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A fundamental task in neuroscience is to characterize the brain’s developmental course. While replicable group- 

level models of structural brain development from childhood to adulthood have recently been identified, we 

have yet to quantify and understand individual differences in structural brain development. The present study 

examined inter-individual variability and sex differences in changes in brain structure, as assessed by anatomical 

MRI, across ages 8.0–26.0 years in 269 participants (149 females) with three time points of data (807 scans), 

drawn from three longitudinal datasets collected in the Netherlands, Norway, and USA. We further investigated 

the relationship between overall brain size and developmental changes, as well as how females and males differed 

in change variability across development. There was considerable inter-individual variability in the magnitude of 

changes observed for all examined brain measures. The majority of individuals demonstrated decreases in total 

gray matter volume, cortex volume, mean cortical thickness, and white matter surface area in mid-adolescence, 

with more variability present during the transition into adolescence and the transition into early adulthood. 

While most individuals demonstrated increases in white matter volume in early adolescence, this shifted to a 

majority demonstrating stability starting in mid-to-late adolescence. We observed sex differences in these patterns, 

and also an association between the size of an individual’s brain structure and the overall rate of change for 

the structure. The present study provides new insight as to the amount of individual variance in changes in 

structural morphometrics from late childhood to early adulthood in order to obtain a more nuanced picture of 

brain development. The observed individual- and sex-differences in brain changes also highlight the importance 

of further studying individual variation in developmental patterns in healthy, at-risk, and clinical populations. 
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. Introduction 

Longitudinal MRI research conducted over the past two decades has

emonstrated that the human brain undergoes a prolonged course of

evelopment, with changes in morphometry observed in the cortex, as

ell as in white matter and subcortical structures, throughout child-

ood and adolescence ( Aubert-Broche et al., 2013 ; Goddings et al.,

013 ; Lebel and Beaulieu, 2011 ; Mutlu et al., 2013 ; Raznahan et al.,

011 ; Reynolds et al., 2019 ; Vijayakumar et al., 2016 ; Wierenga et al.,

014a,b ; Wierenga, Bos, et al., 2018 ). While this research has had a pro-

ound impact on our understanding of brain development, most of these
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tudies have focused on estimating group-level trajectories, and quanti-

ying the degree of individual variability in structural brain development

emains a neglected area of research ( Becht and Mills, 2020 ). Charac-

erizing variability across individuals in how the brain changes during

evelopment is needed to address some of the most pressing questions in

evelopmental neuroscience. It is only with this knowledge that we can

dentify individuals who begin to deviate in neurotypical development,

r tailor prevention and intervention efforts to impact the processes that

re changing the most during different developmental periods. 

A goal of developmental neuroscience is to define patterns of brain

aturation. We know that, for instance, the cerebral cortex decreases

n volume and thickness across the second decade of life before be-
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inning to stabilize in the early twenties, and that cerebral white

atter increases until some point in mid-to-late adolescence ( Aubert-

roche et al., 2013 ; Mills et al., 2016 ; Tamnes et al., 2017 ; Wierenga,

angen, Oranje, et al., 2014 ). But the age at which these structures begin

o stabilize —a measure of maturity for structural brain measures —likely

aries across individuals. Subcortical structures also show heterogene-

ty in their volumetric development ( Herting et al., 2018 ; Ostby et al.,

009 ; Wierenga, Langen, Ambrosino et al., 2014 ), and our previous

ork has demonstrated that the amygdala and nucleus accumbens vary

n when they reach a point of maturity across individuals ( Mills et al.,

014 ). Identifying the periods of development when there is more inter-

ndividual variability in change vs. stability can inform theories on how

mmaturity vs. maturity in a given brain measure reflects cognitive,

motional, and behavioral processes across development (e.g. the im-

alance model; Casey et al., 2008 ). 

Several neurodevelopmental models of psychopathology hypothe-

ize deviations in the rate of brain development for individuals at risk

or, or with already developed, mental health disorders ( Shaw et al.,

010 ). Neuroimaging studies have indeed demonstrated that rates of

hange in structural brain development relate to psychopathologi-

al symptoms ( Bos, Peters, et al., 2018 ; Bos, Wierenga, et al., 2018 ;

ucharme et al., 2014 ; Muetzel et al., 2018 ; Whittle et al., 2020 ). No-

ably, sex differences are also present in patterns of structural brain

hanges across childhood and adolescence ( Herting et al., 2014 , 2018 ;

ierenga, Bos, et al., 2018 ; Wierenga, Sexton, et al., 2018 ), which may

e pertinent to understanding sex differences in onset, prevalence, and

rogression of psychopathology ( Paus et al., 2008 ; Shaw et al., 2010 ).

urrently, there are several large-scale initiatives that aim to identify the

enetic and environmental factors that shape the developmental course

f the brain (e.g. ABCD, IMAGEN, Generation R). Moving forward, how-

ver, these investigations of brain development would benefit from

nowing the periods of development when the most inter-individual

ariability is likely to occur, and which measures of the brain demon-

trate the most inter-individual variability in developmental change. 

There are now several longitudinal MRI datasets of structural brain

evelopment that can be used to examine variability in brain change

ver time ( Vijayakumar et al., 2018 ). Indeed, individual variability in

ow the brain develops can only be examined with longitudinal datasets.

hile large cross-sectional samples are able to quantify the normative

ange of values of a given brain measurement at different periods of de-

elopment, only longitudinal datasets can quantify the normative range

f how brain measurements change within individuals at different pe-

iods of development, as it is not possible to estimate average rates of

hange in a given developmental period with only one measurement

ollected per individual. Recently, we have conducted secondary anal-

ses of multiple longitudinal datasets with two or more time points of

ata per individual to establish replicable group-level models of typ-

cal structural brain development from childhood to early adulthood

 Herting et al., 2018 ; Mills et al., 2016 ; Tamnes et al., 2017 ). The focus

f the present investigation is to characterize inter-individual variability

nd sex differences in changes of brain structure (morphometry) across

evelopment. We do so by taking advantage of three separate datasets of

eveloping individuals with three time points of data, which is necessary

o model individual-level slopes in a multi-level analysis framework. 

While the main focus of the present study is characterizing inter-

ndividual variability in structural brain changes, we also examine

hether individuals who have higher or lower measurements of a given

tructure compared to similar-aged peers show different maturation pat-

erns. This secondary focus of the present investigation is motivated by

 common inference in the neuroimaging literature that the maturity of

 developing individual’s brain size can be assessed by comparing them

ross-sectionally to similar-aged peers. For example, children and ado-

escents with thinner cortex than similar-aged peers are often inferred

s more mature, or faster-maturing, in their brain development (e.g.,

aulus et al., 2019 ; Tamnes et al., 2018 ; Thijssen et al., 2020 ). In this

xample, the inference stems from the group-level observation that the
2 
ortex of the human brain decreases in thickness across childhood and

dolescence, but fails to consider the large amount of variability neu-

otypically developing children can have in one given brain measure

 Wierenga et al., 2019 ). For example, one child can have an average

ortical thickness that is 85% of the value of another child the same

ge (from data presented in Tamnes et al., 2017 ). If the claim that chil-

ren and adolescents with thinner cortex are more mature, we would

xpect that they would show less overall change in cortical thickness,

s a lack of change in brain structure is one way to assess the maturity

f the brain. We test this hypothesis, as well as the relationship between

verall values of other structural brain measurements in an individual

ith observed changes during development. We also examine how the

elationship between overall brain size and maturation patterns differ

etween females and males. 

. Methods 

.1. Participants 

This study examined participants from three separate longitudinal

atasets collected from independent research sites located in three coun-

ries: Leiden University (BrainTime), University of Oslo (Neurocognitive

evelopment; NCD), and University of Pittsburgh (LunaCog). Only par-

icipants with three high-quality anatomical brain scans were included

n the present analysis, for a total of 269 participants (149 females, 120

ales). Demographic characteristics for each sample are described in

able 1 , and the sampling design is illustrated in Figure 1 . The distri-

ution of ages varied slightly by dataset, with the average age of par-

icipants at first and last visit (and the interval between them) as fol-

ows: approximately 15–19 years (4 years) for BrainTime, 14–21 years

7 years) for NCD, and 15–18 years (3 years) for LunaCog. Scan inter-

als differed between datasets X 

2 (2) = 579.74, p < 0.0001, with a mean

nterval of 2.23 ± 0.8 years. The number of data points included from

emales and males for each age (rounded to year) is illustrated in SFig. 1.

etails regarding participant recruitment at each site are described in

he Supplemental Material. 

.2. Image processing 

Participants in the BrainTime and LunaCog samples were scanned

sing 3-T MRI machines, while the NCD sample was scanned using a

.5-T MRI machine. Details regarding image acquisition at each site are

escribed in the Supplemental Material. MRI processing was performed

ith the FreeSurfer 6.0 image analysis suite, which is documented

nd freely available online ( http://surfer.nmr.mgh.harvard.edu/ ), on

orkstations and operating systems at their respective universities

see Supplemental Material). The technical details of these procedures

re described in detail in seminal publications ( Dale et al., 1999 ;

ischl et al., 1999 , 2002 ). This processing stream includes motion cor-

ection ( Reuter et al., 2010 ), removal of non-brain tissue using a hybrid

atershed/surface deformation procedure ( Ségonne et al., 2004 ), au-

omated Talairach transformation, non-parametric non-uniform inten-

ity normalization ( Sled et al., 1998 ), tessellation of the gray/white

atter boundary, automated topology correction ( Fischl et al., 2001 ;

égonne et al., 2007 ), and surface deformation following intensity gradi-

nts to optimally place the gray/white and gray/cerebrospinal fluid bor-

ers at the location where the greatest shift in intensity defines the tran-

ition to the other tissue class ( Dale et al., 1999 ; Dale and Sereno, 1993 ;

ischl and Dale, 2000 ). Each cortical model was registered to a spherical

tlas using individual cortical folding patterns to match cortical geom-

try across participants ( Dale et al., 1999 ). 

Images were then processed using FreeSurfer 6.0 ′ s longitudinal

tream ( Reuter et al., 2012 ). This process includes the creation of an

nbiased within-participant template space and image using robust, in-

erse consistent registration ( Reuter et al., 2010 ). Several processing

teps, such as skull stripping, Talairach transforms, atlas registration as

http://surfer.nmr.mgh.harvard.edu/
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Table 1 

Distribution of age and sex for the number of scans for each dataset. All participants had to have three good-quality MRI scans to be included in the present study. 

BrainTime Neurocognitive Development (NCD) LunaCog Overall 

Female ( N = 267) Male ( N = 192) Female ( N = 84) Male ( N = 78) Female ( N = 96) Male ( N = 90) Female ( N = 447) Male ( N = 360) 

age 

Mean (SD) 16.7 (3.58) 16.2 (3.44) 16.8 (4.26) 16.5 (4.41) 16.6 (2.82) 16.7 (3.13) 16.7 (3.56) 16.4 (3.60) 

Median [Min, Max] 16.7 [8.50, 25.0] 16.5 [8.01, 25.3] 16.9 [8.33, 25.9] 16.5 [8.75, 26.0] 16.7 [10.1, 22.1] 16.9 [10.5, 22.6] 16.7 [8.33, 25.9] 16.6 [8.01, 26.0] 

Fig. 1. Scatter plot of age at scan for all partici- 

pants. Each of the participants are shown in a dif- 

ferent row, with each line connecting their three re- 

spective scans. Female (circle) and males (triangles) 

are denoted for each dataset (BrainTime: green; 

NCD: blue; LunaCog: Purple). 
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ell as spherical surface maps and parcellations are then initialized with

ommon information from the within-participant template, significantly

ncreasing reliability and statistical power ( Reuter et al., 2012 ). All im-

ges were assessed for quality, as described further in the Supplemental

aterial. 

.3. Brain measures of interest 

Measures of brain structure were computed at each time-point for

ach participant. For the purposes of this study, we included global

easures of total gray matter volume, cortex volume, mean cortical

hickness, white matter surface area, cerebral white matter volume, sub-

ortical gray matter volume, as well as volumes of specific subcorti-

al structures: amygdala, hippocampus, thalamus, pallidum, caudate,

nd putamen. We chose not to report on the nucleus accumbens of the

reeSurfer output, given less information about the test-retest reliabil-

ty of the nucleus accumbens using the FreeSurfer longitudinal pipeline

 Reuter et al., 2012 ). 

.4. Analysis procedure 

The first aim of the study was to characterize inter-individual vari-

bility in structural brain change from late childhood into early adult-

ood. Each participant in the current analysis had three good-quality

RI scans, which allowed us to examine individual-level change across
3 
hese three time points. We took two different approaches to measure

nter-individual variability in change, which are described below. 

First, we calculated change in a structure between each observation

eriod, which gave us two observations of change per participant given

hat each participant had three time points of data. We then calculated

he annualized change score by dividing the amount of change observed

etween time points by the amount of time between the two observation

eriods. We also calculated the annualized percent change, to provide an

ssessment of how a given structure changed relative to the overall size

f the structure. We calculated the amount of change relative to the

verage size of the brain structure between observation periods. Specif-

cally, this is how we calculated the annualized percent change for each

tructure for each of the two observation periods, with ( x = observa-

ion): 
(( ( Brain meas urem en 𝑡 

𝑥 +1 − Brain meas urem en 𝑡 
𝑥 ) 

( Brain meas urem en 𝑡 
𝑥 
+ Brain meas urem en 𝑡 

𝑥 +1 ) 
)
× 100 

)

Ag 𝑒 
𝑥 +1 − Ag 𝑒 

𝑥 

Our rationale for examining both annualized change and annualized

ercent change is so that we could assess if there were any notable

ifferences between the two, as we have done in our previous work

 Mills et al., 2016 ). 

For this first aim, we applied a generalized additive mixture model

GAMM; R package mgcv version 1.8–31 ( Wood, 2011 )) to visualize the

roup-level developmental pattern of change across the age period, as

ell as to assess if these patterns differed between females and males.

AMM allows us to flexibly model the group-level developmental pat-
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ern of change across the age period while nesting within participant,

ithout assuming a given shape of the relationship between age and

hange. As opposed to polynomial-based linear mixed models, GAMM

eplaces the linear slope parameters with ‘smooth’ functions to find the

ptimal functional form between the predictor and response ( Jones &

lmond, 1992 ). The inclusion of site as a random factor had a negli-

ible impact on models. LR tests comparing models with and without

ite as a random factor demonstrated that they were close to equivalent

p-values > .90). Thus, site was not included as a random factor in our

nal models. To assess sex differences, we compared three GAM models:

n age only model, a model including a main effect of sex and age, and

 model including an interaction between sex and age. We compared

hese three models using Akaike Information Criterion (AIC) and like-

ihood ratio statistics (LR test) to avoid overfitting, selecting the model

ith the lowest AIC score that was significantly different from the more

arsimonious models. To formally compare the relationship between the

agnitude of inter-individual variability of a given brain measure across

ge, we applied a generalized additive model with penalized cubic re-

ression splines predicting the standard deviation of annualized percent

hange calculated within yearly age bins. 

To examine inter-individual variability in the direction of develop-

ental change, we categorized observations as increasing in a given

tructure if their annualized percent change was equal to or greater than

he standard deviation of the annualized percent change observed in that

tructure calculated across the entire sample, decreasing if their annu-

lized percent change was equal to or lesser than the negative value

f the standard deviation, and stable if between these values. To for-

ally compare the direction of inter-individual variability of a given

rain measure across age, we performed chi-square tests comparing the

umber of observations of each direction of change across developmen-

al period-defined age bins. For the purposes of these tests, if the age

t the midpoint of the observation period was less than or equal to 13

ears, the observation was classified as “transition into adolescence. ” If

he age at the midpoint of the observation period was between 14–18

ears, the observation was classified as “mid-adolescence. ” If the age at

he midpoint of the observation period was greater than 18 years, the

bservation was classified as “transition into early adulthood. ”

The second aim of the study was to examine the relationship between

he size of an individual’s brain measure to their rate of change for that

easure. For example, we wanted to assess if individuals with thicker

ortex show a greater rate of change in cortical thickness over time as

ompared to individuals with thinner cortex. This is also accomplished

n a GAMM, using a natural cubic spline to model the known non-linear

ge associations at the population-level, across the age range studied

ere. To measure the size of each examined structure for a given indi-

idual, we took the average of the value of that structure across all three

bservations. Studying the association between an individual’s average

easure with their rate of change (slope) avoids a negative bias of the

ssociation estimate that measurement error can introduce when exam-

ning the initial measurement and subsequent measurements (for details

ee Chiolero et al., 2013 ). Thus, to answer the question if an individual’s

ate of change in cortical thickness is associated with their cortical thick-

ess (averaged across observations), then our modeling strategy had to

ake into account where the individual is relative to the population, or

roup-level, mean as seen with age and sex. For example, we know cor-

ical thickness decreases over mid to late adolescence. Thus, an older

dolescent (i.e. age 17 years) is likely to have thinner cortex than a

ounger adolescent (i.e. age 11 years). And for brain measures such as

ray matter volumes, females are likely to have smaller gray matter vol-

mes than males. Thus, our approach had to include understanding an

ndividual’s average brain measure relative to the population averages

een for the individual’s age and sex. This was captured with the natural

ubic spline. 

With these considerations in mind, we applied a multi-level model

f brain development as a function of age, with a participant-specific

andom intercept and slope. This is the same as fitting a hierarchical
4 
odel for a given brain measurement (level 1) and slope (level 2). In

evel 1, the brain measure (i.e. cortical thickness) is modeled as a natu-

al cubic spline with 4 degrees of freedom and an intercept that varies by

ex and dataset. Importantly, a natural cubic spline is a piecewise cubic

olynomial that ultimately allows for capturing nonlinearity in the data

ith constraints in place to reduce the likelihood of overfitting. In level

, the slopes vary by sex and dataset and the deviation of the individual

articipant’s brain measure (i.e. an individual’s average cortical thick-

ess) from the population mean for the measure (i.e. average cortical

hickness). Specifically, 

evel 1 ∶ Y ij = b 1 + b 2 X 2 + b 3 X 3 + b 4 X 4 + b 5 X 2 X 4 + b 6 X 3 X 4 + b 7 i ag e ij 
+ f 

(
ag e ij 

)
+ b 0i + e ij 

evel 2 ∶ b 7i = g 1 + g 2 X 2 + g 3 X 3 + g 4 X 4 + g 5 X 2 X 4 + g 6 X 3 X 4 

+ 

(
g 7 + g 8 X 4 

)(
avg Y i . − avgY .. 

)
+ e s i 

here Y ij is the brain measure and age ij is age at the j th visit (i.e. 1-

) for the i th participant; b 1 – b 6 are coefficients that capture separate

ntercepts of females and males in each study (BrainTime, NCD, and Lu-

aCog); b 7i is the individual’s trend over age, and f(age ij ), the remaining

erms that model age as a natural cubic spline ( Hastie et al., 2009 ); b 0i 

eflects the individual’s random intercept (centered by group average

ased on sex and dataset) and e s i their (group-level centered) random

lope; g 1 – g 6 capture the average slope of age in females and males

n each dataset (BrainTime, NCD, LunaCog); g 7 and g 8 are the primary

ovariates of interest; plus error (e ij ). Specifically, g 7 measures the as-

ociation between the individual’s slope (i.e., rate of change in cortical

hickness, b 0i ) and the individual’s average brain measure (avgY i ., i.e.,

ndividual’s average cortical thickness) relative to the population aver-

ge for that brain measure (avgY., i.e., cortical thickness) in females;

 8 reflects the difference in association between an individual’s slope

nd the individual’s average brain measure (relative to the population

verage) in males (vs. females). Each predictor variable is centered by

ubtracting the average value. This two-level model can be fit by substi-

uting the b 1i from level 2 in the level 1 model. The variables are coded

sing two indicator variables for dataset ( X 2 = 1 if NCD, 0 otherwise;

 3 = 1 if LunaCog, 0 otherwise), and one for sex ( X 3 = 1 if male, 0 if

emale). 

. Results 

.1. Inter-individual variability in structural brain change 

We report the standard deviations for both the annualized change

nd annualized percent change across the sample for each structural

rain measure in STable 1. Given that the annualized change and annu-

lized percent change approaches resulted in almost identical develop-

ental patterns of structural brain change (compare Fig. 2 with SFig. 2),

e focus on describing the results from the annualized percent change

easure since it allows for greater comparability across measures. For

isualization, we plot annualized percent change against the age at the

idpoint of observation period ( Fig. 2 ). To visualize the number of ob-

ervations categorized as either “decreasing ” “stable ” or “increasing ”

or each examined brain measure, we binned observations by yearly in-

rements based on the individual’s age at the midpoint of observation

eriod ( Fig. 3 ). Our GAM models predicting annualized percent change

y age are grouped together for visualization purposes in Fig. 4 . 

Inter-individual variability in direction and magnitude of change was

resent to some degree for every structural brain measure examined, and

his variability was present across late childhood and into early adult-

ood ( Figs. 2 and 3 ; SFig. 3). Similar developmental patterns of change

ere observed for total brain and cortical gray matter, mean cortical

hickness, and white matter surface area. The majority of individuals

emonstrated either stability or decreases in the transition into adoles-

ence for cortical measurements and total gray matter volume, whereas
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Fig. 2. Annualized percent change over time for each individual (y-axis), against age at the midpoint of the observation period. The purple line reflects group-level 

annualized percent change seen with age. The black dashed line marks 0 on the y-axis and the dashed gray lines represent the standard deviation of annualized 

percent change across the whole sample. A) Total gray matter volume, cortex volume, cortical thickness, white surface area, and white matter volume B) Subcortical 

gray matter volume and specific subcortical structures. The equivalent graphs for annualized change can be seen in SFigure2. 

5 
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Fig. 3. Number of individuals showing volume increases (purple), decreases 

(pink), or no change (turquoise) based on the individual’s age at the midpoint of 

observation period. A) Total gray matter volume, cortex volume, cortical thick- 

ness, white surface area, and white matter volume B) Subcortical gray mat- 

ter volume and specific subcortical structures. See S Figure 3 for the same data 

graphed by percentage of individuals in each category. 
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n mid-adolescence (roughly between ages 14–17 years), the majority

f individuals showed decreases in these measurements (see Table 2 for

hi-square tests). By late adolescence and into early adulthood, there

as again more variability, with the majority of individuals demonstrat-

ng either stability or decreases. These cortical measurements demon-

trated the largest magnitude in decrease in change observed for most

ndividuals in the early to mid-teens, and more stability observed in the

arly twenties ( Figure 4 ). For cerebral white matter volume, the majority

f individuals demonstrated increases in the transition into adolescence,

hifting to the majority demonstrating stability by mid-to-late adoles-

ence ( X 

2 (2, 353) = 70.063, p < 0.0001). For subcortical gray matter

olume and specific subcortical structures, variability in direction and

agnitude of change was visible throughout the age-range investigated

STable 2; SFig. 3). For some structures, there appears to be subtle devel-

pmental patterns for directions of change, e.g. for the pallidum, most

ndividuals demonstrated either an increase or stability in the transi-

ion into adolescence ( X 

2 (2, 353) = 29.661, p < 0.0001), and no sub-

tantial change from mid-adolescence onward ( X 

2 (2, 461) = 3.2101,

 = 0.2009). 
6 
We observed sex differences in the overall magnitude of annualized

ercent change for total gray matter volume, white surface area, cere-

ral white matter volume, subcortical gray matter volume, and for the

allidum, and we observed sex differences in the magnitude and pattern

f annualized percent change for cortex volume ( Fig. 5 ). The selected

est fitting model did differ for two brain measures when change was

ssessed as annualized change instead of annualized percent change (see

Table 3). For total gray matter volume, the model including sex and

ge as an interaction was the best fitting model when annual percent

hange was modeled by age, whereas this interaction model did not con-

erge when annualized percent change was modeled by age. Further, the

ain effect of sex observed for white surface area when annualized per-

ent change was modeled by age was not present when annual percent

hange was modeled by age. Model comparison statistics for both annu-
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Table 2 

Chi-square tests of age-bins and categorized direction of change. For the purposes of these tests, if the age at the 

midpoint of the observation period was less than or equal to 13 years, the observation was classified as “transition 

into adolescence. ” If the age at the midpoint of the observation period was between 14-18 years, the observation 

was classified as “mid-adolescence. ” If the age at the midpoint of the observation period was greater than 18 

years, the observation was classified as “transition into early adulthood. ”

Across age bins ≤ 13 vs. 14-18 years 14-18 vs. > 18 years 

Measure X 2 df p-value X 2 df p-value X 2 df p-value 

Total Gray Matter Volume 65.569 4 0.0000 60.657 2 0.00000 28.183 2 0.00000 

Cortex Volume 78.748 4 0.0000 62.238 2 0.00000 52.978 2 0.00000 

Mean Cortical Thickness 48.796 4 0.0000 18.553 2 0.00009 43.981 2 0.00000 

White Surface Area 57.906 4 0.0000 37.409 2 0.00000 35.637 2 0.00000 

Cerebral White Matter Volume 119.219 4 0.0000 70.063 2 0.00000 14.504 2 0.00071 

Subcortical Gray Matter Volume 27.369 4 0.0000 26.543 2 0.00000 0.971 2 0.61538 

Amygdala 27.055 4 0.0000 14.917 2 0.00058 7.04 2 0.02960 

Hippocampus 18.736 4 0.0009 7.993 2 0.01838 6.82 2 0.03304 

Thalamus 32.24 4 0.0000 29.14 2 0.00000 6.599 2 0.03690 

Pallidum 45.775 4 0.0000 29.661 2 0.00000 3.21 2 0.20088 

Caudate 23.964 4 0.0001 18.556 2 0.00009 5.957 2 0.05087 

Putamen 7.345 4 0.1187 5.057 2 0.07979 0.455 2 0.79651 

Table 3 

Generalized Additive Mixed-effects Models (GAMM) examining associations between participant’s slope and aver- 

age brain size. Degrees of freedom, F-statistic, and p-value for Type III sum of squares are presented for each fixed 

effect of interest, as well as total observations and overall model fit ( R 2 ). 

Measure Finding 

Individual Slope by Brain Size 

Effect (in Females) Sex Difference (vs. Male) 

R 2 df F p df F p 

Total Gray Matter Volume Sex Interaction 1 26.43 0.0000004 1 12.79 0.0004 0.988 

Cortex Volume Sex Interaction 1 28.580 0.0000001 1 9.755 0.002 0.987 

Mean Cortical Thickness Sex Interaction 1 4.107 0.0432 1 6.718 0.001 0.924 

White Surface Area Sex Interaction 1 9.882 0.002 1 3.840 0.051 0.997 

Cerebral White Matter Volume None 1 1.056 0.305 1 0.577 0.448 0.996 

Subcortical Gray Matter Volume None 1 2.533 0.112 1 2.626 0.106 0.982 

Amygdala None 1 0.229 0.632 1 1.285 0.258 0.975 

Caudate None 1 0.508 0.476 1 0.122 0.727 0.972 

Hippocampus None 1 1.352 0.246 1 1.356 0.245 0.980 

Pallidum None 1 2.082 0.150 1 1.595 0.207 0.949 

Putamen None 1 0.006 0.940 1 0.047 0.828 0.956 

Thalamus None 1 0.002 0.964 1 0.017 0.896 0.980 
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lized change and annualized percent change measures are detailed in

 Table 3 . 

. Relationship between an individual’s brain measure and rate 

f change 

Population, or group-level, mean estimates for each brain measure

re plotted by age and sex in SFig. 5. Results for the relationship be-

ween the rate of change of a given structural brain measure (i.e. change

n white matter volume, change in amygdala volume, etc.) to an individ-

al’s average brain measure (i.e. average white matter volume, average

mygdala volume) and their sex are summarized in Table 3 . Complete

odel outputs for each cortical and subcortical outcome can be found

n STable 4. An individual’s total gray matter volume was found to sig-

ificantly relate to an individual’s rate of change in gray matter vol-

me over time and this was found to be different in females vs. males

 Fig. 6 ). This same pattern was also seen for cortex volume, mean cor-

ical thickness, and white matter surface area ( Fig. 6 ). Females with

arger brain measurements (i.e. gray matter, cortex volume, mean cor-

ical thickness, white surface area) showed steeper decreases, or larger

egative rates of change, in these brain outcomes (i.e. gray matter, cor-

ex volume, mean cortical thickness, white surface area) as compared

o females with smaller brain measurements. However, males showed

imilar rates of change in each outcome regardless of how large or small

heir volumes, cortical thickness, or white matter surface areas were. No

elationship was seen between an individual’s rate of change and vol-
7 
mes of cerebral white matter, subcortical gray matter, or any of the

pecific subcortical structures examined in the present study ( Table 3 ). 

. Discussion 

The current collaborative research study utilized three longitudinal

atasets including a total of 807 scans from 269 participants to quantify

nter-individual variability in the development of whole brain, cortical,

nd subcortical measurements across 8.0 to 26.0 years of age. Inter-

ndividual variability was present in each examined brain measurement,

emonstrating that even when the majority of individuals follow a cer-

ain development pattern, some individuals will differ in the direction

nd magnitude of change. The majority of individuals demonstrated de-

reases in total gray matter volume, cortex volume, mean cortical thick-

ess, and white matter surface area in mid-adolescence, with more vari-

bility present during the transition into adolescence and the transition

nto early adulthood. In contrast, the majority of individuals demon-

trated increases in cerebral white matter in the transition into adoles-

ence, with the majority showing stability starting in mid-adolescence

nd continuing into adulthood. Most individuals demonstrated little to

o substantial change in subcortical structures or overall subcortical

ray matter volume across the age range examined. Sex differences were

argely reserved to cortical and whole brain measurements, in both our

xamination of patterns of annualized percent change across age, as well

s in the association between brain structure size and rate of change. 
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Fig. 4. GAM models for annualized percent change for multiple brain measures together on one graph for the purpose of comparing group-level patterns of change. A) 

Total gray matter volume, cortex volume, cortical thickness, white surface area, and white matter volume B) Subcortical gray matter volume and specific subcortical 

structures. 
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Given that the majority of longitudinal development MRI studies

n children and adolescents have been limited by two time points of

ata, most studies have looked at group-level effects of age. Few studies,

owever, have examined individual differences in how these structures

hange over time. The present study adds to the existing research by

etailing just how variable changes in brain structure can be across late

hildhood and into young adulthood. Not only do individuals vary sub-

tantially in their overall brain structure size, but they can also differ
8 
n the magnitude, and sometimes direction, of observed developmen-

al changes. We identified points in development where there is more

nter-individual variability in direction of change for specific structural

easurements, which can inform future work in several ways. For corti-

al measures, inter-individual variability in the direction of change was

reatest in transition periods into adolescence and into early adulthood.

esearch that aims to examine linear developmental processes in cor-

ical measurements may want to constrain their age range to the teen
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Fig. 5. GAM models for annualized percent change for the brain measures with sex effects (see S Table 3 for model comparison statistics). For total gray matter 

volume, white surface area, cerebral white matter volume, subcortical gray matter volume and pallidum, the best fit model included sex as a main effect. For cortex 

volume, the best fitting model included an interaction between sex and age. Female participants and their best fitting GAM model are represented in yellow, whereas 

males are represented in green. 

Fig. 6. Significant sex differences in the association between individual’s slope as a function of an individual’s average brain measure compared to the group average 

(i.e. based on their study site and sex). Graphs present the magnitude of slope (i.e. rate of change) based on if an individual’s relative brain size to the group, with 

negative values reflecting smaller volumes and positive values reflecting larger volumes. Note, volume estimates have been scaled by 1000. 
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ears as this is when we can have the highest confidence that most in-

ividuals will be showing the same direction of change. Furthermore,

esearchers might choose to examine cortical volume over cortical thick-

ess or surface area for such an investigation, as this cortical measure-

ent shows the most consistency in direction of change during the teen

ears. The current study can also inform research wishing to assess in-

ividual differences in “inflection points ” or brain maturation. Notably,
9 
or cerebral white matter volume, the majority of variability was in re-

ard to when an individual begins to show stability in that measurement.

Examining the relationship between an individual’s brain size and

verall developmental change revealed differing patterns between fe-

ales and males. For example, females with larger total gray matter and

ortical volume, cortical thickness, and cortical surface area measure-

ents also demonstrated larger decreases in those measurements across
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ime. This association was not present in males. These findings provide

dditional evidence suggesting that not only do individual differences

xist in the overall level and pattern of development (i.e. slope), but

lso that these two properties of individual differences in cortical brain

evelopment relate to one another in a region-specific fashion. 

The observed individual-level and sex differences in brain changes

rom late childhood into young adulthood highlight the importance

f further studying individual-level trajectories of brain maturation in

ognitive and clinical neurodevelopmental investigations. A closer ex-

mination of each participant’s change over time suggests a complex

nterplay as to where the individual may fall relative to the group-

verage brain measurement. Regardlessof whether trajectories of struc-

ural brain development are linked to overall size for a given brain re-

ion, the amount of inter-individual variability seen among each of these

tructures demonstrates that prior work aimed at understanding risk for

sychopathology between the sexes via group-level sex differences in

ates of brain maturation may miss the mark in identifying which indi-

iduals go on to develop mental health problems. 

.1. Limitations 

A substantial limitation to the current investigation is the lack of

ociodemographic information available across the three longitudinal

amples included in our analysis, which limits the ability to explore how

otential environmental factors contribute to the variation seen in struc-

ural brain development and how this, in turn, may relate to behavior.

urther, our definition of the threshold for what constituted a develop-

ental change in a given brain measure represents a best estimate rather

han a definitive rule. We calculated this threshold for each brain mea-

ure based on the overall standard deviation in annualized change (or

nnualized percent change) observed across the entire sample, which

ielded estimates similar to those calculated from test-retest reliability

tudies of FreeSurfer measurements ( Morey et al., 2010 ; Reuter et al.,

012 ). Nevertheless, our threshold for identifying change could have an

mpact on the conclusions of the present study and we suggest that fu-

ure studies include multiple scans per individual in a given time point in

rder to best differentiate between time point measurement error from

rue developmental change. The current work also does not compare

he inter-individual variability in developmental change across cortical

egions —a key next direction to identify differences in when cortical

egions undergo the most variable development between individuals.

or example, frontal areas may be particularly relevant targets for fu-

ure work, given evidence that rates of change in frontal regions vary in

hildren and adolescents experiencing different levels of mental health

ymptoms ( Ducharme et al., 2014 ; Bos et al., 2018 ), or different envi-

onmental experiences ( Whittle et al., 2014 ). While the current work is

ot able to relate inter-individual variability in brain development to

ther developmental processes, future studies would benefit from relat-

ng these measures of changes to cognition, behavior, and mental health

uring adolescence. Finally, future work examining individuals with at

east four time points of data would allow for estimation of non-linear

ndividual slopes, which is more likely to resemble the shape of devel-

pment for many structural brain measurements spanning the period of

ate childhood to early adulthood. 

. Conclusions 

The present study demonstrates that individuals vary in the direc-

ion and magnitude of structural brain changes across late childhood

nto young adulthood. For cortical measurements, the greatest inter-

ndividual variability in the direction of change was observed during

ransition periods into adolescence and into early adulthood. In contrast,

he majority of individuals demonstrated increases in cerebral white

atter in the transition into adolescence, with individuals starting to

tabilize in mid-adolescence. The magnitude of changes observed dif-

ered between females and males for whole brain measurements. Inter-
10 
ndividual variability in rates of change related to overall brain size dif-

erently between females and males. Female participants demonstrated

 negative relationship between brain size and change for cortical mea-

urements, whereas this pattern was not seen in males. 
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