UNIVERSITY OF OSLO
Department of Informatics

Multimedia Stream
Adapter for
Object-Oriented
Middleware

Cand Scient thesis

Doru-Catalin Togea

19th November 2004

Acknowledgments

First of all, I would like to thank God for the fact that I could finish this
thesis. He knows — life isn’t always easy. Especially thanks for all those
blessings which I have not noticed to have come from Him, but which I
have benefited from and which I have probably also enjoyed in spite of my
ignorance. I hope I will be able to thank Him one day, face to face.

Secondly, I would like to thank my mother Cornelia Togea (Sr.) and my
sister Cornelia Togea (Jr.) for helping me to the uttermost of their abilities.
Thank you mother, especially for being able to come back "home", for so
long.

Thirdly, I would like to thank my two supervisors, Thomas Plagemann
and Tom Kristensen for everything they have done for me: tutoring me,
giving encouragements, being very, very patient with my procrastinations
and so on. Especially thanks to Thomas Plagemann who has helped me to
get a much needed extra period of three weeks at the very end of my work
with this thesis.

Many thanks also to my sensor, Anders Andersen, for being willing to
grade this thesis in a much reduced period of time. Many thanks also to
the administrative staff of the Institute for Informatics who have granted me
this postponement.

Fourthly, I would like to thank prof. Stein Krogdahl for answering my
questions about parsing and grammar conversions. Many thanks also to
f.aman. Carsten Griwodz who has been so helpful when I could not figure
out some obstinate bugs in my programs. Some other individuals have also
shared with me fromtheir insight.

Many thanks to Ovidiu-Valentin Drugan, for helping out with the print-
ing of this thesis ;)

Finally, I would like to thank my good friend, Karmen Palts, for being
such a good friend to me. No one has thought me more about love then you.

ii

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

7.1
7.2
7.3

8.1

9.1
9.2
9.3
9.4
9.5
9.6
9.7

QoS layers: a) [4],b) [31]
RM-ODP binding object.

RM-ODP channel object.
The CORBA object adapter.

The OSI referance model and Da CaPo
Da CaPo’s three layers’ model
ICE Client and Server Structure, [10]
ICE development cycle, [10]
FIDL element class hierarchy [16].

Different mechanisms for control and payload data paths. . . .
Control and payload data paths through the ORB.
Polling application communication pattern for payload data

Callback application communication pattern for payload data .
Callback proxy hand-over.

Da CaPo flow.
Da CaPo module details: the direction of the data flow.
Da CaPo flow: no C-modules.
Module class hierarchy. L.

The FIDL stream concept
An alternative stream concept
A stream object’s possible states.

Media module elements and the MSA.

MSA based application structure.
ICFE based server callback flow.
ICFE based server callback flow.
Objects corresponding to element declarations.
Objects corresponding to flow implementations declarations. .
QoS level objects of the MSA’s run-time.
The stream object of the MSA’s run-time.

il

56
a7
58
60
61

v

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

13.1

Da CaPo demo: surveillance camera. 119
Da CaPo demo protocol graph 120
ICE based client polling demo application. 123
MSA demo: main and statistics windows. 125
MSA demo: image viewer window. 126
Exp. 1: bringing the stream object to its Stopped state. 128
Exp. 2: changing from QOSL2 to QOSLI 130
Exp. 3: changing the frame rate from 5 to 30 for SIF images. 131
Exp. Jand bo Lo 132

Integrated Da CaPo and MSA system. 147

List of Tables

3.1 FIDL keywords: generic keywords [16]. 36
3.2 FIDL keywords: attribute names [16]. 36
6.1 The fields of a Da CaPo packet’s header. 71
8.1 Slice classes for flow implementations. 95
8.2 C++ classes for flow implementations. 96
8.3 Slice QoS level binding classes., 97
84 | QoS level binding classes. 97
8.5 Slice classes for media elements. 98
8.6 C++ classes for media elements. 98
11.1 Modules used in our Da CaPo demo. 120

vi

Contents

Acknowledgmentso Lo i
List of Figures iv
List of Tables o . v
1 Introduction 1
1.1 Why a multimedia stream adapter? 1
1.2 Project contexto 2
13 Thesisgoals 2
1.4 Research method 4
1.5 Contributions 5
1.6 Terminology 5
1.6.1 Client and server 5
1.6.2 Demo applications 6

1.6.3 FIDL vs. FIDL++ 6

1.7 The structure of this thesis 6
2 General background 9
2.1 General multimedia issues 9
2.1.1 Data classification 9
2.1.2 Types of multimedia data 11
2.1.3 Streams and flows 0oL 12
214 QoS 12

2.2 Keyissuesin ODMP 14
2.3 RM-ODP e 16
2.3.1 The computational view 16
2.3.2 The engineering view 17

24 CORBA o 18
24.1 IDL e 18
2.4.2 The CORBA object adapters 19

2.5 CORBA’s A/V Streams Specification 20
2.6 Summary 21

vii

viii

3 Specific background

31 DaCaPo.
3.1.1 The motivation for Da CaPo
3.1.2 Da CaPo’s philosophy
3.1.3 Da CaPo and the OSI referance model
3.14 DaCaPomodules

3.2 ICE e
321 ICEinthepress
3.22 ICEfeatures
3.2.3 Configuration files” API
3.24 Supported protocols
3.2.5 Invocation styles
3.2.6 Invocation types
327 ICEservices. oo iii
328 QoSinICE
329 Slice
3.2.10 The ICE development cycle
3.2.11 The ICE object adapters

3.3 FIDL
3.3.1 Media format taxonomy
3.3.2 Lexical conventions
3.3.3 FIDL grammar
3.3.4 A semantic interpretation of FIDL
3.3.5 A FIDL specification example
3.3.6 Other features

34 Summary e

4 Requirements

4.1 Overview e e e e e e e
4.1.1 MULTE-ORB requirements
4.1.2 Da CaPo requirements
4.1.3 Object adapter requirements

4.2 Analysis
4.2.1 MULTE-ORB requirements revisited
4.2.2 Da CaPo requirements revisited
4.2.3 Object adapter requirements revisited

4.3 Summary

5 Options

5.1 Main approaches to streaming
5.1.1 ExtendinganIDL
5.1.2 Usingonly CORBAIDL
5.1.3 A streaming object adapter

5.2 ORB based programming styles

23
23
23
24
24
26
27
27
27
29
29
29
30
30
31
31
33
34
35
35
36
37
37
39
42
44

45
45
45
46
47
47
47
49
50
o1

6

5.3
5.4
5.5

5.2.1 ORBs and sockets
5.2.2 ORBs only: polling and callback
Compiler tools (PLY)
Decisions for this thesis
Summary

Da CaPo

6.1

6.2

6.3
6.4

General remarks
6.1.1 The A-module
6.1.2 The C-module
6.1.3 The T-module
Da CaPomodules.
6.2.1 Module: the base module class
6.2.2 ModuleB: the buffered (abstract) module class
6.2.3 The Da CaPopacket
6.2.4 ModuleT: the threaded (abstract) module class
6.2.5 Modulel: the independent module class
Da CaPo module interface
Summary

FIDL-++

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

The formal background of FIDL
The concepts of streams and flows
The concept of media elements
The intersection of flow specifications
Additions to FIDL
The constraint clause
The concept of state
The QoS concept
Summary

Code generation

8.1
8.2
8.3
8.4

Filenames
Classnames o v v v v i i i e e et
Media element modules
Summary

The MSA run-time

9.1
9.2
9.3

Main componentso
ICE based server callback implementation
Compiler generated objects
9.3.1 Media elements derived objects
9.3.2 Constraint clause derived objects
9.3.3 The stream object

1X

56
56
60
61
63

65
65
67
68
68
69
69
70
70
73
74
75
76

7
7
78
79
81
83
83
85
87
88

91
91
94
99
101

9.4 Summaryo e

10 The streaming API
10.1 Basic operationso
10.2 setQOSLevel
10.3 Setting individual attributes
104 Extra APTcalls
10.5 Summary

11 Demo applications
11.1 DaCaPodemo
11.2 ICE based polling client demo
11.3 MSA demo application
11.4 Summary

12 Evaluation
12.1 Da CaPocore

12.2 MSA . . . o
12.3 Summaryo e

13 Conclusion
13.1 Summary of our worko
13.2 Goals - did we reach them?
13.3 Futherwork
13.3.1 Da CaPo enhancements
13.3.2 MSA enhancements
13.3.3 Integrating Da CaPo and the MSA
13.4 Summary

A How to build MSA based applications

111
111
112
114
116
118

119
119
122
124
129

135
135
137
140

141
141
142
142
143
143
146
146

149

Chapter 1

Introduction

1.1 Why a multimedia stream adapter?

The work presented in this thesis, embodied in the concept of a Multimedia
Stream Adapter (MSA), finds its motivation in the efforts made to join two
separate areas of development in computer science, which have evolved much
during more then a decade now.

First of all, we have the area of Open Distributed Processing (ODP)
which has established itself during the last years as a valid and useful com-
puting paradigm. ODP has been incarnated in framewoks for distributed
computing. Among these, CORBA is probably still the one most widely
known and used. Recently, however, several other frameworks have evolved
and we have seen a tendency for these newcomers to steal more and more
of CORBA’s share in the market. We think of frameworks like SOAP [30],
NET [17] and ICE, just to mention a few. We are particularly concerned
with ICE in this thesis.

The second area of concern for this thesis is the area of multimedia pro-
cessing. For many years already, computer hardware designed specifically to
process multimedia data has become both powerful and cheap. Of course,
there still is the hardware on the cutting edge of development which can be
quite expensive, like professional video editing cards, but in general, there is
a lot of affordable hardware for multimedia processing available for today’s
computers. Regular video cards are quite powerful and have a generous
amount of dedicated video memory. There are MPEG-2 and MPEG-4 de-
coders, myriads of video editing cards and quite a few USB and FireWire
based external devices, like digital camcorders, webcams and digital cameras.

The developments in these two areas have motivated computer science
researchers all over the world to find ways to combine them in frameworks
for Multimedia Open Distributed Processing (MODP). The goal is to create
systems which provide both 1) the benefits of distributed computing, like
location transparency and support for hardware and operating system het-

erogeneity, and 2) support for multimedia data. The basic challenge posed
by trying to unite multimedia processing and distributed computing is that
the latter has been designed with discrete data in mind and it does not au-
tomatically offer the same support for continuous data, which is typical for
multimedia applications.

1.2 Project context

Initially, this thesis was defined as part of the Multimedia Middleware for Low
Latency High Throughput Environment (MULTE) project, run as a coop-
erative effort between the Center for Technology at Kjeller and the Institute
of Computer Science at the University of Oslo. The goal of the MULTE
project is to specify requirements for and make an implementation of the
MULTE-ORB.

The main components of MULTE-ORB are the Chorus Object-Oriented
Layer (COOL) |29, 28] and the Dynamic Configuration of Protocols (Da
CaPo) system |5, 23|.

The first of these main components, COOL, is a CORBA compliant ORB
implementation, based on Chorus, a micro-kernel based operating system.
At the time when the work with this thesis began, it became apparent
that Chorus did not offer all those features which the MULTE project’s
researchers hoped to find in it. Therefore, the project members looked for
alternatives to COOL. TAO-ORB and OmniORB have been considered.

The second main component of the MULTE-ORB is Da CaPo. Da CaPo
is a system designed to allow the creation of highly customizable and run-
time adaptable application specific protocols. The initial implementation of
Da CaPo [5, 23] has been integrated into COOL in the early stages of the
MULTE project [15]. When the work with this thesis began, other project
members were already working on reimplementing Da CaPo and were look-
ing for a better way to integrate the new implementation into COOL, or
later into COOL’s replacement.

Because of working assignments outside of the MULTE project, both on
the part of this author and on the part of other project members, the work
presented in this thesis has continued on its own for quite a while.

1.3 Thesis goals

In general terms, the goals of this thesis are to:

1. analyze in which ways streams and flows of data can be treated as
first class objects within object-oriented middleware, and to

2. provide an implementation for a MSA based on the results of point 1
above.

The goals set for this thesis have been influenced by the fact that there
has been a shifting away from a close connection with the MULTE project
to an independent work. We distinguish three stages in the life span of this
thesis, and each stage has its own goals:

1. MSA for MULTE-ORB.
To begin with, our goals were 1) to present an analysis of how the MSA
could contribute to fullfill one or several of the requirements identified
for the MULTE-ORB in [21], and 2) to implement some of these re-
quirements by means of implementing the MSA, all in the context of
integrating the new implementation of Da CaPo into MULTE-ORB.

2. Da CaPo implementation.
Since the reimplementation of Da CaPo has not been finished by the
time we needed it, we have redefined part of the goals of this thesis to
consist in the implementation of a Da CaPo core. The implementation
of a complete Da CaPo system is far too much work for a master’s
thesis, regardless of wheather we attempt to integrate Da CaPo into
an ORB or not.

3. MSA for another object-oriented middleware.
Since COOL was rejected as the ORB for the MULTE project and
the work on MULTE-ORB had been temporarily discontinued, before
other MULTE-ORB project members decided which other ORB they
wanted to base their work on, we had to make a decision on our own.
The goal became then to implement a MSA for another object-oriented
middleware platform.

Stage 3 above completely overshadows stage 1, but only as far as this
thesis’ goals are concerned. As we see in Chapter 4, we still consider the
requirements posed to a MSA for the MULTE-ORB as useful guidelines
for the implementation of a MSA for another object-oriented middleware
platform.

By eliminating the goals derived from stage 1 above, and by being a little
more specific, we can summarize the goals of this thesis, as follows:

1. Da CaPo core implementation.
Some basic ideas for the new Da CaPo implementation have been de-
veloped before this thesis has drifted apart from the rest of the MULTE
project. Our implementation builds on these ideas.

2. Establish Requirements for an middleware based MSA.
We use the requirements identified for the MULTE-ORB as a starting
point for the requirements we identify for the ICE based MSA presented
in this thesis.

3. MSA implementation.
We provide an implementation of the MSA, based on the requirements
defined in point no. 2 above.

4. The integration of Da CaPo and the MSA.
Show how our Da CaPo implementation and the MSA can be inte-
grated into a common system.

1.4 Research method

The methodological approach used in this thesis has been an iterative cycle
of 1) literature studies, 2) analysis and design and 3) implementation and
testing. This approach follows closely the description of the three paradigms,
or processes, used to define the discipline of computing in [2].

Since "in computing the three processes are so intrinsically intertwined
that it is irrational to say that any one is fundamental” [2], we present them
all before we pinpoint where our thesis belongs mostly.

e Theory.
Theory is based on mathematics and consists of four iterative steps
taken to develop a coherent, valid theory: 1) make definitions, 2) hy-
pothesize about your definitions, 3) prove which of your hypothesis are
true and 4) interpret the results.

e Abstraction.
Abstraction (also called modelling or experimentation) is based on the
experimental scientific method, and it also consists of four iterative
steps taken in the analysis of a phenomenon: 1) hypothesize, 2) con-
struct a model and make predictions, 3) perform experiments and col-
lect data and 4) interpret the results.

e Design.
Design is based on established engineering methods and consists of
four iterative steps taken to construct a system which solves a given
problem: 1) establish the requirements, 2) establish the specifications,
3) design and implement the system and 4) test the system.

In this thesis we are not concerned with establishing new theoretical
results. The theoretical background we use is already established in the
work behind the systems we use. As a special case we mention the FIDL
specification language, which is introduced in Section 3.3, and which has a
well defined theoretical background. The same applies for ICE and Da CaPo.

As far as abstractions are concerned, we do not introduce new ones in this
thesis. We only give a new application to abstractions made by others, such
as the concepts of streams and flows, in general, and the object adapter of an

ORB. We also employ the applications given by others to abstractions such
as the Remote Procedure Call (RPC) concept, which is used in a callback
manner in this thesis!.

We consider that this thesis belongs mostly to the design paradigm, be-
cause we attempt to implement a new specific instance |2| of the relationships
established by others between the abstractions specific to multimedia pro-
cessing (streams and flows) and object-oriented middleware platforms (like
ICE).

The research method employed in this thesis mostly resembles therefore
the iterative steps of the design paradigm. In addition to those steps, we
had to also engage in an iterative step of relevant literature study, until we
achieved an understanding of the theory and of the abstractions employed
which is detailed enough to form the knowledge base of our implementation.

1.5 Contributions

The authors of [2] state that "The fundamental question underlying all of
computing is, What can be (efficiently) automated?” There are many things
we can be efficiently automated by computer systems. We consider that
also the work presented in this thesis is a direct answer to this question,
as we present an alternative way to automate the process of distributed
programming with streams of multimedia data.

Our contributions are:

e The implementation of a Da CaPo core. Da CaPo is a system for the
design of application specific communication protocols.

e The implementation of a MSA, which is an ORB-like system which
allows the programmer to refer to streams of data as first class C++
objects in distributed programs.

e FIDL++, which is a slightly extended version of the FIDL specification
language.

e fidl, a compiler which processes FIDL++ specifications.

e A set of demo applications which show how Da CaPo and the MSA
can be used.

1.6 Terminology

1.6.1 Client and server

The terms client and server can be confusing at times. This happens es-
pecially in situations where an application plays the role of a client toward

! This is discussed in Section 5.2.2

some applications and the role of a server toward other applications.

In this thesis we give a general meaning to these terms. In a distributed
multimedia application, by client we always mean that side of the applica-
tion where the multimedia data is consumed and by server that side of the
application where the data is produced.

For a symmetric application, like a video conferencing application, each
participant is both a client and a server.

In other scenarios, like a surveillance camera application, we call the
application side which interfaces the camera the server, and the application
side where the images are displayed the client. We use this terminology,
in spite of the fact that, as we shall see, the two sides of a surveillance
camera application can play both roles toward each other, in the process of
transmitting the images from the camera device to the screen.

1.6.2 Demo applications

We have implemented three demo applications in this thesis. However, one
of them, the MSA demo application, is the most proeminent among them.
Therefore, we often refer to it as only "our demo application. When we mean
one of the other demo applications, we will explicitly make that clear in the
text.

1.6.3 FIDL vs. FIDL++

In this thesis we make very small additions to the FIDL specification lan-
guage. Because of lack of a better name, we call "our" new language
FIDL++. However, the two languages are completely the same, as far as
their ability to specify QoS requirements is concerned. Most times we do not
make a distinction between them in this thesis. The major contribution of
this thesis, in regard to FIDL, is the compiler we have implemented for our
version of the language, not the small additions we have made.

1.7 The structure of this thesis

Chapter 1 gives on overview of the key issues which we deal with in this
thesis and presents the goals which we had for this thesis.

Chapter 2 presents general background material which is important for an
understanding of the issues which we deal with and of the choices we
make in this thesis.

Chapter 3 present very specific background material, which is directly rel-
evant to this thesis, but which is not our contribution.

Chapter 4 gives first an overview of the requirements posed to our MSA,
and continues then with an analysis of the requirements which helps
us to chose the platforms and tool which we use in the reminder of this
thesis.

Chapter 5 presents some of the most relevant conclusions this author has
come to, by means of the literature studies made. These conclusions
allow us to further refine the choice of platforms and tools made in the
previous chapter.

Chapter 6 presents our design and implementation of Da CaPo.

Chapter 7 presents the interpretation we have given to the FIDL specifi-
cation language, in order to be able to implement a compiler and code
generator for it.

Chapter 8 presents the process of code generation executed by our com-
piler when FIDL++ files are parsed, and describes the code which is
generated for a MSA based application.

Chapter 9 gives a description of a MSA based application’s run-time.
Chapter 10 presents the streaming API supported by our MSA.
Chapter 11 presents the three demo application implemented in this thesis.
Chapter 12 presents our evaluation of the work done in this thesis.
Chapter 13 presents our conclusions and suggestions for further work.

Appendix A presents a stepwise recipe for how to build an MSA based
application from scratch. It uses our MSA demo application as an
example.

Chapter 2

(General background

In this chapter, we present a few systems and frameworks which are of general
interest to this thesis. We begin with general multimedia issues which are
related to our work, in Section 2.1. In Section 2.2 we present am overview
of key issues in ODMP. Section 2.3 gives a presentation of the Reference
Model of Open Distributed Processing (RM-ODP), which is an important
referential framework. We end this chapter by presenting CORBA and the
A/V Streams Specification, in Sections 2.4 and 2.5.

2.1 General multimedia issues

2.1.1 Data classification

In terms of how data is perceived in a computer program, we can classify it
in several ways:

e Discrete or continuous data.

By discrete data we mean any piece of data. The context decides
what is the natural granularity of a discrete piece of data. In a text
processing application a file can be an example of a discrete piece
of data in one context, and a paragraph, a sentence or a word can be
natural pieces of discrete data in other contexts. In an image processing
application, an image can be the natural discrete piece of data in some
contexts, or an 8x8 area of pixels of an image can be a piece of discrete
data, as in the case of JPEG compression operations.

By continuous data we mean a sequence of discrete pieces of data.
The sequence can be short, consisting of only a few discrete pieces of
data, or long, consiting of a great number of discreate data pieces. The
sequence can also have a determined length, like the definite number of
frames in a video file, or it can have an undetermined length, as in the
case of the images provided by a surveillance camera. Even though the
data is actually discrete from the point of view of what it is made of, it

10

must be treated as continuous in applications which look at sequences
of discrete pieces of data as a whole.

Simple or combined data.

By simple data we mean data which is of only one type when it is
presented to a program. Examples are text, images, sound, etc. By
combined data we mean data which consists of several interwoven sim-
ple types of data. Examples are Digital Video (DV) data or data in
any of the many MPEG file formats. In both of these examples, au-
dio data is stored together with video data, and neither of them can
be accessed on its own until specialized code breaks them appart and
reconstructs the audio and the video tracks.

Compressed or uncompressed (raw) data.

By uncompressed data we mean data as it is when it is generated. Text
which is typed in a text editor is uncompressed. It can be compressed
later. Images provided by the optical sensors in a digital camera are
uncompressed. They can be compressed by hardware or software in
the digital camera, for instance into JPEG images, before they are
uploaded to a computer, or they can remain uncompressed. After
uploading raw images, a computer can either retain them in their un-
compressed format, or it can compress them itself, to one of the many
available compressed image formats.

Compression algorithms can be lossy or lossless. Data compressed
with a lossless compression algorithm can always be decompressed to
the exact original from which it has been compressed from. Lossy
compression algorithms provide usually a better compression ratio than
the lossless ones, but when decompressing the compressed data, we can
only obtain an approximation of the original data.

Another, and for this thesis more interesting, issue in regard to com-
pressed data is the intrinsic complezxity of the compressed data.
Many compression schemes base their effectiveness on the observation
that there is much redundancy in the original data. A typical example
is a sequence of frames of a video of some static scenery. In this ex-
ample, most frames in the sequence vary very little one from another.
Therefore, an effective way to compress such a sequence of frames is
to store only one reference copy of the frames and the differences be-
tween each of the other frames and the reference frame. The frames for
which only the difference is stored are called referencing frames. Upon
reconstruction of the original frame sequence, the referenced frame
must be combined with the the difference of each referencing frame.
This imposes an intrinsic dependency between the elements of the com-
pressed data. The referencing frames can not be reconstructed without
the referenced frame. In some compression schemes, like MPEG-4, it

11

is common that referencing frames' do refer to both prior and poste-
rior referenced frames, thus creating even greater intrinsic complexities
within the data.

Data with intrinsic complexities greatly impairs the freedom of an ap-
plication to manipulate the individual discrete pieces of data, as the
data must be decompressed first. It is therefore impossible to manip-
ulate the individual discrete pieces of data, for instance during trans-
portation.

2.1.2 Types of multimedia data

The term "multimedia" is very inclusive, and, in the context of distributed
multimedia programming, leads us to think of the availability of a plenitude
of data types to distributed applications. This generality of the word’s se-
mantics is not harmful in any way, but, in practice, we see that there are not
that many types of media after all. Very often "multimedia applications" are
not providing anything else to users than video and the associated audio
tracks.

In some scenarios we can also see the need for other types of data. In a
Video-On-Demand presentation, the subtitling could be sent to the viewer
application(s) as a separate stream of data of type tert. In an advanced
video conferance scenario using smart boards it would be necessary to send
the state of the smart boards and the position of the pointing device back
and forth between the end-points participating to the conference. In a med-
ical consultation scenario, say remote assistance from a specialist in a case
of surgery, the patients measurements of heart rate, blood pressure, tem-
perature, etc. should also continually be sent to the assisting specialist, say
five times every second, together with a video and audio presentation of
the surgery. These measurements would typically be numerical values and
would have a data type corresponding to the traditional int, long or float
types common in programming languages.

In the average multimedia application the preponderance of the video
and audio data largely exceeds the other types of data, first of all because
these two types of data are "always" present, and secondly, they also are
the most voluminous of the data types in use in multimedia applications
today. It is therefore imperative for a framework for multimedia distributed
programming to provide very good support for the video and audio data
types. Of course, in order to be more then just (another) video player, a
framework for multimedia processing must give general support to any kind
of data.

In the rest of this thesis, we use the term multimedia data to mean
any kind of data, but we keep in mind that in most practical situations

L Also called frames.

12

this means primarily video and audio, as it also is the case with the demo
applications of this thesis.

2.1.3 Streams and flows

The concepts of stream and flow have been used for a long time now to
model how continuous data is experienced by applications, when they need
to look at it at a larger granularity than the individual discrete unit of data
of which the stream is made of.

We define a flow to mean a sequence of discrete units of data of the same
type. Often we need to refer to the fact that a flow is flowing, which means
that the discrete pieces of data which make up the flow are traveling from
one point to another. An example of a flow is the sequence of images sent
by a surveillance camera.

We define a stream to be a collection of one or several flows which are
somehow related to each other within an application. An example of a stream
would be the set of an image flow from a surveillance camera and the flow of
sound from the microphone connected to the surveillance camera. If all the
flows within a stream are flowing, we will say that the stream is streaming.

These are not the only ways in which the stream and flow concepts have
been used by the ODMP research community. One alternative is the way
they are defined and used in FIDL, as described in Section 3.3.

2.1.4 QoS

Multimedia data is often characterized by many parameters. Images, for
instance, can be of different sizes, use different encoding schemes? like the
YUV 4:2:0 Planar (YUVp420) or the Reg-Green-Blue-Alfa (RGB32) for-
mats, and they can be rendered by means of different colour palettes, which
can contain a different number of available colours. The exact value of such
parameters determines how a user experiences the data when it is presented
to him or her.

In order to be able to formally reason and speak about the gquality of
multimedia data, the research comunity has tried to find ways to express
QoS requirements and QoS guarantees. These are opposite concepts, in
the sense that QoS requirements are expected from an application and QoS
guarantees are provided to an application.

A comprehensive treatment of the subject of QoS is given in [1|. There
it is specified that QoS management functions can be grouped into:

e Static functions, like QoS specification, negotiation, resource reserva-
tion, admission control, and

e Dynamic functions, like QoS monitoring and renegotiation.

2An encoding scheme is how the data is represented and/or stored in computers.

13

Since QoS "is apparent in all layers in a communications architecture, but
is 'viewed’ differently by each layer" [4], the QoS concept can be addressed
at any of the layers shown in the two subfigures of Figure 2.1. We see here
that the general QoS layering of Subfigure b) can be further refined as in
Subfigure a). By DPE in Subfigure a), [4] means Distributed Programming
Environment, like CORBA ORBs.

User Qos
User
User
‘ J
Application QoS (Service QoS)
Y _4pp DPE ‘
””””” Application e rrrr
| pp | Application
|] |
| |
.]
: y System QoS : (Application QoS)
l : ;
: System }
: ! System
|
| |
T N ‘ (System QoS) [
Device Qos Physical Network QoS Y
Devices Network Network
Device
(Network QoS)
a) b)

Figure 2.1: QoS layers: a) [4], b) [31]

In general, QoS requirements are more generic at higher levels of speci-
fication and more specific at lower levels of specifications. The specification
given in parameters typical to one level must be translated to specifications
given in parameters typical to other levels. For instance, at user level we
describe the QoS in terms like very good, good, acceptable, least acceptable,
and so on. In a video conference application’s case, "very good" could mean,
at the application level, VGA sized images at a framerate of 15 or higher with
stereo sound, while "least acceptable" could mean sound only, mono, at 8000
samples per second, which would be telephone quality. At the network level,
all higher level QoS requirements will have to be mapped to very specific
parameters like delay <= 50ms. Table 1 of [21] gives an overview of possible
lowlevel QoS parameters.

QoS specification for video data

There are basically three parameters by which video can be adjusted to
different levels of QoS. These are the frame rate, the resolution and the color
depth.

14

If the video data is compressed in a way which generates intrinsic de-
pendencies between the individual images, it is difficult to easily adjust the
frame-rate parameter, because the images are not independent of each other
any more and can therefore not be dropped arbitrarily.

In this thesis, we process raw video data, in which there are no other
dependencies between the individual images than their inherent timely or-
dering. The granularity at which we process video data is one image per
packet, as we will see.

QoS specifications for audio data

Conceptually, the parameters which can be used to specify QoS requirements
for sound are the samplerate, the samplesize and the number of channels.

Since a sample of even the best quality of sound takes only a few bytes of
storage, it is not feasible to treat samples one by one, on a sample per packet
basis. In this thesis, we generate sound packets which always contain a 1
second’s worth of sound. This is good enough for the sake of our demonstra-
tions, but the amount of sound in a packet can easily be adjusted. What we
will focus on is how the size of the packet varies with the three parameters
mentioned above.

2.2 Key issues in ODMP

Middleware has emerged as a central architectural component in sup-
porting distributed applications and services. The role of middleware is to
present a higher level programming paradigm for application writers (typi-
cally object-oriented or, more recently, component-based) and to mask out
problems of heterogeneity and distribution [21].

Combining ODP middleware and multimedia into ODMP has proven
to raise many challenging issues. They arise mainly because, according to
its original intent, ODP middleware was developed to provide support for
distributed, but not continuous patterns of interaction. Examples of this
kind of interaction are the Remote Procedure Call (RPC) and the Remote
Method Invocation (RMI) mechanisms. Section 1.3.2 of [1] identifies four
main areas where multimedia challenges traditional ODP frameworks. They
are:

1. Support for continuous media.
Multimedia data is often of a continuous nature and can be perceived
as streams and flows of data. The characteristics of streams and flows
of data challenge the established middleware frameworks, as operations
on them can not be easily implemented by means of RPCs or RMIs.
Among other things, streams’ data can have unpredictable durations,

15

and there can be many dependencies among the flows within a stream,
such as requirements for synchronization.

. Real-time synchronization.

The continuous character of most multimedia data imposes require-
ments for synchronization to applications. real-time synchronization
requirements can be classified as hard or soft requirements or as inter-
flow or intra-flow requirements. This subject is treated in detail in [27].

An example of inter-flow synchronization is the need for lip-synchronization
between an audio and a video flow, in an application like video confer-
encing.

. Quality of service management.

Synchronization dependencies, as well as other peculiarities of mul-
timedia data are expressed by means of QoS requirements. This is
a feature which distributed multimedia applications share with other
applications, like real-time and safety critical applications. However,
in the light of this ODMP discussion, research has shown that 1) ODP
middleware does not support the notion of QoS to any significant ex-
tent, 2) the requirements imposed by the new application domains
coming into existence are perceived to be "invading" the ODP frame-
works, among other things because they are so diverse, and 3) future
application domains with new requirements may appear, [1, 15, 5, 23].
Therefore, new generation of middleware is must be both flexible and
extendable in addition to supportive of the QoS concept.

QoS management encompasses a number of different functions, which
can be grouped into:

(a) static aspects like QoS specification, negotiation, resource reser-
vation, admission control, and

(b) dynamic aspects such as QoS monitoring and renegotiation.

QoS managements is required at a number of different levels in the
middleware, like application, transport, network, and operating sys-
tem, with appropriate mappings between the various layers. In dis-
tributed systems, QoS support should be end-to-end, extending from
the information source to the information sink, thus requiring a cer-
tain amount of coordination between the end-points and the network
infrastructure.

. Multiparty communications.

Some distributed multimedia applications, like video-conferences and
long-distance-learning applications, are concerned with interactions be-
tween dispersed groups of users. It is now recognized that this requires
explicit support from the underlying distributed systems platform. The

16

authors of [1] identify the need for a programming model which sup-
ports multiparty communications for both discrete and continuous me-
dia types. This model must facilitate the management of groups of
users, providing support for operations like the joining and leaving
of groups at run-time. Providing this kind of support is complicated
by the heterogeneity in hardware, which potentially exists among the
participants of such shared multimedia sessions. Different participants
might impose different QoS requirement.

2.3 RM-ODP

RM-ODP |13, 1] is probably the only framework for distributed computing
which has been standardized. As such it is a referential framework which
facilitates the comparison of ODP platforms to each other. RM-ODP does
not prescribe how to implement an ODP platform, but provides abstractions
which an implementation can be based on. RM-ODP provides 5 levels of
abstraction, from which an ODP platform can be viewed. They are also
called viewpoints. For each level a set of concepts, structures and rules is
provided. Together they form a "language" for the given level, in which
the platform can be described. The five viewpoints are the enterprise, the
information, the computational, the engineering and the technology
viewpoints. For our work, the engineering and the technology viewpoints are
the most relevant, so they are the only ones we present here.

2.3.1 The computational view

In this viewpoint, the functionality of a distributed system is specified in a
distribution-transparent manner, by means of computational objects. The in-
teraction between computational objects is encapsulated into so called bind-
ing objects. Figure 2.2 shows two objects named A and B interact via a

binding object.
(O Gamwonsd ()

Figure 2.2: RM-ODP binding object.

Interactions between computational objects are asynchronous and can
take three forms. Each form has its own type of interface, but they are
collectively called computational interfaces.

1. Operational interfaces.
Operational interfaces provide a client-server model for distributed

17

computing - client objects invoke operations at the interfaces of server
objects (i.e. the RPC paradigm). There are two types of operations:
interrogations, which return a termination and announcements, which
do not return a termination.

2. Stream and flow interfaces.

Flow interfaces have been included in RM-ODP to cater for multimedia
and telecommunications applications which typically handle continu-
ous data types. A flow is characterized by its name and its type, which
specify the nature and format of data exchanged [14]. The exact se-
mantics of flows are left undefined in the computational model, thus
allowing for the definition of several types of flows, depending of the
application domain.

A stream interface encapsulates a set of flow interfaces which together
make up a stream of data. A stream interface signature requires the
causality (i.e. the direction) of each of the flow interfaces it comprises
to be declared. In addition RM-ODP defines the concept of a comple-
mentary stream interface signature, in which the causality of each flow
is reversed [3].

3. Signal interfaces.
Signal interfaces are the lowest level of the communication actions. A
signal is a pairwise, atomic action resulting in a one-way communica-
tion from an initiating object to an accepting object.

Each interface specification contains an environment contract which spec-
ifies the QoS requirements imposed by the object on its environment and the
QoS provided by the object if it’s own requirements are met.

2.3.2 The engineering view

In this, viewpoint a distributed system is modeled in terms of engineering
objects and channels. Engineering objects can be either basic engineering
objects (corresponding to objects in the computational specification) or in-
frastructure objects (like protocols). Channels correspond to a binding object
in the computational specification. Thus, the interaction visualized in Fig-
ure 2.2 will be modeled in the engineering language as shown in Figure 2.3.
A channel is a compound object as well, but the details are not relevant for

@—{I— Channel Object —|

Figure 2.3: RM-ODP channel object.

this thesis.

18

2.4 CORBA

The Common Object Request Broker Architecture (CORBA) is a specifi-
cation for architectures for distributed computing. It is standardized by the
Open Management Group (OMG), which some years ago already numbered
more then 800 members.

CORBA is by now well documented in many books and numerous arti-
cles. Section 2.4 of [12] lists the following main components of CORBA:

e OMG Interface Definition Language

e Language Mappings

e Operation invocation and dispatch facilities (static and dynamic)
e Object adapters

e Inter-ORB Protocol

Of these we only mention a few details about the Interface Definition
Language (IDL) and the object adapters, as they are the only components
of direct concern for this thesis.

2.4.1 IDL

The participant entities in a CORBA compliant distributed system relate
to each other in terms of being clients or servers (object implementations)
to one another. During its life-time, an entity can always play the role of a
client, or always play the role of a server, or it can play the role of a client
toward some entities and the role of a server toward other entities.

In order to be able to invoke operations on a server (an object imple-
mentation), a client must know the interface offered by the object imple-
mentation, that is which operations it supports, the type of the operations’
arguments and the type of the operations’ return values.

In CORBA, such object interfaces are declared by means IDL, which
is a high level specification language. The purpose of IDL is to provide
programming language independence to CORBA applications. Interfaces
declared in IDL must be translated by special IDL compilers to data types
and in a regular programming language.

In this thesis, we use ICE, another middleware for distributed computing,
which has been influenced also by CORBA in its design. ICE has also an
IDL language, which has the same purposes as CORBA’s IDL.

As we discuss in Section 5.1, one of the major issues in providing stream-
ing support within a system like CORBA or ICE is the use of the system’s
IDL.

19

2.4.2 The CORBA object adapters

In CORBA, see Figure 2.4, an object adapter functions as the glue be-
tween the object implementation (the "server” in the traditional client-server
sense) and most of the services offered by the ORB. An object implementa-
tion can be implemented, at least in theory, upon different ORBs provided
by different vendors.

The object adapter works like a middleware within the middleware, and
masks the differences between the different ORBs upon which an object im-
plementation can function. Different ORBs will invariantly provide different
levels of certain services and they might offer specific services available from
no other ORBs. The environments in which the different ORBs run will also
invariably offer varying degrees of properties which the object implementa-
tions need in order to serve the clients. Thus, the object adapters existence
is justified, as they are that piece of middleware which makes sure the object
implementations can run on any ORB.

Quoting from [7]: "With Object Adapters, it is possible for an Object
Implementation to have access to a service whether or not it is implemented
in the ORB Core — if the ORB Core provides it, the adapter simply provides
an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface
and service for all the ORBs it is implemented on."

4 Object Implementation
_ (e) (voas)

Dynamic Interface A Interface B
Skeleton Skeleton Skeleton

ORB Core

Figure 2.4: The CORBA object adapter.

Whereas different object adapters can provide different interfaces and
functionality, there is, of course, little point in implementing object adapters
which offer mostly the same services and interfaces to object implementa-
tions. Indeed, the CORBA specification advises that "... it is desirable
that there be as few [object adapters] as practical. Most object adapters are
designed to cover a range of object implementations, so only when an im-
plementation requires radically different services or interfaces should a new
object adapter be considered.” [7].

20

Therefore, the CORBA framework requires only one object adapter to
be implemented, the so called Portable Object Adapter, or POA for short.

To begin with, CORBA required another object adapter to be imple-
mented, the now very obsolete Basic Object Adapter, (BOA). BOA proved
to be so poorly specified that implementors had to choose ad hoc solutions for
common actions performed by the object adapter, which led to incompatibil-
ities across ORBs. Eventually, OMG came up with the POA specification,
which is meant to be a portable alternative of BOA.

A good and concise treatment of the subject of object adapters, both in
general and specifically CORBA object adapters, is [26]. The functionality
provided by object adapters is summarized as follows:

e Request demultiplexing.
For each request received by the CORBA core, the object adapter will
find the appropriate servant which can execute it.

e Operation dispatching.
Once the appropriate servant has been located and identified, the re-
quest is passed to it.

e Activation and deactivation.
object adapter do active CORBA servants, which is a process of initial-
ization, sometimes also called incarnation of CORBA objects. When
servants are no longer needed, they are deactivated, which is also called
etherealization of CORBA objects.

e Generating object references.
Servants for CORBA objects need to register with the object adapter.
Upon registration, the object adapter generates an object reference for
each servant, which includes addressing information on how to reach
the object in a distributed system.

One of the MULTE project’s suggestions for how to provide support for
streaming to MULTE-ORBIs to provide a new object adapter specifically
designed to handle multimedia data.

2.5 CORBA’s A/V Streams Specification

The Audio/Video Stream Specification (A/V Streams Specification) (6],
sometimes also referred to as the Control and Management of Audio/Video
Streams specification, is OMG’s attempt provide support for multimedia
streaming by means of CORBA ORBs.

This specification has been implemented in several ORBs. TAO-ORB is
probably the most well known among these. However, not all ORBs have
implemented it, even many years after it’s initial release.

21

The A/V Streams Specification is considered "underspecified and weak"
in regard to its ability to assure inter-ORBs operability [3]. It is also con-
sidered "useful for basic Internet media-on-demand applications” but "un-
suitable for the construction of arbitrary distributed media-processing appli-
cations”, same referance. We have met similar evaluations in many other
texts.

It is because of its lack of suitability that there still is conducted so
much research around the world in regard to adding streaming capabilities
to object-oriented middleware.

2.6 Summary

In this chapter we have presented systems of general interest for multimedia
distributed computing. CORBA has definitely influenced the field of dis-
tributed computing for many years now, and the RM-ODP specification is
a useful referential framework. An unsuccessful attempt to provide support
for streaming to CORBA has been the A/V Streams Specification.

In the next chapter we will present other systems and tools which are
directly relevant to the work presented in this thesis.

Chapter 3

Specific background

In this chapter we give an introduction of those frameworks, systems and
tools which are directly relevant for this thesis. For each of them, we present
only those features which have some bearing for the work presented in this
thesis. The reasons why we have chosen exactly these platforms and tools
are given in Section 4.2, where we analyze the requirements for our MSA.

3.1 Da CaPo

The Dynamic Configuration of Protocols (Da CaPo) [23, 5] is a framework
for distributed computing which allows the creation and dynamic (run-time)
adaptation of application specific networking protocols. We will give here a
general presentation of Da CaPo based on the original implementation. In
Chapter 6 we present our own implementation.

3.1.1 The motivation for Da CaPo

In the early days of networking, the networks were the decisive factor in
determining the throughput achieved by computer systems. Even though
both general computer hardware and networking hardware have evolved,
the latter has evolved faster, turning the situation around. Already for
several years ago it has been recognized that the throughput experienced
by high speed networks depends on the end-points’ capacity to process
network traffic. This phenomenon, sometimes called slow-software-fast-
transmission, has been traced down to "the insufficient processing power
of end-systems and the complexity and redundancy of end-system protocols.
These protocols tend to be designed inefficiently and tend not to be sufficient
embedded into operating systems." [23]

23

24

3.1.2 Da CaPo’s philosophy

In the approach taken by Da CaPo, individual tasks performed by the tra-
ditional protocol stacks are implemented by small separated units called
protocol functions. Examples of such tasks are error control, flow con-
trol, encryption and decryption and presentation coding.! These protocol
functions are then used to build highly customized protocol stacks, called
protocol graphs, specificaly build for the particular needs of each individ-
ual application. The protocol graphs are constituted in such a way as to
take into consideration both the network services offered to the application
by the particular networking technology on which the application is run, and
the concrete available resources at run-time. These protocol graphs can be
altered dynamically at run time, so that they are able to adapt to changing
networking conditions.

3.1.3 Da CaPo and the OSI referance model

In the traditional OSI referance model, computer communication is achieved
by means of a seven layers protocol stack, where end-to-end communication
is present from layer 4 and upward. Da CaPo handles the functionality
provided by layers 3 to 7 of the OSI referance model, as shown in Figure 3.1.

Application Process A Application Process B

Da CaPo

2 Link 2 Link
1 Physical 1 Physical
% Physical Medium ﬁ

Figure 3.1: The OSI referance model and Da CaPo

Da CaPo breaks a complete end-to-end communications system in three
parts. These are called the application layer (layer A), the communications
layer (layer C), and the transport layer (layer T).

!For a more detailed presentation of protocol functions, see the discussion on granu-
larity in Section 4.2.1 of [23].

25

As shown in Figure 3.2, which has been reproduced from [5], layer C

application A application = C service access point

| protocol function

end—-to—end
communication
support

dependency

transport ! I \ infrastructure T service access point

Figure 3.2: Da CaPo’s three layers’ model

covers all aspects of end-to-end communication support (layers 3 to 7 of the
OSI referance model).

The application layer and the transport infrastructure (layers 1 and 2 of
the OSI referance model) are glued together by Da CaPo’s implementation
of the communications layer. We can therefore say that Da CaPo consists
of the functionality of layer C, the interfaces to layer A and layer T, and a
suitable runtime environment.

The purpose of layer C is best described by this quotation from [23] "In
layer C the end-to-end communication support adds functionality to the layer
T services in such a way so that at the AC-interface a full set of services is
provided to run distributed applications. Layer A corresponds to a set of
distributed applications which access the services of the underlying end-to-
end communications layer C through the AC-interface. The AC-interface
offers functions that permit the application to specify which type of services
are needed and quantify the expected QQoS."

The services provided by layer C are put together by a chain of protocol
functions, some of them potentially chained in parallell, as it is graphically
depicted in Figure 3.2. Data dependencies beetween the protocol functions
impose a certain ordering among them. Those protocol functions which
datawise are completely independent of each other, if any, are those who can
be chained in parallell.

Protocol functions are logical units executing a certain task. They are
accomplished by protocol mechanisms? and are implemented by means of
modules, which are working agents, realized either in software or in hard-
ware.

A protocol function can be implemented by several modules which all
provide the same functionality but have different performance characteris-

%See Section 4.2 of [23] and Section 2.2 of [5] for more details.

26

tics. An application can choose which of the available modules it desires to
use. As an example, MPG4 decoding can be done both in software and in
hardware, with the hardware implementation performing fastest. Modules
are always grouped in pairs, consisting of a sending and a receiving module.
Because they play such a central role in the Da CaPo architecture, modules
are discussed in greater detail in Section 3.1.4.

3.1.4 Da CaPo modules

Modules are the building blocks for any protocol configuration in Da CaPo.
Based on their specific purpose, modules can be A-modules, C-modules
or T-modules. C-modules are used to build the very protocol configuration
needed by an application. A-modules and T-modules are providing the in-
terface between Da CaPo and the application, and between Da CaPo and
the transport infrastructure, respectively; they must not be confused with
the application or the transport infrastructure themselves.

In order to allow for unconstrained configuration of protocols, all mod-
ules adhere to a well defined interface, called the unified module interface.
The unified module interface provides routines which allow modules to be
allocated (constructed) and deallocated (destructed), as well as to get ap-
plication data and control information from their runtime environment, and
to deliever application data and control information to their runtime envi-
ronment. The unified module interface is not discussed further in this thesis
because it is not implemented in the Da CaPo core we present.

Since application data and control information often travel in opposite di-
rections, they are handled separately by the unified module interface. Those
modules which do not need to distinguish between application data and con-
trol information (modules performing only simple tasks, like computing a
check sum) are called single modules, because they have a single data in-
formation. Other modules, which must distinguish between application data
and control information, (like modules implementing, for example, the Idle
Repeat Request (IRQ) function) are called double modules and have a
double data interface. Double modules can be installed in the main path
only and are automatically present in both paths of a protocol.

In the original implementation "modules are handled as passive compo-
nents: They do not actively perform a specific work (like independent pro-
cesses), but are called by the runtime environment to perform their work (up
calls)." [5]

The modules had to abide to a well defined unified module interface.
We do not present the details of the interface here, because we will imple-
ment another interface in our own implementation of Da CaPo. We want to
point out though, that the A-modules and the T-modules did not have to
implement the whole of the unified module interface, because they did not
have to interface other modules both beneath and above themselves in the

27

protocol graph.

3.2 ICE

The Internet Communication engine (ICE) [10, 9, 8] is a distributed com-
puting platform which might not be so widely known in the ODMP research
comunity yet. We give therefore a general presentation of ICE first, before
focusing on those features which are of direct relevance for this thesis.

ICE is developed by ZeroC. The reason for creating yet another platform
for distributed computing, is that all existing platforms at the time when
the initiative to create ICE was taken, had some serious flaws, at least in the
eyes of the ICE developers. [8] gives a concise and comparative rationale for
ICE.

The design of ICE has been much influenced by the experience gained
by the distributed computing comunity during the years prior to the ICE
initiative. ICE is often compared to CORBA. This is both because the
two of them share many common features, but also because they share the
same habitat: they run on the same platforms, they are both free source
implementations and they address the same basic needs, as expressed by
the RPC pattern of communication. ICE attempts to rectify many of the
serious flaws of CORBA, and it especially distantiates itself from CORBA’s
sometimes unnecessary complexity.

[9] gives a short presentation of ICE, and [10] gives a detailed presenta-
tion of ICE, in addition to being an ICE programmer’s manual.

3.2.1 ICE in the press

ICE has existed for several years now. At the time of this writting it has
reached a level of maturity which makes it appropriate for both research pur-
poses and for the implementation of production quality systems. Recently,
ICE has received the attention of two important computer science forums,
IEEE and ACM. In February 2004, each of these forums has published an
article about ICE in their respective magazines, [9, 8].

In the fall of 2004, ZeroC has made a press release entitled "Boeing selects
Ice for the Future Combat Systems Program". This is another proof that ICE
is mature enough to attract the attention of large companies which need to
implement heavy weight distributed applications.

3.2.2 ICE features

ICE exhibits many of CORBA’s features, but not all. It also introduces a
few features of its own. Among the features which it has in common with
CORBA, there are some which have different semantics. Simply stated, ICE
implements all "necessary" features from other platforms, especially from

28

CORBA. It redefines some of them, like the object model, and introduces
some new ones, like allowing the declaration of classes in its own IDL lan-
guage, in addition to interfaces.

Figure 3.3 shows the schematic constituency of a client-server applica-
tion based on ICE. It is strikingly similar to a CORBA based application’s
structure, as depicted in very many CORBA texts.

Client Application Server Application
A A A
Y Y Y
Proxy Ice AP Ice API Skeleton Object
code Adapter
Client Ice Core Network Server Ice Core
D Ice API

. Generated Code

Figure 3.3: ICE Client and Server Structure, [10]

The client and the server applications are composed of a mixture of ap-
plication code, library code and code generated from Slice definitions. We
defer the presentation of Slice until Section 3.2.9.

The ICE core, used in both the client and the server applications, provides
access to generic services like the initialization of — and the cleaning up after
the ICE run time environment.

The proxy code is generated from Slice definitions and is therefore specific
for each set of definitions. It provides a down-call interface for the client,
so that the client can make RPCs by calling functions declared in the proxy
code. The proxy code is also providing marshaling and unmarshaling code.

Also the skeleton code is generated from Slice definitions, and is in the
same way as the proxy code, specific to each set of definitions. The skeleton
is the server-side "proxy". The skeleton code provides an up-call interface
which allows the ICE run-time on the server side to transfer a call to ap-
plication code. Also the skeleton provides the necessary marshaling and
unmarshaling code.

The object adapter is a server side specific programing artifact. We dwell
more on it in Section 3.2.11.

We present in the reminder of this section a few other features of ICE.

29

3.2.3 Configuration files’ API

ICE provides a rich set of API calls to read and write values from and to
configuration files, from within ICE based applications. A typical example
of values which should be read from a configuration file, as an application
starts up, are the protocol name and the port number to be used for the
communication between a client and a server. These values should not be
hardcoded, as they are likely to have to be changed from time to time.
Alternatively, they can be given to the applications as parameters from the
command line.

3.2.4 Supported protocols

With ICE, operations can be invoked by using either TCP, UDP or SSL3.
Each protocol transmits its properties to the operations which use them.
For example, an operation invoked via TCP is guaranteed to be delievered
to its receptor, or the sender will be notified of the failure to do so. An
operation sent via UDP might be lost without the sender being notified
about it, but it will usually be delievered faster then an operation sent via
TCP, because it necessitates less processing on the end-point nodes. With
SSL, the invocation of operations can be encrypted, in addition of being
guaranteed to be delievered. The cost is additional processing time on the
end-point nodes.

3.2.5 Invocation styles

ICE supports the following invocation styles:

e Synchronous Method Invocation.
This is the default invocation dispatch mode, and it implements the
traditional concept of RPC.

e Asynchronous Method Invocation (AMI).
In this mode, clients pass an extra parameter to the servers with each
invocation. This parameter is a callback object, and do not block wait-
ing for an answer from the server. When the answer is available, the
servers use the callback object to inform the client about it.

e Asynchronous Method Dispatch.
This mode, is the server side equivalent of AMI. Normally a server
processes an invocation at once it receives it. In this mode, it assigns
the invocation to an available thread and leaves it to it to process it.
In this way the server is free to continue doing other things.

3Secure Socket Layer

30

3.2.6 Invocation types

Depending on the protocol used for invocations, ICE supports the following
invocation types:

e Datagram invocations.
Datagram invocations have "best effort" semantics and are sent over
UDP connections. A datagram invocation can be made only for oper-
ations without returning parameters.

e Batched datagram invocations.

Batched datagram invocations are accumulated in a buffer, before they
are sent all together in a single datagram invocation. They can lead
to a significant reduction of processing overhead, especially for short
messages. The total amount of data of a batched datagram invocation
must not exceed the size of the network’s PDU, otherwise UDP frag-
mentation will occur, which greatly increases the chance that the whole
batch of invocations must be discarded, if even only one fragment is
lost.

e Oneway invocations.
Oneway invocations of operations have "best effort" semantics, but
they are sent over a connection oriented protocol, like TCP or SSL.
This assures ordered delievery of invocations to the receiver, but the
threading policy of the server might lead to the invocations being pro-
cessed in another order.

e Batched oneway invocations.
Batched oneway invocations are buffered on the client side of the ap-
plication and are sent in a single message to the server. They can lead
to a significant reduction of processing overhead, especially for short
messages. Batched oneway invocations are server by a single thread in
the server, so ICE guarantees that they will be served in the order of
delievery.

3.2.7 ICE services

ICE implements a number of services often needed by applications. We only
mention them in this thesis, as we do not make use of any of them. They
are:

e IcePack - a location service.
e IceBox - a component managing service.

e IceStorm - a distribution switch for events.

31

e IcePatch - a software patching service.

e Glacier - a firewall service.

3.2.8 QoS in ICE

ICE supports a very limited notion of QoS. In connection with its IceStorm
service, ICE supports "only one QoS parameter”, called reliability [10]. The
possible values are oneway and batch, with oneway as default. This property
affects how soon messages are delievered, as explained in Section 3.2.5.

3.2.9 Slice

Slice is ICE’s equivalent of CORBA’s IDL. A thorough presentation of Slice
is given in Chapter 4 of [10]. We present here only those features which we
use in our work.

Classes

Slice supports the declaration of classes in addition to interfaces which is
common for an IDL, like CORBA IDL.

Slice classes can have operations, like interfaces, and data members, like
structures. This leads to hybrid objects which can be passed both by refer-
ence, as interfaces are, or by value, as any variables. The feature we use in
our implementation is that "classes allow behavior to be implemented on the
client side, whereas interfaces allow behavior to be implemented only on the
server side" [10].

Slice classes exhibit the most common features of classes in object-oriented
programming languages. They can be inherited, with single inheritance only,
and can be self referential. In addition, they can be used to implement in-
terfaces.

The byte data type

byte is one of the 8 data types supported by Slice. byte "is an (at least) 8-bit
type that is guaranteed not to undergo any changes in representation as it
is transmitted between address spaces. This guarantee permits exchange of
binary data such that it is not tampered with in transit. All other Slice types
are subject to changes in representation during transmission” [10].

We use this data type in the demos of this thesis, to assure that the
images we stream have the same representation on the receiver as they had
on the sender.

32

Slice to C+—+ language mappings

All features of Slice have a language mapping to C++*. The language map-
ping is accomplished by ICE’s Slice to C++ compiler, called slice2cpp.

There are a few features of the Slice to C++ mapping which we need
to mention. Among these are the C++ types which are declared from Slice
classes.

In the reminder of this sub-section, we freely quote sentences from Section
6.14 and 6.11 of [10], without using quotation marks.

Slice classes are mapped to C+-+ classes with the same name. For each
data member of a Slice class, the generated class will contain a public vari-
able. For each operation of a Slice class, the generated class will declare a
virtual function. Consider the following Slice class declaration:

class TimeOfDay {

short hour; 0 — 23
short minute ; 0 — 59
short second; 0 — 59

string format () ;
&
For this class, the following (simplified) C++ mapping will be made:

class TimeOfDay : virtual public Ice:: Object {
public:

Ice::Short hour;

Ice :: Short minute;

Ice:: Short second;

virtual std::string format() = 0;

o

typedef Icelnternal :: Handle<TimeOfDay>
TimeOfDayPtr;

Notice the typedef made after the class declaration. This type implements
a smart pointer that wraps dynamically-allocated instances of the class. In
general the name of this type is <class-name>Ptr.

The TimeOfDay C++ class is the skeleton class, see Figure 3.3, for this
Slice definition. Object implementations for the TimeOfDay Slice declaration
are implemented in a server by inheriting the TimeOfDay C+-+ class.

If we let TimeOfDayl be the class which inherits TimeOfDay for the pur-
pose of implementing TimeOfDay objects in a server, we assign a new instance

*ICE also provides a language mapping to Java, and native support for PHP. At the
time of this writing, release 1.6 of ICE is expected, which is supposed to introduce a
language mapping for Python 2.3 as well.

33

of TimeOfDayl to a smart pointer variable, in order to let ICE’s run-time take
care of all memory management:

{
TimeOfDayPtr tod = new TimeOfDayI;

tod—>second = 0;
tod—minute = 0;
tod—hour = 0;

}

tod is now our object implementation in a server.

In addition to this mapping, a class declaration also shares in the lan-
guage mapping typical for ICE interfaces: a Slice class will also be mapped
to a prozy handle type. For the same Slice declaration as above, the compiler
will generate also the following (simplified) C+-+ definitions:

namespace IceProxy {

class TimeOfDay : public virtual Ice::Proxy::Ice
:: Object {

-

typedef Icelnternal:: ProxyHandle<IceProxy ::
TimeOfDay> TimeOfDayPrx;
}

The general name for a proxy handle is <class-name>Prx. In the client’s
address space, an instance of lceProxy::TimeOfDay is the local ambassador
for a remote instance of a TimeOfDay object implementation in a server. All
the details about the server-side object, such as its address, what protocol
to use, and its object identity are encapsulated in that instance. This type
corresponds to the proxy depicted in Figure 3.3.

Invoking the format operation on a TimeOfDayPrx instance in the client
will be dispatched by ICE’s run-time to an object implementation, like tod,
in the server.

3.2.10 The ICE development cycle

The development cycle of an ICE application, depicted in Figure 3.4, resem-
bles very much the programming cycle of a CORBA application.

We note in this figure, the 3 human sources of input, depicted with ovals:
the Slice developer. the client developer and the server developer. These 3
can be the same person or not. The compiler developed within the work with
this thesis will play all these 3 roles, as far as the ICE development cycle is
concerned. A human programmer must still provide a FIDL++ specification,
and he or she may still be involved in developing other functionality, such as
a GUI, but as far as ICE programing is concerned, our compiler will generate
all the code that is necessary.

34

Slice Printer.ice _ Slice—tf)—C++
Developer Compiler
_/\

Server

Developer

f - 4

~

Server.cpp

()
=

Client i :
Developer Client.cpp

C++ Ice

Run-Time
Library
\¥ Y V Y
. RPC
Client Server
Executable ™ Executable

Figure 3.4: ICE development cycle, [10]

3.2.11 The ICE object adapters

In ICE, the concept of the object adapter is closely related to the concept
of a communicator. The communicator is the main entry point to the Ice

run-time on the server side, and it is entirely declared in Slice.

A communicator will be associated with a number of run-time resources.
Among these it will contain one or more object adapters. The object adapter

is also entirely declared in Slice.

Shortly stated, the purpose of the ICE object adapter is to "dispatch
incoming requests and take care of passing each request to the correct ser-
vant” [11]. We also reproduce the following list of responsabilities of the

object adapter from [11]:

e It maps Ice objects to servants for incoming requests and dispatches
the requests to the application code in each servant (that is, an object
adapter implements an up-call interface that connects the Ice run time
and the application code in the server).

e It assists in life cycle operations so Ice objects and servants can be

created and existing destroyed without race conditions.

e It provides one or more transport endpoints. Clients access the Ice
objects provided by the adapter via those endpoints. (It is also possible
to create an object adapter without endpoints. In this case the adapter

is used for bidirectional callbacks...

As we can see, the purpose of ICE’s object adapter, is very closely related

to the purpose of the object adapter in a CORBA implementation.

35

3.3 FIDL

The Flow Interface Definition Language (FIDL) [16] is a specification lan-
guage which allows the programmer to describe the characteristics of flows
of multimedia data.

FIDL’s flows specifications resemble the concept of flow interfaces intro-
duced by the computational view of RM-ODP, even though [16] does not
mention RM-ODP at all. We will therefore refer to flow specifications in this
thesis rather then to flow interfaces.

The language has been used in [16] to algorithmically compare flows spec-
ifications to each other in order to find common sets of flow characteristics.
The result of such a comparison is an intersection of flow specifications.
Among other things, the intersection of flow specifications is an accurate
description of end-points compatibility. In the following sections we present
the main features of FIDL and give an example of a FIDL specification.

3.3.1 Media format taxonomy

In FIDL, a stream is made of one or more flows, and each flow contains one or
more declarations of multimedia elements. A constraint clause is then used
to specify which combinations of flow elements can constitute legal flows in
a stream.

The multimedia element types provided by FIDL have been divided into
several categories, or classes, which form the hierarchy shown in the following
figure, which has been reproduced from [16] :

encoding
I subencoding

version

compression

concrete class userdefined

E abstract class

sampleSize
sampleRate

bitRate
variableSampleSize
variableSampleRate
variableBitRate
YaterCompression

ContinuousMedia DiscreteMedia

‘ Video ‘ ‘ Audio ‘ ‘ Animation‘ ‘ Music ‘ ‘ Image ‘ ‘ Graphic ‘
height channels characterSet height height
width silenceSuppression font width width
depth packetizationInterval size depth depth
aspectRatio style bitsPerPixel orientation
interlaced colormodel

videoChannels lossless

audioChannels

Figure 3.5: FIDL element class hierarchy [16].

36

Generic element types Other keywords

animation constraint
audio flow
graphic sink
image source
music stream
text

video

Table 3.1: FIDL keywords: generic keywords [16].

Keywords (attribute names)

aspectratio depth orientation userdefined
audiochannels encoding packetizationinterval variablebitrate
bitrate font samplerate variablesamplerate
bitsperpixel height samplesize variablesamplesize
channels interlaced silencesuppression version
characterset intercompression size videochannels
colormodel intracompression style width

compression lossless subencoding

Table 3.2: FIDL keywords: attribute names [16].

As we can see, on each level, a class of elements has an associated list
of attributes, specific to that class. Sometimes the attributes repeat them-
selves, as they are specific to several classes, like the height, width and depth
attributes which can be found in both the Video, Image and the Graphic
classes. We note however, that these classes are on the same level in the
hierarchy. By inspection we can see that the attributes do not repeat them-
selves on several levels of the class hierarchy, but are inherited from a base
class to a derived class, as in regular object-oriented programming.

We do not know if the attribute-belongs-to-a-class or the attribute-belongs-
to-a-class-level design has been enforced in the implementation of [16], but
we will came back to this issue when we present the interpretation we have
given to the FIDL language.

3.3.2 Lexical conventions

The keywords of the FIDL language consist of all the attribute names pre-
sented in Figure 3.5, a set of generic element types and 5 other keywords.
Tables 3.1 and 3.2 are reproduced from [16] and they show all the keywords
of FIDL:

37

3.3.3 FIDL grammar

The grammar of FIDL is specified in [16] in a notation similar to the Eztended
Backus-Naur Form (EBNF). We reproduce it here:

<stream _spec> ii= "stream" <identifier > "{" <
flow spec>+ "}"
<flow _spec > 1:= <direction > "flow" <identifier >

"{" <element spec>+ [<
constraint >] "}"";"

<direction > ::= "sink" | "source"
<element spec> ;1= < generic_name> <label >
["{H <attribute >+ "}H] ";"

<attribute >

<attr_name> "=" <attr_value>
("+" <attr value>+)x ";"
<attr value> = <atomic value>

| "{" <set_value> "}"
|

"(" <range value> ")"

<set_value > := <atomic_value> ("," <
atomic_value>)x
<range value> = <atomic value> "," <
atomic value>
<atomic value> = <string>
| <integer>
| <float>
<constraint > := "constraint" <constraint expr
> e
<constraint _expr > ::= <or_expr> ("|" <or_expr>)x*
<or_expr> = <and_expr> ("&" <and expr>)x
<and _expr> <label >

"(" <constraint expr > ")"
<identifier >

<label >

3.3.4 A semantic interpretation of FIDL

We take now a closer look at the possible semantic meanings of FIDL’s
grammar. If some things seem a little difficult to understand at the first
reading, we believe they will become very clear once we come to an example
of a FIDL specification, such as the one given in Section 3.3.5.

By analyzing the grammar presented above, and the examples presented
by the authors of FIDL, we see that a FIDL specification is actually the
specification of a stream of data of one or multiple types.

A stream specification contains one or more directed flow specifications.
The general syntax of a stream specification is therefore:

stream STREAM_NAME {
<directed flow specifications>

}

38

In this context, the capitalized label "STREAM NAME" represents a
generic identifier. The meta-code in triangular parenthesis "<directed flow
specifications>" suggests that the body of a stream specification consists of
a list of directed flow specifications, and that this is not real FIDL code. We
will use this notation in the reminder of this section to suggest where iden-
tifiers are expected and what is meta-code. All other symbols are keywords
or required punctuation.

A flow’s direction is specified by the source or sink keywords. Each flow
specification contains one or more element specifications and a single, op-
tional constraint clause. The general blue print of a directed flow specifi-
cation is:

<direction > flow FLOW_NAME {
<element _specifications >
<constraint clause>

};
An element specification has the following general form:

<element type> EIEMENT NAME {
<attribute specifications>

}s

The (list of) attribute specifications of an element specification can be
empty. It is not clear to us why FIDL allows this scenario. One conceivable
use would be to allow the declaration of element wariables inside a flow
specification, but none of the examples presented in [16] makes use of this
syntactic liberty. Neither CORBA IDL nor Slice allow the declaration of
stand alone variables.

If the list of attribute specifications is not empty, it consists of one or more
assignments. An assignment assigns an appropriate value to an attribute
name. An appropriate value can be atomic, which means it is a single value
of any of the legal data types of FIDL, or it can be a set or a range value.
The legal data types of FIDL are integer, float or string.

It is interesting that a set or a range value is allowed to have elements of
different types.

While we like very much the ability to specify sets and ranges in FIDL,
a strict interpretation must be given to their semantic meanings, in an im-
plementation.

The constraint clause of a flow, if present at all, specifies which of the
declared elements must be present in an implementation in order to have
a legal and complete flow. For this purpose the or "|" and the and "&"
operators are defined. If the contraint clause is missing, but the list of
element specifications is not empty, [16] specifies that any of the declared
elements can be part of the flow at run time, but they are not required to.

39

3.3.5 A FIDL specification example

Several FIDL specifications are given as examples in [16]. These examples
are used in [16] to illustrate different sides of the system implemented therein,
like communicating with a database for multimedia objects. We do not re-
produce here any of those example, as we want to focus in this thesis on
an application of FIDL specifications which has only peripherally been men-
tioned in [16]. Our goal is to present a solution to the challenging problem
of handling the concept of streams of multimedia data as first class objects
in the context of middleware for distributed computing.

As a demo, we have implemented a simple one-way video telephony ap-
plication. We make use of common hardware, like a webcam, a microphone
and the host computer’s soundcard and screen.

Following the guidelines presented in the previous section, we declare
first a stream which we choose to call "WebCamChat":

stream WebCamChat {

}

Then, we declare a source and a sink flow. The source flow represents
the end-point where the webcam and the microphone reside, and the sink
flow specification represents the end-point where the images and the sound
are consumed. We give the flows different names in order to be able to
distinguish them without referring to the their direction:

source flow WebCaml {

constraint

}3
sink flow WebCam2 {

constraint
}s

Because of the limitations of the hardware used, we have chosen to declare
3 different image elements and an audio element for each of the flows. We
show here the elements for the source flow. (The audio element of the sink
flow specification will be named something else then Mic. Otherwise the two
flow specifications are equal.) The elements have the following declaration:

image QSIF {
encoding = "YUVp420";
samplerate = (5, 30);
height = 120;
width = 160;

40

image SIF {

encoding = "YUVp420";
samplerate = (5, 30);

height = 240;
width = 320;

}a

image VGA {

encoding = "YUVp420";
samplerate = (5, 15);

height = 480;
width = 640;
}s

audio Mic {
encoding =

23
channels = {1, 2

}s

samplerate = {8000, 11025, 22050, 44100};
samplesize = {8, 16};

}s

What we want our application to provide is a combination of any of the
image elements and the audio element for each flow. We provide therefore
the following constraint to each of the flow specifications:

// constraint for
constraint (VGA |

// constraint for
constraint (VGA |

the source flow
SIF | QSIF) & Mic;

the sink flow
SIF | QSIF) & SoundCard;

Putting it all together, here is our demo’s specification code:

Listing 3.1: FIDL specification for our demo application.

stream WebCamChat {

source flow WebCaml {

image QSIF {

encoding = "YUVp420";
samplerate = (5, 30);

height = 120;
width = 160;
5

image SIF {

encoding = "YUVp420";
samplerate = (5, 30);

height = 240;
width = 320;
}s

41

17 image VGA {

18 encoding = "YUVp420";
19 samplerate = (5, 15);
20 height = 480;

21 width = 640;

22 };

23

24 audio Mic {

25 encoding = 2;

26 channels = {1, 2};

27 samplerate = {8000, 11025, 22050, 44100};
28 samplesize = {8, 16};
29 }s

30

31 constraint (VGA | SIF | QSIF) & Mic;
32 }s

33

34 sink flow Webcam2 {

35 image QSIF {

36 encoding = "YUVp420";
37 height = 120;

38 width = 160;

39 }s

40

4 image SIF {

42 encoding = "YUVp420";
43 height = 240;

44 width = 320;

15 b

46

a7 image VGA {

48 encoding = "YUVp420";
49 height = 480;

50 width = 640;

51 };

52

53 audio SoundCard {

54 encoding = 2;

55 channels = {1, 2};

56 samplerate = {8000, 11025, 22050, 44100};
57 samplesize = {8, 16};
58 }s

59

60 constraint (VGA | SIF | QSIF) & SoundCard;
o}

62}

As we will see in the next subsection, there are situations when two
flow specifications such as the ones used in our demo should actually be

42

placed in separate files, as they would each reside on a different machine.
The source and the sink end-points do not necessarily have to know about
each-other’s streaming capabilities, as other entities will care to handle them
together. The grammar of FIDL allows though a stream to have several flow
specifications. This could be to allow the processing of collocated scenarios.
We consider though that collocated scenarios do not necessarily have to be
specified in the same file, because two files can just as easily be processed on
the same node.

It is also unclear to us why the FIDL grammar allows the declaration
of more than two flows within the same stream specification. We note also
that it is also legal to declare several flows with the same direction within
the same stream specification. Maybe the intent of this liberty is to be able
to programmatically chose between one of the flow specifications at compile
time.

3.3.6 Other features
The Intersector

In addition to its ability to specify streams, [16] presents many additional
features of the system of which the FIDL language is part of. Among these
features we want to particularly mention the Intersector. Quoting from [16],
"the Intersector is responsible for computing the intersection of the quality
and structural interpretations of a pair of flow types.” In other words, given
two FIDL files, the intersector will analyze the structure of each stream
specification and determine wheather the two specification are compatible at
all. If they are, the intersector will also compute the set of common elements
of each stream and the set of common attributes with their common attribute
values for the two streams.

From our point of view this is an important feature of this system and
we will use it as a starting point for the solution we present in this thesis.

[16] gives at least a couple of examples of computations of stream speci-
fication intersections. We do not have their system compiled and operative,
but we will present here what we understand would be the result of intersect-
ing the two flows specified for our demo application. Before we do that, we
want to mention a couple of other things. We quote again from [16]: "The
Intersector is also able to produce the equivalent FIDL code for any stream
or flow object. This is useful, for instance, when ... analyzing the result of
an intersection.”

Looking at the Program Listing 7.2 on page 59 in [16], we see that the
Intersector outputs its results in a syntax which seems to be a subset of
FIDL’s syntax. By this, we refer to the fact that the values on the right
sides of the assignments are all converted to sets, which is a reasonable thing
to do in regard to the further processing of this output. These sets can

43

be very long®, but since they are machine processed we should not be so
concerned about them. Since our sets contain many elements we use "..." in
the next listing to indicate that we have not listed all values. The Intersector
will of course have to provide a complete listing.

We also notice that since this is an intersection of two stream specifica-
tions, the flows’ directions are now specified as void and that the Intersector
provides machine generated names instead of the identifiers given by the
authors of the FIDL files to the stream and the flows.

Here is what we think would be the result of intersecting our two flow
declarations:

Listing 3.2: Intersector output in FIDL format for our demo’s specification.

1 stream strIntersection {

2 void flow flwIntersection0 {

3 image lab0 {

4 encoding = {"YUVp420"};

5 samplerate = {5, 6, 7, ..., 28, 29, 30};
6 height = {120};

7 width = {160};

. .

9

}s
10 image labl {
11 encoding = {"YUVp420"};
12 samplerate = {5, 6, 7, ..., 28, 29, 30};
13 height = {240}
14 width = {320};
15 }s
16
17 image lab2 {
18 encoding = {"YUVp420"};
19 samplerate = {5, 6, 7, ..., 13, 14, 15};
20 height = {480};
21 width = {640};
2 }s
23
24 audio lab3 {
25 encoding = {2};
26 channels = {1, 2};
27 samplerate = {8000, 11025, 22050, 44100};
28 samplesize = {8, 16};
29 s
30
31 constraint (lab2 | labl | lab0) & lab3;
22}
33}

®Long from the human point of view. A set with even as many as 10.000 integer values,
while large, is totally processable by todays computers.

44

"Plussed" values

One last remark about FIDL. One thing which can be seen from a careful
reading of the FIDL grammar is that we can have plussed values on the
right side of assignments in element declarations. That is, we could specify
an assignment like

samplerate = (10, 15) + 7 + 18 + (25, 30);

We note the expressive power of this assignment: the right side is made
of a sum of atomic and range values. Nothing hinders us to also sum sets
to atomic values and ranges. We point out though that this will not add
anything to the expressive power of the FIDL assignment statement, because
the only operator allowed on the right side of an assignment is plus "+". The
middle values in the assignment above, 7 and 18, can also be viewed as the
members of a set, and we could write the above assignment like this:

samplerate = (10, 15) + {7, 18} + (25, 30);

We note also that the values given (integers in this case) are not in
ascending order. Such an assignment must therefore be interpreted somehow.

3.4 Summary

In this chapter we have provided an overview of the main features of those
systems and tools which we use for the implementation of our work.

In the next chapter we present the requirements posed to our work, and
provide also an analysis of them.

Chapter 4

Requirements

In this chapter, we present the requirements for the MSA. We present first
on overview of the requirements in Section 4.1 and proceed with an analysis
of the requirements in Section 4.2. The purpose of this analysis is to derive
which platforms, systems and tools are the most appropriate for the work
we want to accomplish in this thesis.

4.1 Overview

The requirements posed to our MSA have been influenced by the fact that the
work presented in this thesis belonged to begin with to the MULTE project
and has been continued then on its own. It is therefore natural that we first
present the requirements derived from the MULTE-ORB. Then we present
the requirements to begin with, and that for the MSA in three stages: 1)
MULTE-ORB requirements, 2) Da CaPo requirements and 3) object adapter
requirements.

4.1.1 MULTE-ORB requirements

In [21], the following six requirements have been defined for the MULTE-
ORB:

1. Dynamic QoS support.
Applications should be able to specify QoS requirements and to change
them dynamically. The middleware (MULTE-ORB) should provide the
requested QoS and adapt to changes in QoS requirements, resource
availability, etc.

2. Evolution of QoS requirements.
New media types and new applications might introduce new QoS char-
acteristics. In order to support these new requirements, QoS manage-
ment in the middleware must be extensible.

45

46

. Transparency versus fine grained control.

Developers of application components and users should be able to
define QoS requirements in high-level (application) terminology, e.g.
good video quality, and in low-level system parameters to directly influ-
ence middleware configuration, e.g. compression = MPEG, and resource
allocation, e.g. throughput > 1 MB/s.

. Policy control.

The middleware should enable end users, application developers, and
system managers to specify policies for QoS mapping, negotiation,
monitoring, adaptation, etc. For example a policy might be used to ex-
press that in case the quality of a video should be degraded, adaptation
is done by reducing the frame rate instead of the resolution.

. Automatic support for compatibility control.

The middleware should detect incompatibilities in user requirements
and equipment and resolve them - if possible - with media scaling and
transcoding.

. Support for seamless system evolution.

The integration of new components in the middleware should not re-
quire recompilation or changes of existing components and middleware
entities. This must also be true for components that encapsulate re-
sources, i.e., APIs to network services.

These requirements were given for this thesis since the MSA was origi-

nally intended for the MULTE-ORB.

4.1.2 Da CaPo requirements

The general guidelines for an implementation of Da CaPo have been estab-
lished at the beginning of this thesis, in cooperation with other MULTE
project members. Therefore, we provide in this thesis only a possible imple-
mentation of a Da CaPo core, base on these guidelines. The main require-
ments posed to Da CaPo are:

1. Use C+-+.

Other project members were already working at a new Da CaPo im-
plementation when the work with this thesis was started. They used
C++ for it, because the rest of the system they worked on was to be
implemented in C++. When their work with Da CaPo stagnated tem-
porarily, we considered it natural to try to provide an implementation
of a Da CaPo core in the same language, so that as much as possible
of our work could later be incorporated into the new Da CaPo.

47

2. Simple APL
Da CaPo modules must adhere to a well defined interface in order for
them to be treatable as modules. A module API is a reflection of this
interface. It is always a benefit to keep an API as simple and as logical
as possible.

3. Flexibility.

The original version of Da CaPo was very flexible, in the sense that
it allowed the creation of application specific protocols by means of
having each module implement a protocol function of very fine granu-
larity, i.e. each module performed only a simple networking operation.
We want to preserve this quality in the new Da CaPo implementation.
We note that it does not hinder us from implementing heavy modules,
which perform complex sequences of networking operations, if we need
to.

4. Adaptability.
Applications based on the original Da CaPo system could reconfigure
their protocol graphs at run-time, if external factors, such as a drop in
the available bandwith, required it. We want to preserve this feature
in the new Da CaPo implementation as well.

Also these requirements were more or less given to this author, as we
have no intention in this thesis to depart from the work which others are
trying to accomplish in the MULTE project. On the contrary, we consider
it a benefit to remain as compatible as possible with the project. The fact
that this thesis has evolved on its own much of the time is due to external
working assignments and not to disagreement on technical grounds.

4.1.3 Object adapter requirements

An object adapter is one of the most important components of a middleware
platform like CORBA or ICE. Since the regular object adapters provided
by these platforms do not support streaming of data, we have an additional
requirement, that our MSA shall extend the capabilities of an object adapter
with support for streaming.

4.2 Analysis

In this section, we analyze the requirements posed to our work, in order to
decide the most appropriate platforms and tools need for its implementation.

4.2.1 MULTE-ORB requirements revisited

The requirements identified for MULTE-ORB, presented in Section 4.1.1,
are general, in the sense that any platform with support for multimedia

48

streaming must support the principle behind each of them. They are of
course adapted to the specifics of MULTE-ORB, but they reflect general
needs. Since this thesis is not part of the MULTE project anymore, we
can not derive explicit consequences for our design and implementation from
them. However, they too can contribute to the choice of tools and systems
used in our implementation, by providing guidelines. The six requirements
were:

1. Dynamic QoS support.

2. Evolution of QoS requirements.

3. Transparency versus fine grained control.

4. Policy control.

5. Automatic support for compatibility control.
6. Support for seamless system evolution.

The first three requirements deal directly with the need for QoS man-
agement. They have been stated because, at the time of this writing, there
are no object-oriented middleware platforms today which provides support
the specification and management of QoS. The closest we come to "native"
QoS support in an CORBA ORB is the QoS features of A/V Streams Spec-
ification, which has been presented in Section 2.5. Also, ICE has virtually
no support for QoS management, as mentioned in Section 3.2.8. The im-
portant question for this discussion is which existing platforms or tools are
most suitable for the implementations of object-oriented middleware which
will satisfy these requirements? Many texts, including [22, 15, 23, 1], suggest
that in order to achieve QoS regulated behavior of multimedia applications,
support for QoS is necessary at all levels of a system, including the operat-
ing system. This is why, to begin with, the MULTE project wanted to use
Chorus, and later Real-Time Linux, for their implementation. On the same
token, Sumo-ORB was built on a Sumo-ORB core which consisted of more
than 20.000 lines of C code [1], which provided the low level implementation
of the functionality necessary to manage QoS on higher levels.

In this thesis, we have chosen not to look into the details of how to build
a system on the API provided by an operating system like Real-Time Linux.
Referring to our discussion of QoS in Section 2.1.4, we concentrate on QoS
at the application level.

In light of the discusion of Section 5.1, we consider that application level
QoS parameters can be specified both by extending an IDL language, or by
means of another, special purpose, language such as FIDL. The extensions
to CORBA IDL proposed in [1] are not enough to allow the declaration
of application level QoS parameters, because their extensions do not allow

49

the assignment of values to names, i.e. one can not specify something like
framerate = 20 in the extended IDL!.

For this thesis, we prefer to use FIDL, which is specifically designed to
facilitate the declarations of streams and flows of data, including the asso-
ciated QoS requirements, rather than extend an IDL language even beyond
the proposals presented in [1].

In regard to requirement number 4 above, it is beyond the scope of this
thesis to concern ourselves with mechanisms for specification of policies. We
are more concerned with providing a streaming API which can be used by
the application to adapt itself to the employed policy, regardless of how
it is specified. Within the MULTE project, however, the issue of policy
specification is addressed for instance in [24].

For the fulfillment of requirement number 5, we consider that the FIDL
specification language, together with the work presented in [16] (a FIDL
specifications Intersector) or [24] (a FIDL based Gateway Trader) are obvious
best candidates. Both of these two works implement algorithms for flow
interface compatibility control. Of the two, the work presented in [16] has
been implemented first, and the work in [24] builds on it. In this thesis,
we also build on [16] (FIDL), and we assume the existence of a system, like
the above mentioned Intersector, which can provide us with the result of
flow specifications compatibility checks. Alternatively to such a system, a
programmer can provide our compiler with the result of the intersection of
flow specifications for which he or she desires to implement a MSA. As we
will see in the reminder of this thesis, this is easily accomplished, and it is
the approach we have chosen for our demo application.

The implementation of requirement number 6 provides a distributed sys-
tem for multimedia with much elegance and user friendliness. Much of this
functionality was planned to be implemented in the MULTE-ORB by in-
tegrating the Da CaPo system into the ORB. In this thesis, we provide
ourselves an implementation of a Da CaPo core which can be used as the
starting point for a Da CaPo implementation which exhibits the qualities
highlighted in requirement no 6. This requirement is very much alike re-
quirement number 4 of Section 4.1.2.

4.2.2 Da CaPo requirements revisited

The requirements posed to our Da CaPo core implementation are not of a
nature to influence the choice of platforms and tools.

In the earlier stages of the MULTE project, the COOL ORB has been
considered to be an environment more suitable than other ORBs to host
a system like Da CaPo. However, the idea of using COOL has been dis-
carded and this author’s literature studies have not led to the discovery of

! Just as it can not be specified in CORBA IDL or Slice

50

a framework for distributed computing which is especially well adapted for
Da CaPo.

We believe though, that the use of an operating system with built in QoS
management abilities, like Real-Time Linux, would be beneficial. However,
this would not be beneficial for Da CaPo alone, but for any system which
addresses the issues of QoS management. As we have mentioned in the
previous section, we do not try to interface such a special purpose operating
system in this thesis.

4.2.3 Object adapter requirements revisited

The original idea was to extend the capabilities of a CORBA ORB’s object
adapter with streaming capabilities, within the work with the MULTE-ORB.
After COOL has been abandoned, other CORBA ORBs have been consid-
ered, like TAO-ORB and OmniORB. These ORBs have been considered,
because at that time, they were the most mature, most rich in implemented
features and they had the most actively developing communities. We have
restricted our studies to open source platforms, because they were most
readily available, and they are the only ones which allow us to gain in depth
insight about their inner workings.

While studying OmniORB, our attention has been directed to the ICE
platform, by a posting on a newsgroup. Reading ICE’s documentation

quickly convinced us that it would be advantageous for us to use it instead
of a CORBA ORB.

The feature which attracted us most was the obvious simplicity of ICE’s
object model. While much simpler then CORBA’s, it is still very powerful.
This simplicity makes ICE’s learning curve much leaner, so that it requires
less time and effort to become productive with ICE than with CORBA.

Eventually, we discovered several other benefits of using ICE as the de-
velopment platform in this thesis, such as the fact that Slice has built in
the notion of classes. This allows the implementation of object functionality
on the client side of an application too. The functionality of an interface is
always implemented only on the server side, both in CORBA and in ICE.
However, by the time we discovered these benefits, we had already decided
to use ICE rather than a CORBA ORB.

At the time of this writting, version 1.5.0 of ICE has been released, and
according to an announcement made by ZeroC in september 2004, release
1.6.0 is due in the 4th quarter of 2004. In this thesis, we use version 1.4.0,
because it was the latest release at the time when we began to implemen-
tations of our MSA. However, due to our design choices, we believe that
our MSA implementation will work with all releases of ICE in the forseeable
future.

51

4.3 Summary

In this chapter, we have presented the requirements for the work of this
thesis. Some of these requirements, such as the ones for the MULTE-ORB,
have been defined prior to the commencement of our work. Some of the
others, like the ones for Da CaPo, have been developed in cooperation with
other MULTE project members. Also the requirement to extend an object
adapter with streaming capabilities has been given from the very beginning,
but only in general terms. How to extend an object adapter is the realm of
this thesis.

The following chapters present our design and implementation. In Chap-
ter 11 we present our demo applications, and we evaluate the whole thesis
in Chapter 12.

Chapter 5
Options

In this chapter we present some of the options we have for our design and
implementation.

5.1 Main approaches to streaming

While reading literature relevant to this thesis, I came across two major
approaches to dealing with the issue of streaming in distributed computing.

Existing frameworks, like CORBA [7] and ICE [11], make use of an Inter-
face Declaration Language (IDL) as a means of creating a contract between
clients and servers. Neither the CORBA IDL language nor Slice include any
implicit support for streaming and multimedia, as they have not been cre-
ated with this end in mind. Instead, the interfaces that can be declared in
these IDLs are only implementing the RPC paradigm.

Researchers working on multimedia streaming issues in connection to
existing (CORBA) ORBs!, have therefore had to make a choice in regard to
the use of IDL languages:

e to extend the existing IDL with concepts native to streaming, or

e to try to implement concepts native to streaming by means of tradi-
tional interfaces only.

In addition to these two main approaches, the MULTE project intended
to try something new, which does not necessarily preclude the need to make
a choice regarding to wheather to extend an IDL language or not. [15] states
that "Support for stream interactions need an extended IDL to specify stream
interfaces with QoS specification for different flows. A stream object adapter
supporting the generated stream stubs and skeletons will be developed. A new
IDL compiler (back-end) targeted to Da CaPo will be used to produce stubs

! As far as we know, our project is the first to use a non-CORBA ORB in multimedia
research

93

54

(A-modules) integrating marshaling as part of Da CaPo’s responsability and
functionality.”

What is new in the approach suggested by [15] is the desire to implement
a stream object adapter, as an alternative to the common object adapter of
ORBs.

In the remainder of this section, we discuss all these issues in more detail.

5.1.1 Extending an IDL

As an example of this approach we refer to the work presented in [1], where
the designers of Sumo-ORB present a model of distributed computing which
is extended with features supporting streaming. From their analysis of the
requirements imposed by streaming multimedia data they derived the "nec-
essary" extensions to CORBA’s IDL and show how the language could be
extended so that streams and flows can be treated like first class objects,
just as interfaces are in the native CORBA IDL.

In short, they propose to extend the CORBA IDL to allow the declara-
tions of stream and signal interfaces, in addition to the regular operational
interfaces. This is according to the RM-ODP guidelines presented in Sec-
tion 2.3. They propose the addition of a qualifier to interface declarations
which, together with new keywords like flowing, flowOut, signalln, signalOut,
would tell the compiler what kind of code to generate for each interface. The
following are examples of declarations from [1]:

interface <operational > cameraControl {
start () ;

stop () ;

pan(in panDegrees integer);
tilt (in tiltDegrees integer);
zoom (in zoomFactor integer):;

}

interface <stream> microphoneOut {
flowOut audioOut (audio);

}

interface <signal > qosControl {
signalOut audioSent (timestemp);
signalln audioDelievered(timestemp);

}

However, already in their early work they state their intention to bring
their design up to "compliance with existing CORBA implementations"?. By
this they mean to provide a solution based on pure CORBA IDL.

2See Section 11.1 of [1]

55

5.1.2 Using only CORBA IDL

As far as we understand, the work on the Sumo-ORB has been discontinued
in favor for their newer multimedia middleware, TOAST [3]. In this later
work, researchers from the same group have indeed aligned their work with
the CORBA specification, by implementing an infrastructure of CORBA ob-
jects (operations), declared entirely in CORBA IDL. When these operations
are implemented they will provide streaming services. They say that a "no-
table feature” of TOAST is that the middleware is "designed and specified
completely in terms of CORBA IDL"3.

This newer approach has evident advantages: the TOAST implementa-
tion should compile with any ORB, just as a C++ program should compile
with any C+-+ compiler.

5.1.3 A streaming object adapter

Frameworks for distributed programming include the concept of an Object
Adapter (OA) as the means to provide access to sets of related services
provided by the framework.

Both ICE and CORBA have object adapters. They both have been
designed to implement the RPC communication paradigm, and they both
employ the object adapter for basically the same purposes, as presented in
Sections 2.4.2 and 3.2.11. However, this communication pattern has proven
to be of limited use for multimedia distributed programming because of the
continuous nature of multimedia data and because multimedia data often
comes in so large quantities that it can not be processed as a regular opera-
tion.

These reasons have been considered by the MULTE-ORB researchers
to be so weighty as to warrant the introduction of a new object adapter.
Remember from Section 2.4.2 that [7] advises to consider the introduction
of new object adapters only when "radically different services or interfaces”
are needed.

5.2 ORB based programming styles

In general, in a distributed application we want to separate the concept of
data into control data and payload data. Control data is used to send the
values of control parameters back and forth from the client to the server, in
order to regulate the interaction between them. Payload data is the data
which we are mainly interested in and whose transfer is regulated with con-
trol operations, which use control data. Multimedia data in a multimedia
distributed application will be part or all of the application’s payload data.

3See Section 3.2 of [3]

56

5.2.1 ORBs and sockets

The traditional way of building multimedia distributed applications has been
to establish separated physical paths for the control and the payload data.
The control path is usually established over TCP, because of its automatic
retransmission of lost packets and its ordered delievery of packets. The path
for the payload data can be established over UDP too, if occasional lost
of packets, or occasional unordered delievery of packets is not critical to
the application. The A/V Streams Specification imposes such a distinction
between the control and the payload paths, where the control path is es-
tablished by means of a CORBA ORB, and the payload path is established
using regular socket mechanisms. Figure 5.1 shows the generalized scenario
of separated control and payload paths. The fact that any ORB uses sockets
internally, is not relevant for this discussion.

SERVER CLIENT
APPLICATION APPLICATION
ORB control path ORB
Runtime Runtime
Sockets payload path Sockets

Figure 5.1: Different mechanisms for control and payload data paths.

5.2.2 ORBs only: polling and callback

The polling client and the callback programing styles discussed here are
scenarios in which we still implement separated paths for the control and
the payload data, but we direct both of them through the ORB. Figure 5.2
depicts this graphically.

The obvious disadvantage of directing all communication through the
ORRB is that the flow of payload data must be modeled by means of opera-
tions. This implies more messages exchanged between the ORB run-times on
the client and the server end-points. More messages lead to more processing
time on each end-point. If the operations employed are two-way operations,
an additional delay is introduced, as the application has to wait for the reply,
and it takes at least a trip-time for it to arrive.

The advantage of the approach is that all communication can be modeled
by means of well defined interfaces and operations. This feature is especially
useful for an automation task as the one we present in this thesis, because

57

SERVER CLIENT
APPLICATION APPLICATION
control path
ORB ORB
Runtime payload path Runtime

Figure 5.2: Control and payload data paths through the ORB.

interfaces and operations can easily be generated programmatically. Any
distributed platform will guarantee the correct behavior of interfaces defined
in its native IDL, and will also provide location transparency for end-points.

In this approach, both control messages and the transfer of payload data
is realized by means of operations. In this thesis, interfaces, and therefore
also operations, are always regular, as opposed to stream or signal operations
which have been presented in Section 2.3. We recall also that some proem-
inent researchers have abandoned the use of stream and signal interfaces in
their newer work, as discussed in Section 5.1.

Polling client

What is typical for a polling client application, is that the transfer of payload
data is realized by means of operations with return types. The client calls
the operations, to indicate that it wants payload data, and then collects the
return result of each operation in a variable of an appropriate type. Thus,
the client polls the server for each piece of payload data it needs. In this
programming style, the client is the active part in the communication, while
the server is passive, at least as far as the payload data it concerned.
The general blue print of polling operations is:

return_type operation name(optional parameters);

The client application will typically loop and call one or more operations
in each iteration and do something with each piece of data which arrives.
For an operation as the one above, the typical code would be:

return_type variable = 0;

loop {
variable = operation name(optional parameters);
use_data(variable);

}

Figure 5.3 shows the typical communication pattern which takes place
for the transfer of payload data in a typical client polling application. This

58

pattern happens after the client and the server have been initialized and they
have been connected to each other.

SERVER CLIENT
APPLICATION APPLICATION

=}
o
(€]
=
o
=
@]
=
=
<
Q
(€]
I
=
=}
=

: 1
| |
|

| |
| [) |
| |
| |
| . |
| |
| [) |
| |
| |
| |
| |
Y Y
time time

Figure 5.3: Polling application communication pattern for payload data

Both operation invocations and operation replies take time, an average
trip time, and for the replies we have to add the processing time needed by
the the server to produce the data which the client has requested. While the
operation replies can be considered as an inevitable time expense, after all
the data must be transfered to the client no matter what programming style
is used, the operation invocations, shown in red in Figure 5.3, are clearly
time expenses induced by this particular approach. The advantage of the
polling client method is that it is simple to implement.

In the typical polling application, there is no need for a special binding
object, as mentioned in the general object model of RM-ODP, which we
have discussed in Section 2.3. The contract expressed by the declaration of
operations assures that call to operations are automatically directed to the
right servant objects, and if the operations return values, that the return
values are sent back to the right operation calling objects.

Callback server

The callback server approach eliminates the time penalty associated with the
polling client programming style. In this approach, "the client" continues to
play the role of a client as far as the consumption of the data is concerned.

59

The client still is the application which needs the data which a server has.
However, when it comes to the process of transporting the data to the client,
the client and the server reverse their roles.

The transportation of the data is still accomplished by invoking oper-
ations, but this time it is the server who invokes data carrying operations
on the client. Such a data carrying operation does not need a return type,
and should not have one, unless a confirmation for the successful reception
of each single packet of data is necessary. If the carrying operation had a
return type it would invoke the same time penalty which we have seen in the
case of the polling client programing style.

What makes this approach implementable is that two sets of operations
are declared: one which the client invokes on the server, as in any regular
distributed application, and another set with operations which the server
invokes on the client, which we informally call data carrying operations.

The typical blue print of a data carrying operation, is therefore:

void callback(data_ type variable name) ;

In a server callback application, the client is the active entity only as far as
initiating the transfer of data is concerned. After it has been prompted by a
client to send data, the server becomes the active entity as it will continually
callback the data carrying operation on the client, without waiting for any
replies from the client. Each time the operation is "executed" in the client
application, the client will simply collect the data sent as a parameter to
the operation and process it at will. Figure 5.4 shows the communication
pattern of a server callback based application, after all initialization is done.

There are no red arrows in this figure, because the client’s notification
to the server that it is ready to receive data, represented by the blue arrow
in this figure, is an absolute necessity. We see that this approach does not
incur a time penalty, because the data carrying operations can be conceived
to correspond to the transportation of the data by means of any socket
mechanism. Of course a little more processing is involved in this approach,
compared to a pure sockets implementation, but the time needed for the data
transfer itself will always be "much" larger then the processing of messages
inside ORBs, because multimedia data is so voluminous.

Programming a server callback application requires the creation and ini-
tialization an object adapter in each of the client and the server applications.
Each of the object adapters will dispatch operation calls coming from the
other application than the one to which it belongs. This makes the ini-
tialization of a server callback based application more complicated than the
initialization of a client polling application. In this case both applications
must be informed about the proxies they can use to invoke operations on
each other, whereas in the polling client application only the client needed
be given a proxy to the server.

Figure 5.5 shows the main events which take place in order to achieve

60

SERVER CLIENT
APPLICATION APPLICATION

start sending data

|
carrying operation
|

carrying operation

carrying operation
|

| |
| [) |
| |
| |
| . |
| |
| [) |
| |
| |
| |
| |
Y Y
time time

Figure 5.4: Callback application communication pattern for payload data

this.

First, the object adapter is initialized in both the client and the server.
Then, other objects are initialized on both sides of the application. Especially
important is a proxy to the one of the client’s own object implementations.
The client can easily produce this proxy by itself, by means of its own object
adapter. The client application must then be given a proxy to a server based
object implementation — this step is the typical ORB initialization "magic".
After the client has this proxy, it can call an operation on the server, whose
main purpose is to give the server a proxy to one of its own object imple-
mentations. The server stores this referance and acknowledges its reception
to the client. From this time on, represented by the dotted horizontal line in
Figure 5.5, the communication pattern represented in Figure 5.4 can begin
to take place.

5.3 Compiler tools (PLY)

In the early stage of the work with this thesis, we considered to use the
same compiler generator which has been used for FIDL in [16], called PC-
CTS [19, 20]. The main argument was to remain compatible with the work
done in [16]. Also, at that time, PCCTS was considered to be one of the
best compiler generators available. However, since we did not manage to

61

SERVER CLIENT
APPLICATION APPLICATION
O «— Object Adapter creation ———m O
| |

|
proxy creation — o O

- |
-
-
- |
-

I

I

I

|

I

: f O - client gets
| I Server proxy
I

I

I

I

w

|

|

|

O - server stores :
client proxy |
|

|

roxy_received();

time time

Figure 5.5: Callback proxy hand-over.

compile the code from [16], and since the PCCTS tool was not under de-
velopment anymore, when this author came back from his external working
assignments, we decided to look for alternatives. Our preference was to find
a tool developed for Python, because Python is an excellent language for
parsing.

We came across Python Lex-Yacc (PLY) [18], which is s a pure Python
implementation of the well know LEX and YACC tools of Unix. This tool is
developed at the University of Chicago, for educational purposes. We have
used version 1.5.0 in this thesis. PLY is reported to be very easy to use
and to provide very extensive error checking, which we can confirm. PLY
comes with a 25 pages manual which is ideal to get you started if you have a
basic understanding of grammars and of the process of writing parsers for a
language. Otherwise, you will need to consult some introductory texts first.

Our experiences with PLY have been very good.

5.4 Decisions for this thesis

In the previous two sections we have presented alternative approaches to the
issues IDL languages extended with streaming concepts and to ORB based
multimedia programming styles. These are central issues in a work which
attempts to extend an existing object-oriented middleware platform with

62

support for streaming.

For this thesis we choose to not extend Slice (the IDL of our chosen
platform) with support for stream and signal interfaces. In this way, our work
remains compatible with "any" version of ICE, because given the spread of
use which ICE already has, ZeroC will be reluctant to make major changes to
Slice’s syntax and semantics for the forseeable future. This is an important
feature of our solution, because, at least for the last year, ZeroC has released
4 versions of ICE. Maybe ICE will not be updated so often in the future,
but even only one update per year would make our solution obsolete too
soon, if it was making changes to Slice, unless of course, ZeroC would choose
to integrate our extension into the system. Given the fact that others have
moved from an extended IDL solution to a CORBA IDL compliant solution,
we consider it to be wise to remain Slice compatible.

Regarding the original proposal to extend the very object adapter of an
ORB, that would mean the object adapter of ICE in our case, we consider
it a very good idea. It has the same disadvantage as extending Slice: our
solution would have to be ported to every new release of ICE. In our oppinion
it would be a nice and clean approach to offer streaming support at the level
of the object adapter, but we also deem it to be too time consuming for us,
given the fact that we have spent a considerable amount of time on Da CaPo.
Probably the best way to pursue this line of thought is to set up another
master’s thesis’s project, in cooperation with ZeroC.

We also choose to use FIDL as the means which offers that higher level of
abstraction which is necessary in order to provide a descriptive representa-
tion of streams and flows of data. As we will see, we make small amendments
to FIDL, in order to make it possible for our MSA to interface the environ-
ment into which it operates. We call our specification language FIDL++,
even though the differences are so few that we wonder if they warrant the
introduction of a new name. We also consider that it is a positive feature of
our work to remain compatible with FIDL, because it is the language em-
ployed in the work presented in [1] and [25]. These implementations of an
Intersector of flow specifications and of a Trader of multimedia gateways are
features which our work can complement if they were to be integrated into
a common system.

Finally, we choose to implement our MSA by means of the server callback
approach. We opt to implement both control and payload functionality by
means of ICE’s run-time, i.e. an ORB only based solution, because we want
to exploit to the maximum the transparencies offered by such a platform.
We also believe that it is easier to model all communication by means of
operations, instead of implementing our own application logic for the transfer
of payload data. While Section 5.2.2 has given a general presentation of the
server callback approach, Section 9.2 presents our ICE based implementation.

For the implementation of the FIDL++ compiler we have chosen to use
PLY.

63

5.5 Summary

In this chapter we have presented the most relevant options we had to make
in regard to our further design and implementation work. The options were
identified as such from the literature studies done in connection with this
thesis.

In the next chapter we present the design and implementation of a Da
CaPo core, which is the first of the systems we work with in this thesis.

Chapter 6

Da CaPo

In this chapter we present a new design and implementation of a Da CaPo
core. We begin in Section 6.1 by some general remarks, which show how
the new implementation relates to the old one. In Section 6.2 we present
the design and implementation of the Da CaPo modules, which are the basic
building blocks of Da CaPo. In Section 6.3 we discuss the interfaces required
from all Da CaPo modules. Section 6.4 gives a summary of the whole chapter.
Section 11.1 presents a demo application which demonstrates how our design
is used in practice.

6.1 General remarks

A Da CaPo stream is made up of at least one flow. In Da CaPo terminology,
a flow is a unidirectional data current traveling from a source end-point
to the sink end-point or a distributed application. These concepts are dif-
ferent from the stream and flow concepts of FIDL, as we have seen in the
presentation of FIDL.

Figure 6.1 shows the components that typically make up a Da CaPo flow.

The modules are the main building blocks of a Da CaPo application. We
have the same three categories of modules in this implementation, as we had
in the original one. They are represented by the squares marked with capital
As, Cs and Ts, respectively.

In this figure we have buffers between the modules. We believe that most
applications need buffers, but in some simple situations, the modules could
be linked directly to each other. Most modules will have both an input and
an output buffer.

Figure 6.2 shows one module on each of the source and the sink end-
points and the direction of the data flow on each end-point, represented by
the arrows. The direction of the data flow determines which buffer in the
figure is the input buffer and which one is the output buffer. We note that on

65

66

Da CaPo Da CaPo
Source Sink

Generic
network

Figure 6.1: Da CaPo flow.

Source Sink

Figure 6.2: Da CaPo module details: the direction of the data flow.

67

the source node the input buffers are located above the modules and output
buffers beneath them. On the sink node their location is reversed, because
the data is traveling in the opposite (bottom-up) direction.

The module graph does not have to be symmetric on the two end-points.
Most modules come naturally in pairs but they do not have to.

We can also see in Figure 6.1 that the number of packets in a buffer is
independent of the number of packets in any other buffer in the whole Da
CaPo application. This is so because in this figure we have depicted modules
which are independent of each other. Each one executes in its own thread.
As such, they produce and consume packets from their respective buffers
as dictated by the thread scheduling mechanism which is employed by the
operating system.

Even for modules which do pair up on the source and the sink end-
points, there is no correlation between the number of packets in the buffers.
Nobody knows exactly how long each packet will be delayed on its way from
the source’s T-module to the sink’s T-module and the threading schedulers
on the source and the sink end-points can not be expected to keep packets
synchronized in the module graph.

In our opinion, to synchronize the processing of packets on the two end-
points is not a necessary feature for most applications. Such a synchroniza-
tion will considerably complicate the design of Da CaPo application and will
introduce additional (execution) delays because of the extra checks which
have to be executed.

When buffers show the same number of packets in our figures, they reflect
a state of pure coincidence, which in practice will be the exception rather
then the rule.

6.1.1 The A-module

The A-module represented by the orange rectangle marked with “A” in Fig-
ure 6.1, is the only module that generates Da CaPo packets on the source
end-point and the only module that consumes the packets on the sink end-
point. All intermediary modules will process the packets as they travel on
their way to their destination.

The packets generated by the A-module in Figure 6.1 are represented by
the yellow dots flowing downward from the module.

We note that the A-module on the source node only has an output buffer
but no input buffer. This is natural because it is the module where the
packets are generated from. On the sink side the A-module will only have
an input buffer, because this module is the last one in the module graph; it
is the module where the data is consumed. This corresponds to the fact that
in the old implementation, the A-modules did not implement the whole of
the unified module interface.

68

6.1.2 The C-module

Each C-module performs a specific networking function. In the most simple
scenario a Da CaPo application will have no C-modules at all. The T-module
will be linked directly to the A-module. On the source node the T-module’s
input buffer will be the A-module’s output buffer, while on the sink node
the T-module’s output buffer will be the A-module’s input buffer, as shown
in Figure 6.3.

Da CaPo Da CaPo
Source Sink
A
A ® e
s 2
T ° Generic N\
network

Figure 6.3: Da CaPo flow: no C-modules.

Just for the sake of argument, we note in Figure 6.1 that the packets
generated from the A-module on the source side are represented by yellow
circles, while the rest on the packets flowing in the system are represented
by red circles. With this color distinction, which happens in connection with
the first C-module on the source side, we try to emphasize the fact the this
particular C-module is a module which alters the packets it receives in some
fundamental way. Each module will perform some action on the packets it
takes from its input buffer, but this doesn’t have to result in a fundamen-
tal change to the packet. An example of what we mean with fundamental
change, would be an encoding conversion performed by a module whose in-
put packets contain image data in, say the YUVp420 encoding format, and
whose output packets are images with another encoding, say JPEG.

6.1.3 The T-module

The T-module on the source side is responsible for delievering Da CaPo
packets to the transport infrastructure. On the sink side, the T-module is
responsible for retrieving the data from the transport infrastructure, recon-
struct each Da CaPo packet and send them all further up in the module
graph on the sink end-point.

69

It is therefore natural for the T-modules to have only a buffer, just as the
A-modules do. We can say that the transport mechanism plays the role of
the other buffer for the T-modules. We note that, on each end-point, the T-
modules always have the opposite buffer than the A-module. On the source
node the A-module has only an output buffer and the T-module has only an
input buffer. The reverse is the case on the sink node: the A-module has
only an input buffer and the T-module has only an output buffer. This is
dictated by the direction in which the data flows through the module graph.

6.2 Da CaPo modules

The modules are Da CaPo’s most basic computational unit. We have devel-
oped a module class hierarchy, which we present in Figure 6.4. The arrows
point from the base classes to the derived classes. The Module class, depicted
without a shadow in this figure, is the only abstract class, in the strict sens
of the word. However, we believe that the Modulel class might be the only
one from which objects will be implemented in applications.

Figure 6.4: Module class hierarchy.

6.2.1 Module: the base module class

The Module class is a very simple abstract class, which is the base class for
our module hierarchy. It is provided only for the purpose of being able to
treat modules polymorphically in programs.. The Module class is declared
as follows:

class Module {
public:
string name;

70

int bytesProcessed;

Module(string name) ;

}s

6.2.2 ModuleB: the buffered (abstract) module class

This class adds buffer pointers to the Module class. Removing all irrelevant
details, its declaration is as follows:

class ModuleB : virtual public Module {
private:
public:
queue<DCPacket x> xinputBuffer;
queue<DCPacket x> xoutputBuffer;

IceUtil :: Mutex xinputMutex ;
IceUtil :: Mutex xoutputMutex;

ModuleB(string name,
queue<DCPacket *> xib, queue<DCPacket
x> *0b,
IceUtil :: Mutex *xiM, IceUtil :: Mutex *xoM) ;
¥
We implement buffers by means of gueues, using the queue template class
provided by the Standard Template Library (STL) of C++. A Da CaPo
buffer is a regular FIFO queue.
For convenience’s sake we have also defined DCBuffer in file buffer.h to
be the same as a STL queue of pointers to Da CaPo packets:

typedef std::queue<DCPacket x> DCBuffer;

We note that the queues are not part of the buffered modules, but are
only pointed to by them. Each module which derives from this class will
read one packet at a time from its input queue, process the packet and write
it to its output queue.

6.2.3 The Da CaPo packet

The elements which will be placed in the buffers are Da CaPo packets. A
Da CaPo packet is universal in the sense that it can carry any kind of
data. A suitable data structure for this purpose would be arrays of char or
uchar. We have defined the DCPacket type in file buffer.h to be a substitute
of char:

typedef char DCPacket;

In this way we can easily provide pointers to char by a construct like
DCPacket *.

71

Byte(s) Field Name Size Range
0 HeaderLength 1 0 to 255
1 FlowNumber 1 0 to 255
2 NumberOfFlows 1 0 to 255
3 FragmentNumber 1 0 to 255
4 ReferanceCount 1 0 to 255
5to7 unused

8 to 11 SequenceNumber 4 0to2%2-1
12 to 15 Payloadlength 0to 2% -1

S

Table 6.1: The fields of a Da CaPo packet’s header.

A Da CaPo packet is composed of two main parts: a header and a
payload. We have defined several header fields for this implementation,
and have defined offset variables in buffer.h to point to each of the fields
location within a packet. Currently the header is 16 bytes long. Table 6.1
presents the fields in the order in which they occur in the header, with some
additional information about each of them.

We will discuss now the purpose of the header fields.

HeaderLength

An application might need to know the length of the header of Da CaPo pack-
ets so that it may know where the payload begins. This value is made avail-
able by the _DACAPO_PAYLOAD _OFFSET _ constant defined in buffer.h,
but it is common to have this information within the header itself, so we
have included it in the first byte.

FlowNumber

The FlowNumber field is useful in applications where there are several A-
modules, at least on the producer side. An example of such an application
would be a Da CaPo implementation of our demo application. Then we
would have two kind of packets, one containing images, and the other con-
taining sound, as our application would have two Da CaPo flows.

As each A-module produces it’s packets, it will place them in its output
buffers. It is likely that all the A-modules on the producer side will have one
common output buffer. As packets travel through the Da CaPo graph, each
successive C-module will read a packet from this common buffer and perform
some action on it. Some C-modules will perform their actions on all packets,
regardless of which Da CaPo flow they belong to. Other C-modules might
process only packets belonging to certain flows and pass the other packets
right through to their output buffer.

72

NumberOfFlows

A Da CaPo module might want to know how many flows are processed by
the application it is a part of, so that it can iterate through all of them by
means of for loops or switch statements.

FragmentNumber

In certain situations the need to fragment and defragment packets appears.
For instance if a Da CaPo application uses the UDP transport protocol,
and the A-module on the producer side generates packets larger then the
maximum size of a UDP datagram (slightly more then 65KB), a fragmenter
module must be inserted before the T-module interfacing UDP on the pro-
ducer side and a defragmenter module must be inserted after the T-module
interfacing UDP on the consumer side.

The combination of the SequenceNumber and the FragmentNumber fields
will allow the defragmenter module to know which packets to merge together,
in order to reconstruct the original Da CaPo packet.

ReferanceCount

A packet can be processed by parallell modules. A module might want to
know if it is the only possessor of a packet at any given time. This becomes
important for instance in modules where the packet is discharged after its
payload has been consumed.

SequenceNumber

This field is used to differentiate between packets belonging to the same
Da CaPo flow. It should be set by the A-module on the producer end-
point, and it should be only read by all other modules. Modules like those
implementing ordered delievery of packets, for instance a pair of Idle Repeat
Request modules used in conjection with an unreliable transport mechanism
like UDP will rely on the value of this field to know how to process each
incoming packet.

PayloadLength

In many circumstances, applications need to know the length of a piece
of multimedia data in order to be able to consume it. This field should
always contain the value of the length of its packet’s own payload. In many
situations, the packets will have the same payload length for long periods of
time, maybe for the whole period of the execution, but it does not have to be
like this. In our Da CaPo demo application the payload length changes every
time the image size changes. Also, in application which handle several Da
CaPo flows at the same time, the application should not be forced to deduce

73

the length of a packet by mapping the value of its FlowNumber field to a
certain payload length. We can also think of situations where the payload
length will vary almost with every packet, like an webcam based application
which streams JPEG images, whose size in bytes vary with the content of the
image, in spite of a fixed image size.

Reading and setting header fields

We have chosen to directly access the fields in packet headers. In order to
set a field which is 1 byte long you will have to use code like the following;:

DCPacket xdcp;

char flowNumber = 12;
memcpy (dcp+ DACAPO _FLOW NUMBER OFFSET | &
flowNumber, 1) ;

Here we set the flowNumber field to 12. Note that flowNumber is a char.
In order to set a field which is size of(int) bytes long, like SequenceNumber,
you can execute code like the following:

DCPacket xdcp;
int seqNo;

seqNo++;
memcpy (dcp+ DACAPO SEQUENCE NUMBER, OFFSET
&seqNo, DACAPO SIZE OF INT);

You can read the value of a header field which is 1 byte long by executing
code like this:

char nof = x(charx)(dcp+
_DACAPO_NUMBER, OF FRAGMENTS OFFSET) ;

And you can read the value of a header field which is size_of(int) bytes
long by executing code like this:

int seqNo = *(int x*) (dcp+
_DACAPO_SEQUENCE NUMBER_OFFSET) ;

By redefining the header field constants in buffer.h, you can easily change
the locations of fields in the header and add or remove fields without dis-
rupting code written as in the examples given here.

6.2.4 ModuleT: the threaded (abstract) module class

This class adds to the Module class the ability for the modules to run in
their own threads of execution. Modules derived from this class will be inde-
pendent modules, as far as the threading model is concerned. The threaded
module class is declared as follows:

74

class ModuleT : virtual public Module,
public TIceUtil :: Thread {
public:
IceUtil :: ThreadControl self;

ModuleT (string name);
virtual void run();

}s
The ModuleT class inherits from the Thread class of ICE’s own threading
API. Since Da CaPo can be used in connection with the MSA it will be
running in environments where ICE can run', so this is one way for us to
provide operating system independent threading capabilities to Da CaPo.

6.2.5 Modulel: the independent module class

The Modulel class inherits from both the ModuleB and ModuleT classes, thus
being both buffered and thread enabled. We have considered other kids of
modules too, like bufferless, directly linked modules, but they seemed to us
to be useful only in simple, special cases of the general streaming application.
We consider that the buffered and threaded modules will provide the largest
degree of flexibility to Da CaPo applications. The Modulel class is declared
as follows:

class Modulel : public ModuleB, public ModuleT {
public:
Modulel(string n,
queue<DCPacket x> xib , queue<DCPacket
x> *0b,
IceUtil :: Mutex *xiM, IceUtil :: Mutex *xoM) ;

}s

As we can see, the constructor of this class will take as parameters the
typical buffered module initialization parameters. Indeed, they are passed
right down to the constructor of the ModuleB class.

We found that is is usefull to place a certain amount of self restraint on
modules derived form this class, so we defined a constant value in file buffer.h
for the maximum size allowed for a buffer:

static const int DACAPO_YIELD CPU_ = 23;

If a buffered and threaded module discovers that it’s output buffer has
reached this limit, it will yield the CPU because the module which con-
sumes its packets is obviously slower then itself, or maybe malfunctioning.
This self restraint is not implemented automatically by the Modulel class,
but must be implemented in the classes which derive from it.

LAt the time of this writting, ICE runs on many Unix-like platforms and on recent
versions of Windows, such as Windows 2000 and Windows XP.

75

6.3 Da CaPo module interface

The interface of Da CaPo modules in our implementation is very simple: it
consists only of the constructor of the Modulel class. This simple interface
stands in sharp contrast to the original Da CaPo’s unified module interface,
mentioned in Section 3.1.4. It is enough for our core implementation, but
might need to be extended when more functionality is added to Da CaPo.
The Da CaPo demo application presented in Section 11.1 shows how we
intend to use our Da CaPo core.

In general, this constructor has the following declaration, reproduced
here from Section 6.2.5:

Modulel (string n,
queue<DCPacket x> xib, queue<DCPacket
*> *0b,
IceUtil :: Mutex *xiM, IceUtil :: Mutex *xoM) ;

The last four parameters, ib, ob, iM and oM stand for input buffer, output
buffer, input mutex and output muter. What can possibly vary it that classes
which inherit the Modulel class can add several other parameters to the ones
required by this constructor. The modules we have implemented for our
demo application do just that.

The general algorithm for creating module graphs by means of this simple
interface is:

1. Place the modules vertically, one under the other, in the order in which
they are to be linked, for the producer side and for the consumer side,
as depicted in Figure 6.1 and Figure 6.3.

2. For every group of two consequent modules, declare and initialize a
buffer variable and a mutex variable, for the producer side and for the
consumer side.

3. Considering that each of these buffers must be logically placed between
two modules, invoke the constructors of your modules’ classes and pass
to them pointers to the buffer and mutex variables in such a way that
the buffer will become the output buffer of the module above itself
on the producer side and beneath itself on the consumer side, and
the input buffer for the module beneath itself on the producer side
and above itself on the consumer side. What we mean with output
and input buffers has been explained in Section 6.1, and is depicted
graphically in Figure 6.2. The mutex variables must always be given
as parameters to the constructors in the same way as the buffers.

Since the A-modules and the T-modules do not have both input and
output buffers, pass 0 as a parameter instead of the missing buffer and
mutexes.

76

By convention, all class names for the classes which implement modules
begin with a capital M.

6.4 Summary

The modules are the basic building blocks of Da CaPo. We have begun
this chapter by showing how our design of a Da CaPo core uses the same
categories of modules as the old implementation of Da CaPo. Then we
presented the C+- classes we have defined to implement these modules. The
modules’ interface consists in our implementation of only the constructor of
the Modulel class. The algorithm presented in Section 6.3 shows how to write
code which implements a Da CaPo module graph for both the producer and
the consumer sides of an application. Section 11.1 presents in more detail
how to build a Da CaPo based application.

The next chapter presents the design and implementation of our next
subsystem, the FIDL++ language.

Chapter 7

FIDL+-+

A specification language like Slice or CORBA IDL provides a way to express
interaction patterns which are not easily expressed in regular programming
languages. The declarations made in such a specification language are then
translated by special compilers into program statements in a regular pro-
gramming language. When these program statements are executed they will
accomplish the desired interaction behavior. Such a specification language
provides therefore an higher abstraction level than a regular programming
language can provide.

In this thesis, we attempt to provide an even higher abstraction level than
that provided by Slice or CORBA IDL. Our goal is to make the abstractions
of streams and flows available to the programmer, as regular C+-+ objects,
in the context of object-oriented middleware.

Just as the higher programming abstractions provided by middleware
for distributed programming are expressed in special purpose languages, we
also will attempt to achieve an even higher level of abstraction by means of
FIDL++, which in this context is another specification language.

We have implemented a FIDL++ to Slice and C++ compiler, and we will
present in this chapter its design and implementation. In order to argue for
the design decisions made for our compiler we refer often to the presentation
of FIDL given in Section 3.3. When necessary, we also supplement that
presentation with details which we felt did not naturally fit into such a
general presentation of the language, as given there.

7.1 The formal background of FIDL

FIDL has been designed on a strong formal background. It is therefore a
powerful language which is both concise and expressive at the same time.
The strong analytic background of the language is not in the focus of this
thesis at all, so we will not dwell on it, but this background is one of the
reasons which has made us opt for this language. As our design of FIDL++

7

78

shows, we have tried to remain compatible with the original FIDL language.
As any other computer language grammar, the grammar of FIDL can
not both allow much freedom and impose unique interpretations for all the
language’s features.
We discuss here what restrictions we have implemented in our compil-
ers. It is likely that also the system implemented in [16] has imposed some
restrictions to the many possibilities theoretically allowed by the grammar.

7.2 The concepts of streams and flows

As we have seen, FIDL allows the programmer to define streams. A stream
is made of one or several flows. A flow in its turn is made of one or several
media elements. From the examples given in [16] it is clear to us that the
media element is the unit at whose granularity the data is generated and
consumed in FIDL based systems.

We have chosen to graphically depict this aggregation of concepts as
shown in the following figure. The white cylinder represents a stream of data.

Figure 7.1: The FIDL stream concept

In this figure, the stream is composed of two flows. These are represented
by the light blue cylinders. FEach of the two flows is composed by three
elements, represented by the black cylinders. The data flows through the
black cylinders, and the other cylinders provide only higher levels of logical
encapsulation.

This three level logical division is one of the things that we do not really
understand about FIDL. For all practical means it seems that there is one
level too much, and we consider that it would be more natural to conceive
the concepts of streams and flows as depicted here:

In this figure, we have removed one level of abstraction. In terms of
the grammar and the syntax of the specification language, the concept of a
media element dissapears and the media element attributes will be declared

79

Figure 7.2: An alternative stream concept

within the flow construct. The data will then flow at the level of a flow, and
a stream would simply be a collection of flows.

The reason why we do not see the necessity to have this one extra layer
of abstraction is that on an end-point we will have at run time only one
single FIDL stream object, which contains only one single FIDL flow object
which is made up by one or more FIDL medial elements, as dictated by the
constraint clause. Therefore the first two layers of abstraction (the stream
and the flow objects) make each other redundant, and only one of them
would suffice.

However, for the sake of remaining compatible with the previous work,
and because this extra layer does not hinder us in any significant degree to
illustrate how we have thought to provide access to first class stream objects
in distributes applications, we have chosen to implement a compiler for the
original FIDL language. Because the stream and the flow objects in a FIDL
based application become redundant to each other upon implementation, it
makes it difficult to differentiate between them in the writing of this thesis.
In most cases they will refer to each other, and we could formulate the same
thought using either of them. We consider this to be a weakness, because
using a precise terminology for the description of a system is a very important
requirement. Computer systems are usually complex enough in themselves,
and a confusing terminology only makes things even harder to understand.

What we experience is that the data which is transported from one el-
ement to another is actually flowing from one element of an end-point to
another element on a (potentially different) end-point, and thus forms a
flow. Therefore, we also feel that it would be natural to also refer to it as
a flow. But flow has already other meanings, among them being the second
logical entity in FIDL’s concept scheme of streaming. This is why we mean
that it would have been better to eliminate the concepts of elements and
only have streams of the simple kind presented in Figure 7.2.

7.3 The concept of media elements

The media elements in FIDL are what the flow specifications are made of
(together with a constraint clause).
Each media element specification is a description of the characteristics, or

80

the qualities of a sing flow of data which we want our application to handle.
A media element description is made of a list of attribute assignments.

The media classification and the attributes which have been proposed for
each class, see Figure 3.5, are not necessarily final, as also the authors of [16]
have pointed out.

This became evident also while working with our demo application. We
experienced that we could fully describe the parameters of the sound part of
the application, because the right attributes have already been introduced in
FIDL. Therefore, it was sufficient for us to only declare one element of type
audio, and include all the changes we want to be able to make to the quality
of the sound in this description, by means of the values we have given to the
various attributes. We repeat here the relevant part of the specification:

audio Sound {

encoding = 2;
channels = {1, 2};
samplerate = {8000, 11025, 22050, 44100};
samplesize = {8, 16};
}s

The channels attribute is used to specify if the sound is to be mono or
stereo. The default value is mono, because 1 is the first value on the right
side of the assignment. The samplerate and the samplesize attributes are used
to further decide the quality of the sound. Again, the default values are the
first values declared on the right side of the assignments.

However, we could not easily fit in all the description of our video flow
within one single media element. The problem we encountered was that one
characteristic of an image, its size is actually described by two attributes:
its width and its height. Since this was one of the characteristics whose value
we wanted to be able to change during run-time, we have to specify several
values for it at specification time. The only hindrance to that is that we
do not want the width to be allowed to vary independently from the height.
That would have been the result if we had opted to only declare one media
element for images, like this:

image I {

encoding = "YUVp420";

samplerate = (5, 30);

height = {120, 320, 640};

width = {160, 240, 480};

b
With such a declaration it would have been perfectly legal to have at run-

time an image of size, say 120x240. This is a size which our test hardware
does not really support. We say really support because our hardware on the
producer side, the webcam, is not so old and, as most hardware of its kind

81

nowadays, it supports "arbitrary" image sizes. This means that if the image
size you request is not a "standard" image size, the hardware will choose a
smaller image size then the one you have requested and fill in around this
smaller image with a gray area up to the requested size. For the hardware
on the consumer side, the screen, an arbitrary image size does not pose any
special problems.

We had two choices in regard to this issue.

The first one was to introduce a new attribute name, say size, to the FIDL
language. However, this solution would have posed a few problems of its own.
First of all, what would be a legal value for the size attribute name? The
most obvious answer is probably a string like "160x120". While this would be
a feasible solution it would complicate the processing of the enhanced FIDL
code, because such a value is rightly interpreted by the parser as a string
value, while it’s semantic meaning is a pair of integers. Even though we
have not chosen this solution, we think it would be implementable. Another
alternative would have been to give it as values sets of two integers, like size
= {160, 120};, or even sets of multiples of two integers, in order to specify
all the sizes at the same time. For instance size = {160, 120, 320, 240,
640, 480}; could be interpreted by the compiler to be three pairs of (width,
height) tuples. But then we would have had to decide wheather size always
must receive a set of multiples of double integers as values or only when it
is declared for certain media element types. We also felt that we would not
want to change the language more then absolutely necessary. As we will see
later, we have made a very small addition to FIDL, but that is an addition
which has a semantic meaning which has not been addressed by the original
FIDL language, whereas adding more attribute names is not. Since the width
and height attribute names are already present in the language, we decided
to go for the second solution.

The second solution is to rather declare several media elements for our
video needs, one for each image size. This has proven to be a fortunate
choice, because it also gave us the opportunity to exercise other nice facets
of FIDL, namely to make heavy use of the constraint clause of the language,
as wee will see later in this report.

7.4 The intersection of flow specifications

In a distributed application there are at least two end-points involved. For
each of the end-points we need to declare a stream specification which would
describe this particular end-point’s multimedia capabilities. Since end-points
can run on heterogeneous hardware and software, the end-points will most
often have different multimedia capabilities. The Intersector implemented
in |16] is therefore a crucial component of the system because it is the module
which reasons algorithmically about the end-points’ multimedia capabilities

82

and present the system with an overview of the common capabilities. The
system can then implement applications based on these common capabilities
of the end-points.

In our solution, we depart a little bit from the common output of the
FIDL Intersector. In program Listing 3.2, we have presented the output of
the FIDL Intersector for our demo. As we do not interface the system im-
plemented by [16] directly, we have chosen to use the format of the output
of the FIDL Intersector as our starting point, but with a few modifications.
Remember that the output of the FIDL Intersector is a subset of the FIDL
syntax, and that the user defined identifiers are replaced with machine gen-
erated names. We have chosen to use the whole FIDL syntax and to make
use of the user defined identifiers in our specifications. This will not pose
any problem, as regular FIDL Intersector output will always be a subset of
what our compiler can handle. If the two systems should be co-implemented
our compiler will be able to process the output of the FIDL Intersector.

The real specification code which our compiler processes for our demo is
therefore not the code shown in Listing 3.2, but the code we show here:

Listing 7.1: Intersector output in FIDL format for our demo’s specification.

1 stream WebCamChat {

2 void flow F {

3 image QSIF {

4 producerElement = "EWebCam";

5 consumerElement = "EIlmageViewer";
6
7
8
9

encoding = "YUVp420";
samplerate = (5, 30);
height = 120;

width = 160;
10 }s
11
12 image SIF {
13 producerElement = "EWebCam";
14 consumerElement = "EImageViewer";
15 encoding = "YUVp420";
16 samplerate = (5, 30);
17 height = 240;
18 width = 320;
19 }s
20
21 image VGA {
22 producerElement = "EWebCam";
23 consumerElement = "EImageViewer ";
24 encoding = "YUVp420";
25 samplerate = (5, 15);
26 height = 480;
27 width = 640;

28 }s

83

29

30 audio Sound {

31 producerElement = "EMic";

32 consumerElement = "ESoundCard";

33 encoding = 2;

34 channels = {1, 2};

35 samplerate = {8000, 11025, 22050, 44100};
36 samplesize = {8, 16};

a7 }s

38

39 constraint (VGA | SIF | QSIF) & Sound;
w

a)

7.5 Additions to FIDL

There is only one addition we have considered necessary to make to FIDL,
in order to be able to implement all the features we have desired that our
solution should have.

You might have noticed that in the code presented in the previous section
we assign values to two attribute names which are not part of the original
FIDL. These are the consumerElement and the producerElement attribute
names. In general, the attributes provided by FIDL are enough for us to
implement the internal structures which are necessary in order to offer the
streaming API which we present in this thesis. Even though it is the net-
working which takes place behind the scenes in an application based on our
solution that is the main issue of this thesis, there is another important
feature that we wished to add. We also want to be able to connect the
networking part of our implementation to the modules which implement the
media elements. This is the purpose of these additional attributes. We will
see later in this report how they are used.

7.6 The constraint clause

We consider the constraint clause of FIDL to be a very powerful and elegant
way of expressing the exact composition of a stream in terms of media ele-
ments, which is the level where the data exchange takes place. The fact that
a FIDL flow declaration contains several media elements, does not mean that
all of these elements must be present in an incarnation of the flow. On the
contrary, they only show which elements can take part in the implementa-
tion of the flow. This is illustrated also in our demo application. We have
declared there three media elements for the video part of the application,
one for each supported image size, and one for the audio part. This does not

84

mean that we want all four of these elements to be active all the time while
we run our application.

The constraint clause allows us to tell the compiler what our intended use
of the elements is. With the help of the and "&" and the or "|" operators,
and with parenthesis we can specify groups of media elements. Each such
group will be interpreted as a possible incarnation of the stream we are
declaring. Since in this context a FIDL stream is the same as a FIDL flow,
we will use the terms stream incarnation and flow implementation
interchangeably.

In our compiler, we let the & operator have a higher precedence than the
| operator. If parentheses are not used, all and operators will first bind their
operands and then the results will be ored together.

The constraint clause we have specified for our demo application

constraint (VGA | SIF | QSIF) & Sound;

will be interpreted to mean that a legal flow implementation for our stream
will be made of any of the image elements together with the sound element.

More formally, the constraint clause will be translated to an ordered list of
groups of elements. Each group represents a potential flow implementation.
The list is formed by applying the two operators from left to right on the
constraint clause. When we process the FIDL specification of our demo
application, the parser will report the following:

Constraint interpretation:

1: ['VGA’, ’Sound’]

2: ['SIF’, ’Sound’]

3: ['QSIF’, ’Sound’]

Because it is often useful to have a uniquely ordered set of flow implemen-
tations, the constraint is interpreted from left to right, and the first flow
implementation will be considered the most desired and the last one the
least desired of them all.

Thus, we have specified in our constraint that in our demo application
we mostly prefer to have VGA sized images and Sound. Our second priority
is SIF sized images and Sound and our last priority is QSIF sized images and
Sound. Based on this interpretation of the constraint clause, we will define
the concept of QoS for our API. Before we do that, however, let us introduce
the concept of state for a stream object as a whole and for lower level entities.

As we have seen in the presentation of the FIDL language, the constraint
clause is optional, at least as far as FIDL’s grammar is concerned. In the
implementation of our compiler we require the presence of the constraint
clause, even for the simplest stream specification. The reasons for this re-
quirement are that it is easier to implement the internal logic of the compiler
if we can assume that the constraint clause is always present and that we
base our very definition of QoS levels on the interpretation of the constraint

85

clause, so we consider that it is important that the programmer has to think
through what the constraint clause should be.

7.7 The concept of state

A stream object incarnates the concept of a stream of data. The data of a
stream is a logical sum of the individual data of each media element which
incarnates a particular flow implementation. Depending on how the data of
each individual media element in a stream incarnation is flowing, we define
several possible states. Figure 7.3 depicts graphically all the states a stream
object can be in. Along the arrows we show which operations lead to state
transitions in the stream objects.

stop(); stream();

stream();

- STREAMING

STOPPED

PAUSED

pause();

Figure 7.3: A stream object’s possible states.

e Stopped: when a stream object is created, it is initialized to its
Stopped state. This means that none of it’s constituting media ele-
ments is sending or receiving data. A stream object will remain in its
Stopped state until one of it’s state altering operations is invoked on
it. A stream object can be brought in and out of it’s Stopped state any
number of times.

e Streaming: a stream object is in the Streaming state if all of it’s in-
carnation’s media elements are flowing their particular data. A stream

86

object can be brought into its Streaming state by means of the API
which we define in this thesis. A stream object can be brought in and
out of its Streaming state any number of times.

Paused: a stream object can be brought in the Paused state by means
of API calls. When a stream object is Paused, none of it’s media ele-
ments is flowing their particular data, just as when the stream object
is Stopped. For some applications there will be no practical difference
between a stream object’s Paused and Stopped states. Typical for such
applications is the fact that there is not a well defined beginning of
the data they stream. Our demo is such an application. It will start
streaming whenever the right API call is made, and the first data to
be sent is generated at the time when the API call is made. Other
applications, like a Video-On-Demand service have a definite meaning
of the beginning of the data they stream. For these kind of applica-
tions, setting the stream object to the Paused state differs from setting
it to the Stopped state in the fact that a Paused stream object remem-
bers what data is next to be sent when it will be brought back to its
Streaming state. After being Stopped a stream object will always begin
Streaming from "the beginning" of its data.

Undefined: a stream object is in an Undefined state is some of the
elements of its active flow implementation are sending or receiving
data 8depending on wheather they are on the sending or the receiving
end-point), while others are not. A stream object is brought to its
Undefined state by a failure of some kind, most likely by a networking
failure. Some kind of mechanism should be developed to ensure that a
stream object detects that it has been brought into the Undefined state
so that it can attempt to rectify the situation. Ideally, the stream
object should try to bring itself again into a legal Streaming state. If
it does not succeed to do so, it should bring itself into the Stopped
state. The reason why the Undefined state is unacceptable is that it
gives no accurate description of what is working and what is broken
among the stream object’s composing elements. It is not possible to
willingly bring a stream object into an Undefined state by API calls.
For the sake of demonstration our compiler declares and implements a
few "unhealthy" API calls which allow us to demonstrate how a stream
object behaves in the Undefined state, but these API calls should not
be generated in a production situation.

A stream object will ignore any attempts made to bring it by means of

API calls into the same state into which it already is. This is an important
optimization feature, because no unnecessary calls are dispatched across the
network between the end-points.

87

7.8 The QoS concept

Since virtually all attributes which can be used to declare media elements are
used to specify characteristics of the data to be streamed by each particular
element!, it is natural to consider the declaration of the media elements as
declarations of levels of QoS. However, even though the data is streamed at
the level of the media element, the constraint clause naturally binds together
one or several media elements into logical flow implementations. Therefore,
it is more natural to consider first of all the characteristics of a flow imple-
mentation as a QoS level.

Given this definition of a QoS level, we can say that a stream specification
will have as many QoS levels as there are flow implementations.

Also, given the ordering of the flow implementations provided by the in-
terpretation of the constraint clause, we can allow a simple mapping between
the individual flow implementation and a QoS level to tell us what is the
most preferred QoS level. We simply define that if the most preferred flow
implementation is active, the stream object is operating at the most desired
QoS level. If the least desired flow implementation is active, the stream
object is operating at the least acceptable QoS level, and we use the same
reasoning for all the flow implementations and QoS levels in between these
two extremes.

In our API, we refer to a QoS level as QOSL followed by an integer
value which specifies its ordering index. For our demo application, we have
three flow implementations and therefore three QoS levels. If a stream object
for our demo application is operating with VGA images and any kind of
Sound, we say that the stream object is running at QOSL1. If the images
provided are of SIF size and attended by any kind of Sound, we”ll say that
the application runs at QOSL2 and, finally, if the images are of QSIF size
and any kind of Sound is present we say that the application is running at
QOSL3.

It is very important to notice that the QoS level is not the finest granu-
larity at which we can address QoS. As an example, let us say that our demo
application is running at QOSL1. The element specifications in use in this
situation are declared as follows:

image VGA {
producerElement = "EWebCam";
consumerElement = "ElmageViewer ";

encoding = "YUVp420";
samplerate = (5, 15);
height = 480;
width = 640;

}s

!The only exceptions are consumerElement and producerElement, the attributes we have
added to FIDL.

88

audio Sound {

producerElement = "EMic";
consumerElement = "ESoundCard";
encoding = 2;

channels = {1, 2};
samplerate = {8000, 11025, 22050, 44100};
samplesize = {8, 16};

b

We can see from these declarations that both of them have at least one
variable parameter, and therefore each of them can provide several kinds of
data with different properties, and still fullfill the requirement of belonging
to QOSL1.

For instance, the video data can be delievered at framerates between 5
and 15, but as long as the size of the images is VGA, the application will
be running at QOSL1. This is because we have made the size of the image
elements the criteria for moving from one QoS level to another and not the
framerate. Therefore, we can say that there are sublevels of QoS within each
QoS level.

Since the VGA media element has only one variable parameter, we could
easily give unique names to each QoS sublevel. The samplerate parameter
can have 11 different values, so we would have 11 QoS sublevels for QOSL1.
Of course if the VGA element had several variable parameters we would have
as many QoS sublevels as the product of the numbers of unique values each
parameter can take. This is exemplified by the Sound media element which
has three variable parameters with a total of 2 x4 x 2 = 16 combinations.

To determine the total number of QoS sublevels we have to also consider
the fact that there can be several media elements in a flow implementation,
and the total number of QoS sublevel will be the product of the numbers of
QoS sublevel introduced by each media element.

Providing a good naming convention for so many sublevels of QoS lev-
els, is not easy, because the names we have come up with become very long
when there are many media elements in each flow implementation. Still, we
consider that it is imperative to provide access for the programmer to every
QoS sublevel. We have, therefore, chosen to address the issue of QoS sub-
levels indirectly, by providing access to each particular variable parameter.
We return to this issue in Section 10.3.

7.9 Summary

In this chapter we have presented our interpretation of the FIDL++ lan-
guage. Much of this discussion has been based on a comparison to the
original FIDL language. We have discussed how the interpretation of the
constraint clause of a FIDL++ specification is especially important. We

89

have also defined the states a stream object can be in, and how we relate
the concept of QoS to FIDL++. In the next chapter we describe the process
and the result of parsing FIDL++ specifications with our compiler.

Chapter 8

Code generation

In this chapter we describe the code which our compiler generates from
FIDL++ descriptions. We look first at which files are generated, and what
their purpose is, in Section 8.1. We continue then with a presentation of
the individual classes which we use to implement the functionality of the
MSA, in Section 8.2. In Section 8.3 we present the method we use to gen-
erate a workable interface between our MSA and the rest of the distributed
application. Section 8.4 provides a summary of this chapter.

8.1 File names

The first step in the MSA programming cycle, is to provide a FIDL specifi-
cation for the stream object we want to implement. We provide it in a file
which, by convention, ends with the ".fdl" file name extension. In likeness
with ICE and CORBA, our compiler will use the root of the file name for
the main output file.

Thus, if we provide the code for our demo application in a file named
webcam.fdl our compiler will generate a file named webcam.ice. This file
will contain a Slice representation of the stream object we have declared in
FIDL. This file must be compiled by ICE’s compiler, slice2cpp. Following the
file naming conventions of ICE, slice2cpp will generate two other files from
webcam.ice. These will receive the webcam.h and webcam.cpp names.

Having a Slice representation of our stream object is a an important first
step on our way toward the goal of having a functional C++ object avail-
able in our end-point applications. As we will see, this Slice representation
declares types and operations which are necessary in order to implement
a stream object. Still, these definitions are far from all what it takes to
implement the desired stream object. Anyone who is familiar with the pro-
gramming cycle used in middleware like ICE and CORBA knows that the
declarations made in the middleware’s declaration language must be imple-
mented in the target programming language since the middleware will only

91

92

facilitate the networking that takes place between the end-points. The pro-
grammer must implement classes for the prozies and the skeletons, in ICE
terminology, or the stubs and the skeletons in CORBA terminology. In fact,
this often can be a more time consuming job then coding the declarations in
the middleware’s declaration language.

Therefore, our compiler will provide also the code which implements the
proxies and the skeletons for the definitions for our stream object. This code
is provided in two other files, named interfacelmplementations callback.h and
interfacelmplementations_ callback.cpp. We could not continue to use only the
root of the FIDL file’s name, because ICE’s file naming convention requires
the webcam.h and webcam.cpp names for its own use.

So far we have not considered the scenario where our compiler is supposed
to compile several FIDL files residing in the same directory. When such a
need appears, it will probably be desirable to have the interface implementing
code for each of the stream objects of each FIDL file in separate file. Our
file naming policy should be changed then, so that files containing interface
implementation code will not be overwritten. One solution is of course to
use the root of the main file’s name, but not on its own. For instance, if two
FIDL files stars.fdl and planets.fdl are to be compiled in the same directory,
the code which implements the interfaces for each of the files could be placed
in files named iistars.h, iistars.cpp, iiplanets.h and iiplanets.cpp. The i prefix
is a shorthand version of interface implementations.

Even when all of these files are available, we still need to write code
for the applications which will run on the end-points. Traditionally, these
applications are called server and client in ICE terminology, in spite of
the fact that it is not uncommon for an ICE application to behave like a
client toward an applications and like a server toward another one. This
terminology suits well our demo application, which is a one-way video-phone
demo. The end-point where the webcam and the microphone reside can
rightly be called the server, and the end-point where the data is consumed
can rightly be called the client.

We generate also a basic server and a basic client application, in two
files named serverCB and clientCB. These applications will initialize the ICE
runtime in both the server and the client. This is something which must be
done in all ICE based applications, from the simplest "Hello World!" demo to
the most complex ones. We also create and initialize all the FIDL originated
objects which are necessary for our streaming application to function. The
only thing missing is the code for the application logic, but this is something
which can not be computer generated.

Our server and client applications need appropriate configuration files for
initialization, because we have not hardcoded all details in the applications
themselves. Especially, the client applications’s configuration file depends
on the specific content of the FIDL specification from which it is generated.
Our compiler will therefore generate one configuration file for each of the

93

server and the client applications. These files are called config.server.callback
and config.client.callback.

Finally, our compiler also generates a Makefile which will compile all this
code.

To summarize, given a FIDL specification file called webcam.fdl, our com-
piler will generate the following files from it:

1. webcam.ice
Slice definitions to be compiled by slice2cpp.

2. interfacelmplementations _callback.h
Header file for the C+-+ implementations of the Slice definitions from
webcam.ice.

3. interfacelmplementations _ callback.cpp
Code file for the C++ implementations of the Slice definitions from
webcam.ice.

4. serverCB.cpp
Basic ICE server application. Fully functional, but the application
logic can be extended.

5. clientCB.cpp
Basic ICE client application. The application logic must be added to
this file. Optionally, the client application can be hooked to a GUI.

6. config.server.callback
Configuration file for the server application.

7. config.client.callback
Configuration file for the client application.

8. Makefile
Makefile to compile all of the above.

We want to mention that when all of these files are put together, the
applications will be complete only in the sense that they will compile. As
they are generated by our compiler, the server and the client executables
will do nothing when they are run, even though they are fully initialized
to start streaming according to the pattern described in the FIDL file from
which they were generated. You must supply the application logic code,
at least for the client application, and you may also want to hook at least
the client application to a GUI interface. Of course you don’t have to, but
after all, the primary purpose of the MSA is to handle multimedia data and
in most cases a GUI will be desirable. Our demo application, presented in
Section 11.3, is an example of all of this, and we explain how to build a MSA
based application from the ground up in Appendix A.

94

8.2 C(Class names

In the process of translating FIDL to Slice, our compiler will generate class
names based on the declarations made in the FIDL file. We have tried to
find a naming scheme for these classes which is both simple and intuitive.
We will present our naming scheme in a top-down fashion.

The "stream" class

On the top of our class hierarchy is the class which implements the stream
object. Since FIDL requires that a stream declaration should be given a
name, we have chosen to use this name as the name for this class.

For our demo application we have made the follwing declaration:

stream WebCamChat {

}

Therefore, the class which implements the stream object in applications
using this FIDL declaration is WebCamChat. Our compiler generates Slice
definitions for this class in webcam.ice. The exact content of this definition
depends on the rest of the FIDL declaration. After a Slice file is compiled
by slice2cpp, someone must implement the definitions made in the Slice file.
By convention, classes which implement Slice definitions are given the same
name as the Slice definition followed by an "I", to signify that this is a
class which implements a Slice definition. The class implementing the slice
declaration of WebCamChat would therefore be named WebCamChatl. For
the sake of better visibility we have chosen to use the " I "prefix instead of
"T". in the code generated by our compiler. The class which will implement
the WebCamChat declaration will therefore be called WebCamChat_1_. This
class will be declared and defined in the interfacelmplementations_ callback.h
and interfacelmplementations_ callback.cpp files, and will implement the Slice
declaration of WebCamChat in webcam.ice.

An object of this class will be created and initialized in the clientCB.cpp
file by the code generated by our compiler. We have chosen to name this
object stream, because it is the object which incarnates the FIDL stream
declaration. This means that for our demo application the compiler will
generate the following line of code at an appropriate place in clientCB.cpp:

WebCamChat I xstream = new WebCamChat I (...) ;

The list of parameters given to the constructor of this class depends on the
contents of the FIDL declaration, and are omitted here. However, stream is
a regular C++ pointer and the programmer can use it in the code of the
application logic as any other pointers.

95

Producer side Consumer side
PFIVGASound CFIVGASound
PFISIFSound CFISIFSound
PFIQSIFSound CFIQSIFSound

Table 8.1: Slice classes for flow implementations.

The flow implementation classes

Even though a FIDL stream specification does not contain explicit declara-
tions of flow implementations, they are deduced from the constraint clause of
the specification and play a very important role in our solution. We declare
therefore classes for the flow implementations also.

The interpretation of the constraint clause determines how many flow
implementation classes there will be. In the case of our demo, the compiler
will generate three of them. Since a flow implementation is made up of one or
several medial elements it is natural to combine the names of the constituting
media elements in order to create a unique flow implementation class name.
Our demo applications had this constraint interpretation:

Constraint interpretation:

1: [’VGA’, ’Sound’]

2: [’SIF’, ’Sound’]

3: [’QSIF’, ’Sound’]

The preliminary composite names of the flow implementation classes are
therefore VGASound, SIFSound and QSIFSound. Because we need flow imple-
mentation objects both on the producer and the consumer end-points, and
because these objects will (indirectly) interface different hardware devices,
we need a set of flow implementation classes for the producer side of the
application and one set for the consumer side. We will therefore append
the CFl and the PFI prefixes to the preliminary composite names mentioned
above, and generate Slice declarations for two sets of flow implementation
classes. The CFIl prefix is a shorthand description meaning consumer flow
implementation and PFl is a shorthand notations for producer flow imple-
mentation. The finale names for the flow implementation classes for our
demo application are presented in Table 8.1.

This naming convention becomes quite verbose for flow implementations
which are made up of more then two media elements, but since these objects
are handled internally by our compiler, and not directly by the programmer,
we do not mind so much.

First, we declare types for these flow implementation classes in web-
cam.ice. The exact contents of each of the flow implementation classes de-
pends on the rest of the FIDL specification, but in general, each of them is an
encapsulation of the Slice representations of the constituting media elements

96

Producer side Consumer side
PFIVGASound | CFIVGASound |
PFISIFSound | CFISIFSound |
PFIQSIFSound | CFIQSIFSound |

Table 8.2: C++ classes for flow implementations.

of the flow implementation.

Just as it was the case for the class implementing the stream declara-
tion, we need to also implement these declarations of the flow implementa-
tion classes. Using the same naming convention, we declare and define the
classes presented in Table 8.2, in the interfacelmplementations_ callback.h and
interfacelmplementations_ callback.cppfiles.

The compiler will generate the code which will declare and initialize
objects of these classes, in the serverCB.cpp and the clientCB.cpp files, as
needed by the client and the server applications. The programmer is not
hindered in any way to use and manipulate these objects directly, or to
create additional objects of these classes, but this should not be necessary.
If such a need appears in a particular setting, it probably signals that we
need to extend the API of the MSA.

The QoS level binding classes

The QoS level binding classes are also an indirect product of the interpre-
tation we have given to the constraint clause of a stream specification. In
the subsection above we have presented the classes which define and imple-
ment the flow implementations, on both the producer and the client side of
the application. These classes are logically connected, one class on the pro-
ducer side having its peer on the consumer side of the application. In many
practical ways, when data is streamed from the producer to the client in
an application, objects belonging to such pairs of classes will work together,
especially when control traffic is concerned.

Therefore, we see that, for all practical purposes, an object implement-
ing a flow implementation on the producer side must be binded at runtime
to its peer object on the consumer side. In order to facilitate this binding,
we generate classes which will accomplish it. In keeping with the rest of
our naming conventions, we generate names for these classes by using the
QOSBindinglLevel root, followed by an integer which specifies which flow im-
plementation objects this class will bind. Remember from Section 7.8 that
a QoS level is a synonym for a flow implementation.

For our demo application, the compiler will generate declarations in we-
bcam.ice for the classes presented in the left column of Table 8.3. Each of
these classes will implement a logical binding of a PFl and a CFI class, as
shown in the right column of Table 8.3.

97

QoS level binding class Paired classes

QOSBindinglLevell PFIVGASound, CFIVGASound
QOSBindingLevel2 PFISIFSound, CFISIFSound
QOSBindingLevel3 PFIQSIFSound, CFIQSIFSound

Table 8.3: Slice QoS level binding classes.

I QoS level binding class Paired classes

QOSBindingLevell | PFIVGASound | _, CFIVGASound | _

QOSBindinglLevel2 | PFISIFSound | , CFISIFSound |

QOSBindinglLevel3 | PFIQSIFSound |, CFIQSIFSound | _
Table 8.4: | QoS level binding classes.

Just as for all the other Slice defined classes, we need to declare and define
_ | classes for the QoS level binding classes, which will implement them.
The compiler will declare and define in interfacelmplementations_callback.h
and interfacelmplementations callback.cpp the classes presented in the left
column of Table 8.4. These implementing classes will also provide a logical
binding of CFl and PFI implementing classes, just as it was the case for the
Slice classes. In the right column of Table 8.4, we show which classes are
logically binded by the implementation QoS level binding classes.

The compiler will also generate code which declares and initializes objects
of these classes in the serverCB.cpp and the clientCB.cpp files, as needed by the
client and the server applications. Again, the programmer can manipulate
these objects directly, and can instantiate new objects of these classes, but
this should not be necessary. If the need to manipulate these objects directly
appears, we should reconsider the design of our API.

The element classes

We have finally reached the bottom of our class hierarchy. A FIDL stream
specification will contain at least one media element declaration. Some or all
of these media element declarations will be used in the constraint clause. It
is not a requirement that every media element declaration must be part of at
least one flow implementation, but it is pointless to declare media element
specifications which are not used in the constraint clause.

Each media element declaration must declare which modules are im-
plementing its consumer side and its producer side functionality. For this
purpose we use the the producerElement and the consumerElement attribute
names which we have added to FIDL, as mentioned in Section 7.5.

Thus, for each media element declaration, we will have to interface two
modules. Strictly speaking, we do not require that the two modules must
be different, but we can not conceive yet any situation where it would be

98

Producer side Consumer side

PECVGA CECVGA
PECSIF CECSIF
PECQSIF CECQSIF
PECSound CECSound

Table 8.5: Slice classes for media elements.

Producer side Consumer side

PECVGA | CECVGA |
PECSIF | CECSIF I
PECQSIF | CECQSIF I _
PECSound | ~ CECSound |

Table 8.6: C+-+ classes for media elements.

useful to have media elements which have the same producer and consumer
module.

For each media element declaration we need at runtime an object which
will interface the modules which implement the producer and the consumer
functionality of the media element.

To fullfill this need, the compiler will generate Slice declarations for media
elements in webcam.ice. Since the media elements are uniquely identified by
the names given to them in the FIDL specification, it is most natural to
use these names as the names of the declared classes. However, since we
need to differentiate the interfacing of the producer side module from the
interfacing of the consumer side module, we need to declare two classes
for each media element. We have chosen to create unique names for these
classes by combining the unique media element names with the PEC and
CEC prefixes. These prefixes are shorthand notations of producer element
class and consumer element class.

In the specification of our demo application, we have declared a total of
four media elements. The compiler will generate Slice declarations for all
the classes presented in Table 8.5. The exact content of these declarations
depends on which attributes have been set for each media element.

Also for these classes we need to declare and define C++ classes which
will implement them. The compiler will therefore declare and define the
classes presented in Table 8.6 in interfacelmplementations callback.h and in-
terfacelmplementations_ callback.cpp:

The compiler will also generate code in the serverCB.cpp and clientCB.cpp
files which declares and initializes objects of these types, as needed by the
client and the server applications. Also these objects can be manipulated
directly, and new objects of these types can be declared by the programmer,
but this should not be necessary.

99

8.3 Media element modules

The subject we treat in this section is indirectly connected to code genera-
tion, so we treat it in this chapter.

A media element module (MEM) is a software module which is used
to implement the functionality of a FIDL++ media element declaration.
FIDL++ is a declarative language, and does not implement networking func-
tionality or processing of multimedia data. A MEM is conceptually different
than a Da CaPo module. In a scenario where Da CaPo and the MSA are
co-implemented, the two concepts would overlap in many respects, but not
otherwise.

MEMs are not part of the MSA presented in this thesis, but are provided
for the sake of demonstrating the functionality of our MSA. For instance, our
MSA demo application needs 4 MEMs: one which interfaces the webcam
device, one which interfaces the microphone, one which is responsible for
displaying the images and one which is responsible for playing the sound
which comes from the microphone. Our compiler generates a MEMs interface
for the MSA. This imposes certain requirements to the design of MEMs.

The names of MEMs can be whatever the programmer desires. We have
chosen the convention of starting their names with a capital "E", because
they provide the multimedia processing capability of the element declara-
tions of any FIDL-++ specification. For each media element declaration, we
require that the consumerElement and the producerElement attributes must
be declared. Thus, when a media element declaration is encountered, our
compiler will pick up the values of these attributes and will use them as
names of C++ objects. From a declaration like

image VGA {
producerElement = "EWebCam";
consumerElement = "EImageViewer";

encoding = "YUVp420";
samplerate = (5, 15);
height = 480;
width = 640;

}s

the compiler will generate code which polls an object called EWebCam for
VGA sized images, and which delivers the images thus provided to an object
called ElmageViewer. The MSA is not concerned with how the EWebCam
object produces the images, and with what the ElmageViewer objects does
with them.

However, our compiler must know where the MEMs implementations are
located, so that it can include their header files in the code it generates for
the MSA. Also, while the compiler knows the names of the objects, it must
also know the name of the files in which they are implemented. The name of
the files could be the same as the names of the modules, only succeeded by

100

the .h and .cpp suffixes. However, we did want to separate these file names
from other file names which by chance would also begin with a capital "E",
so we require that a module must be implemented in files which prepend the
module name with the e prefix. Thus a module called EModule must be
implemented in the e EModule.h and the e EModule.cpp files.

As far as the location of the files is concerned, our compiler expects to
find all module files in the base directory of the source code.

If we consider again the FIDL specification for our demo application, see
Programme Listing 7.1, we can see that our media element declarations use
two producer MEMs and two consumer MEMs to implement their function-
ality. This makes a total of four MEMs, and we see that a MEM can be
used by several medial element declarations. The relationship between the
MSA and the MEMs is depicted graphically in Figure 8.1, which shows the
scenario for our MSA demo application.

Elmage—
Viewer

ESound—
Card

Figure 8.1: Media module elements and the MSA.

In addition to requirements to file locations and file naming, the MEMs’
interface must mirror the media element declarations for which they are
implemented. By mirroring we mean that if a media element declares an
attribute to be variable (its value is not atomic), then both MEMs which
implement its data processing functionality must declare a method corre-
sponding to the interface defined in Section 10.3, for setting this attribute’s
value. This must be so, because when we make an API call like

stream . setEWebCamsamplerate (15) ;

the call will eventually be dispatched down to the appropriate MEMSs, since
they are the only objects which actually really can execute it.

The fact that the MEMs are required to support this particular interface
should not be a problem, because the MEMs implementors usually are the
same people which also write the FIDL++ specification.

101

8.4 Summary

The main contribution of this chapter is an explanation of the code we
have considered necessary to generate in order to implement a MSA from a
FIDL++ specification. We have therefore considered, both how we have or-
ganized this code into files, and the naming conventions used for the classes
we generate. Finally, we have presented the requirements posed to MEMs,
in order for our system to be able to interface them.

In the next chapter we present how we use the code explained in this
chapter, by looking at the run-time of a MSA based application.

Chapter 9

The MSA run-time

In this chapter we describe the run-time environment of a MSA based ap-
plication. Since the main requirement posed to our MSA is that it should
operate within object-oriented middleware, and given the fact that we have
chosen to use ICE as our implementation middleware, the run-time of a
MSA based application will consist of a set of ICE objects, on each of the
client and the server end-points. On each end-point these objects form a
hierarchy which closely follows the structure of a FIDL++ declaration. The
same structure have been encountered in Section 8.2, which presents the
class names generated by our FIDL+—+ compiler.

Before we consider all these individual objects, we present an overview
of the main components of a MSA based application.

9.1 Main components

Figure 9.1 shows the main components of a MSA based application. If we
compare this figure to Figure 3.3, which shows the structure of a regular
ICE based application, we see that in a MSA based application the run-
time environments are symmetric on the client and the server side of the
application, as opposed to a regular ICE (and CORBA) based application.
We also see that all components of both sides of a regular ICE application
are present on both the client and the server side of a MSA based application,
i.e. both proxies and skeletons are employed on both sides of the application.

The MSA, shown as the component on top of all other components, is
interfacing all of them. It uses both proxies and skeletons to implement its
functionality, and it needs to occasionally interface the general ICE API,
for purposes like reading configuration files, and the ICE’s object adapter in
order to register it’s own object implementations (based on skeletons) with
it.

The dotted, vertical arrows, suggest the fact that in a MSA base ap-
plication the client and the server applications can choose to combine the

103

104

Client Application Server Application

i iy i i i i

3 v 3 3 i . ;

: : : . MSA MSA - : : :

L y L LT y L LT
Object Skeleton Proxy Ice API Ice API Proxy Object
Adapter ‘ Adapter

Client Ice Core Network Server Ice Core
D Ice API

. Generated Code

D MSA Code

Figure 9.1: MSA based application structure.

use of the MSA with directly interfacing the regular ICE components of an
application.

9.2 ICE based server callback implementation

In Section 5.2.2 we have presented the principles of the server callback pro-
gramming approach, for a general ORB. Since we use this approach in the
implementation of our MSA, we present here the specific implementation of
this approach for ICE.

Figure 5.5 shows the general initialization routine for a server callback
based application. In Figure 9.2 we show the objects which are involved in
the establishment of a flow of data in an ICE based server callback applica-
tion.

The dotted vertical line represents the separation of the client’s and the
server’s address spaces. After the object adapters (not shown) have been
created and initialized on both the client and the server application sides,
we create a smart pointer handle and a proxy handles for the class involved.
These are depicted by the colored objects.

Somehow, a proxy to s smart pointer on the server must be given to the
client. As with CORBA, we often use stringified representation of remote
objects. In our application, we read the server’s smart pointer stringified
representation from the client’s configuration file.

The initialization of the server callback communication pattern bestows
in the sending of a client proxy to the server, so that the server will be

105

|
SERVER ! CLIENT
APPLICATION ! APPLICATION
|
setPro{xy(...);
Y S S R I

Smart | Client | Client | Server Smart

Pointer ' Proxy) | Proxy L» Proxy) Pointer
o= T
|

Figure 9.2: ICFE based server callback flow.

able to make callbacks to the client in the future. The whole initialization
routine centers around the use of the special purpose setProxy operation,
which is defined by our compiler for all the classes (derived from a FIDL++
specification) which need it. Its definition is:

void setProxy (...);

We have defined it to return a void, i.e. nothing, but it should be defined
to return a boolean value if it is important for the client to know that the
server has received the client’s proxy. This is represented by the dotted arrow
at the bottom of the figure.

The parameter taken by this operation is a proxy to the class for which
the flow will be established. We can say that this operation is a binding
operation. The arched dotted arrow, which is a tangent to the arrow repre-
senting the setProxy operation, depicts the fact that the proxy to one of the
client’s smart pointer objects is sent as parameter with the operation. The
server is waiting for this proxy, and when it receives it, it stores it in a local
variable. Figure 9.3 shows the situation after the initialization routine has
successfully finished, and the flow between the client and the sever sides of
the application is therefore established. We see how the client and the server
sides of the applications can now exchange both control and payload data.

9.3 Compiler generated objects

There are three features of a FIDL++ specification which find a direct rep-
resentation in the MSA run-time:

1. The media elements
2. The interpretation we have given to the constraint clause

3. The stream object

106

A A

control operations

data carrying operations

|
SERVER | CLIENT
APPLICATION ! APPLICATION
|
control operations !
i | |
Smart Client | Client ‘ Server ’ Smart
Pointer Proxy | Proxy Proxy Pointer
|
|
|
1
|
|
|

Figure 9.3: ICE based server callback flow.

For both of these two features we create objects in our application, and we
"pair them up" according to the server callback communications mechanism
presented in this section.

9.3.1 Media elements derived objects

Since each media element present in a FIDL++ declaration can be part of
at least one flow implementation, we create and initialize objects for each
of them, in both the client and the server side of the application. For ev-
ery element declaration, we generate a sets of objects as the ones shown
in Figure 9.3. Figure 9.4 shows a scenario in which n elements have been
declared.

These objects are created from the class declarations described in Sec-
tion 8.2. These objects are also the objects which interface the MEMs,
described in Section 8.3, and represented by the black dots in Figure 8.1.

9.3.2 Constraint clause derived objects

The interpretation we have given to the constraint clause tells us how many
flow implementations are possible for the FIDL-++ specification being parsed.
For each possible flow implementation, we create 2 kinds of objects.

Flow implementation objects

Each flow implementation object provides a logical encapsulation of all those
element objects which it is made of. Figure 9.5 shows a scenario where we
have m possible flow implementations.

In this figure we show that the first set of these new objects represent a
logical encapsulation of the first and the second element declarations, because
each object in this set encapsulate the correspondent objects in the sets for
the first and the second element declarations. With a total of n element

107

SERVER
APPLICATION

CLIENT
APPLICATION

1 ‘ Pointer ‘ [Proxy] [Proxy] [Proxy j ’ Pointer ‘
[1]

Y |

L]
2 ‘ Pointer ‘ [Proxy]
l

[Proxy] [Proxy j ’ Pointer ‘
A

L]
n ‘ Pointer ‘ [Proxy]
l

[Proxy] [Proxy j ’ Pointer ‘
A

Figure 9.4: Objects corresponding to element declarations.

descriptions, a flow implementation object can encapsulate any number or
element objects, from 1 to n, not only 2 as shown in this example.

What is new for the flow implementation objects is that we do not use
them for the transfer of payload data, but only for control management. This
is represented by the fact that one of the arrows representing operations from
the server to the client is dotted. It turns out that for the purposes we have
encountered so far, it is sufficient to transfer data at the level of objects
representing the element declarations, but also this objects can be made to
transfer data. Maybe this would be useful in a scenario where we want to
transfer data at a larger granularity than what the element description’s.

These objects are created from the class declarations described in Sec-
tion 8.2.

QoS level objects

For each possible flow implementation we create one binding object. The
purpose is to have a single point of control for all those objects belonging
to the flow implementation which interface the MEMs. QoS level objects
are created only on the client side of the application. In Figure 9.6 they are
represented by the blue squares.

The two objects which are encapsulate by the QoS level objects are all
what is needed to control the objects which interface the MEMs. The golden
yellow component of each QoS level object (CFI Ptr) controls the MEMs on
the client side directly, as shown in Figure 9.5. The red component of the

108

|
SERVER | CLIENT
APPLICATION ! APPLICATION
,,,,,,,,,,,,,,,,,,,,,,,, I L L L L L L L L L e .

l

L i |

1 ‘ Pointer N Proxy)v\}'\ [Proxy)\ Proxy N Pointer
\ L ¥
\ \
Y \] \

1
T
2 ‘ Pointer I}roxy]4\ C Proxy]4\[ffroxy)\’ Pointer
[| =)

~

Y
n ‘ Pointer ‘ Proxy]

|
1| pripr | (CFIPrx)/

A

Y
> | eeere | ((cripx)

A

A

Figure 9.5: Objects corresponding to flow implementations declarations.

each QoS level object (PFI Prx) can be used by the client to invoke control
operations on its corresponding object on the server (PFI Ptr). This object
controls the MEMs on the server side, as shown in Figure 9.5.

The QoS level objects are the closest we come to the RM-ODP concept
of binding in our implementation of the MSA.

These objects are created from the class declarations described in Sec-
tion 8.2.

109

|
SERVER | CLIENT
APPLICATION ! APPLICATION
|

\
[Proxy] [Proxy j ’ Pointer

) |

\
[Proxy] [Proxy j ’ Pointer

) |

\
[Proxy] [Proxy j ’ Pointer
A

1 \QOS
/Level

(CFI Prx) (PI;I Prx) | CFI Ptr | Objects
1 y

Figure 9.6: QoS level objects of the MSA’s run-time.

9.3.3 The stream object

Finally, we have arrived at the stream object, which is at the top of our
hierarchy of objects. It is represented in Figure 9.7 by the dark blue square
around the QoS level objects.

This object is an instance of the class described in Section 8.2, and it is
the incarnation of a FIDL++ specification. In our design, all streaming API
is implemented by this object.

110

|
SERVER ! CLIENT
APPLICATION ! APPLICATION
|

1 ‘ Pointer ‘ [Proxy]

Y
2 ‘ Pointer ‘ [Proxy]

[[
[[
]]
Y
n ‘ Pointer
Y
1| PRIPr
Y
> | PRIPK
Stream
° Object
Y
m | PFLPE (pRiPx) | cripe

Figure 9.7: The stream object of the MSA’s run-time.

9.4 Summary

In this chapter we have presented all the objects which make up the run-time
of a MSA based application. In addition, Section 9.2 has described how the
general server callback programming mechanism can be implemented with
ICE.

In the next chapter we present the streaming API provided by our MSA,
which consists of the methods which can be invoked on the stream object at
which we have arrived in this chapter.

Chapter 10

The streaming API

Our overall goal, in this thesis, is to be able to perform at least such basic
operations on a stream object as stream, stop and pause. As we will see in
this chapter, our API provides a few other QoS related operations as well.

10.1 Basic operations

The stream, stop and pause operations are mappings of well established func-
tionality of media players, such as walk-mans, CD-players, mini-disk players,
MP3 players or a VCR. We have not provided any recording functionality
by means of our API, but we argue that once the networking is functional,
it is not so difficult to save to disk, in some appropriate format, the data
which is streamed.

The meaning of the stream operation is that of starting or playing a
stream. We will therefore have to differentiate from the context between
stream as a verb, implying an operation on an object, and stream as a noun,
denoting a stream object.

Specifically, if we have a stream object called A in an application, we
want to be able to start, stop and pause the stream object by means of the
following statements:

A stream () ;
A.stop();
A.pause();

Because a stream object is an encapsulation of other objects, we need to
look closer at the meaning of each of these basic operations.

A stream object can be incarnated by several flow implementations, as
dictated by the interpretation we have given to the constraint clause. When
a stream specification is parsed, the compiler will generate a class declaration
for each possible flow implementation. When a stream object is initialized,
it will contain pointers to flow implementation objects for all possible flow

111

112

implementations. There will always be only one object for each possible flow
implementation.

Since all flow implementations are mutually exclusive, only one of them
can be active at any time. The fact that a flow implementation is active
must not be mistaken with a stream object’s Streaming state. The fact that a
flow implementation is active means only that it is that flow implementation
to which the stream object will forward its requests when the stream object’s
methods are invoked. Those flow implementation objects which are not
active must necessarily be tnactive. Thus, a stream object can be in any
of its states (Streaming, Stopped, or Paused)!, regardless of which of its flow
implementation objects is active. Also, a stream object will always have an
active flow implementation object, even if the stream object is Stopped.

A stream object keeps track internally of which flow implementation
object is the active one, and always forwards any of these basic operations
to the right object. We will see in the next section how to programmatically
choose which flow implementation object to be the active one.

10.2 setQOSLevel

As we have mentioned in Section 7.8, we have made the concept of QoS
level a synonym for a flow implementation. We have therefore declared and
defined a method called setQOSLevel for the stream object, which allows
us to instruct the stream object at which QoS level of data to stream, i.e.
which flow implementation to make active. The method has the following
Slice declaration, and it is completely independent of the contents of the
parsed FIDL specification:

bool setQOSLevel(int qosl);

The integer argument to this call must be a value between 1 and the number
of available flow implementations. For a stream object called A, the following
statement will request the most preferred QoS level:

A.setQOSLevel(1);

This method returns a boolean value, specifying if the stream object has
succeeded in (re)configuring itself to stream at the requested QoS level. Upon
failure, the previous QoS level will remain in use.

In the case of our demo application, requesting QoS level no. 1 means
that we want VGA sized images and Sound. However, simply requesting QoS
level no. 1 does not mean that we also automatically have requested data
with the best possible QoS characteristics. Recall the FIDL specification of
the VGA and the Sound media elements:

image VGA {

LA stream object should never be in an Undefined state.

113

producerElement = "EWebCam";
consumerElement = "EImageViewer";
encoding = "YUVp420";

samplerate = (5, 15);

height = 480;

width = 640;

};

audio Sound {
producerElement = "EMic";
consumerElement = "ESoundCard";
encoding = 2;

channels = {71, 2},

samplerate = {8000, 11025, 22050, 44100};

samplesize = {8, 16};

b

Because the attribute assignments of the media element specifications are
parsed from left to right, all attributes will have as their default value the
least value they can have. For instance, the frame rate of the video, given by
the samplerate attribute, will have 5 as its default value, but 15 as the value
which gives the best QoS data within this QoS level. In the same way, the
default sound of this most preferred QoS level is mono, 8 bits/sample, and
8000 samples per second.

We must therefore differentiate between the default QoS sublevel and
the best QoS sublevel within any given QoS level. Whenever we reset the
stream object to a new QoS level, it will return to the default sublevel of the
requested QoS level. The best QoS sublevel is defined to be that sublevel
in which all attributes of all constituting media elements have their best
value. The best value means ususally the largest value, but if we should
define attributes like latency it would obviously mean the least value for
these attributes.

We can manipulate the FIDL specification so that the best sublevel of
a QoS level is also the default sublevel. We can do this by specifying the
greatest values first, because FIDL does not require that the lowest value an
attribute can have must be specified first. Thus if we had specified the VGA
and the Sound media elements as in the following example, the best QoS
sublevel and the default QoS sublevel of QOSL1 would coincide:

image VGA {
producerElement = "EWebCam";
consumerElement = "EImageViewer";

encoding = "YUVp420";
samplerate = (15, 5);
height = 480;
width = 640;

114

audio Sound {

producerElement = "EMic";
consumerElement = "ESoundCard";
encoding = 2;

channels = {2, 1};
samplerate = {44100, 22050, 11025, 8000};
samplesize = {16, 8};

}s

While this is totally possible, the compiler must be implemented in such
a way as to be aware that a range value can be specified in descending
order too. All other FIDL value types are naturally commutative, because
FIDL sets are unordered, and all value types are reduced to sets during the
parsing process. We will dwell on this issue in more depth in the chapter
about further work.

In order to choose between the available sublevels of any given QoS level,
we have further defined other APT calls, which we present in the next section.

10.3 Setting individual attributes

One QoS sublevel of a given QoS level is differentiated from another QoS
sublevel by the fact that at least one attribute of one media element has a
different value. Because it has proven difficult to find a good naming scheme
so that we could define types for each sublevel of a QoSlevel, we have decided
to provide an indirect means of setting the desired QoS sublevel, by means
of methods which set the value of a single attribute.

Let us consider our demo application again. Looking at its specification
in Program Listing 7.1, we see that every media element declared there has
at least one variable attribute. Since the names of the media elements are
unique, it is tempting to settle for a naming scheme which uses the media
element’s name as the basis for the method names. For instance, for setting
the framerate of the VGA element (an attribute of type integer), we could
be tempted to define a method like bool setVGAsamplerate(int samplerate)
However, while this would be easily accomplished in the compiler, it would
probably not be so usefull as it appears to be.

One crucial characteristic of streaming with the MSA is that it is easy
and straight forward to change the QoS level of the stream object. As an
example, if the stream object of our demo application is operating at a QoS
level which does not make use of the VGA media element (QOSL2 or QOSL3),
the call to setVGAsamplerate, while legal, would not accomplish anything.
The programmer would then have to remember which elements belong to
which QoS level and make sure that the right call is made. This can lead
to quit lengthy if tests (or the equivalent) if there are many possible flow
implementations.

115

Since, ultimately and regardless of the employed naming scheme, the
call to set an attribute will be dispatched to a module which implements
the functionality of the media element, we thought that maybe it would be
easier if we provided API names based on the names of the functionality
implementing modules.

Each media element declaration must specify which modules are imple-
menting its consumer and producer side functionality. For this purpose we
use the the producerElement and the consumerElement attribute names which
we have added to FIDL, as mentioned in Section 7.5.

Thus, for each media element declaration which has at least one attribute
whose value can be set, we will have to interface two modules. Strictly
speaking, we do not require that the producer and the consumer modules
must be different, but we so far we have not conceived any situation where it
would be useful to have media elements which have the same producer and
consumer module.

Also, as we can see from the FIDL specification of our demo application,
a module can implement the functionality of several media element declara-
tions. All three of the VGA, the SIF and the QSIF elements will be served by
the same webcam module and all three of them will serve the same image
viewer module.

All attributes which have values which are not atomic in the FIDL spec-
ification can be set. While parsing the FIDL specification, our compiler will
pick up these attributes and declare methods for them, based on the mod-
ules these attributes ultimately point to. The names are made up by the set
prefix, followed by the name of the module and followed by the name of the
attribute.

It is possible to employ this naming scheme, because the stream object
always dispatches the calls made to it to the active flow implementation
object.

As an example, in order to set the value of the samplerate attribute of
any of the VGA, SIF or QSIF media elements, we have to make calls to the
setEWebCamsamplerate and setElmageViewersamplerate methods. The first
one is for the producer module and the second one is for the consumer
module, which are the same for all of these media elements.

We consider that it is easier for a programmer to think in terms like
"in this situation I need to set down the samplerate of the webcam” rather
then "in this situation I need to know which flow implementation object is
active and set down the samplerate of that media element which interfaces
the webcam module”.

The methods defined and declared for setting attributes are highly depen-
dent on the parsed FIDL specification, so we could not give a more concise
and generalized presentation of this subject. We will conclude this section by
listing here the methods which have been declared for our demo application
in the interfacelmplementations_callback.h file:

116

bool setEWebCamsamplerate(int samplerate);

bool setEImageViewersamplerate(int samplerate);
bool setEMicchannels(int channels);

bool setESoundCardchannels(int channels);

bool setEMicsamplesize(int samplesize);

bool setESoundCardsamplesize (int samplesize);
bool setEMicsamplerate(int samplerate);

bool setESoundCardsamplerate(int samplerate);

10.4 Extra API calls

We have implemented one more kind of API calls, because it seemed to be
very necessary to begin with. Eventually it proved to be somewhat of an
unhealthy approach, so we present it here as a case study only.

In the previous section we have described methods used to set a media
elements attributes. While we worked on it, we were tempted to also provide
API calls for the basic operations at the producer and consumer module level.
In other words we wanted to be able to say to a specific producer or consumer
module which implements the producer or consumer functionality of at least
one media element, that we want it to start, stop or pause. This seemed
to be a desirable feature because it proved to be such a good approach to
provide attribute setting API calls at the same level.

However, we discovered that, while it is not so difficult to provide these
APT calls, using them sets a stream object in the Undefined state.

As an example consider the following API calls which our compiler actu-
ally does generate code for:

void EWebCamstream () ;
void EWebCamstop () ;
void EWebCampause() ;

void EImageViewerstream() ;
void EImageViewerstop () ;
void ElmageViewerpause ()

)

void EMicstream () ;
void EMicstop () ;
void EMicpause ()

?

void ESoundCardstream () ;
void ESoundCardstop () ;
void ESoundCardpause ()

?

Let’s say that our demo application is running at any one of its three
QoS levels and that the stream object is in its Streaming state. Since a
stream object always dispatches any calls to the right objects, calling any
of the above mentioned functions will be send to the objects of the active

117

flow implementation. If the call was a call to stream, nothing will happen,
as the streaming object is already streaming, except that some network re-
sources will be wasted. If the call was made to say EMicstop(), something
very interesting will happen: the module which implements the microphone
functionality will be stopped. This brings the stream object in the Undefined
state, because now some of the modules which work for the currently active
flow implementation are still streaming while one of them has stopped. In
other words the stream object is partially Streaming and partially Stopped.

This can actually be a desirable feature. The example we have given is
that of muting the microphone during a webcam chat session. This is useful,
and has been implemented in many regular phones and in many multimedia
applications similar to our demo. What is incorrect in this example is not
the muting of the microphone in itself, but the fact that it is done in a way
which brings the stream object in the Undefined state.

The sound way of doing this would be to rather reconsider the constraint
clause of our demo application’s FIDL specification. If we change it from
what it is now:

constraint (VGA | SIF | QSIF) & Sound;

to

constraint (VGA | SIF | QSIF) & Sound
| VGA | SIF | QSIF | Sound;

our compiler will interpret it as follows:

Constraint interpretation:

[’VGA’, ’Sound’]
[’SIF’, ’Sound’]
[’QSIF’, ’Sound’]
: [VGA’]

[?SIF ']

[" QSIF’]

[’Sound ’]

N O Otk W=

The difference is now the fact that there are four more legal flow imple-
mentations, or QoS levels, which by virtue of being constituted of a single
media element each, provide us with the possibility to stream any size of
images without sound, or sound without any images. Instead of using such
unhealthy calls as we have exemplified in this discussion, we can now mute
the microphone by setting the QoS level of the stream object to any value
between 4 and 6, by calling setQOSLevel. This will achieve our goal and still
leave the stream object in a sound Streaming state.

118

10.5 Summary

In this chapter we have provided a complete overview of the streaming API
provided by our MSA. We also presented a case study which shows how
powerful the constraint clause of a FIDL++ specification can be.

In the next chapter we present the demo applications implemented to
prove the versatility of our design and implementation of both Da CaPo
and the MSA. In our main demo application we test all features of the API
presented in this chapter.

Chapter 11

Demo applications

While working with this thesis we have made implementations of many demo
applications, in order to convince ourselves of the soundness of our design.
We present here three of them. They all are streaming images from a webcam
device handled by one process, to an image viewing application handled by
another process. What is different between these applications is how the
images are streamed from one process to the other.

11.1 Da CaPo demo

In order to demonstrate our implementation of a Da CaPo core, we have
implemented a few modules. These are located in the base directory, and
their files names begin with the m_ prefix.

~Image Size
® QSIF (160x120)
() SIF (320x240)
) VGA (640x480)

‘ Close

Figure 11.1: Da CaPo demo: surveillance camera.

Our Da CaPo demo is a simple surveillance camera application, running
over TCP. Figure 11.1 shows how the application looks like when it is run.
The main window of this application, shown to the right in Figure 11.1,
shows up only because it is coded as part of image viewer module which we

119

120

Producer side Consumer side
MWebCam MImageViewer
MTCPSender MTCPReceiver

Table 11.1: Modules used in our Da CaPo demo.

have used, but it’s controls are not linked to any functionality. The purpose
of this demo is to show how to build protocol graphs with our Da CaPo core
implementation, and because of lack of time, we have not implemented any
advanced functionality in this application.

In this demo we do not make use of any C-modules, because we do
not need any intermediary networking functions. We link the producer and
the consumer modules (A-modules) directly to the sending and receiving
modules (T-modules), and transport the uncompressed data provided by a
webcam, over TCP, to an image viewing application which also is able to
display uncompressed images. Figure 11.2 shows the protocol graph of our
demo. If we compare it with Figure 6.3, we see that it is only a more specified
case of the general scenario presented in Section 6.1.2.

Da CaPo Da CaPo
Source Sink
webcam ImageViewer
(] ?
e 2
o P
TCP receiver

TCP sender ‘ TCP

Figure 11.2: Da CaPo demo protocol graph

Table 11.1 shows which classes implement the modules depicted graphi-
cally in Figure 11.2.

What is of particular interest here, is how simple it is to link modules
together in module graphs, by means of only the constructor of the Modulel
class.

Following the algorithm presented in Section 6.3, the following code shows
how to implement the module graph on the producer side of our demo ap-
plication:

queue<DCPacket x> buffer ;

121

IceUtil :: Mutex mutex;

IceUtil :: ThreadPtr mWebCam =
new MWebCam(..., 0, & buffer,
0, &mutex, ...);

IceUtil :: ThreadPtr mTCPSender =
new MTCPSender (..., & buffer, 0,
&mutex, 0, ...);

What we see, is that pointers to the buffer and the mutex variables are
given to the constructors of the modules, in such a way that buffer becomes
output buffer for the webcam module and input buffer for the TCP-Sender
module. In the same way, mutex become output buffer mutex for the webcam
module and input buffer mutex for the TCP-Sender module.

In the same way, the following code shows how to implement the module
graph on the consumer side of the application:

queue<DCPacket x> buffer;
IceUtil :: Mutex mutex;

IceUtil :: ThreadPtr mlImageViewer =
new MImageViewer (..., & buffer, 0,
&mutex, 0, ...);

IceUtil :: ThreadPtr mTCPReceiver =
new MTCPReceiver (..., 0, & buffer ,
0, &mutex, ...);

On the consumer side the buffer plays the role of output buffer for the
TCP-Receiver module and of input buffer for the image viewer module.

The code for this application is placed in the sender.h, sender.cpp, re-
ceiver.h and the receiver.cpp files. The application is started with the follow-
ing two commands, and we start the receiver first:

[... base]$./receiver tcp 50000
[... base]$./sender tcp 50000

Each of the applications takes two parameters: tcp is compulsory and spec-
ifies that this is the protocol we intend to use. For now, it is the only
protocol available, but it can be used later to choose something else (like
UDP or SSL), when working modules for these protocols will be available.
The second parameter must be a legal Linux port number, and it must have
the same value for both applications.

This demo is compiled when make is execute in the base directory of our
source code. Alternatively, you can call make for these targets only:

[... base]$ make sender receiver

122

11.2 ICE based polling client demo

This demo application is an ICE based version of the Da CaPo demo. It
uses the polling client programming paradigm, which has been presented in
Section 5.2.2.

This demo has the same appearance as the Da CaPo demo, but it’s
functionality is more complete. Figure 11.3 shows how we can vary both the
image size and the framerate of the surveillance camera.

The purpose of this demo is to show how we can implement a form of
streaming using only the "simple" abstractions offered by a RPC oriented
platform for distribute computing, like ICE.

In this application, we declare operations for both control and data trans-
port purposes. The client is the active entity and it polls the server for each
single image. The Slice declarations are straight forward:

module dacapoP {
sequence<byte > DCPacket;
enum ImageFormat {YUVp420};

interface iWebCam {
DCPacket getImage(int width, int height ,
ImageFormat if);
int setImageSize (int width, int height);
int setFrameRate(int frameRate);
}s
};

The only unexpected feature could be how the framerate is regulated. If
the client is the active entity, why should we need a setFrameRate operation?
After all, the client can poll for images as often as it desires, and depending
on the networking conditions, it will always get up to the desired number of
frames per second. Such functionality can easily be implemented by means
of a timer in the client, whose accuracy can be trusted at a granularity of,
say 1/100 of a second.

By implementing an operation for setting the framerate, we show that
we let the server enforce this parameter. The reason is found in the way our
test webcam functions: you can poll it for images as often as you want, it
will only deliever them at its current framerate. Using this feature, we let
the client poll for a new image at once it has displayed the previous image
it has received. If it polls to early, it will have to wait until the webcam
serves the next image. This waiting behavior is enforced by ICE, because
the getlmage operations is a two-way operations, and the caller blocks until
the result arrives.

We note also that the image data is transported by means of variables of
type sequence<byte>, which is mapped in C+-+ to a vector<uchar>. byte is
the only Slice data type for which ICE guarantees that the data’s internal

123

b4l Image Viewer EEm

v Polling Client Demo

Framerate:
30 5
i N

v .I.m;ige Viewer

Image Size I

) QSIF (160x120)
@ SIF (320x240)
) VGA (640x480)

Close

b .Imnge i.f.i.F_'wer

Figure 11.3: ICFE based client polling demo application.

124

bitwise representation will not suffer any alteration on the receiving host,
regardless of the hardware, operating system and programming language
used on the client and the server end-points.

The code of this application is found in the clientP.cpp and serverP.cpp
files, in the base directory of our source code. The application is compiled
when make is run in this directory. Alternatively, you can call make only for
these targets:

[... base]|$ make serverP clientP

The executables are called serverP and clientP, and they expect a pa-
rameter which specifies the protocol to be used and the port number. This
parameter must be provided in an ICE native format, so we start the appli-
cations as follows:

[... base]$./serverP "tcp —p 50000"
[... base]$./clientP "tcp —p 50000"

11.3 MSA demo application

The MSA demo is our main demonstration application. It puts to the test
all the functionality of our compiler and shows how to use every facet of the
streaming API developed in this thesis.

The main ideas of this demo is to stream data for two separate flows
at the same time and to show in real time the bandwidth used. Then, we
change the QoS parameters of the application by means of our API. We
change them while the application is running and we monitor the bandwidth
used in order to receive a numerical confirmation of the fact that our API
calls have indeed the documented effect.

Because of lack of time, we have implemented only dummy audio mod-
ules for this demo. The producer audio MEM does generate data, which is
streamed over to the the consumer audio MEM by the MSA, but the data is
not captured by a microphone, and is not fed to the sound card. However,
the amount of dummy data generated by the EMic MEM is just as large
as it would be it this MEM would really be capturing from a microphone.
The ESoundCard MEM registers the amount of data received, and discards
it. Therefore, these dummy audio MEMs are good enough for the purpose
of evaluating the feasibility of our solution.

Figure 11.4 shows the main and the statistics windows of this demo, while
Figure 11.5 shows the image viewer window at its 3 supported sizes.

The GUI of this application is tailored especially to allow us to test all the
API features of our solution. On the horizontal axis of the statistics window
we show the time, measured in seconds after the start of the application,
and the vertical axis show the throughput, measured in Mbits per second.

125

[E3nAI0EL |

BO¥ 907

sisuqly ui 26esn 41

IS0
sl 9T @ sugg O)

2zig Bjdwes -

areiajduwes
021215 () ouo O

puueyy -
0|00

1 1 1 1 1 &
006|060

(2In+41SD) £ 1500 O
(GIN+1S) 2 1500 O

PIN+HYDIA) TTS0D @

suoeluBwR|duw| moj4 -

M || ™

4

%x[o[=|

owaa vsi Y

Figure 11.4: MSA demo: main and statistics windows.

126

¥ Image Viewer (il 4

W Image Viewer =X

Figure 11.5: MSA demo: image viewer window.

Since we stream uncompressed images at up to 30 frames per second the
throughput of our application can be quite high.

By multiplying the number of possible combinations of values for the
variable attributes of our FIDL++ specification, for each QoS level, and by
adding them together afterwards, we see that our application can stream with
976 possible parameter settings. These are too many to give an overview of
the theoretical bandwidth requirement of each of them, so we only show here
how to calculate it.

The bandwidth required by the image traffic is determined by the size

127

of the images and by the frame rate. Since we stream images in YUVp420
format, the size of an image, measured in bytes, is 1.5 times its number
of pixels. The image traffic, in bits, is then calculated after the following
formula:

T; = imageWidth * imageH eight * 1.5 x framerate x 8

The size of a second’s worth of sound it determined by the values of the
how many channels there are (mono, stereo) the sample rate and the size
of the samples. A second’s worth of sound requires therefore the number of
bits given by the following formula:

T, = channels x samplerate x samplesize

In order to get the total amount of bandwith needed we have to add the
two values described above.

We present now a few experiments which we have made, but do not give
numbers, except for what can be read from the graphs. The experiments
consist in exercising our API by means of the demo’s GUI, and looking at
the throughput in the statistics window.

e Green control buttons.
The green buttons at the top of the main window are making the API
calls described in Section 10.1. They are used to start, stop and pause
the stream object. For our MSA, we have defined these operations
to mean that all the flows of the stream must be started, stopped or
paused when these buttons are pressed. Figure 11.6 shows the effect
of pressing the stop button.

In the graph on the left side, we see that the bandwidth useage has
been quite stable over the last 20 seconds. Then we take a snapshot
of the statistics window and save it to disk. This extra activity on
the machine makes the flow of data, as experienced by our applica-
tion, more bursty, as shown in the graph on the right side. Still the
application keeps the same average values (this can not be seen in the
graphs). Then, around second number 115 we click the stop button
and take another snapshot as fast as we manage. The graph on the
right side shows how the throughputs of both the image and the sound
flows drop to 0.

For this application the pause button has the same effect as the stop
button.

¢ Flow implementation radio buttons.
These three radio buttons correspond to the three possible flow imple-
mentations for our demo application, see Section 8.2. Their functional-
ity is to make the API calls described in Section 10.2. Figure 11.7 shows

128

BIT

Uz

9T

RO9VHE P

abemny

[44

o1t

L81S'H]

[E3naI0a1 |

80T

90T

sabew) @

/]

sydeisy

2018

7]

£90°tT L8LS LT safew| @

/]

a7y abeiany. [EINEIORY |- sydein

0T #0T 201 00T 26 96 ¥6 Zb 08
| 1 |

Figure 11.6: Ezp. 1: bringing the stream object to its Stopped state.

129

the effect of moving from QOSL2 to QOSL1, streaming at 5 frames per
second, with the best sound in both situations: stereo, 44100 samples
per second, 16 bits per sample.

e Frame rate controls.

The frame rate controls are used to regulate the framerate at which
the application streams. The slider and the spin box are connected
together so they both have the same function. They exercise API calls
of the kind described in Section 10.3. Figure 11.8 shows the effect
of changing the frame rate from 5 to 30, while streaming SIF images
(QOSL2), with the best sound quality at both framerates: stereo, 44100
samples per second, 16 bits per sample.

e Controls for sound quality.
The controls for sound quality exercise the same king of API calls as
the frame rate controls, described in the previous experiment. Because
the sound traffic is always very small compared to the image traffic,
often the graphs for the image traffic and the total traffic will overlap
each other. This is exemplified in the experiment shown in graph on
the left side of Figure 11.9.

Here we start with the lowest quality of image traffic and lowest quality
of sound traffic. After about 8 seconds we set the frame rate up to the
ma, 30, but keep the sound and the image size unchanged. After around
14 seconds we set up the sound to the best quality: from mono, 8000
samples per second, 8 bits per sample (the lowest quality) to stereo,
44100 samples per second, 16 bits per sample. We can see how the
graphs for the image traffic and the total traffic split appart, according
to the change in the graph of the sound traffic.

e Blue control buttons.

The blue control buttons exercise the API calls of the case study given
in Section 10.4. By means of these API calls we can willingly bringing
the stream object in the Undefined state. We can see in the graph to
the right in Figure 11.9, how the image traffic drops to 0 from time
210, when we stop the image traffic, by means of the stop button in the
first row of blue control buttons, and comes back to its normal rate at
time 216 after we start it again. The total traffic seems to fall to 0 too,
but actually it is exactly equal to the sound traffic, and can therefore
not be seen until we start up the image traffic again.

11.4 Summary

In this chapter we have presented the demo applications implemented to
prove the versatility of the systems we have designed and implemented in

130

2
7]
7]

]
sabew)| K

7]
sydelsy

Wauny abelany

89 99 79 [
i,

= == ..._ .ﬂmﬂxﬁ._—__,tgn-_iimk SMISI T .__.

Figure 11.7: Ezp. 2: changing from QOSL2 to QOSL1

131

/]

FISOER FIS6E R FIS6E R

waung abeiany [BIN2UDS 1

Figure 11.8: Ezp. 8: changing the frame rate from 5 to 30 for SIF images.

132

]
]

: Ezp. 4 and 5.

Figure 11.9

133

this thesis.Especially important is the demonstration of the MSA’s features.

We have presented several experiments which show how the MSA behaves

as expected. This brings us towards the end of our work with this thesis.
In the next chapter we present our own evaluation of the thesis.

Chapter 12

Evaluation

In this chapter we present an evaluation of our work. We divide it in two
parts: one for our Da CaPo core and one for the MSA.

12.1 Da CaPo core

Da CaPo’s strength is its modularity. Modularity leads to flexibility and
extensability. These are features which we see also in our implementation of
a Da CaPo core.

Because of its extremely simple module interface, it is very easy to build
virtually any kind of modules. From the most simple, in keeping in touch
with Da CaPo’s original philosophy, to as complex as we desire. Simple
modules will implement only a simple networking function each. This fine
granularity allows the creation of very fine tuned application protocols.

In Section 11.1 we presented our Da CaPo demo application, and we
mentioned in Table 11.1 the 4 modules used for its implementation. We
have attempted to implement more modules in this thesis, but we did not
have time to work on them until they became stable enough.

Among these we have attempted to implement UDP modules. They
were an obvious thing to do, because the UDP protocol is very useful for the
transport of multimedia data: it is faster then TCP, and an occasional loss
of packets is not critical. However, since UDP does not guarantee the deliev-
ery of datagrams, we have also implemented Idle Repeat Request (IRQ)
modules. Another limitation of the UDP protocol, compared to a stream-
ing protocol like TCP, is the maximum size of a UDP datagram, set to
65.535 bytes [10]. Our experiments with streaming uncompressed images
have shown us that it is easy to exceed this limit. The natural thing was
then to implement fragmenter and defragmenter modules.

The fragmenter module would check the size of a packet, and if it is
larger than a certain threshold value (close to the UDP datagram limit), it
would fragment it up and push the fragments in its output buffer, instead of

135

136

the original packet. For this purpose, we have defined the FragmentNumber
field in the header of the Da CaPo packet, as described in Section 6.2.3.
The defragmenter module would have to read the FragmentNumber field of
each packet, and reconstruct those packets which have been fragmented. If a
packet is not a fragment, the defragmenter will simply push it in its output
buffer so that the next module in the module graph can access it as soon as
possible.

By combining the functionality of the UDP, the IRQ and the fragmenter
/ defragmenter modules, we come close to implementing the functionality
of the TCP protocol. What is missing is ordered delievery of packets. This
function could also be implemented in the defragmenter module, or keeping
in touch with the Da CaPo tradition, rather in another module.

Our implementation of these modules is found in the base directory of
our source code. We consider that even though these modules have not
reached release stability, they still prove the versatility of our approach. We
have managed to preserve in our implementation of the Da CaPo core a
simplicity of the module interface which makes it easy to implement new
modules. We argue that the problems we encounter with these modules
are not due to the design of Da CaPo, but rather difficulties connected to
pointers and memory management in C++.

We conclude therefore that we have achieved the first three requirements
for a Da CaPo core, which were presented in Section 4.1.2, and revisited in
Section 4.2.2. They are: 1) a C++ implementation, 2) simple APIand 3)
flexibility.

The 4th requirement, adaptability, is in our opinion the most challenging,
and the most difficult to achieve. We have not implemented a proof of
concept of this feature in our Da CaPo demo. Still, we reason that, given the
extremely simple interface between the modules, each module has an output
buffer and/or an input buffer, which both are FIFO queues, it is extremely
simply to insert and remove modules into and from a module graph. All
what is needed is to reassign the pointers to the buffers to point to other
buffers. This simplicity of inserting and removing modules from a module
graph is due to the fact that the modules are oblivious of their own position
in the module graph. They simply pop a packet from their input buffers, if
it is not empty, process it and push it to their output buffers. Therefore,
modules will not be disturbed by the fact that they suddenly need to pop
packets from another buffer, as long as the packets have a good header and
contain valid data.

It is our evaluation therefore, that our implementation of a Da CaPo core
is suitable for the programming of adaptable applications.

137

12.2 MSA

The requirements posed to our MSA, are the combined guidelines derived
from the requirements posed to MULTE-ORB, presented in Sections 4.1.1
and 4.2.1, and the general requirement of belonging to an object-oriented
middleware platform, presented in Sections 4.1.3 and 4.2.3. We go through
them all again in this section, in order to evaluate our work.

1. Dynamic QoS support.

As it is defined in Section 4.1.1, dynamic QoS support requires that
an application should be able to change its QoS specification while
running. This is clearly a feature which we have not implemented
support for in our MSA. This is due, first of all, to lack of time. The
specification of QoS by means of FIDL++ is very static. It must be
given at compile time, and the C++ code generated from it is only a
reflection of, or a C++ representation of the semantic meaning of the
FIDL++ specification. Since the FIDL++ specification is very static
in nature, so is our current implementation of the MSA.

We have not had time to study what is necessary in order for us to
be able to dynamically create the kind of objects which the MSA’s
run-time is composed of. In other words, if we want to change the
QoS specification (as opposed to the QoS level) of an application at
run-time, how can we generate C++ code to reflect the new QoS spec-
ification, compile it and add it to the running application? Clearly this
can not be done with a language like C++. We consider that support
for dynamic QoS requires the use of object factories of some kind.

Also, a widened functionality for our MSA is required. In the current
implementation, the objects which make up the run-time are created
and become a part of the run-time when the application is started up.
Dynamic QoS support requires a mechanism for registration of new
objects and the creation of new bindings. A regular object adapter is
an example of a mechanism used to register active object implemen-
tations. When a CORBA IDL or Slice specification is parsed, object
implementations can be created for all the interfaces (and classes, for
ICE) which have been declared. Such object implementation are cre-
ated at the request of the programmer, and must be registered with
the object adapter before invocations can be sent to them. In our
implementation, all possible object implementations derived from a
FIDL-++ specification are created at start up, and registered with the
ICE native object adapter. This makes our solution very easy to use,
as our compiler does all the job for us, by generating a rather large
amount of start up and initialization code, but it also makes it quite
static in nature. Of course, nothing prevents us from registering new

138

object implementations with the object adapter, but this service is not
facilitated in any special way by our MSA.

We consider that the idea presented in the MULTE project, of extend-
ing the object adapter of an ORB with streaming capabilities would
provide better support for dynamic QoS. The disadvantage would of
course be, the need to port the enhanced object adapter to every new
release of the system used.

. Evolution of QoS requirements.

As far as support for the evolution of QoS requirements is concerned,
we consider our implementation to be quite flexible. It is for instance
easy to add new attributes to the FIDL+-+ language, and the list
of existing ones is already quite comprehensive. It is also possible
to give different meanings to the same attribute in the same listing.
The specification for our MSA demo application, presented in Program
Listing 7.1, is an example of this. Here we use the samplerate attribute
with both the image and the audio media element declaration. For
the audio element, its meaning really is that of the rate with which
the sound is sampled, but for the image declarations we use it as a
substitute for framerate. We had as a goal to remain as compatible
as possible with the original FIDL language, and we were therefore
reluctant to extend the language with new keywords. Of course, if
new multimedia data appears, and it exhibits characteristics which
can not be expressed with only the existant FIDL attributes, then this
would be a good reason to introduce new ones. The two attributes
we have allowed ourselves to add to the language, consumerElement
and producerElement, have not been added because of the evolution of
QoS requirement, but as a means to allow our compiler to generate the
interface to the MEMs.

In addition, we note also that FIDL was introduced already in 1997 [16],
and in the 7 years which have passed since, we have not seen the
appearance of any new types of multimedia data, which warrented
the extension of FIDL for our work in 2004. See the discussion of
multimedia data types in Section 2.1.2.

. Transparency versus fine grained control.

Some of the explanations we have given for point 1 of this list apply
to this point too. Our specification of QoS requirements is very fixed,
in the sense that it is limited to what FIDL can handle. However, it is
very comprehensive.

While the developer can not specify that he or she desires "good video
quality", as the requirement states, we argue that the developer does
not really need to address QoS at this "application" level.

139

As far as the users of the system are concerned, we consider that it is
useful for many of them to relate to such general characterization of
QoS. This is not a feature directly supported by our MSA implemen-
tation, but we argue that it is easy to provide the necessary mapping
from such high level QoS requirements to those needed by our FIDL
based implementation. Our MSA demo application, is a proof of this
point.

For this application we have created a GUI, which maps the user’s
choices of QoS parameters to, on the one hand calls to our streaming
API, and on the other hand, to certain values of the parameters which
control the streaming of data. The labels associated with our GUI
controls are targeted to developers more then to general users, but it
would be easy to change a few strings in our program, to say High video
quality instead of QOSL 1(VGA+Mic), Medium video quality instead of
QOSL 2(SIF+Mic) and Low video quality instead of QOSL 3(QSIF+Mic).
It is easy to make as many calls to our streaming API, based on a singel
user action. In our application, the radio buttons associated with the
QoS levels do not only change the size of the picture, but also resets all
other QoS parameters to their default values. Thus the framerate is set
back to 5, and the sound is set to mono, 8000 samples per second, 8 bits
per second. This shows how easy it is to provide the user with QoS
choices in a language they are familiar with (high quality, medium
quality, etc.) and still have our system use only the streaming API
developed so far.

4. Policy control.

We have not addressed the issue of policy control. In the case of our
demo application we continually monitor the bandwith usage, as we
make changes to the QoS configuration of the streaming object. The
opposite would be just as easy to implement, for certain simple scenar-
ios. For instance, the application can monitor the achieved bandwidth
usage and compare it to the theoretical bandwidth needed to stream
at a given QoS level, and sublevel'. If the available bandwidth is not
enough the application can automatically adapt, in a simple way, by
going down to the highest achievable QoS level. However, in our deal-
ing with levels and sublevels of QoS, we have only provided a simple
ordering among them, based on reading the attributes of media ele-
ment declarations in a top-down fashion (first come, first served) and
by reading the possible values of the attributes in a left-to-right fashion:
the first value is the most preferred, the last one the least preferred.
The possibility to specify more sophisticated policies would be a useful
feature.

1QoS sublevels are addressed in Section 7.8

140

5. Automatic support for compatibility control.
This is not an issue for our work. We refer to implementations of such
functionality in [16] and [25]. In this thesis we start from where the
implementation of the Intersector of [16] has left. Our FIDL++ speci-
fications are the result of a compatibility check, and our compiler uses
this property of the specifications to generate code which implements
a streaming API exhibiting these compatible characteristics.

6. Support for seamless system evolution.

This issue is too complex for a work of this thesis’ duration. Our
solution does not allow the alteration of the stream objects it creates
from a FIDL++ specification. It is not clear to this author if it is
possible at all to let a C++ program evolve in the manner implied by
this requirement. If it is, we have not studied the mechanisms necessary
to achieve that behavior. In programs implemented with interpreted
languages, it is easier to change the code of the system while the system
is operating.

The general requirement posed to our work, was to provide a solution
which allows us to treat streams of (multimedia) data as first class objects —
in our case C++ objects. This we have achieve, by means of the stream ob-
ject we create, from a FIDL++ specification. In an MSA based application,
the programmer can call methods on this object, which affect the behavior
of the whole streaming process. All our API calls are directed to this object,
which makes our solution easy to use.

No one has told us what the streaming API should be like. Some choices,
like the general operations introduced in Section 10.1 have been obvious, the
others we have suggested ourselves. We argue now that the API proposed
by us is both simple and intuitive in regard to method names.

A question which we can not really answer yet, is weather this API is
enough? Probably not. Future use of the system will reveal new features
which would be useful to automate in a MSA.

A very nice feature of our solution is that it is compatible with any
version of ICE. By means of a our compiler, we actually provide native Slice
compatibility, in spite of the use of FIDL+-+.

12.3 Summary

In this chapter we have presented an evaluation of our work. We have pointed
out what we consider to have achieved, and some of the requirements which
we did not met.

We conclude this thesis with the next chapter.

Chapter 13

Conclusion

In this chapter we present a summary of our work, a short discussion of the
degree to which we have managed to achieve our goals and point out some
suggestions for further work.

13.1 Summary of our work

The general goal of this thesis, stated in Section 1.3, is to provide a way
to treat streams and flows of (multimedia) data as first class objects in the
context of object-oriented middleware based applications.

In order to present a solution for this research topic, and based on the
history of this thesis’ project, we have worked on two systems:

1. A Da CaPo core implementation.
2. A MSA, design and implementation.

(a) fidl, a compiler for FIDL++.
(b) A streaming API.
(c) A MSA run-time

In connection with our systems, we have implemented 3 demo applica-
tions, presented in Chapter 11:

1. A Da CaPo demo.
2. A general ICE based demo, using the polling client approach.

3. A MSA demo, which is our main demo application.

141

142

13.2 Goals - did we reach them?

We summarize now the goals we had defined for our thesis, and what we
have done to achieve them. A more thorough discussion, in the light of
requirements, is given in Chapter 12.

1. Da CaPo core implementation.

We have implemented a Da CaPo core. It is written in C++-, and it is
independent of any other systems. We argue that our implementation
provides a great deal of flexibility and extendability. In addition it also
has a very simple module interface. However, this implementation is
only a core. Especially, we have not had time to look at the issues of
dynamic adaptability of applications base on Da CaPo. We argue that
our implementation can be extended to provide this feature too.

2. Establish Requirements for an middleware based MSA.
We have specified the requirements for our work, both those which
were imposed on us by the MULTE project, and those which we have
imposed ourself.

3. MSA implementation.

We have designed the run-time of a MSA, and have implemented a
compiler for a slightly modified version of FIDL. By means of this
compiler we are able to parse high level stream and flow descriptions,
and to generate from them Slice and C++ code which implements
a hierarchy of objects, within regular ICE applications. On the top
of this hierarchy, we have an object which encapsulates the behavior
described by a FIDL++ description. This object provides a streaming
API, by means of a set of methods. In this way a stream of data which
can be described by means of FIDL-++, appears to the programmer as
a regular C+-+ object.

4. The integration of Da CaPo and the MSA.
We did not have time to deal with this issue. However, we consider
that the two systems can be integrated into a common implementation.
We mention more details in the section about further work.

13.3 Futher work

Most of the further work we have in mind, after finishing this thesis, has to
do with implementing new features into our systems.

143

13.3.1 Da CaPo enhancements
Adaptability

First of all, we have not implemented an application which proves that our
Da CaPo core implementation is suitable for dynamic adaptive behavior of
distributed applications. Still, as we have argued in Section 12.1, we consider
that the extremely simple module interface of our implementation, combined
with the fact that the modules are oblivious of their position in a Da CaPo
graph, will allow applications based on our Da CaPo core to exhibit this
behavior. Modules can be inserted and removed from protocol graphs by a
simple (re)assignment of the variables which point to the buffer(s).

Control management

Another missing feature of our Da CaPo core implementation is the fact that
we have not designed and implemented an interface for control management.
Our current design is based on the fact that the modules are running in their
own threads. A thread can not be started and stopped to pause many times.
As such, we have implemented in the modules a certain amount of control
management, by making them yield the CPU when they are idle. Thus
if the A-module on the producer side takes a break and does not produce
packets for a while, the whole protocol graph will bring itself to a state of
active waiting. When this module begins to produce packets again, the whole
graph will start working again.

One question is by what means should control management be imple-
mented in Da CaPo? We argue that the easiest way would be by means of
an existing object-oriented platform for distributed computing, like CORBA
or ICE.

13.3.2 MSA enhancements
Batched compilation of FIDL++ descriptions

So far we have not considered the scenario where our compiler is supposed
to compile several FIDL++ files residing in the same directory.

When such a need appears, it will be necessary to have the interface
implementing code derived from each FIDL-++ specification into a separate
files. As it is now, the compiler always calls the files where the interface im-
plementation code resides for interfacelmplementations callback.h and inter-
facelmplementations_ callback.cpp. This policy would lead to the overwriting
of these files, with only the last FIDL++ description’s files remaining.

144

More control of attribute assignments

In our implementation of the compiler, we do not make active use of the
information contained in the attribute specifications of the media elements
of a FIDL description. The use we do make, is to retrieve the "default" value
of each attribute, and use it for initializing purposes. By default value of an
attribute we mean its left most value. However, an assignment like:

image VGA {
producerElement = "EWebCam";
consumerElement = "EImageViewer";
samplerate = (5, 30);

I

suggests that the samplerate attribute can have values between 5 and 30,
with 5 as its default value. As part of our streaming API, we can call the

setEWebcamsamplerate (int samplerate);
setEImageViewersamplerate(int samplerate);

In our current implementation, there is made no check to what integer
values we give as parameters to these operations. This should be dealt with.
One way is to store all the values an attribute can have, and establish a
policy for dealing with the situations when a program attempts to assign an
illegal value. If there is an ordering among the values, we cam always use
the least and the greatest values as escape values. If there is no ordering
among the values, we can use the default value as an escape value.

Ideally, an illegal assignment should be discovered at compile time. We
have entertained the idea of declaring a C++ data type for each possible
value of an attribute. For the samplerate attribute mentioned above, we
would declare integer constants for all values from 5 to 30. The approach is
somehow messy, but since our compiler does all the work behind the scenes,
it would be implementable.

We have not implemented this tight attribute assignment control because
we have focused on other more essential features of the MSA and because
we can assure that our API calls always receive legal values for parameters
by carefully designing a GUI. In our MSA demo application, for instance, we
enforce the 5 to 30 range of values for the images’ samplerate attribute, by
enforcing it on the slider and spin box elements used, as shown in Figure 11.4.

Enhanced API: getAttribute(), setAll()

It is common practice for the design of an API to provide get methods
alongside with the set methods which are declared, so that the programmer
can inquire of the value of a certain variable. Providing get methods as
part of the MSA’s API is not very difficult, since the hard work of parsing
the FIDL specification and traversing the data structures generated during

145

parsing has already been done in connection with the code generation process
presented in this thesis. We have not done it because it is not absolutely
necessary in order for us to build a proof of concept demo application.

Another usefull method which could have been added to our streaming
API is a setAll method for each flow implementation. This would be useful
if we want to set several attributes at once. We could then send all of their
values in a single invocation, instead of an invocation per attribute setting,
as it is the case now. If we want to move from sound with lowest quality to
sound with highest quality in our demo application, we need to send three
separate invocation, which each carry a singe integer value. The ratio of
payload data to header is significantly high in this scenario.

Run-time error management

A weakness of our implementation of the MSA is that we have not designed
special mechanisms for error detection and control. The work with the gen-
eration of code has been so time consuming that we have prioritiezed to
implement a working system, rather then equip it with even such useful fea-
tures as error management and control. I this way we could at least prove
the feasibility of our approach.

A stream object can be brought into its Undefined state by many possible
network failures. Some kind of mechanism should be developed, to ensure
that a stream object detects that is has been brought into the Undefined
state. The objects can then attempt to rectify the situation. Ideally, the
stream object should try to bring itself again into a legal Streaming state. If
it does not succeed to do so, it should bring itself into the Stopped state. The
reason why the Undefined state is unacceptable is that it gives no accurate
description of what is working and what is broken among the stream object’s
composing elements.

ICE supports the mechanism of throwing and catching errors at the level
of Slice declarations. This feature is the primary means we propose to address
the issue. We should enhance the Slice code generated by our compiler with
appropriate exception types and exception handling operations.

A better object model for the MSA’s run time

We have attempted to follow good object-oriented principles in our imple-
mentation. Nevertheless this work is a first implementation of our systems,
and we can see now that we probably can achieve the same results as now
with a cleaner and simpler class hierarchy. We had a desire to make more
use of polymorphism in our implementation, but we could not always use
the types declared by slice2cpp from Slice files in the way we desired. This
is both because we do not understand well enough the details of the Sliceto
C++ language mapping and because we are pushing the limits of the RPC

146

programing paradigm, which is what ICE is offering.

Other advanced features

Other ways to enhance our implementation would be to make active use of
some of ICE’s services, like Glacier which allows end-points to communicate
through firewalls.

Ice also offers native supportuse for other protocols like UDP and SSL.
We could investigate how to take advantage of these protocols’ properties,
so that our MSA could function in several modes and be offering an API
adapted to th e used communication protocol.

A third idea would be to investigate how we could implement our MSA
on Real-Time Linux, provided that ICE runs on that operating system too.

13.3.3 Integrating Da CaPo and the MSA

Probably the greatest weakness of this thesis is that we have not had time
to investigate how Da CaPo and the MSA could be integrated into a com-
mon system. However, by working with both of them, we have a certain
understanding of how this could be accomplished. The basic idea is to

1. create a common object which supports both Da CaPo’s interface and
the interfaces required by a MEM object

2. replace the generic network used by Da CaPo with an instance of a
MSA.

This is illustrated graphically in Figure 13.1, where we have put together
the systems presented in Figures 8.1 and 6.1. Of course the MSA object in
Figure 8.1 is only a simplified representation of Figure 9.7.

13.4 Summary

We have seen in this chapter, that we have achieved most of the goals for
this thesis. We have also pointed out what we consider is still lacking, and
we have presented several suggestions for further work.

Working with this thesis has been both challenging, interesting and very
educative. Many thanks to everyone who has contributed at its completion.

147

Da CaPo Da CaPo
Source Sink

@)

S
#’
®
?

C

MSA

Figure 13.1: Integrated Da CaPo and MSA system.

Appendix A

How to build MSA based
applications

In this chapter we provide a step-by-step description of how to build an ap-
plication using the MSA. As a specific example we use our demo application.

1. Base objects:
The classes in the base directory of our source code must be compiled
to object files before attempting to compile anything else. We think it
is a good thing to do it first. In the base directory we execute

$ make objects

2. FIDL specification:
Provide a FIDL description for your application at an appropriate lo-
cation. We use an empty directory, and copy the webcam.fdl file there.
An appropriate location must for now be a directory on the same level
with the base directory in our source code. See the placement of the
demo directory in our source code in relation to the location of the base
directory.

3. Parse your FIDL specification:
For our demo we execute
$ python2 ../ parser/fidl.py all webcam.fdl
The PLY tools we have used for the parser are written for python2,

so we use python2 instead of python, but on our Fedora Core 2 test
machine python works just as well.

../parser/fidl.py is the location and the name of our compiler.

Following the name and location of our compiler is a compulsory argu-
ment which tells our compiler which file to generate. If you omit this
argument the compiler will exit immediately.

149

(Have I changed the mname

from FIDL to MSA?)

150

If you remember, we presented the following summary of files generated
by our compiler, at the end of Section 8.1:

1. webcam.ice
Slice definitions to be compiled by slice2cpp.

2. interfacelmplementations_ callback.h
Header file for the C++ implementations of the Slice definitions
from webcam.ice.

3. interfacelmplementations callback.cpp
Code file for the C++ implementations of the Slice definitions
from webcam.ice.

4. serverCB.cpp
Basic ICE server application. Fully functional, but the application
logic can be extended.

5. clientCB.cpp
Basic ICE client application. The application logic must be added
to this file. Optionally, the client application can be hooked to a
GUL

6. config.server.callback
Configuration file for the server application.

7. config.client.callback
Configuration file for the client application.

8. Makefile
Makefile to compile all of the above.

If the argument has the all value, as shown above, all these files will
be generated. If you want to (re)generate only specific files, provide
their number instead of all. all is the same as 12345678, or any other
number containing all the digits from 1 to 8.

This feature of the compiler is probably useful only during the debug-
ging process of the compiler itself. It has been added to the compiler
because the compilation time for files 1 to 3 is quite long compared
to the other files, and by not regenerating them more often then ab-
solutely necessary, we do not have to compile them more times then
absolutely necessary.

Finally, the last argument is the name of the file to be compiled.

4. Compile the Slice code:
If you do not have a GUI ignore this step. If you use a GUI, it might
have dependencies on the header file which will be generated from the
webcam.ice file by the native ICE compiler, slice2cpp. Run therefore
your Slice file through slice2cpp now. If you do not have a GUI which

151

depends on this header, ignore this step, as it will be executed by the
main Makefile when necessary.

We generate this header file now by calling:

$ slice2cpp webcam.ice

. Provide a GUI:

If you do not have a GUI ignore this step. If you want a GUI for any
of the client or the server applications, you will need to add the GUI
files to the location directory, no later than by the time you attempt
to compile. We have a GUI for our client application, so we copy the
contents of the gui directory to the location directory now.

. Compile the GUI:

If you do not have a GUI ignore this step. Because there are interde-
pendencies between the code in the interfacelmplementations _callback.h
and interfacelmplementations _callback.cpp files and the GUI files, and
because a particular GUI is unlikely to fit several applications, the GUI
files must first be copied where the interfacelmplementations_ callback.h
and interfacelmplementations_ callback.cpp files are.

Since the compiler can not know in advance what GUI you will provide
for the particular FIDL specification you are compiling now, if any,
and because it can not guess what you will name the files which will
contain the GUI, the compiler can not generate targets to compile the
GUI when it generates the Makefile for the whole project. You must
therefore do what ever it takes to compile to object files the GUI you
have provided.

For our demo application we have a separate makefile called gui-Makefile
which only compiles our GUI to object files. The objects which im-
plement the functionality of the media elements will link against these
object files at link time. We call make with this file as an argument:

$ make —f gui—Makefile

. Compile the application:

You are now ready to compile the application. Since our compiler has
generated a Makefile specifically for this FIDL specification, we call
make on it:

$ make
The server application is compiled to an executable called serverCB and
the client application is compiled to an executable called clientCB.

However, the client and the server applications will do "nothing", ex-
cept for initializing a whole lot of objects. While the server application

152

is complete in the sense that it is ready to serve a client which behaves
according to the pattern described in the webcam.fdl specification, the
client application logic is missing, because you can use the infrastruc-
ture set up by our compiler in a thousand ways.

You can alter the application logic of both the client and the server
applications, but you will probably only want to work on the client
application. In both the serverCB.cpp and the clientCB.cpp files the
compiler provides a safe place where you can write your application
logic. This place is found toward the end of the files, between these
comment lines:

// begin user code

// end user code

You are welcome to write your application logic some other places in
these files too, if you know what you are doing. At this point, however,
all objects are guaranteed to be initialized and this location is also
placed before any clean up code which might be necessary to be run
before the applications exit, so it is a safe place to work at.

For our demo application we have a very simple client side application
logic:

// begin user code

IceUtil :: ThreadPtr
gui = new MainGUI(argc, argv, stream,
EImageViewervar ,
ESoundCardvar) ;
threads.push back(gui—>start ());

int res = 0;
res = stream—>setQOSLevel(3);

// end user code

As you can see, most of the application logic is concerned with firing
up the GUI. We request then that the stream object will operate at
QoS level 3, and we can use the res variable to see if the request has
been granted.

The application logic of our demo application is deceivingly simple.
We have placed tons of GUI functionality in the GUI files, which you
might want to, and which you also can code here, in the clientCB.cpp
file, if you prefer.

Normally you would make calls to our streaming APT here. As you can
see we pass stream, the pointer to the stream object, to the main GUI

153

object. In this way all user actions will be mapped by the GUI to calls
to our streaming APIL.

See the mainWindow.cpp file for details on how we make calls to the
streaming API. As you will see, the calls are very simple, and most of
the code is concerned with handling the GUI elements. As examples
we present the implementation of the following four Qt slots:
void
MainWindow : : startStream () {

streamPtr —>stream () ;
}

void

MainWindow : : stopStream () {
streamPtr—>stop () ;

}

void
MainWindow : : pauseStream () {
streamPtr—>pause () ;

}
void
MainWindow : : updateFramerate(int fr) {
cout << "MainWindow :: updateFramerate(). " <<
fr << endl;
if (!streamPtr—>setEWebCamsamplerate(fr))
frSpinBox—>setValue (frameRateOld) ;
else
frameRateOld = fr;
}
. Certificates:

Before you attempt to run the executables, copy the whole certs di-
rectory to the location directory. Notice that you need to copy the
whole directory, not only the files from it, as it was the case for the
GUI directory. The reason why we need these files is that the code
we generate for our executables is half way initialized to use the SSL
(Secure Socket Layer) protocol as a communication’s protocol, instead
of TCP. Without these files, located in a directory called certs where
the executables are run from, the executables will not start.

154

Bibliography

[1]

2]

3]

[6]

8]

Gordon Blair and Jean-Bernard Stefani. Open Distributed Processing
and Multimedia. ADDISON-WESLEY, 1998. ISBN 0-201-17794-3.

Peter J. Denning, Douglas E. Commer, David Gries, Michael C. Mulder,
Allen Tucker, A. Joe Turner, and Paul R. Young. Computing As A
Discipline, 1989. Condensed article from the Report of the ACM Task
Force on the Core of Computer Science. 1989 ACM 0001-0782/89,/0100-
0009.

Tom Fitzpatrick. Open Component-Oriented Multimedia Middleware for
Adaptive Distributed Applications. PhD thesis, Computing Department
Lancaster University, September 1999.

Daniel g. Waddington, Geoff Coulson, and David Hutchison. Specifying
QoS for Multimedia Communications within Distributed Programming
Environments.

Andreas Gotti. The Da CaPo Comunication System. Swiss Federal
Institute of Technology (ETH Ziirich), Computer Engineering and Net-
works Laboratory (TIK), CH - 8092 Ziirich, June 1994. Technical Re-
port.

The Object Management Group. Audio/Video Stream Specification.
The Object Management Group, January 2000. New edition, no text
changes since June 1998.

The Object Management Group. The Common Object Request Bro-
ker: Architecture and Specification. The Object Management Group,
December 2001. Revision 2.6.

Michi Henning. Massively Multiplayer Middleware. Published in ACM
Queue Magazine (Vol 1, Issue 10, February 2004). Article available from
WWW. 2ET0C. COM.

Michi Henning. A New Approach to Object-Oriented Middleware. Pub-
lished by the IEEE Computer Society, January-February 2004, IEEE

155

156

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

Internet Computing. Article available from www.zeroc.com and from
www. computer.org/internet/.

Michi Henning and Mark Spruiell. Distributed Programming with ICE.
ZeroC, Inc., May 2004. Revision 1.4.0, with contributions from Benoit
Foucher, Mark Laukien, Matthew Newhook, Bernard Normier. Down-
loadable from www.zeroc.com.

Michi Henning, Mark Spruiell, Marc Laukien, and Matthew Newhook.
Distributed Programming with ICE. ZeroC, Inc., July 2003. Revision
1.1.0, downloadable from www.zeroc.com.

Michi Henning and Steve Vinoski. Advanced CORBA Programming with
C++. Addison-Wesley, 1999. ISBN 0-201-37927-9.

ISO/ITU-T. ITU-T X.901 | ISO/IEC 10746-1 ODP Reference Model
Part 1. Overview, May 1998.

ISO/ITU-T. ITU-T X.901 | ISO/IEC 10746-1 ODP Reference Model
Part 2., May 1998.

Tom Kristensen and Thomas Plagemann. FEnabling Flerible QoS
Support in the Object Request Broker COOL. Center for Technol-
ogy at Kjeller (Center For Technology at Kjeller), University of Oslo
http://www.unik.no(tomkri, plageman).

Sindre Medhus. FIDL. University of Tromsg, Norway, 1997. Master’s
Thesis.

Microsoft. Getting started in .NET. http://www.microsoft.com/net/.

University of Chicago. PLY (Python Lez-Yacc). Available from
http://systems.cs.uchicago.edu/ply/.

Terrence John Parr. Language Translation Using PCCTS and C++.
Automata Publishing Company, San Jose, CA 95129, 1993. ISBN 0-
9627488-5-4, freely distributed on Internett as well.

Terrence John Parr, H. G. Dietz, and W. E. Cohen. PCCTSReference
Manual, Version 1.00, August 1991. Latest release is 1.10.

Thomas Plageman!, Frank Eliassen?, Brita Hafskjold?, Tom
Kristensen!, Robert H. Macdonald®, and Hans Ole Rafaelsen*.
Flexible And Extensible QoS-Management For Adaptive Middleware.
'University of Oslo, UniK - Center for Technology at Kjeller {plage-
man, tomkri}@unik.no, 2University of Oslo, Department of Informatics
frank@ifi.uio.no, 3Norwegian Defence Research Establishement {bha,
Robert-H.Macdonald}@ffi.no, *University of Tromsg, Department of
Computer Science hansr@acm.org, 2000.

157

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Thomas Plagemann, Vera Goebel, Pal Halvorsen, and Otto Anshus.
Operating System Support for Multimedia Systems, 1999. To be pub-
lished in: Computer Communications Journal, Special Issue on Interac-
tive Distributed Multimedia Systems and Telecommunications Sservices
1998(IDMS’98), Elsevier Science, Winter 99.

Thomas Peter Plagemann. A Framework for Dynamic Protocol Config-
uration. Swiss Federal Institute of Technology (ETH Ziirich), Computer
Engineering and Networks Laboratory (TIK), Diss. ETH No 10830,
1994. Dissertation for the degree of Doctor of Technical Sciences.

Hans Ole Rafaelsen and Frank Eliassen. Trading and Negotiating Stream
Bindings. Published at IFIP/ACM Middleware2000, New York, April
2000. hansr@cs.uit.no, frank@ifi.uio.no.

Hans Ole Rafaelsen and Frank Eliassen. Trading Media Objects with
CORBA Trader. hansrQcs.uit.no, frank@simula.no.

Douglas C. Schmidt and Steve Vinoski. Object Adapters: Concepts and
Terminology. Object Interconnections, Column 11, published in the
October 1997 of the SIGS C++ Report magazine.

Ralf Steinmetz and Klara Nahrstedt. Multimedia: Computing, Commu-
nications & Applications. Prentice-Hall, 1995. ISBN 0-13-324435-0.

Chorus Systems. CHORUS/COOL-ORB Programmers’s Guide.
CS/TR-96-2.1.

Chorus Systems. CHORUS/COOL-ORB Programmers’s Manual Ref-
erence. CS/TR-96-3.2.

W3C. See http://www.w3.org/2000/xp/Group/ and
http://www.w3.org/TR/.

James Won-Ki, Jong-Seo Kim, and Jae-Kyu Park. A CORBA-Based
Quality of Service Management Framework for Distributed Multimedia
Services and Applications. Published in IEEE Network, March/April
1999.

