
control over the number of local maxima and width of the bell around
the target frequency. Here β = 4.

72

0 2 4 6 8 10
F(Hz)

0.2

0.0

0.2

0.4

0.6

0.8

1.0
sin

c(
F

- f
t)

sinc(|fi fci|²)

Figure 5.8: Squaring the difference gives yet another profile.

Another suggestion is to try a multi-objective optimisation ap-
proach, where each target frequency is considered an objective. A re-
view paper [4] presents several multi-objective approaches, all of which
are especially directed at evolutionary computing.

The effect of a higher degree of network interconnectivity is not
methodically explored in this thesis, but superficial observations
indicate it may be another significantly impactful variable such as the
time constant and activation function. The experimental set up in this
these could be easily altered to include such an investigation. This
could be done by another genome configuration where the configuration
variable "add connection probability" is set to a higher value than "add
node probability". This will cause evolution to create connections more
frequently. Presumably the consequence will be that the high number
of connections must be distributed over the lesser number of nodes.

These future endeavours should lead to better insight into what fit-
ness functions are suited for CPG-like CTRNNs, enabling possibilities
for improvements in robotic locomotion.

73

Appendix A

Appendix

A.1 Appendix I - Winner Genome
Visualisations

Appendix I contains visualisations of CTRNN outputs and their
network topologies. It is divided into subsections which each contain
genome visualisations from one paradigm, starting with RMSE based
paradigms and ending with NEE.

74

A.1.1 Default Genome Configuration Z - RMSE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

4780

(b) Network topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

5457

(b) Network topology of
winner 2.

75

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

4287

dx

control

(b) Network topology of winner
3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

12

dxcontrol

172

(b) Network topology of winner 4.

76

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

12

dxcontrol

172

(b) Network topology of winner 5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

2529

(b) Network topology of winner
6.

77

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

5060

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

6668

control

(b) Network topology of winner
8.

78

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

3510

dx

control

3503

(b) Network topology of winner
9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

4281

4018

4092

(b) Network topology of winner
10.

79

A.1.2 Default Genome Configuration A - RMSE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

4222 dx

4052

(b) Network topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

7168

(b) Network topology of
winner 2.

80

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

9048

(b) Network topology of
winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control dx

2419

2252

(b) Network topology of winner
4.

81

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control dx

2419

2252

(b) Network topology of winner
5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx8185

(b) Network topology of winner 6.

82

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

6848

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

8728

8299

(b) Network topology of winner 8.

83

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

1846

(b) Network topology of winner
9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

3020

dx

control

3139

(b) Network topology
of winner 10.

84

A.1.3 Default Genome Configuration B - RMSE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx 9390

(b) Network topology of winner 2.

85

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology of
winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 9313 8820

dx 9216

9235

9351

(b) Network topology of winner 4.

86

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 9313 8820

dx 9216

9235

9351

(b) Network topology of winner 5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx 9306

(b) Network topology of winner 6.

87

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

9356

8639

8942

9296

8445

(b) Network topology of winner
7.

88

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

9255

9081 9582

(b) Network topology of winner 8.

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

9364

9463

(b) Network topology of winner
9.

89

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

9026

9285

9150

8935

9241 9338

(b) Network topology of winner
10.

A.1.4 Default Genome Configuration C - RMSE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control1784

1848

1884

(b) Network topology of winner 1.

90

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control dx

426

(b) Network topology of
winner 2.

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

3787

control

(b) Network topology of
winner 3.

91

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

1585

control

(b) Network topology of winner
4.

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

1585

control

(b) Network topology of winner
5.

92

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

1581

1139 825

1368

(b) Network topology of winner 6.

93

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

4735

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

4857

(b) Network topology of winner 8.

94

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

2689

(b) Network topology of winner 9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

2798

3095

(b) Network topology of winner 10.

95

A.1.5 Default Genome Configuration D - RMSE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

4

dx

238

221

(b) Network topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

4489 4474 dx

4217

4446

(b) Network topology of winner 2.

96

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

1619

1891

1112

(b) Network topology of
winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

906

control

581

887

(b) Network topology of
winner 4.

97

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

906

control

581

887

(b) Network topology
of winner 5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

2771

control

2822

2958

(b) Network topology of winner
6.

98

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

6650

(b) Network topology of winner 7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

4232

control

(b) Network topology of winner
8.

99

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

4

control

(b) Network topology of winner
9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

4876

control

(b) Network topology of winner
10.

100

A.1.6 Default Genome Configuration E - RMSE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology of winner 2.

101

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

524

(b) Network topology of
winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx 2708

(b) Network topology of winner 4.

102

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx 2708

(b) Network topology of winner 5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology of winner
6.

103

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

6086

(b) Network topology of winner 8.

104

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology of winner
9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

2065

2000

(b) Network topology of winner 10.

105

A.1.7 Default Genome Configuration F - RMSE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

23713

(b) Network topology of winner
1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

11106

12621

12811

12971

14350

14575

1396814639

13909

(b) Network topology of winner 2.

106

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

7585

(b) Network topology of winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

24207

24273

24429 26062

22332

(b) Network topology of
winner 4.

107

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

24207

24273

24429 26062

22332

(b) Network topology
of winner 5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

20400

dx

18848

18969

control

18134

18021

18906

(b) Network topology of winner
6.

108

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

23312

23130

(b) Network topology of winner 7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

860 1432

1736

(b) Network topology of winner 8.

109

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

22277

23353

21184 21250

22855

(b) Network topology of winner
9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

20458

20914

(b) Network topology of winner
10.

110

A.1.8 Default Genome Configuration G - RMSE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

19489

22401

22786

23490

15268

24068 23534

23843

24895

19860

20632

23421

(b) Network topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 864 1305

1081

dx 1243

(b) Network topology of winner 2.

111

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

21339

19479

dx

23301

20967

20815

22752

2288421030

23160

21627

22804

23836

19547

22239

(b) Network topology of
winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 25736

26442

26010

26523

dx

24403

25342

22881

25673

24813

26377

23736

26157

26225

24472

22326

25535

(b) Network topology of
winner 4.

112

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 25736

26442

26010

26523

dx

24403

25342

22881

25673

24813

26377

23736

26157

26225

24472

22326

25535

(b) Network topology of winner
5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

5856

dx

5637 7257

5924

(b) Network topology of winner
6.

113

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 17134

dx

21018

17609

20856

18439

18696

16182

182631943120113

21075

19353

15518

12390 21166

16693

1878115975

15416

20412

19010

20189

20803

17354 19285

18390

19669 19817

16629

20725

20347 14462

(b) Network topology of winner 7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

27777

30245 28482

29142 31194

dx

294872747831110

28362

28295

32016

27031 29854

27693

30897

30463

30388

32336

25410

30975

31302

25942

27620

30321 29029

30062

28149

23163

(b) Network topology of winner
8.

114

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology of winner
9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

11461

11226

dx

11971

10441

12298 12645 9355

6445

8428

6863

12783

10929

12851

(b) Network topology of winner 10.

115

A.1.9 Default Genome Configuration Z - NEE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 4917

dx

4783

(b) Network topology
of winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

1

dx

control

(b) Network topology of winner
2.

116

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

1

dx

150

(b) Network topol-
ogy of winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control 1

(b) Network topology of winner
4.

117

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

dx

control

514

685

400

(b) Network topology of winner
5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

1

(b) Network topol-
ogy of winner 6.

118

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

1

dx

control

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

1

dx

(b) Network
topology of
winner 8.

119

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

1

dx control

(b) Network topology of winner 9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

1

(b) Network topology
of winner 10.

120

A.1.10 Default genome configuration A - NEE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

426

dx control

(b) Network topology of winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

49 dx

control

(b) Network topology
of winner 2.

121

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

1

dx

control

(b) Network topology of
winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

(b) Network topology of winner
4.

122

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

(b) Network topology
of winner 5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

38

dx

control

170

(b) Network topol-
ogy of winner 6.

123

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

31

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 90

dx

(b) Network topology of winner
8.

124

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

1563

1583

(b) Network topology of
winner 9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx5

(b) Network topology of
winner 10.

125

A.1.11 Default Genome Configuration B - NEE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

33

(b) Network topology of winner
1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

65 dx

control

(b) Network topology
of winner 2.

126

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 6

dx

(b) Network topology of winner
3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx 65

(b) Network topology of winner
4.

127

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 2

dx

(b) Network topology of winner
5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 9

dx

(b) Network topology of winner
6.

128

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

8

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

(b) Network topology
of winner 8.

129

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

2

dx

control

(b) Network topology of winner
9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 66

dx

(b) Network topology of winner
10.

130

A.1.12 Default Genome Configuration C – NEE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

1

dx

control

(b) Network
topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 1

dx

(b) Network topology of winner 2.

131

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

1472

(b) Network
topology of
winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

1

dx

control

(b) Network
topology of
winner 4.

132

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 1

dx

(b) Network topology of
winner 5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

1

(b) Network topology
of winner 6.

133

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx1

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 1

dx

(b) Network topology of winner
8.

134

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

182

dx

(b) Network topol-
ogy of winner 9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

6229

dx

control

(b) Network topol-
ogy of winner 10.

135

A.1.13 Default Genome Configuration D – NEE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

293

138

331

168

(b) Network topology of winner
1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

931

1084

(b) Network topology
of winner 2.

136

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

83

dx

control

(b) Network topol-
ogy of winner 3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

1161

1209

1064

(b) Network topology of winner
4.

137

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

785

671

(b) Network
topology of
winner 5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

1

dx

control

(b) Network topology of winner
6.

138

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

1733

1959

1783

1999

(b) Network topol-
ogy of winner 7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

191

dx 4

(b) Network topology
of winner 8.

139

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

1727

dx

(b) Network topology
of winner 9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

6

(b) Network topology of winner
10.

140

A.1.14 Default Genome Configuration E - NEE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

3

dx

control

(b) Network
topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 31

dx

(b) Network topology of
winner 2.

141

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

21

dx

control

(b) Network topology of winner
3.

142

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

4880

dx

5034

control

4106

4793 4859

3774

(b) Network topology of winner
4.

143

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

10

dx

control

(b) Network topology of winner
5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

26

dx

control

(b) Network topology of winner
6.

144

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

5674 5836

dx

control

6343 6069

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

6766

5937

dx

6725

6786

6830

(b) Network topology of winner
8.

145

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx 6

(b) Network topology of
winner 9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

861

dx

control

1231

1346 1418

1400

(b) Network topology of winner
10.

146

A.1.15 Default Genome Configuration F - NEE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

3822

dx

control

4566

1355

(b) Network
topology of
winner 1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx 1 443

(b) Network topology of winner
2.

147

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx control

435

(b) Network topology of winner
3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

1

(b) Network topology of winner
4.

148

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

1229

1311

408

(b) Network topology of winner
5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control 1

(b) Network topology of winner
6.

149

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 1

dx

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

1

dx

control

(b) Network topology of winner
8.

150

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

1

(b) Network topology
of winner 9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

1 dx

(b) Network topology
of winner 10.

151

A.1.16 Default Genome Configuration G - NEE

(a) CTRNN output over 25.6s from
winner 1. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 13

dx

(b) Network topology of winner
1.

(a) CTRNN output over 25.6s from
winner 2. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx 86

(b) Network topology of winner
2.

152

(a) CTRNN output over 25.6s from
winner 3. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

28736

dx

29400

31422

control

27971

25344

31369

31664

31218

30852

30341

32041

29644

(b) Network topology of winner
3.

(a) CTRNN output over 25.6s from
winner 4. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

26

(b) Network topology of winner
4.

153

(a) CTRNN output over 25.6s from
winner 5. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 11

dx

(b) Network topology of winner
5.

(a) CTRNN output over 25.6s from
winner 6. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

9

dx

(b) Network topology
of winner 6.

154

(a) CTRNN output over 25.6s from
winner 7. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control 45

dx

(b) Network topology of winner
7.

(a) CTRNN output over 25.6s from
winner 8. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

control

dx

5

(b) Network topology of winner
8.

155

(a) CTRNN output over 25.6s from
winner 9. Dashed lines separate re-
gions for the input control c. 1st quar-
ter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x dx

control

78

(b) Network topology of winner
9.

(a) CTRNN output over 25.6s from
winner 10. Dashed lines separate
regions for the input control c. 1st
quarter c = 25, 2nd quarter c = 50, 3rd
quarter c = 75, 4th quarter c = 100.

x

22471

19806

23408

dx

control

24628

24961

24178

25091

24471

22176 20517 17203

23481

20669

24699

24384

22248

25033

24315

19946

23536

22123

22901

(b) Network topology of winner
10.

156

A.2 Appendix II - Critical values for
Mann-Whitney U Test

Appendix II contains the table of critical values used in the Mann-
Whitney U test to reject or confirm the null hypothesis H0. In all
experimental paradigms to which this test was applied, the samples
were of equal length, n1 = n2 = 10. To reject H0, the critical value must
be lower than the least of the two test statistics U1 and U2 obtained
from the test. The two possibilities for α, 0.5 and 0.1 represent 95% and
99% confidence intervals respectively.

Figure A.161: Table of critical values for the Mann-Whitney U test.

157

Bibliography

[1] Devolvé et al. “Fictive rhythmic motor patterns induced by
NMDA in an in vitro brain stem-spinal cord preparation from
an adult urodele.” In: Journal of Neurophysiology 18 (1999),
pp. 1074–1077.

[2] Aude Billard and Auke J. Ijspeert. “Biologically inspired neural
controllers for motor control in a quadruped robot.” English.
In: Proceedings of the International Joint Conference on Neural
Networks. Vol. 6. Cited By :58. 2000, pp. 637–641. URL: www.
scopus.com.

[3] T.G Brown. “On the nature of the fundamental activity of the
nervous centres; together with an analysis of the conditioning of
rhythmic activity in progression, and a theory of the evolution of
function in the nervous system.” In: Journal of Physiology (1914),
pp. 18–46.

[4] C.A. Coello Coello. “Evolutionary multi-objective optimization: a
historical view of the field.” In: IEEE Computational Intelligence
Magazine 1.1 (2006), pp. 28–36. DOI: 10.1109/MCI.2006.1597059.

[5] Cohen and Wallen. “The neural correlate of locomotion in fish.
fictive swimming “induced in a in vitro preparation of the
lamprey spinal cord”.” In: Experimental Brain Research 80
(1980), pp. 11–18.

[6] James W. Cooley, Peter A. W. Lewis, and Peter D. Welch.
“The Fast Fourier Transform and its Applications.” In: IEEE
Transactions on Education Vol. 12, Issue 1, p. 27-34 (1969). DOI:
https://doi.org/10.1109/TE.1969.4320436.

[7] Charles Darwin. “On the origin of species.” In: 1st ed. London:
Routledge, 2003. DOI: https://doi.org/10.4324/9780203509104.

158

www.scopus.com
www.scopus.com
https://doi.org/10.1109/MCI.2006.1597059
https://doi.org/https://doi.org/10.1109/TE.1969.4320436
https://doi.org/https://doi.org/10.4324/9780203509104

[8] Auke Jan Ijspeert. “Central pattern generators for locomotion
control in animals and robots: A review.” In: Neural Networks
Vol. 21, Issue 4, p. 642-653 (2008). DOI: https://doi.org/10.1016/
j.neunet.2008.03.014.

[9] Auke Jan Ijspeert and Jérôme Kodjabachian. “Evolution and
Development of a Central Pattern Generator for the Swimming
of a Lamprey.” In: Artificial Life 5.3 (July 1999), pp. 247–269.

[10] D. Lachat, A Crespi, and Auke J. Ijspeert. “Boxybot: A swimming
crawling fish robot controlled by a central pattern generator.”
In: Proceedings of the first IEEE/RAS-EMBS international
conference on biomedical robotics. 2006.

[11] Dimitris G. Manolakis and Vinay K. Ingle. “Applied Digital
Signal Processing.” In: 1st ed. New York, New York, USA:
Cambridge University Press, 2012. ISBN: 9780521110020.

[12] Claudio Mattiussi and Dario Floreano. “Analog Genetic Encod-
ing for the Evolution of Circuits and Networks.” In: IEEE Trans-
actions on Evolutionary Computation 11.5 (2007), pp. 596–607.
DOI: 10.1109/TEVC.2006.886801.

[13] McClellan and Jang. “Mechanosensory inputs to the central
pattern generators for locomotion in the lamprey spinal cord:
Resetting, entrainment, and computer modeling.” In: ournal of
Neurophysiology vol. 70, Issue 6 (1993), pp. 161–166.

[14] Alan McIntyre et al. neat-python. https : / / github . com /
CodeReclaimers/neat-python.

[15] S. Risi and K.O Stanley. “An Enhanced Hypercube-Based En-
coding for Evolving the Placement, Density, and Connectivity of
Neurons.” In: Artificial Life Vol. 18, Issue 4 (2012).

[16] José Santos and Ándel Campo. “Biped locomotion control with
evolved adaptive center-crossing continuous time recurrent neu-
ral networks.” In: Neurocomputing Vol. 86, p. 86-96 (2012).

[17] Jiang Shan, Cheng Junshi, and Chen Jiapin. “Design of central
pattern generator for humanoid robot walking based on multi-
objective GA.” In: Proceedings. 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2000) (Cat.

159

https://doi.org/https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1109/TEVC.2006.886801
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python

No.00CH37113). Vol. 3. 2000, 1930–1935 vol.3. DOI: 10 . 1109 /
IROS.2000.895253.

[18] Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural
Networks through Augmenting Topologies.” In: Evolutionary
Computation Vol. 10, Issue 2, p. 99-127 (2002). DOI: 10 . 1162/
106365602320169811. URL: https : / / ieeexplore . ieee . org /
abstract/document/6790655.

[19] Duc Trong Tran et al. “Central pattern generator based reflexive
control of quadruped walking robots using a recurrent neural
network.” In: Robotics and Autonomous Systems Volume 62,
Issue 10 (2014).

[20] Ronald J. Williams and David Zipser. “A Learning Algorithm
for Continually Running Fully Recurrent Neural Networks.” In:
Neural Computation 1.2 (June 1989), pp. 270–280.

160

https://doi.org/10.1109/IROS.2000.895253
https://doi.org/10.1109/IROS.2000.895253
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://ieeexplore.ieee.org/abstract/document/6790655
https://ieeexplore.ieee.org/abstract/document/6790655

	Introduction
	Introduction
	Motivation
	Research goals
	Thesis outline

	Background
	Evolutionary Computing
	Neuroevolution
	 Direct Representations
	Developmental Representations
	Implicit Representations

	NeuroEvolution of Augmented Topologies
	Genotype and Genetic Encoding
	Speciation

	Central Pattern Generators
	Continuous-Time Recurrent Neural Networks

	Methods
	Chapter Introduction
	Definition of rhythmic behaviour
	Fitness function
	Frequency analysis
	Fitness Evaluation

	Simulation environment
	Experiment paradigms and details
	Configuration file and Default Configurations
	Time Constant
	Activation Function
	Network Topology mutation probability

	Experiments and Results
	Chapter Introduction
	Results from RMSE based paradigms
	Default genome configuration A
	Default genome configuration B
	Default genome configuration C
	Default genome configuration D
	Default genome configuration E
	Default genome configuration F
	Default genome configuration G

	Results from NEE based paradigms

	Conclusions
	Chapter Introduction
	Discussion
	RMSE fitness function and fitness space exploration
	NEE fitness function and fitness space exploration
	Activation Function
	Time Constant
	Network size and growth rate

	Future Work

	Appendix
	Appendix I - Winner Genome Visualisations
	Default Genome Configuration Z - RMSE
	Default Genome Configuration A - RMSE
	Default Genome Configuration B - RMSE
	Default Genome Configuration C - RMSE
	Default Genome Configuration D - RMSE
	Default Genome Configuration E - RMSE
	Default Genome Configuration F - RMSE
	Default Genome Configuration G - RMSE
	Default Genome Configuration Z - NEE
	Default genome configuration A - NEE
	Default Genome Configuration B - NEE
	Default Genome Configuration C – NEE
	Default Genome Configuration D – NEE
	Default Genome Configuration E - NEE
	Default Genome Configuration F - NEE
	Default Genome Configuration G - NEE

	Appendix II - Critical values for Mann-Whitney U Test

