
Open Anomaly Detection
Benchmark (OADB)

A benchmark for evaluation of anomaly
detection algorithms

Muhammad Shah Zaib

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2021

Open Anomaly Detection
Benchmark (OADB)

A benchmark for evaluation of
anomaly detection algorithms

Muhammad Shah Zaib

© 2021 Muhammad Shah Zaib

Open Anomaly Detection Benchmark (OADB)

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

There has been a significant rise in data generated and collected through
various sources. Machine learning algorithms are used to find meaningful
information from this data. Among many other applications of machine
learning algorithms, an exciting task is anomaly detection. Anomaly detection
is the process of finding observations that deviate significantly from the
general distribution of data. Finding an unusual behavior in data is critical in
various fields. Many algorithms were proposed in the literature and research
is ongoing to develop new algorithms that are more efficient and accurate
for detecting anomalies. A large number of algorithms has made choosing
and evaluating algorithms significantly difficult. Existing benchmarks for
evaluating machine learning algorithms lack the necessary capabilities, e.g.,
transparency, and proper visualization of results.

To make it easier to compare and choose anomaly detection algorithms,
we propose a new benchmark called Open Anomaly Detection Benchmark
(OADB). We identified requirements for a good anomaly detection benchmark,
e.g., variety of datasets, extensibility, and in-depth visualisation of results.
OADB is developed based on identified requirements. OADB fills gaps in
existing benchmarks and helps get insight into state of the art algorithms
for anomaly detection. A subset of popular machine learning algorithms for
anomaly detection and a variety of numerical datasets are integrated into the
benchmark for evaluation. OADB is available as part of DataBench Toolbox.

Multiple benchmarking experiments are performed using the OADB. OADB
utilizes numerical datasets of varying number of dimensions and size. These
datasets are collected from multiple sources and converted to a single format
for usage in OADB. Results show that Windowed gaussian on univariate and
Isolation forest on multivariate datasets perform better than other algorithms
in terms of accuracy and computational complexity. However, performance
of an algorithm varies significantly based on the dataset utilized. Selection
of machine learning algorithms for anomaly detection should be according to
problem domain and data available for utilization.

i

Acknowledgements

My sincere thanks to Dr. Arne J. Berre and Dr. Volker Hoffmann for providing
invaluable guidance and help in various ways. Your availability for regular
meetings has been beneficial for me. I am also thankful to Dr. Dumitru Roman
for his feedback on the thesis.

I am profoundly grateful to SINTEF for providing me with the resources to
work on my thesis and the University of Oslo (UiO) for providing the best
learning environment.

At last, I would like to thank my parents and siblings for supporting me
throughout the study.

Muhammad Shah Zaib
November 2021

iii

Contents

I Introduction and background 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research question . 4
1.3 Objectives . 4
1.4 Research methodology and work plan 5
1.5 Thesis structure . 5

2 Background 8
2.1 Artificial Intelligence . 8

2.1.1 Machine learning . 9
2.1.2 Deep learning . 10

2.2 Types of Machine learning . 10
2.2.1 Unsupervised learning . 10
2.2.2 Supervised learning . 11
2.2.3 Reinforcement learning 11

2.3 Anomaly and its types . 12
2.4 Process of finding anomaly . 13

2.4.1 Defining the problem . 13
2.4.2 Data preprocessing . 14
2.4.3 Anomaly detection . 15
2.4.4 Anomaly prediction . 16

2.5 Challenges of anomaly detection 16
2.6 Applications of anomaly detection algorithms 17
2.7 Benchmarking . 18

2.7.1 What is benchmarking . 18
2.7.2 Benchmarking in machine learning 18
2.7.3 Architecture of a benchmark 19
2.7.4 Why ML benchmarks? . 20

II Problem analysis 22

3 Machine learning algorithms for anomaly detection 23
3.1 Anomaly detection approaches 23

3.1.1 Distance-based approach 23
3.1.2 Clustering-based approach 24
3.1.3 Model-based approach . 24

3.2 Popular ML anomaly detection algorithms 24
3.2.1 Supervised algorithms . 24
3.2.2 Unsupervised algorithms 26

v

3.2.3 Deep learning algorithms 27
3.3 Comparison of traditional machine learning and deep learning

for anomaly detection . 29
3.4 Hybrid algorithms . 30
3.5 Commercial tools for anomaly detection 31
3.6 Ways to categorize algorithms . 31

3.6.1 Supervised vs Unsupervised learning 31
3.6.2 Eager vs Lazy learning . 31
3.6.3 Parametric vs Non-Parametric learning 32

4 State-of-the-art anomaly detection benchmarks 34
4.1 Public datasets with labeled anomalies 34

4.1.1 Yahoo Labeled Anomaly Detection Dataset 34
4.1.2 NAB Dataset . 34
4.1.3 UCI KDD Archive . 34
4.1.4 UCI Machine learning repository 35
4.1.5 NASA valve dataset . 35
4.1.6 ADRepository datasets . 35
4.1.7 Outlier Detection DataSets (ODDS) library 36
4.1.8 Summary of Datasets . 36

4.2 Existing anomaly detection benchmarks 38
4.2.1 Numenta anomaly benchmark (NAB) 38
4.2.2 Skoltech Anomaly Benchmark (SKAB) 39
4.2.3 Exathlon . 40
4.2.4 Summary of benchmarks 41

4.3 Shortcomings in existing benchmarks 41

III Open anomaly detection benchmark (OADB) 44

5 Design and Implementation 46
5.1 General requirements for an ideal anomaly detection benchmark 46
5.2 Requirements for Open Anomaly Detection Benchmark (OADB) 47
5.3 Evaluation of existing benchmarks based on defined requirements 47
5.4 Problem and proposed solution 48
5.5 Design and architecture . 49
5.6 Summary of datasets utilized in OADB 49
5.7 Implementation . 50

5.7.1 Modules . 50
5.7.2 Benchmarking metrics . 51

5.8 Extensions . 52
5.8.1 Dataset integration . 52
5.8.2 Algorithm integration . 52
5.8.3 Customization . 52

6 Evaluation 54
6.1 Experimental Setup . 54

6.1.1 Hardware setup . 54
6.1.2 Software setup . 55

6.2 Evaluation of OADB datasets . 55
6.3 Analysis of ML algorithms performance for anomaly detection . 58

6.3.1 Methods for measuring accuracy 58
6.3.2 Accuracy analysis of anomaly detection algorithms . . . 60

vi

6.3.3 Computational complexity analysis of anomaly detec-
tion algorithms . 69

6.4 Evaluation of OADB based on defined requirements 72

IV Summary and outlook 77

7 Conclusion and future work 78
7.1 Contributions summary . 78
7.2 Scope and limitations . 78
7.3 Conclusions . 79
7.4 Future work . 80

A Benchmark source code 88

B Detailed benchmarking results 90

vii

List of Figures

2.1 Overlap of artificial intelligence, machine learning and deep
learning [38] . 9

2.2 Artificial Intelligence and its subfields 9
2.3 Example of a simple Artificial Neural Network (ANN) structure

and interaction of various layers with each other [67] 10
2.4 Example of data instances classified into two clusters by K-

means algorithm . 11
2.5 Interaction of learning agent with the surrounding environment

in reinforcement learning [30] . 12
2.6 Illustration of anomalies in two-dimensional data [20] 13
2.7 Examples of local and global anomalies 17
2.8 Components of a machine learning benchmark 19

3.1 Effect of K value for KNN algorithm 25
3.2 Simple decision tree showing process of buying car and how

different factors impact the decision [54] 26
3.3 Hyperplane in 2-dimensional and 3-dimensional space [81] . . . 27
3.4 Isolation tree partitioning process on one-dimensional data . . 27
3.5 Working of DeepAnt algorithm for anomaly detection 28
3.6 One-class Neural Network steps for anomaly detection [19] . . 29
3.7 Ensemble learning strategies for combining algorithms 30
3.8 Lazy vs Eager learning algorithm steps 31

4.1 NAB scoring function used for assigning score to an algorithm
for its ability to detect anomaly early [44] 38

4.2 Testbed used to generate data for SKAB benchmark [41] 40
4.3 Summary of datasets in Exathlon benchmark [37] 41

5.1 OADB modules and interaction of them with each other 49
5.2 Organization of OADB modules 50

6.1 Analysis of datasets in OADB through different aspects 56
6.2 Visualization of datasets individually for getting insight into

data patterns . 57
6.3 Description of the confusion matrix for anomaly detection [63] . 58
6.4 Heat map showing the precision score of each algorithm against

each data repository in OADB . 61
6.5 Heat map showing recall score of each algorithm against each

data repository in OADB . 62
6.6 Heat map showing average F1 score of each algorithm against

each data repository in OADB . 63

viii

6.7 Precision-recall curves of KNN, Elliptic envelope, Windowed
gaussian and Isolation forest on single dataset 66

6.8 Precision-recall curves of Isolation forest algorithm on multiple
datasets . 68

6.9 Heat map showing average precision score of each algorithm
against each data repository . 69

6.10 Showing time taken by algorithms for training and test phase
(combined) on univariate datasets with increasing dataset size . 70

6.11 Showing time taken by algorithms for training phase on mul-
tivariate datasets . 71

6.12 Showing time taken by algorithms for test phase on multivariate
datasets . 71

6.13 Showing time taken by algorithms for training and test phase
(combined) on multivariate datasets 72

6.14 Example of OADB visualization on data folder level 73
6.15 Example of OADB visualization of an algorithm accuracy

performance against single dataset file 74
6.16 OADB as part of DataBench toolbox 75

B.1 Time taken by algorithms for training phase on univariate datasets 91
B.2 Time taken by algorithms for training phase on multivariate

datasets . 92
B.3 Time taken by algorithms for test phase on multivariate datasets 93
B.4 Time taken by algorithms for training phase on multivariate

datasets . 94

ix

List of Tables

4.1 Summary of numerical datasets in ADRepository 35
4.2 Summary of classification datasets in ADRepository 36
4.3 Summary of public datasets with labeled anomalies 37
4.4 Numenta anomaly benchmark results for accuracy of algorithms 39
4.5 Summary of existing machine learning benchmarks 41

5.1 Evaluation of popular anomaly detection benchmarks based on
defined requirements . 48

5.2 Overview of OADB datasets . 50
5.3 Overview of OADB algorithms 51

6.1 Hardware specifications of experimental setup 54
6.2 Software libraries used for development of OADB 55
6.3 Evaluation of Open Anomaly Detection Benchmark (OADB)

based on defined requirements 75

x

Abbreviations and Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

CPU Central Processing Unit

DL Deep Learning

GPU Graphics Processing Unit

IP Internet Protocol

KNN K Nearest Neighbors

ML Machine Learning

NAB Numenta Anomaly Benchmark

OADB Open Anomaly Detection Benchmark

OC-NN One-Class Neural Networks

OCSVM One-Class Support Vector Machine

ODD Outlier Detection DataSets

OS Operating System

SKAB Skoltech Anomaly Benchmark

SVM Support Vector Machine

UCR University of California, Riverside

xi

Part I

Introduction and background

1

Chapter 1

Introduction

1.1 Motivation

“Hiding within those mounds of data is knowledge that could change the life of a pa-
tient, or change the world. — Atul Butte”

World started moving toward digitalization after the invention of digital
computer and birth of the World Wide Web (WWW). In the last decade, a
large percentage of the human population connected with the internet for
the first time, and internet-connected devices have seen a remarkable rise.
Global IP traffic will increase threefold between 2017-2022, and the number
of devices connected to the internet will be three times the human population
by 2022 [21]. This trend has affected all the industries, and today almost every
organization is moving toward digitalization. Each organization generates an
enormous amount of data, which can be helpful in decision-making. This
data is being collected with the help of various tools. Sensors have been
a vital tool for collecting data. Different industries use sensors to monitor
their infrastructure, e.g., in manufacturing industry temperature, vibration of
manufacturing machines.

The introduction of new technologies gives companies a competitive advant-
age over their peers. These also help to reduce costs and to improve the quality
of products. In some cases, the entire market is changed into something differ-
ent with the introduction of new technologies. Keeping up with changes and
improving has become even more critical to remain competitive. Organiza-
tions need to collect information about all their crucial tasks and processes to
move in the right direction. With the increasing size of organization or com-
plication of tasks, data generated and collected also increase in size. Often it
becomes difficult to monitor everything through human eyes. A large part of
generated data from various sources is not utilized for analysis. This data can
be used for finding meaningful patterns in various fields. Cheap sensors and
advanced machine learning techniques have made it easier for both small and
big organizations. Finding anomalies in data is an important task that is often
helpful in making processes run smoothly.

A data point significantly different from other data is called anomaly and
it is of special interest. Information about these anomalies plays important
role in decision making in various fields such as Finance [9], Health [66, 83],

3

Petroleum [50] and many more. With the increase in the amount of data
available, complexity also increases, making it impossible to monitor systems
through human observers or simplistic methods, e.g., threshold. Machine
learning algorithms are used for monitoring and finding anomalies in large
datasets. The performance of these algorithms varies based on different
conditions. The number of algorithms presented as solutions to anomaly
detection problem is already high and increasing.

Consequently, choosing the best machine learning algorithm for anomaly
detection requires much effort and some time impossible. The solution to
this problem requires a good benchmark for comparing the performance of
machine learning algorithms for anomaly detection tasks. There are only
a few benchmarks available with a focus on anomaly detection. These do
not provide all the information required to choose the anomaly detection
algorithm. Therefore there is need for a better anomaly detection benchmark.

1.2 Research question

Machine Learning is becoming increasingly popular for solving complex
problems in many domains. Among all those problems, one is anomaly
detection in numerical data. Many algorithms and commercial tools are
available for finding anomalies among normal data. Their performance varies
depending on many factors such as data quality, availability of training
data, nature of the anomaly. The process of comparing all algorithms
based on different attributes requires much work in the absence of a good
benchmark. The lack of benchmarks focusing on anomaly detection makes
choosing an appropriate algorithm for an anomaly detection task quite tricky.
Existing benchmarks for anomaly detection suffer from many deficiencies and
problems.

Considering the problem stated above, we have formulated following research
questions.

• Q1: What are the requirements for a good anomaly detection benchmark?

• Q2: Is there any anomaly detection algorithm that outperforms all the
others on numerical datasets in terms of accuracy and computational
complexity?

• Q3: What is the impact of dataset size on the computational complexity
of anomaly detection algorithms?

1.3 Objectives

Following are the objectives specified for this thesis based on our research
question.

Objective 1: Find the relevant tools and algorithms for anomaly detection and
review them based on their characteristics.

Objective 2: Analyze existing benchmarking tools relevant for comparing the
performance of anomaly detection algorithms and identify their shortcomings.

Objective 3: Collect a variety of labeled public numerical datasets with
anomalies. Analyze, format, and improve the quality of datasets for further
use in benchmarking.

4

Objective 4: Identify shortcomings in existing anomaly detection benchmarks
and define requirements for a better benchmark.

Objective 5: Design and develop a new benchmark, which fulfills the defined
requirements.

Objective 6: Identify and integrate popular anomaly detection algorithms for
numerical data in the newly developed benchmark.

Objective 7: Perform benchmarking experiments with different settings.
Utilize visualizing techniques to analyze and interpret the results generated
by the benchmark.

Objective 8: Conclude from results of benchmark and provide general
recommendations about use of anomaly detection algorithms.

1.4 Research methodology and work plan

This thesis aims to evaluate anomaly detection algorithms and develop a con-
crete benchmark for evaluation. Our research is quantitative applied research
and slightly modified version of technology research [76] methodology. Mod-
ified version is used to fit it in the context of benchmarking. Our research is
divided into three stages. We repeat these steps if our requirements are not
met in last step.

Problem formulation: This step includes understanding the domain and
defining the research problem.

Propose solution: This step includes proposing a solution for the problem we
formulated in the previous step.

Experimentation and evaluation: This step consists of experimentation and
evaluation of the proposed solution.

1.5 Thesis structure

This thesis consist of three parts, introduction and background, Open Anomaly
Detection Benchmark (OADB), evaluation. It is also organized into seven
chapters. Following is a brief description of each chapter.

Introduction (Chapter 1): In this chapter, the motivation for this research,
research question, thesis objectives and thesis structure are outlined.

Background (Chapter 2): This chapter reviews literature relevant to anomaly
detection. It also explains how anomaly detection is vital for the scientific
community and people from different fields of life. It also sheds light on
challenges faced in building tools and algorithms for solving the problem.

Machine learning algorithms for anomaly detection (Chapter 3): This chapter
sheds light on popularly used Machine Learning algorithms for anomaly
detection and classification of these algorithms.

State of the art anomaly detection benchmarks (Chapter 4): This chapter
includes an analysis of existing benchmarks for evaluating and comparing
machine learning algorithms for anomaly detection. This chapter also
identifies issues with existing benchmarks and summarizes publicly available
numerical datasets with anomalies.

5

Design and Implementation (Chapter 5): This chapter explains the design and
implementation details of the Open Anomaly Detection Benchmark (OADB).
Requirements for OADB are also outlined.

Evaluation (Chapter 6): This chapter evaluates Open Anomaly Detection
Benchmark (OADB) based on defined requirements and illustrates results
generated by the benchmark.

Conclusion and Future Work (Chapter 7): This chapter presents the conclu-
sion of this study. It outlines various directions for research work to expand
the work done in this thesis. It also defines the scope and limitation of this
study.

6

Chapter 2

Background

This chapter provides a brief knowledge about artificial intelligence and its subfields.
Anomaly, its different types, and steps involved in finding anomalies using machine
learning are explained. This chapter sheds light on terms that are essential to
understanding this thesis.

2.1 Artificial Intelligence

Artificial Intelligence is defined by most people as a system that can do the
tasks requiring human intelligence, e.g., writing books, playing sports, and
decision making in different traffic situations. AI researchers community
has taken inspiration from human intelligence and brain structure to develop
software systems with similar intelligence as humans. However, there is no
consensus on a single AI definition among researchers yet, which can be used
by everyone [82]. A good working definition is given by Kaplan et al. [39]:

“a system’s ability to interpret external data correctly, to learn from such data, and to
use those learnings to achieve specific goals and tasks through flexible adaptation”

AI is being used by many companies for developing new products, services
and also improving existing ones. Some of them are used almost every
day by millions of users, e.g., recognizing faces in pictures by Facebook
to tag them automatically, and suggesting routes by google maps with less
probability of braking during the drive [1]. AI, based on its abilities, can
be categorized into three levels such as Artificial Narrow Intelligence (ANI),
Artificial General Intelligence (AGI), Artificial Super Intelligence (ASI) [39].
Artificial Narrow Intelligence is domain-specific, cannot perform other than a
few tasks autonomously. However, it outperforms humans in doing the job
for which it is designed and trained. At the Artificial General Intelligence
level, it can perform tasks independently of human assistance in multiple
domains. Artificial Super Intelligence refers to the level of intelligence that
outperforms humans in almost all disciplines. Currently, most AI applications
are at a narrow intelligence level as they are more focused on one single
task. It has not reached human-like intelligence yet and is quite far from the
Artificial Super Intelligence level. AI is used to solve many domain-specific
problems currently, as stated in the examples above. There is a growing focus
on developing artificial intelligence with abilities spanning multiple domains
and surpassing the Artificial Narrow Intelligence level.

8

AI is a broad field and combination of multiple disciplines from statistics to
biology. AI has subfields machine learning and deep learning.

Figure 2.1: Overlap of artificial intelligence, machine learning and deep
learning [38]

2.1.1 Machine learning

Machine learning has a narrow focus compared to AI as it does not give ma-
chines general intelligence. ML algorithms learn from data and find patterns
in it. There has been a lot of research on ML, and a vital milestone in ML de-
velopment was the first algorithm developed by Samuel in 1959 [68], to play
checkers game and get better with experience. ML allows creating computer
systems to do tasks that they are not explicitly programmed to do and get better
at doing these tasks with experience. Different researchers have used different
wording to define ML but it can be defined broadly as [53]

“computational methods using experience to improve or to make accurate predictions”

Most problems that ML is solving can be divided into two types, regression
and classification. Regression is a problem type where the algorithm has to
produce result as a real number. For example, predicting average temperature
for the next 24 hours based on historical data. Classification is a problem where
an algorithm classifies data instances in a dataset into different categories or
classes. A simple example of classification problem can be detection of various
animals in pictures. Each animal should be classified in its own class.

Figure 2.2: Artificial Intelligence and its subfields

Figure 2.2 shows classification of AI and Machine learning branches. Many of
these branches overlap with each other.

9

2.1.2 Deep learning

Deep learning is a subfield of machine learning. Deep learning takes inspir-
ation from the human brain and tries to replicate its structure in a computer
system. Neurons are basic building blocks of the human brain and these per-
form most of the processing of information for us. Deep learning networks
use several layers of artificial neurons[38]. It has three types of layers. The
input layer represents input data. Hidden layers process and transform data
and pass the results generated by a network of artificial neurons to the output
layer. Each artificial neuron in hidden layers receives data from the neurons of
the previous layer and passes it to neurons in the next layer after processing.
The output layer represents the result produced by the neural network. These
networks of artificial neurons are also called Artificial Neural Network (ANN).
Figure 2.3 shows the basic structure of ANN and how artificial neurons inter-
act with each other.

Figure 2.3: Example of a simple Artificial Neural Network (ANN) structure
and interaction of various layers with each other [67]

Deep learning requires much more data to train than traditional machine
learning algorithms to perform well, also requires special hardware such as
GPUs to perform matrix calculations faster. Compared to traditional ML
algorithms, one advantage is that there is no need for feature selection. Second,
it performs well in the absence of labeled data [84]. Deep learning has made
fantastic progress in Natural language processing, object recognition etc. in
recent years.

2.2 Types of Machine learning

2.2.1 Unsupervised learning

Unsupervised learning algorithms classify unlabeled data into different
clusters or groups based on similarities among them. All elements in one
cluster have more similarity to each other and differences from elements of
other clusters [75]. These algorithms do not require labeled training data for
them to work. K-means is an unsupervised learning algorithm that is very

10

simple and widely used. Figure 2.4 shows a simple example of clustering done
by K-means.

Figure 2.4: Example of data instances classified into two clusters by K-means
algorithm

2.2.2 Supervised learning

Supervised learning algorithms require labeled data in contrast to unsuper-
vised learning algorithms for training of model. Available data is divided into
training and test data. The algorithm train on labeled data; for each input X
there is output Y. Models fit to data during the training phase. The fitted model
is then used to find output for test data inputs. Supervised learning algorithms
help solve both classification and regression problems [75]. Supervised learn-
ing algorithms are prone to over-fitting the model to training data. Over-fitting
leads to poor performance of algorithms on test data. Lack of labeled training
data is a challenge in utilizing supervised learning.

2.2.3 Reinforcement learning

Reinforcement learning algorithms learn by doing different actions in an
environment and learning from the output of these actions. Learning system
acts as an agent which is rewarded and penalized based on its action in the
environment. A learning agent, model of the environment and rewarding
function are major components of a reinforcement learning algorithm. Goal
of learning agent is to maximize rewards throughout its life span. Model of
the environment should capture important features of a problem and should
change depending on agent actions. Reward function defines what actions
by the agent are good or bad in a given environment. Agent has to balance
exploration and exploitation to try new actions in search of more rewarding
actions and repeat previously done rewarding actions [78]. Reinforcement
learning tries to replicate the natural learning process of a newborn baby,
considering it as a learning agent.

11

Figure 2.5: Interaction of learning agent with the surrounding environment in
reinforcement learning [30]

In Figure 2.5 action at is action done by agent. In response to action,
environment changes from state st to action st+1 and gives reward rt. Based
on new state and reward of previous action, agent learns and performs next
action. This loop continues as agent get better at performing most rewarding
actions.

2.3 Anomaly and its types

Braei defined anomaly [15] as

“ An anomaly is an observation or a sequence of observations which deviates remark-
ably from the general distribution of data. The set of the anomalies form a very small
part of the dataset ”

Anomalies have always been of particular interest in different fields, e.g.,
finance, gaming, medical etc., due to the significance of finding unusual
behavior of a system. One should differentiate between noise and anomalies.
Noise in data can be introduced due to reasons, e.g., seasonality, measurement
tool malfunction that hinders our ability to find anomalies.

These anomalies can be positive or negative but have a high significance in all
contexts. Anomalies can represent a high temperature than usual, high vibra-
tion etc. Anomalies detected at the right time can be quite helpful to avoid loss
and potential issues [50]. For example, machines used in manufacturing in-
dustries are becoming more and more complex. Factories are using sensors to
monitor the environment in the factories and also the performance of manufac-
turing equipment. Due to the massive amount of data coming from sensor data
streams, humans cannot monitor and evaluate data to find meaningful pat-
terns. Anomaly detection techniques can consume data from continuous data
streams from sensors to detect anomalies and prevent any disaster in factories.
It will increase the reliability of the diverse type of equipment and their life-
time. This one particular example shows the significance of anomalies, but this
applies in almost all the fields.

12

Figure 2.6: Illustration of anomalies in two-dimensional data [20]

In Figure 2.6 N1 and N2 represent values for normal observations and O1,O2
and O3 are anomalies in two-dimensional space. Anomalies can be categorized
mainly into three types [15].

Point anomalies: When a single data point varies significantly from the
remaining data points in a dataset, it is a point anomaly as only one point
shows abnormal behavior. For example, a sudden drop in car speed in
temporal data for only one measurement through a journey represents a point
anomaly.

Contextual Anomaly: A data point is normal in one context but can be labeled
as an anomaly in another context, its contextual anomaly. For example, 5
centimeter snow depth in February is normal but same amount of snow in
July in Oslo, Norway is an anomaly.

Aggregate/Collective Anomalies: When a set of data points deviates from
normal pattern, not a single data point, this set of data points represent an
aggregate anomaly. For example, 100 login API calls per second to a server
from a single user are anomalous. However, a single API call is not an anomaly.

2.4 Process of finding anomaly

The usefulness of information about anomaly depends on when it is found and
the type of problem. Sometimes it is helpful to detect anomaly immediately
as it happens, but in some cases, it should be predicted before its occurrence.
Process for finding anomaly consist of multiple steps from problem definition
to detecting anomaly and performing appropriate measures to mitigate its
effect.

2.4.1 Defining the problem

It is a process of figuring out what the problem is and how this problem
can be solved. For example, small factories have a problem with machine
failures, resulting in production delays and monetary loss. This problem can be
solved by detecting the abnormal behavior of machines through continuously

13

measuring important data about machine status and preventing machine
failure by intervention. It requires domain knowledge and understanding of
the problem, knowledge about factors affecting the system. One has to perform
multiple steps to understand the problem better and know objectives. Some of
the steps and questions are:

– Identify how and what kind of data can be collected about this specific
problem. Data will be available as data files after collection or continuous
data streams coming from sensors.

– Identify elements that can affect data collection process or may introduce
bias.

– Identify the variable which we want to find and discuss it with all
stakeholders.

– Identify the possible causes of data noise and domain-specific character-
istics of data, i.e., seasonality etc.

– Figure out when we should be able to detect the anomaly and when it is
too late?

2.4.2 Data preprocessing

Data plays a vital role for any machine learning algorithm to perform better.
With better quality and valuable data covering all aspects of the problem,
there are more chances to get desired results. Most data available is not in a
form to be used directly for ML algorithms. It needs to be prepossessed to
make it suitable for training a ML algorithm to perform well. Data quality
is reduced for various reasons, including issues in measuring devices, wrong
understanding of the problem, and many more. Depending on the type of data
and problem to be solved, it has to go through multiple steps. Some of the steps
for improving quality of data are following.

Handling missing values

Dataset with missing values can seriously affect the performance of algorithms
and introduce bias in results. Missing values in data can occur due to multiple
reasons e.g., problems in data recording sensor, and incorrect measurement.
Issues due to, missing values can be mainly avoided either by removing
missing values or replacing missing values with estimated values. Multiple
methods are used to estimate missing values such as mean substitution and K-
means Clustering Imputation (KMI) [28]. Mean substitution replaces missing
values with the mean of normal values in a dataset. This method will not
be appropriate in some cases, i.e., when many values are missing. Different
techniques are used for various problems and datasets.

Removing noise

Data collected from real-world usually contain irrelevant and distorted data
called noise. Supervised algorithms are most affected by data noise. ML
algorithms trained with noisy data can result in reduced accuracy. Data noise
can be categorized into two types, class noise and attribute noise. Class noise
represents the wrong labeling of data. Class noise can be introduced due to
bugs in labeling software or entry error during manual labeling etc. Attribute
noise arises by one or more corrupt data points [28].

14

Feature selection

Often a lot of data is collected but using all data for machine learning is not
feasible. A higher number of features result in higher complexity of data,
require high computational power and reduce the speed of ML algorithms.
To solve this problem, we select important features and remove features that
are dependent on other features. The semantics of data should remain intact.
Feature selection helps in increasing accuracy and learning efficiency [28].

Feature scaling

Data sets contain many features, but not all are measured with the same scale.
For example, if we have collected data temperature and vibration from the
factory using sensors. Temperature and vibration measurement values will
have considerable differences. Significant differences among features in a
dataset are not ideal for the accuracy of the algorithm. Features with high
magnitude will have more impact on calculations can result in biased results.
The process of fixing removing significant differences among values is called
feature scaling. Two techniques are commonly used for feature scaling. The
min-max normalization converts all values between [0, 1] using the following
formula.

z′ =
z−minimum.value

maximum.values−minimum.value
(2.1)

Z-score normalization use mean and standard deviation to convert values in
range [0, 1] using the following formula [6].

z′ =
z−mean

standard.deviation
(2.2)

z′ represents the new value after normalization and z represents the original
value.

2.4.3 Anomaly detection

Anomalies can be detected in different ways depending on available data and
the problem to be solved. A common way of detecting an anomaly is by
visualization. It is done by creating dashboards and showing graphs of crucial
features. Humans can detect unusual behavior and perform appropriate
actions to avoid any failure/loss. As the number of features and complexity of
data increases, it becomes difficult to visualize everything correctly and for the
human brain to comprehend it. Sometimes thresholds are used and whenever
a value increases from a certain threshold, an alert is sent to the relevant entity.
Thresholds are static and are set based on the assumptions of an expert. They
do not fluctuate based on changing situations and are prone to mistakes by
experts who have set threshold values, resulting in false alerts. For example,
an e-commerce website for buying gifts receives 50,000 orders per month and
a threshold set for 70,000 to detect an unusual number of orders. Nevertheless,
it may get 100,000 visitors during Christmas days as more people are shopping
for gifts during this time of year. It can trigger a false alert.

The increased complexity of data requires a more complex solution for monit-
oring and detecting anomalies. In this regard, ML algorithms are pretty helpful
because they consider all the features, labeled anomalies and learn from data
overall. Data is divided into two parts training data and test data. Training

15

data is used for learning of model and test data is used to test the accuracy.
Broadly ML techniques for anomaly can be divided into types supervised an-
omaly detection and unsupervised anomaly detection.

Supervised anomaly detection: Supervised algorithms are used when we
have data that has labeled anomalies. These algorithms usually perform bet-
ter than unsupervised and semi-supervised algorithms as they have more in-
formation available regarding anomalies. Anomalies are rare and undesir-
able events. It makes it challenging to gather a properly labeled dataset.
Due to these challenges, these algorithms cannot be applied in many cases.
Some of the supervised anomaly detection algorithms are Support Vector Ma-
chine (SVM), Decision trees, Bayesian Network, Supervised neural network,
K-nearest neighbor [58].

Unsupervised anomaly detection: Unsupervised algorithms do not require
labeled data and this makes them easier to use for anomaly detection.
Unsupervised algorithms used for anomaly detection are K-means, One-Class
Support Vector Machine (OCSVM) etc.

2.4.4 Anomaly prediction

Detecting anomalies before they occur is called anomaly prediction. ML tech-
niques are used to predict next trends and events based on previous data [49].
Predictive maintenance for different systems has gained importance in the last
decade because the cost attached to systems maintenance increased. Initially,
most industries used time-based maintenance, but now with advances in Ma-
chine Learning and sensors, we can use data gathered from sensors to monitor
the performance of systems and analyze unusual behavior. It can help in the
early detection of problems. Predictive maintenance is the preferred mainten-
ance method in 89% of cases, compared to time-based maintenance, which is
preferred in only 11% of cases. Integrating the predictive maintenance tech-
niques with the latest sensor technologies enable plants to avoid unnecessary
equipment replacement, save costs, and improve process safety, availability,
and efficiency [34]. Anomaly prediction is similarly helpful in various fields.
Time horizon and explainability are two important factors for evaluating an-
omaly prediction technique [31].

Time horizon: These techniques aim to maximize the time duration between
the prediction of anomaly and actual occurrence. Time duration before
occurrence provides the opportunity to validate the alert for anomaly.

Explainability: If we act on all the anomaly predictions, then false positives
can do the opposite effect. It can result in delays, increased costs and similar
problems. It signifies the importance of explaining anomaly predictions to
understand them and perform appropriate measures to avoid failure.

2.5 Challenges of anomaly detection

One faces many challenges during the process of anomaly detection. Some of
them are following.

– The lack of enough labeled data is a significant challenge for anomaly

16

detection. In most cases, one does not have any or enough labeled data
for the training of algorithms. Consequently, testing the performance of
an algorithm for an actual problem is nearly impossible.

– The rarity of anomalies makes it challenging to detect them. It affects
the pre-deployment phase as we do not have enough information about
anomalies. It is leading to issues during the usage of anomaly detection
solutions.

– Noisy data can pose a challenge in detecting anomalies and reducing the
accuracy of the algorithm.

– False positive alarms are another challenge related to anomaly detection.
They result in unnecessary disruptions. The algorithm used for anomaly
detection should accommodate changes in data values to avoid false
alarms.

– Anomalies are of multiple types broadly categorized as point anomaly,
aggregate anomaly and contextual anomaly. It increases the complexity
of anomaly detection.

– Anomalies change based on the size of data observation window. A data
point may seem like an anomaly in the shorter window, but it can be a
normal data point with a complete data view. Anomalies can be local and
global. As shown in Figure 2.7 red dots show possible local anomalies
and green dots show an example of global anomaly.

– Anomaly detection is time-critical in many scenarios. Its usefulness
depends on the time difference between occurrence and detection. Often
information is needed about anomalies before occurrence. It add time
constraint for anomaly detection algorithms, making immediate anomaly
detection a requirement.

Figure 2.7: Examples of local and global anomalies

2.6 Applications of anomaly detection algorithms

Anomaly detection has applications in various fields where unseen events
should be monitored and have adverse consequences if they go undetected.

17

Finance: Finding fraudulent activity in online financial transactions is cru-
cial in the current banking system to make it more secure and trusted. ML
techniques are applied to find anomalies among millions of transactions done
every day. These techniques are also helpful in detecting issues in financial
statements and anti-money laundering efforts [9].

Cyber security: Anomaly detection algorithms are applied for intrusion detec-
tion in a network, detecting unusual behavior by a malicious user, and finding
a virus file in a data storage [84].

Manufacturing: Ensuring that each product produced in the factory is perfect
is done by employing anomaly detection techniques to detect faults in each
product. Another exciting application is monitoring the health of manufactur-
ing machines in factories and avoiding halt of production lines [43].

City administration: Cities often deploy advanced equipment to gather data
from air quality to the number of cars passing through a particular junction.
This data can be used to find traffic congestion and to avoid it by using anom-
aly detection techniques [25]. Health care data collected from different facilities
can also be used for a broader analysis of health care services, prediction of any
overcapacity, and preventing the spread of any disease in society.

Medical: In the medical field, anomaly detection techniques are widely used
from diagnosis of diseases from using X-ray images to the prediction of dis-
eases and anomalies in heart rate data [4, 66].

Agriculture: Advanced equipment usage has allowed farmers to use anom-
aly detection algorithms on data collected from farms to tackle diseases and
other problems in farming. A good example is detecting disease in different
crops from images and weed detection, which can hinder the yield of crops.
These techniques essentially provide food security for masses [46].

2.7 Benchmarking

2.7.1 What is benchmarking

Benchmarking is defined by Anand et al. [8] as

“search for the best industry practices which will lead to exceptional performance
through the implementation of these best practices.”

Every organization has a set of tasks that need to be done to run the
organization smoothly. These tasks keep on changing with passing time and
quite often new approach is introduced to do these tasks. Ensuring that the
newly adopted approach to perform the task is better than the previous one
or measuring how much it is better is essential for an organization. It allows
them to compete with others and get better continuously. It is one of many
cases where benchmarking fulfills the needs of an organization.

2.7.2 Benchmarking in machine learning

Benchmarking in machine learning refers to comparing machine learning al-
gorithms based on different metrics and finding out which performs better un-

18

der given circumstances. Machine learning benchmark is a software tool used
for benchmarking. There are some general-purpose benchmarks, although
most benchmarks have a certain focus. MLPerf [51] and PMLB [60] are ex-
amples of general-purpose benchmarks.

Metrics: ML benchmarks are developed to compare algorithms based on met-
rics such as computing power requirement, accuracy, compatibility etc. NAB
[44] and SKAB [41] are examples of benchmarks which use accuracy of al-
gorithms for benchmarking.

Data: ML algorithms are run on particular data for evaluating their perform-
ance. These datasets are collected from various sources. Datasets can be
broadly divided into three types real-world, synthetic and toy data.
Real-world data is collected from the real-world through different devices such
as sensors measuring temperature in a factory. Synthetic data is generated ar-
tificially to simulate a real-world situation. Toy data is not best for benchmark-
ing but used as a readily available dataset to experiment.

Focus of benchmark: As machine learning continues to grow as a field, it has
become challenging to make a benchmark that can integrate and evaluate all
ML algorithms. One reason is that often ML algorithm is developed to solve
a specific problem. Another reason is that a fundamentally different approach
is required depending on the nature of the problem. It results in benchmarks
focusing on a specific application of ML algorithms. For example, NAB [44]
has focused on anomaly detection on time series, DeepBench [24] has focused
on deep learning and computing power needed by algorithms.

2.7.3 Architecture of a benchmark

Machine learning benchmark usually consists of three components data,
algorithms and benchmark software. Software tool train and test algorithms
on datasets. During this process, all the important metrics are measured. Later,
measured data is visualized to compare the performance of algorithms. Figure
2.8 show example of common components in most of ML benchmarks and how
they interact.

Figure 2.8: Components of a machine learning benchmark

19

2.7.4 Why ML benchmarks?

Machine learning as a field is growing very fast, new techniques and
algorithms are introduced constantly. Availability of good tools to evaluate
ML algorithms is important for both researchers and practitioners. Benchmark
accelerate the process for evaluating of an algorithm and selection of an
algorithm for a certain problem. They also provide a way to standardize the
algorithms on basis of performance and can become a reference point.

20

Part II

Problem analysis

22

Chapter 3

Machine learning algorithms
for anomaly detection

This chapter provides an overview of popular approaches used for anomaly detection
and ML algorithms for anomaly detection. Along with a brief introduction to
commercial tools available for anomaly detection, a comparison of deep learning and
machine is also part of the chapter.

3.1 Anomaly detection approaches

Numerous algorithms are available for anomaly detection and each one has a
different implementation. These differences can be of two types. Either they
are completely different due to distinct underlying principles used or variants
based on the same approach for detecting an anomaly. These approaches
work based on some assumptions related to anomalies. Approaches in ML
algorithms for anomaly detection can be categorized into distance-based,
clustering-based and model-based approach [52].

3.1.1 Distance-based approach

This approach measures and utilizes distance between all data points in n-
dimensional space to identify anomalies among normal data. Number n rep-
resents dimensions in a dataset. The simplest solution is to calculate the dis-
tance of each data point to all other, sum them and use it to detect anomalies.
High dimensionality has negative effect on distance based algorithms called
the curse of dimensionality. With increase in features, size of feature space is
also increased significantly. This results in sparse distribution of data in feature
space and distance measure is affected [3]. The distance and similarity meas-
urement methods play a critical role in the algorithm’s accuracy.

Distance calculation method: Euclidean, Minkowski, and Mahalanobis [52]
are various methods utilized by ML algorithms to measure the distance
between two data points. Euclidean distance is the simplest method as shown
in equation 3.1, d(x, y) represents the distance between two points x and y in
n-dimensional space.

23

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (3.1)

Similarity measurement method: Similarity measurement answers the ques-
tion, if two data points are similar or not? Calculating distance to all data
points, distance to k-nearest neighbors, median or average distance to k-
nearest neighbors are various approaches to measure similarity.

Assumption: It is assumed that the anomaly data instance has a relatively long
distance from other data instances.

3.1.2 Clustering-based approach

In this approach, data points in multi-dimensional space are grouped based
on density and assigned cluster labels. The rule for assigning data points to
a cluster differs among various algorithms. It differs in the following ways;
a point can be part of multiple clusters, clusters can overlap, or they are as-
signed non-binary values in 0 to 1 range. Figure 2.6 shows data visualized in
2-dimensional space with clusters.

Assumption: It is assumed that data points away from cluster centers are more
likely anomalous than data points closer to the cluster center.

3.1.3 Model-based approach

The model-based approach attempts to create an ML model that can represent
the underlying characteristics of a system. The model tries to understand the
relationship among data features. It is trained using available data to learn
from it. Linear regression is an example of an algorithm with model-based ap-
proach.

Assumption: It is assumed that a relationship among different data features
exists and affects the target variable.

3.2 Popular ML anomaly detection algorithms

3.2.1 Supervised algorithms

K-Nearest Neighbors (KNN)

KNN is a supervised non-parametric algorithm that is simultaneously quite
simple and effective for classification. All the instances from labeled data are
populated in the feature space. K number of nearest neighbors in feature space
are selected based on distance from new observation to find the class of new
observation. The class to which most numbers of neighbors belong is assigned
to a new observation. The value of K significantly impacts performance as low
value results in over-fitting and very high value increases computational com-
plexity. It has a short training time but requires high computation power and
memory in test phase. It is due to the computation of distance to K number of
observations in the dataset for finding nearest neighbors. Either value for K is
optimized by experimenting with different values or special methods applied

24

for finding it [13]. Figure 3.1 demonstrate effect of K value on assignment of
class to new instances. When K value is 2, a new instance is assigned class 2.
With the increase of K value to 3, the new instance is assigned class 1.

Figure 3.1: Effect of K value for KNN algorithm

Some KNN variants are quite effective for anomaly detection, e.g., Transduct-
ive Confidence Machines for K-Nearest Neighbors (TCM-KNN) [45] for in-
trusion detection, Mahalanobis-squared distance and one-class kNN based al-
gorithm for health data monitoring for anomalies [69], and Weighted KNN for
DoS attack detection [77].

Bayesian Network

A Bayesian network is a directed acyclic graph representing probabilistic
relationships among a set of variables of interest. All the variables are
conditionally independent of each other. The graph structure and variable
probabilities are learned from training data. Probabilistic inference is used
to calculate the probability for variables of interest. It is well suited for the
problem where variables are interdependent and helps in learning about causal
relationships [35].

Bayesian networks are effective in detection of anomalies in various fields, e.g.,
detection of disease outbreaks [83], network intrusion detection [40], etc.

Decision Tree

Decision trees are commonly used for the decision-making process. Classific-
ation Tree, Regression Tree, and Decision Forest Tree are multiple variants of
decision trees used to solve different types of problems. Decision tree internal
nodes are different variables and branches connecting these nodes are tests per-
formed on the value of variables. Leaf nodes represent categories or different
possible outcomes. There is a danger of overfitting that is reduced by prun-
ing of decision tree [57]. Decision Trees are used for anomaly detection, also
sometimes in conjunction with other algorithms such as Support Vector Ma-
chine [73]. Figure 3.2 shows a simple Decision Tree for the process of decision
making for buying a car.

25

Figure 3.2: Simple decision tree showing process of buying car and how
different factors impact the decision [54]

3.2.2 Unsupervised algorithms

K-means

K-means is an unsupervised non-parametric clustering algorithm. It tries to
divide data points into K number of clusters. In the first step, clusters are
assigned centroids randomly. The data points become part of a cluster of the
nearest centroid. In the next step, center point of each cluster is considered new
centroid. The last two steps are repeated until centroids do not change. The
value of K significantly affects the final clusters. Currently, different methods
are used for finding optimal K values, such as Elbow method, The Gap statistic
algorithm, The Silhouette Coefficient Algorithm etc. [86]. In Figure 2.4, an
example of K-means is shown for the two-dimensional dataset.
There are many improved versions of K-means algorithms; some of them are
used for anomaly detection in different domains [48, 85].

One-class Support Vector Machine (OCSVM)

OCSVM is a particular type of Support Vector Machine (SVM) that is effective
for anomaly detection. It creates a feature space with data points and
finds an optimal hyperplane separating normal data points from anomalies.
It maximizes the margin of hyperplane from data points of both classes.
Sometimes no hyperplane can separate data points of two classes, so a
particular possibility of error should be allowed[74]. OCSVM is commonly
used for anomaly detection and has applications in many fields. The algorithm
focuses on finding anomalies instead of finding normal behavior, as done in
many other algorithms. Figure 3.3 show working of the hyperplane. OCSVM
aims to find a hyperplane that can distinguish anomalies and normal data.

26

Figure 3.3: Hyperplane in 2-dimensional and 3-dimensional space [81]

Anomaly detection in telecommunication data [87], Fault detection in photo-
voltaic power plants [33] are two examples of OCSVM usage for anomaly de-
tection among many other its applications.

Isolation Forest

Isolation forest assumes that anomalies are very few and have distinct features
from normal data points. It is based on Isolation trees. A tree is partitioned
until each instance is isolated or all items in the tree have the same value. A
set of trees is built from data and referred to as isolation forest. Anomalies get
isolated at the early stage of partitioning. Tree nodes with the shortest aver-
age path length are labeled as anomalies. No need to calculate distance among
data instances makes isolation forest less computationally expensive compared
to distance-based algorithms[47].

Figure 3.4: Isolation tree partitioning process on one-dimensional data

3.2.3 Deep learning algorithms

DeepAnt

DeepAnt is an unsupervised deep learning algorithm purposed especially
to solve anomaly detection problem. It consists of two parts time-series
predictor and anomaly detector. A time-series predictor is used to predict the
next timestamp value based on data from a historical window of time. This
predictor relies on Convolutional Neural Network (CNN) for prediction. The
predicted value, along with the original corresponding value, is passed to the
anomaly detector. Euclidean distance is calculated between the original value

27

and predicted value and is used as anomaly score. Higher distance means
higher chances of this instance of being an anomaly. The algorithm performs
well with smaller datasets and detection of different types of anomalies, i.e.,
point anomaly, contextual anomaly, etc., even with seasonality in data [56].

Figure 3.5: Working of DeepAnt algorithm for anomaly detection

One-class Neural Networks (OC-NN)

One-class Neural Networks (OC-NN) uses Autoencoder for feature extraction
and provides this data as input for Feed-Forward Neural Network with
Linear or Sigmoid activation function, one hidden layer and one output node.
It is different from other algorithms which use Deep Learning for feature
extraction, then feed data to traditional ML algorithms for anomaly detection
because hidden layer data representation is customized for anomaly detection.
It is helpful to find anomalies in complex high dimensional data [19]. Figure
3.6 represents simplified version of OC-NN.

28

Figure 3.6: One-class Neural Network steps for anomaly detection [19]

3.3 Comparison of traditional machine learning
and deep learning for anomaly detection

There has been much research and ongoing to improve anomaly detection tech-
niques. However, there are still some unresolved issues due to complexities as-
sociated with anomalies. Rarity, anomalies with different characteristics, and
unknown until occurrence are some complexities that make anomaly detection
difficult. Deep learning successfully solves different ML problems in various
fields and is also employed for anomaly detection. Deep learning algorithms
for anomaly detection can broadly in three categories based on their usage.

One is feature extraction, where deep learning converts high dimensional data
to low dimensional data while keeping the most semantic-rich features intact.
This data can be further used for anomaly detection using desired techniques.
Employing readily available pre-trained deep learning models makes the
process quicker. Second is learning feature representation of normality, and the
third is end-to-end anomaly score learning. Traditional ML algorithms struggle
to perform optimally for anomaly detection for various reasons, including
high dimensional data, lack of labeled data, noisy data, complex anomalies,
and interdependent features. Due to better heterogeneous data and intricate
relationship learning ability, deep learning algorithms can perform better in
these situations. They can be used as anomaly explanation algorithms to figure
out why an instance is marked as anomaly [62].

29

DL performance is dependent on the availability of data and requires large
datasets for understanding it correctly. Their accuracy increases with an
increase in dataset size, While traditional ML algorithms can perform better
even with smaller datasets. Another difference is that deep learning algorithms
consume much more computing power for training and take a long time.
Deep Learning algorithms can take weeks for training, while traditional ML
algorithms usually finish training in a few minutes to hours on the same data.
On the other hand, deep learning takes a shorter time for testing [84].

3.4 Hybrid algorithms

In some cases, one type of ML algorithms cannot efficiently and accurately
solve a particular problem. It can be due to multiple reasons, e.g., high
dimensional data, noisy data, etc. Researchers combine different techniques
such as deep learning for feature extraction and traditional algorithms for
anomaly detection. Hybrid algorithms have performed better results in
some cases. Algorithms produced by deep learning and traditional machine
learning combination are called deep hybrid algorithms. Deep learning for
feature selection help in reducing the number of features and results in better
performance by traditional algorithms. However, deep learning does not
take into consideration our goal for anomaly detection, which may result in
removing essential features for the anomaly detection process [18]. Combining
multiple ML algorithms to enhance performance is called ensemble learning.
There are multiple strategies for combining algorithms. Average-based
strategies for numerical outputs and vote-based strategies for classification are
popular. In an average-based strategy, the average is calculated of output from
all algorithms and the final output is based on it. In vote-based strategy, all
algorithms vote for a specific output and output with a majority vote is selected
result [89].

Figure 3.7: Ensemble learning strategies for combining algorithms

30

3.5 Commercial tools for anomaly detection

Aside from many open-source algorithms, companies have also worked on
developing tools and algorithms for anomaly detection. A subset of them is
open-source and available for free usage. The rest of them are products and
sold by companies to their customers.
Seasonal Hybrid ESD (S-H-ESD) [72] by Twitter and Extensible Generic
Anomaly Detection System (EGADS) [27] by Yahoo are examples of open
source anomaly detection algorithms developed by companies. Anomaly
detector [11] as part of Microsoft Cognitive Services and Anodot [10] are
examples of paid commercial solutions for autonomous anomaly detection
without any extra work. These claim to perform very well, but most of them
are not benchmarked on public datasets.

3.6 Ways to categorize algorithms

3.6.1 Supervised vs Unsupervised learning

In supervised learning, algorithms learn from labeled data and based on this
learning; predictions are made for new data instances. It is tough to collect or
label data correctly in many situations, making supervised learning unsuitable.
Unsupervised learning is helpful in these situations as labeled data is not
required.

3.6.2 Eager vs Lazy learning

Eager learning algorithms work in two phases, the training and testing phase.
In the training phase, algorithms learn from training data instances and
create a model. While in the testing phase, test data instances are assigned
labels. Lazy learning, aka Instance-based algorithm, usually do not have
a clear separation between training and testing phases. It results in more
computational and storage resources required because creating a model for
each testing phase is computationally expensive. Despite being expensive,
eager learning algorithms can perform better in some instances due to a better
understanding of data complexities in comparison to eager learning algorithms
[2].

Figure 3.8: Lazy vs Eager learning algorithm steps

31

3.6.3 Parametric vs Non-Parametric learning

The number of parameters provided to the model is fixed and independent of
data instances in parametric learning. In contrast, for non-parametric learning,
the number of parameters can change based on data instances. In contrast
to non-parametric models, parametric models make assumptions about data,
thus making them helpful in cases where data for training is scarce. When
enough data is available, one can use non-parametric models and avoid
making strong assumptions [32].

32

Chapter 4

State-of-the-art anomaly
detection benchmarks

An overview of public datasets suitable for evaluating anomaly detection algorithms
and existing anomaly detection benchmarks is part of this chapter. This chapter also
describes shortcomings in existing anomaly detection benchmarks.

4.1 Public datasets with labeled anomalies

4.1.1 Yahoo Labeled Anomaly Detection Dataset

This dataset consists of 67 real-world data files collected from Yahoo services
and 300 artificially generated data files. All the anomalies are labeled and data
can be downloaded and used for research by requesting the Yahoo team to
access it. Dataset is widely used for benchmarking algorithms [65].

4.1.2 NAB Dataset

It has real-world and artificial data. Real-world data is collected from various
sources such as online advertising data, AWS server metrics with features, e.g.,
CPU utilization, Disk read operations, Network data transfer, Traffic data, etc.
Further meta-information about the dataset is in Section 4.2.1.

4.1.3 UCI KDD Archive

This dataset was released as part of Knowledge Discovery and Data Mining
(KDD) Tools Competition 1999 for network intrusion detection. The goal
for competitors was to detect cyber attacks among normal connections. The
dataset contains 5 million network connections data which is collected over
seven weeks. Each instance is labeled as normal or attack and has 41 features. It
contains 24 attack types, including Denial of Service attack, User to Root attack,
Remote to Local attack and Probing attack [12]. Tavallaee et al. [79] has created
an improved dataset NSL-KDD [59] after removing redundant, duplicate data.

34

4.1.4 UCI Machine learning repository

It is a popular data repository among researchers to evaluate the ML
algorithms, but most data is suited for classification problems. Some of it is
used for the evaluation of anomaly detection algorithms after downsampling,
but downsampling affects natural distribution anomalies [17]. It has 591
datasets donated by different researchers and organizations over a long period,
as the first donation dates back to 1988. These datasets are diverse both in terms
of subject area and type of data. For example, datasets contain information
from health records to internet advertisements and types are text to images.
A subset of datasets, approximately 30 datasets, are suitable for anomaly
detection problems without downsampling or any other operation which can
affect the semantics of data [26].

4.1.5 NASA valve dataset

NASA has collected this dataset from fuel control valves of rocket propulsion
systems through sensors. It is time-series data with anomalies [14].

4.1.6 ADRepository datasets

This data repository consists of numerical, categorical and image datasets
collected from various sources. Data is normalized for usage [61].

Dataset Data size Dimensionality

donors 619326 10
census 299285 500
fraud 284807 29
celeba 202599 39
backdoor 95329 196
campaign 41188 62
thyroid 7200 21

Table 4.1: Summary of numerical datasets in ADRepository

35

Dataset Data size Dimensionality Anomaly class

bank 41188 10 yes
census 299285 33 50K+
AID362 4279 114 active
w7a 49749 300 yes
CMC 1473 8 child>10
APAS 12695 64 train
CelebA 202599 39 bald
Chess 28056 6 zero
AD 3279 1555 ad.
Solar-flare 1066 11 F
Probe 64759 6 attack
U2R 60821 6 attack
R10 12897 100 corn
CoverType 581012 44 cottonwood

Table 4.2: Summary of classification datasets in ADRepository

4.1.7 Outlier Detection DataSets (ODDS) library

ODDS library has a collection of 31 datasets from various sources as mentioned
in Section 4.1.3 and UCI repository 4.1.4. Original datasets are processed to
make them suitable for the anomaly detection task. Processing of datasets
includes different methods such as downsampling, merging categories etc.

4.1.8 Summary of Datasets

Table 4.3 provides brief summary of public datasets for anomaly detection.

36

R
ep

os
it

or
y

D
at

as
et

s
Fe

at
ur

es
Su

bj
ec

tA
re

a
D

at
a

so
ur

ce
A

no
m

al
y

ty
pe

s

Ya
ho

o
da

ta
se

t
36

7
1

O
nl

in
e

tr
af

fic
R

ea
lw

or
ld

,A
rt

ifi
ci

al
Po

in
t,

A
gg

re
ga

te
N

A
B

58
1

D
iv

er
se

R
ea

lw
or

ld
,A

rt
ifi

ci
al

Po
in

t
U

C
IK

D
D

-9
9

1
42

O
nl

in
e

tr
af

fic
A

rt
ifi

ci
al

(S
im

ul
at

ed
)

Po
in

t,
A

gg
re

ga
te

U
C

IM
L

re
po

si
to

ry
59

1
1-

*
D

iv
er

se
R

ea
lw

or
ld

,A
rt

ifi
ci

al
Po

in
t,

A
gg

re
ga

te
A

D
R

ep
os

it
or

y
21

6-
15

55
D

iv
er

se
R

ea
lw

or
ld

,A
rt

ifi
ci

al
Po

in
t,

A
gg

re
ga

te
Ex

at
hl

on
da

ta
10

22
83

A
pp

lic
at

io
n

tr
ac

es
R

ea
lw

or
ld

Po
in

t

Ta
bl

e
4.

3:
Su

m
m

ar
y

of
pu

bl
ic

da
ta

se
ts

w
it

h
la

be
le

d
an

om
al

ie
s

37

4.2 Existing anomaly detection benchmarks

4.2.1 Numenta anomaly benchmark (NAB)

The Numenta Anomaly Benchmark (NAB) is developed to benchmark al-
gorithms for online anomaly detection in time-series data. It has a unique
scoring function that takes into account the early anomaly detection capability
of the algorithm. The scoring function gives positive scores to the algorithm
based on accuracy, early anomaly detection ability, fewer false positive alarms,
real-time anomaly detection ability and adaptability to new datasets automat-
ically. In figure. 4.1, example of scoring function shown that is used to determ-
ine how early an anomaly is detected [44]. New datasets and algorithms can
be incorporated for benchmarking in NAB.

Figure 4.1: NAB scoring function used for assigning score to an algorithm for
its ability to detect anomaly early [44]

Datasets

Data module of the benchmark consists of 58 data files collected from both
real-world and artificially generated data. All data files contain univariate time
series, each with 1000-22000 data instances, all hand-labeled.

Results

According to results, Hierarchical Temporal Memory (HTM) outperforms
other algorithms, including Twitter ADVec, Etsy Skyline and KNN-CAD, with
a 64.7 score out of a perfect score of 100.

38

Detector Standard
Profile Reward Low FP Reward Low FN

Perfect 100.0 100.0 100.0
Numenta HTM 70.5-69.7 62.6-61.7 75.2-74.2
CAD OSE 69.9 67.0 73.2
earthgecko Skyline 58.2 46.2 63.9
KNN CAD 58.0 43.4 64.8
Relative Entropy 54.6 47.6 58.8
Random Cut Forest 51.7 38.4 59.7
Twitter ADVec v1.0.0 47.1 33.6 53.5
Windowed Gaussian 39.6 20.9 47.4
Etsy Skyline 35.7 27.1 44.5
Bayesian Changepoint 17.7 3.2 32.2
EXPoSE 16.4 3.2 26.9
Random 11.0 1.2 19.5
Null 0.0 0.0 0.0

Table 4.4: Numenta anomaly benchmark results for accuracy of algorithms

4.2.2 Skoltech Anomaly Benchmark (SKAB)

The Skoltech Anomaly Benchmark (SKAB) [41] is developed to especially
evaluate algorithms for their efficiency in the detection of point anomalies
and change point in data. It has leader boards for the performance of
different algorithms with Jupyter notebooks for reproducing results. SKAB
has borrowed anomaly window-based scoring function from NAB 4.2.1 to give
scores to algorithms based on their ability for early anomaly detection.

Datasets

SKAB has 34 datasets, and each contains multivariate time-series data coming
from sensors in the testbed. It is labeled data with features such as temperature,
pressure, Voltage etc. Testbed setup is shown in figure 4.2 that is used for
generating data.

39

Figure 4.2: Testbed used to generate data for SKAB benchmark [41]

1,2 - solenoid valve; 3 - a tank with water; 4 - a water pump; 5 - emergency stop
button; 6 - electric motor; 7 - inverter; 8 - compactRIO; 9 - a mechanical lever for
shaft misalignment. Not shown parts - vibration sensor, pressure meter, flow
meter, thermocouple.

Results

Overall results from the benchmark are shown as two leaderboards for point
anomaly and change point detection performance of algorithms. The relevant
repository contains Jupyter notebooks as well for the reproduction of results.
Convolutional-Auto Encoder (Conv-AE) performed best for point anomaly
detection and Isolation forest performed better for change point detection.

4.2.3 Exathlon

Exathlon benchmark has focused on explainable anomaly detection. This
benchmark makes the comparison of anomaly detection and explanation
discovery techniques on large datasets collected from real-world [37].

Datasets

High dimensional data is collected from real-world traces of 10 applications
in Apache Spark. This large amount of data is collected specially for anomaly
detection evaluation.

40

Figure 4.3: Summary of datasets in Exathlon benchmark [37]

4.2.4 Summary of benchmarks

There are only a few benchmarks available with a focus on anomaly detection.
Table 4.3 provides a summary of benchmarks for evaluating anomaly detection
algorithms.

Name No. of
algorithms

No. of
datasets Data source Allow new

algorithm/dataset

NAB 12 58 Real world,
Artificial Yes

SKAB 13 32 Real world Yes
Exathlon 3 10 Real world Yes

Table 4.5: Summary of existing machine learning benchmarks

4.3 Shortcomings in existing benchmarks

– Datasets used in benchmarks are not complex enough to represent real-
world problems and do not have enough variety, e.g., NAB has only
univariate data for evaluation. Anomalies are easy to detect in these
datasets [22].

– Labeling of datasets on which benchmarks operate is not accurate in
some cases. It makes results from these benchmarks also less accurate
[22].

– Adding new datasets or algorithms for evaluation is quite difficult
and make benchmark expansion difficult. For example, SKAB has
implementation in Jupyter notebooks without standard guidelines.

– Evaluating commercial solutions for anomaly detection is not possible
with existing benchmarks.

– Small size and lack of diversity in datasets for evaluation hinder existing
benchmarks from being applicable in many situations.

– Some important metrics are not measured, e.g., time complexity, com-
putation power needed for anomaly detection, and the effect of training
dataset size on algorithm accuracy.

41

– Researchers often create benchmarks with datasets and evaluate their
proposed algorithm, e.g., NAB. It can potentially introduce bias in the
benchmark towards their own proposed anomaly detection algorithm.

– Benchmarks do not visualize results for each algorithm against each
dataset file. It increases the difficulty in understanding how algorithms
performed and behaved on the different types of data. It reduces
the ability of researchers to get insight and analyze results from the
benchmark.

– Benchmarks do not provide information about how they performed on
different types of data, e.g., univariate, and multivariate data.

– No benchmark is available for the comparison of deep learning al-
gorithms and traditional machine learning algorithms for anomaly de-
tection.

42

Part III

Open anomaly detection
benchmark (OADB)

44

Chapter 5

Design and Implementation

This chapter includes a brief overview of general requirements for an ideal anomaly
detection benchmark and requirements defined for our proposed benchmark (OADB).
Further, this chapter provides detail about the OADB implementation, integrated
datasets, algorithms and process for extension of the OADB.

5.1 General requirements for an ideal anomaly
detection benchmark

Ideal machine learning benchmark should have following characteristics [36,
42].

Transparency The benchmark should have good documentation for details
about its working and implementation. Therefore, users can quickly get in-
sight into the working of benchmark and understand results produced by the
benchmark.

Reproducibility Results produced by the benchmark should be reproducible
under the same configuration.

Usability Setting up and using benchmark should be a short and straightfor-
ward process. It should be designed and developed to be used by both tech-
nical and non-technical users.

Fairness The benchmark should ensure all the algorithms are tested under the
same conditions and not biased toward a set of algorithms. Benchmark should
not have constraints that affect algorithms differently.

Expandability The benchmark should be expandable with the integration of
new algorithms and datasets. The expansion process should be reasonably
straightforward.

Portability The benchmark should work on different types of operating sys-
tems, e.g., Windows, MacOS, etc., and underlying hardware.

46

5.2 Requirements for Open Anomaly Detection
Benchmark (OADB)

Following are the requirements which should be fulfilled by a anomaly
detection benchmark to be reasonably good. These requirements are based
on the needs of researchers and practitioners for using anomaly detection
benchmarks.

– R1: Accuracy The benchmark should be able to compare performance of
algorithms based on their accuracy on given datasets.

– R2: Computational complexity The benchmark should measure the time
utilized by various algorithms for detecting anomalies in given datasets
under given conditions.

– R3: Extensibility The benchmark should allow extension by adding new
algorithms and datasets in the future.

– R4: Visualization The result from benchmark should be visualized so
that users can visualize the result of each algorithm against each dataset
individually.

– R5: Documentation The benchmark should have good documentation
about its working and implementation details. Process for extension of
the benchmark with new dataset or algorithm should be documented as
well.

– R6: Configuration The benchmark should allow configuration of bench-
mark through parameters e.g., specifying train and test split size, etc.

– R7: Real-world data The benchmark should have datasets collected from
the real world. Real-world datasets give legitimacy to benchmarks to be
used by researchers and practitioners.

– R8: Datasets variety The benchmark should have a variety of datasets
for anomaly detection. Ideally, datasets should vary in the number of
features from one to hundreds and similarly in size.

– R9: Training dataset size/Accuracy trade-offs The benchmark should
provide insight into trade-offs between training dataset size and accuracy
of the algorithm on given datasets.

– R10: Anomaly types The benchmark should accommodate benchmark-
ing of algorithms for various types of anomalies. It should also show
how algorithms performed on the different types of anomalies.

– R11: Deep learning The benchmark should allow the integration of
deep learning algorithms for comparison with other machine learning
algorithms.

5.3 Evaluation of existing benchmarks based on
defined requirements

A significant amount of research is being done to improve existing anomaly
detection techniques and develop new anomaly detection algorithms [7, 19, 29,
56]. Researchers worked on evaluating and comparing various techniques for
anomaly detection [5, 55]. However, developing an open-source benchmark

47

was not the main focus. A small number of benchmarks are available with a
focus on anomaly detection problems.

There are a few anomaly detection benchmarks developed as mentioned in sec-
tion 4.2 and all of them suffer from various deficiencies as described in section
4.3. These benchmarks are essential for researchers and practitioners to find
appropriate algorithms for their anomaly detection problems. The unavailab-
ility of reliable benchmarks increases the difficulty in selecting an algorithm
and benchmarking a new algorithm.

Table 5.1 shows evaluation of existing anomaly detection benchmarks based on
our requirements. All the requirements fulfillment is checked and a relevant
total score is assigned to benchmarks.

X represents that benchmark fulfills the requirement and assigned 1 score.
7 represents that benchmark does not fulfill the requirement and assigned 0
score.
* represents that benchmark partially fulfills the requirement and assigned 0.5
score.

Benchmark R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Total
score

NAB X 7 X * * 7 X * 7 * 7 5.0
SKAB X 7 * 7 7 7 X 7 7 X * 4.0
Exathlon X 7 7 * 7 7 X 7 7 * 7 3.0

Table 5.1: Evaluation of popular anomaly detection benchmarks based on
defined requirements

Evaluation of existing benchmarks shows the obvious shortcomings and over-
all lack of anomaly detection benchmarks. They lack a good variety of datasets
and are not transparent. This analysis of state-of-the-art anomaly detection
benchmarks suggests the need for a new anomaly detection benchmark. The
new benchmark should address existing benchmarks’ issues and give insight
into state-of-the-art anomaly detection algorithms.

5.4 Problem and proposed solution

As mentioned in section 4.3 and 5.3, there are only a few benchmarks
developed to evaluate anomaly detection algorithms and most of them are
plagued with various issues. Consequently, these benchmarks are problematic
to use for any benchmarking purpose. Consequently, hinder the ability to get
insight into the status of anomaly detection algorithms performance. There is
a need for a transparent and expandable benchmark to meet practitioners’ and
researchers’ various requirements.

We present a new anomaly detection benchmark that fulfills most of the basic
requirements to solve this problem. The new benchmark is named as Open
Anomaly Detection Benchmark (OADB). It is transparent enough to give a
good insight into datasets, algorithms and their performance on datasets.
Some of the existing benchmarks contain certain biases [22], OADB minimizes

48

bias toward any specific algorithm. It will make research anomaly detection
algorithms more transparent and verifying progress in the field relatively easy.

Some benchmarks have only one type of datasets, e.g., Numenta benchmark
has only univariate datasets. However, OADB has datasets collected from
various sources and includes recently published public datasets.

5.5 Design and architecture

Benchmark architecture is designed to be modular. Code is divided into
Detector, Data, Preprocessor, Core, Helper and Visualizer modules. As shown
in Figure 5.1 data module reads datasets from files and it is passed through
different modules and processed accordingly. In the final phase, benchmarking
result is saved in the result folder. This saved result file is used to visualize it
for the user.

Figure 5.1: OADB modules and interaction of them with each other

5.6 Summary of datasets utilized in OADB

Getting quality labeled data for anomaly detection benchmarks is difficult.
There are not many public datasets that contain anomalies and are labeled.
We have have collected data from Numenta anomaly benchmark (NAB) [44],
Yahoo [65], ODDS library [64] and UCR Time Series Anomaly Archive [22]. By
combining these datasets, a data repository is created that has a good variety
of data and is well suited for benchmarking process. These datasets are trans-
formed to use in our benchmark based on our requirements. Table 5.2 provides
summary of datasets integrated in OADB for benchmarking use.

49

Dataset Type No. of datasets

NAB Univariate 58
Yahoo Univariate 367
UCR time series Univariate 250
ODDS library Multivariate 31

Table 5.2: Overview of OADB datasets

5.7 Implementation

Python language version 3.9, PyCharm IDE and some popular open-source
libraries are used to develop benchmark. Figure 5.2 present the OADB organ-
ization of modules..

Figure 5.2: Organization of OADB modules

5.7.1 Modules

Data module: This module contains all the datasets used for benchmarking.
Each folder name represents a different repository from where data is sourced.
This module collects all CSV files divided into different folders and transfers
them to other modules as a dictionary.

Detector module: This module contain implementation of all algorithms in-
tegrated in benchmark. Implementation for these algorithms is sourced from
Anomaly Detection Toolkit (ADTK) [11], PyOD [88], NAB [44] and Scikit-learn
[71] open source libraries. Instances of all algorithms are passed to core mod-
ule for evaluation. Table 5.3 provides overview of all algorithms integrated in
OADB.

Preprocessor module: This module performs data cleaning and makes data
ready for algorithms consumption. It also splits data into test and training
datasets.

50

Algorithm Data support Implementation source

Relative entropy Univariate NAB
Windowed gaussian Univariate NAB
Bayesian change point detector Univariate NAB
EXPoSE (EXPected Similarity
Estimation) Univariate NAB

Contextual Anomaly Detector -
Open Source Edition Univariate NAB

KNN CAD Univariate NAB
Isolation forest Multivariate Scikit-learn
Elliptic envelope Multivariate Scikit-learn
Local outlier factor Multivariate Scikit-learn
Generalized ESD test Univariate ADTK
Principal component analysis Univariate ADTK
Angle based outlier Multivariate PyOD
Clustering based
local outlier factor Multivariate PyOD

One class SVM Multivariate PyOD
Autoencoder Multivariate PyOD

Table 5.3: Overview of OADB algorithms

Core module: This module receives data from the Preprocessor module and
algorithms from the Detector module. Runs each algorithm against each data-
set and saves the result in a file for each combination.

Visualize module: This module reads result data from result files. All data
is combined into a single data frame to calculate required metrics such as ac-
curacy and time complexity. This data is visualized as a heat map to provide
overview of result. Each cell represents the performance of an algorithm on a
data folder. These cells can be selected to see the performance of an algorithm
on subfolders and individual dataset. It allows users to view each detail of
datasets and result of benchmark.

5.7.2 Benchmarking metrics

Metrics selected for benchmarking are essential in determining its success
and usability for benchmarking. There are many metrics to evaluate the
performance of an algorithm, such as Accuracy, Relevance, Time complexity,
Computation power needed etc. Following are two main performance metrics
selected for the OADB benchmark to evaluate and compare the performance
of various algorithms.

Accuracy:

There are various methods available to get an insight of machine learning
algorithm accuracy on a given dataset, e.g., confusion matrix, and Area Under
Curve (AUC). OADB, during benchmarking process, saves the dataset, actual
anomaly labels and detected anomalies by algorithm in the result file. OADB

51

visualizes accuracy result in different ways to provide deeper detail about the
performance of algorithm.

Computational complexity:

Computational complexity of the algorithm refer to the computing power
used by algorithms for training and detecting anomalies in a dataset. OADB
measures the time used by the algorithm in training and test phase under given
computing power. The Visualize module uses this data to present it to user in
an understandable form.

5.8 Extensions

5.8.1 Dataset integration

New dataset integration is quite simple. Data should be in the required format
as mentioned in the benchmark repository. By simply copying into a new
folder in the datasets folder, it will be integrated into benchmark.

5.8.2 Algorithm integration

It is a two-step process. First, create a new class inheriting BaseDetector class
and then add this new class as an element in the algorithms dictionary.

5.8.3 Customization

OADB allows customization of algorithms implementation. Algorithms
integrated in the benchmark require different parameters to create a model.
These parameters affect the algorithm’s performance in detecting anomalies.
They can be adjusted in the Detector module to meet specific needs or to make
improvements. The number of algorithms to be used for benchmarking can
be adjusted by changing the dictionary in the detector module that contains
all algorithms. OADB also allows setting training and test data size as a
percentage of the complete dataset through parameters.

52

Chapter 6

Evaluation

In this chapter, results generated from Open Anomaly Detection Benchmark (OADB)
are analyzed. First, information about environment setup is provided. Further, we
analyze datasets used in the benchmark and results produced through different aspects.
Afterward, Open Anomaly Detection Benchmark (OADB) is evaluated based on a set
of requirements and its capabilities are described.

6.1 Experimental Setup

Underlying hardware and software setup affects the performance of machine
learning algorithms in terms of time complexity. A larger amount of computing
power results in faster processing of data for anomaly detection. We have
used the same setup for benchmarking to avoid any negative impact on the
benchmark results.

6.1.1 Hardware setup

All the benchmarking experiments are done in the Google Cloud Platform
(GCP). Benchmark is run on three Virtual Machine (VM) instances, each with
specifications as described Table 6.1.

Item Specification

Cloud provider Google Cloud Platform (GCP)
CPU platform Intel Broadwell
vCPUs 8
Memory 32GB
Boot disk 50GB
OS Debian GNU/Linux 10 (buster)
Machine type e2-standard-8
Service Compute engine

Table 6.1: Hardware specifications of experimental setup

54

6.1.2 Software setup

Table 6.2 provides detail about software libraries used in OADB and their
versions.

Library Version

Python 3.9
Scikit-learn 0.24.2
PyOD 0.9.4
Pandas 1.3.3
Numpy 1.19.5
Matplotlib 3.4.3
ADTK 0.6.2
Tensorflow 2.60

Table 6.2: Software libraries used for development of OADB

6.2 Evaluation of OADB datasets

As described in table 5.2, we have sourced datasets from four data repositories.
These datasets are organized into four folders nab, odd, yahoo and ucr. One
of four folders contain multivariate datasets and the rest consist of univariate
datasets.

Figure 6.1 provides insight into datasets used in OADB. Bar chart (a) provides
a summary of the number of dataset files in OADB. Bar chart (b) shows that
Yahoo datasets have 4683 data instances per dataset on average. This number
increases for NAB, UCR and ODDS, reaching 440699 data instances per dataset.
It is evident from (a) and (b) that datasets have a good variety in terms of
dataset size. Thus, allowing algorithms to be tested on various amounts
of data. Bar chart (c) presents information about the number of features in
multivariate datasets. Datasets have features from a few to a few hundred.
It is evident that datasets also have a wide variety in terms of the number of
features.

This analysis of datasets through visualization makes it evident that OADB
datasets have great variety in terms of size and dimensions. Hence, these
datasets are well suited for the evaluation of anomaly detection algorithms.

55

Fi
gu

re
6.

1:
A

na
ly

si
s

of
da

ta
se

ts
in

O
A

D
B

th
ro

ug
h

di
ff

er
en

ta
sp

ec
ts

56

Figure 6.2: Visualization of datasets individually for getting insight into data
patterns

57

Figure 6.2 visualize randomly selected dataset files as examples and provide
information about their characteristics. All the datasets have different patterns
in them. Some datasets have obvious and easy to detect anomalies, e.g. as
shown in (d) Yahoo dataset. At the same time, others contain anomalies that
are difficult to detect e.g. as shown in (c) UCR dataset. Datasets contain various
kinds of anomalies e.g. density changes, a sudden increase in values, change
in cyclical pattern etc.

It is evident from the analysis that OADB datasets have the qualities required
to evaluate anomaly detection algorithms and are well suited to be used in
anomaly detection benchmarks.

6.3 Analysis of ML algorithms performance for
anomaly detection

In this section, we will perform multiple benchmarking experiments to evalu-
ate the performance of machine learning algorithms for anomaly detection. We
aim to learn patterns in the performance of algorithms for anomaly detection
by comparing them.

6.3.1 Methods for measuring accuracy

Accuracy of an algorithm can be measured through various methods. Some
of these methods suffer from different type of issues and do not shed light on
all aspects. Eventually, leading researchers into wrong directions. A subset of
popular methods for measuring accuracy are described below.

Confusion matrix: Confusion matrix [80] is two-dimensional matrix and con-
sists of four values True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN). These values can be explained in terms of an-
omaly detection as

Figure 6.3: Description of the confusion matrix for anomaly detection [63]

True positive is a data instance that is correctly labeled as an anomaly by the

58

algorithm.
True negative is a normal data instance that is also labeled as normal by the
algorithm.
False positive is a data instance that is incorrectly labeled as an anomaly by
the algorithm.
False negative is a data instance labeled as normal by the algorithm, but it is
an anomaly.

Confusion matrix provides information about both failures and successes of
the algorithm. However, it is not suitable to get an insight into the accuracy
of an algorithm on multiple datasets. Figure. 6.3 show example of confusion
matrix for anomaly detection algorithm.

Recall: represents proportion of anomalies detected by the algorithm out of all
actual anomalies.

Recall =
TP

TP + FN
(6.1)

Precision: represents proportion of correctly detected anomalies.

Precision =
TP

TP + FP
(6.2)

Classification accuracy: represents the percentage of data instances correctly
labeled.

Classi f ication accuracy =
TP + TN

TP + FP + TN + FN
(6.3)

F1 score: is measured by the equal contribution of both precision and recall as
shown in equation 6.5 and defined as [70]

“a harmonic mean of precision and recall”

F1 score =
2× Precision× Recall

Precision + Recall
(6.4)

Receiver Operating Characteristic (ROC) curve: ROC curve is generated
by plotting False positive rate on the X-axis and True positive rate on Y-
axis. It provides insight into performance of algorithm under different
thresholds for labeling an instance as an anomaly. Area Under Curve (AUC)
is the measurement of area under the ROC curve and helps to compare the
performance of algorithms. Higher AUC means better performance of the
algorithm.

Precision-recall curve: The precision-recall curve is generated by plotting
precision on Y-axis and recall on X-axis at various thresholds. This curve
provides insight into the trade-off between precision and recall.

Average precision score: The average precision score describes the precision-
recall curve, but it is not the area under curve. The increase in recall from the
preceding threshold is used as weight and the weighted average of precision
values is calculated.

59

Average precision score = ∑
n
(Rn − Rn−1)Pn (6.5)

What are the best metrics for anomaly detection results evaluation?

A confusion matrix can accurately summarize the accuracy of an anomaly
detection algorithm. However, a confusion matrix cannot be efficiently used
for comparing performance of multiple algorithms. Classification accuracy
measurement allows comparison. However, it is flawed for comparing
accuracy in imbalanced data. For example, if an algorithm labels all data
instances in the dataset as normal and 5% data instances are actual anomalies.
It will result in 95% classification accuracy of the algorithm. This behavior
illustrates wrong picture about the accuracy of algorithm.

Precision and recall provide better information about the accuracy of al-
gorithm. However, precision and recall are measured at one threshold and de-
pendent on the threshold value. F1 score summarizes the precision and recall
values by an equal contribution from both values in the calculation. Usually,
algorithms assign anomaly scores to data instances based on the probability of
that instance being an anomaly. ROC curve and precision-recall curve are used
to analyze the accuracy of an algorithm at varying thresholds. Precision-recall
provides a better view for imbalanced data e.g. in the case of anomaly detec-
tion due to rarity of anomalies. Further, the Average precision score provides
a way to summarize the precision-recall curve.

It is evident from analysis that one should analyze the performance of
algorithms using multiple metrics and look for a more relevant metric for his
needs. It is also obvious that Precision, Recall, F1 score, Precision-recall curve
and Average precision score are better metrics for evaluating the performance
of anomaly detection algorithms.

6.3.2 Accuracy analysis of anomaly detection algorithms

These results are generated using OADB with 30-70 split for training and test
data. Thresholds for declaring a data instance as anomaly are defined and
optimized internally i.e. using contamination values, by algorithms for results
shown in figure. 6.4, 6.5 and 6.6. ODD datasets are multivariate and Yahoo,
NAB, UCR datasets are univariate.

60

Figure 6.4: Heat map showing the precision score of each algorithm against
each data repository in OADB

* Heat map cells with (–) symbol show algorithm is no evaluated against this
data repository due to its implementation limitations. As some algorithms
perform only on univariate data.

61

Figure 6.5: Heat map showing recall score of each algorithm against each data
repository in OADB

* Heat map cells with (–) symbol show algorithm is no evaluated against this
data repository due to its implementation limitations.

62

Figure 6.6: Heat map showing average F1 score of each algorithm against each
data repository in OADB

* Heat map cells with (–) symbol show algorithm is no evaluated against this
data repository due to its implementation limitations.

63

Figures 6.4, 6.5 and 6.6 show that all algorithms performed better on NAB data
repository in comparison to other univariate data repositories. It is due to the
higher complexity of datasets in UCR and Yahoo, making it difficult to detect
anomalies. It can be observed that the Windowed Gaussian algorithm has a
relatively higher precision and f1 score for univariate datasets. It is also visible
that the isolation forest algorithm performs better on multivariate datasets than
other algorithms in terms of precision and f1 score. These precision, recall
and F1 score heat maps summarize the performance of algorithms on a wide
variety of datasets. Clustering based local outlier factor has highest recall score
relative to other algorithms. Algorithms often perform with some assumptions
about the data. For example, Isolation forest assume that anomalies are
rare and elliptic envelope requires data to be Gaussian distributed. These
assumptions may not hold in some of our datasets and result in low accuracy.
It can be solved to some extent by analyzing individual datasets available for
evaluation.

Precision and recall curve analysis

Precision, recall and f1 score are entirely dependent on the threshold. The
threshold value is used for labeling a data instance as an anomaly. However,
it is not easy to find the threshold that maximizes the accuracy of an algorithm
when true anomalies are unknown. Another way to evaluate the accuracy of
the algorithm is by utilizing the precision-recall curve. The average precision
score summarizes the precision-recall curve as explained in Section 6.3.1.

Figure 6.7 show precision-recall curves of KNN, Elliptic envelope, Windowed
gaussian and Isolation forest on a single dataset. It can be observed that all
algorithms have different precision-recall curves and accuracy.

Figure 6.8 show precision-recall curves of Isolation forest algorithm on a
variety of datasets. Figures (a) and (b) show high algorithm accuracy and good
precision and recall trade-offs with increasing anomaly thresholds. Figures (c)
show the worst performance and slightly better accuracy in figure (d). It can
be observed that precision-recall curves vary significantly based on the dataset
utilized for evaluation.

It is evident from figures 6.7 and 6.8 that algorithms accuracy and precision-
recall curves vary depending on qualities possessed by dataset. We can
evaluate algorithms on a wide variety of datasets and get an overview of their
performance. However, they behave differently on various datasets and one
needs to evaluate performance on datasets relevant for them.

64

(a)

(b)

(c)
65

(d)

Figure 6.7: Precision-recall curves of KNN, Elliptic envelope, Windowed
gaussian and Isolation forest on single dataset

(a)

66

(b)

(c)

67

(d)

Figure 6.8: Precision-recall curves of Isolation forest algorithm on multiple
datasets

Figure 6.9 show average precision score of algorithms and it can be observed
that elliptic envelope has best average precision score followed by Windowed
guassian. Isolation forest has best average precision score on multivariate
datasets.

68

Figure 6.9: Heat map showing average precision score of each algorithm
against each data repository

* Heat map cells with (–) symbol show algorithm is no evaluated against this
data repository due to its implementation limitations.

6.3.3 Computational complexity analysis of anomaly detection
algorithms

The computational complexity of algorithms for anomaly detection plays a
vital role in utilizing them for a particular problem. It is also vital how the
performance of algorithms change with the increasing size of the dataset. In
many domains, anomaly detection requires the algorithm to detect anomalies

69

in a short time frame with limited computing power.

Figure 6.10: Showing time taken by algorithms for training and test phase
(combined) on univariate datasets with increasing dataset size

Figure. 6.10 shows the time taken by algorithms to train and detect anomalies
on univariate datasets. It can be observed that KNN CAD [16] is the worst
performer in terms of computational complexity. KNN CAD calculates dot
product and inverse of training data matrix for assigning anomaly score to
each new observation. These mathematical operations are computationally
expensive and result in bad performance. Relative entropy algorithm also
performs poorly after KNN CAD with the increasing size of the dataset.
It is observed that Elliptic envelope has lowest computational complexity.
Windowed Gaussian and Isolation forest scale much better with increasing size
of dataset in comparison to other algorithms.

70

Figure 6.11: Showing time taken by algorithms for training phase on
multivariate datasets

Figure 6.12: Showing time taken by algorithms for test phase on multivariate
datasets

71

Figure 6.13: Showing time taken by algorithms for training and test phase
(combined) on multivariate datasets

Figures 6.11 and 6.12 show computational complexity of algorithms in training
and test phase on multivariate datasets. It is observed that One-class SVM
computational complexity increase enormously with the increase in dataset
size. The computational complexity of the elliptic envelope was lowest in the
test phase. However, it is much higher in the training phase. KNN performed
better in the training phase than test phase. Autoencoder is computationally
expensive but less expensive than One-class SVM.

It can be observed and evident from figures 6.10, 6.11, 6.12 and 6.13 that the
Isolation forest algorithm has better performance in terms of computational
complexity on multivariate datasets. However, for univariate datasets it is
second best after elliptic envelope. This analysis also concludes that using
deep learning is not always more expensive than traditional machine learning
algorithms and it depends underlying approach used by algorithm for finding
anomaly. The figures above show that the performance of autoencoder in
comparison to other traditional machine learning algorithms.

6.4 Evaluation of OADB based on defined require-
ments

In this section, we are evaluating proposed Open Anomaly Detection Bench-
mark (OADB) for the requirements mentioned in Section 5.2.

– R1: OADB has the capability to compare accuracy performance. OADB
save accuracy results of algorithms in results folder.

– R2: OADB provides capability for measuring computational complexity
of algorithms. It also provides information about time taken taken during

72

training and test phase.

– R3: OADB allows integration of new algorithm and dataset. Integration
of new algorithm and dataset is two step process. This process is
described in Section 5.8.

– R4: OADB provides functionality to visualize the performance of
algorithms as heat map. One can do in depth analysis by clicking on
cells in heat map and even visualize the performance of each algorithm
against each dataset. Accuracy can be evaluated using F1, precision,
recall, average precision score metrics. Figure. 6.4, 6.14 and 6.15
show visualization is divided into 4 stages heat map, bar chart showing
average score for sub folders of a data repository, bar chart showing
scores on dataset files in sub folders and detailed view of algorithm
performance on selected dataset.

Figure 6.14: Example of OADB visualization on data folder level

73

Figure 6.15: Example of OADB visualization of an algorithm accuracy
performance against single dataset file

– R5: Process for expansion of benchmark with new algorithms and
datasets is explained in Section 5.8. It also has detailed documentation
about its working documentation. Documentation and source code of
benchmark will be available in a public repository on Github.

– R6: OADB can be configured to work in certain way both by passing
parameters for running algorithms and visualizing results. In running
phase, one can provide parameters to adjust the training and test data
split size. Similarly deciding to update existing results or not. In
visualising phase, one can decide to evaluate algorithms accuracy on
desired metric by passing accuracy measure metric parameter.

– R7: Most of datasets included in OADB are collected from real world e.g.
Yahoo, NAB datasets.

– R8: OADB has datasets of wide variety with different sizes, source and
characteristics. It is evident from analysis done in Section 6.2.

– R9: Analysis of trade offs between training data size and accuracy can be
done by running benchmark with multiple training test split sizes. There
is room for improvement in OADB to better fulfil this requirement.

– R10: OADB can be configured to be used for point and aggregate
anomalies by passing "use_windows". If set to true, OADB marks
aggregate anomaly detected even only on data instance in anomalous
group is detected. OADB can be improved to address the need for
contextual anomaly evaluation.

– R11: Autoencoder is only deep learning algorithm integrated in OADB.
This allows comparison of traditional machine learning and deep
learning. More deep learning algorithms should be added in OADB to
get correct evaluation of deep learning algorithms for anomaly detection.

Figure. 6.3 provide summary about how many requirements are fulfilled by
OADB.

74

Benchmark R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Total
score

OADB X X X X X X X X * * * 9.5

Table 6.3: Evaluation of Open Anomaly Detection Benchmark (OADB) based
on defined requirements

X represent benchmark fulfill the requirement and assigned 1 score.
7 represent benchmark does not fulfill the requirement and assigned 0 score.
* represent benchmark partially fulfill the requirement and assigned 0.5 score.

It is evident from analysis that OADB has performed well according to our
defined requirements. OADB has good visualization capability to provide
overview of algorithms performance in terms of accuracy and computational
complexity. OADB allows integration of both traditional machine learning and
deep learning algorithms while existing benchmarks focus on only one e.g.
NAB. OADB has univariate and multivariate datasets and has some algorithms
working with only univariate datasets. It allows the integration of a maximum
number of algorithms used for anomaly detection in OADB.

OADB is available as part of DataBench Toolbox. DataBench Toolbox has been
created as part of DataBench project to provide a better way to search and select
benchmarks according to needs of a user and problem domain. DataBench
project aimed to make benchmarking process easier [23].

Figure 6.16: OADB as part of DataBench toolbox

75

Part IV

Summary and outlook

77

Chapter 7

Conclusion and future work

This chapter provides a summary of benchmarking experiments done in the previous
chapter and conclusions drawn. As every scientific research faces some limitations, we
also face a fair share of limitations. We have mentioned the limitations and defined the
scope of the thesis in this chapter. Afterward, we have pointed out a few directions for
future research.

7.1 Contributions summary

We have provided a comprehensive analysis of existing benchmarks focused
on evaluating and comparing machine learning algorithms for anomaly detec-
tion in numerical data. These benchmarks are evaluated regarding a particular
set of essential requirements relevant to practitioners and their shortcomings
are outlined. We have summarized challenges in anomaly detection and de-
veloping a good anomaly detection benchmark. Various benchmarks perform
well in some aspects of benchmarking and have shortcomings in others.

A new benchmark, Open Anomaly Detection Benchmark (OADB), is proposed
and developed to fill the gaps of the existing benchmarks. This benchmark
focuses on providing a wide variety of datasets for evaluating machine
learning algorithms for anomaly detection. The proposed Open Anomaly
Detection Benchmark (OADB) also focuses on transparency in results and
provides the ability to view results in depth.

We have identified popular machine learning algorithms used for anomaly
detection in numerical data. Also, integrated these algorithms in OADB and
evaluated them. Our interpretation of results is provided along with directions
for future work.

7.2 Scope and limitations

Anomaly detection can be divided into different branches based on datatype
e.g. video, image, text, numerical. In this study, we have focused on univariate
and multivariate numerical data for the evaluation of algorithms.

There has been a limited focus on tuning machine learning algorithms to
perform better on each dataset. Our focus has been to evaluate algorithms
on a wide variety of datasets without assuming anything about the dataset.

78

Another limitation is, fewer benchmarking experiments using OADB are done.
It is due to high computational power and the longer time required to complete
each experiment.

Only one deep learning algorithm, Autoencoder, is integrated into OADB for
evaluation. More deep learning algorithms should be integrated to better
understand the tradeoffs between traditional machine learning and deep
learning algorithms. Many more traditional machine learning algorithms are
available that can be integrated into OADB.

7.3 Conclusions

We have drawn following conclusions from this study to answer our research
questions as described in Section 1.2.

Conclusion for Q1: We have identified essential requirements for a good
anomaly detection benchmark, described in Section 5.2. In-depth visualization
of results, extensibility, and a wide variety of datasets are the most important
requirements among all.

Conclusion for Q2: In terms of accuracy, there is no single machine learning
algorithm that can perform best on all datasets. One needs to have a closer look
at datasets and consider algorithm performance on datasets relevant to them.
Some algorithms perform better on specific datasets and not so well on other
datasets.

Windowed Gaussian algorithm on univariate datasets and Isolation Forest
on multivariate datasets have the highest precision and f1 score on average.
Clustering Based Local Outlier Factor has the relatively highest recall score
among the algorithms integrated into OADB. In contrast, One-class SVM
has best recall score on multivariate datasets. These are results based on
anomaly threshold optimized by the algorithm based on contamination in the
dataset. Elliptic envelope has the highest average precision score, followed by
Windowed Gaussian. Isolation forest has the highest average precision score
on multivariate datasets. Considering all the important metrics for accuracy,
we conclude that Windowed Gaussian on univariate datasets and Isolation
forest on multivariate datasets perform better for anomaly detection than other
machine learning algorithms integrated into the OADB.

In terms of computational complexity, Elliptic envelope performs better on
univariate datasets but with an increasing number of features it performance
degrade. Isolation forest followed by elliptic envelope has low computational
complexity on univariate datasets with increasing size of dataset. Isolation
forest also scales much better than other algorithms in OADB, with an increase
in both the number of features and data instances in the dataset.

Conclusion for Q3: Computational complexity of algorithms generally
increase with size of dataset. However, this increase is not same for all
algorithms. KNN CAD highest computational complexity and it is due to
compute intensive operation such as matrix calculations. After it, One-class
SVM and KNN are highly sensitive to dataset size.

79

7.4 Future work

Our work done in this thesis can be expanded in various dimensions.
One dimension could be integrating more datasets in OADB with various
characteristics e.g. datasets with contextual anomalies. Then, dividing datasets
into different categories based on anomaly types and evaluating algorithms for
each category of datasets.

Another dimension is to add more deep learning algorithms in OADB to
compare them with traditional algorithms and evaluate their performance. It
will help find the conditions when it is more favorable to deep learning or
traditional machine learning.

One direction is to investigate the following questions. At what size of the
dataset does deep learning start to outperform traditional machine learning
algorithms? What is the impact of an increasing size of training data on
the accuracy of an algorithm for anomaly detection? It will be beneficial for
researchers in decision-making for the choice of algorithm.

80

Bibliography

[1] A smoother ride and a more detailed Map thanks to AI. Google. URL: https:
//blog .google/products/maps/google - maps- 101 - ai - power- new-
features-io-2021/.

[2] Charu Aggarwal. Data Classification. Chap. Instance-based Learning: A
Survey. DOI: https://doi.org/10.1201/b17320.

[3] Charu Aggarwal, Alexander Hinneburg and Daniel Keim. ‘On the
Surprising Behavior of Distance Metric in High-Dimensional Space’. In:
International Conference on Database Theory (1st Feb. 2002).

[4] Anant Agrawal et al. ‘Disease Prediction Using Machine Learning’.
In: Proceedings of 3rd International Conference on Internet of Things and
Connected Technologies (ICIoTCT) ID 3167431 (23rd Apr. 2018). DOI: 10 .
2139/ssrn.3167431.

[5] Subutai Ahmad et al. ‘Unsupervised real-time anomaly detection
for streaming data’. In: Neurocomputing. Online Real-Time Learning
Strategies for Data Streams 262 (1st Nov. 2017). ISSN: 0925-2312. DOI:
10.1016/j.neucom.2017.04.070.

[6] Stamatios-Aggelos N. Alexandropoulos, Sotiris B. Kotsiantis and Mi-
chael N. Vrahatis. ‘Data preprocessing in predictive data mining’. In: The
Knowledge Engineering Review 34 (2019). ISSN: 0269-8889, 1469-8005. DOI:
10.1017/S026988891800036X.

[7] Redhwan Al-amri et al. ‘A Review of Machine Learning and Deep
Learning Techniques for Anomaly Detection in IoT Data’. In: Applied
Sciences 11 (Jan. 2021). Number: 12 Publisher: Multidisciplinary Digital
Publishing Institute. DOI: 10.3390/app11125320.

[8] G. Anand and Rambabu Kodali. ‘Benchmarking the benchmarking
models’. In: Benchmarking: An International Journal 15 (30th May 2008).
ISSN: 1463-5771. DOI: 10.1108/14635770810876593.

[9] Archana Anandakrishnan et al. ‘Anomaly Detection in Finance: Editors’
Introduction’. In: Proceedings of the KDD 2017 (2017).

[10] Anodot | Anomaly Detection for Business Monitoring. Anodot. URL: https:
//www.anodot.com.

[11] Anomaly Detection Toolkit (ADTK) — ADTK 0.6.2 documentation. URL:
https://adtk.readthedocs.io/en/stable/index.html.

[12] Stephen D. Bay et al. The UCI KDD Archive. ACM SIGKDD Explorations
Newsletter. 1999. URL: http://kdd.ics.uci.edu/.

[13] Nitin Bhatia and Vandana. ‘Survey of Nearest Neighbor Techniques’. In:
IJCSIS vol. 8, No. 2, 2010 (1st July 2010). arXiv: 1007.0085.

82

https://blog.google/products/maps/google-maps-101-ai-power-new-features-io-2021/
https://blog.google/products/maps/google-maps-101-ai-power-new-features-io-2021/
https://blog.google/products/maps/google-maps-101-ai-power-new-features-io-2021/
https://doi.org/https://doi.org/10.1201/b17320
https://doi.org/10.2139/ssrn.3167431
https://doi.org/10.2139/ssrn.3167431
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1017/S026988891800036X
https://doi.org/10.3390/app11125320
https://doi.org/10.1108/14635770810876593
https://www.anodot.com
https://www.anodot.com
https://adtk.readthedocs.io/en/stable/index.html
http://kdd.ics.uci.edu/
https://arxiv.org/abs/1007.0085

[14] Bob Ferrell and Steven Santuro. NASA Shuttle Valve Data. 2005. URL: http:
//www.cs.fit.edu/~pkc/nasa/data/.

[15] Mohammad Braei and Dr-Ing Sebastian Wagner. Anomaly detection in
univariate time-series: a survey on state-of-the-art. 2020.

[16] Evgeny Burnaev and Vladislav Ishimtsev. Conformalized density- and
distance-based anomaly detection in time-series data. 16th Aug. 2016. arXiv:
1608.04585.

[17] Guilherme O. Campos et al. ‘On the evaluation of unsupervised outlier
detection: measures, datasets, and an empirical study’. In: Data Mining
and Knowledge Discovery 30.4 (July 2016), pp. 891–927. ISSN: 1384-5810,
1573-756X. DOI: 10.1007/s10618-015-0444-8.

[18] Raghavendra Chalapathy and Sanjay Chawla. Deep Learning for Anomaly
Detection: A Survey. 23rd Jan. 2019. arXiv: 1901.03407.

[19] Raghavendra Chalapathy, Aditya Krishna Menon and Sanjay Chawla.
Anomaly Detection using One-Class Neural Networks. 10th Jan. 2019. arXiv:
1802.06360.

[20] Varun Chandola, Arindam Banerjee and Vipin Kumar. ‘Anomaly Detec-
tion: A Survey’. In: ACM Comput. Surv. 41 (1st July 2009). DOI: 10.1145/
1541880.1541882.

[21] Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White
Paper. 2019. URL: https : / / twiki . cern . ch / twiki / pub / HEPIX /
TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.
pdf.

[22] ‘Current Time Series Anomaly Detection Benchmarks are Flawed and are
Creating the Illusion of Progress’. In: (26th Aug. 2021). arXiv: 2009.13807.
URL: http://arxiv.org/abs/2009.13807.

[23] DataBench – Big Data Benchmarking project. URL: https://www.databench.
eu/.

[24] DeepBench. 26th Sept. 2021. URL: https://github.com/baidu-research/
DeepBench.

[25] Youcef Djenouri et al. ‘A Survey on Urban Traffic Anomalies Detection
Algorithms’. In: IEEE Access 7 (2019), pp. 12192–12205. ISSN: 2169-3536.
DOI: 10.1109/ACCESS.2019.2893124. URL: https://ieeexplore.ieee.org/
document/8612931/.

[26] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2019.
URL: https://archive.ics.uci.edu/ml.

[27] EGADS Java Library. original-date: 2015-05-06T17:47:52Z. 9th Aug. 2021.
URL: https://github.com/yahoo/egads.

[28] Salvador García, Julián Luengo and Francisco Herrera. Data Preprocessing
in Data Mining. Vol. 72. Intelligent Systems Reference Library. Cham:
Springer International Publishing, 2015. ISBN: 978-3-319-10246-7 978-3-
319-10247-4. DOI: 10.1007/978-3-319-10247-4. URL: http://link.springer.
com/10.1007/978-3-319-10247-4.

[29] Markus Goldstein. Anomaly detection in large datasets. URL: http://www.
gbv.de/dms/tib-ub-hannover/787899437.pdf.

[30] Laura Graesser and Wah Loon Keng. 1. Introduction to Reinforcement
Learning - Foundations of Deep Reinforcement Learning: Theory and Practice
in Python. ISBN: 9780135172490. 2019. URL: https : / / learning . oreilly.
com/library/view/foundations-of-deep/9780135172490/ch01.xhtml.

83

http://www.cs.fit.edu/~pkc/nasa/data/
http://www.cs.fit.edu/~pkc/nasa/data/
https://arxiv.org/abs/1608.04585
https://doi.org/10.1007/s10618-015-0444-8
https://arxiv.org/abs/1901.03407
https://arxiv.org/abs/1802.06360
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://arxiv.org/abs/2009.13807
http://arxiv.org/abs/2009.13807
https://www.databench.eu/
https://www.databench.eu/
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://doi.org/10.1109/ACCESS.2019.2893124
https://ieeexplore.ieee.org/document/8612931/
https://ieeexplore.ieee.org/document/8612931/
https://archive.ics.uci.edu/ml
https://github.com/yahoo/egads
https://doi.org/10.1007/978-3-319-10247-4
http://link.springer.com/10.1007/978-3-319-10247-4
http://link.springer.com/10.1007/978-3-319-10247-4
http://www.gbv.de/dms/tib-ub-hannover/787899437.pdf
http://www.gbv.de/dms/tib-ub-hannover/787899437.pdf
https://learning.oreilly.com/library/view/foundations-of-deep/9780135172490/ch01.xhtml
https://learning.oreilly.com/library/view/foundations-of-deep/9780135172490/ch01.xhtml

[31] Johannes Grohmann et al. ‘A Taxonomy of Techniques for SLO Failure
Prediction in Software Systems’. In: Computers 9.1 (11th Feb. 2020), p. 10.
ISSN: 2073-431X. DOI: 10.3390/computers9010010.

[32] Gavin Hackeling. Mastering Machine Learning with scikit-learn, Chapter 2.
Second Edition. ISBN: 978-1-78829-987-9. URL: https://learning.oreilly.
com/library/view/mastering-machine-learning/9781788299879/.

[33] Fouzi Harrou et al. ‘An unsupervised monitoring procedure for detect-
ing anomalies in photovoltaic systems using a one-class Support Vector
Machine’. In: Solar Energy 179 (1st Feb. 2019), pp. 48–58. ISSN: 0038-092X.

[34] H. M. Hashemian and Wendell C. Bean. State-of-the-Art Predictive Main-
tenance Techniques. 2010.

[35] David Heckerman. ‘A Tutorial on Learning With Bayesian Networks’. In:
arXiv:2002.00269 [cs, stat] (8th Mar. 2021). arXiv: 2002.00269. URL: http:
//arxiv.org/abs/2002.00269.

[36] Chaudhry Rehan Ikram. ‘A benchmark for evaluating Deep Learning
based Image Analytics’. In: (2019). Accepted: 2019-08-26T23:46:34Z. URL:
https://www.duo.uio.no/handle/10852/69588.

[37] Vincent Jacob et al. Exathlon: A Benchmark for Explainable Anomaly
Detection over Time Series.

[38] D. Jakhar and I. Kaur. ‘Artificial intelligence, machine learning and
deep learning: definitions and differences’. In: Clinical and Experimental
Dermatology 45.1 (2020), pp. 131–132. ISSN: 1365-2230. DOI: 10.1111/ced.
14029.

[39] Andreas Kaplan and Michael Haenlein. ‘Siri, Siri, in my hand: Who’s the
fairest in the land? On the interpretations, illustrations, and implications
of artificial intelligence’. In: Business Horizons 62.1 (1st Jan. 2019), pp. 15–
25. ISSN: 0007-6813. DOI: 10.1016/j.bushor.2018.08.004.

[40] Md Karbir, Abdur Onik and Tanvir Samad. ‘A Network Intrusion
Detection Framework based on Bayesian Network using Wrapper
Approach’. In: International Journal of Computer Applications 166 (1st Apr.
2017), pp. 975–8887. DOI: 10.5120/ijca2017913992.

[41] Iurii D. Katser and Vyacheslav O. Kozitsin. Skoltech Anomaly Benchmark
(SKAB). Type: dataset. DOI: 10.34740/KAGGLE/DSV/1693952.

[42] Jóakim von Kistowski et al. ‘How to Build a Benchmark’. In: ICPE
2015 - Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering. 1st Feb. 2015. DOI: 10.1145/2668930.2688819.

[43] Rocco Langone, Alfredo Cuzzocrea and Nikolaos Skantzos. ‘Inter-
pretable Anomaly Prediction: Predicting anomalous behavior in in-
dustry 4.0 settings via regularized logistic regression tools’. In: Data &
Knowledge Engineering 130 (Nov. 2020). ISSN: 0169023X. DOI: 10.1016/j.
datak.2020.101850.

[44] Alexander Lavin and Subutai Ahmad. Evaluating Real-Time Anomaly
Detection Algorithms – The Numenta Anomaly Benchmark. 12th Oct. 2015.
DOI: 10.1109/ICMLA.2015.141.

[45] Yang Li et al. ‘Network anomaly detection based on TCM-KNN al-
gorithm’. In: Proceedings of the 2nd ACM symposium on Information, com-
puter and communications security. ASIACCS ’07. New York, NY, USA:
Association for Computing Machinery, 20th Mar. 2007, pp. 13–19. ISBN:
978-1-59593-574-8. DOI: 10.1145/1229285.1229292.

84

https://doi.org/10.3390/computers9010010
https://learning.oreilly.com/library/view/mastering-machine-learning/9781788299879/
https://learning.oreilly.com/library/view/mastering-machine-learning/9781788299879/
https://arxiv.org/abs/2002.00269
http://arxiv.org/abs/2002.00269
http://arxiv.org/abs/2002.00269
https://www.duo.uio.no/handle/10852/69588
https://doi.org/10.1111/ced.14029
https://doi.org/10.1111/ced.14029
https://doi.org/10.1016/j.bushor.2018.08.004
https://doi.org/10.5120/ijca2017913992
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1016/j.datak.2020.101850
https://doi.org/10.1016/j.datak.2020.101850
https://doi.org/10.1109/ICMLA.2015.141
https://doi.org/10.1145/1229285.1229292

[46] Konstantinos G. Liakos et al. Machine Learning in Agriculture: A Review.
Number: 8 Publisher: Multidisciplinary Digital Publishing Institute.
Aug. 2018. DOI: 10.3390/s18082674. URL: https://www.mdpi.com/1424-
8220/18/8/2674.

[47] Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou. ‘Isolation Forest’. In:
2008 Eighth IEEE International Conference on Data Mining. 2008 Eighth
IEEE International Conference on Data Mining. ISSN: 2374-8486. Dec.
2008, pp. 413–422. DOI: 10.1109/ICDM.2008.17.

[48] Wei Lu and Issa Traore. ‘Unsupervised anomaly detection using an evol-
utionary extension of k-means algorithm’. In: International Journal of In-
formation and Computer Security 2 (1st Jan. 2008). Publisher: Inderscience
Publishers, pp. 107–139. ISSN: 1744-1765. DOI: 10.1504/IJICS.2008.018513.

[49] Yafeng Lu et al. The State-of-the-Art in Predictive Visual Analytics. 2017.

[50] Luis Martí et al. ‘Anomaly Detection Based on Sensor Data in Petroleum
Industry Applications’. In: Sensors 15.2 (Feb. 2015). Number: 2 Publisher:
Multidisciplinary Digital Publishing Institute, pp. 2774–2797. DOI: 10 .
3390/s150202774.

[51] Peter Mattson et al. ‘MLPerf: An Industry Standard Benchmark Suite
for Machine Learning Performance’. In: IEEE Micro 40.2 (Mar. 2020).
Conference Name: IEEE Micro, pp. 8–16. ISSN: 1937-4143. DOI: 10.1109/
MM.2020.2974843.

[52] Kishan G. Mehrotra, Chilukuri K. Mohan and HuaMing Huang. Anom-
aly Detection Principles and Algorithms. Terrorism, Security, and Compu-
tation. Cham: Springer International Publishing, 2017. ISBN: 978-3-319-
67524-4. DOI: 10.1007/978-3-319-67526-8.

[53] Mehryar Mohri, Afshin Rostamizadeh and Ameet Talwalkar. Foundations
of Machine Learning, second edition. MIT Press, 25th Dec. 2018. 505 pp.
ISBN: 978-0-262-35136-2.

[54] Avashlin Moodley. ‘Language Identification With Decision Trees: Iden-
tification Of Individual Words In The South African Languages’. PhD
thesis. 31st Jan. 2016. DOI: 10.13140/RG.2.2.25539.81445.

[55] Mohsin Munir et al. ‘A Comparative Analysis of Traditional and Deep
Learning-Based Anomaly Detection Methods for Streaming Data’. In:
16th Dec. 2019. DOI: 10.1109/ICMLA.2019.00105.

[56] Mohsin Munir et al. ‘DeepAnT: A Deep Learning Approach for Unsuper-
vised Anomaly Detection in Time Series’. In: IEEE Access PP (19th Dec.
2018), pp. 1–1. DOI: 10.1109/ACCESS.2018.2886457.

[57] Arundhati Navada et al. ‘Overview of use of decision tree algorithms in
machine learning’. In: 2011 IEEE Control and System Graduate Research Col-
loquium. 2011 IEEE Control and System Graduate Research Colloquium.
June 2011, pp. 37–42. DOI: 10.1109/ICSGRC.2011.5991826.

[58] Md Asri Ngadi and Salima Benqdara. Machine Learning Techniques for
Anomaly Detection: An Overview. 2013.

[59] Nsl-kdd data set for network-based intrusion detection systems. 2009. URL:
https://www.unb.ca/cic/datasets/nsl.html.

[60] Randal S. Olson et al. ‘PMLB: a large benchmark suite for machine
learning evaluation and comparison’. In: BioData Mining 10.1 (11th Dec.
2017), p. 36. ISSN: 1756-0381. DOI: 10.1186/s13040-017-0154-4.

85

https://doi.org/10.3390/s18082674
https://www.mdpi.com/1424-8220/18/8/2674
https://www.mdpi.com/1424-8220/18/8/2674
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1504/IJICS.2008.018513
https://doi.org/10.3390/s150202774
https://doi.org/10.3390/s150202774
https://doi.org/10.1109/MM.2020.2974843
https://doi.org/10.1109/MM.2020.2974843
https://doi.org/10.1007/978-3-319-67526-8
https://doi.org/10.13140/RG.2.2.25539.81445
https://doi.org/10.1109/ICMLA.2019.00105
https://doi.org/10.1109/ACCESS.2018.2886457
https://doi.org/10.1109/ICSGRC.2011.5991826
https://www.unb.ca/cic/datasets/nsl.html
https://doi.org/10.1186/s13040-017-0154-4

[61] Guansong Pang, Chunhua Shen and Anton van den Hengel. Deep
Anomaly Detection with Deviation Networks. 19th Nov. 2019. arXiv: 1911.
08623.

[62] Guansong Pang et al. ‘Deep Learning for Anomaly Detection: A Review’.
In: ACM Computing Surveys 54.2 (Apr. 2021), pp. 1–38. ISSN: 0360-0300,
1557-7341. DOI: 10.1145/3439950. arXiv: 2007.02500.

[63] Karishma Pawar and Vahida Attar. ‘Deep learning approaches for video-
based anomalous activity detection’. In: World Wide Web 22 (1st Mar.
2019). DOI: 10.1007/s11280-018-0582-1.

[64] Shebuti Rayana. {ODDS} Library. 2016. URL: http://odds.cs.stonybrook.
edu.

[65] S5 - A Labeled Anomaly Detection Dataset, version 1.0. URL: https : / /
webscope.sandbox.yahoo.com/catalog.php?datatype=s.

[66] Edin Sabic et al. ‘Healthcare and anomaly detection: using machine
learning to predict anomalies in heart rate data’. In: AI & SOCIETY 36
(1st Mar. 2021). DOI: 10.1007/s00146-020-00985-1.

[67] Sachin Salunkhe et al. ‘Prediction of life of piercing punches using
artificial neural network and adaptive neuro fuzzy inference systems’. In:
International Journal of Materials Engineering Innovation 10 (7th Feb. 2019),
pp. 20–33. DOI: 10.1504/IJMATEI.2019.10019116.

[68] A. L. Samuel. ‘Some Studies in Machine Learning Using the Game of
Checkers’. In: IBM Journal of Research and Development 3.3 (July 1959).
Conference Name: IBM Journal of Research and Development, pp. 210–
229. ISSN: 0018-8646. DOI: 10.1147/rd.33.0210.

[69] Hassan Sarmadi and Abbas Karamodin. ‘A novel anomaly detection
method based on adaptive Mahalanobis-squared distance and one-class
kNN rule for structural health monitoring under environmental effects’.
In: Mechanical Systems and Signal Processing 140 (9th June 2020). DOI: 10.
1016/j.ymssp.2019.106495.

[70] Yutaka Sasaki. ‘The truth of the F-measure’. In: (), p. 5.

[71] scikit-learn: machine learning in Python — scikit-learn 1.0 documentation.
URL: https://scikit-learn.org/stable/.

[72] Seasonal Hybrid ESD (S-H-ESD) AnomalyDetection R package. original-
date: 2014-12-09T17:46:24Z. 9th Aug. 2021. URL: https://github.com/
twitter/AnomalyDetection.

[73] Elham Serkani et al. ‘Hybrid Anomaly Detection Using Decision Tree
and Support Vector Machine’. In: International Journal of Electrical and
Computer Engineering 12.6 (1st May 2018), pp. 431–436. URL: https : / /
publications .waset .org/10009167/hybrid- anomaly- detection- using-
decision-tree-and-support-vector-machine.

[74] Hyun Joon Shin, Dong-Hwan Eom and Sung-Shick Kim. ‘One-class
support vector machines—an application in machine fault detection and
classification’. In: Computers & Industrial Engineering 48.2 (1st Mar. 2005),
pp. 395–408. ISSN: 0360-8352. DOI: 10.1016/j.cie.2005.01.009.

[75] K. Sindhu Meena and S. Suriya. ‘A Survey on Supervised and Unsu-
pervised Learning Techniques’. In: Proceedings of International Conference
on Artificial Intelligence, Smart Grid and Smart City Applications. Ed. by
L. Ashok Kumar, L. S. Jayashree and R. Manimegalai. Cham: Springer In-
ternational Publishing, 2020, pp. 627–644. ISBN: 978-3-030-24051-6. DOI:
10.1007/978-3-030-24051-6_58.

86

https://arxiv.org/abs/1911.08623
https://arxiv.org/abs/1911.08623
https://doi.org/10.1145/3439950
https://arxiv.org/abs/2007.02500
https://doi.org/10.1007/s11280-018-0582-1
http://odds.cs.stonybrook.edu
http://odds.cs.stonybrook.edu
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s
https://doi.org/10.1007/s00146-020-00985-1
https://doi.org/10.1504/IJMATEI.2019.10019116
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1016/j.ymssp.2019.106495
https://doi.org/10.1016/j.ymssp.2019.106495
https://scikit-learn.org/stable/
https://github.com/twitter/AnomalyDetection
https://github.com/twitter/AnomalyDetection
https://publications.waset.org/10009167/hybrid-anomaly-detection-using-decision-tree-and-support-vector-machine
https://publications.waset.org/10009167/hybrid-anomaly-detection-using-decision-tree-and-support-vector-machine
https://publications.waset.org/10009167/hybrid-anomaly-detection-using-decision-tree-and-support-vector-machine
https://doi.org/10.1016/j.cie.2005.01.009
https://doi.org/10.1007/978-3-030-24051-6_58

[76] Ida Solheim and Ketil Stølen. Technology research explained. 1st Mar. 2007.

[77] Ming-Yang Su. ‘Real-time anomaly detection systems for Denial-of-
Service attacks by weighted k-nearest-neighbor classifiers’. In: Expert
Systems with Applications 38.4 (1st Apr. 2011), pp. 3492–3498. ISSN: 0957-
4174. DOI: 10.1016/j.eswa.2010.08.137.

[78] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction.

[79] Mahbod Tavallaee et al. ‘A detailed analysis of the KDD CUP 99 data
set’. In: IEEE Symposium. Computational Intelligence for Security and Defense
Applications, CISDA 2 (1st July 2009). DOI: 10.1109/CISDA.2009.5356528.

[80] Kai Ming Ting. ‘Confusion Matrix’. In: Encyclopedia of Machine Learning.
Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US,
2010, pp. 209–209. ISBN: 978-0-387-30164-8. DOI: 10 . 1007 / 978 - 0 - 387 -
30164-8_157.

[81] Aditya Varshney. Support Vector Machines and the Kernel Trick. The
Startup. 24th Nov. 2020. URL: https : / / medium . com / swlh / support -
vector-machines-and-the-kernel-trick-f946991ebc76.

[82] Pei Wang. ‘On Defining Artificial Intelligence’. In: Journal of Artificial
General Intelligence 10.2 (1st Jan. 2019), pp. 1–37. ISSN: 1946-0163. DOI:
10.2478/jagi-2019-0002.

[83] Weng-Keen Wong et al. ‘Bayesian Network Anomaly Pattern Detection
for Disease Outbreaks’. In: (), p. 8.

[84] Yang Xin et al. ‘Machine Learning and Deep Learning Methods for
Cybersecurity’. In: IEEE Access 6 (2018). Conference Name: IEEE Access,
pp. 35365–35381. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2836950.

[85] Chunyong Yin et al. ‘An Improved K-Means Using in Anomaly Detec-
tion’. In: 2015 First International Conference on Computational Intelligence
Theory, Systems and Applications (CCITSA). 2015 First International Con-
ference on Computational Intelligence Theory, Systems and Applications
(CCITSA). Dec. 2015, pp. 129–132. DOI: 10.1109/CCITSA.2015.11.

[86] Chunhui Yuan and Haitao Yang. ‘Research on K-Value Selection Method
of K-Means Clustering Algorithm’. In: J 2 (18th June 2019), pp. 226–235.
DOI: 10.3390/j2020016.

[87] Rui Zhang et al. Network Anomaly Detection Using One Class Support Vector
Machine.

[88] Yue Zhao, Zain Nasrullah and Zheng Li. ‘PyOD: A Python Toolbox for
Scalable Outlier Detection’. In: Journal of Machine Learning Research 20.96
(2019), pp. 1–7. URL: http://jmlr.org/papers/v20/19-011.html.

[89] Zhi-Hua Zhou. ‘Ensemble Learning’. In: Machine Learning. Ed. by Zhi-
Hua Zhou. Springer Singapore, 2021, pp. 181–210. ISBN: 978-981-15-1967-
3. DOI: 10.1007/978-981-15-1967-3_8.

87

https://doi.org/10.1016/j.eswa.2010.08.137
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1007/978-0-387-30164-8_157
https://doi.org/10.1007/978-0-387-30164-8_157
https://medium.com/swlh/support-vector-machines-and-the-kernel-trick-f946991ebc76
https://medium.com/swlh/support-vector-machines-and-the-kernel-trick-f946991ebc76
https://doi.org/10.2478/jagi-2019-0002
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/CCITSA.2015.11
https://doi.org/10.3390/j2020016
http://jmlr.org/papers/v20/19-011.html
https://doi.org/10.1007/978-981-15-1967-3_8

Appendix A

Benchmark source code

We have made Open Anomaly Detection Benchmark code with documentation
available to everyone at Github. Other people working with anomaly detection
algorithms can utilize this and hopefully contribute to make it better in the
future. The repository can be found on following link.

https://github.com/shahzaib-ch/open-anomaly-detection-benchmark
Following is the structure of OADB with description of vital folders and files.

Open Anomaly Detection Benchmark
README.md (Documentation for benchmark)
analysis (Contains code for analysis of datasets)

data_folders_analysis.py
core (Contains code for tuning algorithms on datasets)

core.py
data (Contains datasets and code for organising them)

README.md
dataset_collector.py
datasets

nab
odd
ucr
yahoo

detector (Contains implementation of ML algorithms)
angle_based_outlier_detector.py
auto_encoder.py
base_detector.py
bayes_change_point.py
clustering_based_local_outlier_factor.py
contextual_anomaly_detector.py
detector_aggregator.py
elliptic_envelope.py
expose.py
generalized_esd_test.py
isolation_forest.py
k_nearest_neighbors.py
knn_cad.py
local_outlier_factor.py

88

https://github.com/shahzaib-ch/open-anomaly-detection-benchmark

one_class_support_vector_machine.py
principal_component_analysis.py
relative_entropy.py
windowed_gaussian.py

helper (Contains generic helper functions to be used in the project)
ResultWindowLabeler.py
common_methods.py
dataset_viewer.py
labels_helper.py

main.py (Entry point for running benchmark)
play.py (A python file to run code fragments when desired)
preprocessor (Contains code to pre process datasets before use)
preprocessor.py
requirements.txt (Contains list of python packages required to
run this project)
result (Folder to save result of benchmarking experiment)
result_accuracy_visualizer.py (Entry point for visualising results)
visualizer (Contains code for visualizing results of benchmark)

heatmap_helper.py
result_accuracy_visualizer.py
result_collector.py
result_data_keys.py
result_metric_calculators.py

89

Appendix B

Detailed benchmarking
results

We have presented and analyzed important benchmarking results generated
by OADB. However, full detailed results not shown. Following are detailed
computational complexity results.

90

Figure B.1: Time taken by algorithms for training phase on univariate datasets

91

Figure B.2: Time taken by algorithms for training phase on multivariate
datasets

92

Figure B.3: Time taken by algorithms for test phase on multivariate datasets

93

Figure B.4: Time taken by algorithms for training phase on multivariate
datasets

94

	I Introduction and background
	Introduction
	Motivation
	Research question
	Objectives
	Research methodology and work plan
	Thesis structure

	Background
	Artificial Intelligence
	Machine learning
	Deep learning

	Types of Machine learning
	Unsupervised learning
	Supervised learning
	Reinforcement learning

	Anomaly and its types
	Process of finding anomaly
	Defining the problem
	Data preprocessing
	Anomaly detection
	Anomaly prediction

	Challenges of anomaly detection
	Applications of anomaly detection algorithms
	Benchmarking
	What is benchmarking
	Benchmarking in machine learning
	Architecture of a benchmark
	Why ML benchmarks?

	II Problem analysis
	Machine learning algorithms for anomaly detection
	Anomaly detection approaches
	Distance-based approach
	Clustering-based approach
	Model-based approach

	Popular ML anomaly detection algorithms
	Supervised algorithms
	Unsupervised algorithms
	Deep learning algorithms

	Comparison of traditional machine learning and deep learning for anomaly detection
	Hybrid algorithms
	Commercial tools for anomaly detection
	Ways to categorize algorithms
	Supervised vs Unsupervised learning
	Eager vs Lazy learning
	Parametric vs Non-Parametric learning

	State-of-the-art anomaly detection benchmarks
	Public datasets with labeled anomalies
	Yahoo Labeled Anomaly Detection Dataset
	NAB Dataset
	UCI KDD Archive
	UCI Machine learning repository
	NASA valve dataset
	ADRepository datasets
	Outlier Detection DataSets (ODDS) library
	Summary of Datasets

	Existing anomaly detection benchmarks
	Numenta anomaly benchmark (NAB)
	Skoltech Anomaly Benchmark (SKAB)
	Exathlon
	Summary of benchmarks

	Shortcomings in existing benchmarks

	III Open anomaly detection benchmark (OADB)
	Design and Implementation
	General requirements for an ideal anomaly detection benchmark
	Requirements for Open Anomaly Detection Benchmark (OADB)
	Evaluation of existing benchmarks based on defined requirements
	Problem and proposed solution
	Design and architecture
	Summary of datasets utilized in OADB
	Implementation
	Modules
	Benchmarking metrics

	Extensions
	Dataset integration
	Algorithm integration
	Customization

	Evaluation
	Experimental Setup
	Hardware setup
	Software setup

	Evaluation of OADB datasets
	Analysis of ML algorithms performance for anomaly detection
	Methods for measuring accuracy
	Accuracy analysis of anomaly detection algorithms
	Computational complexity analysis of anomaly detection algorithms

	Evaluation of OADB based on defined requirements

	IV Summary and outlook
	Conclusion and future work
	Contributions summary
	Scope and limitations
	Conclusions
	Future work

	Benchmark source code
	Detailed benchmarking results

