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ABSTRACT

Detailed water kinematics are important for understanding atmosphere-ice-ocean energy transfer
processes in the Arctic. There are few in situ observations of 2D velocity fields in the marginal
ice zone. Particle tracking velocimetry and particle image velocimetry are well known laboratory
techniques for measuring 2D velocity fields, but they usually rely on fragile equipment and pollutive
plastic tracers. Therefore, in order to bring these methods to the field, we have developed a new
system which combines a compact open-source remotely operated vehicle as an imaging device,
and air bubbles as tracing particles. The data obtained can then be analyzed using image processing
techniques tuned for field measurements in the polar regions. The properties of the generated bubbles,
such as the relation between terminal velocity and diameter, have been investigated under controlled
conditions. The accuracy and the spread of the velocity measurements have been quantified in a
wave tank and compared with theoretical solutions. Horizontal velocity components under periodic
waves were measured within the order of 10% accuracy. The deviation from theoretical solutions is
attributed to the bubble inertia due to the accelerated flow. We include an example from an Arctic
field expedition where the system was deployed and successfully tested from an ice floe. This work
is an important milestone towards performing detailed 2D flow measurements under the ice in the
Arctic, which we anticipate will help perform much needed direct observations of the dynamics
happening under sea ice.

1 Introduction

The development of field studies of fluid flow in the ocean has increased considerably in the last decades thanks to the
technological advances within measurement equipment. Nonetheless, working in the Arctic environment remains yet
difficult. Not only because of the technical aspects to execute a successful controlled experiment in the field, but also
because the possibilities to use regular laboratory equipment are limited by the harsh temperatures and conditions. On
top of that, working on an ice layer brings new challenges to the design of a field setup. Adaptation of well known
techniques to the field by accurately testing them in the laboratory first is a reasonable approach. This paper introduces
a new system for high resolution velocity measurements of fluid flow specially designed for Arctic conditions, where
elements from already established methods are combined. The accuracy of the instrumentation is determined to
understand its capabilities in order to adapt them to the desired object of study.

Although laboratory experiments can yield useful results due to the high level of control over variables, scaling between
wave tank conditions and the real ocean is challenging as several nondimensional numbers are necessary to describe the
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problem. In wave tank experiments, it is for example desirable to moderate nonlinear effects and ensure deep-water
waves, as this is the most common situation in the Arctic. These conditions are achieved by respectively reducing
the wave steepness and the ratio of wavelength over depth. As pointed out by [1], it is with such constraints difficult
to simultaneously obtain a realistic Reynolds number for turbulence under ocean waves. It is therefore necessary to
perform field measurements to complement or confirm laboratory experiments, where scaling problems are usually
inevitable.

Ultrasonic velocimeters, such as acoustic Doppler velocimeters (ADVs) and acoustic Doppler current profilers (ADCPs)
are well known instruments for fluid velocity measurements in the ocean. However, these instruments provide only
single point velocity (ADVs), or in the best case an array of along-beam velocities (ADCPs), which in many cases
is insufficient to give a detailed description of the dynamics of certain flow phenomena that occur in the Arctic. An
example of such a phenomenon is wave propagation underneath an ice layer [2, 3], which is interesting for validation
of wave attenuation models through the marginal ice zone, e.g. [4, 5, 6]. Another example is the investigation of
turbulent structures or jets induced by colliding ice floes [1], which may contribute to ice-ocean energy transfer and
increased eddy viscosity and viscous dissipation. In these cases it is desirable to resolve a 2D velocity field for a better
understanding of the underlying physics.

Within fluid dynamics and wave studies in particular, researchers have used two very established laboratory techniques
to understand flow dynamics: particle image velocimetry (PIV) and particle tracking velocimetry (PTV). In controlled
environments, these techniques can accurately represent the velocity fields in a wide range of flows. Conventional PIV
and PTV systems normally utilize a powerful light source, such as lasers, to illuminate a thin sheet of tracer particles.
In this way it can be ensured that the particles of interest are situated in a plane with a fixed distance to the camera.
In later years it has been shown that these techniques can be applicable in field measurements with certain reserves,
PIV-laser systems have been developed and deployed off docks and from ships [7, 8]. However, it is difficult to arrange
such a setup in the field, especially in an Arctic environment, due to the large weight, high cost and fragility of lasers.

Another complication in the use of traditional PIV and PTV in field measurements is the use of tracers. As addressed in
[7], some oceanic areas can be analyzed by the use of the natural suspended particles. But, particularly in the Arctic
Ocean, the water is mostly clear during the winter. Therefore, the introduction of environmental-friendly tracers is
required. The use of passive tracers is problematic in field applications because the residual water motion, which is
always present due to tides and currents even though the conditions appear calm, will transport the tracers away from
the measurement plane. It is very challenging to maintain an acceptable concentration of particles and at the same time
avoid intrusive mixing motion. The adaptation of PIV using bubbles as tracers has become popular throughout different
applications [9, 10, 11, 12, 13], and tested against more commonly seeding methods [14]. The mentioned studies have
brought to light different aspects that need to be calibrated and considered to apply these techniques outside a controlled
environment. In this study, an array of small air bubbles has been introduced as tracers, which provide a plane of
particles and thus enables us to find a two-dimensional velocity field without the need of a light sheet.

A good way to assist underwater measurements is the use of ROVs (remotely operated vehicles). Since the early 1980s,
the interest of utilizing ROVs for field work has increased. Towards the end of that decade, the first major field works
using ROVs to retrieve information and samples were made [15]. Afterwards, ROVs have been used extensively for
observations and sample retrieving. By using an open source ROV, it is possible to control tools underwater and retrieve
images and information from different sensors, while keeping costs down to a reasonable level. It is only in the last few
years that ROVs have been considered a tool in different fluid dynamics applications and in situ measurements, where
the reliability and limitations of the sensors mounted remain the main issues [16, 17].

In this work, a methodology to perform reliable field measurements using PIV techniques is described. Extensive
laboratory tests have been included to show the reliability and range of confidence of the bubble curtain as a substitute
for passive tracers and light sheets. Two type of experiments were performed under controlled conditions in the
laboratory; one to evaluate the terminal velocity and the maximum oscillating velocity of the bubbles as function of the
bubble size, and the other to investigate the effect of accelerated flow on the bubble slip velocity. PTV was used in
these experiments to track and investigate the motion of each individual bubble. The use of an ROV as an imaging and
light source system in PIV field measurements has been introduced and tested in extreme Arctic conditions. The field
experiments were performed and analyzed independently of the laboratory results. The laboratory results were not used
to calibrate the field experiments as the conditions were very different, but as general observations of the system to
as good as possible estimate some sources of error and the accuracy of the method. For simplicity, we introduce the
abbreviation PV (particle velocimetry) to address PTV, which was used in the laboratory, and PIV, which was used in
the field, and name the introduced technique "ROV-PV system".

The paper is organized in the following manner. Section 2 describes the components and the assembly of the ROV-PV
system, the algorithms used for image processing and how fluid velocity is interpreted from measured bubble velocity.
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Section 3 presents the results from wave tank experiments. An example of a field deployment in the Arctic is included
in Section 4. The methods and results are discussed in Section 5 and conclusions are drawn in Section 6.

2 Data and methods

The ROV-PV system presented here is designed to capture dynamics generated from air-water and ice-water interactions
in the upper ocean. It is a portable system build for Arctic field campaigns at remote locations and harsh environments.
It is emphasized that the accuracy of the methodology is sub-optimal for laboratory application standards. The system
is developed for field use where applied measurement techniques usually have a much higher tolerance for error. The
core concept is to perform optical recordings with the camera of an ROV. A plane of rising air bubbles illuminated
by the ROV’s headlights are used as tracing particles. The bubbles rise inside a thin aluminum frame with indicated
reference coordinates. As it is difficult to maintain a constant relative position between the ROV and the aluminum
frame, all images are calibrated individually to obtain real world units. Image processing is applied to produce the 2D
in-plane velocity field of the bubbles. During post processing, the vertical buoyancy driven velocity component of the
bubbles is subtracted to obtain the water velocity. The same procedure also applies for the laboratory experiments which
are carried out to validate some aspects of the method, except that the relative position between the camera and the
measurement plane is constant in these situations, and the same coordinate transformation can be used for all images.

2.1 ROV-PV system

An open source ROV has been chosen for image acquisition that will be used for the PV analysis, as it is easily
maneuvered below and around sea ice. The use of open source instruments is an increasing trend in geophysics,
see e.g. [18, 19, 20]. Open source instruments provide flexibility in the sense that they offer the possibilities for
extensive modification to specific needs and easy interfacing with other open source systems. Another advantage is
the significantly lower cost than similar closed source solutions. An ROV allows for preliminary inspections of the
site to find the most suitable location for measurements, as opposed to a stationary camera. The high-performance
BlueROV?2 from BlueRobotics [21] with open source software and electronics has been used. It is installed with eight
thrusters to increase the stability and obtain full six degrees of freedom control. The ROV is physically connected
to a field computer by a tether, which carries and transfers video and data signal. An open source application called
QGroundControl (QGC) works as the user interface and provides live video stream and various types of information for
the pilot.

The camera is a wide-angle low-light HD USB camera with a 2.97 mm focal length lens with low distortion (1%). It is
mounted on a servo motor for user control of tilt angle. The digital chip has a 1920x 1080 pixel resolution. The highest
available frame rate A f = 30 frames/s is used for maximum temporal resolution. Camera settings such as exposure,
brightness and gain are adjusted in QGC to optimize the images in different environments and conditions, to ensure that
the bubbles appear as clear, circular particles and not as blurry streaks. The ROV is equipped with four controllable
headlights with a total capacity of 6000 lumens.

In the setup, which is illustrated in Fig. 1, bubbles are generated with a 5 m long flexible silicon rubber hose. At the
one end, the hose is fed with air of approximately 0.5 bar from a 1.1 kW ABAC compressor. At the other end, the last
0.75 m is perforated every 1 cm on the upward facing side with a 0.3 mm needle and the tube is sealed with a plug to
prevent air leakage. This configuration provides an array of relatively small bubbles with a diameter of 0.6—1.4 mm.
Bubbles have also been generated with a thin carbon fiber pipe perforated with a 0.1 mm drill. This device was not used
in the experiments because the bubbles grew too large while sticking to the pipe before they detached. The headlights
of the ROV have proven sufficient to make the bubbles visible during fieldwork. During laboratory experiments, the
ROV has been placed outside of the water tank due to space limitations, and the bubbles have been illuminated with
external LED lamps to avoid headlight reflections in the glass wall.

In order to obtain quantitative physical information from the experiments, it is necessary to implement a coordinate
system to be able to convert from pixels to real-world units in the post processing. The coordinate system needs to be in
the framework of the bubble plane. A thin aluminum grid with a combination of grid bars and woven string has been
used as coordinate indicators. The grid measures 55x45 cm and the coordinate resolution is 8—12 cm in the horizontal
and 9 cm in the vertical direction. In a traditional particle tracking setup, the camera and the light-sheet are fixed in one
position throughout the whole experiment, making it easy to take a picture of a coordinate system in advance of the
measurements. In the current system, the ROV will always be in some movement which leads to a varying position
and angle relative to the coordinate grid. Therefore, the perforated hose is integrated at the bottom part of the grid so
that each single image can be converted into real-world units with a third order coordinate transformation, e.g. [22],
meaning that the mapping function of the calibration is unique for every image. Upon deployment in the ocean, the
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Figure 1: Schematic of the ROV-PV system in an Arctic environment. The 2D in-plane water velocity is estimated
from the bubble motion, which is recorded with the ROV camera. The perforated hose can for example be suspended
into the water by means of a pulley system, as shown here, or directly through a hole in the ice.

perforated hose and coordinate system are suspended from a constructed frame or from the sea ice. Heavy bolts are
attached to the bottom of the grid to keep it vertical and in place when exposed to waves and ocean currents.

2.2 PTYV and PIV methodology

In this work, PTV and PIV were used in laboratory and field observations, respectively. PTV differs from PIV in
a fundamental way. PIV relies on pattern matching in an essentially Eulerian way, whereas PTV seeks to identify
individual particles and follow them in a Lagrangian sense. Therefore, it is important to choose the most suitable
technique based on the characteristics of the experiment, and on the information which is desirable to obtain. A small
review of the PTV and PIV algorithms used for this work follows.

DigiFlow Software [23] has been utilized for PTV in this study. After the image acquisition, the image is scanned for
blobs that have an intensity satisfying some threshold parameters. If a blob is found, its characteristics are determined
and compared with a set of requirements for the blob to be considered a particle. If the blob satisfies these requirements,
itis recorded as a particle, if it does not, it is discarded. Once all the particles in an image have been found at ¢t = ¢,, + 1,
they need to be related back to the previous image ¢ = t,,. DigiFlow uses a modification of what is known in operations
research as the Transportation Algorithm, which was developed by [24]. The algorithm chooses a set of particles P
at t = t,,, and the other the set of particles Q att = ¢, + 1. Att = t,, p; fori = 1,2, ..., M represents the set of
particles, while at ¢ = ¢,, + 1, they are labeled g; for j = 1,2, ..., N. Each p; or g; contains the location of the particle
and other characteristics such as size, shape, intensity, or any other desired information. A set of association variables
oy is defined. When «;; = 1 then p; at ¢t = t,, is the same particle as ¢; at ¢ = ¢,, + 1. If o;; = 0, then p; and g;
represent different physical particles. The number of particles in the images may be different at t = ¢,, and t = ¢,, + 1.
To overcome this problem, a; and oo are defined as dummy particles at times ¢ = ¢,, and ¢ = ¢,, 4+ 1, respectively.
Unlike ordinary particles, more than one value of j or ¢ may give a nonzero value of ag; and oy, respectively. In this
case, a nonzero value of «y; indicates that particle p; at ¢ = ¢,, has been lost from the image by ¢ = ¢,, + 1, either by
moving out of the image or for some other reason. Similarly, cg; = 1 represents a particle q; present at ¢ = ¢,, + 1
which was not there at t = ¢,,.

The in-house HydrolabPIV software developed at the University of Oslo has been used for PIV in this work [22]. This
software combines different techniques presented in previous works to optimize the PIV algorithm [25, 26, 27, 28].
Given two consecutive images of a seeded flow, it is desirable to find an Eulerian description of the velocity field. To
achieve this, the images are divided into a regular grid of subwindows, usually of size from 8 x 8 to 64 x 64 pixels. The
use of a certain percentage of overlap is also common, usually between 25% and 75%. For each subwindow in the
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first frame 7, a subwindow I with a similar pattern is searched in the second frame. A metric of the similarity of the
patterns is required, a common choice is the normalized cross-correlation
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To speed up the processing, fast Fourier transform is often used to calculate the cross-correlation. An ensemble averaged
velocity is found by dividing the optimal match displacement of the pattern by At. After the velocity is found, the
result can be made more robust by checking the quality of the image, and further validation of the vectors using outlier
detection. This detection uses a 3x3 normalized local median filter. In addition, a cubic B-spline is fitted to the velocity
field using an iterative weighted least squares fit. The local residuals are used with the biweight function in the first
iteration. The fit is then iterated a few times where the residuals are used to update the weights in the least squares fit.
The normalized residuals from the last iteration together with the residuals from the local median filter are used to mark
the outliers. These outliers can be removed and replaced by using the fitted B-spline.

ncc

2.3 Air bubbles as tracers

Bubbles as tracing particles are challenging because they do not passively follow the fluid motion as opposed to
conventional tracers. The buoyancy driven motion of the bubbles must be subtracted in order to achieve the absolute
water velocity. In the following, the x = (z,y), V = (u,v) and F = (F}, F,)) conventions will be used for 2D position,
velocity and force, respectively. The objective of this study is to introduce a technique where the velocity of bubbles
V', is measured in order to determine the velocity of the water V,. An important quantity in this method is the slip
velocity Vi;p which is the relative velocity between the water and the bubbles, defined as

Vslip =V, -V )

Small bubbles are beneficial because they have rectilinear vertical trajectories, whereas larger bubbles tend to oscillate
in the horizontal direction [29], which raises the need for further velocity corrections. It is additionally advantageous to
generate uniform bubbles along the array, which will allow for subtraction of the mean buoyant velocity across the
entire velocity field. As pointed out by [30], it is difficult to produce small bubbles of uniform size and rate. In the
present study, the variability in bubble diameter was large over the span of the perforated hose. From visual inspection,
the bubble diameter seemed to be randomly distributed in size. It is likely that the difference in bubble size was caused
by the non-uniform size of the outlet holes, since the silicon rubber material may have contracted differently from hole
to hole after the needle was subtracted.

For steady uniform water flow, bubbles will approximately follow the water motion in the horizontal direction after a
relaxation time. An additional vertical component is present due to the buoyancy force B = %( pw — py)gmR3, where
pw denotes the water density, p;, the bubble density, g the acceleration due to gravity and R the bubble radius. In
this case, Vgiijp = vgip only has a vertical component driven by B = B,,. On the other hand, V5, also depends
on the bubble inertia when the water flow V. (x,t), where ¢ denotes time, is accelerated. Since lf—i < 1, the
effect of added mass becomes important to determine the inertia. Drag force on a spherical bubble is expressed as
D= % pwﬂ'RQC DVSﬁp|VSHp|. The drag coefficient Cp depends on the Reynolds number Re = %, where
v denotes the water kinematic viscosity. Following [31], an estimate of the slip velocity can be obtained from the
momentum balance of a bubble. Their Egs. (2) are modified to include the added mass effect to obtain

D(Vaip) — B~ —M, Pavﬂ , )
t max

where M}y = py, %WR3 is the added mass of a spherical bubble, and the mass of the bubble is neglected. Equation (3)
contains the leading order terms in Eq. (43) of Maxey and Riley [32]. The slip acceleration 0V g15p /0t is conservatively
approximated with the maximum water acceleration [0V, /Ot]mq,. The estimate for Vg, presented in Eq. (3)
depends on the relation between C'p and Re and on the maximum water acceleration. In Section 3, the horizontal
velocity component under the crests of water waves, where there exist analytical approximations for the acceleration, is
investigated. An analytical relation for C'p(Re) is used to solve Eq. (3) for Vg;p and it is shown that the observations
are in agreement with the error analysis.
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Figure 2: Schematic of the experimental setup to determine the terminal velocity of rising bubbles in stagnant fluids
with (z,y) axis aligned horizontally and vertically, respectively. The bubble motion was recorded with a high speed
camera and the bubble velocity and size were found from image processing techniques.

Analytical solutions exist for Cp(Re) for spherical bubbles moving in infinite mediums at low Reynolds numbers.
24

Stokes’ solution, i.e. Cp = % is a good approximation for Re < 1 [29]. For moderate Reynolds numbers, boundary-
layer theory approximations have resulted in analytical solutions. Batchelor assumed an irrotational flow outside
a thin boundary layer around spherical bubbles and use potential theory to obtain Cp = % [33], which is a fair
estimate for 20 < Re < 200—500, depending on the fluid. Bubbles tend to stay spherical up to and including moderate
Reynolds numbers due to sufficiently strong surface tension forces. In the spherical regime, the bubble trajectory is
usually rectilinear and the vertical velocity increases with the radius squared. Above Re ~ 450, bubbles enter the
elliptical regime where they start to deform and flatten as viscous and hydrodynamic forces become more prominent.
Consequently, the drag increases, and approximations of C'p primarily rely on numerical simulations and experimental
data. In the ellipsoidal regime, the rising motion is typically helical or oscillatory and the terminal velocity has been
observed to increase more slowly or even decrease with radius [34]. Haberman and Morton reported a smooth transition
in vertical velocity between the spherical and the elliptical regime in fresh water [29]. For Re > 5000, bubbles normally

take form as spherical caps, but this region is not relevant for the present study.

The terminal velocity v of a bubble can be found theoretically by balancing the drag and the buoyancy force in the
vertical direction. For a comparison with the observed bubble terminal velocity presented next, the analytical relation
for Cp(Re) of [33] is used, i.e. Cp = %. This gives a drag force D, = 121,,mRv7. The force balance is rearranged
and solved for the terminal velocity

(pw — pv)gR?

9 “4)

v =

The relation between the size and the rising velocity of bubbles produced by the perforated hose has been investigated
in the Hydrodynamical Laboratory at the University of Oslo. The experiments were performed in a small glass tank
measuring 1.5 m long and 0.4 m wide with water depth h = 27 cm. The perforated hose was placed on the bottom,
parallel to the long wall. In this experiment, the motion of the rising bubbles was of interest, and not the ROV-PV
system as a whole. Therefore, the ROV camera was substituted with a Photron FASTCAM high speed camera for
increased accuracy. Fresh water was used in the first case and salt water with salinity equal to typical Arctic conditions
was used in the second case. An LED lamp placed on the back side of the tank illuminated the bubbles. An integrated
laboratory Kaeser compressor produced a stable airflow to the perforated hose. A schematic of the experimental setup
is shown in Fig. 2. The water temperature was 18°C. Other fluid parameters are summarized in Table 1.

Parameter Fresh water Salt water

Density [kg/m?] pw = 998 pw = 1026
Dynamic viscosity [Pa s]  ji, = 1.027 x 1073 1, = 1.103 x 1073

Table 1: Parameters used in the experiments. These values are used for calculating the theoretical terminal velocity in
both fresh and salt water.

The image resolution was 1024 x 1024 pixels. The frame rate and shutter speed were set to 500 frames/s and 1/9000 s,
respectively. The camera was located outside the tank, 15 cm from the tank wall. The field of view (FOV) for the
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Figure 3: Example of a raw image of the rising bubbles with the full FOV. The tracked bubbles and their horizontal
radius (in mm) are indicated.

validation was 40.1x40.1 mm in fresh water and 48.8 x48.8 mm in salt water. Before the experiments were initiated,
a Perspex plate marked with reference coordinates was placed vertically on the same location as the bubble plane
and recorded with the camera. The reference coordinates had a horizontal and vertical resolution of 1 cm. From
the reference coordinates, pixel coordinates were converted to real world coordinates for all the images with a linear
transform [22], which should suffice since the camera axis was perpendicular to the measurement plane. To be certain
that the terminal velocity was reached, the center of FOV was placed 18 cm above the tank bottom. The vertical
displacement of a bubble between two frames varied 5—20 pixels, depending on the bubble speed.

Throughout the experiments, bubbles interacted with each other and in some situations, the tracking algorithm mistook
two bubbles for one. These bubbles were filtered out. Additionally, bubbles which entered an elliptical regime
were removed in order to compare the results with theoretical solutions for spherical bubbles. Elliptical bubbles and
misinterpretations were ﬁl.terec} out by applying a ratio parameter B = % B .co.ntains information. on the
bubble shape, e.g. 5 ~ 1 implies a spherical shape and 5 < 1 implies a horizontal elliptic shape. Table 2 lists the
threshold values of 3 used in the validation. The horizontal and vertical bubble diameters were determined with 4 pixel
accuracy, which corresponds to an error up to approximately 14%. Figure 3 shows an example of a raw image where

the bubbles tracked by the PTV algorithm are indicated.

The instantaneous horizontal (u;) and vertical (v;) bubble velocities were calculated from the position (z;, y;) for each
frame ¢ a bubble was tracked. Here, 7 = 1,2, ..., N — 1, where N is the number of frames, typically 50—200 depending
on the bubble speed. The minimum, mean and maximum horizontal and vertical velocity were found for each bubble.
The standard deviation of vertical velocity (o) and horizontal radius (o,.) for each bubble were used as indicators for
consistency, and bubbles which did not satisfy the quality parameters listed in Table 2 were not included in the analysis.
The bubbles included in the results were very consistent with o,, and o, both in the order of 1073 in fresh and salt water.
This indicates that the vertical velocity was quite constant and that the terminal velocity was reached.

Parameter Fresh water Salt water
Ratio 06<8<10 06<p8<1.0

o, [mm] or <0.012 o, <0.015

oy [ms™1 o, < 0.007 o, <0.01

Table 2: Threshold parameters applied when processing the data from the bubble terminal velocity experiments.

Figure 4 presents the tracked terminal velocity of the rising bubbles (black dots) in fresh water (left panel) and salt
water (right panel). A logarithmic increase in terminal velocity with respect to the bubble diameter can be observed. A

7
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logarithmic curve fit has been applied to the terminal velocity in both stagnant fluids by means of linear least squares
(red line). Tracked maximum and minimum absolute horizontal velocities are displayed with purple and blue dots,
respectively. There is a slight increase in maximum absolute horizontal velocity with respect to bubble diameter in the
case of fresh water. This increase is more prominent in salt water. The theoretical terminal velocities calculated from
Eq. (4) with values listed in Table 1 and p;, = 1.2 kg/m? are displayed as blue lines.
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Figure 4: Measured bubble terminal velocity vs diameter (black dots) from experiments in fresh water (left panel) and
salt water (right panel) at 18°C. Only bubbles satisfying the quality criteria in Table 2 are included. The theoretical
model of [33] (blue line) is a fair estimate up to Re ~ 300 for fresh water and Re =~ 500 for salt water. Reynolds
numbers of the tracked bubbles are indicated. The experimental results of [35] (Fig. 15, curve I) are included for
comparison with the fresh water experiment (black circles) and agree well with the current observations. A logarithmic
curve fit has been applied to the tracked terminal velocity (red line), and is used in Section 3 as a relation between
bubble terminal velocity and diameter. Blue dots show minimum and purple dots show maximum tracked absolute
horizontal velocity.

Aybers and Tapucu conducted a similar study on the terminal velocity of rising bubbles in stagnant water [35]. Their
results (Fig. 15, curve I), included in Fig. 4 (left panel) as black circles for comparison, are in agreement with the
present findings. Aybers and Tapucu found that the bubbles entered the ellipsoidal regime for Re ~ 530, where the
terminal velocity started to decrease [35]. Whether the present bubbles enter the ellipsoidal regime in fresh water is
not clear from visual inspections, the change in regime may occur at a higher Reynolds number than investigated here.
The salt water bubbles possibly enter the ellipsoidal regime above Re ~ 540, where we observe the terminal velocity
to flatten out. The theoretical terminal velocity from Eq. (4) is a fair estimate up to Re =~ 300 for fresh water and
Re =~ 500 for salt water, although the curve shape is quite different, most likely because the bubbles investigated are in
the transition between the spherical and ellipsoidal regime.

3 Validation in a wave tank

The ROV-PV system was evaluated under propagating periodic surface waves. A comparison to theoretical solutions
to determine the accuracy of the measurements follows. The experiments were carried out in a wave tank in the
Hydrodynamical Laboratory at the University of Oslo.

Plane progressive waves are characterized by the acceleration of gravity g, the angular wave frequency w, the amplitude
a, the wave number k and the corresponding wavelength A, where w = 27 f and A\ = 27 /k. In the case of h > %)\, the
effects of the bottom are negligible. Periodic waves with steepness ak < 1 can be well approximated by third order
Stokes theory, where the velocity potential ¢ is given by

¢ = %gekysin(kw —wt) +O(a"), )
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where x denotes the horizontal axis pointing in the direction of wave propagation and y the vertical axis pointing
upwards with y = 0 as the undisturbed free surface [36]. Equation (5) is accurate up to and including terms of O(a?) as
long as the second order dispersion relation

w? = gk(1 + a®k*) + O(a®k?), (6)

which describes the relation between w and k, is applied [36]. From Eq. (5), the following terms for horizontal and
vertical velocity components, respectively, are obtained up to and including third order

k
_ 9 = 9% kv cos

w= 5 5 (kx — wt), (7
— % — @ ky oq _
Vy = - w e"sin(kx — wt). )

Following [37], the velocities are nondimensionalized with gak /w for the comparison of waves with different amplitudes.
The velocities in vertical columns directly underneath the wave crests are investigated in the further analysis. Here,
the phase functions are kx — wt = 27n, where n is any integer. The nondimensional form of Egs. (7)—(8) evaluated
under the wave crest reduce to u,,/(gak/w) = e*¥ and v,, /(gak/w) = 0, respectively. In the following, the non-zero
horizontal velocity component is investigated.

In Section 2.3, it was shown from the momentum equation that the slip velocity is related to the bubble inertia due to
added mass. Here, it is attempted to estimate w4, by evaluating the momentum equation in the horizontal direction. As
a wave undergoes an entire period, the maximum horizontal water acceleration up to and including third order terms is

Oy,
[f%]m = gake®. 9)
It is assumed that viscosity controls fluid resistance to bubble motion, due to the small bubble size and horizontal
slip velocity. Therefore, the drag force D, acting on the bubbles is approximated with the Stokes drag, i.e. D, =
6pw T Rugip. By applying the Stokes drag approximation, a linear relation between the drag force and the slip velocity
is obtained. It should therefore be reasonable to perform a decomposition of the drag force into the vertical and
horizontal direction. Equation (9) and the drag force approximation are inserted into Eq. (3), which is rearranged to
estimate the slip velocity

R? [Ouy, R?

Uslip R —— el = ——gake"Y, (10)
W | Ot |, . 9v

where the buoyancy term is neglected, as we are only looking at the horizontal component. Equation (7) and (10) are

inserted into Eq. (2) to obtain an estimate for the horizontal bubble velocity

k 2
wp ~ I8 oky (1 f “’R) . (11)
w 9v

Figure 5 shows a schematic drawing of the experimental setup in the wave tank. It measures 24.6 m long and 0.5 m
wide and was filled with fresh water to a depth h = 0.6 m. Waves were generated in one end of the tank with a
computer controlled hydraulic piston wave maker. The perforated hose was centered on the bottom of the tank in the
span-wise direction 11 m from the wave maker. Two powerful LED lamps were suspended from the tank walls and
angled downwards to illuminate the bubbles from the sides. The ROV was placed outside the tank with the camera axis
perpendicular to the bubble plane. The camera lens was located 30 cm from the tank wall, meaning that the distance
between camera and bubbles was approximately 55 cm. The FOV in the tank center was approximately 80x45 cm.
Before the experiments were initiated, a Perspex plate marked with reference coordinates was placed vertically on the
same location as the bubble plane and recorded with the camera. The reference coordinates, 88 in total, had a horizontal
resolution of 5 cm and a vertical resolution of 2 cm close to the surface and 5 cm further down in the depth. For all
images in the experiment, pixel coordinates were converted to real world coordinates with a cubic transform [22] from
the reference coordinates. Fluid motion was analyzed within a section of 45 cm in the span-wise direction and 30 cm
in the vertical direction, which is indicated in Fig. 7. This section was well within the domain of the pixel-to-world
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Figure 5: Schematic drawing of the experimental setup in the wave tank. A coordinate system is defined with the (z, y)
axes aligned horizontally in the direction of wave propagation and vertically in upward direction, respectively, with
y = 0 as the undisturbed free surface. The velocity under the waves is estimated from the motion of the bubbles, which
is recorded with the ROV camera.

0.01

TR, NI \
i AT AT il “'\u I ““\ \ ‘u ‘”m‘“‘\

\'W I ‘H‘u‘ W “u“ I “u‘ “m HH‘
\ f (i il |
\H‘H‘u\“‘\\“‘\d Hﬂ‘ | ‘H}HH‘H‘H‘H‘HU Ih \H‘ h‘\ HUH ‘,‘\ ”u

n[m]
o

-0.01
0.02

il
w‘"‘m“u I
th MM

i
|
il

I
n
I

\'V \ | \'F Il
w‘\‘“h‘m‘\‘“h‘”‘\‘“H“W‘"H
I

[
m

I
Ul

|
!

fim

,‘“M M""‘M\U‘
Il

Uil M‘H\'U"H‘

|
I
!
|
|

Umr‘ W

n[m]
o

-0.02
0.04

0.02 -

T

'r\w‘ A AR
\h i i MHHH O | m
I \h\ ARHA RN \H AR AN
“JH““\H““luHh"”'MI}‘.‘MWW“\'JH“““”‘ ‘H‘”‘HN“M‘\‘ ‘”'MH”‘M L

i
LA

Il
|

nm]
o

I
002} M

-0.04

0 10 20 30 40 50 60
time [s]

Figure 6: Time series of surface elevation n obtained with ultrasonic gauges for 1.4 Hz monochromatic waves. The
amplitude was approximately 7, 15 and 23 mm for top, middle and bottom panel, respectively. The shaded area marks
the 10 periods investigated, which were periodic, almost constant in amplitude and unaffected by any reflected waves
from the beach.

transformation. The distortion effect of the camera, which is most prominent in the outer edges, was also reduced in the
center of the FOV.

A series of about 70 monochromatic waves was generated in each run. After a short transient build-up, the wave train
became periodic and this is the part included in the analysis. An absorbing beach damped the waves at the far end
of the tank and the analysis was terminated before any reflected waves reached back to the FOV. Figure 6 shows the
surface elevation 7 in the position of the ROV with respect to time for 1.4 Hz waves and three different amplitudes. The
10 investigated periods are highlighted. Surface elevation at the test section of the tank was measured with an array
of three ULS Advanced Ultrasonic wave Gauges (UGs) from Ultralab. The UG situated directly above the ROV was
mainly used, and the two others were applied as redundancy in case the first one failed, which happened in a few runs.
The UGs sampled at 250 Hz and they have a technical resolution of 0.18 mm.

Wave amplitude a from each run was determined as the mean value of 7,4, over the 10 periods investigated. Three
different wave frequencies f = 1.4, 1.6 and 1.8 Hz, and three different amplitudes of approximately 7, 15 and 23 mm
were investigated. Each combination was repeated three times, which means 27 runs in total. The wavenumber % of
each run was determined from Eq. 6, which was used to find the wavelength . For all frequencies, A (0.51—0.82 m)
was comparable to h. Hence, the waves were considered to be deep-water waves. In most runs, the wave steepness
ak < 0.2. Only the two runs where the highest amplitude and the two highest frequencies were combined yielded
0.2 < ak < 0.24. Grue et al. showed that the velocity profile beneath a wave crest is very close to Stokes third order
theory for ak = 0.23, and still a good approximation for ak < 0.30 [38]. Therefore, it is reasonable to use Eq. (7) as an
approximation of theoretical wu,,.
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Only bubbles located in vertical columns directly under the crest within 4% of the wavelength were considered. This
was achieved by manually locating the position of the first incoming crest highlighted in Fig. 6 in the first relevant
image frame, Frame 1. The crest position in the consecutive ¢ frames was found from ic, /A f, where cp=w /k is the
wave phase speed. Figure 7 shows the location of the first analyzed wave crest in Frame 1 (left panel) and Frame 6 (right
panel) of the 1.4 Hz and 23 mm amplitude waves. The tracked particles within the blue shaded region were analyzed
when the crest was located within the red dashed line, which marks the calibrated region of the image. When the first
crest had passed out of the FOV, the next crest was found one wavelength upstream. This procedure was repeated for
all 10 wave crests within a run. For each bubble detected directly below a crest, the vertical position and horizontal
velocity was extracted. The inset figures in Fig. 7 shows the tracked bubbles within the white rectangle.

Figure 7: Frame 1 (left) and Frame 6 (right) of the 1.4 Hz and 23 mm amplitude waves propagating towards the left.
The green star marks the crest location in the tank center and the blue shaded region highlights the 0.04\ wide column
directly below the crest, which was considered. Only when the crest was located within the red dashed line (length:
45 cm, height: 30 cm), which marks the calibrated portion of the image, were the tracked particles within the crest
column analyzed. In the inset figures, indicated with white rectangles, the tracked particles are marked with green
circles.

In the following results, u; of the smallest tracked bubbles is presented in order to minimize the horizontal oscillating
motion [29]. Since the FOV is too large to accurately determine the bubble size in the wave tank (as seen from Fig. 7),
the bubble radius was estimated from the observed vertical velocity, based on the findings on the relation between vy,
and R presented in Section 2.3. The vertical velocities accepted were 0.15 < v, < 0.25 m/s, which should correspond
to bubble radius 0.33 < R < 0.47 mm according to the logarithmic curve fit applied in the left panel of Fig. 4. This
range of bubble radius is marginally smaller than the bubbles investigated in Section 2.3, most likely due to either a
slightly different input pressure on the perforated hose or the short duration (approximately 1 s) and the small FOV
(approximately 4 cm) of the experiments presented in Section 2.3. For the 1.4 Hz waves, each run contained on average
683 analyzed bubbles which satisfied the quality criteria (small bubbles located directly below the crest) during the 10
periods investigated. In the case of 1.4 Hz waves, the 10 investigated periods consisted of approximately 214 image
frames, meaning that 3.2 relevant bubbles were analyzed on average per image frame.

Figure 8 shows the horizontal velocity profiles below wave crests with increasing frequencies from upper to lower
panels and increasing amplitudes from left to right panels. All three repetitions of the same frequency-amplitude
combination are included in each panel. The blue dots indicate observed w;. Each profile is divided into 10 equally
spaced vertical bins, in order to assess statistical properties of the tracked particles along the profile. A global filter was
applied to remove outliers which were mostly situated around y = 0, probably caused by local surface tension effects or
from bubbles accumulating on the surface. Horizontal velocities which deviated more than a certain threshold off the
mean of the same bin were discarded. The threshold was set to 70% of the total mean u;, of all observed particles in the
whole vertical profile. For the 1.4 Hz waves, this filter removed on average 2.9% of the observations. After filtering, the
mean and two standard deviations (207 of u; within each bin were calculated (green error bars). Each bin must contain
at least 10 tracked velocities for the error bar to be shown. The theoretical fluid velocity given in Eq. (7) is displayed
with a red line. The expected bubble velocity was calculated from Eq. (11), with the range of estimated bubble radius
and the kinematic viscosity v = 10~% m?/s inserted, and displayed as an orange highlighted region.

From Fig. 8, it can be seen that the horizontal bubble velocity in general has a smaller magnitude than the fluid velocity,
but the exponential profile is clearly visible. The simple error estimate given in Section 2.3 and Eq. (11) seems to be a
good approximation for the slip velocity, as the observed mean lies within the expected bubble velocity for most of the
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Figure 8: Horizontal velocity profiles divided into 10 equally spaced vertical bins below wave crests. Wave frequency:
1.4, 1.6 and 1.8 Hz from upper to lower row, respectively. Wave amplitude: approximately 7, 14 and 21 mm from
left to right column, respectively. Blue dots: observed horizontal bubble velocity w;. Green error bars: mean and 2o
uncertainty of the observed wu; within each bin (at least 10 observations must be present within the bin for the error bar
to be displayed). Red line: theoretical horizontal water velocity u,, given by Eq. (7). Orange shaded region: expected
up, from estimated bubble size and Eq. (11). The observed mean u;, lies within the expected region for most of the
vertical bins.

vertical bins. The theoretical bubble velocity deviates 10.6—21.6, 12.2—24.7 and 13.7—27.7% from the theoretical
fluid velocity for the 1.4, 1.6 and 1.8 Hz waves respectively, depending on the bubble radius. Statistics from the second
vertical bin from the top of all the 1.4 Hz waves are displayed in Table 3. This bin was chosen because the highest bin
in terms of y-position and velocity does not contain enough tracked bubbles in the case of the highest wave amplitude.
Here, the mean observed u;, deviates with 1.3—6.5% from the expected u; of the average estimated bubble radius.
The spread in the observed data, exemplified through ¢ in Table 3, slightly increases with increasing fluid velocity
(i.e. higher wave amplitude). However, the relative standard deviation of the observations, that is o divided by mean
observed u; in the respective bin, decreases from 22.4% to 10.9% from the lowest to the highest amplitude for the
1.4 Hz waves. Deeming from Fig. 8, the relative standard deviation of the observed velocities decrease in general with
increasing fluid velocity (i.e. higher wave amplitude and/or frequency). The mean observed uy, is 11.7—16.0% smaller
than theoretical u,,.

The velocity profiles were nondimensionalized and the different amplitudes with the same frequency are plotted together
with increasing frequency from left to right panel in Fig. 9. Outliers were filtered in the same manner as in Fig. 8.
Here, the mean and error bar is presented if a bin contains at least 30 tracked bubbles. A clear collapse of the different
amplitudes can be seen for each frequency. The mean of the observed wu;, is located within the expected region for most
vertical bins. The wavenumbers from the different amplitudes are averaged to show theoretical w,, and expected w;, for
each frequency. Visually, the spreading of tracked horizontal velocities seems to decrease with increasing frequency.
This observation is consistent with the decreasing relative standard deviation for higher velocities, which was the case
for the dimensional graphs in Fig. 8.
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a [mm] Mean obs. u, [m/s] o obs. uy [m/s] PE u, [%] PE u [%]

7 0.038 0.008 -13.9 3.8
15 0.079 0.010 -11.7 6.5
23 0.115 0.013 -16.0 1.3

Table 3: Statistics of observed u;, for 1.4 Hz waves in the second vertical bin from the top. The fourth column from the
left is the percentage error between observed u;, and theoretical u,, (from Eq. 7) and the fifth column is the percentage
error between observed and expected u;, (from Eq. 11).
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Figure 9: Horizontal non-dimensional velocity profiles divided into 10 equally spaced vertical bins below wave crests.
Wave frequency: 1.4, 1.6 and 1.8 Hz from left to right panel respectively. Blue dots: observed horizontal bubble velocity
up. Green error bars: mean and 20 uncertainty of the observed u;, within each bin (at least 30 observations must be
present within the bin for the error bar to be displayed). Red line: Y. Orange shaded region: expected u; from
estimated bubble size and Eq. (11). The observed mean wy lies within the expected region for most of the vertical bins.

4 Field deployment

The ROV-PV system was tested close to an ice floe in the North-West Barents Sea on April 26, 2019. The objectives
of the field experiment were to test the setup under Arctic conditions and to investigate the flow around floating ice
subjected to wave motion. The site was near Hopen Island, which is a part of the Svalbard Archipelago shown in
Fig. 10, and the geographical coordinates were 76.18°N, 25.77°E (indicated by the red dot). The setup was lowered
down from a beam by a pulley system into the water next to the floe, which had a diameter of approximately 20 m.
Further details on the ice floe can be found in [39]. Conductivity—temperature—depth (CTD) casts were not performed
during the present study, but CTD profiles from a nearby location at the same time of the year in 2008 were reported in
[40]. They found that the water density was quite constant in the upper 10 m of the water column, and that stratification
occurred 20-50 m below the surface. These results indicate that any potential changes to bubble dynamics over the FOV
due to stratification should be small close to the surface. Figure 11 shows the ROV positioned in front of the grid (left
panel) and the bubble plane seen from the ROV (right panel). The bubbles were illuminated by both ambient light and
the ROV headlights.

All the selected images were first calibrated with a cubic coordinate transform to find the relation between pixels
and real world coordinates [22]. Due to the dense bubble plane and the relatively long distance from the ROV to the
bubbles, it proved difficult to track single bubbles between frames obtained next to the ice floe. Therefore, PIV was
applied to obtain a 2D velocity field within the calibrated region of the image. The PIV processing was performed
with subwindows of 48 x48 pixels and 75% overlap. The optimal window size was found from a convergence analysis
where the sensitivity on the window size was investigated. A search range of 1/3 of the subwindow was used. This
configuration yielded approximately 3830 2D velocity vectors inside the bubble plane. Each velocity vector can be
decomposed into u; and vy, i.e. a horizontal and a vertical component, respectively.

It is necessary to compensate for the vertical buoyancy driven velocity component of the bubbles in order to find v,,.
It was found that the bubble rise velocity was approximately twice as high in the laboratory as in the field. For this
reason, the laboratory results were not used to compensate for the buoyant motion. Instead, an on-site calibration under
relatively calm conditions was performed. From a reference image couple where the horizontal velocity component
was very small, PIV analysis were applied to find the velocity field. It is assumed that v,, was small at the time of
the reference image couple, since the observed u,, was small. The mean vertical velocity from the reference image
couple 7y, f;c14 Was found by spatially averaging the vertical velocity component vy, over the entire velocity field. At
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Figure 10: A map of the area where the field work was carried out. The red dot indicates the location of the ice floe.
Source: [41].

Figure 11: The ROV located in front of the bubble plane and the coordinate grid, which were lowered into the water by
the pulley system, seen from above (left panel) and from the ROV perspective (right panel). A spirit level was used to
align the coordinate grid with the horizontal.

this stage in the analysis, the bubble rise velocity was approximated with Uy, r;e1q. Thereafter, an image couple with
visible stronger flow was chosen and PIV analysis were performed to obtain the velocity field. Then, 7y, r;e;q from the
reference image couple was subtracted from all vy, in the image couple that was analyzed, i.e. vy, = Uy — Up, fie1a- The
alternative approach would be to subtract the most frequently observed terminal velocity in the laboratory experiment,
1.e. Uy = Vp — Vp,1qb, Where Ty, 145 is the average vertical velocity from the right panel of Fig. 4. However, this method
yields quite unrealistic results because of the much higher bubble rise velocity observed in the laboratory, and is
therefore not pursued.

An example from an instantaneous velocity field obtained next to the ice floe is presented in Fig. 12. Measured bubble
displacement in pixels between two frames are distributed into bins and displayed (blue) in the left (u) and right (vy)
panels. The probability distribution for the vertical water displacement obtained from the above mentioned approach,
i.e. Uy — Uy, fielq (Orange) is shown in the right panel. The probability distribution for horizontal water displacement
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Figure 12: Example of an instantaneous velocity field obtained next to the ice floe. Probability distributions of the
tracked bubble displacement (blue), and estimates for the water displacement in pixels between two frames from
reference field experiments (orange) in the horizontal (left panel) and vertical (right panel) direction.
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Figure 13: Vector plot of the same instantaneous flow field next to the ice floe as presented in Fig. 12. The vertical
components are estimated from vy — Uy, fieid-

between two frames is shown in the left panel, where it is assumed that u; ~ u,,. Similar water velocity magnitudes
were observed in the horizontal and vertical direction.

A vector plot from the same image pair as shown in Fig. 12 is presented in Fig. 13. It is produced with the above
mentioned approach, i.e. subtraction of the mean reference velocity in the vertical direction. The undisturbed ocean
surface is set to y = 0 and the ice floe is located at a negative x-value. The direction of the water flow is towards the ice
floe. In fact, it was observed from the ROV images that the horizontal velocity oscillated towards and away from the ice

floe with periods in the order of 10 s. This motion is either direct wave motion or flow generated from the heaving ice
floe.

5 Discussion

In order to determine the accuracy of the introduced ROV-PV system, potential sources of error must be identified and
quantified. Fluid velocity is estimated from the motion of bubble tracers by identifying the bubble position with an
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image processing technique. Two central questions that need to be addressed are how accurately the bubble position can
be determined and how well a particle follows the fluid motion. According to [24], the position of particles spanning
over one pixel is usually determined with pixel accuracy, while the uncertainty decreases for particles spanning over
several pixels. In the wave tank experiments, the bubbles typically covered at least a couple of pixels. Therefore, one
pixel is used as a conservative accuracy estimate of the bubble position, which corresponds to approximately 0.4 mm in
real world coordinates. The bubble velocity is determined from a central differencing scheme, i.e. over three image
frames. With a typical vertical velocity of 0.25 m/s, a bubble travels 0.025 m during three frames. This gives 1.6%
relative error in velocity.

When it comes to the passivity of the particles or their capability of following the motion of the surrounding fluid, it
has been shown that the horizontal bubble velocity lags behind the fluid velocity under periodic waves. This effect is
attributed to the fluid acceleration and the bubble inertia due to the effect of added mass. For the 1.4 Hz waves, the
discrepancies between observed bubble velocity and theoretical water velocity were 11.7—16%. The relative error in
velocity caused by the bubble inertia increases with the bubble radius and is theoretically found to be 10.6—21.6% for
the bubbles investigated under the 1.4 Hz waves. Hence, the error due to the bubble inertia is an order of magnitude
larger than the error due to the image processing technique. The estimated horizontal slip velocity agrees with the
observations. Note that the observed horizontal slip velocity yields Reynolds numbers of unity order of magnitude,
which suggests that Stokes drag is a reasonable approximation.

A considerable spread in the observed w; under the wave crests can be seen from Figs. 8-9, where o =~ 0.01 m/s. This
spread is partly related to the varying bubble size and therefore varying slip velocity, as indicated by the orange shaded
regions in the figures, but also due to secondary motion, typically oscillation of rising bubbles. The perforated hose
was designed to produce as small bubbles as possible to obtain rectilinear trajectories. Although this was achieved to
a certain extent, Fig. 4 shows maximum absolute horizontal velocity values of approximately 0.03 m/s for terminal
velocity around 0.25 m/s (Re =~ 300) and zero minimum absolute horizontal velocity, i.e. a 0—12% relative error in
velocity. This observation is in agreement with [34], who described onset of secondary motion from Re = 200—1000,
where the typical horizontal component is 5% of the vertical component. Oscillations are most likely caused by vortex
shedding. The magnitude of the horizontal velocity component of a rising bubble can be considered analogous to the
oscillating part of surface waves, see e.g. Eq. (7). Its magnitude will depend on y-position and time. For bubbles of the
same size, we can expect a uniform distribution in the horizontal velocity component due to oscillations. Since the
bubble size varies, the distribution should be denser around the mean, which appears to be the case by visual inspections
of Fig. 9.

The identified uncertainties and data spread in the wave tank experiment can be summed to give an estimate of the
total relative error of the measured velocity. To narrow it down to a specific case, the 1.4 Hz waves are considered
close to the surface. The most dominating source of error is introduced by the slip velocity, which is theoretically
estimated to be 10.6—21.6%. The second largest error is due to the oscillating bubble motion. As the relative error
due to oscillating bubble motion, which is mentioned in the previous paragraph, is based on the absolute horizontal
velocity, this term can contribute in both directions and is estimated to be -12—12%, i.e. it contributes to data scattering.
The smallest relative error arises from the tracking algorithm and is conservatively estimated to be 1.6%. When all
contributions are summarized, the theoretically estimated relative error is 0.2—35.2%, which corresponds quite well
with the observations in Fig. 9. This is of course a large data spread in the context of laboratory measurements, but
acceptable in most field applications.

A possible issue with the methodology is whether the rise of bubbles could induce an undesired upward motion in the
water itself, and thus be an intrusive technique. However, experimental studies of rising bubbles in vertical pipes, where
v,, and v, have been measured to find v, suggests that this is not the case. Previous works show that v;;, decrease
with the local void fraction with approximately 20-37% when the local void fraction is increased from zero to 10%
[42, 43]. This decrease is independent of v,, and has been attributed to the hindrance effect due to neighboring bubbles
in the surroundings acting as obstacles. Since the reported decrease in v, is mainly caused by the decrease in vy,
the potential increase in v,, should be small. The local void fraction was estimated to be less than 2% in the terminal
velocity experiment presented in Section 2.3 by calculating the ratio of the bubble area on the total area of the FOV.

There is a large uncertainty associated with measurements of the vertical water velocity component since the bubbles are
naturally buoyant. Bubbles rising in calm water and vertical columns directly below wave crests have been investigated
in laboratory experiments. In both cases, the vertical water velocity is known to be zero, so that the vertical bubble
velocity equals the vertical slip velocity. However, such controlled environment is seldom obtained in the field. In
the present study, on-site observations in the field were used to approximate and remove the buoyancy driven vertical
velocity, because the bubble rise velocity measured in the laboratory was much higher. A possible explanation for this
deviation is the temperature difference, which may have changed the flexibility of the perforated hose. For example, the
diameter of the holes where the bubbles escape may decrease in lower temperature, or they could be partly clogged by
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ice. The reduction in rise velocity could also be due to a different ratio in terminal velocity versus radius because of the
lower temperature. As an example, Haberman and Morton reported a 1/3 reduction in terminal velocity for the same
bubble size in distilled water when the temperature was reduced from room temperature to 6°C [29].

The current ROV-PV system with bubbles as tracing particles is suitable for measuring flows where the horizontal
velocity component is of interest. Examples of such situations are waves propagating under an ice cover and horizontal
shear flow in the boundary layer beneath an ice cover. For accurate measurements of the vertical velocity component, it
is necessary to generate uniform bubbles in size. In this way, the terminal velocity due to the buoyancy can be found
on-site or in advance if the laboratory conditions (temperature, salinity and pressure) are similar, and assumed within
reasonable accuracy to be constant for all bubbles. The vertical fluid velocity can then be found from Eq. (2) in the case
of steady flow, or from a combination of Eq. (2)-(3) in the case of accelerated flow. Further effort must be spent in order
to improve the perforated hose to overcome this challenge in future studies. At the same time, focus should be directed
towards keeping the construction simple in use and robust for field conditions. Hydrogen bubbles generated from
hydrolysis could be an option as these tend to be small (diameter around 0.1 mm), although [44] reported a distribution
in bubble size due to coalescence phenomena. On the other hand, bubbles cannot be identified by the particle tracking
software if they are too small.

6 Conclusions

In this paper, a new method for measuring 2D velocity fields in the upper ocean by utilizing image processing technology
and air bubbles as tracing particles has been presented. The novelty of this method is the combination of bubbles and an
ROV, which gives a simple and lightweight setup which is suitable for field measurements in the polar regions. The
ROV-PV system has been demonstrated to measure the flow in the vicinity of an ice floe during an Arctic field campaign.
There is a need for detailed ocean kinematics in the marginal ice zone, as a lot of important atmosphere-ice-ocean
energy transfer processes occur here and relatively few in situ observations of 2D velocity fields exist. The introduced
technique could be suitable for visualization and quantification of many interesting flow phenomena in the Arctic, for
example wave propagation underneath various ice layers or turbulent structures induced by colliding ice floes. Detailed
observations within this field are important for an improved understanding of the underlying physics and the design and
validation of numerical sea ice models.

Detailed laboratory experiments have been carried out to quantify the relation between diameter and terminal velocity of
the generated bubbles. Although many approximations and models exist for this relation, the present results demonstrate
the importance of a thorough investigation of bubble properties since substantial deviations to models may occur. The
ROV-PV system has been utilized to measure horizontal velocities under periodic water waves with an accuracy in the
order of 10%. The deviations are mainly attributed to the slip velocity caused by the bubble inertia due to the added
mass, and is important to consider when measuring accelerated flow. In addition, there is a spread in the data expressed
through a relative standard deviation in the order of 10%, due to the bubble size distribution and the oscillatory motion
of rising bubbles. More precisely, the relative error with respect to the horizontal water velocity is estimated to be
0.2—35.2%, which agrees with the observations. Future studies should focus on generating smaller and more uniform
bubbles, which could decrease the spread in observed velocities and improve the reliability in measurements of the
vertical velocity component.
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