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Abstract 

 

Taxonomic classification of microorganisms is useful as microorganisms play an intricate role in 

health. However, the microorganisms are difficult to classify both because of their diversity and 

unstable gene pools. Researchers are attempting to solve this issue using machine learning to handle 

the ever-growing amount of genomic data. While several tools are and have been developed for this 

purpose, there is little public research directly comparing the underlying methods used by these 

tools. The research discussing how to compare different ways of representing a genome numerically 

for example, is limited. Most of the research and tools are also developed for and tested on marker 

gene analysis, while other types of analysis, such as metagenomic and metatranscriptomic are less 

common. 

 

This master thesis explores taxonomic classification on whole genome data by performing direct 

comparisons on different ways of representing a genome through k-mers and testing on different 

types of neural networks. A training, validation, and test set was made from the GTDB database 

which covers a wide range of bacterial and archaea whole genomes. These genomes were 

transformed into k-mer representation vectors using the following methods: MinHash sketching, 

frequencies of random k-mers, presence of random k-mers, and discriminative k-mers. Each of these 

methods were tested on a set of three different artificial neural networks, standard neural network, 

multilayer perceptron network, and convolutional neural network. All models were measured for 

accuracy and precision on a test set to determine the combination of representation method and 

model that would be the most suitable for taxonomic classification of microorganisms. 

 

The findings indicated that a MinHash representation method on a multilayer perceptron network 

was the most promising. The findings also indicated k-mer counting will give better performance 

than k-mer presence, when the representation vectors are of equal length. For discriminative k-mers, 

the results were negative, but inconclusive as alterations in the implementation could potentially 

give a very different result. Overall, more research is necessary to form comprehensive guidelines for 

future classification tools. 
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Chapter 1: Introduction 
 

Microorganisms are everywhere. Their presence, or lack thereof, play a role in the health of our 

bodies and ecosystems. For example, the composition of the microbiome in our gut can increase the 

risk of health problems such as cardiovascular disease, meaning the study of microbiomes may be an 

important venue for future health interventions (Shreiner, Kao and Young, 2015). Due to the great 

diversity of microorganisms however, differentiating between different categories can be 

challenging, especially at lower levels in the taxonomic tree. One of the ways in which this can be 

achieved, is through DNA analysis. This means classifying the microorganism by analysing its DNA and 

measuring the genetic similarity with others of its kind. However, DNA analysis is expensive and time 

consuming. Even with domain-expert knowledge, it is also not always obvious which parts of the DNA 

are useful for classification. Machine learning is a rapidly developing field of study that is pushing the 

limits of what can be accomplished with a computer. Properly trained machine learning models can 

discover complex relationships in data that humans are likely to miss. These models can especially be 

useful when the data size is large, and it is difficult to distinguish what parts will be useful for what 

one is trying to achieve. As such, machine learning is a suitable tool for classification of microbial 

data. Significant research has been conducted on using artificial neural networks for taxonomic 

classification. Artificial neural networks are a powerful machine learning technique that can discover 

complex relations between data samples. However, most of this research has been conducted on 

marker genes, such as 16S rRNA. A marker gene is a specific gene that is used for taxonomic 

classification due to being universally present in all organisms as well as being highly varied between 

species. The research on using the whole genome, an organism’s entire DNA, to train models is far 

more limited. Another gap in the research is the lack of a known best practice for representing DNA 

when performing machine learning. Machine learning models typically do not work as well on 

sequence data but require the data to be re-formatted or transformed in some way. For example, a 

common restriction is that the model can only operate on numerals, meaning textual data must be 

transformed to a numerical representation. Another aspect of this is dimensionality reduction. In 

high dimensional data, reducing the dimensionality by extracting a subset of features from each data 

sample can improve performance. However, selecting features on high dimensional data is not a 

straightforward task. There are many different methods of dimensionality reduction for DNA input 

data that have been used in research. However, there is little research that directly compares 

methods on the same dataset and models. 
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In this thesis, we will attempt to classify whole genome microbiome DNA using artificial neural 

networks. This will include using a dataset of microbial genomes to train a neural network to 

taxonomically classify microorganisms. We will implement different ways of representing the dataset 

and use it to train different types of artificial neural networks. Finally, we will compare how the 

neural networks perform on each data representation, in terms of accuracy and precision. The goal is 

to make some observations on how data representation method and type of neural network affect 

classification accuracy on a large DNA dataset. 
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Chapter 2: Theory 
 

2. 1 Microbiomes and Taxonomic Classification 
 

2.1.1 Microbiomes 

 
The term microbiome refers to microorganisms, their genome, and environment. For example, the 

combined microorganisms residing in a human body. A microorganism, or microbe, is an organism of 

microscopic size that lives as a single-celled organism, or as a colony of cells. In the Three-domain 

system the domains Archaea and Bacteria are both made up entirely of microorganisms (see section 

2.1.2). Microbiomes play a vital role in their environment and being able to identify and classify them 

can be very beneficial. For example, the microbiome in a human body can have a big impact on an 

individual’s health and susceptibility to disease. 

 

2.1.2 Taxonomy 
 

The use of genomic sequencing led to a first division of life into either the cellular or the viral empires 

(Koonin, 2010). Modern taxonomy further divides the cellular empire into Archaea, Bacteria, and 

Eukaryota. Archaea and Bacteria are all single-celled organisms, while Eukaryota includes all 

multicellular organisms, as well as some single-celled organisms. Organisms belonging to the Archaea 

and Bacteria domains are often grouped together in the term prokaryotes as they share many 

features. An important difference between prokaryotes and eukaryotes is the ways in which they 

pass on their genes. While eukaryotes may reproduce sexually through meiosis, prokaryotes 

reproduce asexually through mitosis. However, prokaryotes also have the capability of horizontal 

gene transfer, where incoming genes may either replace an existing one or become added in. Such 

transfer allows them to exchange their hereditary material with each other without going through a 

replication process. This includes the transfer of both DNA and rRNA. Horizontal gene transfer mainly 

happens amongst archaea or amongst bacteria. However, gene transfers across domains can also 

happen. The horizontal exchange of DNA makes classification of prokaryotes based on DNA more 

difficult due to the lack of a stable gene pool. 

 

In the world of biology, taxonomy is the structuring of organisms into groups based on shared 

characteristics. Taxonomic classification forms a hierarchical tree structure where the fewer levels 
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there are between two organisms, the more closely related those two organisms are. This tree 

structure is known as the Tree of Life. The tree starts off being divided into just a few branches. Each 

branch is then divided further, and the branch’s branches are divided further etc. Each such divide is 

considered a level. The main levels define the biological domain, kingdom, phylum/division, class, 

order, family, and species. The path between different groups in the Tree of Life reflects the 

evolutionary relationship between them.  

 

 

 

 

 

 

 

 

 

 

 

Knowing the classification of an organism is useful as it gives information about what features and 

functionalities the organism is likely to have. For example, if a microbe belongs to a family known to 

be harmful to humans, and the sample containing that microbe came from a human, then we know 

that there is a greater risk of that human being subjected to the negative effects associated with that 

family of microbes.  

 

Taxonomic classification is not a process that is 100% accurate. The lines between different classes 

are often somewhat blurry as the diversity within a class can be greater than what separates the 

class overall from other classes. Individual specimens can display one or more features that are more 

common within other classes as compared to their own. Because of this, one criterion is often not 

enough for defining a class, especially at lower levels in the hierarchy where the classes are more 

closely related. For example, a common definition of a species is that it is as a group where two 

FIGURE 2.1: A STYLISED ILLUSTRATION OF THE TREE OF LIFE. THE TREE IS DIVIDED INTO THE THREE 

DOMAINS; EUKARYOTA, ARCHAEA, AND BACTERIA. THE LEAVES OF THE TREE ARE KINGDOMS. A 

COMPLETE TREE WOULD INCLUDE EACH BRANCH HAVING ITS OWN BRANCHES FOR 

PHYLUM/DEVISION ETC ALL THE WAY DOWN TO SPECIES. (‘TREE OF LIFE (BIOLOGY)’, 2021) 
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individuals from that group can produce fertile offspring, provided they are of suitable sexes/mating 

types. However, this definition is not adequate, particularly when it comes to microorganisms 

reproducing asexually through mitosis. Defining microorganisms into classes based on their ability to 

sexually reproduce is therefore not viable. To make the term species more applicable to also the 

prokaryotic domains, other definitions are used. These other definitions include looking at an 

organism’s karyotype, DNA, morphology, behaviour, and ecological niche. Due to the inherent 

fluidity both between and within biological groups, using classification as a means of discovering an 

organism’s effect on its surroundings cannot be considered an exact science, but rather an 

approximation or educated guess. 

 

2.1.3 Marker Genes 

 
The genetic material of an organism will contain stretches of nucleotides that can have a function, as 

such constituting a gene. Most genes encode proteins, some of which have “household” functions in 

a cell, whereas other genes encode proteins with a more specialized function. Genes that are highly 

variable between groups or individuals can be used to identify individuals, populations, or species. 

Such genes are called marker genes, and contain polymorphisms (genetic variations) that may be 

used to divide individuals into distinct groups (The Editors of Encyclopedia Britannica, 2020). Such 

groups can for example be species, or sub-groups within a species. 

 

Ribosomal RNA (rRNA) is often used for marker genes when studying microbiomes. rRNA is central in 

the process of expressing DNA into proteins, a vital process which exists in all forms of life. Using 

rRNA for classification is therefore widely applicable. rRNA changes over generations, but very 

slowly. Thus RNA-based marker genes remain relatively stable within a species and allow for 

detection of distant evolutionary relationships between species (Woese and Fox, 1977). However, 

while gene redundancy is uncommon in prokaryotic genomes, rRNA genes often have multiple copies 

within the same genome. While this makes them easier to detect, divergent evolution of the 

ribosomal RNA in the same organism can complicate classification as there is the possibility of 

conflicting genes putting the same organism into more than one species (Pei et al., 2009). 

 

A very widely used ribosomal RNA marker gene is 16S rRNA. 16S is currently one of the most widely 

used markers used for taxonomic classification and there are entire quality-controlled databases 

dedicated to this specific gene (Yarza et al., 2014). 16S rRNA is a small subunit of a prokaryotic 



13 
 

ribosome and owes its popularity in part due to how slowly it evolves. The slow rate of evolution 

makes it possible to detect and reconstruct evolutionary relationships between species by studying 

the amount of divergences in the 16S rRNA, even for species which are relatively far apart in the tree 

of life (Woese and Fox, 1977). The slow evolution also ensures a high level of consistency within a 

species. As 16S is a component of prokaryotic ribosomes, this marker gene is used in classifying 

organisms belonging to the Archaea and Bacteria domains. 18S rRNA is a different marker gene 

which is homologue of 16S rRNA but found in eukaryotes rather than prokaryotes. Just like 16S, 18S 

evolves slowly and is therefore well-suited for reconstructing evolutionary relationships. 16S and 18S 

are both mainly used for high resolution taxonomic studies due to their stability and low intraspecific 

variability (Administrator of CD Genomics Blog, 2018). 

 

2.1.4 Databases 

 
When performing taxonomic classification of samples, it is paramount to have a reference database 

available with which to compare samples. However, when comparing a sample to the reference 

database, a 100% match is not always achievable, either due to the diversity within a species or due 

to the database being incomplete. Thus, when comparing data, the goal is not necessarily to find a 

perfect match, but rather a great similarity. Query rank is used as a measure of how similar a query is 

to the database (Edgar, 2016). For example, a genomic query returning a match with rank 82% could 

indicate that 82% of the order of nucleotides is identical to the query genome. In the world of 

taxonomy, any query is likely to have at least a partial match, as all life is related and thus share 

common traits. For instance, the genome of the fruit fly (Drosophila melanogaster) has an over 60% 

conservation as compared to the human genome (Homo sapiens), while the house mouse (Mus 

musculus) has a conservation of over 90% (Brandt and Vilcinskas, 2013). To avoid wrongful 

classification, a threshold is defined as the lowest common rank (LCR). The query needs to have rank 

equal to or greater than the LCR to be considered a match. This approach allows for holes in the 

database and variation within a species to be accounted for, while also limiting over-classification of 

unknown classes. The LCR is also a way to determine if a given query presents a new, previously 

unseen class. A query with a rank below the LCR is defined as novel data (Edgar, 2016). 

 

In this section we will review some of the databases that currently are available. 

• Ribosomal database project (RDP) is a taxonomy database that provides quality-controlled 

bacterial and archaeal 16S rRNA sequences, as well as fungal 28 rRNA sequences. As such this 
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database is best suited for marker gene analysis. The RDP database is smaller than SILVA, 

Greengenes, and UNITE as it only contains authoritive names, while the others also include 

environmental names (Edgar, 2016). Authorative names are formal scientific names, while 

environmental names are temporary names for species that cannot be identified or have not 

yet been given a scientific name. 

• SILVA is a comprehensive database with ribosomal data from bacteria, archaea, and 

eukaryota. The SILVA contains small ribosomal RNA subunits, such as 16S, 18S, and SSU, as 

well as large units, such as 23S, 28S, and LSU (Official SILVA Website, 2020). 

• Greengenes is a 16S rRNA gene database. The publicly available version of Greengenes uses 

taxonomic terms which has not been updated since 2013, and thus may be outdated (Official 

Greengenes database website, 2020). 

• UNITE is a database as well as a sequence management tool which is mainly focused on the 

eukaryotic nuclear ribosomal ITS region. UNITE started out being dedicated only to the study 

of fungi, and therefore a fungi-only version of the database is available for download (Edgar, 

2016). 

• The Genome Taxonomy Database (GTDB) was created as an attempt to establish a 

standardised microbial taxonomy based on genome phylogeny. Phylogeny is the history of 

the evolution of a species, essentially, its position in the Tree of Life (Gittleman, 2016). GDTB 

provides a domain-to-species framework for bacterial and archaeal organisms, meaning it 

can be used to classify new samples at a higher level than species when species-level 

classification is not possible (Parks et al., 2020). This database also contains a growing 

amount of genome samples from uncultivated microorganisms, thus giving a greater 

representation of the diversity of microbiomes. Currently, almost 40% of the samples in the 

GTDB do not have an authorative name (Parks et al., 2020). 
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TABLE 2.1: OVERVIEW OF DIFFERENT DATABASES. 

 

 

2.1.5 Designing a Taxonomic Classification Experiment 
 

This section is about the different steps needed for a taxonomic classification experiment on 

microbiomes. The experiment design process has been divided into four steps to be performed in 

order. For each step I will present some of the alternative approaches, and some criteria to consider 

when selecting an approach. 

 

2.1.5.1 Step 1: Defining Scope 
According to Knight et al. (2018), the first step when setting up an experiment for analysing 

microbiomes, is defining the scope of the experiment and selecting an appropriate experimental 

design (Knight et al., 2018). Examples of such designs are cross-sectional, or longitudinal studies. In 

microbiome studies there are typically many confounding factors that, if not controlled, can hide 

important patterns and information in the obtained data. Limiting the scope of the experiment to 

only those variables that are of interest is therefore essential for deriving meaningful results. To limit 

confounding factors, a set of inclusion and exclusion criteria must be defined for the experiment. For 

example, samples that may alter the results due to influences which go beyond the scope of the 

project are excluded from the experiment. Other exclusion criteria are defined based on the selected 

experimental design. In case-control experimental design, for example, controls are matched using 

factors such as age, sex, medicinal use etc, depending on the specific experiment. 

Database Domain Important Features 

RDP Archaea, Bacteria, and Eukaryota Has 16S and fungal 28S rRNA 
sequences. 
 

SILVA Archaea, Bacteria, and Eukaryota Has large and small ribosomal units. 
Ex. 16S, 18S, SSU, 23S, 28S etc. 
 

Greengenes Archaea and Bacteria 
 

Is a 16S rRNA database. Outdated. 

UNITE Mainly Eukaryota Attempts to identify new classes 
through clustering. Mainly focuses on 
ITS region. 
 

GTDB Archaea and Bacteria Contains a growing number of 
uncultivated microbiomes giving a 
more accurate presentation of the 
diversity of microbiomes. 
 



16 
 

 

2.1.5.2 Step 2: Determining the Type of Sequencing 
When analysing the microbiome, three main methods are used to sequence the genome: marker 

gene, metagenome, and metatranscriptome analysis. The three methods target different parts of the 

genome and can produce different results (Knight et al., 2018). These methods are described below. 

• Marker gene analysis targets a specific region of a gene (see section 2.1.3). The type of gene 

selected for such experiments is typically one which is known to be highly variable between 

different types of microbes and is therefore highly informative about the nature of the 

microbe it belongs to. Marker gene analysis is less costly than some of the other methods, 

but produces a low-resolution overview of the microbial community being studied. 

• Metagenomic analysis is a method where taxonomic classification is performed on a sample 

containing DNA from multiple species. The goal is then to map the genomes in the sample to 

their respective species. Analysing the whole genome provides more detailed information 

and accurate taxonomic predictions as compared to marker gene analysis. However, this 

process is significantly more costly and time-consuming. 

• Unlike the previous two methods, metatranscriptome evaluations examine messenger RNA 

(mRNA) instead of DNA. The metatranscriptive method is therefore the only method that 

gives information on which genes are expressed, and as such the functional output of the 

microbe. Metatranscriptome analysis offers unique insights as compared to the other 

methods, and can reveal greater variation between samples from the same taxonomic class 

since their transcriptome is likely more different than the genetic background of different 

microbes. 

 

2.1.5.3 Step 3: Selecting a Method of Analysis 
High-throughput sequencing (HTS) refers to cost-effective technologies for sequencing DNA and RNA 

(Pradhan et al., 2019). HTS methods are mainly used for three types of analysis: microbe-level, DNA-

level, and mRNA-level analysis. The type of analysis used during a project needs to be selected based 

on the type of samples available, and goal of the project. 

 

2.1.5.4 Step 4: Choosing a Tool for Taxonomic Classification 
Once data has been collected, there are multiple tools available for the taxonomic classification step. 

This section goes through a few of the tools which are used for this purpose. 
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2.1.5.4.1 TOOLS FOR TAXONOMIC CLASSIFICATION 

Centrifuge is a tool for metagenomic analysis that uses a k-mer-based indexing schemes (Kim et al., 

2016). The k-mer selection process works as follows: they start with the two most similar genomes in 

the dataset, based on shared k-mers. These two genomes are then combined leaving out those k-

mers from genome two that have ≥ 99% similarity to a k-mer in the first genome. This combined 

genome is then merged in the same way with the genome that has the greatest similarity to the 

combined genome. This process continues until it covers all genomes in the dataset. This method 

allows for a drastic decrease in input size. 

 

Kraken2’s k-mer algorithms achieve a fast and accurate result. However, the high memory 

requirements can limit its use depending on the available computational resources. In their article, Lu 

and Salzberg (2020) performed a series of simulations which showed that when compared to some 

already existing well-known tools, Kraken2 required less computational resources, executed faster, 

and gave a more accurate results (Lu and Salzberg, 2020). 

 

KAIJU is a metagenomic analysis tool that finds matches by comparing sequences of amino acids, 

rather than nucleotide sequences (Menzel, Ng and Krogh, 2016). As such it examines the proteins 

present in a particular microbe. An advantage to this approach is that protein sequences tolerate 

several changes to the coding DNA without being altered, and are thus more stable between 

different individuals from a given species. Using amino acids also make it easier to classify organisms 

that are underrepresented in the reference database, or for which the genome is largely unknown. A 

disadvantage of this approach is that KAIJU will not be able to classify queries not based on non-

coding regions of the genome. However, this disadvantage is somewhat lessened by the high density 

of protein encoding genes in microbial genomes. KAIJU has been shown to have greater sensitivity 

and comparable precision to k-mer based classifiers. This is particularly true for classes that are 

underrepresented in the reference database. 

 

Most tools for taxonomic classification of microorganisms are based on k-mers. In their article, Vinje 

et al compared five different k-mer based methods for marker gene analysis (Vinje et al., 2015). The 

methods in question were RDP, multinomial, Markov, nearest-neighbour, and pre-processed nearest 

neighbour. All five methods were tested on sequences of varying length of the 16S marker gene. RDP 

(Ribosomal Database Projct) uses the naïve Bayes classifier. The RDP method looks for the 
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presence/absence of words in a sequence. Multinomial also relies on the naïve Bayes principle and 

considers the frequency of words in the sequence. Markov considers word frequencies, just like 

multinomials. However, Markov does not use the naïve Bayes principle. Nearest neighbour performs 

classification based on multinomial probabilities. Pre-processed nearest neighbour is nearest 

neighbour extended with partial least squares (PLS). The results of the comparisons were as follows: 

Adding some extension to the RDP method, such as counting frequencies in addition to 

presence/absence gave slightly better results than standard RDP. On full-length 16S sequences pre-

processed nearest neighbour proved to be the most accurate. For short sequences the multinomial 

method had the lowest error rate, implying that this method would be the most suited when 

taxonomic classification must happen quickly. However, no method was universally best for both full-

length sequences and smaller fragments. 

 

The classification tool CLARK discovers significant k-mers by first finding all possible k-mers for each 

element in the reference database, and then removing any common k-mers (Ounit et al., 2015). The 

results are sets of discriminative k-mers that uniquely characterize the elements in the reference 

database. This method can be used to classify objects at a higher taxonomic level than genus by 

grouping together elements and creating a common pool of discriminative k-mers for the whole 

group. The CLARK method can be classified as a feature selection filter method. 

 

 

Statistical tests can be used to select a subset of all k-mers in the database to use as input. In their 

article LaPierre et al (LaPierre et al., 2019a) identified significant k-mers through statistical tests 

based on the abundance of each k-mer. They first pooled the k-mer counts, and then for each k-mer 

calculated the p-value using Student’s t-test, followed by the Benjamini-Hochberg procedure to 

control the false discovery rate from doing multiple hypothesis tests. The k-mers were then sorted 

based on their p-values. The top 1000 k-mers were selected as features while the rest were 

discarded. This method can be classified as a feature selection filter method. 
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TABLE 2.2: OVERVIEW OF TOOLS FOR GENOMIC CLASSIFICATION. 

Tool Used for Important Features 

Centrifuge Metagenome Based on careful k-mer selction through 
similarity.  

Kraken 2 Metagenome Testing shown it can perform better 
than well-known tools. 

KAIJU Metagenome Matches amino acids rather than 
nucleotides. Better for classifying 
underrepresented organisms. Cannot 
classify queries not based on protein 
section of genome. Shown to have 
greater sensitivity and comparable 
precision compared to K-mer based 
classifiers. 

CLARK Metagenome Discovers discriminative k-mers through 
removing common k-mers. 

Statistical k-mer 
selection 

Metagenome Use statistics such as Student’s t-test to 
select the most useful k-mers. 

RDP Marker gene Can be improved by extending the 
algorithm. Beat out by multinomial and 
pre-processed nearest neighbour. 

Multinomial Marker gene Lower error rate on short sequences 
compared to RDP, Markov, nearest 
neighbour, and pre-processed nearest 
neighbour. 

Markov Marker gene Beat out by multinomial and pre-
processed nearest neighbour. 

Nearest neighbour Marker gene Beat out by multinomial and pre-
processed nearest neighbour. 

Pre-processed 
nearest neighbour 

Marker gene More accurate on full-length sequences 
compared to RDP, multinomial, Markov, 
and nearest neighbour. 

 

 

2. 2 Machine Learning 
 

2.2.1 Introduction to Machine Learning 

 
Improvements of the available technology (e.g. genetic sequencing) has led to a significant increase 

in the amount of available biological data. Much of this data has a high dimensionality and the 

acquisition rates for new data is only increasing. The growing amount of data to sift through means 

that traditional analysis strategies are being challenged (Angermueller et al., 2016). To handle the 

growing volume of data, the use of computational methods such as machine learning has become 

more prevalent, as they allow the extraction of information from very large datasets. Machine 
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learning is about developing programs that can learn and improve through data (Wang, Ma and 

Zhou, 2009). Machine learning is used for pattern recognition, classification, and predictions on 

unseen data samples (Tarca et al., 2007). This is essentially a form of black box programming where 

an algorithm is used to optimize a performance criterion over a given set of training data (Larrañaga 

et al., 2006). A common criterion is prediction accuracy. Machine learning makes it possible to 

discover functional relationships between data objects without the need for defining them a priori, 

making it possible to discover connections the researcher was unaware of (Knight et al., 2018). For 

example, if the goal is to divide a set of objects into different classes, the purpose of the algorithm 

will be to discover how to tell if a specific data sample belongs to a certain class. This requires the 

algorithm to discover traits that are characteristic for a class. In other words, generalizing across 

individual data samples. Machine learning can broadly be divided into three paradigms; supervised 

learning, unsupervised learning, and semi-supervised learning (Tarca et al., 2007). In supervised 

learning the algorithm is presented with both the training data and the correct class for the data. 

During training, the algorithm tries to generalize the classes based on the training data to allow it to 

come up with the correct class for new, unseen data samples. In unsupervised learning the algorithm 

is not provided with any classes, only the training data. The algorithm will then look for similarities 

between the data samples to define new classes. Semi-supervised learning is a combination of 

supervised and unsupervised learning. This paradigm is typically used when some of the training data 

have a known class but much of it does not (Tarca et al., 2007). 

 

2.2.2 The Dataset 

 
2.2.2.1 Data Pre-processing 
According to Chicco (2017), the preparation of the dataset is one of the most important aspects of a 

successful project involving machine learning (Chicco, 2017). The dataset is the basis on which the 

predictive model is built. Therefore, an insufficient dataset will create an insufficient model. In this 

case, the dataset is a reference to the data that is used to train, test, and evaluate the model 

generated by the machine learning algorithm. The process of preparing the dataset is known as data 

pre-processing. The following paragraphs describe some of the main concerns for data pre-

processing. 

 

2.2.2.2 Size 
Machine learning algorithms benefit from having a large dataset on which to train (Chicco, 2017). 

Large datasets allow the design of a more accurate model as they can display more of the variety 
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that might exist within each class, making the model better at distinguishing intra-class variation and 

between-class variation. Ideally, the dataset should contain ten times as many data instances as 

there are data features. 

 

2.2.2.3 Cleanliness 
A clean dataset is one where all corrupt, inconsistent, inaccurate, and outlier values have been 

removed. In this section we will go through different aspects of cleaning a database. 

 

2.2.2.4 Missing Values 
Errors during data gathering can result in data records where parts of the record are missing. When 

this occurs, the records can be deleted, or filled in by the researcher. The process of guessing the 

value of missing data is called imputation (Lee, 2017). This can sometimes be necessary when the 

method being used requires that there be no missing values. 

 

2.2.2.5 Inconsistent values/noise 
Inconsistent values do not make sense with what they represent. For example, a table of animals 

should not classify cod as being a mammal. Removing inconsistencies from the dataset reduces error 

and thus improves accuracy. Knowing that something is an inconsistency may require domain 

knowledge, such as the example of the cod. However, in some cases there are ways to detect that 

something is likely an inconsistency with little to no domain knowledge. Inconsistent data is also 

referred to as noise. 

 

2.2.2.6 Encoding Categorical Inputs 
Many machine learning algorithms work better with numerical inputs than categorical inputs. 

Therefore, a challenge when working with a dataset with categorical inputs is converting these into 

numerical values. Some often-used methods are one-hot encoding and label encoder.  

 

Label encoding transforms each value in a column to a number (Yadav, 2019). An issue with this 

approach is that when categories are represented by numbers, they can be compared in a way which 

does not make sense with what they represent. Take for example, a column of different cat-breeds 

denoted in text. When the names of the cat breeds are translated into numerical values, a 
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hierarchy/order is introduced between them where cat breed 1 and 2 can be considered more 

closely related than cat breed 1 and 9 for no other reason than the distance between the numerical 

labels. However, if the categories do have such relations between them, label encoding provides a 

simple way of representing this in the dataset. For example, a column of price levels, such as cheap, 

medium, expensive etc. Assuming these categories are given a numerical value in order it would be 

correct to assume that price level 0 and price level 1 are closer than price level 0 and price level 2. 

Therefore, label encoding is recommended for ordinal categories (Shrivastava, 2019). 

 

One-Hot encoding transforms the categorical values into new columns containing a one or zero 

denoting true or false for each category (Yadav, 2019). This removes the ordering problem 

introduced by label encoding as there is no implied relation between the different categories. 

However, this approach introduces new columns to the dataset and can greatly expand the dataset if 

there are many categories. One-hot encoding is recommended for nominal categories (Shrivastava, 

2019). 

 

2.2.2.7 Normalization 
For datasets that contain numerical data normalization, it is often needed to transform the dataset 

into a common frame. This means transforming the values to fit into an interval with a minimum and 

maximum value. A typical interval is 0 to 1. Below we describe some techniques normalizing data. 

• Log Transform: Log transform is a technique for dealing with skewed data. Statistical analysis 

often relies on the dataset following a normal distribution. When this is not the case, log 

transform fixes it by transforming each variable x into log(x) (Htoon, 2020). The 

transformation can use base two, base ten, or natural logarithms. The choice of base 

depends on the purpose of the analysis. For this to work however, the data must already be 

approximately following a log-normal distribution. Log-normal distribution means the 

logarithm of a continuous variable follows a normal distribution. 

• Scaling: Inputs which are continuous variables are often scaled so that they have a mean of 

zero and a variance of one. This means the continuous variables have a value between 1 and 

-1. The purpose of scaling is to align different features to more similar magnitudes, as many 

methods work better when this is the case (Lee, 2017). For example, in neural networks the 

weights of the various nodes will have a more equal effect on variables with a similar 

magnitude. 
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2.2.2.8 Splitting the Dataset 
After creating a model, it is not irrelevant which data instances are used for testing. If the same data 

samples are used both during training and testing, the model will produce overtly optimistic results 

as the model has been trained to classify those exact data samples (Chicco, 2017). This problem can 

be avoided by splitting the dataset into different sets; one for training and another for testing. The 

lack of overlap between sets ensures that testing evaluates the model’s accuracy in classifying new 

samples that do not exactly match the samples seen during training. It can also be argued that the 

dataset should be split into a third category as well; a validation set. In many cases the machine 

learning algorithm has one or several hyper-parameters which greatly impact the resulting model. 

Hyper-parameters are values that determine some part of how the algorithm operates or its initial 

values. For example, when using a K-nearest neighbour algorithm the value of K is a hyper-

parameter. To arrive at the ideal value for the hyper-parameters, models are put through an 

optimization phase. This means training the model with different hyper-parameters to determine 

which value gives the best performance. The validation set is used during this optimization phase. A 

common way to split the dataset is to use 50% as the training set, 30% for the validation set, and 20% 

for the test set. However, should the dataset be too small to allow only 50% to be used for training, 

other approaches such as cross-validation can be the solution (Chicco, 2017). 

 

2.2.2.9 The Imbalanced Dataset Problem 
An imbalanced dataset is one where one class is overrepresented compared to other classes in the 

dataset. In this scenario, it is easy to end up with a model that is prone to giving false positives for an 

overrepresented class, and false negatives for an underrepresented class. This is often a problem in 

bioinformatics as some microorganisms have received far more attention than others resulting in 

datasets where some classes have extensive records, while others have barely been recorded at all. 

There are several techniques that handle the imbalanced data problem, such as under-sampling or 

data class weighting (Chicco, 2017). 

 

2.2.2.10 Dimensionality of Input Data 
Dimensionality refers to the number of input variables or features used in the machine learning 

algorithm. A feature captures some characteristics of an object. High dimensionality increases the 

complexity of predictive modelling and reduces the performance of the algorithm (Brownlee, 2020a). 

In machine learning projects this is often a major concern as they often include large amounts of 



24 
 

data, which coupled with high dimensional input create a real challenge when computational 

resources, such as memory and CPU time are limited. In cases where the dimensionality is greater 

than the number of samples, overfitting becomes very likely (Tarca et al., 2007). The above-

mentioned issues can be dealt with by using dimensionality reduction techniques to decrease the 

dimensionality. Dimensionality reduction can be divided into two categories: combining existing 

features into new ones, or feature selection. When working with k-mers (see section 2.3.1), each k-

mer used as input is a dimension. Reducing dimensionality therefore means reducing the number of 

k-mers. Focusing on only those k-mers that are significant for classification can improve the 

performance and accuracy of the resulting predictive model. However, this requires defining and 

discovering which k-mers are significant. The goal of dimensionality reduction is ultimately feature 

space compression. Feature space compression means classification using fewer, but better features. 

This is an NP-hard problem. This means only a brute force approach can ensure the optimal solution 

is found. However, due to the size of the possible feature space, brute force is not feasible. Instead, 

various methods are used to approach an approximate solution which works for the project. These 

are discussed below. 

• Feature selection: During feature selection, a subset of all features is removed and will not 

be used in the predictive model. The features which are removed should be the ones with 

the least positive impact on model accuracy. Feature selection methods are divided into two 

categories: filter and wrapper methods. Filter methods filter out features from the input 

space using some threshold to determine relevance. Wrapper methods decide which 

features to use by comparing the accuracy score of the resulting predictive model. Filter 

methods are simpler to implement but cannot discover the impact that combinations of 

features can have on model accuracy (Tarca et al., 2007). Wrapper methods are more 

complex to implement and require more computational resources but can discover the 

benefits of combinations of features (Tarca et al., 2007).  

 

Not all k-mers will be equally useful for classification. Some k-mers might be too common 

and will thus increase the dimensionality and computational costs without also providing 

meaningful information. A k-mer can also be removed if it is highly correlated with another 

to the point that it can reasonably be assumed the presence of one means the presence of 

the other. In this case one might remove one of these k-mers. Correlated k-mers, or 

correlated features in general, can be discovered using a correlation plot. The above are 

examples of filtering k-mers. Reducing k-mers using wrapper methods would require defining 

a method of subset selection, and a heuristic algorithm to determine when the optimal 
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subset selection has been found. When accurately determining the optimal subset is not 

feasible, an approximate heuristic function can be used rather than an exact heuristic 

function. An approximate heuristic function can be either deterministic or stochastic. A 

deterministic function always returns the same result, while a stochastic one can give a 

different result each run. 

 

• Combining features: Combining features includes creating new features from existing ones, 

which then represent the original features they originated from.  

 

In the case of k-mers, these can be combined if there is a strong correlation between 

different k-mers. For example, if two k-mers are rarely present without the other also being 

present, the k-mers can be combined and counted as one feature rather than two separate 

features. Another option is to create a new feature to represent combinations of k-mers with 

a special relationship. A special relationship means the combination of certain k-mers being 

part of the same organisms holds some significant meaning. However, discovering such 

relationships would require expert domain knowledge and/or extensive testing. 

 

2.2.3 Comparing Prediction Ability Between Models 
 

Defining a standard metric on which to evaluate a model is essential when comparing multiple 

models on their prediction performance. Metrics allow for an objective evaluation that can be 

applied to all models equally and provide a measure of their prediction ability. 

 

The most commonly used metric is classification accuracy (Mishra, 2020). Classification accuracy is 

the ratio between correct predictions to the total number of predictions. Accuracy can be calculated 

using the below formula. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Accuracy is a simple metric that is comparable across models. The main disadvantage to accuracy is 

that when the number of samples belonging to each class is not even, the evaluation can be 

misleading (Mishra, 2020). For example, if the network is classifying images of cats and dogs, where 

90% of the data samples are images of cats, the model could achieve a 90% accuracy by classifying 
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everything as a cat. While this would be a correct score, a model that cannot differentiate between 

classes is not useful. 

 

Another common metric is precision, also known as positive predictive values. Precision determines 

the percentage of positive predictions that are correct (Saxena, 2018). A positive prediction is when a 

sample has been predicted to be part of a class, rather than not part of a class. The formula for 

precision is displayed below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑊𝑟𝑜𝑛𝑔𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Precision gives an indication of how certain we can be that a positive classification is correct. A high 

precision would indicate that any sample the model has classified as being of a certain class has a 

high probability of being correct. 

 

2.2.4 Neural Networks 
 

2.2.4.1 Introduction 
An artificial neural network is a supervised machine learning technique inspired by the neural 

networks in the human brain. When a person is subjected to different types of stimuli, such as 

seeing, smelling, tasting etc, certain neurons in their brain are activated, and those neurons may 

activate other neurons (BrainFacts/SfN, 2012). As there is a connection between stimuli and which 

neurons are activated it should be possible to predict something about the stimuli by looking at 

which neurons have been activated and how activated. This is the underlying idea that artificial 

neural networks are inspired by. One of the main benefits of neural networks is their ability to 

discover complex non-linear relations between data (Hammerstrom, 1993). Neural networks also 

show greater fault tolerance compared to other methods due to its ability to generalize 

(Hammerstrom, 1993). To generalize a network must discover those features that all or most of the 

samples from a certain class have in common. In this case, fault tolerance means the network is less 

sensitive to noisy data (see section 2.2.2.5). In general, neural networks are excellent when it comes 

to recognising trends and patterns and can be applied to a wide range problems (Abiodun et al., 

2018). 
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The artificial neural network is built up of several nodes, called neurons, ordered into layers 

(Tegmark, 2017). Each neuron takes input and performs some calculation on said input to produce 

some output. This output is then sent to the next layer. The number of layers varies greatly. 

However, all artificial neural networks must have an input layer, and an output layer. Typically, there 

will also be any number of layers in between, called hidden layers. Once the input has gone through 

every layer, the network attempts to place the input into a class. This is called predicting. For the rest 

of this section artificial neural networks will be known simply as neural networks.  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.3: A SIMPLE NEURAL NETWORK WITH AN INPUT LAYER, OUTPUT LAYER, AND ONE HIDDEN LAYER. 

FIGURE 2.2: STYLIZED IMAGE OF NATURAL NEURAL NETWORKS IN THE BRAIN. 
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2.2.4.2 Training a Neural Network 
All machine learning methods must be trained to generalize across classes allowing them to predict 

the correct class of new data. For neural networks this takes the form of weight regularization. The 

connections between neurons in the hidden layers of the network are coupled with a weight that 

determines the power of that neuron’s input in affecting the final classification. As such, weights are 

a way of distinguishing important features. The weights also prevent small variations in the input 

from having excessive consequence on the result (Tarca et al., 2007). When a neural network is being 

trained, the weights in the network are continuously being updated to try to find the combination of 

weights leading to the most accurate predictions. The following paragraphs will go into this process 

in greater detail. 

 

Upon initialization of the neural network, the weights are arbitrarily assigned. Typically, these values 

follow a normal distribution with a mean of zero and a standard deviation of one. The inputs from 

the training set are then sent through the model. At each layer the input is transformed using an 

activation function (see section 2.2.3.3). The result of the activation function is then sent to the next 

layer. When the input has gone through the whole network, the network tries to predict the class of 

the input by coming up with a probability for each class. This probability is then scored using a loss 

function (see section 2.2.3.4) by comparing it to the correct probabilities. This process is repeated for 

every input in the training set. Then the weights in the network are updated based on the result. 

How the weights are altered depends on the chosen optimization algorithm (see section 2.2.3.5). 

One round of going through the whole training set, evaluating the results, and updating the weights 

is called an epoch. Training a neural network typically includes multiple epochs. When the network is 

improving through multiple epochs, we say that it is learning. 

 

While the neural network trains on the entire training set during an epoch, typically it does not train 

on the entire training set at the same time. Instead, the training set is divided into batches, which are 

subsets of the training data. The model then trains on each batch separately. The number of times 

the network is trained per epoch is therefore the length of the training set divided by the batch size, 

or as a formula; 𝑤𝑜𝑟𝑘𝑜𝑢𝑡𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ =  
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 
  . Large batches allow the epoch to finish 

faster and reduces resource usage as it reduces the number of times the model must run. However, 

research has shown that large batches can make the model worse at generalizing, although it is 

uncertain why this is the case (Shen, 2018). 
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2.2.4.3 Activation Functions 

 

2.2.4.3.1 INTRODUCTION 

Neurons have an activation function. The activation function determines the output of the neurons 

given the inputs from the neurons in the previous layer. The activation function takes in the weighted 

sum of the inputs and produces a new value to send to the next layer. The purpose of the activation 

function is to determine to what extent the neuron is “activated”. Activation functions typically 

produce a value between a lower and an upper limit, for example 0 and 1. The closer the value is to 

the upper limit, the more “activated” the neuron is.  The idea is that depending on the input, some 

neurons will be more activated than others, and similar inputs will activate the same neurons. This 

allows the model to perform a prediction on the input based on which neurons have been activated 

and which ones have not. This idea stems from how different neurons in the human brain are 

activated depending on the type of stimuli a person is subjected to.  

 

2.2.4.3.2 THE VANISHING GRADIENT PROBLEM 

The vanishing gradient is a common issue when training a neural network. This problem occurs when 

the gradient being calculated from backpropagation is a very low number, meaning close to 0 (Wang, 

2019). When the weights are updated, they are updated in proportion to the size of the gradient. 

Therefore, small gradients do not alter the model much which can cause it to stagnate and not learn 

effectively. The opposite of the vanishing gradient is the exploding gradient. This occurs when the 

gradient is very large, meaning greater than 1, which causes the weight to be drastically altered 

during training (Pykes, 2020). Such drastic changes can keep the network from finding the ideal 

weight for its nodes as they change too much with each iteration to get close to the weight that 

would result in the best outcome. Both the vanishing and exploding gradient problems are worse for 

deep neural networks in comparison to simpler networks (Brownlee, 2019a). This is because the 

value of the gradient is the product of a calculation that depends on the gradients later in the 

network. The more gradients the vanishing or exploding gradient depends on, the more likely it is 

that the value of the gradient will be pushed further in the same direction, low gradient becoming 

even lower and high gradient becoming even higher. 

 

2.2.4.3.3 TYPES OF ACTIVATION FUNCTIONS 

There are two main types of activation functions: linear and non-linear. When the activation function 

is linear no transformation is performed on the input. Networks that use linear functions are easier 
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to train but are less capable of learning complex relationships in the data. Therefore, non-linear 

functions are often preferable. However, non-linear functions are vulnerable to the vanishing 

gradient problem. Two of the most common non-linear functions are sigmoid and tanh. There are, 

however, some functions that are not entirely linear or non-linear. These are called piecewise linear 

functions and are linear for only parts of the input space. A popular piecewise linear function is 

rectified linear unit (ReLU). The mentioned activation functions are described in greater detail below. 

• The sigmoid function is also called the logistic function and can be mathematically described 

as below (Chaudhary, 2020). 

 

𝑓(𝑥) =  
1

1 +  𝑒−𝑥
 

 

Sigmoid transforms the input to be 0 ≤ and ≤ 1. The function for all possible inputs forms an 

S-shape with 0.5 as the midway-point. An issue to the sigmoid function is that it is especially 

vulnerable to the vanishing gradient problem due to the output not being zero-centred 

(Chaudhary, 2020). 

• The hyperbolic tangent function (tanh) can be described mathematically as below 

(Chaudhary, 2020). 

 

𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒𝑥
 

 

The tanh function transforms the value of the input to be -1 ≤ and ≤ 1. The function for all 

possible inputs forms an S-shape with 0 as the midway-point. Tanh suffers from the vanishing 

gradient problem, but less than sigmoid due to the output being zero-centred (Chaudhary, 

2020). 

• Rectified linear unit (ReLU), can be described mathematically as below (Brownlee, 2019a). 

𝑓(𝑥) = max (0, 𝑥) 

The ReLU function returns the value of the input directly, or the value 0 if the value of the 

input is ≤ 0.  This is a piecewise linear function and acts linear for half the input space, in this 

case for all inputs > 0. ReLU is not sensitive to the vanishing gradient problem as it acts like a 

linear function. However, since it is a non-linear function, it also maintains the ability to learn 

complex relationships in the data. 
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• Normalized exponential function (softmax) is often used as the last activation function to 

normalize the output from the network. Softmax takes a vector of values, applies the 

standard exponential function to each element in the vector, and then divides by the sum of 

the exponentials. The result is a vector where all elements are 0 ≤ and ≤ 1, and the sum of all 

elements is 1. The output looks like a set of probabilities for mutually exclusive classes. The 

softmax function can be described using the following formula (Wood, 2019). 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑣𝑒𝑐𝑡𝑜𝑟 =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 

𝑧𝑖  are the elements from the input vector. 𝑒𝑧𝑖 is the exponential function applied to each 

element in the input vector. K is the number of classes in the training set. ∑ 𝑒𝑧𝑗𝐾
𝑗=1  is the 

normalization term. 

 

2.2.4.4 Loss Functions 
A loss function is a measurement of the error that is achieved by comparing the output from the 

neural network with the correct output. The purpose of a loss function is to provide a score which 

summarizes the quality of the model, and where improvement in the score signifies an improvement 

in the model (Brownlee, 2019c). As the score provided by a loss function represents the error in the 

model, the goal of training is always to get the loss function to score as close to 0 as possible, and as 

we can never have a negative amount of loss, the score produced by a loss function is always ≥ 0. 

• A common loss function is mean squared error (MSE). MSE provides a measurement of loss 

by taking the difference between the predicted output and the correct input for every data 

sample, then squaring each of them and finding the average. This can be summarized by the 

below function where 𝑒 is the difference between predicted and correct output and n is the 

number of data samples in the training set (Binieli, 2018). The advantage of MSE is that we 

do not get outlier predictions with large errors as MSE puts a lot of weight on such errors. 

However, in many cases reducing the error on outlier values is not a priority and we would 

rather have a model that performs better on most inputs. 

𝑚𝑠𝑒 =  
𝑒0

2 + ⋯ + 𝑒𝑛
2

𝑛
 

• Mean absolute error (MAE) is a slightly altered version of MSE that improves on MSE’s 

disadvantages. The only difference is that in MAE takes the absolute value of e rather than 

square it. The formula is displayed below. MAE weights all errors on the same linear scale, 
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thus putting less emphasis on outliers. This results in a model that performs well on most 

data but can produce large errors when it comes to outliers (Seif, 2021). 

𝑚𝑎𝑒 =  
|𝑒0| + ⋯ + |𝑒𝑛|

𝑛
 

• Categorical-cross entropy is a common loss function for deep neural networks on multi-class 

classification problems (Gordon-Rodriguez et al., 2020). Categorical-cross entropy is based on 

calculating the difference between two probability distributions. This loss function has been 

found to have advantages over other functions such as squared-error (Vilone and Longo, 

2021).  Cross-entropy uses logarithms to increase the training speed for neural networks. The 

formula for categorical cross-entropy can be found below (Mody, 2020). C is class id, o is 

observation id, and p is probability. 

− ∑ 𝑦𝑜,𝑐log (𝑝𝑜,𝑐)

𝑀

𝑐=1

 

 

 

2.2.4.5 Optimization Functions 
Optimization algorithms change attributes of the neural network such as weights and learning rate to 

reduce the loss function (see section 2.2.3.4) (Doshi, 2020). There are several optimization algorithms 

that solve this in different ways. In this section we will describe some of these algorithms. 

 

2.2.4.5.1 GRADIENT DESCENT 

Gradient descent is one of the most basic and common optimization algorithms (Doshi, 2020). The 

goal of gradient descent is to calculate the direction in which a weight should be altered to minimize 

the loss function. Another way of describing this is that gradient descent finds a local minimum on a 

differential function (Chauhan, 2020). The process works as follows; start with the initial value. 

Calculate the derivative of the function to find the direction of the slope. If the slope is positive, the 

weight should increase, and if the slope is negative the weight should decrease. A derivative of 0 

means the algorithm has found the local minima. This process is repeated once in every epoch. After 

running gradient descent, the new weight can be described using the below formula. 

𝑤 =  𝑤0 − 
𝑙𝑜𝑠𝑠

𝑤0
× 𝐿𝑅 

W is the new weight, loss is the size of the error as calculated by the loss function, w0 is the current 

weight, and LR is the learning rate. The learning rate is typically a value between 0.001 and 0.0001. 
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Setting the learning rate too high risks skipping the ideal weight. However, setting the learning rate 

too low risks the model needing a lot more time to train.   

 

 

 

 

 

 

 

 

 

The main advantage of gradient descent is that it is simple to understand and calculate. Some 

important disadvantages, however, are that this algorithm may become stuck in local minima and is 

known to use a lot of memory (Chauhan, 2020). 

 

2.2.4.5.2 STOCHASTIC GRADIENT DESCENT 

Stochastic gradient descent is a variant of gradient descent. The difference is that stochastic gradient 

descent updates the weights after calculating the loss on each training sample (Doshi, 2020). This 

means that if the training set contains 1000 samples, the weights will be altered 1000 times during 

one epoch. Some advantages to this approach are that it is faster (Paine et al., 2013) and requires 

less memory than standard gradient descent and is less likely to be trapped in a local minima (Doshi, 

2020). However, this algorithm may continue changing the weights even after finding a global 

minima (Doshi, 2020). 

 

2.2.4.6 Over and Underfitting 
Over- and underfitting refer to how well a trained machine learning model fits the training and test 

sets. 

 

2.2.4.6.1 OVERFITTING 

A model that has overfitted the data, has learned to recognize and predict the training data, but 

failed to generalize about the categories it is predicting (Brownlee, 2018a). As a result, the model will 

FIGURE 2.4: STYLIZED FUNCTION ILLUSTRATING HOW TO DETERMINE THE 

DIRECTION IN WHICH THE WEIGHT SHOULD BE ADJUSTED. 
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perform poorly on unseen data if it deviates slightly from training samples from the same category. If 

a model performs well during training, but poorly during testing, this is a sign of overfitting.  

One way to reduce overfitting is by increasing the diversity of the training set. If the model is given 

many different samples from the same category, it becomes more likely that the model will discover 

the general features that define the category rather than the unique characteristics that define the 

individual.  

If acquiring more training data is not an option, data augmentation is another alternative.  Data 

augmentation includes artificially increasing the diversity of the training set by introducing modified 

versions of samples into the training set (Sikka, 2020). Overfitting can also be reduced by reducing 

the complexity of the model. A less complex model will be less capable of picking up subtle 

differences in the dataset and might therefore generalize better.  

Regularization is a technique that can help reduce overfitting by reducing the complexity of the 

model (Brownlee, 2018a). This is achieved by altering the loss function (see section 2.2.3.4) to 

penalize for complexity, and by boosting the loss value when some weights are relatively large. This 

pushes the model towards smaller weights, which in turn lessens the importance of each layer. In 

some cases, a layer can have weights that are so small the layer becomes almost irrelevant. 

Overfitting can also come about because of overtraining. Reducing training time can thus reduce 

overfitting. 

A last technique for reducing overfitting is dropout (Versloot, 2019). Dropout prevents overfitting in 

neural networks by making the neural network randomly ignore a subset of the nodes in a layer. 

 

2.2.4.6.2 UNDERFITTING 

Underfitting is the opposite of overfitting. A model that is underfitting the data performs poorly both 

on training data and test data (Brownlee, 2018a). Underfitting occurs when the model is not 

discovering the features needed to classify the data. Typically, underfitting can be a sign that the 

model is not sophisticated enough as compared to the data it is training on. 

Underfitting can be improved by increasing the complexity of the model (Brownlee, 2018a). This can 

be done by increasing the number of layers, the number of nodes in the layers, or adding different 

types of layers. 

Adding more features to the training set can also improve underfitting by giving the model more data 

to work with (Sikka, 2020). 
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2.2.5 Deep Learning 
 

2.2.5.1 What is Deep Learning? 
Neural networks come in many forms. The simplest neural networks have only three layers. When 

neural networks get more layers, they are called deep neural networks. Deep neural networks are a 

form of deep learning. Deep learning is a subfield within machine learning consisting of techniques 

where larger architectures are used to represent higher level features than what is possible with 

other techniques. There is no clear divide between traditional neural network and deep learning as 

there is no commonly accepted size requirement for a neural network to be considered deep. 

However, it must have at least the regular three layers. Some popular deep learning techniques are; 

multilayer perceptron networks, convolutional neural networks, and recurrent neural networks 

(Brownlee, 2019d). Deep learning is a powerful tool when there are large datasets available to work 

with, and as such is ideal for big data. In a talk on deep learning, Ng stated that unlike traditional 

machine learning techniques whose performance plateau when enough data has been collected, 

deep learning techniques are able to continue improving their performance as more data is added 

(Ng, 2015). The implication is that deep learning will surpass traditional methods given enough data. 

 

2.2.5.2 Deep Neural Networks 

 

2.2.5.2.1 MULTILAYER PERCEPTRON NETWORK 

A multilayer perceptron network is a deep neural network with at least one hidden layer. This is the 

most common deep neural network (Uniqtech, 2019). Multilayer perceptron networks are flexible 

and can be applied to a wide range of prediction problems (Brownlee, 2018b). Multilayer 

perceptrons can detect patterns that are too complex to be noticed by humans and other machine 

learning algorithms. A network with one hidden layer has been proven to be a universal 

approximator as long as it has a sufficient number of hidden nodes (Hornik, Stinchcombe and White, 

1989).The disadvantages of multilayer perceptron networks are the same as for neural networks in 

general. Such as the lack of rules or best practises in determining the structure of the network, 

making the process of finding a suitable architecture time-consuming. Neural networks are also strict 

on the input format as they can only work on numerical data (Gupta, 2020). The structure of the 

input also has direct consequences on the network’s performance increasing the burden of careful 

pre-processing (Gupta, 2020). 
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2.2.5.2.2 CONVOLUTIONAL NEURAL NETWORK 

A convolutional neural network is a deep neural network that includes convolutional layers. The 

neurons in a convolutional layer can extract higher-level features compared to standard fully 

connected layers (Nguyen et al., 2016). The convolutional layer consists of maps of neurons whose 

size is equal to the dimensionality of the input (Angermueller et al., 2016). Each neuron in the map is 

connected to a subset of the neurons from the previous layer. This subset is called the receptive 

field. Each of these neurons looks for a feature by computing the weighted sum of all inputs from its 

receptive field and applying an activation function. What each map does in principle, is to look 

through the input for a certain pattern. For example, the map could detect sequence motifs. A 

sequence motif is a short recurring pattern in a DNA sequence assumed to have some biological 

function. A convolutional neural network often consists of multiple convolutional layers allowing the 

network to learn to recognise increasingly complex features. Convolutional networks also often 

include pooling layers. Pooling layers create a summary of adjacent neurons. Typically, by finding the 

maximum or average value produced by the neurons. The use of pooling layers relies on the 

assumption that the exact position and frequency of features is irrelevant for the final classification 

(Angermueller et al., 2016). Convolutional networks have been shown to be very accurate on image 

recognition problems and detect important features without human interaction. However, 

convolutional neural networks require a lot of training data and are computationally slow (Diaz, 

2016). While convolutional models have mainly been popular for image recognition, research 

suggests it could have potential for taxonomic classification as well, even if more exploration is 

needed (Khawaldeh et al., 2017). For example, in a project by Vue et al, a convolutional network 

outperformed a number of other machine learning techniques on fungal classification (Vu, 

Groenewald and Verkley, 2020). 

 

Convolutional layers are what defines a convolutional neural network as this is where convolution 

occurs. A convolution is a linear operation where the input is multiplied by a set of weights (Albawi, 

Mohammed and Al-Zawi, 2017). The set of weights is known as a filter. Initially, the weights in the 

filter are randomly generated upon initialization, just like the weights in a standard neural network. 

During convolution, the input vector is divided into smaller windows of given length, which are 

multiplied with the filter. Each filter used during convolution can detect a certain pattern in the input 

due to having different weights. Hence, having many filters allows the network to detect more 

patterns in the input. The result, after applying the filters to the input, is collected in a feature map. 

The feature map is then passed to an activation function just like in a standard neural network. 
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When implementing a convolutional layer, the most important properties are the number of filters, 

kernel size, stride, and padding. Each filter in a convolutional layer can detect a different pattern. The 

number of filters therefore determines how many patterns that convolutional layer can detect. 

Kernel size determines the size of the windows being multiplied by the filters. The kernel size should 

be lower than the input size so the filters can be applied many times. Stride determines how much 

the window moves through the input before performing a convolution on the input. Typically, the 

stride is 1 to ensure all filters are applied to the entire input sequence and the filters do not miss 

patterns. Padding determines what happens when the window is near the edges of the input. For 

sequential input this is the start and end of the sequence. Padding adds extra data to the end of the 

input, thus increasing the number of convolutions. This allows the edges to be processed in the same 

fashion as the data in the middle of the input.  

 

2.3 Nucleotide K-mers as Features in Machine Learning 
 

2.3.1 Introduction to K-mers 
 

Due to the length and number of DNA sequences, using the whole sequence in classification tasks 

requires enormous computational resources due in part to the high memory requirements (Bucak 

and Uslan, 2011). These requirements make the classification task expensive and depending on the 

size of the DNA sequences and reference database even infeasible. To lower the resource 

requirements, it is necessary to reduce the size of the input itself. This can be achieved using k-mers 

rather than complete sequences. K-mers are extracted pieces of DNA (Brihadiswaran, 2020). The k 

denotes the number of nucleotides in the k-mer. For example, an 8-mer contains eight nucleotides. 

By dividing the DNA sequence into k-mers and then using a subset of those k-mers as input for the 

classification algorithm, the computational requirements are drastically reduced. Another benefit of 

k-mers is that the requirements for genome completeness are lower. The DNA sequence may be 

incomplete with missing pieces, making it impossible to determine the correct order of the whole 

sequence. Such errors in the data matter less when the sequence is divided into k-mers. The 

classification also becomes less affected by indels. Indels are small insertion-deletions in an 

organism’s DNA (Lin et al., 2017). In a complete DNA sequence-indels can shift long sub-sequences, 

reducing the complete sequence’s comparability with other sequences. When using k-mers however, 

only a limited number of k-mers are affected by the indel reducing the importance of such 

irregularities.   
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When sequencing DNA, the DNA strand can be read in either direction. Since the direction in which 

the DNA sequence is being read is irrelevant to classification, differentiating between a k-mer and its 

reverse-complement is typically not necessary as these are considered the same k-mer. Canonical k-

mers is a method of ensuring a k-mer and its reverse complement are always represented in the 

same way. When a k-mer pair is treated as canonical, both k-mers will be represented by the 

lexicographically smallest k-mer (Clavijo, 2018).  

 

2.3.2 K-mer Length 
 

K-mer length can have a significant impact on the classification tasks, and there are advantages and 

disadvantages to choosing shorter or longer k-mers. In general longer k-mers contain more 

information as they are more detailed (Kaehler, 2017). They are also more likely to discover areas 

where shorter sequences are repeated multiple times in a row. For example, the nucleotides AT 

being repeated five times in a row. However, long k-mers increase memory requirements. The 

correlation between k-mer length and computational requirements is strong. This is because there is 

a direct relation between k-mer length, and the dimensionality of the input vectors used by the 

machine learning algorithm. The longer the k-mer, the more distinct k-mers exist in the dataset. The 

more distinct k-mers there are, the more k-mers need to be counted or otherwise represented in the 

input vector to represent the DNA sequence. For example, 16-mers creates the potential for up to 

4 294 967 296 distinct k-mers, while 8-mers allows upwards of 65 536, and 3-mers create a maximum 

of only 64. In their article, LaPierre et al tested various k-mer lengths for their project on machine 

learning in metagenome-based disease prediction and empirically found k=12 lead to sufficiently 

significant k-mers for classification while still being computationally feasible (see section 2.1.5.4.1) 

(LaPierre et al., 2019a). Significant k-mers were discovered by conducting statistical tests on the 

abundance of each k-mer by calculating the p-value of each k-mer using Student’s t-test. They then 

sorted the k-mers by p-value and retained the top 1000 k-mers. 

 

2.3.3 K-mer Representation for Machine Learning 
 

2.3.3.1 Introduction 
Machine learning models cannot work on raw, textual data. Instead, they require the input data to 

be represented in a numerical format (Brownlee, 2020b). Therefore, it is necessary to find a 

numerical way of representing k-mers. There are two main approaches to representing k-mers; 

presence/absence and k-mer counting. Presence/absence represents each k-mer as an equivalent of 
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a boolean value signifying whether the k-mer is present or absent in the DNA. DNA sequences are 

presumed to be in the same class if they contain the same k-mers. K-mer counting represents the 

DNA by providing a count for each distinct k-mer. The idea is that DNA sequences that have the same 

k-mers at similar frequencies are more similar than those that do not. This similarity is assumed to 

signify taxonomic similarity and is used to classify those sequences as belonging to the same class. K-

mer counting and presence/absence are both popular methods of assessing similarity between 

sequences of DNA in taxonomic classification projects. However, there is no commonly accepted best 

practice as to how either method should be implemented. The size of the representations, the length 

of the k-mers, the data structures to base the representation on etc vary between projects. In this 

section we will go through some of the different ways to implement k-mer representation in 

practice. 

 

2.3.3.2 Issues When Representing K-mers 
There are several issues to be considered when implementing k-mer counting or k-mer 

presence/absence. In this section we will present three major concerns which the selected solution 

must address. 

• K-mer counts can be represented as a vector of numerical values where each position in the 

vector represents a distinct k-mer that exists in the dataset and the numerical value is the 

count for that k-mer. Presence/absence would be represented in the same way except the 

numerical value would be binary. This method is simple to implement and results in vectors 

that are easy to compare and no k-mers are overlooked. However, a major concern with this 

solution is the computational requirements. A dataset where we use k=8 can contain as 

many as 65 536 distinct k-mers. Each DNA sequence would therefore potentially have to be 

represented by a vector of length up to 65 536. For longer k-mers the vectors would have to 

be even longer. In a dataset with many organisms to compare, working with such large data 

quickly becomes computationally infeasible. There is the distinct possibility that these 

vectors would to a large extent contain zeros, assuming most k-mers are present in a limited 

number of the genomes. The consequence could be an aggravation of the vanishing gradient 

problem as inputs of zero would result in the gradients calculated to update the weights 

being small (see section 2.2.4.3.2).  

• When considering how to reduce the computational cost of k-mer representation, it is 

necessary that any solution must not compromise the comparability of the representation 

vectors. For example, a simple way of reducing the length of vectors, is to only include those 

k-mers that are present in that DNA sequence. If the DNA sequence includes a lot of 
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repeated k-mers this would significantly reduce the needed vector length. However, this 

would mean that the value at a specific position in one vector, is not necessarily comparable 

to the value at the same position in a different vector as they might not be counting the 

same k-mer. This solution would also not work for presence/absence-based representation, 

as it would result in identical vectors. This leads to the requirement that the sequences must 

be represented in one of the two following ways.  

1. All sequences are represented by vectors of fixed length that contain the same k-mers in 

the same order. Each element in the vector is then comparable to the element in the 

same position in all other vectors. 

2. The sequences are represented by vectors of varying length that contain different k-mers 

in an order that is not necessarily the same. The elements in the vector denote which k-

mer they represent. 

 

2.3.4 K-mer Extraction and Selection 
 

Having presented the issues relevant when implementing k-mer representation in the previous 

section, this section is dedicated to presenting some of the ways in which k-mer counting has been 

represented in previous works. Generally, all implementations of k-mer representation must reduce 

the number of k-mers to a level that is computationally feasible to work with. However, this 

reduction of input data can come at the price of decreased accuracy as potentially valuable 

information may be lost. The challenge is finding a solution that manages to identify and preserve 

the k-mers that are useful for classification, and discard those that are not. 

 

Methods for selecting a subset of k-mers: 

• The purpose of MinHash sketching is to create small, representative signatures for genomes 

(Berlin et al., 2015). These signatures can be compared to determine the similarity between 

different genomes using techniques such as the Jaccard index. The first step in creating a 

signature, is creating hashes for each k-mer in the sequence using locality sensitive hashing 

(LSH). LSH is different from ordinary hashing in that it produces similar hash values for similar 

input data. The implication being that it can reasonably be assumed k-mers whose hash 

values are closer are more similar than k-mers where the difference between their hash 

values is greater. Then, a set of the n k-mers with the lowest hash value are extracted as a 

subset. This subset is called a sketch and serves as the genome signature. There are two 
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alternatives to implementing MinHash sketching. The first alternative is to select the 

elements with the lowest hash value in the whole sequence for the signature. The other 

alternative is to divide the sequence into subsets and take out the lowest hash value from 

each subset. The first alternative would result in signatures being more similar across 

genomes, while the second retains more information on the composition of the whole 

genome. There are several tools that rely on MinHash sketching. Some of these are Mash 

(Ondov et al., 2016) and sourmash (Brown and Irber, 2016). 

• HULK stands for Histosketching Using Little K-mers (Carrieri et al., 2019). HULK reduces 

sequences to updatable histosketches of the k-mer spectrum. A histosketch is a data 

structure where a set of fixed size sketches are maintained over a streaming histogram to 

approximate similarity between histograms (Yang et al., 2017). An important aspect of the 

histosketch is that it includes mechanisms for gradually forgetting older sketches when new 

histograms are added to the structure by giving less weight to sketches as more new 

sketches are added. The histosketch is then used as input for the machine learning models. 

HULK works by first converting the sequence into overlapping k-mers. These k-mers are then 

hashed uniformly over a set of bins. The frequency of each bin is then used as an 

approximation for the k-mer frequency. This way HULK represents the sequence as a fixed-

length k-mer spectrum data structure. The placement of k-mers in each bin is determined by 

a consistent weighting sampling scheme and its resulting hash values. The resulting data 

structures can be considered fixed length feature vectors and can be used as input for the 

machine learning models. 

 

Methods for reducing k-mer space by removing k-mers deemed less important: 

• PhenotypeSeeker (Aun et al., 2018)is a program that does three things; identifies phenotype-

specific k-mers, generates k-mer based statistical models for predicting a given phenotype, 

and predicts the phenotype of given bacterial sequences. As such, PhenotypeSeeker is not a 

method of representing a sequence of k-mers, but an entire pipeline with a built-in 

prediction model. PhenotypeSeeker is described as memory efficient and easy to use. This 

model is not based on discovering k-mer frequency, but rather k-mer presence. However, a 

k-mer is only marked as present if it is found in the sequence a minimum of five times.  

• De Brujin Graph Genome-Wide Association Studies (DBGWAS) is an extended k-mer based 

metagenomic method that was developed to discover genetic variants linked to distinct 

phenotypes (Jaillard et al., 2018). In DBGWAS, important k-mers are discovered by 
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representing all k-mers across all genomes in the dataset as a single De Brujin graph. The 

graph can remove the redundancy of consecutive k-mers by combining them into one and 

provides a way of visualizing the context for significant k-mers. Each node is individually 

tested for association with a phenotype. For the nodes found to be significant, subgraphs are 

extracted which display their local genomic environment. The topology, metadata, and 

annotation of these subgraphs can then be used to locate important k-mers in the test data 

and categorize them as having the phenotype connected to the sub-graph in question. 
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Chapter 3: Methods 
 

3.1 Database 
 

3.1.1 Overview of Database 
 

The choice of database can have significant consequences for the results as it provides the data the 

model will be working on. The Genome Taxonomy Database (GTDB) (Genome Taxonomy Database, 

2021) (Parks et al., 2021) was selected for this project as it is quite extensive and contains many 

samples of whole genomes. GTDB is an initiative that aims to establish a standardized microbial 

taxonomy based on genome phylogeny (see section 2.1.4). There are several versions of this 

database. For this project we used the 2021 release of the database that can be downloaded from 

the official website (The GTDB Team, 2021). The database covers bacteria and archaea. GTDB 

includes data on marker genes, metagenomes, and metatranscriptomes. However, as the topic of the 

project is metagenomic classification, only the sub-folder 202.0/auxillary_files/ 

gtdbtk_r202_data.tar.gz of the database was used in this project, as it contains only whole genome 

data. Henceforth, when referring to the database only the aforementioned sub-folder of the GTDB 

database is included. In total the database contains 47 894 samples, of which 2 339 are archaea and 

45 555 are bacteria. 

 

While cleaning the database is important to get good data to work on, the database used for this 

project was of high quality and thus did not require any cleaning. The genomes in the database had a 

completeness between 50% and 100%, with the majority being closer to 100% than 50% (Genome 

Taxonomy Database, 2021). Almost all genomes also had a low level of contamination. Only eight 

genomes were considered low quality. 

 

3.1.2 Splitting the Database 
 

As discussed in section 2.2.2.8, splitting the dataset is important to avoiding unrealistically optimistic 

results. The database was therefore split into three datasets; a training set, a validation set, and a 

test set. It was determined that the set sizes should follow common practise, meaning 50% of the 

database was allocated as the training set, 30% as the validation set, and 20% as the testing set. As 
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the database is quite large it was not necessary to consider approaches such as cross-validation to 

use more of the database for training. 

 

A Python class was written to select which files in the database would be used for training, 

validation, and testing. The class can be found under DivideDatabase/divide_database.py. The 

program worked as follows; Initially the whole database was allocated to training. The program read 

the file gtdb_taxonomy.tsv (see section 3.1.1) to find the names of all data files. Then the program 

calculated how many files should be in the validation set based on the length of the training set and 

randomly selected files from the training set until the calculated validation set quota had been filled. 

These files were then moved from the training set to the validation set. Then, the program calculated 

how many files should be in the test set based on the length of the training and validation sets 

combined. Files were then randomly selected until there were enough to fill the test set quota. These 

files were then moved from the training set to the test set. The result was a training set containing 

approximately 50% of all files in the dataset, a validation set containing approximately 30% of the 

dataset, and a test set containing approximately 20% of the dataset. The main logic of this program is 

shown in figure 3.1. The figure shows the part of the program where the length of the validation and 

test sets are calculated, and files are randomly selected until both sets contained the correct number 

of files. Initially, the whole dataset was allocated for the training set. Then, the length of the 

validation set was calculated using the following formula: 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 =

 
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

100
∗ 30. Those files were then removed from the training set and added to a separate 

validation set. The length of the test set was then calculated using the following formula: 

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 =  
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡+𝑠𝑖𝑧𝑒 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡

100
∗ 20, where the size of the training and 

validation sets combined was equal to the size of the whole dataset. The test files were then 

removed from the training set, resulting in three non-overlapping sets containing 50% (training), 30% 

(validation), and 20% (testing) of the whole dataset. 
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3.2 Tools 
 

3.2.1 Jellyfish 
 

Developing a program that can count k-mers efficiently and without using a lot of computational 

resources is a time-consuming task. Therefore, in this project the Jellyfish tool was utilized for this 

purpose instead of developing bespoke software. Jellyfish is a program that is specifically developed 

for fast and memory-efficient k-mer counting (gmarcais, 2021) (Marçais and Kingsford, 2011). 

Jellyfish is a command-line program that runs on FASTA-files containing DNA sequences. It provides 

commands to count k-mers with a series of options such as setting the k-mer length, only including 

high frequency k-mers etc. There are several releases of Jellyfish available. In this project we used 

version 2.3.0. 

 

3.2.2 Sourmash 
 

Sourmash is a tool to compute hash sketches from DNA sequences (see section 2.3.4). Sourmash 

allows the user to compute the hash sketches, as well as compare them to each other and produce a 

dendrogram of the results (Brown and Irber, 2016). The computational requirements are lower than 

many other similar programs which is useful when working on a large database. Sourmash is a 

command-line tool that runs on FASTA files containing DNA sequences. It is also a Python library. The 

FIGURE 3.1: CODE TO SPLIT THE DATASET INTO TRAINING, VALIDATION, AND TEST SETS. 
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purpose of using sourmash is to not have to implement MinHash for those representation methods 

that rely on it (see section 3.6.1). In this project we used version 4.2.2 of sourmash. 

 

3.2.3 Tensorflow 
 

Tensorflow is a python library, and an interface for implementing and executing machine learning 

algorithms, including neural networks (Abadi et al., 2015). It is a popular platform used by large tech-

companies such as Google, AirBnB, Twitter etc. Keras is a deep learning API running on top of 

TensorFlow (Chollet, 2015). Keras provides functionality to build different machine learning models 

quickly due to the array of inbuilt features and algorithms, as well as functionality for testing and 

evaluating models. In this project all neural networks were build using Keras (see section 3.7), and 

the 2.6.0 version of TensorFlow was used. 

 
 

3.3 Computational Resources 
 

3.3.1 Saga 

 

Due to the size, and subsequent computational requirements of running the project, programs 

related to preparing the dataset and running the machine learning algorithms were run on a 

supercomputer named Saga owned by UNINETT Sigma2 (Sigma2/NRIS, 2021). UNINETT Sigma2 is a 

company that provides high-performance computing (HPC) and large-scale storage to researchers in 

Norway (Uninett Sigma2, 2021). The technical specification of Saga is described in table 3.1. 
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TABLE 3.1: SAGA TECHNICAL SPECIFICATION 

Details Saga 

System Hewlett Packard Enterprise – Apollo 
2000/6500 Gen10 

Number of cores 16 064 

Number of nodes 364 

Number of GPUs 32 

CPU type Intel Xeon-Gold 6138 2.0 GHz / 6230 2.1 
GHz 
Intel Xeon-Gold 6130 2.1 GHz 
Intel Xeon-Gold 6126 2.6 GHz 

GPU type NVIDIA P100, 16 GiB RAM 

Total max floating point performance, 
double 

645 Teraflops/s(CPUs) + 150 Teraflop/s 
(GPUs) 

Total memory 97.5 TiB 

Total NVMe+SSD local disc 89TiB + 60 TiB 

Total parallel filesystem capacity 1 PB 

Operation System Linux 
 

 

3.3.2 Lenovo Laptop 
 

The programs that were not executed on Saga, were run on a personal laptop. The specification of 

said laptop is described in figure 3.2. 

TABLE 3.2: LENOVO LAPTOP TECHNICAL SPECIFICATION 

Details Lenovo Laptop 

Model Lenovo YOGA 720-13IKB 

Processor Intel® Core™ i5-8250U CPU @ 1.60GHz 
1.80GHz  

RAM 8GB 

Operation System Windows 10 
 

 

3.4 Developed Software 
 

The code developed for this project was written in Python. Python was selected due to offering pre-

existing tools such as Tensorflow, that makes implementing artificial neural networks simpler. All the 

code for this project is available on GitHub at: https://github.com/uio-bmi/TaxClassUsingML. In some 

parts in this thesis there are descriptions of where particular code can be found. The descriptions 
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provided assume that one is looking at the venv/SourceCode folder in the project, not the root 

folder. 

 

3.5 Selecting K-mer Length 
 

Before finding k-mers in the database, it is necessary to select a k-mer length. K-mer length can 

impact both the accuracy and performance of our models (see section 2.3.2). Therefore, it is useful 

to know how we can expect k-mer length to impact factors such as how many k-mers are found in 

the genome, what k-mer frequencies are typical at that k-mer length etc, which are factors that play 

a role in prediction accuracy and performance. 

 

To explore the importance of k-mer length on the genomes in the GTDB database, the Jellyfish 

program was used to count k-mers at different lengths and calculate some statistics (see section 

3.2.1). The statistics that were calculated were the number of unique k-mers, distinct k-mers, total 

number of k-mers and highest k-mer frequency. Unique k-mers refers to the number of k-mers that 

appear only once in the genome. Distinct k-mers are all the different k-mers in the genome, meaning 

each k-mer is counted once even if there are multiple instances of the same k-mer. The total number 

of k-mers is all k-mers in the genome including those that are identical. Highest k-mer frequency is 

the frequency of the k-mer that appears most often in the genome. Since the correct direction of 

each k-mer was uncertain, these were counted canonically (see section 2.3.1). 

 

Ten files were selected randomly from the training set. Table 3.6 contains a table with the name of 

the randomly selected files and their correct classification as stated in the document 

gtdb_taxonomy.tsv.  
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TABLE 3.3: RANDOM FILES SELECTED FOR K-MER LENGTH IMPACT ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

The k-mers in each file was counted using the below jellyfish command.  

 

jellyfish count -m X -s 100M -C -t 10 -o kmerCounts.jf genomeFile.fna 

 

The important parts of this command are as follows: 

jellyfish: invoke jellyfish tool 

count: command to count k-mers 

-m X: X denotes the k-mer length and was run as 𝑋 𝜖 {4, 6, 8, 12, 16, 32, 64} 

-s 100M: use a hash with 100 million elements during counting 

-t 10: use 10 parallel threads during execution 

-C: count canonical k-mers (see section 2.3.1) 

-o kmerCounts.jf: new jellyfish file which is created to store the results 

genomeFile.fna: the file containing the genome that is being counted 

 

This process was repeated for seven different k-mer lengths; 4, 6, 8, 12, 32, and 64. The below 

jellyfish command was then used to gather some statistics about the k-mers. 

 

jellyfish stats kmerCounts.jf 

 

The important parts of this command are as follows: 

jellyfish: invoke jellyfish tool 

stats: command to compute statistics about k-mers 

kmerCounts.jf: jellyfish file with k-mer counts to compute statistics on 

 

File name Classification 

GCA_000204585 Nitrosarchaeum limnae 

GCA_003250455 UBA11579 sp003250455 

GCA_009693985 CAIYRG01 sp009693985 

GCA_009694295 SHVJ01 sp009694295 

GCA_013003245 JABDJX01 sp013003245 

GCA_902520385 GCA-2718035 sp902520385 

GCF_000243095 Cupriavidus basilensis_D 

GCF_003122485 Eubacterium_I ramulus_A 

GCF_007845205 SDRK01 sp007845205 

GCF_904066215 Microbacterium sp002456035 
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Figures 4.1 to 4.8 in chapter 4.1 displays the results for each k-mer length. The figures list the number 

of unique and distinct k-mers, as well as the total amount of k-mers and the highest k-mer frequency 

for each file at different k-mer lengths. 

 

 

3.6 Generating Data Input 
 

3.6.1 MinHash Sketches 
 

MinHash signatures were explained in section 2.3.4. To recap, MinHash sketching creates small 

representative signatures for genomes that can be compared to determine similarity without 

comparing full genomes. The goal is to reduce data input size, by replacing long genomes with short 

signatures, while still retaining comparability. As this technique addresses two of the main problems 

that faced k-mer representation in this project, it was determined that MinHash sketching should be 

tested as an alternative for representing k-mers. Preparing MinHash signatures for training required 

two main steps, creating the signatures, and transforming them to a suitable format for the machine 

learning models.  

 

3.6.1.1 Creating Signatures Using Sourmash 
Rather than implement MinHash sketching from scratch, the sourmash program (see section 3.2.2) 

was used to create the MinHash sketches. A virtual environment was created on Saga (see section 

3.3.1) containing the sourmash program. A batch script was then written to loop through every file in 

the training set and use sourmash to create a signature, resulting in a set containing one sourmash 

signature for every file in the original training set. The signature was set to be based on 12-mers as 

sourmash signatures is a k-mer presence/absence-based method rather than k-mer counting. The 

length was set to be 3000, which is estimated to be roughly 0.1% of the total number of 12-mers in a 

genome (see section 5.1). It was determined that the lowest hash values should be chosen rather 

than selecting the lowest hash from subsets of the genome (see section 2.3.4). The reason being that 

the goal of this project was to classify genomes, not characterize them. Therefore, it does not matter 

if the representation of the genome is not balanced in terms of which parts of the genome are 

represented. Another reason is that since the space of possible k-mers is so large, ideally, we would 

like to find common k-mers that can be used to classify many different genomes. Selecting the lowest 

hashes regardless of position should logically result in a greater commonality in the selected k-mers. 

The exact command used to generate each signature is described below. 
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sourmash sketch dna -p num=3000, k=12 genomeFile -o signature.sig 

The important parts of the command are: 

sourmash: invoke sourmash tool 

sketch: command to create MinHash sketches 

dna: specifies the type of data in the file to make a sketch from 

-p num=3000: specifies the size of the signature 

k=12: specifies that the signature should be made from 12-mers 

genomeFile: the file to make a signature from 

-o signature.sig: the newly created sourmash file to store the signature 

The command was run on Saga (see section 3.3.1) using the batch script 

in/RepresentationApproaches/HashSketch/CreateData/create_sourmash_sign.sh. 

 

3.6.1.2 Combine Signatures to Select K-mers 
After completing section 3.6.1.1, we are left with a new training set consisting of signature files. Each 

signature contains 3000 of the smallest hashes computed by sourmash as well as some meta-data. 

Figure 3.2 contains an example of such a file. The file is the signature computed from file 

GCA_002204705.1_genomic.fna.gz. The contents have been shortened for display purposes. The 

important part of this file is the array called “mins”, which is the signature itself. The hash values 

within the signature are in increasing order. The signature is not yet comparable to other signatures 

as an element in one signature does not necessarily have any relation to an element at the same 

position in a different signature. Before the signatures can be used for machine learning, they must 

be made comparable by being made into presence/absence vectors where each position denotes a 

specific k-mer. This requires knowing the number of different k-mers. As the hash value for identical 

k-mers is always the same, and sourmash retained the lowest hash values for each signature, we can 

expect there to be some overlap in the k-mers selected for each signature. To know the required 

length to represent every k-mer in the signatures, it is necessary to know the number of distinct k-

mers in total. Meaning, we need to know how many different k-mers are found in the whole set of 

signatures for all genomes. 
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A python class was written to find the number of distinct k-mers. The class can be found in 

/RepresentationApproaches/PrepareModelInput/CombineSignatures/combine_signatures.py. The 

problem is solved by looping through every file in the set of signatures and adding the signature’s 

hash values to a file. A hash value is only added if it is not already in the file. The result is thus a file 

containing the hash of every distinct k-mer in the signature set. This logic can also be summed up by 

the code in figure 3.3. The result of combining all signature hash values can be found in section 4.2. 

 

 

The code was run on Saga (see section 3.3.1) using a python main class which can be found in 

/RepresentationApproaches/HashSketch/PrepareModelInput/CombineSignatures/main.py. The 

batch script combine_signatures.sh, which can be found in the same folder, was used to run the 

program. 

FIGURE 3.2: STYLIZED CONTENTS OF SIGNATURE FILE COMPUTED FROM 

GCA_002204705.1_GENOMIC.FNA.GZ. 
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3.6.1.3 Transform Signatures 
Section 3.6.1.2 resulted in a file containing every distinct hash value in the set of signatures. The 

highest hash values in the file were then removed leaving a file of 40 000 hash values. The purpose of 

this reduction was to reduce the length of the representation vectors to lower the computational 

requirements for running the program. The final step was then to use said file and the set of 

signatures to produce a set of representative and comparable vectors for each signature to be used 

for machine learning. This means transforming the individual signature in each file into a vector 

where each position is correlated to a distinct k-mer, and each element in the vector is 𝜖 {0, 1} where 

a 0 denotes the k-mer is not present in the signature and a 1 denotes that it is present. The required 

vector length to represent all distinct k-mers is the same as the number of distinct k-mers present in 

the file generated in section 3.6.1.2. K-mer presence should be represented by a 1, rather than hold 

the original hash value as experiments have shown machine learning models tend to perform better 

on numerical data that is scaled down to be 0 ≤ and ≤ 1 (see section 2.2.2.7). 

 

To transform the signatures, a python class was written which takes a set of sourmash signature files 

and the file of all hash values generated in section 3.6.1.2 and transforms the signatures to vector 

representations ready for machine learning. This class can be found under 

RepresentationApproaches/MinHash/PrepareModelInput/signature_transformer.py. The first step 

was creating a list of all hash values from the combined hashes document. The order in the list was 

the same as in the original document, increasing numerical. The next step was going through each 

FIGURE 3.3: THE CODE USED TO COMBINE THE HASH VALUES FROM MINHASH SIGNATURES. 
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signature in the training set and creating a presence/absence representation based on the contents 

of the signature and the list of all hash values. Creating presence/absence representations was done 

using the __createBinaryVector method, which takes a signature and creates a binary vector were 

each element in the vector represent one of the hashes, and the value 𝜖 {0, 1} to indicate whether 

that hash is present in the signature. This method can be seen in figure 3.3. The result was a list of 

binary vectors to replace the signatures. 

 

The code was run on Saga (see section 3.3.1). 

 

 

3.6.2 Random K-mers 
 

Considering the length of the genomes in the database, and subsequent number of k-mers, it is not 

feasible to use every k-mer in the database as input. Moreover, methodically selecting a subset of k-

mers is still challenging and requires substantial effort and computational resources. Therefore, it is 

reasonable to consider to what extent methodical k-mer selection is worthwhile. For this reason, in 

the method described in this section, the k-mers were selected arbitrarily. The goal was to determine 

whether more complex methods, such as MinHash sketching and discriminative k-mers are worth the 

extra time and computational resources. The method described in this section was named random k-

mers because the k-mers to be counted were selected randomly with no input from the database. 

This included generating a list of arbitrary k-mers, and then look for only those k-mers in every 

genome in the database. The random k-mers method was used to make a comparison between k-

FIGURE 3.4: CODE TO CREATE PRESENCE/ABSENCE VECTOR REPRESENTATION OF MINHASH SIGNATURES. 
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mer counting and presence/absence as the implementation of both is very similar. This similarity 

reduces the number of factors which impact the result and therefore allows for more direct 

comparison between the two representation methods.  

 

3.6.2.1 Generate Random K-mers 
To create arbitrary k-mers, a python class was written. The class found under 

RepresentationApproaches/RandomKmers/CreateData/random_kmers.py. The class contains the 

method generateRandomKmers which generates a list of random k-mers of given length using the 

__generateRandomKmer method. Once enough k-mers have been generated all the k-mers are 

added to a FASTA file named random_kmers.fa. A k-mer and its complement are treated as the same 

k-mer since we will count canonical k-mer in the next step (see section 3.6.2.1). The method 

__generateRandomKmer is displayed in figure 3.5. __generateRandomKmer takes the desired k-mer 

length and then randomly chooses between the four nucleotides adding them together, until we 

have produced a complete k-mer. 

 

 

When going through the process of generating random k-mers, it is possible to generate identical k-

mers. In this case the copy k-mer should not be included as this would result in fewer k-mers than 

what has been determined. To avoid this problem, the program continuously generates random k-

mers until it has filled the given quota for random k-mers. This logic is shown in figure 3.6 showing 

how a list of k-mers is generated and then written to a FASTA file. 

FIGURE 3.5: CODE TO CREATE A RANDOM K-MER. 
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The code was run on the Lenovo laptop (see section 3.3.2) using a python main class which can be 

found in RepresentationApproaches/RandomKmers/CreateData/main.py. The method 

generateRandomKmers takes two parameters; number of k-mers to generate and k-mer length. The 

program was run once with the number of k-mers set to 40 000 to get vectors of the same length as 

the MinHash vectors (see section 3.6.1) and the k-mer length to 8 for the k-mer counting 

representation, and once with k-mer length set to 12 for the k-mer presence/absence representation 

(see section 5.1). 

 

 

3.6.2.2 Count Generated K-mers 
Once the file of randomly generated k-mers was completed, the next step was counting all those k-

mers that match one of the generated k-mers. This was done using jellyfish (see section 3.2.1). For 

each file in the training set, the subset of k-mers were counted using a jellyfish command of the 

below format. This was done once with 8-mers and once with 12-mers. 

jellyfish count -m X -s 100M -C -t 10 -o result.jf –if randoms.fa fileToCount.fna 

 
The important parts of this command are as follows: 
 

jellyfish: invoke jellyfish tool 

count: command to count k-mers 

-m X: sets the k-mer length, command run with x 𝜖 {8, 12} 

-C: count canonical k-mers 

-o result.jf: new jellyfish file which is created to store the results 

FIGURE 3.6: METHOD GENERATERANDOMKMERS THAT GENERATES A LIST OF RANDOM K-MERS AND WRITES THEM 

TO A FASTA FILE. 



57 
 

--if randoms.fa: the randomly generated k-mers to look for 

fileToCount.fna: the file being counted 

 

The result was that each file in the training set was replaced with a jellyfish file containing counts for 

all the randomly generated k-mers. However, as the results were saved in jellyfish files, they were 

not readable by other programs. The files were therefore exported to FASTA files using the below 

jellyfish command. 

jellyfish dump previousResult.jf > readableResult.fa 

 
The important parts of the command are as follows:  

 
jellyfish: invoke jellyfish tool 

dump: command to export results to different format 

previousResult.jf: jellyfish file with unreadable results 

readableResult.fa: new FASTA file with readable results  

 

Figure 3.7 shows an example of what the readableResult.fa file might look like. Each k-mer entry 

contains one line with the k-mer frequency, identified by the symbol “>”, and the k-mer itself 

underneath. 

 

 

 

 

 

 

 

 

 

 

 

Running jellyfish to count the random k-mers was executed on Saga (see section 3.3.1) using a batch 

script. The batch script can be found under RepresentationApproaches/ RandomKmers/ 

CreateData/count_subset_kmers.sh. 

 

FIGURE 3.7: EXAMPLE OF WHAT 

A K-MER COUNT FILE LOOKS LIKE. 
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3.6.2.3 Transform Input 
The result of step one was a database of FASTA files containing the desired k-mer counts. However, 

the machine learning models cannot take FASTA files as input. Their contents must instead be 

transformed. For this purpose, a new python class was written. The class can be found under 

/RepresentationApproaches/RandomKmers/ PrepareModelInput/ count_transformer.py. The 

program goes through every FASTA file in a directory. For each file, it reads the k-mer counts and 

creates a vector where each position in the vector represents one of the random k-mers, and the 

value at that position the count for that particular k-mer. After that, the program diverges for the 

count and presence/absence-based methods. 

 

For the k-mer count method, the counts had to be scaled correctly. Machine learning models tend to 

benefit from their numerical input being scaled 0 ≤ and ≤ 1 (see section 2.2.2.7). To achieve this, each 

element in the vector was re-calculated using the below formula (Brownlee, 2019b). This was 

implemented in the method __scaleCountVector, shown in figure 3.8. Min and max in the formula 

refer to the greatest and lowest value in the vector. 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =  
𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − min (𝑥)

max(𝑥) − min (𝑥)
 

 

 

For the k-mer presence/absence method, the counts had to be made binary. The method 

scalePresenceVector takes a vector and alters any value > 0 to a 1, resulting in a vector where every 

value is 𝜖 {0, 1}. This method is shown in figure 3.9.  

 

 

FIGURE 3.8: CODE THAT SCALES K-MER FREQUENCIES IN A VECTOR TO BE BETWEEN 0 ≤ AND ≤ 1. 
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The code was run on Saga (see section 3.3.1). 

 

3.6.3 Discriminative K-mers 
 

MinHash sketching and random k-mers both reduce the input space by selecting k-mers in a random 

or semi-random way. The discriminative k-mers method aims to look closer at each genome 

individually to identify important k-mers. This method was inspired by CLARK, which discovers 

important k-mers by discovering all k-mers in the database, and then removing any common k-mers 

leaving only a subset containing discriminative k-mers unique to a single genome (see section 

2.1.5.4.1). In this section, we attempted to do the same. As the goal was to find unique k-mers, this 

was a presence/absence-based method as k-mer frequency is irrelevant. 

 

3.6.3.1 Counting K-mers for Each Genome 
To compare and discover unique k-mers, the first step was getting all the k-mers. This step was done 

by using jellyfish to count the k-mers of each file in the training set. The actual k-mer frequencies 

produced by jellyfish are not relevant for discovering discriminative k-mers. However, using this 

approach means getting a list of every k-mer in the genome without having to write any code. The 

jellyfish command used is described below. The k-mer length was set to 12 as this is a 

presence/absence-based method (see section 5.1). 

jellyfish count -m 12 -s 100M -C -t 10 -o result.jf fileToCount.fna 

The important parts of this command are as follows: 

FIGURE 3.9: CODE THAT MAKES A REPRESENTATION VECTOR BINARY. 
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jellyfish: invoke jellyfish tool 

count: command to count k-mers 

-m 12: sets the k-mer length to 12 

-s 100M: use a hash with 100 million elements during counting 

-C: count canonical k-mers 

-t 10: use 10 parallel threads during execution 

-o result.jf: new jellyfish file which is created to store the results 

fileToCount.fna: the file being counted 

 

The result was that each file in the training set was replaced by a jellyfish file containing counts for all 

k-mers. However, as the results were saved in jellyfish files, they were not readable by other 

programs. The files were therefore exported to FASTA files using the same jellyfish dump command 

as in 3.6.2.2. 

 

Running jellyfish to count all k-mers was executed on Saga (see section 3.3.1) using a batch script. 

The batch script can be found under /RepresentationApproaches/UniqueKmers/ 

CreateData/jellyfishing.sh. 

 

3.6.3.2 Finding Discriminative K-mers 
The previous step resulted in a training set of files containing k-mer frequencies for all k-mers in the 

genome. The next step was comparing these files to find k-mers that are unique to each genome. A 

python class was written for this purpose. The class can be found under RepresentationApproaches/ 

UniqueKmers/CreateData/unique_kmer_selector.py. The program compares all files in a directory 

two by two and removes any common k-mer between them. Once the program is finished, every file 

in the directory contains only k-mers that are unique to said file. 
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The main logic was implemented in the method stripFiles, which can be seen in figure 3.10. This 

method loops through every file in the directory and compares it to every other file in the directory. 

The comparison is organized in such a way that the method compares one file to all other files, then 

compares the next file to all files except the first one etc. An example of this pattern is displayed in 

figure 3.11. The number of comparisons made during the program can thus be calculated using the 

following formula: 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 =  
𝑛2−𝑛

2
, where n is the number of files in the directory. During 

comparison, the common k-mers are removed in the same way. Common k-mers between the first 

and second files are removed from all files, then common k-mers between the first and third files are 

removed from all files etc. When comparing, a k-mer and its complement are considered the same k-

mer. 

FIGURE 3.10: METHOD STRIPFILES THAT GOES THROUGH EVERY FILE IN A DIRECTORY AND REMOVES ANY 

COMMON K-MERS. 
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The program to find discriminative k-mers was run on Saga using the batch script 

RepresentationApproaches/UniqueKmers/CreateData/find_unique_kmers.sh (see section 3.3.1). The 

training set was divided into subsets of roughly 300 files. The discriminative program was then run on 

each subset. Each subset was then merged with another subset, and the program rerun. This process 

continued until the program had been run on the entire re-merged training set. 

 

3.6.3.3 Transforming Input 
The previous step resulted in the files in the training set being drastically reduced in size. The next 

step was combining these files to create a standard for the input vectors. The remaining k-mers were 

all added to the file unique_kmers.fna using the code found in RepresentationApproaches/ 

UniqueKmers/PrepareModelInput/CombineKmers. Once the file was ready, the next step was using 

this file to create presence/absence vectors. This was accomplished using an adapted version of the 

code used to transform MinHash signatures into presence/absence vectors in section 3.6.1.3. This 

code can be found under RepresentationApproaches/UniqueKmers/PrepareModelInput/ 

TransformKmers. 

 

3.6.3 Classification Labels 
 

When training the machine learning models on the inputs generated in sections 3.6.1 – 3.6.3 the 

models need to know the correct classification for each data sample in the training set. The correct 

FIGURE 3.11:  ILLUSTRATION OF HOW FILES ARE 

COMPARED TO FIND DISCRIMINATIVE K-MERS. 
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data label for each file is found in the file gtdb_taxonomy.tsv. This file contains a table with every file 

in the database and its corresponding classification. The classification labels are of the below format. 

d_Bacteira;p_Firimutes_A;c_Clostridia;o_Peptostreptococcales;f_Peptostreptococcaceae;g_Romb

outsia;s_Romboutsia hominis 

As can be seen in the above label, the classification labels include the classification of a genome from 

species to domain level. By extracting different parts of the label, we can thus classify an organism at 

any level in the taxonomic tree (see section 2.1.2). Ideally, we would like to classify at a low level, 

such as species, rather than a high level, such as domain, as this would be more precise. Therefore, in 

this project we will aim to classify at species and genus level. While classifying at species level would 

be more precise than genus level, it is also harder. This is because the lower the label is on the 

taxonomic tree, the more subtle the differences between genomes are likely to be. Our models 

might therefore struggle to accurately classify at the species level. Classifying on genus level will 

provide information on the models’ ability to classify, while species level provides information on 

how sensitive the models are. 

 

The classification labels should not be used as they are for machine learning since they are strings, 

and models tend to perform better on numerical data (see section 2.2.2.7). The classification labels 

were thus transformed using one-hot encoding. As discussed in section 2.2.2.6, one-hot encoding 

transforms categorical data into vectors containing columns of ones and zeroes denoting true or 

false for each category. One-hot encoding does not imply an ordering between classes and is 

therefore suitable for our database as there is not a logical way in which to numerically order all the 

genomes. 

 

To encode the categorical data a python class was written. The class can be found under 

RepresentationApproaches/label_maker.py. Firstly, the program finds the correct classification for all 

training files from the document gtdb_taxonomy.tsv, using the method getSpeciesDictionary. This 

method results in a dictionary that can be used to look up the correct classification of each file. At 

this stage, one must decide if the classification should be at genus or species level as this method will 

alter the classification labels if classification should be at genus level by manipulating the 

classification string. This method is shown in figure 3.12. Next, a list of all unique classes in the 

training set is made using. A one-hot encoding vector is created for each file using the method 

getOneHotEncoding, shown in figure 3.13. The result is a list of binary vectors to replace the 

classification labels. 
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The method described in the previous paragraph was used to encode the classification labels of the 

training set regardless of how the genomes themselves were represented. Sections 3.6.1 – 3.6.3 

describe in detail three different methods for representing genomes. All three methods used the 

same labels transformed in the same way as described in this section. 

 

 

 

 

 

 

 

FIGURE 3.12: CODE THAT ONE-HOT ENCODES A CLASSIFICATION LABEL. 

FIGURE 3.13: METHOD GETSPECIESDICTIONARY THAT SPLITS THE CLASSIFICATION STRING DEPENDING ON 

TAXONOMIC LEVEL AND CREATES A DICTIONARY OF ALL CLASSES IN THE DATASET. 
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3.7 Developing Neural Networks 
 

The relation between classes of microorganisms depends on their evolutionary history. Adding 

precise labels to such data is challenging both because of the complexity of such relations, and the 

inherent fluidity of gene pools as evolution is an ever-present process. Especially for prokaryotes that 

can reproduce both through mitosis and alter their hereditary material through horizontal gene 

transfer (see section 2.1.2). As presented in section 2.2.4.1, some promising research has been 

conducted on using neural networks for classification. Neural networks also have some tolerance for 

noisy data and can identify complex relationships. As such, it is a suitable method for taxonomic 

classification of microbial genomes. The domain is highly complex, and the instability of prokaryote 

gene pools requires a method that can perform well on data that might include significant amounts 

of intra-class variation. As neural networks are less vulnerable to noise, due to being better at 

generalizing, it logically follows that they should also be able to generalize well over highly varied 

data. 

 

3.7.1 Selecting Algorithms 
 

Sections 2.2.4.3.3 - 2.2.4.5 explain activation, loss, and optimization algorithms. Each of the three 

algorithm categories can have a significant impact on the performance of the neural network and 

how efficient it is to train.  

 

The rectified linear unit (ReLU) algorithm was used for the activation function for all layers in the 

neural networks except the output layers. ReLU can learn complex data while also not being 

vulnerable to the vanishing gradient problem (see section 2.2.4.3.3). As such, ReLU provides the 

benefit associated with non-linear activation algorithms without the downside.  

 

The softmax activation function was used for the output layer for each network. Softmax normalizes 

the input vector, resulting in a vector containing mutually exclusive probability scores for each class 

(see section 2.2.4.3.3). The benefit of using this activation algorithm is that it makes the final output 

more easily interpretable. The probability score provides more information than just a class 

prediction. Comparing the predicted class probability to the probabilities of other classes can be an 

indication of how confident the model is in its prediction. 
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Categorical cross-entropy was used for the loss function. This loss function has shown to perform 

well on multi-class classification tasks and make the model learn faster than most other loss 

functions (see section 2.2.4.3.3). 

 

Stochastic gradient descent was used for the optimization algorithm. Important benefits of this 

algorithm are that it uses less memory and computes faster than a lot of other algorithms. 

Considering the size of the dataset used for this project (see section 3.1.1), this is not an insignificant 

factor.  

 

3.7.2 Building Neural Networks 
 

3.7.2.1 Standard Neural Network 
Neural networks are explained in detail in section 2.2.4. To recap, a neural network is a machine 

learning algorithm based on the neural networks of the brain. A neural network contains a set of 

nodes ordered into layers. The network can be trained to predict outcomes on data by learning the 

correct weight to add to different inputs. Neural networks can be expensive to train, both in terms of 

time and computational resources such as memory. Therefore, it would be ideal to achieve excellent 

prediction accuracy with a small network as these are less expensive to train. 

 

 

 

 

 

 

 

Keras was used to build a small neural network (see section 3.2.3). The implementation of the neural 

network can be seen in figure 3.14. This model consists of three layers, the input layer, one hidden 

layer, and the output layer. At this size, the network could technically be considered a minimal 

multilayer perceptron (see section 2.2.5.2.1) but will be referred to as a standard neural network to 

FIGURE 3.14: STANDARD NEURAL NETWORK MODEL STRUCTURE. 
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distinguish it from deeper neural networks discussed in later sections. The layers of the network are 

dense layers. A dense layer is a fully connected layer where each node in one layer is connected to all 

nodes in the next. Dense layers are the most common type of layer in a neural network. The input 

and hidden layers have the same number of nodes as the length of the training set input vectors, 

while the output layer has one node for each class in the training set. An illustration of this structure 

can be seen in figure 3.15. 

 

 

3.7.2.2 Multilayer Perceptron Network 
Multilayer perceptron networks are deep neural networks with at least one hidden layer (see section 

2.2.5.2.1). A network that contains more nodes and layers is capable of learning more complex 

features from the data compared to a simpler network. In this project, the input data is very large 

and the relation between data samples comes from their evolutionary history and arbitrary 

individual differences. This makes the input complex and thus suitable for deep learning. How deep 

the networks should be however, is difficult to determine. 

 

FIGURE 3.15: CODE IMPLEMENTING THE STANDARD NEURAL NETWORK. 

FIGURE 3.16: MULTILAYER PERCEPTRON NEURAL NETWORK MODEL STRUCTURE. 
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The multilayer perceptron network contains eight layers in total, an input layer, output layer, and six 

hidden layers. All the layers are dense layers. The number of nodes in the input layer is the same as 

the length of the input vectors (40 000), while the number of nodes in each hidden layer is half the 

length of the input vectors (20 000). Finally, the output layer has the same number of nodes as there 

are classes in the dataset. Figure 3.17 shows the implementation of the network, while figure 3.16 

shows the structure. 

 

 

3.7.2.3 Convolutional Neural Network 
Convolutional neural networks are neural networks that include convolutional layers (see section 

2.2.5.2.2). Convolutional layers are known for their ability to extract high level features that standard 

neural networks miss. While the technique has mostly been utilized for image recognition, some 

promising results exist for its use on sequential data. Thus, it was determined that this would be a 

suitable network type to test for taxonomic classification of microorganisms.  

 

The convolutional neural network developed for this project contains nine layers; four convolutional 

layers, two dropout layers, a flatten layer, and two dense layers. The order of the layers are as 

follows; two convolutional layers, dropout layer, two convolutional layers, dropout layer, flatten 

layer, two dense layers. This structure can be seen in figure 3.18. The convolutional layers all 

contained five filters and a kernel size of 10. Kernel size is the size of the windows that are multiplied 

by the filters (see section 2.2.5.2.2). The stride was set to 1 and the padding type is ‘same’. Padding 

type ‘same’ means that padding will be added to the input to get a feature map of the same size as 

the input. The dropout layers were added to reduce overfitting. Dropout layers randomly select some 

of the nodes from their previous layers to ignore, resulting in information being lost. The dropout 

FIGURE 3.17: CODE IMPLEMENTATION OF MULTILAYER PERCEPTRON NEURAL NETWORK. 
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layers were given a dropout rate of 50%, meaning each node had a 50% chance of being dropped 

rather than having its output passed to the next layer. Dense layers require that the input be one-

dimensional. To ensure this was still the case after convolutions, the flatten layer was added in after 

the convolutional layers. The flatten layer concatenates the output to a one-dimensional structure 

and thus ensures there are no issues when passing on data to the dense layers. The implementation 

of the neural network can be seen in figure 3.19. 

FIGURE 3.18: CONVOLUTIONAL NEURAL NETWORK MODEL STRUCTURE. 
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3.7.4 Training the Neural Networks 
 

The neural networks were all trained on Saga (see section 3.3.1). To make the desired comparisons, 

eight copies were made of each of the three neural networks, resulting in a total of 24 models. Each 

model was trained on data produced using one of the representation methods explained in section 

3.6, either at genus or species level. Tables 3.4 to 3.6 display the names of each model and what 

representation method and classification level they were trained on. 

 

TABLE 3.4: LIST OF STANDARD NEURAL NETWORK MODELS. 

Standard Neural Networks Genus Species 

MinHash SMHG SMHS 

Random 8mers SR8G SR8S 

Random 12mers SR12G SR12S 

Discriminative k-mers SDIG SDIS 

 

TABLE 3.5: LIST OF MULTILAYER PERCEPTRON NEURAL NETWORK MODELS. 

Multilayer Perceptron Networks Genus Species 

MinHash MMHG MMHS 

Random 8mers MR8G MR8S 

Random 12mers MR12G MR12S 

Discriminative k-mers MDIG MDIS 

 

FIGURE 3.19: CODE IMPLEMENTING CONVOLUTIONAL NEURAL NETWORK. 
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TABLE 3.6: LIST OF CONVOLUTIONAL NEURAL NETWORK MODELS. 

 

All models were trained with only 10 epochs to reduce overfitting, and a learning rate of 0.1 (see 

section 2.2.4.2). They were trained on a training set and validated during training using a validation 

set. Before training, the samples in the training set were shuffled so that samples were passed to the 

model in a different order then they were in the training set. The code in figure 3.20 shows the 

method used to train each network. 

 

 

3.7.5 Comparing the Neural Networks 
 

When comparing neural networks, it is necessary to define some metric that can be applied to all 

networks equally. For our networks, we determined to measure them using accuracy and precision 

(see section 2.2.3). Accuracy is the rate of correct classification. Precision is the rate of positive 

classifications that are correct. A positive classification means the model has determined that the 

probability of the sample belonging to a class is above a given threshold. Precision can be considered 

a measure of the model’s confidence for all positive classifications, while accuracy is a measure of 

the model’s classification ability overall.  

 

Convolutional Neural Networks Genus Species 

MinHash CMHG CMHS 

Random 8mers CR8G CR8S 

Random 12mers CR12G CR12S 

Discriminative k-mers CDIG CDIS 

FIGURE 3.20: CODE USED TO TRAIN NEURAL NETWORKS. 
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We used Tensorflow’s inbuilt functions to measure the accuracy and precision on all our models (see 

section 3.2.3). The metrics returned by these functions are generalizations over all classes the model 

works on and can thus be used to summarize the performance of the model in general. We elected 

to use the default 50% as the threshold for positive classification. This means that for a sample to be 

classified as a member of a certain class, the probability must be ≥ 50%. 
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Chapter 4: Results 
 

4.1 K-mer Length Experiments 
 

When using DNA strands as input for machine learning models, splitting them into k-mers is useful as 

it lowers the required computational resources and need for genome completeness. K-mer length 

can have significant impact on the result when training a model to perform a classification task.  

As described in chapter 3.5, some exploration was performed on a randomly selected set of genome 

files from the RTGB database to examine the impact of k-mer length. Ten genome files were 

randomly selected from the database. The tool jellyfish was used to count k-mers and discover the 

number of unique k-mers, distinct k-mers, total number of k-mers, and k-mer max-count. A unique k-

mer is one that appears in the genome only once. Distinct k-mers are all k-mers where repeated k-

mers are counted once, total k-mer are all k-mers in the genome including repeated k-mers, and max 

count is the highest k-mer frequency found in the genome. The results are presented in tables 4.1 – 

4.8. Tables 4.1 – 4.7 contains a row for all ten files from the experiment run with the same k-mer 

length, while table 4.8 contains the average between the ten files for each k-mer length. 

 

The meaning of the column is as follows (see section 3.5): 

Unique: number of k-mers occurring exactly once 

Distinct: number of different k-mers, counting repeated k-mers once 

Total: the number of k-mers in the genome including repeated k-mers 

Max count: the frequency of the most frequent k-mer 

 

TABLE 4.1: RESULTS OF K-MER LENGTH IMPACT ANALYSIS ON 4-MERS. 

Species Unique Distinct Total Max count 
Nitrosarchaeum limnae 0 136 1 743 007 76 165 
UBA11579 sp003250455 0 136 3 120 377 54 583 
CAIYRG01 sp009693985 0 136 2010864 69 511 
SHVJ01 sp009694295 0 136 2 101 272 62 550 
JABDJX01 sp013003245 0 136 3 427 308 67 828 
GCA-2718035 
sp902520385 

0 136 778 678 42 891 

Cupriavidus basilensis_D 0 136 8 544 947 294 399 
Eubacterium_I ramulus_A 0 136 3 486 817 97 982 
SDRK01 sp007845205 0 136 523 454 19 781 
Microbacterium 
sp002456035 

0 136 3 457 087 126 481 
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In table 4.1 we see that at k-mer length 4 there were no unique k-mers in any of the genomes. The k-

mer frequencies were high. All genomes contained 136 distinct k-mers. The space of possible 

canonical k-mers can be calculated using the following formula: 𝑘 − 𝑚𝑒𝑟 𝑠𝑝𝑎𝑐𝑒 =  
4𝑘+ 4

𝑘
2

2
, where k is 

k-mer length. For 4-mers this results in a possible k-mer space of 136, which is the same as the 

number of distinct k-mers we found in table 4.2. This means all possible 4-mers are present in the 

genome. 

 

TABLE 4.2: RESULTS OF K-MER LENGTH IMPACT ANALYSIS ON 6-MERS. 

Species Unique Distinct Total Max count 
Nitrosarchaeum limnae 0 2 080 1 742 855 11 297 
UBA11579 sp003250455 0 2 080 3 119 205 6 506 
CAIYRG01 sp009693985 0 2 080 2 010 728 11 608 
SHVJ01 sp009694295 4 2 076 2 101 062 9 168 
JABDJX01 sp013003245 0 2 080 3 426 704 8 477 
GCA-2718035 
sp902520385 

0 2 079 778 544 8 605 

Cupriavidus basilensis_D 0 2 080 8 544 105 41 598 
Eubacterium_I ramulus_A 0 2 080 3 486 271 11 447 
SDRK01 sp007845205 0 2 080 523 368 2 270 
Microbacterium 
sp002456035 

0 2 079 3 457 083 19 524 

 

In table 4.2 we see the first unique k-mers when the k-mer length was 6. The number of distinct k-

mers were 2080 or 2079 for all genomes. 2080 I the possible space of canonical 6-mers, meaning 

most genomes contained all possible 6-mers. 
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TABLE 4.3: RESULTS OF K-MER LENGTH IMPACT ANALYSIS ON 8-MERS. 

Species Unique Distinct Total Max count 
Nitrosarchaeum limnae 885 32 294 1 742 703 1 560 
UBA11579 sp003250455 25 32 892 3 118 033 1 068 
CAIYRG01 sp009693985 537 32 622 2 010 592 2 401 
SHVJ01 sp009694295 1 951 29 944 2 100 852 1 806 
JABDJX01 sp013003245 29 32 888 3 426 100 1 276 
GCA-2718035 
sp902520385 

2 170 31 137 778 410 1 258 

Cupriavidus basilensis_D 2 32 895 8 543 263 7 250 
Eubacterium_I ramulus_A 128 32 830 3 485 725 1 358 
SDRK01 sp007845205 1 825 31 724 523 282 368 
Microbacterium 
sp002456035 

1 914 30 951 3 457 079 4 044 

 

In figure 4.3, we see that at k-mer length 8 all genomes included unique k-mers. The number of 

distinct k-mers were in in the range from 29 944 to 32 895 range. This means the genomes covered 

most of all of the possible k-mer space. 

 

TABLE 4.4: RESULTS OF K-MER LENGTH IMPACT ANALYSIS ON 12-MERS. 

Species Unique Distinct Total Max count 
Nitrosarchaeum limnae 820 577 1 137 665 1 742 399 61 
UBA11579 sp003250455 1 472 514 2 093 003 3 115 689 50 
CAIYRG01 sp009693985 856 053 1 230 577 2 010 320 82 
SHVJ01 sp009694295 773 139 1 191 631 2 100 432 67 
JABDJX01 sp013003245 1 488 146 2 205 843 3 424 892 317 
GCA-2718035 
sp902520385 

458 310 571 891 778 142 61 

Cupriavidus basilensis_D 1 525 791 2 998 955 8 541 579 209 
Eubacterium_I ramulus_A 1 479 936 2 204 635 3 484 633 118 
SDRK01 sp007845205 398 547 452 282 523 110 25 
Microbacterium 
sp002456035 

718 380 1 366 990 3 457 071 116 

 

In figure 4.4, we see that at length 12 the number of distinct k-mers were getting much closer to the 

total number of k-mers. There was also a drastic increase in unique k-mers and decrease in k-mer 

frequencies. However, the majority of k-mers still appeared more than once. There was more 

variation in the number of distinct k-mer compared to the earlier shorter k-mers. However, the 

median was around 1 200 000, which was only around 14% of the possible k-mer space of 8 390 656. 
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TABLE 4.5: RESULTS OF K-MER LENGTH IMPACT ANALYSIS ON 16-MERS. 

Species Unique Distinct Total Max count 
Nitrosarchaeum limnae 1 702 125 1 720 647 1 742 095 14 
UBA11579 sp003250455 3 007 547 3 058 843 3 113 345 31 
CAIYRG01 sp009693985 1 952 088 1 979 436 2 010 048 28 
SHVJ01 sp009694295 2 033 767 2 064 677 2 100 012 19 
JABDJX01 sp013003245 3 352 977 3 386 784 3 423 684 278 
GCA-2718035 
sp902520385 

759 111  767 938  777 874 9 

Cupriavidus basilensis_D 7 662 700 8 060 357 8 539 895 37 
Eubacterium_I ramulus_A 3 392 371 3 428 052 3 483 541 110 
SDRK01 sp007845205 519 554 5 211 206 522 938 5 
Microbacterium 
sp002456035 

3 214 889 3 328 688 3 457 063 45 

 

In table 4.5, we see that at k-mer length 16, the vast majority of k-mers were unique as the 

difference between the unique and distinct column are modest. With a median of 3 328 688, and a 

possible k-mer space of 2 147 516 416, the distinct k-mers covered 0.15% or the possible k-mer 

space. 

 

TABLE 4.6: RESULTS OF K-MER LENGTH IMPACT ANALYSIS ON 32-MERS. 

Species Unique Distinct Total Max count 
Nitrosarchaeum limnae 1 734 332 1 737 032 1 740 879 13 
UBA11579 sp003250455 3 062 209 3 082 958 3 103 969 5 
CAIYRG01 sp009693985 2 006 052 2 007 426 2 008 960 8 
SHVJ01 sp009694295 2 093 403 2 095 430 2 098 332 6 
JABDJX01 sp013003245 3 396 253 3 407 381 3 418 852 165 
GCA-2718035 
sp902520385 

772 256  774 426  776 802 5 

Cupriavidus basilensis_D 8 382 704 8 454 684 8 533 173 15 
Eubacterium_I ramulus_A 3 452 197 3 461 788 3 479 173 96 
SDRK01 sp007845205 521 780 522 011 522 250 3 
Microbacterium 
sp002456035 

3 441 747 3 449 084 3 457 031 11 

 

In table 4.6, we see that at k-mer length 32 only a fraction of k-mers were not unique. The k-mer 

frequencies were falling below double digits, indicating that non-unique k-mers appeared at much 

lower frequencies than in the earlier, shorter k-mers. 
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TABLE 4.7: RESULTS OF K-MER LENGTH IMPACT ANALYSIS ON 64-MERS. 

Species Unique Distinct Total Max count 
Nitrosarchaeum limnae 1 735 252 1 736 572 1 738 447 10 
UBA11579 sp003250455 3 068 932 3 077 055 3 085 217 3 
CAIYRG01 sp009693985 2 006 128 2 006 436 2 006 436 3 
SHVJ01 sp009694295 2 093 560 2 094 192 2 094 972 4 
JABDJX01 sp013003245 3 397 918 3 403 488 3 409 188 68 
GCA-2718035 
sp902520385 

771 508 773 083 774 658 2 

Cupriavidus basilensis_D 8 408 248 8 462 475 8 519 733 8 
Eubacterium_I ramulus_A 3 459 988 3 464 991 3 470 437 7 
SDRK01 sp007845205 520 838 520 856 520 874 2 
Microbacterium 
sp002456035 

3 444 103 3 450 424 3 456 967 6 

 

In table 4.7, we see that at k-mer length 64, the difference between unique and distinct k-mers was 

very modest, in some genomes it was as small as a few thousands. At this length, almost all k-mers 

were unique. The number of distinct k-mer were a small fraction of the possible k-mer space. 

 

TABLE 4.8: AVERAGE VALUES FOR EACH K-MER LENGTH, SUMMARY OF TABLES 4.1 - 4.7. 

Average Unique Distinct Total Max count 

4-mers 0,0 136,0 2 919 381,1 91 217,1 

6-mers 0,4 2 079,4 2 918 992,5 13 050,0 

8-mers 946,6 32 017,7 2 918 603,9 2 238,9 

12-mers 2 324 139,3 1 545 347,0 2 917 826,7 110,6 

16-mers 2 759 712,9 3 300 662,8 2 917 049,5 57,6 

32-mers 2 886 293,3 2 899 222,0 2 913 942,1 32,7 

64-mers 2 890 647,5 2 898 957,2 2 907 692,9 11,3 
 

In table 4.8, we see the averages for the number of unique k-mers, distinct k-mers, total number of k-

mers, and k-mer frequencies. The results show that there is a strong link between k-mer length and 

the number of distinct or unique k-mers. This is due to longer k-mers allowing for greater variation as 

the number of possible k-mers increases exponentially with k-mer length. This difference also greatly 

impacts the highest frequency as longer k-mers are less likely to be repeated in the same genome. 

However, the impact on the total number of k-mers is modest as the average total is in the 2 900 000 

to 2 920 000 range meaning the total varies with roughly 20 000 k-mers, which is less than a 1% 

difference. This total can also be used to calculate the number of nucleotides in the genome using 

the following formula: 𝑔𝑒𝑛𝑜𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑡𝑜𝑡𝑎𝑙 + 𝑘 − 1, where total is the total number of k-mers, 

and k is the k-mer length. For example, selecting the average total number of 12-mers from table 
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4.11 is section 4.1 gives a genome length of: 2 917 826,70 + 12 − 1 = 2 917 837,70. The files for 

this test were selected randomly from different parts of the database, yet considering the modest 

difference in total k-mer they are similar in length. This indicates that the genomes in the database 

are of similar length. However, a sample of ten files it too small to generalize across a database of 

47 894. The results also show that the number of distinct k-mers in the genome do not increase in 

tandem with the space of possible k-mers. Instead, when k-mers become longer they cover a smaller 

portion of the the possible k-mer space. 

 

 

4.2 Distinct K-mers in MinHash Signatures 
 

MinHash is a method of selecting k-mers. MinHash computes hash values for each k-mer in a 

genome and retains the 3000 lowest hash values in a genome signature. The goal of using MinHash 

was to find a subset of all the k-mers that could be used to classify many genomes with a reduced k-

mers space. In section 3.6.1, MinHash signatures were created for every genome in the training set. 

Then, the hash values in those signatures were combined into one document to find every distinct 

hash in the training set of signatures, where a distinct hash means we count each hash only once, 

even if it is repeated. The combination resulted in a set of 80 052 hash values. Since the hash values 

represent k-mers, this means the set of signatures contained 80 052 distinct k-mers. As the training 

set contained 29 938 MinHash signatures, this equates to each signature contributing on average 

three unique k-mers. In this case, a unique k-mer is one that appears in only one signature. Each 

signature originally contained a selection of 3000 hash values. The fact that the combination of all 

distinct hash values resulted in a set of 80 052 hash values, implies a significant overlap of k-mers in 

the signatures. If there was no overlap, the number of different hash values would be 23 938 * 3000 

= 71 814 000, as the training set contains 23 938 samples. 

 

 

4.3 Finding Discriminative K-mers 
 

Discriminative k-mers is a method of selecting k-mers that are unique to a single genome. The 

purpose of discriminative k-mers is to find a set of k-mers that can be used to uniquely identify 

individual genomes. In this project, described in section 3.6.3, discriminative k-mers were found by 

going through all files in the training set and comparing them to find k-mers unique to each genome. 
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Each file was then stripped to only include one discriminative k-mer per genome. These k-mers were 

then combined into one document holding all discriminative k-mers. Out of all 23 938 files in the 

training set, only 5 147 contained any unique k-mers. This means the discriminative k-mers came 

from 21,5% of the training set. This resulted in a 5 147 elements long set of discriminative k-mers to 

cover a dataset of size 47 894. 

 

4.4 Prediction Results 
 

We developed three types of neural networks: a standard neural network, a multilayer neural 

network, and a convolutional neural network (see section 3.7.2). Standard neural networks are small 

networks containing only three layers. Small networks have lower computational requirements and 

are simpler to train. Multilayer perceptron networks are deep networks with more layers. These are 

harder to train but can learn more complex relationships than standard networks. Convolutional 

neural networks contain convolutional layers. Convolutional networks are even harder to train, but 

they can discover higher level relations compared to other types of models. The purpose of 

implementing three different networks was to determine what type of network would be the most 

suitable for taxonomic classification on prokaryotic genomes (section 2.2.4.1 and section 2.2.5.2). In 

addition to different types of models, we also wanted to compare methods of selecting and 

representing k-mers to the models. The methods we implemented were MinHash, random 8mers, 

random 12mers, and discriminative k-mers (see section 3.6). MinHash, random 8mers and random 

12mers were selected because these are different ways of randomly or semi-randomly selecting k-

mers, while discriminative k-mers was selected because this method carefully selects each k-mer and 

is thus the opposite of the previous three methods. To compare these k-mer representation 

methods, we duplicated each of the three models so that each k-mer representation method was 

tested on each type of model, resulting in 24 distinct models. These 4 models were trained on and 

evaluated on a training set, then evaluated on a test set to assess each model’s ability to classify 

previously unseen data. To evaluate each model, we measured them on their accuracy and precision. 

We used these metrics as they give a general overview of each model’s ability to classify in a way 

that allow the models to be directly, and objectively compared. All models were trained and tested 

on both genus level and species level to determine how sensitive the model would be in detecting 

the more subtle differences between samples at species level compared to genus level. The results 

are displayed in tables 4.9 to 4.12. 
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TABLE 4.9: TRAINING METRICS AT GENUS LEVEL. 

Training genus Model Standard Neural 
Network 

Multilayer 
Perceptron Neural 
Network 

Convolutional 
Neural Network 

Accuracy MinHash 99.8% 37.2% 1.6% 

Random 8mers 99.9% 35.9% 1.5% 

Random 12mers 99.3% 37.7% 1.5% 

Discriminative k-
mers 

21.4% 14.7% 0.2% 

Precision MinHash 99.9% 80.9% 34.0% 

Random 8mers 99.9% 81.5% 28.2% 

Random 12mers 99.6% 81.2% 41.6% 

Discriminative k-
mers 

89.3% 73.1% 32.0% 

 

The results of evaluating the models on the training set at genus level show that the standard neural 

network scored high on accuracy and precision for most representation approaches, while the 

multilayer perceptron network scored a little lower, and the convolutional network had very low 

metrics (see table 4.9). 

 

TABLE 4.10: TESTING METRICS AT GENUS LEVEL. 

Testing genus Model Standard Neural 
Network 

Multilayer 
Perceptron Neural 
Network 

Convolutional 
Neural Network 

Accuracy MinHash 10.1% 18.5% 0.5% 

Random 8mers 47.3% 18.4% 1.8% 

Random 12mers 49.8% 8.2% 0.8% 

Discriminative k-
mers 

0% 0% 0% 

Precision MinHash 9.6% 83.5% 0% 

Random 8mers 95.8% 21.6% 0% 

Random 12mers 96.2% 7.9% 0% 

Discriminative 
kmers 

0% 0% 0% 

 

In table 4.10 we see the results of evaluating each model on a test set at genus level. The scores on 

the test set were generally lower compared to on the training set. We also see that the models could 

not correctly classify the discriminative k-mers at all. 
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TABLE 4.11: TRAINING METRICS AT SPECIES LEVEL. 

Training 
species 

Model Standard Neural 
Network 

Multilayer 
Perceptron Neural 
Network 

Convolutional 
Neural Network 

Accuracy MinHash 1.0% 0% 0% 

Random 8mers 0.0002% 0.0004% 0% 

Random 12mers 19.9% 0.0004% 0% 

Discriminative k-
mers 

19.3% 0.002% 0% 

Precision MinHash 0% 0% 0% 

Random 8mers 3.1% 0% 0% 

Random 12mers 11.8% 0% 0% 

Discriminative k-
mers 

12.1% 0% 0% 

 

At species level, we see that the results of the training set evaluation were lower as compared to 

genus level (see table 4.11). The convolutional network, in particular, struggled and received 

accuracy and precision scores of 0% for all representation methods.  

 

TABLE 4.12: TESTING METRICS AT SPECIES LEVEL. 

Training 
species 

Model Standard 
Neural 
Network 

Multilayer 
Perceptron Neural 
Network 

Convolutional 
Neural Network 

Accuracy MinHash 0% 0% 0% 

Random 8mers 0% 0% 0% 

Random 12mers 0% 0% 0% 

Discriminative k-
mers 

0% 0% 0% 

Precision MinHash 0% 0% 0% 

Random 8mers 0% 0% 0% 

Random 12mers 0% 0% 0% 

Discriminative k-
mers 

0% 0% 0% 

 

In table 4.12, we see the results of testing each model at species level. In the table we can see that 

every model received scored of 0% regardless of representation method. 

 

Tables 4.9 to 4.12 display the results of evaluating each model developed in this project. Overall, we 

can see that the convolutional neural network was the poorest model, and discriminative k-mers the 

poorest representation method, as these received the lowest metrics. All models achieved higher 
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accuracy and precision at genus level as compared to species level. Also, no model was able to 

correctly classify any sample at species level on a test set. 

 

4.5 Resource Usage 
 

Three types of neural networks were built for this project (see section 3.7); a standard neural 

network, a multilayer neural network, and a convolutional neural network. These were trained on 

four different representation methods: MinHash, random 8mers, random 12mers, and discriminative 

k-mers (see section 3.6), resulting in 24 distinct neural networks. Training all these models required 

significant computational resources in terms of memory and running time. Tables 4.13 and 4.14 

contain an overview of the running time of each model, as well as the average memory usage. These 

metrics cover the resources used when each model was training on a training set of representation 

vectors made using the MinHash, random 8mer, random 12mer or discriminative k-mer methods. 

 

TABLE 4.13: TRAINING RESOURCE USAGE AT GENUS LEVEL. 

Training genus Model Standard Neural 
Network 

Multilayer 
Perceptron 
Neural Network 

Convolutional 
Neural Network 

Average Memory MinHash 51GB 54GB 45GB 

Random 8mers 51GB 57GB 45GB 

Random 12mers 51GB 49GB 44GB 

Discriminative k-
mers 

51GB 50GB 45GB 

Running Time MinHash 2d 1h 48min 2d 10h 7min 3d 11h 38min 

Random 8mers 2d 3h 18min 3d 2h 7min 2d 12h 49min 

Random 12mers 2d 8h 7min 3d 1h 12min 2d 14h 31min 

Discriminative k-
mers 

2d 1h 7min 3d 0h 23min 2d 12h 35min 

 

When training the models at genus level, in general each model used between 44 and 57GB and 

required 2 – 3 days of training (see table 4.13). 
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TABLE 4.14: TRAINING RESOURCE USAGE AT SPECIES LEVEL. 

Training species Model Standard Neural 
Network 

Multilayer 
Perceptron 
Neural Network 

Convolutional 
Neural Network 

Average Memory MinHash 76GB 68GB 62GB 

Random 8mers 59GB 51GB 52GB 

Random 12mers 51GB 68GB 62GB 

Discriminative k-
mers 

51GB 68GB 62GB 

Running Time MinHash 3d 14h 42min 2d 22h 57min 7d 0h 0min 

Random 8mers 3d 1h 52min 1d 7h 50min 6d 1h 3min  

Random 12mers 2d 20h 9min 2d 23h 12min 7d 4h 46min 

Discriminative k-
mers 

3d 3h 42min 2d 18h 13min 6d 20h 36min 

 

When trained at species level, we can see that each model used between 51 – 76GB and ran for 2 – 7 

days (see table 4.14). 

 

Tables 4.13 and 4.14 show the computational resources used while training each of the neural 

networks. The results show that training at species level required more memory and longer run 

times. This was especially true for the convolutional neural network that generally took twice as long 

to train at species level. However, testing each model once train was much faster. In general, testing 

each model on a test set of 9 576 samples took between 25 to 40 minutes. 

 

TABLE 4.15: OVERVIEW OF THE MEMORY REQUIRED TO STORE EACH MODEL ONCE TRAINED. 

models Representation 
approach/Model 

Standard Neural 
Network 

Multilayer 
Perceptron 
Neural Network 

Convolutional 
Neural Network 

Genus MinHash 14GB 18GB 2GB 

Random 8mers 14GB 18GB 2GB 

Random 12mers 14GB 18GB 2GB 

Discriminative k-
mers 

14GB 18GB 2GB 

Species MinHash 19GB 20GB 4GB 

Random 8mers 9GB 8GB 4GB 

Random 12mers 19GB 20GB 4GB 

Discriminative k-
mers 

19GB 20GB 4GB 

 

The memory required to store each model once finished is displayed in table 4.15. We can see that 

the size of the finished models varied depending on model type and representation method. 
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Convolutional models had the lowest memory requirements, while multilayer perceptron networks 

had the highest. We also see that at species level, random 8mer models required less memory as 

compared to models trained on other representation methods. 

 

 

4.6 Assessing the Role of Chance 
 

Machine learning is a form of black-box programming, meaning we are not in control of all factors 

that impact the result. Since machine learning programs learn autonomously, it is difficult to 

determine the role that random chance plays in the result. Factors such as the initial value of the 

weights in a neural network can create different results each time the network is trained. This 

uncontrollability reduces the certainty that the variations observed in the results are due to the 

differences purposely introduced, such as different model designs and k-mer representations. To 

assess whether the results could be considered to reflect the factors we wanted to check rather than 

random variation, the standard neural networks were re-trained and tested for each representation 

method. The purpose of this was to compare the new results to the previous ones from when the 

models were first trained to assess the role of chance in our observations. 

 

TABLE 4.16: TRAINING METRICS ON STANDARD NEURAL NETWORKS USED TO ASSESS THE IMPACT OF RANDOM 

VARIATION. 

Training genus Representation 
method/Model 

Standard Neural 
Network 

Accuracy MinHash 96,8% 

Random 8mers 99.3% 

Random 12mers 99.0% 

Discriminative k-
mers 

18.3% 

Precision MinHash 99.8% 

Random 8mers 99.9% 

Random 12mers 99.4% 

Discriminative k-
mers 

90.6% 

 

When testing the standard neural networks at genus level, most metrics were in the 90% range, 

except for the accuracy for discriminative k-mers (see table 4.16). 
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TABLE 3.17: TESTING METRICS ON STANDARD NEURAL NETWORK USED TO ASSESS THE IMPACT OF RANDOM 

VARIATION. 

Testing genus Representation 
method/Model 

Standard Neural 
Network 

Accuracy MinHash 16.2% 

Random 8mers 42.3% 

Random 12mers 48.3% 

Discriminative k-
mers 

0% 

Precision MinHash 79.2% 

Random 8mers 95.7% 

Random 12mers 96.4% 

Discriminative 
kmers 

0% 

 

Testing the standard neural networks on a test set resulted in random 12mers receiving the highest 

accuracy and precision, while discriminative k-mers’ accuracy and precision were both 0% (see table 

4.17). 

 

Compared to the first time the standard neural networks were run, the metrics received the second 

time were not hugely different. Just like the first time, random 8mers received a higher accuracy than 

12mers during training, while random 12mers had a higher accuracy during testing. 
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Chapter 5: Discussion 
 

Microorganisms play an intricate role in health and the ecosystem. Thus, being able to identify which 

microorganisms are present in a sample, can be very valuable. For example, the presence of a certain 

family may indicate disease. However, performing taxonomic classification on these domains can be 

particularly difficult due to them having unstable gene pools as they develop rapidly and can 

exchange genes through horizontal gene transfer. Due to modern sequencing methods, there is a lot 

of genomic information available for prokaryotes. However, analysing and using large quantities of 

data is challenging. Researchers are working on using machine learning to solve this problem. While 

several tools have been developed for this purpose, the research comparing the underlying method 

these tools use is limited, making it difficult to formulate any general guidelines of how machine 

learning for taxonomic classification of microorganisms should be implemented. Most of the tools 

are also developed for marker gene analysis, while other sequencing methods such as metagenomic 

analysis are lagging behind. In this master thesis, we have attempted to answer this question, by 

classifying whole genomes for prokaryotes. We have done this by implementing three different 

neural networks: a standard neural network, a multilayer perceptron network, and a convolutional 

neural network, and compared their ability to classify on four different methods of representing 

microbial genomes: MinHash, random 8mers, random 12mers, and discriminative k-mers. These 

were then measured on their accuracy and precision to determine what model and what microbial 

representation method is the most suitable. The goal was not to develop a new tool to compete with 

existing tools, but to make observations on the interaction between neural network and 

representation method to determine what are the most promising methods to pursue for future 

development. 

  

 

5.1 K-mer Length 
 

A k-mer is an extracted piece of DNA of length k (section 2.3.1). Some of the main reasons to use k-

mers to represent DNA sequences, are the lowering of required computational resources and 

genome completeness. The k-mer length can have significant impact on the accuracy during 

classification tasks and should thus be selected carefully. For example, longer k-mers contain more 

information and can thus increase accuracy, but they also require more computational resources as 
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compared to shorter k-mers (Kaehler, 2017). When used for machine learning k-mers are 

represented as binary presence/absence vectors, or count vectors denoting k-mer frequency.  

 

 

In this project, several tests were run on ten randomly selected genome files to get an indication as 

to how k-mer length would impact factors such as the number of distinct and unique k-mers in the 

genomes (section 3.5 and 4.1). From k-mer length 12 and up, the difference between unique k-mers 

and total number of k-mers was drastically reduced compared to k-mer lengths 8 and below. The 

implication is that when the k-mer length is 12 or greater, more of the k-mers in the genome will be 

unique. When most of the of k-mers in a genome only appear once, there is little purpose in knowing 

the k-mer frequency as almost all k-mers will have a frequency of 1. Therefore, when representing a 

genome as k-mers it would be more efficient to use a presence/absence-based representation when 

the k-mer length is 12 or above. For k-mer lengths below 12, however, a k-mer counting based 

method is more suitable as most k-mers appear at frequency > 1. Shorter k-mers contain less 

information, but including the count makes them more informative. Shorter k-mers also means the 

possible number of k-mers is much smaller, increasing the likelihood that identical k-mers will be 

present across genomes. A presence/absence-based method on these short k-mers could therefore 

result in input vectors which are near identical even if the genomes they represent are not. 

 

 

Based on the reasoning in this section, k-mer counts should be represented by k-mers of length 8 or 

below, while presence/absence-based k- should be represented by k-mers of length 12 or above. 

Longer k-mers increase memory requirements (see section 2.3.2) and the use of long k-mers is 

therefore a trade-off with computational resources. Therefore, presence/absence-based k-mers 

should be based on 12-mers, as this length primarily produces unique k-mers suited for 

absence/presence representation while also being the theoretically least resource demanding long k-

mer. 12-mers is also the same length that LaPierre et al (LaPierre et al., 2019b) (see section 2.3.2) 

found to be a suitable trade-off in their experiments on a similar project, indicating that 12-mers as 

the first length to produce primarily unique k-mers is not specific to the database and exploration 

performed in this project. Computational resources are less of a concern when selecting a k-mer 

length for k-mer counts as these will use short k-mers. There are, however, concerns about selecting 

too short k-mers as these are less likely to catch repeats of short sequences. A short sequence, such 

as ATA is likely to appear in a genome containing millions of nucleotides, while the sequence 

TATATATA is less likely, and thus more informative. To mitigate this issue, we should use the longest 
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short k-mers, which is 8-mers. 8-mers are short enough to garner the benefits of short k-mers, but as 

the longest of the short k-mers should be less prone to the negative aspects. 

 

 

According to Chor et al (2009), in prokaryotes the k-mer frequencies follow a unimodal distribution  

(Chor et al., 2009). Unimodal means that the distribution has a clear peak where values increase 

before the peak and decrease after it. This may be the reason that from k-mer lengths 12 and longer, 

the k-mers in the genome for the most part do not cover most of the possible space of k-mers. If the 

function on either side of the peak is steep, that means even in a genome with many k-mers, most of 

the k-mers are part of the same limited subset. As such, the real space of k-mers is far smaller than 

the theoretical space of k-mers. Based on the results in section 4.1, it appears that as the k-mer 

length increases, the k-mers in the genome are covering a smaller percentage of the space of 

possible k-mers. 

 

 

5.2 Representation Methods 
 

The neural networks were trained on four separate methods of representing k-mers; MinHash, 

random 8mers, random 12mers, and discriminative k-mers (see section 3.6). MinHash selected k-

mers using locality-sensitive hashing and then retaining the 3000 lowest hashes for each genome. 

These hashes were used as a basis to create 40 000 elements long presence/absence vectors for each 

genome. The goal was to select a subset of k-mers whose presence could be used to classify many 

genomes due to being shared across genomes. Random 8mers and random 12mers was based on 

generating 40 000 arbitrary k-mers of length 8 and 12. The random 8mers were counted for each 

genome and turned into k-mer count vectors. The random 12mers were counted for each genome 

and turned into presence/absence vectors. The purpose of random 8- and 12mers was to assess 

whether more complex selection methods, such as MinHash, is worth the extra effort, or if simpler 

methods, such as generating random k-mers can serve just as well. These methods were also 

included to make a comparison between a k-mer presence/absence-based approach and a k-mer 

counting-based approach. Discriminative k-mers were implemented by counting all 12mers in the 

training set, then removing all k-mers that existed in more than one genome. Then, this set was 

scaled down to one k-mer per genome, and each genome into a presence/absence vector covering 

the discriminative k-mers. 
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During training on the standard neural network at genus level, the model learned to classify random 

12mer vectors quickest. After five epochs, the random 12mer had achieved an accuracy on the 

training data of 94%, while random 8mers and MinHash were both at 65%. The final accuracy score 

achieved on training data were 99.9% for random 8mers, 99.8% for MinHash, 99.3% for random 

12mers, and 21.4% for discriminative k-mers. All representations achieved a precision of around 99%, 

except for the discriminative k-mers at 89.3%. Discriminative k-mers performed much worse than the 

others. For the rest, k-mer representation had limited impact. However, when the models were 

tested on the testing set the representations mattered more. Random 12mers achieved the highest 

accuracy and precision at 49.8% and 96.2% respectively. MinHash fared far worse with accuracy and 

precision scores of 10.1% and 9.6%. Discriminate k-mers did not classify anything correctly and thus 

has accuracy of precision scores of 0%.  

 

On the genus-level multilayer perceptron neural network, discriminative k-mers once more fared the 

worst with accuracy 14.7% and precision 73.1%. Except for discriminative k-mers, random 8mers 

achieved the lowest accuracy during training at 35.9%, while MinHash had the highest accuracy at 

37.2%. MinHash had the lowest precision, at 80.9%, compared to random 8mers at 81.5% and 

12mers at 81.2%. Testing the model, however, yielded the opposite result. MinHash had the best 

result with an accuracy of 18.5% and precision of 83.5%. In fact, the MinHash model achieved a 

higher precision during testing as compared to training. 

 

The differences between the accuracy scores for the genus-level convolutional neural network were 

modest, ranging from 0.2% to 1.6%. Random 12mers achieved the highest precision score at 42.6%. 

This was the only metric where discriminative k-mers were not the worst with a precision of 32.0%. 

However, discriminative k-mers still has the lowest accuracy at 0.2%. Random 8mers performed best 

on the test set with an accuracy of 1.8%, while discriminative k-mers achieved the worst accuracy at 

0%. All representations had a precision of 0%. 

 

Interestingly, the performance of each representation method appears to be largely model 

dependant, as no method is consistently better than the others. However, discriminative k-mers is 

consistently worse than the other three. The purpose of MinHash was to find a set of k-mers that are 

present in many genomes reducing the needed input vector length for classification. It is unexpected 

that randomly selected k-mers outperformed k-mers selected using MinHash sketching on two out of 



90 
 

three models. The k-mers in MinHash were purposely selected with the aim to find k-mers that exist 

in many genomes and can thus be part of a reduced subset of k-mers able to classify a wide range of 

genomes. In random 8- and 12mers however, the k-mers were selected without even looking at the 

dataset. There was no guarantee that the k-mers were present in the dataset at all, only a statistical 

probability that at least some of them were. The vectors in the random methods were the same 

length as the MinHash vectors, and the models were trained with the same parameters. The 

MinHash vectors were also pre-processed in the same way as the random 12mer vectors as they are 

both presence/absence-based representations with 12mers. When the hash values from the 

MinHash signatures were combined it became apparent that there was significant overlap in the k-

mers in the genome (see section 4.2). It is possible that this overlap allowed the random methods to 

achieve the same as the MinHash sketches. By that, we mean that some of the randomly generated 

k-mers were present in many genomes and thus were suitable for classification using a reduced input 

vector, just like MinHash aims to do. Another factor that might have played a role, is the unreliability 

of absence in a MinHash presence/absence vector. When the MinHash signatures were made, a k-

mer was marked as present if its hash value was present in a genome’s signature. As such, we can 

thrust that if a k-mer is marked present in the MinHash vector, it is also present in the original 

genome. However, we cannot make such a claim for k-mers marked absent. For example, we have 

two genomes that contain four k-mers each. We would like to make a signature with the two lowest 

hash values in each genome. The hash values computed for the two genomes form the vectors [1, 9, 

4, 7] and [8, 4, 2, 1]. The signatures for each genome would thus be [1, 4] and [1, 2]. These are then 

combined into the set [1, 2, 4] and compared with the signatures to form the presence/absence 

vectors [1, 0, 1] for genome one and [1, 1, 0] for genome two. However, for the second vector to be a 

correct representation of genome two, the vector should be [1, 1, 1] as both the genome and 

combined set contains the hash value 4. Considering the signatures lengths in our training set 

constitute roughly 0,01% of the total number of k-mer in each genome, it must be considered highly 

likely that such inaccuracies are present in the training set. However, the error should be reduced 

since the combined set was cut down to 40 000 hash values as this reduces the overall number of k-

mers marked absent in the representation vectors. 

 

When comparing random 8mers and random 12mers, each method outperformed the other on one 

of the models. This makes it harder to draw any conclusion as to whether k-mer presence/absence or 

k-mer counting is the superior method. Therefore, which method is preferable must be decided not 

simply by their metrics, but on the quality of the model on which they outperformed the other 

method, because it would be best to pursue the k-mer representation method that performed the 
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best on the most promising model. However, it must be mentioned that on the model where random 

8mers outperformed random 12mers, the gap in the methods’ performance was larger than when 

12mers outperformed 8mers. Also, in their article, Vinje et al (2015) found that they were able to 

improve performance on one of their k-mer representation methods by adding k-mer counting 

rather than just using k-mer presence/absence (Vinje et al., 2015). However, the method in the 

article was based on naïve Bayes classifier and was tested on 16S marker genes. A factor that might 

have impacted the result for random 8mers, was the decision to transforms the k-mer frequencies by 

scaling rather than using log transform. Log transform is a suitable transformation method for re-

scaling the count in the input vector when the counts follow a log-normal distribution (see section 

2.2.2.7). According to Choer et al (2009), log-normal distribution is a suitable model for describing 

the k-mer frequencies in prokaryotes (Chor et al., 2009). This means the random 8mer vectors could 

have been transformed differently which may have altered the results. 

 

 

In general, discriminative k-mers performed very badly during testing. The most likely explanation is 

that the discriminative k-mers were too discriminative. The discriminative k-mers came from only 

5 147 files, and as such represented 21,5% of the training set. This means that most of the genomes 

were not unique enough to contribute a unique k-mer, even though the space of possible k-mers was 

16 777 216 as the method was based on 12-mers. As a result, the models had nothing to work with 

when classifying most of the genomes as their entire input vectors would be nothing but zeros. In 

section 5.1, we discussed how the k-mer distribution in prokaryotic genomes do not cover the whole 

space of possible k-mers, and the greater the k-mer length, the less k-mer space is covered. This must 

logically have been a contributing factor as to why discriminative k-mers did not work as a 

representation method. The genomes are generally too similar for this method to work, at least on 

12-mers. Solving this would require either increasing the likelihood that each genome contains a 

discriminative k-mer, or implementing a less strict approach to discovering discriminative k-mers. The 

first approach could be achieved, for example, by lengthening the k-mers. Each additional nucleotide 

exponentially increases the possible k-mer space and thus the number of potentially unique k-mers. 

However, as we discovered, the longer the k-mers get, they cover less of the k-mer space. Also, as 

the k-mers are selected on an individual level, generalization across genus may be difficult, and this 

approach would only increase the required computational resources. The second approach could be 

achieved in several ways. One way would be to select discriminative k-mers at genus level rather 

than individual level, keeping k-mers that are unique to a genus group rather than an individual 
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sample. This approach relies on the assumption that samples in the same genus are more likely to 

share k-mers. Another way would be to not select k-mers that are necessarily unique, but instead 

just unusual. For example, counting the frequency of every k-mer in the dataset, then retaining the 

most unusual k-mers below a certain threshold. This would be an example of a filter method (see 

section 2.2.2.4). Another option would be to use a wrapper method, for example randomly selecting 

a subset of the k-mers in the training set, train them on a few epochs, evaluate the accuracy, then do 

the same with a new subset of the k-mers, repeating the process until eventually we have selected 

the optimal subset. However, this would require a long run-time to achieve. It must also be 

mentioned that the discriminative k-mer vectors were 5 147 elements long, making them far shorter 

compared to the other methods with 40 000 elements long vectors, thus decreasing the overall 

amount of information the models received for each genome. 

 

 

5.3 Models 
 

The models developed for the classification task were a standard neural network, a multilayer neural 

network, and a convolutional neural network (see section 2.2.4.1 and section 2.2.5.2). Standard 

neural networks are the simplest neural networks as they are relatively small. The networks are less 

complex than the others and can thus not learn as complex features as more complex networks. 

However, they are the least expensive to train in terms of computational requirements. Multilayer 

perceptron networks are deep neural networks with more layers than a standard neural network. 

Thus, they can learn more complex relationships. Convolutional neural networks contain 

convolutional layers. Convolutional layers can extract high-level data as compared to multilayer 

perceptron networks and are known for their usefulness in image recognition. 

 

Comparing the measured accuracy from training and testing, we can see that the standard neural 

networks had the largest gap between achieved accuracy during testing compared to training. This 

large gap indicates a high level of overfitting. Interestingly, the larger multilayer neural network had a 

smaller gap indicating less overfitting despite that it would be logical to think a more complex neural 

network would learn the data better and thus be more prone to overfitting. Generally, less complex 

models are less capable of detecting subtle differences in the data (see section 2.2.4.6.1). This makes 

them less likely to overfit the data, and more able to generalize. However, in this case we seem to 
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have gotten the opposite result. One possible explanation is that the smaller hidden layers in the 

multilayers neural networks more effectively forced the network to generalize as it could not pass on 

every input to the next layer. Considering the small size of the networks compared to the large 

dataset they were trained on, there is the distinct possibility the standard networks are 

oversaturated. By that, we mean that there are only so many patterns a network can learn, and this 

is limited by its size. As a result, when the network is further trained it does not learn more patterns, 

but rather switches what patterns it has learned. 

 

The multilayer perceptron networks did not achieve the same accuracy during training or testing as 

the standard neural network. The precision during testing, however, was substantially better when 

averaging out between different k-mer representations. The gap between the metrics on the training 

and test sets were smaller than the standard neural network, indicating less overfitting. We can draw 

from this that while the standard neural network learned the training data, the multilayer perceptron 

network to a greater extent learned to generalize the data. While the result was sub-par compared 

to the standard neural network, the purpose of training is to have the network learn to generalize 

across groups, and the multilayer perceptron performed better at that despite achieving lower 

metrics. 

 

The convolutional neural networks overall had the poorest accuracy scores. Possibly, the reason for 

this is that the convolutional layers are not suited to the type of input. While convolutional networks 

are powerful in discovering complex relationships, they are designed for input where the order of 

features in an input vector is meaningful. Therefore, they are commonly used in image recognition 

where a feature is combined with its neighbours to form a shape. As such, the convolutional layers 

are a form of feature combination method (see section 2.2.2.4). In our project this technique did not 

translate well when applied to microbial sequential data. However, the networks might have fared 

better on a different k-mer representation method. As convolutional networks put a lot of emphasis 

on combining neighbouring features, we might have gotten a better result if the k-mer vectors 

retained the ordering from the original genome. This would make filters in the convolutional layer 

more meaningful, as the combining of neighbouring k-mers would result in filters that represented a 

longer k-mer. As such, a suitable representation method would be a presence/absence vector where 

each position represented a position in the genome, and the value identified a specific k-mer. 

However, this method would be computation heavy due to the long vectors required to represent an 

entire genome. Another issue would be adapting the input vectors to model specific requirements, 
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such as making all input vectors the same length. The genomes in the dataset are not of uniform 

length. Thus, with the tools and resources used in this project, representing every genome length in 

its entirety would require most vectors to be padded to the length of the greatest genome, probably 

drastically increasing the computational requirements. To get a better result with the three 

representation methods we already have, it might be necessary to make alterations to the structure 

of the convolutional models. For example, the model contained two dropout layers intended to 

reduce overfitting. As the gap between the accuracy on the training and test sets was small, the 

model succeeded in reducing overfitting. However, the accuracy on both was low, perhaps indicating 

too much emphasis on reducing overfitting in the model design.  

 

There is the possibility that coincidence has impacted the results. Training a neural network is a form 

of black box programming. We are not in control of, or even aware of the specificities of how the 

trained model works once trained. This is one of the disadvantages of neural networks, and machine 

learning in general. Different values of the initial weights in the network can impact the result. The 

learning rate used to train the neural network was 0.1. This is relatively high (see section 2.2.4.5.1). 

This choice was made to speed up the learning process. However, a higher learning rate makes the 

model less likely to discover the global maxima. The high learning rate also increases the likelihood 

that chance played a role in the result as the model weights were changed more drastically per 

epoch creating a less consistent learning curve. The standard neural network was rerun on all three 

representation methods to determine the impact of random variation in the results (see section 4.6). 

The results of the re-training and testing showed that while the metrics were altered slightly, they 

kept to the same levels as the first time. Meaning, that which representation method received the 

highest and lowest metrics did not change. This indicates that the random variation in the the 

standard neural network is not large enough to garner criticism as to the validity of our observations. 

However, this does not mean this is not the case for the multilayer or convolutional neural networks. 

 

 

5.4 Species Classification 
 

All models were better at classifying at genus level across all representation methods. This is not 

surprising as the differences at species-level are bound to be more subtle. Another important factor 

is that the dataset contained only one example of each species. The result was that the models could 
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not generalize across a group of individuals, only learn to recognize that single individual. Since the 

models were tested on a test set that contained none of the samples from the training set, during 

testing the models were presented only with species they had not seen before. Thus, they should 

logically not be able to classify any of them correctly. Therefore, all models got accuracy and 

precision scores of 0% regardless of k-mer representation method. Ideally, the models should have 

had the option to classify a sample as belonging to no class, meaning the sample did not belong to 

any of the classes the models had seen before. In this case, if the models classified everything in the 

test set as no class, they would have 100% accuracy, even if this result is not very helpful. Based on 

the results, it is unknown if the model is sensitive enough to classify at species level or not due to the 

inadequacy of the training and test data. A solution would be to increase the number of samples for 

each species. This could be achieved either by getting more species data from a different database, 

or artificially increasing the sample size using data augmentation (see section 2.2.4.6.1). However, 

the observations made about which models are most suited for classification should be the same for 

both genus and species-level. Logically, there is no reason the standard neural networks should 

overfit the genus level-data, but not the species-level data as in practice the only difference is the 

size of the input vectors and number of classes (genus or species) to map the vectors to. 

 

 

5.5 Our Project in the Wider Field 
 

In an article about fungal taxonomic classification, researchers found convolutional neural networks 

to outperform several other types of models (Vu, Groenewald and Verkley, 2020). The k-mers were 

represented as k-mer frequency vectors, just like in our random k-mer count representation method. 

It is therefore reasonable to assume the original order of the k-mers in the genome was not retained 

in the vectors. Yet, the convolutional neural network outperformed the other models at family and 

higher taxonomic levels. This challenges the earlier presented idea that it is the lack of a meaningful 

relationship between neighbouring features that lead to the convolutional models performing 

poorly. It is necessary to note, however, that there are several differences between our convolutional 

models and theirs, such as our models including dropout layers. Also, their model was trained on 

fungi marker genes rather than bacterial and archaea whole genomes, and they used k-mer sizes 4, 

6, and 8, rather than 8 and 12. 

 

Kraken 2 is a newer version of the classification tool Kraken (Wood, Lu and Langmead, 2019). In an 

article comparing the performance of Kraken and Kraken 2, several existing tools were tested on 
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various metrics, including precision (Wood, Lu and Langmead, 2019). The tools being tested on 

nucleotide classification were Kraken 2, earlier versions of Kraken, CLARK, Kaiju, and Centrifuge (see 

section 2.1.5.4.1). For all tools, the precision was around 99%. The tools compared in this article, are 

all k-mer based, metagenomic genus-level classifiers that were tested on prokaryotic data. As the 

highest precision achieved by our models on a test set was 96.2% (random 12mers on the standard 

neural network), this would indicate that our models are not up to the standard of current, already 

existing classifiers. It is worthy to note, however, that the precision score achieved by the other 

classifiers was based on a test set of 40 genomes, while our models were tested on 9 576. We can 

thus have more confidence in the precision score of our own models as they were tested on a wider 

array of inputs. Kraken 1 and 2 used k-mers lengths 31 and 35. In our project, we used k-mer lengths 

8 and 12, to balance the trade-off between the greater informative nature of long k-mers and 

computational resources (see section 5.1). The superior precision score of Kraken 1 and 2 challenges 

the outcome of this consideration as it indicates the advantages of long k-mers should have been 

given more weight as compared to concerns over computational resources. 

 

 

In this project, we decided to work on taxonomic classification for metagenomic analysis as this type 

of classification is less common than marker gene analysis and thus needs the research more. 

However, since working on whole genomes requires a lot of computational resources, we must 

consider whether it is worth it. In our own project, the classifiers required between 44 and 76GB of 

memory during training, and once trained required between 2 to 20GB to be stored (see section 4.5). 

Species-level classifiers required more memory than genus-level. On species level, the classifiers 

trained on random 8mers required less memory compared to the other models. Perhaps due to the 

shorter k-mers they were trained on. In an article by Ye et al (2019), comparisons were made 

between 20 different classification tools on the same database (Ye et al., 2019). This list included 

both metagenomic and marker gene classifiers. They found that metagenomic classifiers using k-

mers longer than 30 had the best scores, while marker-gene based tools performed less well. 

However, they also found that metagenomic classifiers required from tens to hundreds of gigabytes 

to run, while the memory requirements for marker gene classifiers were lower. As such, the memory 

requirements for our models were low for metagenomic classifiers. Perhaps due to being trained on 

shorter k-mers compared to most other metagenomic classifiers, just as we saw a connection 

between k-mer length and memory requirements in our models. The metagenomic classifiers were 

fast during testing, despite their memory requirements (Ye et al., 2019). While our own models were 
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slow to train, they worked fast on the test set (see section 4.5). Overall, it seems that if enough 

memory is available, metagenomic classifiers are more promising than marker gene classifiers.  
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Chapter 6: Conclusion 
 

6.1 Models  
 

High accuracy and precision on training data indicates standard neural networks are good at learning 

to recognize a microbial dataset. However, these models display a high level of overfitting, indicating 

limited capacity for generalizing on a large dataset. Thus, there is little purpose in pursuing these 

models for classification of metagenomic data. Multilayer perceptions are less precise and accurate 

than standard neural networks. However, lower levels of overfitting indicate these models might be 

better at generalizing. Further research is required to determine the exact structure these should 

have for an optimal result, such as the ideal number of layers and nodes per layer. However, these 

models being better at generalizing make them a more promising venue than standard neural 

networks to explore further as a method for metagenomic analysis. Convolutional neural networks 

do not work well for the k-mer representation methods used in this project. Possibly, because of the 

lack of meaningful relation between a single feature in the input vector and its closest neighbours. 

However, more success might be possible with this type of model if k-mer vectors retain the ordering 

of the k-mers in the genome. Thusly, using convolutional neural networks to classify metagenomic 

data is worth pursuing if the data can be represented by vectors where the ordering of elements 

reflect the ordering of those same elements in the genome. Overall, deep neural networks hold more 

promise than traditional neural networks for handling a domain such as microbial classification. 

 

 

6.2 Representation Methods 
 

Random 12mers achieved the highest accuracy score on a test set. However, this was on the 

standard neural network. In section 6.1, we concluded that standard neural networks were not 

worth pursuing further for taxonomic classification in favour of multilayer perceptron networks. 

Thus, it would be better to select the representation method that fared best on the multilayer 

perceptron network, which was MinHash. MinHash’s accuracy and precision scores where the 

highest during testing compared to the random methods. Especially precision where MinHash 

achieved a score roughly four times higher than the second highest score. Random 8mers, while 

performing significantly worse than MinHash, achieved an accuracy and precision score more than 

twice as high as random 12mers. As discussed in section 5.3, there is the possibility that the results 
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are partly arbitrary, as we did not check for impact of coincidences by re-training the models or re-

generating new random k-mers. However, if we assume the role of chance was limited, we can 

conclude the following. Structured selection of k-mers is preferable to random selection. However, 

when this is not possible, k-mer counting is preferable to k-mer presence/absence when the input 

vectors are of equal length. On the usefulness of discriminative k-mers, our project is inconclusive. 

The results indicate this approach is not worthwhile, however a different implementation may garner 

a different result.  

 

 

6.3 Genus and Species 
 

During testing at genus level, all models managed to classify some samples correctly. This proves the 

models can generalize at genus level for all three representation methods. However, at species level 

no model managed to classify a single sample correctly. This is due to the training and testing sets 

being insufficient for species-level models. Therefore, no sound conclusion can be made about the 

models’ ability to classify at species-level other than that this requires further research. 

 
 

6.4 Further Work 
 

Multilayer perceptron neural networks show promise as a method for taxonomic classification. 

However, as the accuracy and precision achieved in the project is relatively low, more 

experimentation is needed to increase these metrics to a level that is acceptable for real world 

usage. Running experiments on the same dataset but with different variations to the multilayer 

perceptron network could lead to the building of a better neural network. Variations that should be 

tested are adding/removing layers and varying number of nodes per layer. 

 

Expanding the comparisons made in this project to other types of neural networks could allow for a 

more complete recommendation for what neural network to use for taxonomic classification of 

microorganisms. The results produced in this project can easily be expanded upon by implementing 

new types of models, such as deep belief networks, and testing them on the same dataset. Similarly, 

the results could benefit from the inclusion of more k-mer representation methods. Particularly, 
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exploring representation vectors that retain the order in which each k-mer is found in the genome. 

This would encourage the use of models such as recurrent neural networks, that are particularly 

suitable for input vectors where the ordering of elements is meaningful, due to their ability to treat 

the input as a more complete sequence. Encoding k-mers using one-hot encoding or embedding 

could be a starting point. In an article about the development of the classification model 

DeepMicrobes, researchers found that embedding improved model performance over one-hot 

encoding (Liang et al., 2020). 

 

The classification labels in the project were encoded using one-hot encoding. The reason for this was 

that there is no obvious way to sort the training samples numerically, and a numerical label can 

affect the model performance as the models interpret labels with similar numerical values as being 

more closely related. If we could encode the labels in such a way that the difference between the 

numerical labels reflected the level of closeness on the evolutionary tree, we could use this to our 

advantage to improve model performance. However, designing such a numerical labelling system 

could prove a substantial task. Especially, if the model is intended to keep learning new classes after 

the initial training as the labelling system would need the flexibility to accommodate this.  

 

The discussion left ambiguity as to the worth of convolutional neural networks for taxonomic 

classification. In the results, the convolutional neural networks proved the least suited as they 

achieved the lowest metrics. More research is required to determine if convolution is unsuited for 

classification tasks in this domain, or if they have potential but require a different approach. Testing 

convolutional neural networks with a genome representation method more in line with what these 

networks were originally designed for could give a different result. 

 

In this project, we were not able to properly assess classification at species-level due to the 

insufficient dataset. To mediate this one might re-attempt running the models from this project on a 

different dataset or use methods such as data augmentation to make the current dataset more 

sufficient. 

 

It is not uncommon for genome sequences to be incomplete, meaning the genome is divided into 

smaller parts, or parts of the genome are missing. In this project, testing has only been performed on 
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whole genomes that were highly complete. Preferably, the models should classify incomplete 

genomes as well as they would then be usable for a wider array of data samples. In this project, we 

did not test the models on incomplete data samples. This would be beneficial however, for future 

research. Either the models could be tested on a different dataset with less complete genomes, or 

we could artificially lower the quality of the dataset already in use, by manipulating the whole 

genome data files. Bringing in a new dataset would be simpler, and the fragmentations in the 

genomes would be realistic as they are real. Manipulating the current dataset would be a more 

arduous approach but limits the number of factors impacting the result as the genomes are the 

same, except incomplete. Logically, the models should perform better at incomplete data compared 

to models trained on marker genes, as the models trained on whole genomes would be less reliant 

on a specific area in the genome being preserved. 

 

In this project, we classified microorganisms based on their DNA. However, this is not the only 

alternative. Historically, the first system for taxonomic classification was based on phenotype, not 

genotype (Hugenholtz et al., 2021). Phenotype refers to traits such as appearance, behaviour, 

anatomy etc, while genotype refers to the genetics themselves (Austin, 2021). Today, genotype is 

often preferred as a basis for classification due to being more stable and genomic variance can 

reveal/prove evolutionary relationships. However, prokaryotes have the option of horizontal gene 

transfer were individuals swap genes. Such transfers can happen between prokaryotes of different 

species, and on rare occasions, different domains. As a result, prokaryotes can end up with 

misleading genes that in a purely genome-based classification system could lead to individuals being 

mislabelled. Classification based on phenotype, however, is also not ideal as phenotypes in 

prokaryotes mostly do not reflect evolutionary relationships. Either way, prokaryotes are especially 

difficult to classify. Ideally, classification should thus be based on several factors, such as both 

genotype and phenotype. Incorporating phenotypic data is outside the scope of this project. 

However, this combined approach may produce more robust and trustworthy classification of 

prokaryotes.  
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