
University of Oslo
Department of Informatics

Caching of
Interactive
Branching Video in
MPEG-4

Simen Rekkedal
simenre@ifi.uio.no

Thesis for the
Candidatus
Scientiarum
degree.

July 12, 2004

Abstract

The goal is to investigate the minimum amount of knowledge needed
by a proxy server for consistent caching of interactive multimedia scenes
encoded in MPEG-4 systems.

We limit the interactive multimedia scenes to be of the type branching video.
The caching scheme proposed is a specialization of partial caching. The
extent of a branching video is the number of alternative branches available
to the user at a branching point.

The proposed caching scheme is extent domain caching. It works by limiting
the number of alternative branches stored in the cache. Cache misses are
served from the source server to provide a service transparent for the users.
An implementation with test runs is provided. In the implementation the
interactivity is limited to building blocks of complete ES.

For content with several alternative scenes within a single ES, a different
approach is needed. The proxy have to construct ad hoc objects from the
AUs that constitute the alternative scenes. These ad hoc objects should be
identifiable and have defined boundaries. Caching replacement decisions
are then made on the ad hoc objects, and not on the complete ES. Identities
can be constructed from the sequence number of the AUs and the ES id.
The boundaries can be found by analysing where the users shift playback
point.

iv

Preface

This document is a thesis in partial fulfilment of my Candidatus Scientiarum
degree at the University of Oslo, Department of Informatics.

First let me thank my fiancee Irene Gjøsund for putting up with me through
all of this.

I would also like to thank my tutors Prof. Dr. Carsten Griwodz and
PhD. Student Frank Trethan Johnsen for guiding me through this task.

Many of the ideas about narrative and interactive navigation through
hypermedia comes from fellow student Odd Joachim Carlsen, big thanks !

University of Oslo, Department of Informatics
10.7.2004
Simen Rekkedal

To ease navigation of the electronic document the pagenumbering is
absolute, rather than starting at 1 again on page 11.

vi

Contents

Abstract ii

Preface iii

1 Introduction 11
1.1 Definitions . 11

1.1.1 Central Topics . 11
1.1.2 Related Topics . 13

1.2 Method . 14

2 Related Work 15
2.1 Caching . 15

2.1.1 Proxy Cache Servers 15
2.1.2 Proxies in Content Distribution Networks 16
2.1.3 Architectures . 16
2.1.4 Replacement Strategies 19
2.1.5 Caching Algorithms 20
2.1.6 Binary Caching . 21
2.1.7 Partial Caching . 22
2.1.8 Transmission Policies 24
2.1.9 Admission Policies . 24
2.1.10 Concurrent Thrashing 24

2.2 Multimedia and Internet . 24
2.2.1 Quality of Service . 25
2.2.2 Streaming Multimedia 25
2.2.3 Content Distribution Networks 26
2.2.4 Services . 28
2.2.5 User’s Perception . 30

2.3 Interactive Multimedia . 30
2.3.1 Narrative . 31
2.3.2 Interactivity . 32
2.3.3 Branching Video . 35
2.3.4 Navigation and Patterns 37

vii

CONTENTS CONTENTS

2.3.5 Caching Interactive Content 37
2.3.6 Applications of Branching Video 39

3 MPEG-4 41
3.1 Overview . 41
3.2 System . 43

3.2.1 Terminal . 43
3.2.2 Delivery Layer . 43
3.2.3 DMIF Application Interface 44
3.2.4 Sync Layer . 44
3.2.5 Elementary stream Interface 44
3.2.6 Compression Layer . 44
3.2.7 Timing . 45
3.2.8 Object Description Framework 45
3.2.9 Scene Description Framework 46
3.2.10 MPEG-J . 47
3.2.11 MP4 File Format . 47

4 Analysis 51
4.1 Caching interactive content 51

4.1.1 Consistency . 51
4.1.2 Object Reuse . 53
4.1.3 Binary or Partial caching 53

4.2 Partial Caching Analysis . 54
4.2.1 Time Domain . 55
4.2.2 Quality Domain . 55
4.2.3 Extent Domain . 56

4.3 Knowledge needed . 56
4.3.1 Candidate Recognition 57
4.3.2 MPEG-4 . 57

4.4 Minimum knowledge needed 58
4.4.1 Identity . 58
4.4.2 Boundaries . 59

4.5 Media Types . 60
4.5.1 Branching . 60

4.6 Storage . 62
4.7 Interactivity . 63

4.7.1 ES Identifier . 64
4.8 Scenario . 64
4.9 Taxonomy of Objects . 65

4.9.1 Non aggregated objects 65
4.9.2 Aggregated objects . 66
4.9.3 Parsing the tree . 66

4.10 Caching Branching Video . 66

viii

CONTENTS CONTENTS

4.11 Segment Caching . 67
4.11.1 Segments versus Branches 67

5 Design 69
5.1 Intention of the Design . 69
5.2 Proposed Architecture . 70

5.2.1 Partial Caching . 71
5.2.2 Premise . 72
5.2.3 Considerations . 72
5.2.4 Architecture . 74
5.2.5 Assumptions for the System 75
5.2.6 The Source Server . 76
5.2.7 The Proxy . 77
5.2.8 The Clients . 78

5.3 Fulfilling Requirements . 78
5.3.1 Consistency . 78
5.3.2 Performance . 80

6 Implementation 83
6.1 Implemented Test Architecture 83
6.2 Disk Usage . 86
6.3 Parameters . 86

6.3.1 Byte Hit Ratio . 86
6.3.2 Consumed Byte Hit Ratio 87

6.4 LRU and LFU . 87
6.5 Branches . 88
6.6 Interactivity inside ES . 88

7 Conclusion 91
7.1 Results Discussion . 91

7.1.1 Test Implementation 91
7.1.2 Proposed Design . 92

7.2 Future Work . 92
7.2.1 Meta Algorithm . 93

Bibliography 95

List of Figures 101

List of MPEG-4 Abbreviations 103

A Source Code 105
A.1 Header Files . 105
A.2 Source Code Files . 118

ix

CONTENTS CONTENTS

10

Chapter 1

Introduction

This thesis investigates caching of interactive multimedia. Interactive
multimedia content can be encoded using MPEG-4. We discuss how
MPEG-4 provides descriptors that can make consistent caching possible.

Structure

This chapter briefly describes the conceptual framework for this thesis. The
full definitions of these concepts can be found in chapter 2. Chapters 4,
analysis, and 5, design, build upon these concepts. An overview of MPEG-
4 is given in chapter 3.

Chapter 6 presents an implementation of caching of branching video.
Chapter 7 discusses the results from the implementation in context of the
design, and presents possible future work.

1.1 Definitions

This section defines the research field for this thesis. A brief presentation of
the needed definitions is provided here. More detailed definitions can be
found in chapter 2. The topics of the related work is divided into two parts;
central topics and related topics. This is done to emphasize the central
research field.

1.1.1 Central Topics

The two fields that we have combined to provide a new research field is
streaming branching videos and caching, figure 1.2. The field of streaming
is not a central topic of its own, rather we focus on the knowledge needed
for caching a streaming branching video. The analysis is presented in
chapter 4.

11

1.1. DEFINITIONS CHAPTER 1. INTRODUCTION

Narrative

Interactivity

Branching
Video

Media
Hyper

Multimedia

Figure 1.1: Branching Video

Video
ThesisBranching

Streaming
Caching

Figure 1.2: Central Topics

12

CHAPTER 1. INTRODUCTION 1.1. DEFINITIONS

Caching

This thesis contributes to the field of caching, defined in 2.1. Caching as a
subject is a vast research topic of its own. In this thesis’ scope caching is
limited to the partial caching of interactive multimedia content in proxies.
This thesis proposes a third domain of partial caching, in addition to
the well defined quality and time domains, [59]. Extent domain caching,
presented in chapters 4 and 5.

Branching Video

Branching Video (BV) is a subset of hypervideo, which in turn is a subset of
hypermedia, see figure 1.1. These concepts are fully defined in section 2.3.
It is assumed that the BV is encoded using MPEG-4 systems descriptors.
MPEG-4 is defined in chapter 3.

1.1.2 Related Topics

In order to provide a solid foundation for the thesis, a few other topics need
to be defined. These topics are:

Streaming

Delivery of multimedia content over a network in a time-dependent
manner, for playback by a user before the complete set of data has been
transmitted. Streaming is defined in 2.2.2.

Content Distribution Networks

Multimedia content must be distributed to consumers in some way.
Traditionally it has been on removable media such as tapes, disks or cds.
In recent years, an increasing amount of multimedia content has become
available on the Internet. Providers of multimedia have a vested interest
in controlling the distribution of their content. Consumers want to have
easy access. A Content Distribution Network (CDN) provides content over
a network. CDNs may be accessible through the Internet. In this thesis
we limit CDNs to Internet or WAN based nets, even though the argument
could be streched to other kind of networks, e.g TV cable networks. CDN
is defined in 2.2.3.

User’s Perception

Multimedia content is intended for a human audience, and not for
consumption by a computer. This is why we can use lossy compression.
Still, a human will not wait for any length of time for a product, or accept

13

1.2. METHOD CHAPTER 1. INTRODUCTION

any level of quality. A foundation for human usability of experiential
systems is given in 2.2.5.

A video’s popularity with the users changes throughout its lifetime.
Consequently the content stored in the proxy cache should change accord-
ingly. More about this in [17].

1.2 Method

Building on the framework provided by chapters 2 and 3 we analyse
how MPEG-4 descriptors can be used to consistently cache interactive
multimedia. The analysis is presented in chapter 4. Chapter 5 presents a
design. To test our design we present a partial implementation in chapter 6
and discuss the results in chapter 7. In the empirical method, test data is
compared with empirical data. We don’t have any empirical data, since no
comparable implementation exists in real world deployment. This is why
the final part, where the test data is compared with empirical data, is left
for future work.

14

Chapter 2

Related Work

Presenting the related work needed for the analysis and subsequent design.
Particular emphasis should be placed on sections 2.1.7, 2.3.3 and 2.3.5.

2.1 Caching

[63] define caching or replication as the storage of content on other servers
than the source server. Caching is when the algorithms run on the extra
servers. In replication, the process is controlled from the source server.

2.1.1 Proxy Cache Servers

A proxy server is an extra server between a source server and an end
user, [51]. The word extra refers to that the proxy is not needed just for
transport. [39] expand upon existing web caching proxies to that of caching
videos, they present initial and selective caching. [53] presents a quality
adaptive approach, which reduces file sizes by reducing quality. [33] uses
layered encoding to adapt to heterogeneous Internet access. [44] explore the
convergence of caching and streaming with an RTSP based proxy. [57] uses
quality adjustments considering user demands and available bandwidth.
[70] address optimal allocation of the proxy prefix cache to save bandwidth,
also considering transmission scheme. [16] uses prefix caching and periodic
broadcast of the remaining suffix. [11] caches thumbnails to positions in a
video for interactive access. [5] has designed and implemented a streaming
media proxy cache for the Internet. [3] considers byte hit ratio and the
granularity of replaced objects. [2] describes a collection of cooperating
proxy servers in a local area network. [59] uses MPEG-4 to adapt the
content in the proxy server, it also defines the time and quality domains
of partial caching that this thesis expands upon. [34] proposes a time-
sensitive adaptive approach to reconcile the best effort service model of
the Internet with the timeliness demands of streaming video. [21] proposes

15

2.1. CACHING CHAPTER 2. RELATED WORK

extensions to RTSP to aid in prefix caching. [78] presents a technique of
retransmitting missing segments, called fair share claiming. [54] presents
a fine grained replacement algorithm for layered media, and describe a
pre-fetching scheme to smooth out variations. [74] present and evaluate
dividing the videos into variably sized segments, the initial segments are
given preferential treatment.

In this thesis a proxy will always be a proxy caching server, illustration
in figure 2.1. An end user requests content from the proxy, rather than from
the source server. If the proxy can’t serve the request, it is called a cache
miss. Cache misses are either served from the source server, or the proxy
can retrieve the content on behalf of the end user. For a proxy to update its
cache, retrieval of missing content must happen at some point.

Figure 2.1: Proxy Caching Server

2.1.2 Proxies in Content Distribution Networks

Content Distribution Networks (CDN) are described in more detail in 2.2.3.
A CDN can have servers that distribute the content purely as means of
transport. But when these servers also may store content for reuse, they
become proxies or replication servers. The discussion in the sections that
follow assumes that we have a CDN with at least one proxy.

2.1.3 Architectures

By architecture we refer to the amount of proxies used in the network, and
their inter communication. [71] describes the ideal caching scheme for web
content, and pointed out inadaquacies in proposed systems. Since this
thesis considers streaming of pre-fabricated stored content, the problem

16

CHAPTER 2. RELATED WORK 2.1. CACHING

of stale data is not central, [59]. The main types of architectures are
summarized below:

Autonomous

In an autonomous caching scheme the proxy considers only its own data,
see figure 2.2. There might be only one proxy, or there might be several
that just don’t communicate. This scheme is simple and easy to deploy. A
disadvantage is that a single proxy means a single point of failure. If the
proxy has more requests than it can serve, it will be a bottleneck, especially
if all requests have to pass through it. [18, 56, 71].

Figure 2.2: Autonomous

Hierarchical

A hierarchical system uses a treelike network of proxies, see figure 2.3.
The proxies may have different tasks depending on their position in the
hierarchy. A hierarchical system is more bandwidth efficient . There are
no single points of failure. Proxies might use algorithms that take the
other proxies into consideration. Such a system is more difficult to deploy.
Proxies must use resources to relate to each other. Proxies near the source
servers may become bottlenecks. Each level of proxies between the users
and source servers might introduce delays. [18, 56, 71].

Cooperative

Cooperative caching schemes seek to increase the global hit ratio. This
is done by sharing the cache. In a flat distributed caching scheme, there

17

2.1. CACHING CHAPTER 2. RELATED WORK

Figure 2.3: Hierarchical

is only one level of proxies, and they all serve each others’ misses, see
figure 2.4. In a hybrid scheme there might be more levels, see figure 2.5.
Proxies keep meta information about the content stored in proxies in the
same level. If a level does not hold the document, the request is issued
up into the next level, or to the source server. Such systems are more fault
tolerant, and have better load sharing. Still higher bandwidth usage might
occur. Content may be retrieved from a slow peer proxy which will increase
delay. If the system crosses administrative domains in the Internet, this can
introduce new problems. [18, 56, 71].

Figure 2.4: Flat cooperative

18

CHAPTER 2. RELATED WORK 2.1. CACHING

Figure 2.5: Hybrid cooperative

Relevance for thesis

In this thesis we will choose the autonomous caching scheme. It is sufficient
for the purpose of illustrating communication between a group of users
and source servers, with an intermittent proxy. The added complexity of
hierarchical or cooperative schemes, though interesting is not within the
scope of the thesis. The proposed caching system in chapter 5 cache objects,
in the same way as any other cache. It should be possible to extend the
system into hierarchical or cooperative schemes in some way, though this
is left for future work.

2.1.4 Replacement Strategies

In addition to the caching algorithms itself, which are outlined below,
there are a few other strategies that can be used in a cache. Reversely
administrators might want to focus on cache hit ratio to boost the
performance of all requests, then it is often better to cache smaller objects. If
a high byte hit ratio is wanted, partial caching can be employed, discussed
further in 2.1.7. If the service is tailored to a specific group of users, it is also
possible to only cache a specific type of content. Another technique that
might be useful if the system has a period of time with significantly lower
traffic, is prefetching, or replication. In prefetching the proxies ask source
servers for interesting content, according to some policy. In replication, the
source servers push specific content onto the proxies, [49, 51, 71].

19

2.1. CACHING CHAPTER 2. RELATED WORK

Relevance for thesis

The design and implementation will have a specific strategy that are
tailored to emphasize the test of consistent caching and the minimum
amount of knowledge needed. This thesis will not have analyse all such
strategies in detail. We will make a suggestion for a new strategy in future
work 7.2.

2.1.5 Caching Algorithms

The content of the cache should be the most requested objects, this will
increase the likelihood of reuse. In order to keep the most popular objects
in cache, several types of algorithms have been developed. Some of these
purely statistical algorithms are outlined below:

Least Recently Used

The reference algorithm for research in caching efficiency is the Least
Recently Used (LRU) algorithm, [49, 51, 71]. It displaces the objects that
have the oldest access time. The access times are updated when the objects
are accessed. Only one access time is stored for every object. It is very
simple, and for many purposes is efficient enough.

Least Frequently Used

The second most common algorithm is the Least Frequently Used (LFU),
which displaces the object with the fewest accesses, [49, 51, 71]. A problem
with LFU is that objects hold on to their popularity indefinitely. This means
that objects that no users request any more might still be in the cache,
because their hit rating is higher than the younger objects. This can be
circumvented by limiting the hit rating to a set time frame, or by slowly
aging the value.

Key Property Algorithms

Many algorithms employ a test for additional properties, such as size,
content type, position in the source material, relation to other objects,
etc, [49, 51, 71]. Key property algorithm displace candidates according to
a specific property such as size or latency. They are often refined versions
of LRU or LFU. And often has primary, secondary and tertiary keys to solve
ties.

20

CHAPTER 2. RELATED WORK 2.1. CACHING

Function Algorithms

Function Based algorithms take more variables into acount, [49, 51, 71].
Common for all these algorithms is increased use of CPUs, whilst it is
not guaranteed to increase performance of the cache. The algorithm must
be designed to complement the business decisions made by the owner
or administrators of the network. No known algorithm is perfect for all
situations.

Relevance for thesis

We will use both LRU and LFU in the sets of test runs on our implemen-
tation. The implemenatation is presented in chapter 6 and the results are
in the same chapter. Discussion about future work and the design of a key
property or cost based algorithm is in chapter 7. Statistical algorithms are
sufficient for the purpose of demonstrating successfull cache replacements.
This thesis is more interested in what is needed of meta information about
the cache candidates than optimizing algorithms.

2.1.6 Binary Caching

In binary caching policies complete movies or objects are kept in the
cache, figure 2.6 displays the replacement of a film in the cache, [49, 59].
The algorithms will then replace the movie in its entirety if selected.
Usually implementations use some form of partial caching, and stream the
remaining part from the server. Films are simply to big to cache, they can
be replicated though , but that is a different technique, and controlled from
the source server.

Displaced Added

Film 5

Film 4

Film 3

Film 1

Film 9

Film 6

Film 7

Film 8

Film 2

Figure 2.6: Binary caching

21

2.1. CACHING CHAPTER 2. RELATED WORK

Relevance for thesis

This thesis will not use binary caching, since it may be impractical to cache
complete movies with redundant narrative information, more on this in 2.3
and chapter 4. If it is expected that the users will always use all the available
information, binary caching is of course advantageous. If this is the case,
then only a very small set of movies may be cached. The worst case scenario
for partial caching should mimic that of binary caching. The proposed
system does this as explained in chapter 5.

2.1.7 Partial Caching

Partial caching can be especially useful if the content consists of large
objects that doesn’t change to much over time. This is true for streaming
video in a CDN that delivers stored content. Streaming video from
teleconferences or webcams are not suited for caching, since there is no
reuse of the streams. In News on Demand 2.2.3 the popularity of the
objects might change quicker than in Video on Demand 2.2.3 or Learning
on Demand 2.2.3. Additionally users often start a playback and then stop
the transmission before the video is finished. If the initial segment of a
presentation is available with low start up time, the following segments
can be prefetched, patched or batched later. The following illustrates the
two different ways of scaling a cache object for partial caching.

Film 1 Base Layer

Film 1 Layer 2

Film 1 Layer 3

Film 2 Base Layer

Film 2 Layer 2

Film 3 Base Layer

Film 4 Base Layer

Figure 2.7: Quality domain caching

Quality Domain Caching

Quality domain caching needs content that is either encoded in layers or
split into several interdependent objectsa, as in figure 2.7. MPEG-4 is
an example of this, see chapter 3. Rescaling content within the proxy is
very CPU intensive if the content is not prepared for scaling. Popular
content should be kept in the cache with a higher level of quality than
less popular content. Additionally the quality of content often dictate the

22

CHAPTER 2. RELATED WORK 2.1. CACHING

size of the bandwidth and playback resources needed by the end users’
terminals. Quality caching can be used as a portal for terminals with
limited capabilities, [59]. Quality caching is explored in [33, 44, 53, 57].

Time Domain Caching

Reducing the files in size by cutting of the timeline of the multmedia
content is effective to increase the number of files that can be stored. Even
if the end users are intent on watching whole movies, some quit after a
little while. The opening parts of the movie can be served to the clients in a
speedily fashion, which may be enough on its own. Other techniques can
be used to catch up with the streaming. Such as Batching, Prefix caching,
Chen & Tobagi Solutions. Time domain caching has been investigated by:
[2, 3, 5, 11, 16, 39, 70, 74, 77] described earlier. [60] uses proxy prefix caching.
Figure 2.8 shows a scheme that has a floating size prefix according to the
popularity of the film. Figure 2.9 shows the film partioned into several
segments, and a popular film is cached with more segments than a less
popular.

Prefix of Film Suffix of Film

Prefix of Film Suffix of Film

Suffix of Film

Prefix of Film Suffix of Film

Prefix of Film

Figure 2.8: Time domain caching I

Prefix Segment 2 Segment 3

Prefix

Prefix Segment 2

Prefix Segment 2 Segment 3

Figure 2.9: Time domain caching II

Relevance for thesis

This thesis builds on partial caching and proposes a third domain, the
interactivity extent domain, more on this in 4.2.3.

23

2.2. MULTIMEDIA AND INTERNET CHAPTER 2. RELATED WORK

QBIX in details

The work presented in [59] is similar to the work presented in this thesis,
caching of stored content encoded in MPEG-4. In [59] however they limit
the adaptive replacement policy to partial caching in the quality domain.
They mention partial caching in the time domain, but write that off, as
less central to their work. Partial caching in the extent domain were not
mentioned at all, which is what we will propose in chapter 5.

The intention was that the proxy in [59] could be used simultaneously
as a proxy cache server and as an adaptive portal for terminals with limited
playback capabilities and network resources. They talk about doing this in
one of two ways; either with partial caching of alternative layers for each
media object, or with system level adaptation. They did not implement
system level adaptation in [59]. The extent caching we propose will
need elements from MPEG-4 systems, in order to recognize the caching
candidates.

2.1.8 Transmission Policies

The transmissions between server and proxy, and between proxy and users
are called transmission policies. Though not central to this thesis, they are
important in that several efficient ways to keep the bandwidth usage low
can be achieved. Such as periodic broadcast, [16].

2.1.9 Admission Policies

Whether to cache the object on the first appearance or to wait until
subsequent requests are made, can aid in bringing the steady state quicker.

2.1.10 Concurrent Thrashing

If concurrent users request content that is to great to fit in the steady
part of the cache, the content can loose its position in the cache before
the users’ playback has finished. This is called thrashing, and should of
course be avoided. Obejcts that are currently being played, should be given
preferential treatment.

2.2 Multimedia and Internet

The term multimedia means multiple types of content bundled together to
make one whole presentation. The usual minimum being one video stream
and one audio stream. Additionally the term media can refer to text or
images. Recent years have seen an explosive growth in both media and

24

CHAPTER 2. RELATED WORK 2.2. MULTIMEDIA AND INTERNET

multimedia on the Internet. The following subsections defines the needed
background theory.

2.2.1 Quality of Service

This definition of Quality of Service (QoS) is paraphrased from [9]: Once
users are provided with the functionality that they require of a service,
we can go on to talk about the quality of the service provided. The
main non functional properties of systems that affect the quality of the
service experienced by the clients and users are reliability, security and
performance. Adaptability to changing system configurations and resource
availability has recently been recognized as a further important aspect of
service quality.

The abbreviation QoS has effectively been used to refer to the ability
of systems to meet the deadlines of time critical data, such as multimedia
streams. The packet loss ratio can affect the quality of the stream as frames
are interdependent in for instance MPEG-2. QoS is a requirement for the
system to provide guaranteed computing and networking resources at the
appropriate times, and in a sufficient amount to complete each task in time.

Each critical resource must be reserved by resource managers along the
way. If the required reservation cannot be met it is rejected. The Internet
today does usually not provide QoS explicitly.

For multimedia streams the permissable limits of jitter, throughput,
delay and errors are the major elements in the QoS.

In this field the term QoS simply refers to how many packets the system
can deliver to the end user in time for playback of the content. Without
compromising the quality of the playback to much, with regards to motion,
color, sound, skipping frames and other effects the user perceive. Effects
are jitter, start up delay, frame loss, loss of image or sound quality due to
scalable transmisson, lagging or complete loss of service.

Relevance for thesis

This thesis contributes indirectly to the QoS of multimedia delivery over
Internet. We introduce a system that also enables the caching of interactive
content, in chapter 5. This system should decrease latency and thereby
improve the QoS. However, the details of QoS are not a central topic in this
thesis. The work in this thesis builds upon the field of caching, 2.1, the
relation to QoS is well defined in that field already.

2.2.2 Streaming Multimedia

Research about streaming is vast and is investigated in these articles
[18, 20, 28, 34, 46, 54, 59] all described previously. [26, 52] describe RTP and

25

2.2. MULTIMEDIA AND INTERNET CHAPTER 2. RELATED WORK

RTSP which are protocols for streaming over the Internet. Video or audio
are the types of media that are prepared for streaming. Still images and
text are easily downloaded. However, in a presentation using multiple
still images and changing text, it could be possible to create a streaming
presentation of such content as well. The MPEG-4 Systems has support
for this, refer chapter 3. In streaming timeliness, bandwidth usage and
the quality of the user experience are key issues. The usual scenario is a
source server with content prepared for streaming. A set of users that have
links to the streaming content, via for instance RTP/RTSP, [26, 52]. The
end users then either request the content actively from the source server, or
alternatively tap into a predetermined broadcast of the content. This can be
done using unicast, multicast or broadcast routing algorithms, [46].

Relevance for thesis

The various factors involved in streaming multimedia over the Internet is
not a central topic in this thesis. Rather the thesis contributes to this topic
indirectly by proposing a new type of partial caching, see chapter 5, as
mentioned above.

Multimedia Server

The source server that provides the multimedia content has a set of
parameters that is slightly different from other web servers. Multimedia
files are usually very large and don’t change as often as other web content.
End users perusing classical types of web content, such as html webpages
with a few images, download relatively small files, and then spend a
little time watching the content. Multimedia is data heavy per second of
playback. The multimedia servers need to access the very large multimedia
files almost continuously to serve the end users. The way a multimedia
server accesses disks and memory becomes an important issue, [22].

Relevance for thesis

The multimedia servers may be improved greatly, but this is nontrivial and
lies beyond the scope of this thesis. Still, the proxy is itself a multimedia
server, and this topic is relevant for future work.

2.2.3 Content Distribution Networks

Theoretical presentations about CDNs are available in [2, 17, 54]. [56]
provide an analysis of Internet content delivery systems. [18] presents an
overview of work done to support large scale VoD systems. [59], puts the
proxy in an end-to-end adaptive video delivery system. ISMA, [28], work

26

CHAPTER 2. RELATED WORK 2.2. MULTIMEDIA AND INTERNET

with the adoption and deployment of open standards for streaming rich
media content over Internet protocols. RFC3016, [20], is the RTP Payload
Format for MPEG-4 Audio/Visual Streams, and needed for streaming.
iTunes, [31], is a well known service that distributes media, though not
using streaming. RN, [42], is another service that distribute media, but
using streaming. The field of multimedia streaming on the Internet is
invariably one of content distribution as well. Content distribution may
mean many things in addition to our subset called streaming. This
section tries to put the subject into a greater context. Distribution of
multimedia may be done in several ways. The traditional way has been
to print removable media, such as diskettes and CDs. With the onset
of Internets popularity delivery of multimedia through alternative means
have increased. The various such networks are denoted as Content
Distribution Networks [18]. A brief discourse of these follow.

Video on Demand

Video on Demand (VoD) systems are still under development, since many
of their intrinsic properties have yet to be implemented in a suitably
efficient manner, [18]. The large filesizes of the videos and the limited
bandwidth in the delivery networks are the main problems. This has
led to limited versions of VoD such as Near VoD to be developed. And
also systems with a limited amount of different videos, which greatly
improves the benefit of caching. At present very few of these systems run
commercially on anything else than a classic TV broadcast network. True
VoD, defined as delivering any video to any subscribing customer at any
time without limiting quality has not been implemented yet. But recently
limited services have emerged, such as NextGenTel, [75].

News on Demand

News on demand (NoD) is similar to VoD that the objects are multimedia
clips that are streamed to the end users terminals upon request, [41].
However, the clips are smaller and subject to change in a much shorter time
span. This will have an effect on caching efficency and caching policies.

Learning on Demand

Learning on demand (LoD) is also similar to VoD, but the multimedia
objects might be more numerous and smaller than for a VoD session, [36].
LoD is the field of these that have the most to gain from the results of this
thesis, since interactivity may be on an internal level. That is, users might
change the content they want to request several times for each presentation,
and not just complete presentations, as in VoD or NoD.

27

2.2. MULTIMEDIA AND INTERNET CHAPTER 2. RELATED WORK

Relevance for thesis

This thesis will not make specific contributions to the fields of NoD or LoD
directly. Though they are likely to benefit from the work done to enhance
caching of interactive multimedia scenes in VoD systems.

2.2.4 Services

In addition to streaming video, some other types of services could benefit
from caching. If these services use media streaming or multimedia delivery
in a similar manner, and are likely to be improved with interactive
capabilities, then they can benefit from the work presented in this thesis.
Interactivity is defined in 2.3.2. Also, these are provided here as a broader
background:

Digital TV

News broadcasts and entertainment shows now exhibit multiple features
that would prove impossible without computer assistance. However the
viewer remains passive except in a few TV shows that utilize the SMS
service of mobile phones. Additionally the TV broadcast networks are
not compressed with as great a ratio as digital content. For these reasons
many commercial companies are presently in the process of migrating their
service to digital platforms [45]. Naturally customers will have to buy new
TV sets, but in a transition period over ten years or so, this will not be a
problem. With TV going digital new types of services are likely to emerge,
many which will be simply copied from the Internet of today, such as chat
or bulletin news boards [38, 72].

Digital Radio

Digital radio is standardised as DAB [73] and is presently implemented in
Norway by NRK [43]. The same arguments as for TV apply, albeit the lack
of image naturally limits the number of services that may be copied of the
Internet. When DAB was released one of its capabilities presented was that
if a customer heard a music song on the radio, the customer could buy
that song at the press of a button, and receive the CD in the mail, normal
mail that is. This service is obviously extensible to one akin to Apple’s
iTunes, the technical capability is here, only problems concerning content
copyrights and piracy are holding back.

Handheld Devices

Many of the new interactive services in popular media are driven by the
SMS capabilities of the mobile phones. With new and more powerful

28

CHAPTER 2. RELATED WORK 2.2. MULTIMEDIA AND INTERNET

handsets these services are also likely to mimic those already on the
Internet, and may, combined with digital TV prove to be more attractive
and easier to use for non computer professionals than the Internet. At
present there is a delineation between Personal Digital Assistant (PDA) and
mobile phone, although they are rapidly converging. The proliferation of
other small digital equipment, known as wearables will also contribute to
new and complex services. Although many of these devices have limited
multimedia capabilities, they are rapidly gaining them, and additionally
may increase the potential of consumer interaction with services on the
web or TV.

Single State Games

Games with a single state for every user is not much different from the
browsing done in a normal website or navigation in an interactive movie,
caching might increase efficiency. The player in a single state game has
no other players or nodes to be influenced by. For this reason subsequent
players playing the same game might choose the same path through the
game experience, at the very least choose to visit the same popular places
that is central to the narrative of the game. In fact playing a single state
game is not much different from navigating through a LoD or other type
of application, such as NoD or BV, that releases information at the users
interactive request. These various types includes help functions, school
programs, interactive documentaries and such.

Shared State Games

In shared state games the players at various end nodes all share an
experience in the same virtual world, the information regarding one player
may and often do directly impact the other players experience. For this
reason there is no way such precise information might ever be needed again
in a cache scheme, at least not quickly enough to warrant having a caching
scheme at all considering the overhead that caching introduces.

If several players share the game at any given time, it is necessary for
them to also share the state of the game. This means that graphics and
sound will be influenced by what the others do, and advanced graphics
engines are needed to render the result. In effect each situation is unique,
and that leaves us with nothing to cache for later reuse. Except possibly
generic primitives that define how the rendering should be done, such as
openGL [4] and vrml [30].

Since the protype information for rendering complex objects might
be the same, even if the end result after rendering is unique. It may
be beneficial to cache such prototypes, but this will need a sophisticated
algorithm. See chapter 7 for more on this topic.

29

2.3. INTERACTIVE MULTIMEDIA CHAPTER 2. RELATED WORK

Relevance for thesis

Games are not a central topic as such, it is the interactive nature of them
that lends itself well to illustrate the functionality needed for a proxy cache
of interactive multimedia content. Still the design and implementation will
use the example of an interactive feature film. A single state game however
might not be much different from such a feature film. And the same logic
should apply.

2.2.5 User’s Perception

The end user is a human and will judge the presentation by its aesthetics.
This is a highly non cumputational notion and before we proceed it is
helpful to have a foundation for human usability of an experiential system,
[10, 14].

Relevance for thesis

The thesis will assume that the users behave in a certain way to get the
results needed. We assume that long tailed Zipf distribution is a valid
representation of users’ request, [17] explains that this may not always be
the case. And we assume that the quality compressed content, the QoS and
all such considerations that may affect the users perception of the presented
content would not affect the results in adverse ways. This is of course far
from the real world. Still we believe that it is interesting to test the strategy
in a test program rather than planning to implement it in full scale.

2.3 Interactive Multimedia

A number of proprietary formats exists, but all of these require a plugin in
the HTML browser and are limiting in other ways as well. A seamless mix
of application interfaces, HTML and multimedia in an open and efficient
standard is yet to be implemented. MPEG-4 might offer a solution, but
again, only if all presently used HTML browsers have a full ISO / IEC 14496
standard implementation plugin. MPEG-4 is presented in full in chapter 3.

The display of pictures and text in a formatted way are successfully
defined in HTML. However, authors of most websites wish to utilize more
powerful graphics or multimedia such as; HyTime, [29] which is a language
to describe time based insertion of media in hypermedia documents.
SMIL, [69],integrates independent multimedia objects into synchronized
presentations. SVG, [68] is a language to describe graphics in XML,
[65]. Flash, [12] is a language that builds complete interactive graphical
presentations. Javascript, [27] bring the flexibility of a programming
language to the web page.

30

CHAPTER 2. RELATED WORK 2.3. INTERACTIVE MULTIMEDIA

Standards and Plugins

The full standard plugin that the above section warrants has not been made
yet. The closest is the Envivo plugin, which unfortunately only works
with Quicktime, Windows Media Player (WMP) [40] and Real Networks,
which are far from being HTML browsers. This means that a consumer
would get the content in a small player window outside the website, which
is not the perfect case. The Quicktime and WMP plugins may start a
small frame embedded within the browser, however their use is still not
as flexible as that of embedding images into webpages. Moreover the two
way communication that the interactive services needs are not supported
properly by the streaming plugins. Albeit many players claim to be able
to play MPEG-4 compliant videos, only a few applications recognize the
Binary Format for Scenes (BIFS) and Object Description (OD) frameworks,
more on these in chapter 3. Additionally the players that do recognize BIFS
and OD doesn’t necessarily interoperate. The ISMA [28] group works to
enable interoperability with regard to the streaming of MPEG-4, and has
released the RFC 3016 [20], which specify a one to one mapping of MPEG-4
compliant video and audio to RTP packets without the use of ISO / IEC
14496-1 Systems. Work with streaming MPEG-4 over IP is presently being
conducted by MPEG itself.

Relevance for thesis

Interactive multimedia must be represented in some media content format,
and we believe that the logic that applies to MPEG-4 like content in this
thesis should apply in the same manner to content in other formats. The
thesis will not consider other such formats and their similarity or any other
characteristics further.

2.3.1 Narrative

We start with [6] to define narrative, of more recent issue the work of
[10] provides us with a foundation. In short, the narration is linear in
presentation, though the events portrayed may not be presented in the
same order as they occurred within the world of the narrative, illustration
in figure 2.10. This separation of storyline and plotline is a tool that authors
use for dramatic effect. The symbols of a language may be put together
according to a set of rules to provide new content. Like the letters in
an alphabet. The scenes in a narration can be viewed as such primitives
or symbols, put together by the author to provide a drama. In [15] this
principle is used. A user might choose to peruse the narrative in a nonlinear
way, in a book it is easy to skip chapters, or jump back to reread a previous
section. More on nonlinear reading of narrative in 2.3.2.

31

2.3. INTERACTIVE MULTIMEDIA CHAPTER 2. RELATED WORK

Event 1 Event 2 Event 3 Event 4

Timeline within the narrative world

Timeline as presented in the narration

Event 3 Event 1 Event 4Event 4

Figure 2.10: Events in narrative

Narrative in Artificial Intelligence

In the field of Artificial Intelligence the word narrative has a slightly
different interpretation, [47, 76]. From [47]: Narratives is a possibly
incomplete specification of actions or events that are known to occur at
specific time points. In this field they talk about narratives in the context
of a situation calculus, that is beyond the scope of this thesis. Still the
branching structure of the emergent possibilities have a semblance to the
structures that arise in interactive multimedia, as the following sections
will discuss. Advanced computer games have benefited from research
done in this field, and it is fully possible that the other fields listed in 2.3.6
can benefit from this as well.

Relevance for thesis

The work presented in situation calculus and other forms of emergent
storytelling will not influence this thesis much. Rather we focus on
premade stored content that can be reused as building blocks in some
presentation. The inherent logic between the building blocks are not
considered at all. Beyond of course the simple logic of containment in the
interior of an aggregated object.

2.3.2 Interactivity

The term interactivity needs a specific definition in this context, and one
is presented in [32]. Though Manovich say it is a tautology to talk about
interactivity with media, since a user can always inter act with any media
[35]. In the context of streaming media over the Internet, the user has a
set of choices that are distinctly defined by the application. A radio or TV

32

CHAPTER 2. RELATED WORK 2.3. INTERACTIVE MULTIMEDIA

broadcast for instance can only be swithced off, which in turn will lead to
lowered ratings for the network and then the content change some time in
the future, [32]. It is the speed, frequency and granularity of the interaction
that is interesting. The figure 2.11 shows how content is constructed by
symbols acording to rules given both implicitly by the media itself and by
the author and selection of the user, [1, 35].

Author / User

Content

Symbol Media

Figure 2.11: Narrative Content

Low Level of Interactivity

When a user stops, restarts or otherwise repositions the playback point of
a presentation [37], we will call this low level interactivity. The figure 2.12
shows shifting of playback point.

Play

Stop Seek (Fast Forward)

Play

Figure 2.12: Low level of interactivity

Medium Level of Interactivity

Taking user interaction one step further, hypermedia allows a user to follow
predefined links in the content that exchange the currently presented
scene, figure 2.13 show this for a document of small film cuts. This is
implemented very successfully in the Internet itself, with hypertext, in
narrative hypertext [14] and in hypervideo [58]. Figure 2.14 shows how

33

2.3. INTERACTIVE MULTIMEDIA CHAPTER 2. RELATED WORK

medium level interactivity works for news on demand, each film cut would
be a single news piece.

The common denominator for these medium level interactivity schemes,
is that a set of prefabricated media objects, are put together into a dramatic
presentation following both the rules of an author and the choices of the
user. This is further investigated in [7, 8, 14, 48, 62, 64, 76].

Links
Film Cut

Film Cut

Film Cut

Film Cut

Timeline of playback

Figure 2.13: Hypermedia

Selection
SceneIntro

Small Film Cuts

Figure 2.14: News on Demand

Advanced Level of Interactivity

Though some of the aforementioned articles use concepts from the AI
research field to implement the syntactic rules of the symbols, and brings
the content into the high level of interactivity definition. In this group we
also find advanced systems that continously generate content from minute
primitives such as vrml [30] and openGL [4] into multiuser games and
flight simulators, etc.

34

CHAPTER 2. RELATED WORK 2.3. INTERACTIVE MULTIMEDIA

Relevance for thesis

The thesis will consider medium level interactivity as the most interesting.
Low level interactivity merely time shifts the play back point of available
objects. It is the possiblity of the cache not having the correct object for
transmission to end users at all that has the adverse effect on the cache’s
efficiency. Advanced level of interactivity is left as a work item for the AI
field.

2.3.3 Branching Video

In which we define Branching Video as a compromise between the
classical author centric narrative and the free form user centric interactive
environment. A classical narrative [6] is predefined in its structure and
presentation, the user is assumed to peruse the content in a front to end
manner. In as much as the user breaks with the predefined serial way
of reading or viewing the content, we say that the user interacts with the
content to redefine it in the users own mind. Lev Manovich describes this
in [35], in the principle of variability, where users can vary the available
content in their own way, and for complex content, trace a new version
every time. The available techniques for redefining the content defines the
type of interactivity possible.

The hypervideo concept introduced in the previous section is based on a
markup language scheme similar to html [66] called sgml [67]. Hypervideo
is further described in:

[58] defines some common patterns in hypermedia. Hytime, [29], is a
time based structuring language for hypermedia. The video sequences are
objects within a context similar to that of a web browser, and playback is
left to a plugin in the web browser.

Intro

Beginning Chapter Middle Chapter Ending Chapter

Outro

Figure 2.15: Branching Video

In the Branching Video scheme, we limit this to be similar to a video
playback in a user terminal, with text and vrml capabilities as needed,
suitably rendered as per the requirements in MPEG-4 Systems. An example
structure is given in figure 2.15. Furthermore the primitives needed for
rendering the audio visual content are provided by MPEG-4 Systems
conformant Descriptors delivered inside Elementary Streams. The entire

35

2.3. INTERACTIVE MULTIMEDIA CHAPTER 2. RELATED WORK

presentation is within one application.
In a Branching Video, a video has a set of chapters that devides the

timeline of the video, for every such chapter, a set of alternative Branches
are available, each providing a different narrative. A scene where the user
is presented with the choice of which content to play is called a Branching
Point (BP). A scene where two alternative paths come together is called a
Merging Point (MP). Finally, the segment of content in between these two
points, is called a Branch. A film may be divided into smaller segments
along its length and also along its width, where the width is taken to be the
amount of Branches available at any given Branching Point.

The hypervideo in [58] had three different types of links, a spatial, a
temporal and a textual. These links correspond to BP, and MP. Normally
the BP and MP are temporal, according to the scenes presented so far in the
narrative. But it is fully possible to keep a link available for a length of time
whilst other content play back, whether that link is presented as dependent
upon camera positioning, as in [58] or on text or graphics constituting a
type of button is immaterial. The terminal issues a request to retrieve the
content needed for playback if it is not already in local cache, and the object
that is the target of the link is a Branch just as if it was a target of a temporal
link.

Interactive Cinema

Interactive Cinema can be made with pre-programmed paths that a user
follows and interacts with, or by a more recent approach generated in
tandem between the user and the content application. Advanced content
generators such as [13] are not central to this thesis. The well established
method from the 70’s and onward of fixing a set of media chunks in a
structured graph that can be navigated by the user, called branched video
suffices for this thesis [15].

Standard Efforts

[38] describes how the Blendo language developed by Sony can be used to
create interactive television. [38] state that audiences used to high quality
TV will demand the same of interactive TV, which is why the aesthetic
of the content presented to the user is central. The term steerable media
denotes continuous interactivity. The work is similar to the MPEG-4 [55],
BroadcastCL [50] and X3D [19] standard efforts.

Two other interactive content systems are WebTV [72] and Flash [12]
both in use today, both have less flexibility with joining content from
various sources than the standards efforts mentioned .

36

CHAPTER 2. RELATED WORK 2.3. INTERACTIVE MULTIMEDIA

Relevance for thesis

Branching video is very relevant for this thesis, it is this structure that will
be considered in the analysis, design and implementation. However, we
will use a rather limiting version of it, similar to the one presented in figure
2.15.

2.3.4 Navigation and Patterns

The user will navigate through the landscape provided by the audio visual
primitives and their syntactic rules and map a path through the narrative.
Though this might seem rather fleeting it is fully possible to analyse such
paths a little. It is not a central topic in this thesis, rather we rely on the
work done in [37, 61]. In the Branching Video examples we assume that
the narrative is such that a video has a beginning and an end, when a user
has navigated a path through the video, that video is finished as far as that
single user is conserned. In learning applications [48] though a user might
trace a path that eventually touches every branch. Still for large learning
applications it is probable that there are many more branches than any
single user will need to trace a complete path through the presentation.
Figure 2.16 shows a branching video with fixed timeline, the user select
different branches for every chapter, but no jumping back and forth in the
timeline is permitted. Figure 2.17 shows a set of media content that has no
internal structure, and the user can peruse them in any sequence, and it is
not given that all clips will be accessed. The accordion pattern in figure 2.18
is a blend of steering the user in a single direction and allowing freeform
style navigation.

Relevance for thesis

The exact patterns used by users to navigate through the interactive
multimedia content is less important for the work in this thesis. Rather we
assume that the patterns that the author has made available are sufficent
for the presentation and that the users follow these.

Figure 2.16: Fixed timeline

2.3.5 Caching Interactive Content

Caching interactive content is not trivial. For instance if a presentation is
given as Tutorial.mp4 and is a very large file, a user will start playback of

37

2.3. INTERACTIVE MULTIMEDIA CHAPTER 2. RELATED WORK

Figure 2.17: Freeform timeline

Figure 2.18: Accordion pattern

the beginning of the presentation and requests a set of branches that trace a
path. If this presentation is then stored in a cache using the filename as an
identifier, the next user will receive the exact same content as the first user,
and any user terminal to server terminal communication will either fail or
result in the content bypassing the proxy cache. The figure 2.19 shows the
caching of a branched video with three branches cached, tracing a path
from beginning to end. If content is stored unframed as pure media in the
proxy, then the same path through the story as the first user traced out will
be available. If the content is stored framed in a streaming protocol or as
referenced content in a system of object descriptors such as MPEG-4, the
missing content will not be available for playback in the user’s terminal.
In order to cache interactive content consistently, it is necessary to utilize
object recognition of the same size and type as the primitives used to create
the interactive content.

Relevance for thesis

This is the core point of this thesis. We hope to show that the proposed
strategy will allow this to be possible and consistent. More on this in
chapters 4,5 and 6.

38

CHAPTER 2. RELATED WORK 2.3. INTERACTIVE MULTIMEDIA

Intro

Beginning Chapter Middle Chapter Ending Chapter

Outro

Branch 1

Branch 5

Branch 7

BP

BP MP BP

MP

MP

Figure 2.19: Caching a path

2.3.6 Applications of Branching Video

The following is a nonexhaustive list of different fields that could benefit
from Branching Video.

• Feature movies

• Sets of short movies

• Sports shows

• News on Demand

• Company presentations

• Learning applications

• Webshops that display the items for sale

• Single state games

• Public Services eg., Health or Municipal

All these have in common that a fully functioning product can be
presented by using just prefabricated audio visual objects. For more
advanced simulators and AI assisted content generators to take advantage
of this approach, prototypes shared by more than one user must be
frequently reused without changing states.

Relevance for thesis

The thesis will not analyse this further. This section merely shows various
fields that could benefit from the work presented in this thesis.

39

2.3. INTERACTIVE MULTIMEDIA CHAPTER 2. RELATED WORK

40

Chapter 3

MPEG-4

This chapter is an overview of the ISO 14496, also known as MPEG-4, with
an emphasis on what is relevant for this thesis. Functions and detailed
information that does not have a bearing on the thesis will only partially be
presented here.

3.1 Overview

In this section we present the MPEG-4 standard as a short overview.
The MPEG-4 format provides standards for:

• A representation of media objects, either still images, video or
audio, natural or synthetic, as well as animated graphics and scene
descriptions.

• Composition of these objects into compound media objects form an
audiovisual scene.

• The end user can interact with the scene through ways specified by
the author of the source file.

• Elementary streams may be interleaved to ease transportation

• A new multimedia data interchange and storage file format, mp4.

The standard also codes other objects as text and graphics, talking
synthetic heads, and synthetic sound.

A media object consists of elements that describe the objects within the
scene, and any associated streaming data. Media objects are independent
of surroundings and background, although logically they might not fit in
anywhere else. For instance, cutting out a human from the background
will look quite poor, since the outline of the object should blend in with
the other objects. The lighting, colour and shadows would not be right

41

3.1. OVERVIEW CHAPTER 3. MPEG-4

even if the perimeter of the object were cut out correctly. The figure 5.1
shows a scene description graph that contains three scenes with contained
subobjects.

��� ��
���
�

Scene graph

Figure 3.1: Media objects

The composition of these media objects might either be to form a single
scene, or a set of scenes following each other or running in parallel in an
arbitrarily complex manner. A compound media object can be a subtree in
a larger compound object. This hierarchical structure allows flexibility for
the authors in creating the content.

Functionality for changing the flow of the scenes is also defined. This
consists of viewing or listening points within the scenes, and the startup of
alternative scenes, or streams. If defined by the author, the end user might
enjoy a high degree of interactivity with the content.

The standard also has new features to manage and identify intellectual
property rights. This is implemented by storing unique identifiers issued
by international numbering systems to each media object. The interface
to these property rights can be used by other applications or operating
systems.

The format is hierarchically layered into CoDec, Adaptation, FlexMux
and TransMux layer. The synchronized delivery of streaming information
from source to destination, exploiting different QoS, as available from the
network, is specified in terms of the synchronization layer and the delivery
layer containing a two layer multiplexer. Figure 3.2 depicts these layers,the
figure is from [55]. The TransMux layer is an interface, either to a file system
or a transport system over the Internet. The FlexMux layer interleaves
elementary streams with compatible QoS together. The Adaptation layer
synchronizes elementary streams, this is done with time stamping. The
CoDec layer encodes and decodes the media objects.

42

CHAPTER 3. MPEG-4 3.2. SYSTEM

Figure 3.2: MPEG Layers

3.2 System

In this section we look into the central aspects described in ISO / IEC 14496-
1 Systems. The full ISO / IEC 14496 standard consists of several parts, only
part 1 Systems is necessary for this thesis.

3.2.1 Terminal

The unit that composes and sends or receives and presents the coded
representations is called a terminal. The terminal is either a standalone
application or part of a system. The architecture of the terminal is layered
into Delivery Layer, Sync Layer and Compression Layer. The Delivery
Layer is partly specified in ISO/IEC 14496-6. Above the Compression
Layer is the Compositor that consumes the coded representations for
presentation. The compositor is not specified in ISO/IEC14496-1. The
boundary between the Compression Layer and the Sync Layer is called the
Elementary Stream Interface (ESI). The boundary between the Sync Layer
and the Delivery Layer is called the DMIF-Application Interface (DAI).

3.2.2 Delivery Layer

The Delivery Layer provides transparency from delivery technology.
Furthermore the Delivery Layer manages real time QoS sensitive channels,

43

3.2. SYSTEM CHAPTER 3. MPEG-4

resource logging, and ensures end to end interoperability. The DL
is implemented as DMIF instances, pertaining to specific technologies.
FlexMux channels multiplex SPS, creating FlexMux packets and headers.
The FlexMux operate toward the DMIF Application Interface on top and
toward the protocol stack downward. The FLexMux interleaves SPS to
provide easy embedding into existing transport protocols. Which storage
or transport media that are used in the protocol stack at the bottom of the
Delivery Layer is implementation dependent, these are called TransMux
channels. The TransMux channels may be based on interactive network
technology, broadcast technology or storage technology. Ranging from
udp/ip to mp4.

3.2.3 DMIF Application Interface

DMIF Application Interface (DAI) lies between the Delivery Layer and the
Sync Layer. The units passed between the two layers are SL-Packetized
Streams (SPS). A SL-Packet is either a whole Access Unit (AU) or a partial
AU, along with a SL-Packet header. SPS is then a stream of SL-Packets.

3.2.4 Sync Layer

The Sync Layer syntax is configurable, and can be empty. To parse SL-
Packet headers the SLConfigDescriptor must be known. The SL adapts
the streams coming down from the ESI to be sent over the DAI. Providing
timing and synchronization information, fragmentation and random access
information. Incoming SPS are stripped of SL-Packet headers and delivers
AUs to the Decoding Buffers over the ESI. The SL may duplicate SL-Packets
and AUs for error resilience, such duplicates follow immediately after the
original.

3.2.5 Elementary stream Interface

The Elementary stream Interface, between (ESI) the Sync Layer and the
Compression Layer, models the interchange and control of Elementary
Streams (ES). Decoding Buffers (DB) consumes Access Units and delivers
them to the Decoders. The streams of AUs coming out of buffers are
considered Elementary Streams.

3.2.6 Compression Layer

The Compression Layer (CL) holds the decoders and encoders. The de-
coders breaks up an AU into an integer number of Composition Units
(CU) which in turn is provided to the composition memory. The compo-
sition memory is available to the Compositor, which rebuilds the scenes

44

CHAPTER 3. MPEG-4 3.2. SYSTEM

according to the Scene Description. The Scene Description is carried as
the compact binary form BIFS in BIFS Access Units. Object Descriptors
(OD) are the building blocks of the object description framework which
links the elementary streams to each other and provide descriptive infor-
mation regarding each stream. The various ODs are also carried in AUs.
The ES_Descriptors are linked to ES, and are the most important. The IPMP
provides copyright protection. The OCI may provide additional informa-
tion. The ODs may build a complex recursive structure. The compositor
uses or skips CUs that are available (unavailable are skipped) at the time
corresponding to its Composition Time Stamp (CTS). Encoding terminals
produces AUs from its CUs with encoders. How the CUs fit into the AUs
is determined by the encoder. A receiving terminal may send Upstream
Information in return to the sending terminal, such information might be
user interactions or any other function the sending terminal implementa-
tion allows. Java Byte code may be downloaded to enhance functionality
in the receiving terminal. Upstream Information pass through the same
layers as the normal content in reverse. Upstream Information Streams are
always dependent on one normal elementary stream. There are one De-
coder Buffer, one Decoder and one Composition Memory for every stream.

3.2.7 Timing

The timing model presented in ISO/IEC14496-1 is designed for push
applications. The terminal keeps a System Time Base (STB). The STB is not
a global clock for all terminals, merely the notion of time for one terminal.
A data stream keeps an Object Time Base (OTB) which may be configured
in a number of ways. An OTB may be a reference to another OTB. The
STB of a terminal doesn’t have to be in reference to any OTB. The OTB
may be carried in a stream created for this purpose only. The sending
terminal conveys an OTB to the receiving stream decoder with an Object
Clock Reference (OCR) which is the time stamp set by the sending encoder
in the SL-Packet header. Each access unit has a Decoding Time Stamp,
which is the precise time it shall be available in the decoding buffer. Each
Composition Unit has a Composition Time Stamp, which is the time it must
be available in memory. The exact frequency and usage of the time stamps
are dependent on the application and chosen profile. Objects that constitute
dependent elementary streams for scalability purposes may have the same
time stamps.

3.2.8 Object Description Framework

The Scene Description and the Elementary Streams are the parts needed
to build ISO 14496 content. However the scene description has no direct
information about the ES. The Scene Description has links to Object

45

3.2. SYSTEM CHAPTER 3. MPEG-4

Descriptors which indirectly links to the ES. As shown schematically in
figure 3.3, the figure is from [23]. This allows the Scene Description and
the ES to be changed independently. Additionally the OD may aggregate
several ES that form one object in the Scene, or several alternative ES
that may provide scalability or interactivity. Furthermore the OD may
hold new Scene Descriptions in a recursive manner, providing a very
flexible system (inline). Such new Scene Descriptions may have ODs
pointing to another set of streams already available, or to URLs to remote
streams. The first Scene Description is within the first Scene Description
Stream pointed to by the initialObjectDescriptor, which must be conveyed
to the receiving terminal in a way not specified in ISO/IEC 14496. The
initialObjectDescriptor and the Elementary Streams is shown in figure. The
initialObjectDescriptor also points to the first OD stream. The ES that
contain visual, audio or other data are given by ES_ID a numeric held by
the ODs within the OD stream. The ObjectDescriptor Identifier (ODID)
is unique number within each naming scope. The Elementary Stream
Identifier (ES_ID) is also unique within the same naming scope. An inlined
node opens a new naming scope. Inlined nodes point to object descriptors
that points to a new set of Scene Descriptor Stream and Object Descriptor
Stream, and possibly more ES. The Intellectual Property Management
and Protection (IPMP) system is not specified in ISO/IEC 14496 but is
implementation dependent. IPMP descriptors components in ODs may
point to a system, or to an ES of IPMP_Descriptors that convey time varying
keys and such. ES pointed to by an IPMP ES implies that the objects therein
is protected by the IPMP system. Object Content Information (OCI) is
another OD component that may be associated with an OD or conveyed
in a stream of its own. The OCI components specify various optional meta
information about some ES.

3.2.9 Scene Description Framework

Since the ISO/IEC 14496 standard has coded representations of many
different types of objects, the composition of these to a complete scene
must also be represented. The Scene Description Representation is called
BInary Format for Scenes (BIFS). The Scene Description is then a tree of
BIFS nodes with internal structure. Each BIFS node represent an object
within the scene. The coded representation provides the spatial and
temporal information needed, attributes like sound volume, behavior of
audio-visual objects as well as the links between objects. In every such
node there is a pointer to the OD that again points to the ES that make up
the object in question. One BIFS AU contains either a BIFS CommandFrame
or AnimationFrame, which may describe a complete scene or a change to
an existing scene. The framework relies heavily on VRML ISO/IEC 14772-
1:1998. User interaction on the receiving terminal side is enabled by this

46

CHAPTER 3. MPEG-4 3.2. SYSTEM

ES_Descriptor

ES_Descriptor

initial
ObjectDescriptor

Object Description Stream

Scene Description Stream

BIFS Command (Replace Scene)

ES_ID

ES_ID

Audio Video

Scene Description

ObjectDescriptorUpdate

Object
Descr.

Object
Descr.

ObjectDescriptor

ES_D ES_D

ES_Descriptor

ES_Descriptor

Visual Stream (e.g base layer)

Visual Stream (e.g temporal enhancement)

Audio Stream

Figure 3.3: Elementary Streams and the Object Descriptors

framework. Since the BIFS nodes are within an ES that may be pointed to
by an OD, the scenes may be dynamically altered at the receiving terminal
and even jump to new content not available at the beginning of the playout.
Figure 3.4 shows how a chapter might be implemented in MPEG-4, note
that chapter is not a MPEG-4 descriptor.

3.2.10 MPEG-J

The option to have downloadable Java Byte code provides two uses.
The first is that the player may adapt to changing characteristics and
degrade the streams according to the resources available. The second is the
increased interactive functionality. The MPEG-J is a programmatic system
as opposed to parametric, and specifies interfaces for an MPEG-4 media
player.

3.2.11 MP4 File Format

The MP4 file format is designed to support TransMux in general, but is
independent of the specific TransMux mechanism. The file format may
be used in different ways. As an interchange format all the media are
contained in one file and the file don’t reference media in other files. The

47

3.2. SYSTEM CHAPTER 3. MPEG-4

<<Chapter>>

<<BIFS AU>>
Command (SceneReplacement)

BIFSScene
The three Shape nodes
are "buttons"
that generate events
which ultimately
chooses between
the alternative
branches.

Shape
<<Node>>

Conditional
<<Node>>

SFTopNode
Ordered Group

<<Node>>

MovieTexture
<<Node>>

AudioSource
<<Node>>

TouchSensor
<<Node>>

Shape
<<Node>>

TouchSensor
<<Node>>

Shape
<<Node>>

TouchSensor
<<Node>>

MovieT
<<Node>>

MovieT
<<Node>>

AudioS
<<Node>>

AudioS
<<Node>>

These play until
the viewer makes
a choice. As a
default background.
(Optionally, if no
choice is made:
they continue playing
the Authors choice.)

Conditional
<<Node>>

Conditional
<<Node>>

Represent
continued
playback
of the default
branch.

Figure 3.4: Scene Description in Branching Video

48

CHAPTER 3. MPEG-4 3.2. SYSTEM

interchange format does not contain any TransMux information. When
supporting content creation the file format is more flexible and may
reference media in other files. As a preparation for in streaming the file
format must contain information for the streaming server. Furthermore
interleaving of the various media is helpful to avoid seeking during
streaming. Local presentation needs a file format that supports full random
access, as well as interleaving to avoid seeking on DVD and CD. A
streamed presentation should not contain any information about the file
format itself, but comply with the specified protocol. It is possible to keep
the media data on read-only media and just augment it prior to streaming.
The file structure is object oriented. The media is not framed by the file
format, but appears in their ’natural’ state, as access units. Meta data (hint
tracks) is used to reference the media. If FlexMux is used the hint tracks
must be designed in a such a way that TransMux independence is lost. A
presentation may be contained in several files. Meta data about the entire
presentation is stored within an object called the movie atom (moov). The
file containing the moov object may also contain all the other media objects,
or merely reference them. Every TransMux mechanism has its own hint
track format.

49

3.2. SYSTEM CHAPTER 3. MPEG-4

50

Chapter 4

Analysis

This chapter will analyse what is needed for consistent caching of stream-
ing interactive premade stored multimedia content. We will work with the
work items presented in chapter 2 and build upon this in the investigation
to provide a foundation for the design presented in chapter 5.

4.1 Caching interactive content

This section presents the fundamental problems that arise if the content
delivery network does not treat interactive content correctly. The type of
content this thesis considers are premade by the author and intended to be
played back in a presentation in an author determined way. The content
is stored on server, which is an important difference from for instance
webcams, which are not stored but still premade. Furthermore the content
may be a mix of real or artificially made content, this is not important for
the analysis or design in this thesis. Mixing of real and artificial content is
defined fully in MPEG-4 and both are treated as being elementary streams.
This thesis will consider elementary streams as the lowest level of detail we
regard. The type of codec, amount of frames per second and so on is not
important for this discussion. We will try to keep the analysis on a general
note. The final but most important describing characteristic of the content is
that it is interactive. A few problems arise from this final characteristic. We
will examine them more closely in the following subsections. The figure 4.1
show how the MPEG-4 descriptors might be for a branching video of 3
chapters and 3 branches, where the concept of chapter is merely a single
SD AU and not a MPEG-4 descriptor of its own.

4.1.1 Consistency

For caching to be useful it must be consistent, this is not a performance
metrics, rather a minimum requirement. Non-interactive content may be

51

4.1.
C

A
C

H
IN

G
IN

TER
A

C
TIV

E
C

O
N

TEN
T

C
H

A
PTER

4.
A

N
A

LY
SIS

<<Elementary Stream>>
Object Descriptor Stream

<<Object Descriptor Stream Access Unit>>
Update

<<OD>>
audio

<<OD>>
audio

<<OD>>
video

<<OD>>
video

<<Elementary Stream>>
BIFS stream

<<Chapter>>
Beginning

<<Chapter>>
Intro

<<Object Descriptor>>
Initial Object Descriptor

Scene Descriptor Stream
<<ES_Descriptor>>

<<BIFS AU>>
Command (SceneReplacement)

BIFSScene

SFTopNode
Ordered Group

<<Node>>

MovieTexture
<<Node>>

AudioSource
<<Node>>

OD ID = 1

ES_ID = 4
Elementary Stream

mdat
B0-Audio-1

ES_ID = 3
Elementary Stream

mdat
B0-Video-1

ES_ID = 24
Elementary Stream

mdat
B4-Audio-1

ES_ID = 23
Elementary Stream

mdat
B4-Video-1

ES:_ID = 10
Elementary Stream

mdat
B1-Audio-3

ES_ID = 9
Elementary Stream

mdat
B1-Video-3

ES_ID = 16
Elementary Stream

mdat
B2-Audio-3

ES_ID = 15
Elementary Stream

mdat
B2-Video-3

ES_ID = 22
Elementary Stream

mdat
B3-Audio-3

ES_ID = 21
Elementary Stream

mdat
B3-Video-3

Object Descriptor Stream
<<ES_Descriptor>>

ES_ID = 2

ES_ID = 1

ES_ID = 6
Elementary Stream

mdat
B1-Audio-1

ES_ID = 5
Elementary Stream

mdat
B1-Video-1

ES_ID = 12
Elementary Stream

mdat
B2-Audio-1

ES_ID = 11
Elementary Stream

mdat
B2-Video-1

ES_ID = 18
Elementary Stream

mdat
B3-Audio-1

ES_ID = 17
Elementary Stream

mdat
B3-Video-1

ES_ID = 8
Elementary Stream

mdat
B1-Audio-2

ES_ID = 7
Elementary Stream

mdat
B1-Video-2

ES_ID = 14
Elementary Stream

mdat
B2-Audio-2

ES_ID = 13
Elementary Stream

mdat
B2-Video-2

ES_ID = 20
Elementary Stream

mdat
B3-Audio-2

ES_ID = 19
Elementary Stream

mdat
B3-Video-2

<<OD>>
video

<<Object Descriptor Stream Access Unit>>
Update

<<OD>>
video

<<OD>>
audio

OD ID = 1

<<Object Descriptor Stream Access Unit>>
Update

OD ID = 3

<<Object Descriptor Stream Access Unit>>
Update

<<Object Descriptor Stream Access Unit>>
Update

<<OD>>
video

<<OD>>
video <<OD>>

video

<<OD>>
audio

<<OD>>
audio

<<OD>>
audio

ES_ID = 4

Elementary Stream Descriptor

B0-Audio-1

ES_ID = 10

Elementary Stream Descriptor

B1-Audio-3

ES_ID = 11

Elementary Stream Descriptor

B2-Video-1

ES_ID = 17

Elementary Stream Descriptor

B3-Video-1

ES_ID = 18

Elementary Stream Descriptor

B3-Audio-1

ES_ID = 23

Elementary Stream Descriptor

B4-Video-1

<<OD>>
video

ES_ID = 24

Elementary Stream Descriptor

B4-Audio-1

<<Chapter>>
Beginning

<<Chapter>>
Beginning

<<Chapter>>
Outro

<<BIFS AU>>
Command (SceneReplacement)

BIFSScene

SFTopNode
Ordered Group

<<Node>>

MovieTexture
<<Node>>

AudioS
<<Node>>

ES_ID = 5

Elementary Stream Descriptor

B1-Video-1

ES_ID = 6

Elementary Stream Descriptor

B1-Audio-1

ES_ID = 7

Elementary Stream Descriptor

B1-Video-2

ES_ID = 8

Elementary Stream Descriptor

B1-Audio-2

ES_ID = 9

Elementary Stream Descriptor

B1-Video-3

ES_ID = 3

Elementary Stream Descriptor

B0-Video-1 <<OD>>
audio

<<OD>>
audio

<<OD>>
video

<<OD>>
video

<<OD>>
audio

<<OD>>
audio

<<OD>>
video

<<OD>>
video

ES_ID = 12

Elementary Stream Descriptor

B2-Audio-1

ES_ID = 13

Elementary Stream Descriptor

B2-Video-2

ES_ID = 14

Elementary Stream Descriptor

B2-Audio-2

ES_ID = 19

Elementary Stream Descriptor

B3-Video-2

ES_ID = 20

Elementary Stream Descriptor

B3-Audio-2

ES_ID = 15

Elementary Stream Descriptor

B2-Video-3

ES_ID = 16

Elementary Stream Descriptor

B2-Audio-3

ES_ID = 21

Elementary Stream Descriptor

B3-Video-3

ES_ID = 22

Elementary Stream Descriptor

B3-Audio-3

<<BIFS AU>>
Command (SceneReplacement)

BIFSScene
The three Shape nodes
are "buttons"
that generate events
which ultimately
chooses between
the alternative
branches.

Shape
<<Node>>

Conditional
<<Node>>

SFTopNode
Ordered Group

<<Node>>

MovieTexture
<<Node>>

AudioSource
<<Node>>

TouchSensor
<<Node>>

Shape
<<Node>>

TouchSensor
<<Node>>

Shape
<<Node>>

TouchSensor
<<Node>>

MovieT
<<Node>>

MovieT
<<Node>>

AudioS
<<Node>>

AudioS
<<Node>>

These play until
the viewer makes
a choice. As a
default background.
(Optionally, if no
choice is made:
they continue playing
the Authors choice.)

Conditional
<<Node>>

Conditional
<<Node>>

Represent
continued
playback
of the default
branch.

<<BIFS AU>>
Command (SceneReplacement)

BIFSScene
The three Shape nodes
are "buttons"
that generate events
which ultimately
chooses between
the alternative
branches.

Shape
<<Node>>

Conditional
<<Node>>

SFTopNode
Ordered Group

<<Node>>

MovieTexture
<<Node>>

AudioSource
<<Node>>

TouchSensor
<<Node>>

Shape
<<Node>>

TouchSensor
<<Node>>

Shape
<<Node>>

TouchSensor
<<Node>>

MovieT
<<Node>>

MovieT
<<Node>>

AudioS
<<Node>>

AudioS
<<Node>>

These play until
the viewer makes
a choice. As a
default background.
(Optionally, if no
choice is made:
they continue playing
the Authors choice.)

Conditional
<<Node>>

Conditional
<<Node>>

Represent
continued
playback
of the default
branch.

The film start
with a short
intro that is the
same for all
presentations,
Movie Title, Opening
Score, etc ...
These are replaced by
the interactive choice
in the next AU Command
Frame.

<<BIFS AU>>
Command (SceneReplacement)

BIFSScene
The three Shape nodes
are "buttons"
that generate events
which ultimately
chooses between
the alternative
branches.

Shape
<<Node>>

Conditional
<<Node>>

SFTopNode
Ordered Group

<<Node>>

MovieTexture
<<Node>>

AudioSource
<<Node>>

TouchSensor
<<Node>>

Shape
<<Node>>

TouchSensor
<<Node>>

Shape
<<Node>>

TouchSensor
<<Node>>

MovieT
<<Node>>

MovieT
<<Node>>

AudioS
<<Node>>

AudioS
<<Node>>

These play until
the viewer makes
a choice. As a
default background.
(Optionally, if no
choice is made:
they continue playing
the Authors choice.)

Conditional
<<Node>>

Conditional
<<Node>>

Represent
continued
playback
of the default
branch.

The Film ends like it
started, with an outro
that is the same for
all the viewers, with
end score, credits
and the like.

Figure
4.1:3x3

B
ranching

V
id

eo
in

M
PE

G
-4

52

CHAPTER 4. ANALYSIS 4.1. CACHING INTERACTIVE CONTENT

played in a presentation in a linear manner, and though the presentation
may consist of multiple elementary stream, it is after all multi media. The
timeliness of the multiple elementary streams are defined by one timeline,
and sound and picture go together. In interactive mulitmedia the objects in
the presentation may appear in seemingly random places, and the playback
may not be linear. This means that algortihms in the caching scheme in the
proxy cache server will not necessarily recognize the correct objects when
trying to cache the content. Thus the requirement of consistency is broken.

4.1.2 Object Reuse

The intent of any caching scheme is to reuse objects stored in the proxy
for several user requests. For reuse to be possible it is vital that the
objects stored in the cache are eligible for reuse and identifiable as such.
Authors of different presentations may use different methods to define
the interactivity in the presentations. This means that the objects that
are the building blocks of the presentations may change in type and size
from one presentation to the next. This means that the algorithms in
the caching scheme in the proxies will have a hard time swapping one
object for another. Additionally since the objects are in the interior of the
presentations’ namescope, it is not certain that the objects are identifiable
at all, see figure 4.2.

Film ID

ES_ID

ES_ID

ES_ID

ES_ID

Figure 4.2: Hidden ID

4.1.3 Binary or Partial caching

The proxy must be able to cache the content in a consistent manner,
meaning that not only are the objects in the cache reused, but they are

53

4.2. PARTIAL CACHING ANALYSIS CHAPTER 4. ANALYSIS

reused in the correct context and according to the timeliness requirements
of the presentations. This can be done by either caching the presentations in
their entirety, and providing the same kind of service as the source server.
This method is called replication if the candidates for caching is chosen by
the source server, replication is not the theme of this thesis. If the caching
candidates are selected by the proxy we call this binary caching. Binary
caching of interactive presentations are similar in algorithm logic to that
of non-interactive content. Binary caching of non-interactive content is a
vast research topic of its own, and is not within the scope of this thesis.
Interactive content is usually larger in size than, due to the alternative
paths the users might navigate through the content. This means that
interactive content will loose in competition with non-interactive content
in a binary caching proxy. Since not all the objects in the interior of an
interactive presentation will be requested by users, this means that caching
an interactive presentation in its entirety on a cache is a very efficient way
of wasting resources. The next section will look into partial caching of
content, and this is the chosen method in this thesis.

Added
Film 4

Film 3

Film 1

Film 6

Film 7

Film 8

Film 2

Displaced Added

Film 5

Film 4

Film 3

Film 1

Film 9

Film 6

Film 7

Film 8

Film 2

Displaced
Film 5 Film 9

Figure 4.3: Binary vs Partial

4.2 Partial Caching Analysis

Partial caching of content was defined in section 2.1.7. In this section we
will look closer on how this method of caching can meet the requirements
we have set. We aim at consistent caching of content. Caching is not a
necessity in itself, rather a means to reduce resources and boost the all
important QoS for experiential presentations. This means that a caching
scheme must not introduce more overhead than the resource gain it yields.
Partial caching is a very effective way to keep only the very hottest objects
in close reach of the end users. By close reach we refer to both server hops
and latency. Reducing server hops reduce network load, and reducing
latency increase the potential for a successfull playback of the presentation
from the users’ point of view. There are several ways to cut down the size

54

CHAPTER 4. ANALYSIS 4.2. PARTIAL CACHING ANALYSIS

of the content, which in short is what partial caching is. They are listed here
as three different domains. The first two domains was defined by [59], and
the third is the novel proposal of this thesis. The idea presented in QBIX
that a cache can also serve as a gateway that adapts the content for different
sets of specifications still apply. We will not consider this in detail however.

4.2.1 Time Domain

The time domain caching is presentated in 2.1.7. Caching interactive
content in the time domain means that each and every branch that makes
up the presentation is cut into segments. The usual modus is then to keep
the first segment, called the prefix, and later add the remainder, called the
suffix if the content is popular enough. For this to work with interactive
content, the algorithm in the caching scheme must know how the objects
make up the timeline of the presentation. In a branching video this could
implemented by adding a index number to each object that identifies when
in the timeline it is used. However, since we are talking about interactive
content here, objects may be used in a random sequence according to the
intent of the author and requests of the users. This adds an element of
inefficiency to this approach. Since the algorithm is already considering
index numbers on individual objects in the interior of the presentation’s
namescope, we can expand upon this. The proxy can consider each
presentation and try to identify the objects it is made of. More on this
in subsection 4.2.3. If we are already applying a scheme such as the one
presented in 4.2.3, the proxy can use time domain caching on individual
objects, particularly if they are long.

4.2.2 Quality Domain

There are several ways to use qualtity domain caching, we can use an
adaptive algorithm, or we can drop dependent elementary streams. Either
way there are no direct problems associated with employing quality
domain caching on interactive content. Quality domain caching is done
on an even footing throughout a presentation, and it matters little where
in the timeline an object occurs. It is interesting to note however, that if a
presentation is split by the author of the content into dependant streams,
one being the base level, and the remaining being temporal enhancements.
This is similar to the way interactive content split a narrative presentation
into constituent objects. If a presentation is split like this, in both timeline
specific branches, and quality specific dependant streams, it is easy to use
quality domain caching in unison with extent domain caching.

55

4.3. KNOWLEDGE NEEDED CHAPTER 4. ANALYSIS

4.2.3 Extent Domain

Extent domain caching is simply keeping only the branches that the users
request often. Rather than bothering with prefix and suffix, and internal
graph relationships, the caching scheme is solely conserned with the
popularity of the individual caching candidate. This reduces the problem
of caching interactive multimedia content to that of recognizing the
individual caching candidates. More on that in section 4.3.1. As mentioned
above extent domain caching is perpendicular to the other two domains,
and can be utilized in the same scheme if more powerful compression of the
content is wanted. There is however, one similarity between extent domain
caching and time domain caching. It is possible to argue that extent domain
caching is simply an advanced form of time domain caching. The point we
make here is that, extent domain caching is done on the scope of the entire
presentation, whilst the time domain caching can be done on the scope
of the individual branches that presentation is made of. In time domain
caching it is completely random whether the prefix of the presentation will
prove to contain the most popular segments or not. As opposed to extent
domain caching which considers this as the primary task.

4.3 Knowledge needed

What is the knowledge needed by the proxy cache server to cache the
interactive content. As introduced in the previous section, we will argue
that extent domain caching reduces the problem to that of identifying
the individual caching candidates, and that they are in the interior of
the presenations’ namescope. The interactive multimedia presentations
are made up of a graph of multimedia objects, which in turn can be an
aggregation of several objects. Therefore this is not a trivial task. There
are two primary problems, identifying the objects as unique and reusable
objects in the context of the proxy cache. And finding the correct boundary
of the objects, since we are working with an arbitrarily complex graph of
constituent objects. The problem of identifying the objects are subject to
the problem of finding their boundaries. Furthermore, for different types
of content, different styles of author work, and different ways the users
want to navigate through the content, the frequency of context shifts will
vary. What is seen as a single object in one style might be regarded as a
set of objects by a new set of users. This is a non trivial problem, and we
leave solving this as future work. For this thesis we will assume, that the
content defined as branching video in 2.3.3 has a branch as the building
block object. The task is to keep a score of popularity for the each and
every branch, and to keep tabs of which branch is in which presentations
when the users request them.

56

CHAPTER 4. ANALYSIS 4.3. KNOWLEDGE NEEDED

4.3.1 Candidate Recognition

To recognize objects identifiers are needed, which must be unique in the
entire system, and remain so for the duration of the source objects lifetime.
The identifier of the source object must corespond with the identifier for
the cache object. For large object of non-interactive content this is fairly
easy. For interactive objects, an easy approach where the URL of the
source server together with the filename comprises the identifier is not
sufficient. Since such an approach would imply caching the file in its
entirety enabling the proxy to fully replicate the interactivity. In this
thesis we will suggest fine grained object recognition as an approach. Fine
grained object recognition enables caching of the objects that are reused
most often, whilst still refraining from caching very large source objects
in their entirety. An interactive file may be several times larger than the
content any single user actually accesses.

4.3.2 MPEG-4

In the MPEG-4 standard several sub objects are natural candidates for
caching. Starting at the top with the largest object, we have the Elementary
Streams (ES) which can be identified within a file with their 16 bit ES_ID.
Some ES are quite large whilst others can be very small. The ES are
comprised of Access Units (AU), which lies back to back within the stream.
These are also of varying size, still significantly smaller than the ES. The
AUs can be identified through the ES_ID and random access information
in the ES headers, [24, 25]. The AU may have a sequence number, which
is a modulo counter for every ES. AUs begin with accessUnitStartFlag and
end with accessUnitEndFlag. Only AUs that are in ES that have all random
accessible AUs or AUs that have the randomAccessPointFlag set may be
accessed directly.

Hierarchy

Due to the hierarchical architecture of MPEG-4 caching decisions may be on
several different layers of complexity even if we only cache AUs or ES. The
Scene Description Stream (BIFS stream) contain commandFrames within
AUs, one commandFrame for every AU. The special commandFrame
SceneReplace is the only random access point in the BIFS ES, and describe
an Audio Visual Scene which in turn describe one or several Audio Visual
Objects, which in turn may consist of one or several ES that contain media
data. The caching may be on BIFS AUs, or on media data ES, or on media
data AUs. Caching the BIFS ES would be the same as caching the entirety of
the file, since the BIFS ES is one of the elements that enable the interactivity.

Keeping cache objects on the BIFS AU level of complexity, means

57

4.4. MINIMUM KNOWLEDGE NEEDED CHAPTER 4. ANALYSIS

keeping track of structured sets of sub objects. The BIFS AU only hold meta
data, a cache object comprises of several ES indirectly described through
the Object Descriptors pointed to by the BIFS commandFrame. To save a
copy of the cache object data must be collected from the Scene Description
Stream and then the Object Descriptor Stream before the media data held
in the media data ES can be accessed.

Keeping cache objects on the media data ES level of complexity, means
keeping track of the source server, the file accessed, and the ES_ID. The
media data will be accessed by BIFS AU as above, but will remain open
to other scenes then the one they originally occurred in, increasing the
chance of reuse. Some object descriptors point to new ES outside the ES_ID
scope of the original multimedia file. The ES may be kept in its entirety, or
partially by segments of several AUs.

Hybrid

Keeping entire media data ES or just media data AUs is mainly a decision of
the size of the cache objects. Entire media data ES may be very large, whilst
keeping track of all the AUs may be to much work. A compromise could be
to keep segments of ES as series of AUs, even if this will aid in optimizing
the space usage of the caching algorithm, the amount of bookkeeping is
equally large as just keeping the AUs. For some content, depending on the
author, reuse of AUs may also be interesting, not just entire ES. Keeping
AUs will potentially create most cache hits, but at the expense of more
computation in the proxy. It is not certain that this will be a more efficient
scheme however, since the interactivity provided by the author might use
larger structures as the building blocks.

4.4 Minimum knowledge needed

In this section we assume that the proxy has the same knowledge
about the source content, its users and the network as when only non-
interactive content is cached. The additional knowledge needed to provide
a consistent caching service will constitute the answer to the premise
question in this thesis.

4.4.1 Identity

A caching scheme seeks to keep objects in its cache which are likely to be
reused. These objects must be maintained in such a way that they are
still usable, they should be accessible for the users, and they should not
become incorrect or outdated. These issues are resolved in caching schemes
for non-interactive content by constantly updating the cache with popular

58

CHAPTER 4. ANALYSIS 4.4. MINIMUM KNOWLEDGE NEEDED

objects. In a scheme that caches content that has an internal structure
of interactivity, this is no longer sufficient. An interactive presentation
that is hosted on a source server offer several redundant renditions of
the content. Whether this is for narrative or technical purposes is less
important. A redundant object will be provided in place of another object,
in the presentation for the user this is fine. However, when the content pass
through the proxy cache server, the stream of media data the proxy sees is
determined by the first user to request that presentation. The stream seen is
a result of the path taken by that first user. When the next user requests the
presentation, it is not certain that this user will navigate the exact same path
through the content. The identity of the presentation no longer points to a
unique and atomic object which the proxy can perform caching algorithms
upon as for non-interactive content. The presentation must be regarded
as an aggregation of several objects, and it is necessary for the proxy to
able to identify these. If the proxy can identify the building blocks of the
presentation, then the cache can provide these to the user, enabling the user
to navigate through the content in the same manner as if it was stored on
the source server. This enables the proxy cache server to remain transient
to the user.

4.4.2 Boundaries

The objects that appear in an interactive presentation might be easy to
identify if using the same type of object recognition as the source content.
Still, the users will probably have the possiblity of only using part of that
object in the presentation. Similarly the author of the presentation might
use only a subset of an object. If the boundary of the subset of the object
that is used is not provided in the mechanism for object recognition, it is
difficult for the proxy to find them. If the users request part of an object
from a source server through a channel that does not leave information in
the proxy, there is no way for the proxy to know that the transmitted part
of that object does not constitute the entire object. When later requested,
by means of its identity, the proxy might offer an incomplete object to the
end user. In fact, the same argument that applies to the identity of the
objects that are aggregated together to form an interactive presentation also
recursively apply downwards in the internal structure of the presentation
if it is rendered by subsets of aggregated objects. The granularity of the
objects used as atomic building blocks in the presentation will be the ideal
caching candidate. However, it might be inefficient to cache an enourmous
amount of very small objects, particularly if they only rarely appear on
their own. Each independent caching candidate warrants its meta data in
the caching algorithm, and the lookup functions must consider every one.
There is no non-trivial way of avoiding this problem. Chapter 7.2 talks
about a meta algorithm to determine the granularity of the candidates.

59

4.5. MEDIA TYPES CHAPTER 4. ANALYSIS

In this thesis we assume that the granularity of the caching candidates
is on the same level as in the presenations. Any inefficiency introduced
by users stopping or seeking within an object is accepted, and refered to
future work. Figure 4.4 shows a cache object containing three AUs, the
boundary of the cache object is an important attribute. The proxy risk
serving the wrong subobjects to the users if the boundary of cache objects
are undefined.

AU AU AU AU AU AU AU AU AU AU AU AU AUES

AU AU AU AU AU AU AU AU AU AU AU AU AUES

AU AU AU AU AU AU AU AU AU AU AU AU AUES

AU AU AU AU AU AU AU AU AU AU AU AU AUES

AU AU AU

Cacheobject

Film

Figure 4.4: Boundaries

4.5 Media Types

In the previous section it seems that different types of content would
need different strategies for caching, additionally it is easy to envision
content that is pointless to cache at all. This thesis will not consider three
dimensional games using shared state or other such content that generate
highly detailed information in real-time, but never reused. Another such
type are teleconferences. The caching scheme outlined will consider films
with interactive storylines, interactive TV shows, and limited interactive
games that has branching private state content. The term common for
these types are branches in the storyline. For now, lets assume that only
applicable media are used. Note that OCI descriptors could be a natural
way to tag content that should not be cached with such a scheme, however
we will not elaborate further on this in this thesis.

4.5.1 Branching

In media where there is only branching of the storyline the discussion in
the previous section would favor caching of ES. One would assume that

60

CHAPTER 4. ANALYSIS 4.5. MEDIA TYPES

the content is broken into sizable segments between the branching points,
which would simplify the bookkeeping in the caching scheme. However
some types might reuse smaller units very often, for instance in a TV show,
the logo and jingle of the show would reoccur often. This also favors
caching of smaller units like the media data AUs. The system could of
course also consider all types of AUs for caching, keeping statistics for
every one. If the BIFS AUs are reused often in one file, they are also cached
as such. But if only some media data AUs that are a subset of the content
indirectly held by the BIFS AU are popular, only those AUs will remain in
the cache. This would need a more sophisticated system to keep track of
the objects on the varying levels of composition.

Minimum

Since the thesis shall investigate the minimum amount of knowledge
needed to consistently cache interactive multimedia scenes, keeping track
of varying levels of composition is probably not a necessity. Note that
the natural objects in the MPEG-4 standard are all described by Object
Descriptors (OD), these are not candidates for caching, since multiple ODs
may reference the same ES. The knowledge the proxy has about the BIFS
AU is clearly a smaller amount than about media data AU. Still caching
on that level of complexity might limit the consistency with which the
system can be said to cache interactive scenes. An assumption, that authors
have created content in such a way that an echelon of BIFS AUs, can be
identified, and cached in persistent state, without limiting the interactivity,
is needed. For instance, an example interactive movie might have a ’top
level’ BIFS AU that describe the primary objects the end user interacts with.
Beneath this ’level’ is a new BIFS AU reached through ODs within the first,
that describe the various branches the end user might choose between.
Obviously, if the system cache the ’top level’ BIFS AU the movie will be
locked down in a persistent state that has no interactivity at all, or indeed
reference the entire movie with all possible branches, both approaches
clearly disrupt the proxy’s efficiency. However, making decisions based
on the second level of BIFS AUs would keep sets of objects that allow some
amount of interactivity. But the type of interactivity where a user can jump
out of a branch and switch to some other point entirely will undermine
the efficiency of this approach. The system would in fact be somewhat
sophisticated since it needs to discern between top level scene descriptors
and second level scene descriptors. The user terminals must at be able to
identify the ES at playback time, hence the proxy should be able to identify
the ES as well. The ES are refered to from ESD in ODs and may be reused
several places in a presentation, or only used in part. If an ES is reused
several times, it only adds to the proxy’s efficiency to cache it. If it is
used only in part, the proxy’s efficiency is decreased. By keeping the ES

61

4.6. STORAGE CHAPTER 4. ANALYSIS

small, that is; on the same level of size as the interactive choices in the
presentation, the author of the content can make sure that the presenation
is easy to cache. If all interactive objects are stored in the interior of one
monolithic ES, the proxy will have to utilize additional algorithms to see
which segments of the ES that are requested, and cut these out as caching
candidates. This is not the approach assumed in chapter 6, rather we
assume that each branch is stored in its own set of ES, easily identifiable.
Breaking monolithic ES into smaller segments are much investigated in
time domain caching, 2.1.7, and is not a central topic for this thesis.

4.6 Storage

In this section it is assumed that the caching algorithm considers the media
data AUs as atomic cache objects, and stores them sequentially in a segment
if they are from the same ES. The natural way to store these objects is
in the mp4 file format. However, a complete mp4 file format storage
system is not required for the thesis. The MPEG-4 standard has support
for external URLs as a part of the file system. The test proxy cache server
receives MPEG-4 content and delivers MPEG-4 content, but does not have
to store MPEG-4 compliant mp4 files. The mp4 file format does not frame
the media data, rather the meta data include the media data by reference.
This enables the media data to be stored in its natural state, and the same
data can be used for disparate protocols. The test server will only use one
protocol but the media data will still be stored in the same manner, in its
most natural state as access units (AU), a range of contiguous bytes for each
AU. The AUs are transmitted in the stream on byte boundaries, constructed
by the SL Packet headers. The intermediate storage system needs to save
the AUs in the same manner, so the correct AUs can be reconstructed when
requested by new clients. Every ES needs some meta information about its
source and what AUs it consists of. An ES needs not be stored in its entirety,
since AUs are the chosen atom, and the length of the ES might therefore be
of a different size than what the clients request. The remaining parts of
the ES must be streamed from the source server, and the AUs of the proxy
cache and the AUs from the source server must of course stream ’back to
back’ to avoid disrupting the clients playback.

To reference the set of media data the client request the proxy searches
its cache for meta data in the following order: source server, mp4 file, ES
Descriptor, AU. Since the AUs are the smallest building block the cache
will contain an ES consisting of one or more AUs. The decoding and
composition times are kept in the SL Packet header, and not within the
AU itself. The payload of a SL Packet is either a whole AU or a fragment
of an AU, all meta information needed in the decoder is kept in the SL
Packet header. In the mp4 track structure the SL Packet headers are stored

62

CHAPTER 4. ANALYSIS 4.7. INTERACTIVITY

interleaved with the AUs they are headers for. The media data atoms are
really storage of an SPS and not ES. However the SL layer is configurable
and its syntax may be configured to be empty. The figure shows the
meta information kept in the SL packet header. The payload following the
header on the next byte boundary is the AU to which the header applies.
Storing pure AUs back to back would result in loss of timing information
as well as loss of the AUs boundaries.

4.7 Interactivity

In this section we will investigate how the proxy tell the difference between
two different choices for a branch. When a user interacts with the source
server and chose a particular path through the tree of branches, only a
contiguous set of branches that make a whole storyline pass through the
proxy. It is important to identify the disparate ES that make up the set of
choices for the storyline. This is already supported in the scheme outlined
in the previous section. When the user reaches a branching point, that point
is either identified by an option to jump to another ES, or with a set of new
ES to chooses between. At a merging point the storyline might either jump
into another ES (similar to branching point, but with no option), or begin at
the beginning of a new ES. However this gives rise to a weakness. If one ES
is used in several branches but retains the same ID all the time, the proxy
cannot distinguish between the popular subsections and the unpopular
subsections of that ES. Significant work must be done to resume storage
of new AUs into a partially cached ES that might have gaps, and even
lack its beginning AUs. All these problems are solved if the authors of the
media content comply with the following limition. All interactivity that
give rise to a change in the ES transmitted should change the ID of all the
ES involved at the time of the branching point. That is, there is no jumping
out of or into an ES, see figure 4.5 for an illustration of the difference. All
the ES are transmitted from beginning to the end. Of course the end user
might opt to cancel transmission and restart somewhere else.

Links
Film Cut

Film Cut

Film Cut

Film Cut

Timeline of playback

Free Style of Interactivity Branching Video

Figure 4.5: Branching Points

63

4.8. SCENARIO CHAPTER 4. ANALYSIS

This means that at both branching and merging points the ES ID change.
This might be a limitation in flexibility for the content author, but it
allows for easy cache replacement decisions. The granularity of the cache
replacement algorithm must be the same as that of the interactivity. For
content that has much smaller scenes, the ES segments will be shorter. The
interactivity should be very high and fast paced to warrant the caching
algorithm to consider single AUs.

4.7.1 ES Identifier

The encoding for interactivity is stored in the BIFS which are conveyed in
their own ES, which means that the next user will not lose the interactive
option. The BIFS ES is usually very light and there is little need for caching
it. As long as the encoding for interactivity identifies ES in the same
manner as the proxy, branching will not disrupt the proxy from correctly
identifying the ES. It is not guaranteed in the MPEG4 standard that this is
the case. In my thesis test we shall assume that all interactivity is preserved
in a correct manner in its ES, which is not cached. Furthermore that the
ESes used in branching and merging are identified in the same manner and
name scope as in the proxy. The MPEG4 standard specifies conditions for
when the name scope of the ES ID change. Any content with storylines
patched together from material with different original name scopes must
rename the ES IDs for consistency within the file. The MPEG4 standard
specifies that any branching point can reference content outside the current
name scope. In my thesis we will assume that such content is not suitable
for caching, and will not look further into this issue. That is, we assume
that only content eligible for caching uses the current name scope.

4.8 Scenario

In this example scenario the communication between the end user’s
terminal, the proxy and the source server are assumed correct and working.
The cache is assumed to be empty before the first movie is transmitted.
The transmission of ESes can begin after the end user terminal receives the
initialObjectDescriptor (IOD). The IOD specifies the name scope and the
main ES that starts the multimedia content presentation. The timeline, the
scene descriptions, object descriptions, the visual and the audio ES are a set
of such ESes. The timeline, scene description and object description ESes
are not eligible for caching as these are small. They could be cached, but
could just as easily be transmitted since they need few resources.

The movie starts with three different branches in the storyline. Since
the movie is available in several languages, and the sound effects are on
another audio track than the music, this movie has a set of four media

64

CHAPTER 4. ANALYSIS 4.9. TAXONOMY OF OBJECTS

content ES for every branch. The very first scene in the presentation is
a branching point. The end user chooses one, and the four ESes that are
referenced by that choice are transmitted from the source server, stored in
the cache and forwarded to the end user terminal. After some time the
three branches reach a merging point in the middle of the movie. The end
user doesn’t see this, but the proxy stops storing new scenes into the four
running ES. After the merging point, four new ES make up the movie, and
these are now transmitted, stored and forwarded by the proxy. In the end
there are two branches, the end user chooses the happy ending, and once
again the proxy stops storage of the four current ESes, and begins again
with the four final ESes. After this end user is finished, the proxy cache
now contains 12 segments, each being a whole ES. Together they make a
whole movie from the beginning to the end. When the next end user starts
transmission of the same movie, that user also receives the IOD which will
provide the same interactivity as the first user saw. If the second end user
chooses branches that is different from the ones chosen by the first user, the
ESes that make up these branches must be retrieved from the source server.

After several users have made their choices through the branch struc-
ture, the movie is cached with the most popular path. Of course if the
movie is very popular all the branches that are available might be cached.
The cache replacement algorithm works on the granularity of segments.
Some branches might be represented with all the ESes they consist of,
whilst other might have only the beginning half of the visual ES, accord-
ing to popularity and storage space.

4.9 Taxonomy of Objects

In this section we will discuss the taxonomy of aggregated objects. Any
interactive presentation that consists of premade stored content have an
internal structure. The various primitives used to make the presentation
are included in larger objects which again may be included in yet larger
objects.

4.9.1 Non aggregated objects

What constitutes a non aggregated object? In this field, the minimum object
could be a single frame. In MPEG-2 coding even a single frame may be
decomposed to several objects in the I B and P frames. A set of such
frames called a group of pictures (GOP) could be a minimum object. Where
this delineation between aggregated and non aggregated objects occur is
important for real applications. In this thesis we will assume that the
smallest possible non aggregated object is determined by the application
the end user chooses to play the presentation in, and that the author of

65

4.10. CACHING BRANCHING VIDEO CHAPTER 4. ANALYSIS

the content intended the presentation to be played in that application.
With respect to the MPEG-4 content descriptors, the smallest possible non
aggregated objects in streaming content are the AUs. That is for media
content, in the scene description, there might be objects such as nodes that
could be refered to as non aggregated objects. Still the MPEG-4 standard
specifies the AU as the smallest descriptor to which timeliness information
is?attributed. If we need to identify a specific node, that node should be
placed in an AU of its own.

4.9.2 Aggregated objects

Aggregated objects consists of several smaller objects, in a linear presenta-
tion this is not a problem. A linear presentation starts playback of the next
aggregated object when the current is finished playing. Possibly modified
by time shifting. In interactive content the end user might choose a path
of playback in which every step consists of complete aggregated objects. If
the end user is determined to not play a specific part of such an object, but
rather moves along the selected path before the aggregated object currently
playing has shown all its content. This means that some of the information
that was passed on to the end user was not used, and this is detrimental to
the efficiency of any delivery network. Any aggregated object of premade
stored content intended for use in an interactive presentation must not con-
tain more information than the author of the content believes the end user
is interested in. This may be a severe restriction for authors for content to
many types of application.

4.9.3 Parsing the tree

A small object contained within a larger object might be accessed by
parsing to it in the structure these objects are stored in. For presentations
with a broad sort of audience, it would be beneficial for the author to
create larger segments of content which end users might break up into user
specific sizes as needed. This is possible in MPEG-4 content by parsing
the tree of objects that make up the audio visual scenes. But only so far as
the author has had this sort of use in mind. In branching video the author
has multiple alternative choices for the end users, and expects that each
branch between the branching and merging points are played in full. If
these branches are to long, end users might grow impatient and shift the
playback point.

4.10 Caching Branching Video

Using partial caching on branching video is the method chosen in the next
chapter. This means identifying the individual branches, making caching

66

CHAPTER 4. ANALYSIS 4.11. SEGMENT CACHING

decisions based on their popularity acording to the chosen algorithm. The
identity of the branches is given by the ES_ID they are represented in. Since
the design assumes that each branch is represented in a unique ES. The
boundary of the object is then naturally the entire ES. This limitation is
not large however, if several branches are included in one ES, techinques
can be used to make identifiers for the branches in the interior of the ES.
Such identifiers could be the AU index number, since an ES is made by
AUs back to back. Another technique could be to store the beginning and
ending absolute file offset of the ES.

4.11 Segment Caching

The extent caching of branching video is both similar to and different from
segment caching of the timeline. In segment caching the linear movies
are divided into several segments, not just a prefix and a suffix. There
are several ways to recognize the beginning and end of such a segment.
A major similarity is the way the timeline of the narrative is broken into
roughly equal size bits, and that caching candidate replacements can be
made on them. In the segment scheme however, it is assumed that the
most popular part of any movie is the beginning and that the likelyhood
for reuse decline with the clock as the timeline passes. This may not
necessarily be true for an interactive presentation, there might be links from
the very start of the presentation to objects late in what would linearily be
interpreted as the timeline. Since the composition of the narrative is left to
the end user, the objects may appear in for the proxy random positions in
the timeline. This means that there are no way the algorithm can calculate
the expected chance of reuse for a segment based on the timeline. It
is not sufficient to count the number of links to an object, or any other
numeric quality such links might have, since the chance of any end user
actually navigating that link and requesting the referred object is based
upon human aesthetic taste or the informational content of that object, both
of which are impossible for any algorithm to calculate.

4.11.1 Segments versus Branches

Segments of an elementary stream may be regarded as similar to branches
in a branching video. The main difference is that the segments are
determined by the algorithm in the proxy according to some heuristics
or mathematically chosen metric. Whilst the branches in the branching
video are chosen as being individual objects by merit of narrative content
as understood by the author. This means that the chance the author have
of guessing the correct boundaries of a branch are rather larger than what
the algorithm in the proxy has.

67

4.11. SEGMENT CACHING CHAPTER 4. ANALYSIS

Furthermore, the branches may be jumped into and out of by low level
interactivity, time shifting. In this respect the part of the branch actually
being played by the end user will in every respect be a good candidate for
a segment.

If the algorithm in the proxies chooses the segments based solely upon
which seconds of the elementary streams are actually requested, that
would be sufficient to cache interactive content in a consistent manner.
However, the caching candidate replacement policy would then be on a
detail level of singular frames, and this could entail significant overhead.

Alternatively GoPs or several AUs could be used as the minimum
candidates, still the overhead of bookkeeping will be significant. If the
author of the content creates enough branches, and refrain from putting
semantically different content into the same ES, the concept of extent
domain caching branching video will probably be the most efficient.

68

Chapter 5

Design

This chapter presents the proposed design for caching interactive premade
stored content in servers, using MPEG-4 like descriptors, and partial
caching in the extent domain.

5.1 Intention of the Design

This thesis considers how a system can be set up to cache interactive
content, the scope of the thesis is limited to caching of branching video in
MPEG-4. The analysis chapter 4 discussed the possibility of partial caching
in the extent domain, see figure 5.2. This is interesting because partial
caching central theme is limiting disk size, and one major characteristic
about interactive content is the enlarged file size. Before we can consider
partial caching, complete caching is necessarily a stepping stone.

Noninteractive content plays from beginning to end, barring low level
user interactivity such as FF and Reverse, and communicates the author’s
prefabricated story to the viewer. Interactive content may also utilize
prefabricated content, or may generate unique content for every user.
It is intuitively not interesting to cache an enormous amount of unique
content. Caching prefabricated content however may prove efficent, as this
is already proven for noninteractive content.

The simple trick is to identify the objects that the users will request on
the same level of granularity as the interactivity in the content provides.
For instance, the medium level interactivity provided in Branching Video
where a user chooses between three different, but prefabricated, endings
for a movie. In this example, those three different endings may be regarded
as three independent objects by the caching algorithm. If complete movies
are cached the proxy must recognize the user feedback and stream the
correct interactive object. If these objects are identified, they make fine
candidates for partial caching. Since partial caching is said to be either in
the time or in the quality domain, this type of partial caching can be called

69

5.2. PROPOSED ARCHITECTURE CHAPTER 5. DESIGN

extent of interactivity, or extent domain for short. Extent domain caching is
orthogonal to temporal or quality domain caching, because both the other
techniques can be applied to the interactive objects independently without
regard to whether they are stand alone objects or interactive subparts in a
Branching Video.

The primitives used to construct the compound objects must all be
available, but the most popular ones should be cached. Whether a
subobject is a dependent quality increasing elementary stream or a fully
independent ES that provide an alternative narrative storyline, the proxy
cache does not consider this as interesting information. Rather the proxy
uses simple but powerful statistical algorithms to tag every object with
information about their popularity. The drawback is of course that
every object must be identified, its boundaries must be defined and the
metainformation about its popularity must be stored in some structure
in the proxy. For very large systems identification could be done with
hashvalues. Alternatively it is left to future work to consider cost function
algorithms. Figure 5.1 shows shuch a compound object.

��� ��
���
�

Scene graph

Figure 5.1: Media objects

5.2 Proposed Architecture

The proposed architecture is set within any type of CDN with intermittent
proxy cache servers. The proxies may appear within the CDN or on the
edges of the WAN close to the Clients. The proposed system has a minor
part in the server and the client, and a major part in the proxy. The protocol
of choice is MPEG-4. MPEG-4 and source servers in 5.2.6.

70

CHAPTER 5. DESIGN 5.2. PROPOSED ARCHITECTURE

5.2.1 Partial Caching

The approach presented in this thesis is one of partial caching. As outlined
in section 2.1.7, there are various versions of partial caching. In this thesis
it is suggested that limiting the number of alternative elementary streams
available for playback, is a way to reduce disk space requirements. One
standard for interactive content is MPEG-4 ISO 14496 which defines a set of
Descriptors used for referencing Audio Visual Objects. The building blocks
of any multimedia presentation are elementary streams, also for MPEG-
4. [59] propose to drop alternative encodings for ES as an adaptive way
for quality domain partial caching. In MPEG-4 however, it is also possible
from a human viewpoint to regard sets of ES as alternative representations
of the same narrative content, even if they are disparate from a technical
viewpoint. It is these alternative ES this thesis proposes to drop, in order to
implement interactivity extent domain partial caching. If further restriction
on size is necessary, partial caching in the quality or time domains may be
used as well. It is possible to argue that the interactivity extent domain is
actually in the time domain. However navigation through branching video
is not supposed to pass through all the alternative branches. Partial caching
of branching video does not limit the play time for beginning to end
playback, rather the alternative branches will be slightly more expensive
to get hold of. Time and extent caching can be combined for even more
powerful file size reduction, see figure 5.3. And lastly adding quality
caching on top gives the most powerful reduction, in figure 5.4.

Intro

Beginning Chapter Middle Chapter Ending Chapter

Outro

Branch 1

Branch 5

Branch 7

BP

BP MP BP

MP

MP

Figure 5.2: Extent caching

Branch 1

Intro

Figure 5.3: Extent and time

71

5.2. PROPOSED ARCHITECTURE CHAPTER 5. DESIGN

Intro

Layer 2

Layer 3

Base Layer

Layer 2

Layer 3

Base Layer

Layer 2

Layer 3

Base Layer

Base L

Layer 2

Layer 3

Layer 2

Layer 3

Base Layer

Layer 2

Layer 3

Base Layer

Layer 2

Layer 3

Base Layer

Layer 2

Layer 3

Base Layer

Layer 2

Layer 3

Base Layer

Layer 2

Layer 3

Base Layer

Base L

Layer 2

Layer 3

Figure 5.4: Extent, quality and time

5.2.2 Premise

To investigate the minimum amount of knowledge needed to consistently
cache interactive multimedia scenes, the test setup described in 6.1 was
used. The source server contains all the hinted interactive video content.
The proxy is the intermediary between the clients and the source server,
it is the proxy which constitutes the major work in this thesis. The
clients connect to the proxy in the same way as to the source server since
caching should be transparent. The 5.2.4 section describes the proposed
architecture for consistent caching of interactive branching video when
fully deployed.

5.2.3 Considerations

The central topic of this thesis is the minimum amount of knowledge
needed to consistently cache interactive multimedia scenes, specifically in
branching video encoded in MPEG-4. A proxy cache server in a CDN
is a major system, and is beyond the scope of a cand. scient. thesis.
The architecture proposed in the next section is a specific system targeted
to show that it is possible to cache interactive branching video at all.
The surrounding CDN and the RTP / RTSP communication, the network
communication and other noncentral aspects are subdued.

The information necessary to cache each segment is the Branching
Points and the Merging Points, if these are recognised the caching objects
will be easily identified as the intermittent segments. A stream is played
from beginning to end in the client terminal, unless it is halted by low level
user interactivity, which is not a central topic. The scenes which provide
the step into medium level interactivity are the Branching Point scenes. In
these the user is presented with a choice of different paths forward, this

72

CHAPTER 5. DESIGN 5.2. PROPOSED ARCHITECTURE

is enabled in MPEG-4 by the Scene Description Nodes that refer to new
Elementary Streams, or a new position in a known Elementary Stream. SD
Nodes regardless of type refer to ES only through Object Descriptors (OD),
which in turn refer to the ES through ES Descriptors. The ES Descriptors
(ESD) contain the encoding protocol specific information and the exact
position of the ES within the file. One OD can refer to several alternative
ESD, encoding the same content in scalable layers, or alternative protocol
encodings. This is the alternative ES [59] uses in their partial caching
scheme. The caching scheme in this thesis chooses between different ODs
that refer to independent ES that are said by the author of the film to be
alternative content for narrative purposes.

For a scene to be a random access point in an interactively navigated
setting, they must be submitted by the Access Unit Command Frame:
BIFS Command Replace Scene. Which is the only AU in the Scene
Description Stream (sdsm) with the random access flag set to true. This
is already specified in the MPEG-4 standard. Furthermore this thesis
assumes that all the segments are identified with unique ES_ID within
each film, which in turn should have unique IOD_ID. This assumption
is not a severe restriction, because MPEG-4 specifies that all ES_ID in a
.mp4 interchange format file are unique, though it does not apply for ES
that appear elsewhere. Keeping the IOD_ID unique is up to the CDN
administrators, and should not be to difficult. Failing that it is also possible
to use the Source Servers URL together with the Films filename as a unique
ID.

Source
Server

Client

Cache

Source
ServerSource

Server

Client
Client

Internet

Edge of Internet Proxy

Figure 5.5: Architecture

73

5.2. PROPOSED ARCHITECTURE CHAPTER 5. DESIGN

5.2.4 Architecture

The architecture includes three major elements, the source servers, a proxy
and a set of clients, illustration in figure 5.5. This is a simple autonomous
caching system, still the ideas should translate well if deployed in hierar-
chical or cooperating systems. The server and proxy should both be able to
accept clients using for instance RTSP/RTP and additionally communicate
between themselves using TCP or inband information over RTSP.

In MPEG-4 the media data and other types of data is transported in
Elementary Streams, each type of data in a new stream. The ’hint’ track
contains the framing that allows the streaming servers to serve the stream.
The interactivity that MPEG-4 provides is described in the BIFS stream.
For the part of Branching Video the interesting information are the sensor
nodes, conditional programming nodes and the replace scene nodes. To
simplify the system, this thesis assume that all such nodes only appear at
the Branching and Merging Points (BP,MP) where the user may choose the
next segment of the movie through the click of a mouse.

The BIFS Command Replace Scene is the only random access point
in the BIFS stream, within these all the information that composes the
interacitvity is stored as fields in objects, ultimately dereferencing the
movie segments. The movie segments are stored in natural media
Elementary Streams. This thesis assumes that each segment is stored in
a complete ES of its own. This eliminates the need for searching through
media ES, and, more importantly, eliminates the need to recompose the
BIFS scene graph in the proxy to find the random access points that
references the beginning and end of movie segments stacked within a large
Elementary Stream. Saving those all to precious CPU cycles for other
algorithms.

If a movie has its content stored in a more conservative way, the need
for preparing the movies arise. Just as movies must be ’hinted’ if the
Quicktime or MPEG-4 formats are to be used for streaming. Movies where
the interactivity is hidden within a large ES, needs to be broken up into
its constituent branches. This is done by reading the BIFS stream of the
movie, dereferencing the movie segments, and exporting the result into an
MPEG-4 interchangeable format mp4 file. It is better to do this once, than
having the proxy server do it for every single client! No information is lost
in the process, the additional information is minimal, as an ES header is
very small.

What work now remains for the proxy is to recognize that the various
movie segments are semi independent objects, and to which movie they
belong. This is done through bookkeeping and clever use of the namespace.
Each movie originates from a server uniquely, this is kept in the namespace,
additionally, within each movie, all the segments that make up the parts
of the branches appear independently and with unique ES_ID numbers.

74

CHAPTER 5. DESIGN 5.2. PROPOSED ARCHITECTURE

Everytime the movie goes through a BP or MP the ID of the ES must
change.

This means that rather than treating the streaming movie from the
source server as one bundle of streams that runs from beginning to end.
The proxy considers the media content to be several objects for one movie,
and the notion of a movie is abstracted to a ’set of small interlinked clips.’
A server could provide several edits of a noninteractive movie as well. The
only difference is that the BP or MP scenes does not provide interactivity
but cut straight to the next segment.

5.2.5 Assumptions for the System

Using Branching Video in MPEG-4 is discussed in the analysis chapter, 4.
This section sums up some of the assumptions that is necessary for the
proposed architecture. Although the thesis tries to be complete, one is
never guaranteed to have identified all antecedents.

Authors’ responsibility

It is the responsibility of the author or the authoring software to ensure that
all movie segments appear in their own ES with unique ID. This limits the
use of Media Control Nodes in the SD. Which may point to a segment lying
in the interior of an elementary stream. It is still possible to cache these
segments, an additional algorithm to find and separate the segment would
be needed. Since it is easy for the author to know where the presentation
provides a BP, it is easier for the author to keep all segments in separate ES.
Developing an algorithm that recognize segments in the interior of other
ES is left for future work, this task is similar to enabling low level user
interactivity within each branch, see 5.2.5.

Assuming that the interactivity provided in the movie is on the
granularity of the movie segments. That is, all the interactivity are tied to
BIFS Command Replace Scene. The BIFS Server Command is used to send
a message from the user terminal to the server, enabling timedetermined
actions or user responsive interaction. Still, the SD must be replaced
in some way, and the command for SD replacement is; BIFS Command
Replace Scene.

Assumptions

We assume that low level user interactivity, such as Fast Forward, Reverse,
Stop and Pause does not give rise to additional complexity, see figure 5.6.
This type of interactivity should be restricted to the BP. If users utilize low
level interactivity within the segments between the BP, the efficiency of the
caching will be reduced. This is of course a major issue, and will deteriorate

75

5.2. PROPOSED ARCHITECTURE CHAPTER 5. DESIGN

the performance of the system. The implementation will assume that the
interactivity provided by the authors is sufficient for the users. The way to
solve this is simply to add more chapters along the timeline of the films.
Since some users are likely to use low level of interactivity regardless of
how small the segments are, this sets an upper bound for the efficiency of
this type of caching. To investigate exactly how large this restriction is is
nontrivial and is left for future work.

Assuming that higher level user interactivity, is either nonexistent, or
does not give rise to additional complexity. Higher level interactivity
does not use pre-made stored content, and will need CPU time and other
resources to be implemented, this will adversely affect the performance of
the system. How much this will affect the system is determined by where
the higher level of interactivity is implemented. Is it in the source server,
and hence also in the proxy, or is it confined to the player terminal using
predistributed primitives. These aspects will affect the performance of the
system in a nontrivial manner, and investigation of this is left for future
work.

Play

Stop Seek (Fast Forward)

Play

Figure 5.6: Low level interactivity

5.2.6 The Source Server

The source server is a normal source server which may stream interactive
multimedia content. As explained in chapter 3, MPEG-4 does not frame
the media data. This enables indirection of the streaming protocol, for this
reason the server does not need to be MPEG-4 enabled, and MPEG-4 does
not need to implement all types of protocols. This indirection is bridged
by a hinter, which add all the necessary information in a separate hint
track. A new type of hint format is necessary for every type of transport
protocol used and for every encoding the MPEG-4 content is in. This
means that the raw media data itself is not suitable frames, rather the
media data is hinted by a separate hinter program to allow streaming,
hence the term ’streamable’ as opposed to ’streaming.’ MPEG-4 specifies
that the streaming server can be MPEG-4 agnostic, due to the indirection
provided by the hint tracks. This is not a central topic in this thesis. The hint
tracks are created by a hinter which is the bridge between MPEG-4 Systems
and the specific encoding protocol used. Enabling MPEG-4 Systems to
be protocol agnostic. The scheme in this thesis regards the structures in
MPEG-4 Systems, and it is assumed that any ESD have the correct protocol

76

CHAPTER 5. DESIGN 5.2. PROPOSED ARCHITECTURE

information and is referred to by a correct hint track.
If any problems arise when alternative ES are dropped, such as the need

to rewrite the hint tracks, is beyond the scope of this thesis.

5.2.7 The Proxy

The proxy server accepts requests from the end users, and serves them
as a streaming server if the requested content is in cache, exactly like
any other proxy cache server. The elements that make up the proxy
server are a Streamer, a Retriever, a Parser and a Cache Storage. The
three elements Streamer, Retriever and Cache are as in any proxy. It is
the Parser element that constitutes the novelty. It navigates the SD and
OD structures and identifies the Branching Points and Merging Points.
The exact way this is done may be arbitrarily complex, as interactive
content can be made modularily into very complex structures. Mixing
static and dynamic content, as well as changing the availability of objects
temporarily. Even if it may be possible to make a Parser that can work
with arbitrarily complex content, this thesis has limited the discussion to
that of reasonably wellformed Branching Video. Extending the capabilities
of the Parser to such content remains for future work, and would perhaps
need extensive meta information, as well as hints from the authors as to
whether the content is eligible for caching or not. The proposed Parser
merely navigates the OD and SD looking for unique ES. These are then the
caching candidates given to the Cache Storage. Since ES may be alternative
to each other also in a technical sense, it is important to scan the OD streams
to determine whether they appear in the same OD or not, as only those ES
that appear in the same OD are technically alternative encodings. If the
Parser disregards the SD and OD structures and only searches for unique
ES, Quality Partial Caching similar to the one proposed in [59] will also
apply, provided of course that such ESes appear at all.

The Replacement Algorithm

Several different approaches are possible, to cache complete Branches, to
cache complete Chapters, to cache any ES, to cache all ES that appear in the
scope of a single SD and so on. When SD Nodes such as Media Control
Node refer to a repositioning in an ES, the segment that lies between the
Branching Point and Merging Point does not correspond in a one to one
fashion to a single ES. In such cases it is to expect that a caching algorithm
that only takes whole ES as caching candidates will suffer inefficiencies.
The smaller the segments are with respect to the length of the complete
ES, the larger the inefficiencies will be. If there are several segments that
appear as a result of Media Control Nodes, SD and OD parsing are more
efficient. Still it is necessary to seek to the position in the ES given by the

77

5.3. FULFILLING REQUIREMENTS CHAPTER 5. DESIGN

Media Control Node, there is no field in the OD giving the offset into an ES,
though there are several alternative fields that may serve such a purpose if
reinterpreted to do so.

Singular AUs may also be considered as caching candidates if small
segments and low level user interactivity is rampant. This is similar to
Time Domain Partial Caching, and is not a central topic. If Time Domain
caching is utilized alongside Extent caching the problem solves itself.
This is because a time domain caching algorithm would have the needed
capability to find caching candidates that are segments within the interior
of antother ES, as explained in 5.2.5.

If all segments are complete ES, and no or little low level user
interactivity jumps into or out of a running ES, it is sufficient to only parse
the list of ES for candidates.

Whether to try to keep whole popular movies or branches in cache, or
just to try to increase the byte hit ratio is a business decision. Particularly
for movies that are highly advertised some CDN administrators might feel
the need to keep a complete set of either the branches or segments with
alternative encodings in the cache. Such considerations are not a central
topic to this thesis, and it is assumed that the CDN administrators would
want to increase the byte hit ratio.

5.2.8 The Clients

The clients connect to what they believe is the source server, but which
really is the proxy. Therefore all interaction should be transparent. The
clients may request any branch from any movie they have knowledge
about, although it is not likely that they jump from within one movie to the
interior of another, some services such as news, education, documentaries
or single state games, might still warrant such behavior. The proposed
architecture will assume that most users keep within the scope of a single
Branching Video for every presentation. That those that don’t accepts
the increased latency of changing namescope, moreover that such changes
are done by the Terminals without needing specific functionality from the
Proxy, other than start, stop and reposition.

5.3 Fulfilling Requirements

In this section we will discuss how the proposed design fulfills the
requirements put forward in the analysis in chapter 4.

5.3.1 Consistency

The minmum requirement for caching to be useful is that the caching
candidates consistently are the most popular ones, and that they are

78

CHAPTER 5. DESIGN 5.3. FULFILLING REQUIREMENTS

possible to retreive from the proxy by the clients with the correct id. Our
design will split the BV into their consistuent objects, and make caching
decisions based on the frequency of request of these objects. This will only
work if the end users actually request the same type of objects as the proxy
has split the BV into. Likewise the id namespace for the objects in the end
users applications must be the same as for the proxy. This last requirement
can be circumvented by considering for instance md5 hashsums of the
caching candidates. However, in MPEG-4 the object hierarchy has a ready
made system of object namespace, and it is somewhat easier to recognize
ids.

Transparency

Consistency is preserved if the service is transparent. To test for trans-
parency the service available to the end users should be the same as if the
presentations where available directly on the source server.

Testing

To test for consistency, we only need to show that the caching candidates
kept in the cache are reused by way of user requests. That is, if we observe
cache hits at all, at least some consistency has been shown. Additionally, it
is interesting to test whether the objects transmitted from the proxy to the
end users, are of the same type that the users wanted. If they are smaller in
size, and are in the interior of the object that the users actually requested,
then the cache hit is not a good cache hit. Also, if the object transmitted
is larger than the object requested by the end users, the actual efficiency of
the delivery network will be lower. To test for all these things in one go, we
introduce the metric consumed byte hit ratio. More on this metric in 6.3.

Narrative

The proposed architecture is designed to preserve the interactivity, even
if the extent of it is limited in the cache, the system can still retrieve cache
misses from the source server. It is also important from a feasibility point of
view to ensure that the narration of the content is preserved, as the authors
of such content will want their work to be the same, whether it passes
through a proxy or not. The narration of the content has been preserved
if the interactive choices of the end users remain the same even though
they request constituent objects from a proxy, rather than from a source
server. That is, the rules of how to put together the building blocks into
a complete narrative, must remain the same. This is true if the end users
play the presentation in the intended application, and if the repository of
building blocks is available with respect to the rules of the narrative in the

79

5.3. FULFILLING REQUIREMENTS CHAPTER 5. DESIGN

same manner as on the source server. The repository of building blocks
is fully available, possibly with difference in latency for objects of varying
popularity. The rules of narrative interactivity are given by the application
and the MPEG-4 descriptors. This means that if we guarantee that the
MPEG-4 descriptors are preserved, the narrative is also preserved. We can
only assume that the end users use the correct application, and if they don’t
that is beyond the scope of this thesis.

5.3.2 Performance

Proxy caching systems are usually introduced to improve performance,
which may be speed of delivery, quality of content of sheer number of
simultaneous end users. Additionally they might add functionality. In the
proposed design, the proxy uses extent caching of the interactivity, possibly
together with other forms of partial caching. Extent caching reduces disk
size requirements of the presentations, and also splits presentations into
easier to deliver sized objects. Though this thesis will regard the minimum
requirements rather than performance issues, it should be a minimum
requirement that the caching system does not introduce more overhead
than performance gain.

Overhead

The overhead introduced comes from parsing the presentations and
recognizing the constituent objects. Once this is done, the objects can be
requested by their absolute id from the end users. If it is not possible
to leave the job of finding the absolute id to the end users’ applications,
the cache objects must be requested by relative id. Request by relative id
will introduce slightly more overhead, as the proxy will have to reverse
parse the presentation in some manner, to find the correct object. That
is, either it must have a directory of all the orginal presentations as they
appear on the source server, and then find the relative id of the cache object
that has been requested. Or it must consider every cache object on disk,
and use some method to discern if the object in question is the correct.
This can be done, either by asking the source server if the object is in the
interior of the presentation that the end user is currently playing, which
would be a very time consuming method. Alternatively the proxy could
store the caching candidates’ relative ids in such a way that they appear
as absolute ids. That is, nested namespaces. This thesis will assume that
nested namespaces are possible, and that the ids of all the presentation in
the work domain of the proxy are unique. Since there is no fully deployed
system to compare with, it is difficult to test the size of the introduced
overhead, further investigation of introduced overhead is beyond the scope
of this thesis.

80

CHAPTER 5. DESIGN 5.3. FULFILLING REQUIREMENTS

Latency and QoS

The main performance metric for a proxy cache in the multimedia world is
the latency. By increasing byte hit ratio we hope to decrease latency. Since
this thesis looks at this problem from a point of view of minimum amount
of knowledge needed. Exact measurements of latency improvements are
less interesting, additionally it is only a simulated system, and not fully
deployed with human end users. Other QoS metrics are likewise not
central to the topic of this thesis.

81

5.3. FULFILLING REQUIREMENTS CHAPTER 5. DESIGN

82

Chapter 6

Implementation

We present an implementation of the extent caching of branching video,
with interactivity limited to complete elementary streams. This approach
should also work if extended to consider smaller objects, such as partial
ES or AUs, if global ids are not available they can be constructed using
the unique path to the individual object. The assumption is that statistical
algorithms provide efficient enough ways to determine which of the objects
that should be kept in the cache. Cost function algorithms will have to
consider human constructed interactive structures to determine likeliness
for requests, whether this is feasible or not is left for future work.

6.1 Implemented Test Architecture

The primitives used to construct our compound objects are the elementary
streams, such as they might appear in MPEG-4 or some similar encoding.
Each film in the system is assumed to be divided in the length dimension
into several chapters, such as presentation chapter, middle chapter, dra-
matic ending chapter, or something of this nature. In each chapter the user
is thought to be presented with several alternative representations of the
narrative in the form of branches. Each branch is then encoded in two de-
pendent elementary streams, one for video and one for audio. Naturally,
the branches could contain more ES, but we believe two suits the purpose
for now.

MPEG-4 agnostic

In MPEG-4 a server is said to be MPEG-4 agnostic, in this implemenation
the proxy and server must be able to identify the requested descriptors
inside the Films. This can be done by constructing absolute identifiers from
the available relative identifiers. The MPEG-4 standard guarantees that the
descriptors have unique ids inside the context of each film. And if each

83

6.1. IMPLEMENTED TEST ARCHITECTURECHAPTER 6. IMPLEMENTATION

film can be identified uniquely, the absolute identification of any descriptor
is assured. Rather than constructing an elaborate algorithm that combines
the server id with the film id, and then constructs an id for each ES with the
ES_ID which is unique in each film, we have given each object that appear
in the system a global id. The central idea remains that; the objects must be
identified.

Parsing

The User requests Branches from the server according to what is available
in the scene description that is in the presentation at any given moment.
How many branches that constitute a film is an important factor. More
branches gives a greater extent, which users like, greater freedom of choice,
but also greater file sizes. The extent caching appears as being more
efficient with increasing number of branches, as long as there are some
bias to which is more popular, as this allows to drop the unpopular ones.
Dropping unpopular branches, gives an appearance of the cachesize to be
larger in relation to the total number of objects in the system, and hence it
is more likely that we have a requested object in cache.

Chapters

An interactive branching video has several chapters, in each chapter, an
interactive scene allows the user to choose between the alternative branches
for that chapter, an author might reuse branches in several chapters.

The more chapters a film is presented in gives the segments smaller size,
and makes the performance progressively more like time domain caching.
The more branches each chapter has to choose between increases the extent
of the film. It is this extent that interactivity extent caching tries to limit by
dropping ES, see figure 6.1.

Example

The film is as in figure 6.1, a branching video. It has an introduction with
the opening score and selection scene for the first branching point. In
the test runs the Film objects are thought to include the IOD, the odsm
and sdsm and any audio ,video or other content for the playback of
the introduction and initial selection sequence. Subsequent branches are
divided in audio and video ES. The content in the cache pertaining to one
Film could look like figure 6.2. Every object that the proxy considers have a
metaobject in the cache, and the metaobject tag whether the content is local
in the cache or on the remote server. No actual content is being transmitted,
only the descriptor objects implemented as C++ classes.

84

CHAPTER 6. IMPLEMENTATION6.1. IMPLEMENTED TEST ARCHITECTURE

Beginning Chapter OutroIntro Ending Chapter

Branch 1

Branch 2

Branch 3

Branch 6

Branch 7

Branch 4

Branch 5

Branch 8

Branch 9

Middle Chapter

Figure 6.1: Freeform Branching Video

Outro

Intro Intro Intro

Outro Outro

Branch 1

Branch 2

Branch 3

Branch 6

Branch 7

Branch 4

Branch 5

Branch 8

Branch 9

Branch 1

Branch 2

Branch 3

Branch 6

Branch 7

Branch 4

Branch 5

Branch 8

Branch 9

Branch 1

Branch 2

Branch 3

Branch 6

Branch 7

Branch 4

Branch 5

Branch 8

Branch 9

Film 1 Film 2 Film 3

Figure 6.2: Cache Record

85

6.2. DISK USAGE CHAPTER 6. IMPLEMENTATION

6.2 Disk Usage

The Proxy uses the Storage Element as a cache, and has one for the film
meta information and one for the actual caching candidates. The meta
information storage is not very big, at least in this implementation. The
storage of caching candidates use many GB, but this is simulated, each
cache candidate is a small meta information object with a field that says
how many MB it is supposed to need. Their size would be on the order
of 10 to 100 mb. A complete film would need from one to several GB,
depending on whether just one path, or the entire extent of the film is
cached.

6.3 Parameters

This section will present the parameters by which the caching scheme may
be measured. The first issue that has to resolved is whether the caching
scheme provides a transparent service into the interactive presentation. If
the users are able to request the objects that are internal to the presentation
through the cache this is said to be fulfilled. The caching candidates must
be reused by the users, and not just stored in the cache and never accessed
again. If the candidates score cache hits, this is the minimum requirement
for any caching proxy. The amount of network resources used between
the source servers and the end users will be reduced in accordance with
the byte hit ratio in the proxy. The latency of the data transmission to the
end users will be reduced for every object the end users can request from
the proxy and not from the source server. Since startup time is important
from a human perspective, the initial segment of any presentation should
be worth more in the cache. The Film objects are thought to contain the
initial selection scene, and since the requests start by requesting a film, this
is fulfilled implicitly. The byte hit ratio also denotes the amount of data
with a reduced latency. For interactive presentations that use a freeform
style of navigation, fig 6.1, there are no guarantees that any object will be
used as the initial segment. The BV in the test setup has a small intro that
is thought to be the opening parts of the presentation, where the producers
list their names, the company has its logo, and so on. This intro ends with
the first selection scene followed by one of the alternative branches as per
users’ choice.

6.3.1 Byte Hit Ratio

Since all the ES are thought to be of the same size, and that includes the
initial Film object, the byte hit ratio is identical to the cache hit ratio. In a
situation with a mix of smaller and larger ES, the byte hit ratio would of

86

CHAPTER 6. IMPLEMENTATION 6.4. LRU AND LFU

course drop accordingly.

6.3.2 Consumed Byte Hit Ratio

In this implementation the User consumes all the requested ES in full. This
is because we assume that the author of the content has provided a unique
ES for every alternative branch. If several optional content descriptors
share the same ES, not all of that ES would be consumed by the user.
How much the consumed byte hit ratio drops is in relation to how many
alternative storylines the author has put into the same ES. If the ES contains
two equally large storylines, and the user only play one of them, the
consumed byte hit ratio would be cut in half.

6.4 LRU and LFU

The algorithms used in the simulator for cache replacements were LRU and
LFU. The first two figures show test runs were the y-axis denote increasing
cache hit, and the x-axis either increasing cachesize 6.3 or increasing
number of films 6.4. The last figure also has a plotting of Zipf distributed
branch selection. The plot with Zipf distributed branches lie above the one
with random selections.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7

"lru.dat"
"lfu.dat"

Figure 6.3: LRU and LFU vs cachesize

87

6.5. BRANCHES CHAPTER 6. IMPLEMENTATION

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500

"nf.dat"
"nf-ran.dat"

Figure 6.4: LRU vs films

6.5 Branches

Changing the number of branches per chapter, or whether the branches
are selected randomly or by some Zipf distributed way, strongly affects
the results. Figure 6.5 plot freeform selection of one in ten branches, vs
five branches in five chapters and finally three branches in three chapters.
As is obvious the more branches that can be selected away, the better
performance, since we get a higher cachesize to interesting object ratio. All
three series used zipf distributed selection of the branches. In figure 6.6
we plot random vs Zipf distributed selection of the branches. When the
selection of the branches is random the performance of the extent caching
declines, since no objects emerges as interesting to cache.

6.6 Interactivity inside ES

The MPEG-4 standard gives a set of object descriptors and content is
included in these by file offset pointers into the media content files. Not all
of these objects are possible to access directly in VoD systems. Particularly
since they are hidden inside the scene description and object description
stream and the terminals must know MPEG-4 to extract them and gain
access to the content they represent. Scene Descriptions include SD-Nodes

88

CHAPTER 6. IMPLEMENTATION 6.6. INTERACTIVITY INSIDE ES

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

"free.dat"
"5x5.dat"
"3x3.dat"

Figure 6.5: freeform, 5x5, 3x3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20

"data.dat"
"data1.dat"
"data2.dat"

Figure 6.6: random vs Zipf branch

89

6.6. INTERACTIVITY INSIDE ES CHAPTER 6. IMPLEMENTATION

as fields, some of these can represent alternative content, this makes it
possible to construct ES in which every scene includes branching points.
Since caching can only work if the objects can be identified, this means that
either we are forced to cache the entire ES, even if large parts of it remain
unconsumed. Alternatively, we can create ad hoc objects that point into the
ES by file offset, and record which parts of the ES are popular. The task
would be; recognize that the user has shifted to a different offset inside
the ES, and recognize when the user shifts away again. The beginning
of the offset correspond to the object’s id, the shift away point denotes
the boundary of the object. Since AUs are the smallest items that the
MPEG-4 standard attributes timeliness information too, they are perfect
candidates for the smallest segments to recognize. Tracking all the AUs
with metaobjects can be onereous though. The implementation in this
thesis relays on the author to keep whole ES as single storylines, and put
alternatives in ES’ of their own.

90

Chapter 7

Conclusion

This thesis’ premise was to investigate the minimum amount of knowledge
needed for a proxy caching server to consistently cache interactive branch-
ing video encoded in MPEG-4.

As is shown in the analysis in chapter 4, the design in chapter 5 and
finally the results in chapter 6 the answer to the premise task is:

The proxy cache server must know the identity of the caching candi-
dates, both absolute and relative to the structure they are a part of. Fur-
thermore the caching candidates must have defined borders, which gives
them specific granularity with respect to the complete presentation.

Partial caching in the extent domain has been shown to work in the
simulator, in future work we hope that it can be shown to be efficient also
with more realistic user request patterns.

We chose only statistical algorithms, LRU and LFU, because no ad-
ditional complexity was needed to simply demonstrate that the concept
worked. For a more realistic implementation it could be interesting to se
whether algorithms taking other factors into acount work better.

7.1 Results Discussion

The work presented in this thesis concludes with a test implementation and
a proposed design for full implementation.

7.1.1 Test Implementation

The test runs agree on LRU and LFU, and increase cachehit with increasing
number of films and increasing cachesize with respect to total number of
objects. The effect extent caching has on the result is to provide a smaller
set of interesting objects. That is, the cache hit ratio, and all other ratios
that are have the cache hit ratio as a factor, will be improved in the same

91

7.2. FUTURE WORK CHAPTER 7. CONCLUSION

manner as when the cachesize increase with respect to the total number of
objects.

7.1.2 Proposed Design

The proposed design to construct cache objects based on the granularity of
the interactivity, make sure these objects were identifiable and had defined
boundaries, should be feasible. In the test implementation the objects had a
global id, constructed upon creation of the content. No such luxury should
be expected in a real deployment. Still the necessary ids can be constructed
from the relative ids of the films, their constituent ESs and the sequence
number of the AUs.

Consumed BHR

In the implementation the ES had only one alternative scene each, and
could be consumed in its entirety by the users. For content with several
alternative scenes within an ES, the consumed byte hit ratio would be likely
to drop. To increase the consumed byte hit ratio again, the proxy would
have to recognise the alternative scenes within the ES. This can be done by
creating ad hoc objects from the AUs that constitutes the alternative scenes.
These ad hoc objects should be identifiable and have defined boundaries.
Identities can be constructed from the sequence number of the AUs,
available in the SL-PDU header as an optional field, and the ES_ID of the
ES. ES_IDs are unique within each film, and we are already able to identify
unique films. Defining the boundaries can either be done by considering
each random acces AU as a unique entity and log statistics for it. Or from
analysing where the users shift the playback point. Analysing shifting
playback point allows us to dispense with onerous logging structures for
the AUs. The length of an ad hoc objects in number of AUs could be
determined by how many AUs a set of users play before shifting playback
point.

7.2 Future Work

Caching of primitives used as building blocks for interactive multimedia
works. However for the caching to succeed in reducing the amount of
data that is transmitted from the source server to the end users, the caching
candidates must be on the same scale of granularity as the primitives. The
design could be used in conjunction with the adaptive approach for quality
domain partial caching in [59].

92

CHAPTER 7. CONCLUSION 7.2. FUTURE WORK

7.2.1 Meta Algorithm

The amount of data transmitted across the network from source server to
proxy, and from proxy to end users can be reduced if it is limited to the data
the end users actually want. This can be done with an adaptive policy for
choosing the caching candidates, according to the pattern of reuse and the
granularity of the actual primitves. In figure 7.1 we see a small branching
video and a freeform set of very small clips.

Figure 7.1: Type of interactivity

Cache object

Which type of cache object to choose as the primitive would depend on the
type of interactivity. In Manovich principle of modularity, [35], any type
of object can be used to build more complex compound objects, which in
turn can be used to support the branching nature of the interactivity for the
user, in the principle of variability. The meta algorithm would choose the
same type of object as its caching object, ideally, as the author of the content
intend to use as building blocks for compound objects. How to detect this
using an efficient algorithm is quite interesting and not answered here.

Pattern of Use

Recognising the current pattern of use, such as branching video, freeform
hypermedia, learning on demand or single state games, could be a source
for optimisation. The meta algorithm could then choose the best fitting

93

7.2. FUTURE WORK CHAPTER 7. CONCLUSION

replacement and admission policies based on heuristics. Such a futuristic
proxy could be as in figure 7.2.

Films

NoD

Game World

Proxy

Figure 7.2: Proxy recoginses pattern

Motivation

Caching of interactive multimedia is likely to increase in importantance as
all the multimedia services add new features; and as the existing services
with a high degree of interactivity add multimedia content. If only the
dedicated content delivery networks employ caching the services available
in the www is likely to either become slower, or avoid adding interactive
multimedia content.

94

Bibliography

[1] Espen J Aarseth. Cybertext, perspectives on ergodic literature. the john
hopkins university press baltimore and london.

[2] S. Acharya and B. Smith. Middleman: A video caching proxy server.
Proceedings of the 10th international workshop on network and operating
system support for digital audio and video, jun 2000.

[3] E. Balafoutis, A. Panagakis, N. Laoutaris, and I. Stavrakis. The impact
of replacement granularity on video caching. Networking, pages 214–
225, may 2002.

[4] OpenGL Architecture Review Board. OpenGL.
http://www.opengl.org/about/overview.html.

[5] E. Bommaiah, K. Gou, M. Hofmann, and S. Paul. Design and
implementation of a caching system for streaming media over the
internet. IEEE, Real-time technology and application symposium (RTAS),
2000.

[6] S. H. Butcher. The Poetics by Aristotle, part XXIII plot in narrative.
http://www.scholars.nus.edu.sg/resources/poetics/23.html.

[7] M. Cavazza, F. Charles, and S. J. Mead. Acm international conference
proceeding series archive. Proceedings of the second international
conference on Entertainment computing table of contents, pages 1 – 8, 2003.

[8] Chuck Clanton, Harry Marks, Janet Murray, Mary Flanagan, and
Francine Arble. Interactive narrative: stepping into our own stories.
pages 88–89, 1998.

[9] Coulouris, Dollimore, and Kindberg. Distributed Systems Concepts and
Designs. Addison Wesley, third edition, 2001.

[10] Marc Davis. Theoretical foundations for experiential systems design.
pages 45–52, 2003.

95

BIBLIOGRAPHY BIBLIOGRAPHY

[11] H. Fahmi, M. Latif, S. Sedigh-Ali, A. Ghafoor, P.Liu, and L.H. Hsu.
Proxy servers for scalable interactive video support. IEEE Computer,
43(9):54-60, sep 2001.

[12] Macromedia Flash. http://www.macromedia.com/software/flash.

[13] Davenport G and Murtaugh M. Automatist storyteller systems and
the shifting sands of story. IBM Systems Journal, v. 36 no. 3, 1997, p. 446
- 456., 1997.

[14] Kim Gee. The ergonomics of hypertext narrative: usability testing as
a tool for evaluation and redesign. ACM J. Comput. Doc., 25(1):3–16,
2001.

[15] Natalio Pincever Glorianna Davenport, Thomas Aguierre Smith.
Cinematic primitives for multimedia. IEEE Computer Graphics and
Applications, vol. 11 issue 4, pg. 67 - 74., 1997.

[16] Y. Gou, S. Sen, and D. Townsley. Prefix caching assisted periodic
broadcast for streaming popular videos. Proceedings of ICC (Interna-
tional Conference on Communication), apr 2002.

[17] Griwodz, Bar, and Wolf. Long-term movie popularity models in
video-on-demand systems. ACM Multimedia, 9-13, 1997.

[18] Carsten Griwodz. chapter 2, Doctor Thesis. http://elib.tu-
darmstadt.de/diss/000081/, 2000.

[19] Extensible 3D (X3D) Task Group. http://www.web3d.org/x3d.html.

[20] Network Working Group. Rfc 3016 - rtp payload format for mpeg-4
audio/visual streams. http://www.faqs.org/rfcs/rfc3016.html.

[21] Stephane Gruber, Jennifer Rexford, and Andrea Basso. Design
considerations for an rtsp-based prefix-caching proxy for multimedia
streams. Tech. Rep. 990907-01, AT&T Labs Research, 1999.

[22] Pål Halvorsen, Carsten Griwodz, Ketil Lund, Vera Goebel, and
Thomas Plagemann. Storage system support for multimedia appli-
cations. Research Report No. 307, jun 2003.

[23] ISO / IEC. Iso / iec 14496-1, mpeg-4. pages 15–16, 2001.

[24] ISO / IEC. Iso / iec 14496-1, mpeg-4. pages 72–73, 2001.

[25] ISO / IEC. Iso / iec 14496-1, mpeg-4. pages 229–230, 2001.

[26] IETF. Rtp real time transport protocol rfc 1889.
http://www.faqs.org/rfcs/rfc1889.html.

96

BIBLIOGRAPHY BIBLIOGRAPHY

[27] ECMA international. Standard ecma-262 ecmascript language specifi-
cation. http://www.ecma-international.org/publications/standards/ECMA-
262.HTM.

[28] ISMA. Internet streaming media alliance. http://www.isma.tv.

[29] ISO/IEC. Hytime standard, iso/iec 10744:1992.
http://www.ornl.gov/sgml/wg8/docs/n1920/.

[30] ISO/IEC. Virtual reality markup language iso/iec 14772.
http://www.web3d.org/x3d/specifications /vrml/ISO_IEC_14772-
All/part1/concepts.html.

[31] Apple iTunes. http://www.apple.com/itunes/.

[32] Jens F Jensen. Interactivity. www.nordicom.gu.se/reviewcontents/ ncom-
review/ncomreview198/jensen.pdf, 1998.

[33] J. Kangasharu, F. Hartano, M. Reisslein, and K. W. Ross. Distributing
layered encoded video through caches. Proceedings of IEEE INFOCOM,
apr 2001.

[34] Charles Krasic and Jonathan Walpole. Priority-progress streaming for
quality-adaptive multimedia. ACM Multimedia, 2001.

[35] Manovich L. The language of the new media. The MIT press Cambridge
Massachusetts, 2001.

[36] H. Latchman, C. Salzmann, D. Gillet, and J. Kim. Learning
On Demand - A Hybrid Synchronous/Asynchronous Approach.
IEEE,http://www.ewh.ieee.org/soc/es/May2001/10/Begin.htm.

[37] Francis C. Li, Anoop Gupta, Elizabeth Sanocki, Li wei He, and Yong
Rui. Browsing digital video. pages 169–176, 2000.

[38] Chris Marin, Rob Myers, Jim Kent, Peter Broadwell, and SONY.
Steerable media: Interactive television vis video synthesis. ACM
Multimedia 1-58113-339-1/01/01, 2001.

[39] Z. Miao and A. Ortega. Proxy caching for efficient video services over
the internet. 9th international packet video workshop, apr 1999.

[40] Microsoft. Windows media player.
http://www.microsoft.com/windows/windowsmedia/download/default.asp.

[41] Gene Miller, Greg Baber, and Mark Gilliland. News On-Demand for
Multimedia Networks.

[42] Real Network. http://www.realnetworks.com/.

97

BIBLIOGRAPHY BIBLIOGRAPHY

[43] nrk. http://www.nrk.no/.

[44] S. Paknikar, M. Kankanhalli, K.R. Ramakrishnan, S.H Srinivasan, and
L.H Ngoh. A caching and streaming framework for multimedia.
Proceedings of ACM Multimedia, pages 13–20, nov 2000.

[45] Dr. Pandian, A Rajesh, and Ram Mishra. Digital tv: Myth or reality.
white paper. http://www.wipro.com/insights/whitepaperdigitalTV.htm.

[46] L L Peterson and B S Davie. Computer Networks. Morgan Kaufmann,
2000.

[47] Javier Pinto. Occurrences and narratives as constraints in the branch-
ing structure of the situation calculus. Journal of Logic and Computation,
8(6):777–808, 1998.

[48] Lydia Plowman, Rosemary Luckin, Diana Laurillard, Matthew Strat-
fold, and Josie Taylor. Designing multimedia for learning: narrative
guidance and narrative construction. pages 310–317, 1999.

[49] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of
web cache replacement strategies. ACM Comput. Surv., 35(4):374–398,
2003.

[50] Glidden R. Broadcastcl: Broadcasting compositing language.
http://www.broadcastcl.org.

[51] M. Rabinovich and O. Spatscheck. WEB Caching and Replication.

[52] A. Rao, R. Lanphier, and H. Schulzrinne. Rtsp real time transport
protocol rfc 1889. http://www.cs.columbia.edu/ hgs/rtsp/.

[53] R. Rejaie and J. Kangasharju. A quality adaptive multimedia proxy
cache for internet streaming. Proceedings of the International Workshop
on Network and Operating System Support for Digital Audio and Video, jun
2001.

[54] Reza Rejaie, Mark Handley, Haobo Yu, and Deborah Estrin. Proxy
caching mechanism for multimedia playback streams in the internet.
Technical Report for Dept. of Comp. Sci., Univ. of Southern California, 99-
693, 1999.

[55] I S O Rob Koenen. Overview of the mpeg-4 standard.
http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm, 2002.

[56] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D.
Gribble, and Henry M. Levy. Network behavior: An analysis of
internet content delivery systems. ACM SIGOPS Operating Systems
Review, 36 Issue SI, dec 2002.

98

BIBLIOGRAPHY BIBLIOGRAPHY

[57] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara. Proxy
caching mechanisms with video quality adjustment. Proceedings of
SPIE Conference on Internet Multimedia Management Systems, pages 276–
284, aug 2001.

[58] Nitin Sawhney, David Balcom, and Ian Smith. Hypercafe. Seventh
ACM Conference on Hypertext, 1996.

[59] Peter Schojer, Laszlo Boszormenyi, Hermann Hellwagner, Bernhard
Penz, and Stefan Podlipnig. Architecture of a quality based intelligent
proxy (QBIX) for mpeg-4 videos. ACM 1-58113-680-3/03/0005, mar
2003.

[60] S. Sen, J. Rexford, and D. Townsley. Proxy prefix caching for
multimedia streams. Proceedings of IEEE INFOCOM’99, pages 1310–
1319, mar 1999.

[61] Frank Shipman, Elli Mylonas, and Kaj Groenback.
http://www.eastgate.com/patterns. Proceedings of Hypertext ’98,
2002.

[62] In Interactive Storytelling. Planning formalisms and authoring.
citeseer.ist.psu.edu/571128.html.

[63] Andrew Tanenbaum and Maarten van Steen. Distributed systems.
pages 15–16, 2002.

[64] Guy Vardi. Navigation scheme for interactive movies with linear
narrative. In Proceedings of the tenth ACM Conference on Hypertext and
hypermedia : returning to our diverse roots, pages 131–132. ACM Press,
1999.

[65] W3C. Extensible markup language xml. http://www.w3.org/TR/REC-
xml.

[66] W3C. Hyper Text Markup Language. http://www.w3.org/.

[67] W3C. Scalable graphics markup language. http://www.w3.org.

[68] W3C. Scalable vector graphics (svg). http://www.w3.org/TR/SVG/.

[69] W3C. Synchronized multimedia integration language (smil).
http://www.w3.org/TR/REC-smil/.

[70] B. Wang, S. Sen, M. Adler, and D. Townsley. Optimal proxy cache
allocation for efficient streaming media distribution. IEEE INFOCOM,
jun 2002.

99

BIBLIOGRAPHY BIBLIOGRAPHY

[71] Jia Wang. A survey of Web caching schemes for the Internet. ACM
Computer Communication Review, 25(9):36–46, 1999.

[72] WebTV. http://www.webtv.com.

[73] WorldDAB. http://www.worlddab.org/.

[74] K.-L Wu, P.S.Yu, and J.L. Wolf. Segment based proxy caching
of multimedia streams. Proceedings of the tenth international www
conference, may 2001.

[75] www.nextgentel.no.

[76] R. Young. Creating interactive narrative structures: The potential for
ai approaches. citeseer.ist.psu.edu/young00creating.html, 2000.

[77] Z.-L. Zhang, Y. Wang, D.H.C. Du, and D. Shu. Video staging: A proxy-
server based approach to end to end video delivery over the wide area
networks. IEEE/ACM Transactions on networking, 8(4):429-442, 2000.

[78] Michael Zink, Carsten Griwodz, Jens Schmitt, and Ralf Steinmetz.
Exploiting the fair share to smoothly transport layered encoded video
into proxy caches. Multimedia Computing and Networking 2002, 2002.

100

List of Figures

1.1 Branching Video . 12
1.2 Central Topics . 12

2.1 Proxy Caching Server . 16
2.2 Autonomous . 17
2.3 Hierarchical . 18
2.4 Flat cooperative . 18
2.5 Hybrid cooperative . 19
2.6 Binary caching . 21
2.7 Quality domain caching . 22
2.8 Time domain caching I . 23
2.9 Time domain caching II . 23
2.10 Events in narrative . 32
2.11 Narrative Content . 33
2.12 Low level of interactivity . 33
2.13 Hypermedia . 34
2.14 News on Demand . 34
2.15 Branching Video . 35
2.16 Fixed timeline . 37
2.17 Freeform timeline . 38
2.18 Accordion pattern . 38
2.19 Caching a path . 39

3.1 Media objects . 42
3.2 MPEG Layers . 43
3.3 Elementary Streams and the Object Descriptors 47
3.4 Scene Description in Branching Video 48

4.1 3x3 Branching Video in MPEG-4 52
4.2 Hidden ID . 53
4.3 Binary vs Partial . 54
4.4 Boundaries . 60
4.5 Branching Points . 63

5.1 Media objects . 70

101

LIST OF FIGURES LIST OF FIGURES

5.2 Extent caching . 71
5.3 Extent and time . 71
5.4 Extent, quality and time . 72
5.5 Architecture . 73
5.6 Low level interactivity . 76

6.1 Freeform Branching Video . 85
6.2 Cache Record . 85
6.3 LRU and LFU vs cachesize . 87
6.4 LRU vs films . 88
6.5 freeform, 5x5, 3x3 . 89
6.6 random vs Zipf branch . 89

7.1 Type of interactivity . 93
7.2 Proxy recoginses pattern . 94

102

LIST OF FIGURES LIST OF FIGURES

Abbreviations

AU Access Unit
AV Audio-visual
BIFS Binary Format for Scene
CM Composition Memory
CTS Composition Time Stamp
CU Composition Unit
DAI DMIF Application Interface (see ISO/IEC 14496-6)
DB Decoding Buffer
DTS Decoding Time Stamp
ES Elementary Stream
ESI Elementary Stream Interface
ESID Elementary Stream Identifier
FAP Facial Animation Parameters
FAPU FAP Units
FDP Facial Definition Parameters
FIG FAP Interpolation Graph
FIT FAP Interpolation Table
FMC FlexMux Channel
FMOD The floating point modulo (remainder) operator
sgn(fmod(x/y)) = sgn(x), and
abs(fmod(x/y)) < abs(y)
IP Intellectual Property
IPI Intellectual Property Identification
IPMP Intellectual Property Management and Protection
NCT Node Coding Tables
NDT Node Data Type
NINT Nearest INTeger value
OCI Object Content Information
OCR Object Clock Reference
OD Object Descriptor
ODID Object Descriptor Identifier
OTB Object Time Base
PLL Phase Locked Loop
QoS Quality of Service
SAOL Structured Audio Orchestra Language
SASL Structured Audio Score Language
SDL Syntactic Description Language
SDM Systems Decoder Model
SL Synchronization Layer
SL-Packet Synchronization Layer Packet
SPS SL-Packetized Stream
STB System Time Base

103

LIST OF FIGURES LIST OF FIGURES

TTS Text-To-Speech
URL Universal Resource Locator
VOP Video Object Plane
VRML Virtual Reality Modeling Language

104

Appendix A

Source Code

A.1 Header Files

/***
lab.h - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Wed Jun 23 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/ 10

/***
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/

#ifndef LAB H 20
#define LAB H

/**Contains the simulation lab and offers an interface
*for the main driver.
*@author Simen Rekkedal
*/

#include "user.h"
#include "server.h"
#include "proxy.h" 30
#include "terminal.h"
#include <iostream>
#include <stdlib.h>
#include <string>
#include <vector>

105

A.1. HEADER FILES APPENDIX A. SOURCE CODE

using namespace std;

namespace Lab {
void setProxyAlg(Terminal::Algorithm iproxyAlg);

40
/* seeds the random number generator */
void initRandom();

void setWarming(int w);

/* divides the films into several sequential chapters */
void setChapters(int in);

/* divides the chapters into several alternative branches */
void setBranches(int in); 50

/* determines how many users request media concurrently */
void setUsers(int in);

/* how many films are on the menu */
void setFilms(int in);

/* determines the size of the proxy in simulated mb */
void setProxySize(int ps);

60
/* the length of the simulation in simulated days */
void setSimulationDays(int in);

/* determines the number of AUs in the ESs */
void setESsize(int in);

/* creates the source server with the complete films */
void makeServer();

/* creates “numFilms” films, with branches and chapters as set */ 70
void makeFilms();

/* creates “numUsers” user objects */
void makeUsers();

/* creates the simulated proxy object */
void makeProxy();

/* must be complete setup before start */
void startSimulation(); 80

};

#endif
/***

media.h - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

106

APPENDIX A. SOURCE CODE A.1. HEADER FILES

——————- 90
begin : Mon Jun 28 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

#ifndef MEDIA H
#define MEDIA H
#include <string>
#include <stdlib.h>
#include <vector> 100
#include <iterator>
#include <iostream>

using namespace std;

/**This namespace defines the objects that symbolize media content, or handles
* to such objects. All necessary interfaces are defined here.
*/

namespace Media {
110

class Media Base{
public:

virtual int getSize()=0;
virtual string media type()=0;
virtual void parse()=0;
virtual ˜Media Base();

};

/**Handle for Media Base objects, used to pass around media. AS IF :(120
*
*/

class Media Handle{
public:

void parse();
int getID();
Media Base* getRep();
void setID(int i);
int init(Media Base* inrep);
Media Handle* lookup(int i); 130
Media Handle(Media Base* inrep);
Media Handle();
˜Media Handle();

private:

int id;
Media Base* rep;

};
140

/**Determines the various types of Elementary Streams
*

107

A.1. HEADER FILES APPENDIX A. SOURCE CODE

*/
enum stream type {video,audio,odsm,sdsm};

/**Access Units
*are of the type OD, SD, video data or audio data
*/ 150

class AU : public Media Base {
public:

int getSize();
/* used when building generic names, not in type checking !*/
string media type();
void addMH(Media Handle* mh);
void parse();
void init(int i,stream type st);
Media Handle* getMH(int i); 160
˜AU();

private:
int size;
int id;
stream type myType;
vector<Media Handle*>*branches;

};

170
/**Elementary Streams

*@author Simen Rekkedal
*/

class ES : public Media Base {
public:

int getSize();
/* used when building generic names, not in type checking !*/
string media type();
stream type get type(); 180
AU* addSD(int i);
AU* getSD(int i);
void init(int insize,stream type it);
void parse();
˜ES();

private:
int size;
/* the es may contain, od streams, sd streams, video or audio */
stream type myType;
vector<Media Handle*>* content; 190

};

/**The ’interactive branched video’
*@author Simen Rekkedal

108

APPENDIX A. SOURCE CODE A.1. HEADER FILES

*/

class Film : public Media Base { 200
public:

int getSize();

/* used when building generic names, not in type checking !*/
string media type();
void parse();
int getNumChap();
int getNumBran();
void init(int numch,int numb,int ess);
Media::ES* getSdsm(); 210
˜Film();

private:
int size;
int numChap;
int numBranch;
/* each film consists of a set of identifiable mediacontent */
vector<Media Handle*>* content;

}; 220

/**Tags whether the object is brand new and not in cache, used to be in the
* cache and was deleted, or if it is there now.
*/

enum CacheState {remote new,remote old,cached};

/**Handle class for the information needed to implement algorithms.
*@author Simen Rekkedal
*/

class Cacheobject { 230

public:
int getSize();
int getID();
Media Handle* getRep();
Media ID getMID();
void setState(CacheState st);
void setAlgc(int c);
int getAlgc();
CacheState getState(); 240
void addRep(Media Handle* mh);

Cacheobject(int i);
Cacheobject(Media Handle* inrep);
Cacheobject();

˜Cacheobject();

private:
Media ID mid;
Media Handle* rep; 250
int accesses;

109

A.1. HEADER FILES APPENDIX A. SOURCE CODE

int algc;
int hits;
int size;
int id;
CacheState myState;

};

260
};

#endif

/***
proxy.h - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————- 270
begin : Thu Jun 24 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

#ifndef PROXY H
#define PROXY H

#include "terminal.h"
#include <vector> 280
#include <string>

namespace Terminal {
enum Algorithm {lru,lfu,fill};

/**The simulated proxy cache server.
*@author Simen Rekkedal
*/

class Proxy : public Terminal Base { 290
public:

void dumpList();
void dumpPlot();

/* incoming request for some media object */
Request* serveRequest(Request* rin);

/* create the proxy, keep virtual functions out of constructors */
void init(int iwarm,int cachesize,int inumfilms,int ifilmsize,int numO,Algorithm a,Terminal Base* is);

300
virtual ˜Proxy();

private:
/* the link to the source server, which has the complete media */
Terminal Base* theServer;

110

APPENDIX A. SOURCE CODE A.1. HEADER FILES

/* use reserve() to set sizes */
vector<Media::Cacheobject*>* cache;

/* holds the index to the cacheobjects that are local */ 310
vector<int>* cacheindex;

/* updates the cache */
void algAddCache(int i);

/* one of the algs selected in algaddcache */
void fillCache(int in);

/* one of the algs selected in algaddcache */
void lruCache(int in); 320

/* one of the algs selected in algaddcache */
void lfuCache(int in);

/* one of the algs selected in algaddcache */
void sizeCache(Request* rin);

/* enumeration */
Algorithm alg;

330
/* first time added to meta */
void addMetaCache(Request* rin);

/* gets noncached content, and asks if the caching alg wants it too */
Request* getMedia(Request* rin);

/* looks just in the cache, the request comes back with state set accordingly */
Request* findCache(Request* rin);

void algHit(int in); 340

void lruAccess(int in);

void lfuAccess(int in);

int warming;
int cacheSize;
int metaSize;
int numHits;
int numAccess; 350
int numFilms;
int filmSize;

/* counts how many objects have status Media::cached in the cache */
int count;

/* used as timestamp by lru */
int timestamp;

111

A.1. HEADER FILES APPENDIX A. SOURCE CODE

}; 360

};

#endif
/***

request.h - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————- 370
begin : Mon Jun 28 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

/***
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. * 380
* *
***/

#ifndef REQUEST H
#define REQUEST H

#include "media.h"

namespace Terminal {
enum ReqState{noop,id only,found,sub}; 390

/**An action class that represents the necessary information for a request
*between terminals conserning media.
*@author Simen Rekkedal
*/

class Request {
public:

int getID();
400

const ReqState getState();

Media::Media Handle* getRep();

void addRep(Media::Media Handle*);

void setFound();

void cacheMe();
410

bool getTag();

void setState(ReqState rs);

112

APPENDIX A. SOURCE CODE A.1. HEADER FILES

bool foundState();

Media::Media ID* getMID();

/* used as dummy, eg when User answers other terminals*/
Request(); 420

/* used by user to make the first request using just the int id */
Request(int i);

/* used when the object can be refered to directly by some means */
Request(Media::Media ID* mid);

Request(Media::Media Handle* irep);

Request(const Request&); 430

Request::Request& operator=(const Request& old);

˜Request();

private:
/* when the request has got hold of the wanted media */
Media::Media Handle* reqMediaH; 440

/*used to get hold of the media by name */
Media::Media ID* reqMediaID;

/* holds the current status of this request, used in consistency checking */
ReqState myState;

/* holds the global id for the media handle we want */
int id;

450
/* tags whether this requests object is interesting to cache or not */
bool cacheTag;

};

};
#endif

/***
server.h - Will investigate the consistency
of the caching of interactive multimedia objects 460
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Mon Jun 28 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

113

A.1. HEADER FILES APPENDIX A. SOURCE CODE

/***
* * 470
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/

#ifndef SERVER H
#define SERVER H

#include "terminal.h" 480
#include <vector>
#include <iostream>

namespace Terminal {
/**The simulated source server, that has the films in complete versions.

*@author Simen Rekkedal
*/

class Server : public Terminal Base {
public: 490

/* creates nf films, with nb branches and nc chapters as set */
vector<int> makeFilms(int nf,int nc,int nb,int ess);

int getNumObj();

void dumpList();

Request* serveRequest(Request* rin);

Server(); 500

˜Server();
private:
/* stores the created film objects that this simulation uses */
vector<Media::Media Handle>* filmList;

/* finds the media in the filmlist */
Request* lookup(Request* rin);

/* counts how many objects there are in total, which is identical to the ids */ 510
int numObj;

};

};
#endif
/***

terminal.h - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with 520
MPEG-4 like descriptors of the media objects.

114

APPENDIX A. SOURCE CODE A.1. HEADER FILES

——————-
begin : Wed Jun 23 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

/***
* *
* This program is free software; you can redistribute it and/or modify * 530
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/

#ifndef TERMINAL H
#define TERMINAL H

#include "media.h"
#include "request.h" 540

namespace Terminal {

/**Base class for Proxy, Server and User.
*@author Simen Rekkedal
*/

class Terminal Base {
public:

virtual Request* serveRequest(Request* rin)=0; 550
virtual ˜Terminal Base();

};

};
#endif
/***

user.h - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects. 560

——————-
begin : Mon Jun 28 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

#ifndef USER H
#define USER H

#include <terminal.h> 570

namespace Terminal {

/**The simulated user that will request interactive media content from the servers.
*@author Simen Rekkedal

115

A.1. HEADER FILES APPENDIX A. SOURCE CODE

*/

class User : public Terminal Base {
public:

/* not used */ 580
Request* serveRequest(Request* rin);

/* called once, to get the user requests started */
void start(int nu,vector<int>imenu,Terminal Base* ip,int numDays,int nb);

void printResults();

User();
˜User();

private: 590
/* going out by name, returning with object */
Request* getMedia(Request* rin);

/* uses Terminal::zipfnums to store the pop distribution, 0.9 and 1.1, longtailed */
void zipfdistribute();

/* the user ’play’ one film with this function */
void play();

/* parses the subobjects in mimic of user interactive play */ 600
void parser(Request* r);

void consume(Request* rin);

int chooseLength(int mint);

int chooseBranch(int max);

int numComplete;
610

int numBranch;
int numDays;

};

};
#endif
#ifndef ZIPF H
#define ZIPF H

#include <sys/types.h> 620

extern double* zipftable;
extern double* branchtable;

void init zipf branch(size t moviect);
void init zipftable probability(size t moviect);
void init zipftable density(size t moviect);
void uninit zipftable();

116

APPENDIX A. SOURCE CODE A.1. HEADER FILES

#endif 630

117

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

A.2 Source Code Files

/***
au.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Tue Jun 29 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/ 10

#include "media.h"

using namespace Media;
void AU::parse(){
}

int AU::getSize(){
/* an au will usually be optimised to some particular size,
* we use this as default*/ 20

return 1;
}

void AU::init(int i,stream type st){
id = i;
myType = st;
branches = new vector<Media Handle*>;
branches−>reserve(5);//dynamically resized if need more space

} 30

void AU::addMH(Media Handle* mh){
branches−>push back(mh);

}

Media Handle* AU::getMH(int i){
return branches−>at(i);

}

string AU::media type(){ 40
return string("au");

}

AU::˜AU(){

}

50
/***

118

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

cacheobject.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Mon Jun 28 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/ 60

/***
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/

#include "media.h" 70
using namespace Media;
/* enum CacheState {remote new,remote old,cached}; in media.h */

int Cacheobject::getSize(){
return size;

}

void Cacheobject::setState(CacheState st){
myState = st;

} 80

CacheState Cacheobject::getState(){
return myState;

}

void Cacheobject::addRep(Media Handle* mh){
rep = mh;

}

int Cacheobject::getID(){ 90
return id;

}

int Cacheobject::getAlgc(){
return algc;

}

Media ID Cacheobject::getMID(){
return mid;

} 100

void Cacheobject::setAlgc(int c){
algc = c;

}

119

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

/* !! */
Media Handle* Cacheobject::getRep(){

return rep;
} 110

Cacheobject::Cacheobject(int i){
id = i;
myState = remote new;

}

Cacheobject::Cacheobject(Media Handle* inrep){
id = inrep−>getID();
rep = inrep; 120
myState = remote new;

}

Cacheobject::Cacheobject(){
static int cid=0;
cid++;
id = cid;
/* counts dummys only */

}
130

Cacheobject::˜Cacheobject(){
}
/***

es.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Tue Jun 29 2004
copyright : c© 2004 by Simen Rekkedal 140
email : simenre@ifi.uio.no

***/

/***
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/ 150

#include "media.h"
using namespace Media;
void ES::parse(){

for(unsigned int i = 0 ; i<content−>size();i++){
content−>at(i)−>parse();

}
}

120

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

160
int ES::getSize(){

return size;
}

string ES::media type(){
return string("es");

}

/*sdsm es add au that is sd */
AU* ES::addSD(int i){ 170

AU* sd = new AU();
sd−>init(i,sdsm);
content−>push back(new Media Handle(sd));
return sd;

}

AU* ES::getSD(int i){
AU* sd = dynamic cast<AU*>(content−>at(i)−>getRep());
return sd;

} 180

void ES::init(int insize, stream type it){
myType = it;
content = new vector<Media Handle*>;
content−>reserve(insize);
size = insize;

if(it != sdsm){
for(int i = 0;i<size;i++){

AU* temp = new AU(); 190
content−>push back(new Media Handle(temp));

}
}

}

stream type ES::get type(){
return myType;

}
200

ES::˜ES(){
}

/***
film.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————- 210
begin : Mon Jun 28 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

121

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

***/

#include "media.h"
using namespace Media;
void Film::parse(){

for(unsigned int i = 0 ; i<content−>size();i++){
content−>at(i)−>parse(); 220

}
}

int Film::getSize(){
return size;

}

string Film::media type(){
return string("film");

} 230

int Film::getNumChap(){
return numChap;

}

int Film::getNumBran(){
return numBranch;

}

240
void Film::init(int numch,int numb,int ess){

numChap = numch;
numBranch = numb;
size = numch*numb;
content = new vector<Media Handle*>;
content−>reserve(size+1);//all media + sdsm

ES* sdsmPtr = new ES();
sdsmPtr−>init(numChap,sdsm);
content−>push back(new Media Handle(sdsmPtr)); 250
//debug cout << “sdsm with ” << numChap << “ chapters.” << endl;

for(int i=0;i<numChap;i++){
/*Several alternative branches for each chapter*/
AU* sd = sdsmPtr−>addSD(i);
//debug cout << “sdsm add new chapter ” << i << endl;

for(int j=0;j<numBranch;j++){

/*the streams that interdepend,make a complete branch*/ 260
ES* tempV = new ES();
tempV−>init(ess,video);
Media Handle* pV = new Media Handle(tempV);
content−>push back(pV);
sd−>addMH(pV);

ES* tempA = new ES();

122

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

tempA−>init(ess,audio);
Media Handle* pA = new Media Handle(tempA);
content−>push back(pA); 270
sd−>addMH(pA);

}
}

}

ES* Film::getSdsm(){
/* we trust the init function to place the sdsm in position 0 */
ES* sdsmPtr = dynamic cast<ES*>(content−>at(0)−>getRep());
return sdsmPtr; 280

}

Film::˜Film(){

}
/***

lab.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects. 290

——————-
begin : Wed Jun 23 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

/***
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by * 300
* the Free Software Foundation; version 2 of the License. *
* *
***/

#include "lab.h"
using namespace Terminal;
using namespace Media;

namespace Lab{
/* the length of the simulation in simulated days */ 310
int numDays=0;

/* how many films are on the menu */
int numFilms=0;

/* determines how many users request media concurrently */
int numUsers=0;

/* divides the films into several sequential chapters */
int numChapters=0; 320

123

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

/* divides the chapters into several alternative branches */
int numBranches=0;

/* determines the size of the proxy in simulated mb */
int proxySize=0;

/* determines the number of AUs in the ESs */
int esSize=0;

330
/* result of numbran and numchap *2 +1 */
int filmSize=0;

/* total number of objects in this simulation */
int numObjects =0;

/* how many request shall we warm the cache with before logging % */
int warming =0;

/* determines the algorithm used by the proxy in cache */ 340
Algorithm proxyAlg;

Server* theServer;

Proxy* theProxy;

User* theUser;

/* holds the id for the films on the menu */
vector<int>menu; 350

/* how many days shall we warm the cache with before logging % */
void setWarming(int w){

warming = w*numUsers;
}

/* determines the algorithm used by the proxy in cache */
void setProxyAlg(Algorithm iproxyAlg){

proxyAlg = iproxyAlg;
} 360

/* divides the films into several sequential chapters */
void setChapters(int in){

numChapters = in;
}

/* divides the chapters into several alternative branches */
void setBranches(int in){

numBranches = in;
} 370

/* determines how many users request media concurrently */
void setUsers(int in){

numUsers=in;
}

124

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

/* how many films are on the menu */
void setFilms(int in){

numFilms=in;
} 380

/* determines the size of the proxy in simulated mb */
void setProxySize(int ps){

proxySize=ps;
}

/* the length of the simulation in simulated days */
void setSimulationDays(int in){

numDays = in;
} 390

/* determines the number of AUs in the ESs */
void setESsize(int in){

esSize = in;
}

/* seeds the random number generator */
void initRandom(){

/** seeding the dice.*/
srand(static cast<unsigned>(time(0))); 400

}

/* creates the source server with the complete films */
void makeServer(){

cerr << " Lab::makeServer()" << endl;
theServer = new Server();

}

/* creates “numFilms” films, with branches and chapters */
void makeFilms(){ 410

cerr << " Lab::makeFilms() " << numChapters << " " << numBranches << endl;
menu = theServer−>makeFilms(numFilms,numChapters,numBranches,esSize);
filmSize = numChapters*numBranches*2;//we dont count the sdsm, sd’s and films
numObjects = theServer−>getNumObj();

}

/* creates the simulated proxy object */
void makeProxy(){

cerr << " Lab::makeProxy()" << endl;
theProxy = new Proxy();//careful with polymorphic constructors 420
theProxy−>init(warming,proxySize,numFilms,filmSize,numObjects,proxyAlg,theServer);

}

/* creates “numUsers” user objects */
void makeUsers(){

cerr << " Lab::makeUsers()" << endl;
theUser = new User();

}

125

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

/* must be complete setup before start */ 430
void startSimulation(){

cerr << " Lab::startSimulation()" << endl;
theUser−>start(numUsers,menu,theProxy,numDays,numBranches);
theUser−>printResults();
//theServer->dumpList();
theProxy−>dumpPlot();
theProxy−>dumpList();

}
440

};// end of namespace lab.c

/***
main.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————- 450
begin : Wed Jun 23 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

/***
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. * 460
* *
***/

#ifdef HAVE CONFIG H
#include <config.h>
#endif

#include <iostream>
#include <stdlib.h>
#include "lab.h" 470
using namespace std;
using namespace Lab;

int main(int argc, char *argv[])
{

cerr << "Initializing the Lab" << endl;
initRandom();
if(argc == 1){

setUsers(1000);//sequential requests only, not different user objects 480
setSimulationDays(100);
setProxySize(50);
setProxyAlg(Terminal::lfu);

126

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

setFilms(50);
setChapters(5);
setBranches(5);
setESsize(0);
setWarming(10);

}else {
setUsers(atoi(argv[1])); 490
setSimulationDays(atoi(argv[2]));
setProxySize(atoi(argv[3]));
setProxyAlg(Terminal::Algorithm(atoi(argv[4])));
setFilms(atoi(argv[5]));
setChapters(atoi(argv[6]));
setBranches(atoi(argv[7]));
setESsize(atoi(argv[8]));
setWarming(atoi(argv[9]));

}
makeServer(); 500
cerr << "server initialized" << endl;
makeFilms();
cerr << "films initialized" << endl;
makeProxy();
cerr << "proxy initialized" << endl;
makeUsers();
cerr << "Lab initialized" << endl;
cerr << "Starting simulation" << endl;
startSimulation();
cerr << "Simulation finished!" << endl; 510

};

/***
media.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects. 520

——————-
begin : Wed Jun 23 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

/***
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by * 530
* the Free Software Foundation; version 2 of the License. *
* *
***/

#include "media.h"
using namespace Media;

127

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

Media Base::˜Media Base(){
}

540
/***

media handle.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Thu Jul 1 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/ 550

/***
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/

#include <sstream> 560
#include <iostream>
#include <string>
#include "media.h"

using namespace Media;
//public:
void Media Handle::parse(){

cout << "This is " << rep−>media type() << " id: " << id << endl;
if(rep) rep−>parse();

} 570

Media Base* Media Handle::getRep(){
return rep;

}

int Media Handle::getID(){
return id;

}

int Media Handle::init(Media Base* inrep){ 580
static int numMH=0;
rep = inrep;
id = numMH;
/* debug cout << “Media Handle::init: ” << numMH << “ type ”<<rep->media type() << endl; */
numMH++;
return id;

}

Media Handle* Media Handle::lookup(int i){
//debug cout << “Media Handle::lookup () : for i= ” << i << “ This = ” << id <<endl; 590
if(i==id) return this;

128

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

else return 0;
}

void Media Handle::setID(int i){
id = i;

}

Media Handle::Media Handle(Media Base* inrep){
init(inrep); 600

}

Media Handle::Media Handle(){
}

Media Handle::˜Media Handle(){

}
/***

proxy.cpp - Will investigate the consistency 610
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Thu Jun 24 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

/*** 620
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/

#include "proxy.h"
using namespace Terminal;
void Proxy::dumpList(){ 630

cerr << "Cachehits :" << numHits << endl;
cerr << "Accesses : " << numAccess << endl;
cerr << "Percentage hits: " << ((double(numHits)/double(numAccess)) * 100.0) << " %" << endl;
//for(unsigned int i=0;i<cache->size();i++){

//cout << cache->at(i)->getRep()->getRep()->media type() << “ ”;
//cout << cache->at(i)->getID();
//cout << “ ” << cache->at(i)->getState() << endl;

//}
cerr << "Cachesize is : " << cacheSize << " number of objects." << endl;
cerr << "Total number of objects is: " << numFilms*filmSize+numFilms << endl; 640
cerr << "Percentage cachesize: " << ((double(cacheSize)/double(numFilms*filmSize+numFilms)) * 100.0) << " %" << endl;
cerr << "The caching algorithm was: ";
switch(alg){

case lru: cerr << "lru " << endl; break;
case lfu: cerr << "lfu " << endl; break;

129

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

case fill: cerr << "fill " << endl; break;
}
cerr << "Accesses : " << numAccess << endl;
cerr << "The ’count’ variable is: " << count << endl;

} 650

void Proxy::dumpPlot(){
cout << ((double(cacheSize)/double(numFilms*filmSize+numFilms)) * 100.0) << " ";
cout << ((double(numHits)/double(numAccess)) * 100.0) << endl;

}

/* */
void Proxy::init(int iwarm,int icachesize,int inumfilms,int ifilmsize,int numO,Algorithm a,Terminal Base* is){

warming = iwarm;
metaSize = numO; 660
cache = new vector<Media::Cacheobject*>(metaSize);
//cache->reserve(metaSize);

cacheSize = icachesize;
cacheindex = new vector<int>;
cacheindex−>reserve(cacheSize);

alg = a;
numHits=0;
numAccess=0; 670
theServer = is;
numFilms = inumfilms;
filmSize = ifilmsize;
count = 0;

}

Request* Proxy::serveRequest(Request* rin){
numAccess++;
if(numAccess==warming){

warming = 0; 680
numAccess = 1;
numHits=0;

}
rin = findCache(rin);
if(!rin−>foundState()) getMedia(rin);
return rin;

}

Proxy::˜Proxy(){
} 690

Request* Proxy::getMedia(Request* rin){
rin = theServer−>serveRequest(rin);
addMetaCache(rin);//first timers are only added as metaobjects
return rin;

}

//remote new,remote old,cached
Request* Proxy::findCache(Request* rin){

130

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

int i = rin−>getID(); 700

if(cache−>at(i)){
rin−>addRep(cache−>at(i)−>getRep());

switch(cache−>at(i)−>getState()){
case Media::remote new : algAddCache(i); break;//cache entry point !
case Media::remote old : algAddCache(i); break;//cache entry point !
case Media::cached : algHit(i); break;//update popularity or timestamp

}
} 710
return rin;

}

void Proxy::addMetaCache(Request* rin){
cache−>at(rin−>getID()) = new Media::Cacheobject(rin−>getRep());
cache−>at(rin−>getID())−>setState(Media::remote new);

}

/* enum CacheState {remote new,remote old,cached}; in media.h */ 720
void Proxy::algAddCache(int i){

switch(alg) {
case lru : lruCache(i); break;
case lfu : lfuCache(i); break;
case fill: fillCache(i); break;

}

}
730

void Proxy::fillCache(int in){
if(count < cacheSize){

cache−>at(in)−>setState(Media::cached);
count++;
cacheindex−>push back(in);

}
} 740

void Proxy::lruCache(int in){
if(count < cacheSize){

cache−>at(in)−>setState(Media::cached);
count++;
cacheindex−>push back(in);

}else{
int oldestPtr = 0;
int oldest = 0; 750
for(int j=0;j<count;j++){

int temp = cache−>at(cacheindex−>at(j))−>getAlgc();
if(temp < oldest){

131

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

oldestPtr = j;
oldest = temp;

}
}

cache−>at(cacheindex−>at(oldestPtr))−>setState(Media::remote old);
cacheindex−>at(oldestPtr) = in;//switching which object is cached 760
cache−>at(in)−>setState(Media::cached);
lruAccess(in);

}
}

void Proxy::lfuCache(int in){
if(count < cacheSize){

cache−>at(in)−>setState(Media::cached);
count++;
cacheindex−>push back(in); 770

}else{
int leastPtr = 0;
int least = 0;
for(int j=0;j<count;j++){

int temp = cache−>at(cacheindex−>at(j))−>getAlgc();
if(temp < least){

leastPtr = j;
least = temp;

} 780
}

cache−>at(cacheindex−>at(leastPtr))−>setState(Media::remote old);
cacheindex−>at(leastPtr) = in;//switching which object is cached
cache−>at(in)−>setState(Media::cached);
lfuAccess(in);

}
}

void Proxy::algHit(int i){ 790
numHits++;
switch(alg) {

case lru : lruAccess(i); break;
case lfu : lfuAccess(i); break;
case fill: break;

}
}

void Proxy::lruAccess(int i){
cache−>at(i)−>setAlgc(timestamp); 800

}

void Proxy::lfuAccess(int i){
cache−>at(i)−>setAlgc(cache−>at(i)−>getAlgc()+1);

}

132

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

/***
request.cpp - Will investigate the consistency 810
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Mon Jun 28 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

/*** 820
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/

#include "request.h"
using namespace Terminal;
int Request::getID(){ 830

return id;
}

Media::Media ID* Request::getMID(){
return reqMediaID;

}

Media::Media Handle* Request::getRep(){
return reqMediaH;

} 840

void Request::addRep(Media::Media Handle* mh){
reqMediaH = mh;
if(mh) myState = found;

}

void Request::setFound(){
myState = found;

}
850

void Request::cacheMe(){
cacheTag = true;

}

bool Request::getTag(){
return cacheTag;

}

/* copy constructor */
Request::Request(const Request& old){ 860

cout << "Request copy constructor" << endl;

133

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

myState = old.myState;
reqMediaH = old.reqMediaH;
reqMediaID = old.reqMediaID;
id = old.id;
cacheTag = old.cacheTag;

}

/* operator = */
Request& Request::operator=(const Request& old){ 870

cout << "Request operator = " << endl;
if(&old != this){
myState = old.myState;
reqMediaH = old.reqMediaH;
reqMediaID = old.reqMediaID;
id = old.id;
cacheTag = old.cacheTag;
}
return *this;

} 880

/* used only as dummy */
Request::Request(){

myState = noop;
reqMediaID = new Media::Media ID();
cacheTag = false;

}

/* outgoing request for media object */
Request::Request(int i){ 890

id = i;
reqMediaID = new Media::Media ID(i);
myState = id only;
cacheTag = false;

}

/* wait a little with this one */
Request::Request(Media::Media ID* mid){

reqMediaID = mid;
myState = found; 900
cacheTag = false;

}

/* these are returned when the proxy or server has found the media */
Request::Request(Media::Media Handle* irep){

id = irep−>getID();
//cout << “request constructor with id: ” << id << endl;
reqMediaH = irep;
myState = id only; 910
cacheTag = false;

}

Request::˜Request(){
cacheTag = false;

134

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

}

const ReqState Request::getState(){
return myState;

} 920

/* used to determine if the request has been satisfied */
bool Request::foundState(){

if(myState == found) return true;
return false;

}

void Request::setState(ReqState rs){
myState = rs;

} 930

/***
server.cpp - Will investigate the consistency
of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Mon Jun 28 2004 940
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

#include "server.h"
using namespace Terminal;
vector<int> Server::makeFilms(int nf,int nc,int nb,int ess){

/* id menu */
vector<int>menu(nf);

950
/* holds the complete films permanently */
filmList = new vector<Media::Media Handle>(nf);

for(int i=0;i<nf;i++){
Media::Film* temp = new Media::Film();
temp−>init(nc,nb,ess);
filmList−>at(i) = Media::Media Handle();
filmList−>at(i).init(temp);
menu[i]=filmList−>at(i).getID();
//cout << “film: ” << filmList->at(i).getID() << endl; 960

}

numObj = filmList−>at(nf−1).getID()+1;
cerr << "Server::numObj : " << numObj << endl;
return menu;

}

void Server::dumpList(){
cout << "Server::dumpList() : list size ="<< filmList−>size() << endl;

135

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

for(unsigned int i =0;i<filmList−>size();i++){ 970
cout << filmList−>at(i).getID() << endl;

}
}

int Server::getNumObj(){
return numObj;

}

Request* Server::serveRequest(Request* rin){
//cout << “server::serveRequest()” << endl; 980
return lookup(rin);

}

/* finds the media in the filmlist (contains media handles) */
Request* Server::lookup(Request* rin){

//debug cout << “Server::lookup() : ” << rin->getID() << endl;
Media::Media Handle* temp;

/* if this is a request for an ES, we have “cheated” a little and the
* correct object is already at hand. 990
*/

if(rin−>getTag()){
rin−>setFound();
//debug cout << “Server::lookup() Tag = cache ” << endl;
return rin;

}

for(unsigned int i=0;i<filmList−>capacity();i++){

temp = filmList−>at(i).lookup(rin−>getID());//reassigned to right pointer 1000

if(temp){
//cout << “Server::lookup() found:” << temp->getID() << endl;
//cout << “Server::lookup() found:” << temp << endl;
rin−>addRep(temp);
rin−>setFound();
return rin;

}
}

1010

/* serious error, request for menu object not on the menu !! */
cout << "Server::lookup() request for menu object not on the menu !!" << endl;
exit(0);
return rin;

}

Server::Server(){
}
Server::˜Server(){ 1020
}
/***

terminal.cpp - Will investigate the consistency

136

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

of the caching of interactive multimedia objects
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Wed Jun 23 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no 1030

***/

#include "terminal.h"
using namespace Terminal;

Terminal Base::˜Terminal Base(){
}
/***

user.cpp - Will investigate the consistency
of the caching of interactive multimedia objects 1040
in a simulated proxy server, using films with
MPEG-4 like descriptors of the media objects.

——————-
begin : Mon Jun 28 2004
copyright : c© 2004 by Simen Rekkedal
email : simenre@ifi.uio.no

***/

/***
* * 1050
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
***/

#include "user.h"
#include "zipf.h"

namespace Terminal { 1060
/* a few semi global variabels */
/*holds the zipf lottery numbers for the films according to pop distribution*/

vector<int>zipfnums;

/* holds the zipf numbers for the branches inside any film */
vector<int>zipfbran;

/* the films by id */
vector<int>menu;

1070
int numUsers;
int max zipf;
int numFilms;
int consumed;

Terminal Base* theProxy;

137

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

};

using namespace Terminal; 1080
//public:

/* not good for much in user, we don’t use the user’s inheritance to terminal much */
Request* User::serveRequest(Request* rin){

return rin;
}

void User::printResults(){
cerr << "Number of requests for films in total: " << numDays*numUsers << endl;
cerr << "Number of requests for entire films: " << numComplete << endl; 1090
cerr << "Number of ES that were available for consumption : " << consumed << endl;

}

/* called once, to get the user requests started */
void User::start(int nu,vector<int>imenu,Terminal Base* ip,int nd,int nb){

numUsers = nu;
numDays = nd;
menu = imenu;
numFilms = imenu.size(); 1100
numComplete = 0;
consumed = 0;
zipfnums.reserve(numFilms);
numBranch= nb;

theProxy = ip;

zipfdistribute();

for(int j = 0;j<numDays;j++){ 1110
for(int i = 0;i<numUsers;i++){

play();
}

/* need to see this on screen, not in logfile */
cerr << "Day : " << j << " of :" << numDays<<endl;//debug << “. NumComplete: ” << numComplete << endl;

}
}

User::User(){ 1120
}

User::˜User(){
}

//private:

/* going out by name, returning with object, requests Proxy for media */
Request* User::getMedia(Request* rin){

return theProxy−>serveRequest(rin); 1130
}

138

APPENDIX A. SOURCE CODE A.2. SOURCE CODE FILES

/* the user play one film with this function */
void User::play(){

double* p = std::lower bound(zipftable,
&zipftable[numFilms],
drand48());//supposed to exchange drand48 ! with a better random gen

int zipf distributed entry = (p − zipftable); 1140

parser(getMedia(new Request(menu[zipf distributed entry])));

}

/* parses the subobjects in mimic of user interactive play */
void User::parser(Request* rin){

1150
Media::Media Handle* filmHandle = rin−>getRep();

Media::Film* filmPtr = dynamic cast<Media::Film*>(filmHandle−>getRep());
if(filmPtr) {

int numChap=filmPtr−>getNumChap();
int numBra=filmPtr−>getNumBran();

/* get hold of the Scene Description stream */
Media::ES* sdsmPtr = filmPtr−>getSdsm(); 1160

for(int i = 0; i < numChap ; i++){
/* Getting the Scene Description for this chapter */
Media::AU* sd = sdsmPtr−>getSD(i);

int j = chooseBranch(numBra);

Media::Media Handle* branchVideo = sd−>getMH(j);
/* we already “have” the object, but will now ask the proxy for it */
Request* reqV = new Request(branchVideo); 1170
reqV−>cacheMe();

consume(getMedia(reqV));

Media::Media Handle* branchAudio = sd−>getMH(j+1);
Request* reqA = new Request(branchAudio);
reqA−>cacheMe();

consume(getMedia(reqA));
1180

}

} else {cerr << "Not a Film in the Film ptr !" << endl;}
}

139

A.2. SOURCE CODE FILES APPENDIX A. SOURCE CODE

void User::consume(Request* rin){
/* accepts Requests that contain the audio video ES, log consumption */
Media::stream type st = dynamic cast<Media::ES*>(rin−>getRep()−>getRep())−>get type();
switch(st){

case Media::video: consumed++; break; 1190
case Media::audio: consumed++; break;
case Media::odsm: cerr << "Wrong ES type!" <<endl; break;
case Media::sdsm: cerr << "Wrong ES type!" <<endl; break;
default: cerr << "Casting error ! st == 0 !" <<endl;

}
}

/* select random length */
int User::chooseLength(int mint){

1200
return mint;

}

/* the users will probably single out some branches as cooler than others */
int User::chooseBranch(int max){

double* p = std::lower bound(branchtable,
&branchtable[max],
drand48());//supposed to exchange drand48 ! with a better random gen

int zipf distributed entry = (p − branchtable); 1210

return zipf distributed entry;
//return int(drand48()*max);

}

/* longtailed */
void User::zipfdistribute(){

init zipftable density(numFilms);
init zipf branch(numBranch); 1220

}

140

