
1. Introduction
Due to strong surface radiative cooling in the interior Antarctic plateau, strong and perpetual katabatic 
winds emerge (Parish & Bromwich,  2007), redistributing snow mass from the interior of Antarctica to-
wards the edges and ice shelves (Lenaerts & van den Broeke, 2012), where the roughly 4 km high plateau 
slopes steeply towards sea level. These perpetual katabatic winds pick up snow from the ground once they 
reach a threshold wind speed and create a drifting-snow cloud (Amory et al., 2017; Schmidt, 1980). These 
drifting-snow clouds can extend over several 100 m in the vertical direction (Gossart et al., 2017; Mahesh 
et al., 2003; Mann et al., 2000), and multiple 100 km in the horizontal (Mahesh et al., 2003; Palm et al., 2018; 
Yang et al., 2021).

Clouds are known to notably affect the present and future climates of polar ice sheets (Gilbert et al., 2020; 
Gorodetskaya et al., 2015; Hahn et al., 2020; Hofer et al., 2017, 2019; Lachlan-Cope, 2010). They have the 
ability to amend incoming and outgoing shortwave and longwave fluxes, depending on the cloud phase, 
height and particle size distribution, directly impacting the surface energy budget (Gilbert et al., 2020; Tan 
& Storelvmo, 2019; Tan et al., 2016). Optically thick drifting-snow clouds, while not accounted for in most 
global and regional climate models, can change the atmospheric radiation budget (Le Toumelin et al., 2021), 
most notably because drifting-snow layers act as a cloud themselves, increasing the atmospheric longwave 
emissivity and decreasing the shortwave transparency of the atmosphere (Lawson et al., 2006; Le Toumelin 

Abstract The Antarctic Ice Sheet experiences perpetual katabatic winds, transporting snow, and 
moisture from the interior towards the periphery. However, the impacts of Antarctic moisture and 
drifting snow on cloud structure and surface energy fluxes have not been widely investigated. Here, we 
use a regional climate model with a newly developed drifting snow scheme to show that accounting for 
drifting snow notably alters the spatial distribution, vertical structure and radiative effect of clouds over 
Antarctica. Overall, we find that accounting for drifting snow leads to a greater cloud cover providing 
an increase of +2.74 Wm−2 in the surface radiative energy budget. Additionally, a comparison with 20 
weather stations reveals a 2.17 Wm−2 improvement in representing the radiative energy fluxes. Our results 
highlight the need to study the impact of drifting snow processes on the future evolution of clouds, the 
surface energy budget and the vertical atmospheric structure over Antarctica.

Plain Language Summary Antarctica is the continent with the strongest winds on Earth. 
These winds pick up a lot of snow on their way from the interior towards the ocean, forming drifting snow 
clouds. Drifting snow clouds can extend over 1,000 km horizontally and multiple 100 m vertically. Like a 
normal cloud, they can reflect incoming sunlight like a mirror and trap heat like a blanket. However, most 
of our climate models don't yet incorporate these drifting snow clouds and therefore might be missing an 
important part of the Antarctic climate system. In this study, we show that when we account for drifting 
snow clouds the Antarctic surface receives notably more thermal radiation. Additionally, we also show 
that we significantly improve our model when we include drifting snow by comparing our outputs to 
weather station observations over Antarctica. Therefore, we conclude that accurate Antarctic climate 
projections need to account for drifting snow.
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et al., 2021; Yamanouchi & Kawaguchi, 1984; Yang et al., 2014). Further, drifting-snow sublimation acts 
as a moisture source and a heat sink and therefore changes the temperature and humidity distribution 
in the near-surface atmosphere (Amory & Kittel, 2019). Additionally, drifting-snow particles can also act 
as ice nucleating particles for cloud formation (Geerts et al., 2015), which impact the longevity, structure, 
cloud-phase distribution and precipitation formation within pre-existing clouds. While the near-surface 
air temperatures in the interior of Antarctica are often below −37°C, where homogenous cloud droplet 
freezing glaciates all clouds, mixed-phase clouds can still exist above the boundary layer in the Antarctic 
interior (Lawson & Gettelman, 2014), which are susceptible to changes in available ice nuclei. However, 
so far very little is known about how clouds are influenced by drifting-snow processes in climate models, 
and how accounting for drifting snow over the current climate influences key polar cloud-, and therefore 
climate processes.

Here, we use two regional climate model simulations spanning the period of 2000–2019, one with a dynam-
ic representation of drifting snow and one without, to assess the impact of accounting for drifting snow on 
the representation of Antarctic clouds and surface radiative fluxes. We compare our two simulations during 
the 2000–2019 period to concurrently available satellite products of cloud cover and the ERA5 reanalysis, 
to show whether accounting for drifting snow only amends or also improves the comparison of modeled 
to observed Antarctic clouds. Our results deliver a clear indication that accounting for drifting snow over 
polar ice sheets changes the 3D-structure of clouds and ultimately their contribution to the surface energy 
budget. Due to their similarity in radiative effects and also particle size (Lawson et al., 2006), we think that 
thick drifting-snow layers should be referred to as drifting-snow clouds and be included in satellite products 
used for model cloud cover evaluation. In conclusion, not accounting for drifting snow in future projections 
of the Antarctic climate might notably bias the drawn conclusions.

2. Materials and Methods
2.1. MAR

We use simulations performed with MAR (Fettweis et al., 2013; Hofer et al., 2020), a hydrostatic, polar-ori-
ented, regional climate model extensively evaluated over Antarctica (Agosta et al., 2019; Kittel et al., 2021; 
Mottram et al., 2021). The microphysical scheme of MAR solves conservation equations for five atmospheric 
water species including specific humidity, cloud droplets, rain drops, cloud ice crystals, and snow particles 
(Gallée & Schayes, 1994). Radiative transfer in the atmosphere is adapted from Morcrette (2002). Energy 
and mass transfer between the atmosphere and the snow/ice surface are achieved through the coupling of 
MAR with the one-dimensional surface scheme Soil Ice Snow Vegetation Atmosphere Transfer (De Ridder 
& Gallée, 1998; Gallée & Duynkerke, 1997; Gallée et al., 2001), which includes a detailed representation of 
snow/firn/ice properties inspired from an early version of the CROCUS snow model (Brun et al., 1992).

In this study, we used the latest model version of MAR (v3.11), which includes a recently updated drift-
ing-snow scheme fully described and evaluated in Amory et al. (2021). Erosion of snow in the model occurs 
when the wind shear stress exerted at the surface exceeds a threshold value that depends only upon surface 
snow density (𝐴𝐴 𝐴𝐴𝑠𝑠 ) when 𝐴𝐴 𝐴𝐴𝑠𝑠 < 450 kg/m3.

Once removed from the surface, eroded particles are mixed with the pre-existing windborne snow mass 
and their interactions with the atmosphere are computed by the microphysical and the radiative transfer 
schemes. In particular, the latent heat uptake and moisture release due to sublimation of suspended snow 
particles is accounted for in the energy and mass budget of each atmospheric level in which sublimation 
occurs, and suspended snow particles are included in the computation of cloud radiative properties (Gallée 
& Gorodetskaya, 2010).

In both simulations, in which drifting snow was respectively switched on and off, we prescribed lateral, 
top-of-atmosphere and sea surface conditions from 6-hourly ERA5 reanalysis (Hersbach et al., 2020). We 
ran MAR at a spatial resolution of 35 × 35 km and used 24 vertical levels to describe the atmosphere, with 
a higher vertical resolution in the low troposphere and a lowest level situated at 2 m above ground level.
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For the comparison with in situ radiative observations, model results for 
surface radiative fluxes are extracted from the four closest grid cells to the 
observation location following the same method described in Mottram 
et al. (2021) for the comparison with weather observations.

2.2. CloudSat-CALIPSO Cloud Fraction

For the comparison of the cloud cover simulated by MAR with satellite 
observations, we use the combined CloudSat spaceborne radar and CA-
LIPSO spaceborne lidar cloud fraction data set (Kay & Gettelman, 2009). 
It is based on the R04 versions of the CloudSat standard products 
2B-GEOPROF (Marchand et al., 2008) and 2B-GEOPROF-LIDAR (Mace 
et  al.,  2009) and provides the cloud fraction globally (82S-82  N) on a  
2 𝐴𝐴 × 2 horizontal grid with a 480 m vertical resolution. The great advan-
tage of using this active remote sensing data set is its independence from 
the surface albedo over the bright Antarctic (Kay et al., 2016). Here, we 
use the total mean cloud fraction between July 2006 and February 2011.

CloudSat/CALIOP data was checked for cloud detection on a pro-
file-by-profile basis. A positive cloud ID (meaning: cloud in this pro-
file) requires a cloud thickness of 960  m (480  m for low clouds below 
2.75 km). CloudSat data below 720 m a.s.l. are excluded due to surface 
clutter. Each individual profile is flagged this way as cloud/no-cloud, and 
the total cloud fraction is calculated as the number of cloudy profiles di-
vided by the total number of profiles within the 2 𝐴𝐴 × 2 grid cell.

Note here, that it ignores cloud cover below 720 m, the part of the atmos-
phere where drifting-snow clouds are most frequently observed.

3. Results
3.1. Influence of Drifting Snow on the Vertical Atmospheric 
Structure

Explicitly modeling drifting snow in MAR leads to a notable change in 
the atmospheric structure of the lowermost 100s of meters above ground 
(Figures 1a–1c). Over the flat interior of the Antarctic Ice Sheet, the first 
few 100 m show a strong decrease in atmospheric temperature, with a 
mean 0–500  m difference of −0.66 𝐴𝐴 ± 0.40°C in elevations greater than 
2,000  m above mean sea level (Figure  1a, note: throughout the manu-
script uncertainties are given as the mean spatial variability as 𝐴𝐴 ± 1 spa-
tial standard deviation). Conversely, over the lower grounded ice and the 
low-lying ice shelves surrounding the Antarctic Ice Sheet (𝐴𝐴 𝐴 100 m above 
sea level), this decrease in temperature in the drifting snow simulations 
is less notable. The mean 0–500 m above surface difference lies at −0.23 𝐴𝐴 ± 
0.15°C. The contrasting picture between the flat interior and the steeper 
and lower margins of Antarctica is likely caused by a contrast in atmos-
pheric turbulence: (a) Due to the shallow surface slopes over the interior 
plateau and the corresponding stable boundary layer and less pronounced 

effect of turbulent mixing, the sublimational cooling is not mixed as efficiently as over the steeper margins. 
Therefore, we see a stronger boundary layer cooling in the interior when accounting for drifting snow sub-
limation, despite lower total erosion of snow by the wind than over steeper terrain. Sublimation cools the 
atmosphere because the change of water phase from solid to gaseous requires energy from the surrounding 
air to break up the bonds between the 𝐴𝐴 H2 O molecules, leading to a drop in temperature. (b) Due to adiabatic 
warming and strong turbulent mixing in areas, where the gravitational pull accelerates the katabatic winds 
down steep terrain, the height of the boundary layer increases and the particles are entrained into higher 

Figure 1. Difference in temperature and cloud properties between MAR 
with and without drifting snow during 2000–2019. (a) Cross-section of 
temperature differences between MAR with drifting snow turned on, and 
MAR without drifting snow (positive means MAR with drifting snow is 
warmer), along the path shown in the inset at the top right of the panel. 
(b) Same as panel (a), but showing the difference in cloud cover (in %) 
between the two simulations. (c) Same as panel (a) and (b), but for the 
difference in the cloud radiative effect (𝐴𝐴 𝐴𝐴𝐴𝐴−2 ).
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elevations. Therefore, the sublimational cooling is less concentrated over the margins of Antarctica and the 
ice shelves, despite a greater sublimation potential due to higher temperatures and increased erosion fluxes 
over the steeper margins.

In the boundary layer, accounting for drifting snow also increases cloud occurence over the Antarctic con-
tinent (Figure 1b). Our results show that the strongest increase in 2000–2019 average cloud cover over the 
interior plateau strongly overlap with the changes in temperature seen in Figure 1a. In elevations above 
2,000 m above mean sea level the lowermost 500 m of the atmosphere show an increase of +18.4 𝐴𝐴 ± 11.8% in 
cloud cover. Again, over lower elevations (𝐴𝐴 𝐴 100 m) the signal is less pronounced, with an increase in cloud 
cover of +12.5 𝐴𝐴 ± 8.4%.

Generally, there are three overlapping mechanisms that can explain the greater cloud amount over Ant-
arctica, when accounting for drifting snow. (a) Thick drifting-snow layers themselves act as a cloud, due to 
their ability to interact with incoming solar radiation (i.e., a cloud optical depth 𝐴𝐴 𝐴 0) and their influence on 
the atmospheric longwave emissivity (i.e., they increase the atmospheric longwave emissivity 𝐴𝐴 𝐴𝐴 ). (b) The 
sublimation of airborne snow particles leads to a cooling of the surrounding air, while increasing the spe-
cific humidity, both bringing the environment closer to saturation (Amory & Kittel, 2019). (c) Drifting snow 
particles can act as additional nuclei on which water vapor can sublimate or help with ice growth through 
the Wegener-Bergeron-Findeisen process in mixed-phase clouds above the boundary layer. Ice crystal num-
ber concentration can furthermore potentially multiply through secondary ice processes (Sotiropoulou 
et al., 2020). It is likely that in most cases these three processes can act simultaneously.

Accounting for drifting snow also alters the cloud radiative effect, defined here as the difference between 
the net radiative fluxes in all-sky conditions and under clear-sky conditions (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎−𝑠𝑠𝑠𝑠𝑠𝑠 −𝑁𝑁𝑐𝑐𝑎𝑎𝑐𝑐𝑎𝑎𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠 , 
where, N is the net radiation at the surface, Figure 1c). Again, we see the most notable changes in the 
boundary layer over the interior plateau of Antarctica. In areas above 2,000 m above mean sea level, the 
CRE increases by +1.0 𝐴𝐴 ± 0.5 Wm−2 in the lowermost 500 m of the atmosphere. Conversely, the changes in 
the cloud radiative effect are virtually negligible over the margins and ice shelves with +0.1 𝐴𝐴 ± 0.3 Wm−2.

While we see the strongest effects again in the boundary layer of the interior plateau, especially over the 
steeper margins, the CRE is altered up to elevations of roughly 5,000 m above ground. This vertical in-
fluence on the CRE might be due to the fact that drifting-snow particles can be mixed to layers above the 
boundary layer in zones with stronger adiabatic mixing and turbulence, that is, over the steeper slopes 
where the katabatic winds are the strongest. Subsequently, these additional solid particles (i.e., snow and 
ice crystals) can influence the macrophysical cloud properties in our model (ice water path, liquid water 
path and cloud optical depth), and therefore the cloud radiative effect. Additionally, because of changes in 
the vertical temperature distribution and humidity due to drifting-snow sublimation, also the emissivity 
and temperature of the layers that emit the longwave radiation can be altered between the two simulations.

3.2. Influence of Drifting Snow on Cloud Properties

To explore how the macrophysical cloud properties in MAR with drifting snow differ from the control simu-
lation without drifting snow, we show the spatial difference in cloud cover, cloud optical depth, liquid- and 
ice water path in Figure 2 a–d.

Overall, our results show a clear signal of increased cloud cover over most of Antarctica. Over the grounded 
ice sheet the increase in cloud cover is most notable with +18.6%, but it also increases strongly over the 
low-lying ice shelves (+14.5%). Over most of Antarctica our results indicate no changes in mean annual 
cloud optical depth (Figure 2b), however over Antarctica most of the year solar radiation is absent. Inter-
estingly, around the Antarctic peninsula we see areas with a slightly more notable COD increase of up to 
+0.03, which is of the same order of magnitude as the mean cloud optical depth over all the ice shelves.

Conversely, over the drier and colder interior of Antarctica, we see virtually no changes in liquid water 
path despite a notable increase in cloud cover (Figures 2a–2c). However, our results suggest a widespread 
increase in cloud ice water path (Figure 2d), with a mean increase over the grounded AIS of +5.9 g/m−2 and 
even more over the ice shelves with an increase of +9.1 g/m−2 in MAR with drifting snow. These changes 
in cloud ice water path correspond to a +10.3% increase over the grounded ice and a 10.2% increase over 
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the ice shelves. Note however, that the MAR cloud microphysics scheme currently does not account for sec-
ondary ice production, where one single ice crystal can turn into multiple ice crystals via collision breakup, 
drop shattering and rime splintering (Field et al., 2017; Gallée & Schayes, 1994; Sotiropoulou et al., 2020; 
Storelvmo & Tan, 2015). However, especially rime splintering and drop shattering need liquid to be present 
and are most efficient in temperatures above what we observe over Antarctica (Sotiropoulou et al., 2020). 
Therefore, we do not think that the missing drop shattering and rime splintering processes are a major 
source of uncertainty in our simulations, however, collision breakup in drifting-snow clouds could be an 
important missing multiplier of ice crystal number concentration in our simulations.

Figure 2. Difference in cloud properties between MAR with and without drifting snow. (a) Difference in cloud cover 
(%) between the two MAR simulations. Red colors indicate a greater cloud cover percentage in MAR with active 
drifting snow parameterization. (b) Same as (a) but for the difference in cloud optical depth (COD, unitless) between 
the two MAR simulations. (c) Same as (a) but for the difference in liquid water path (LWP, g/𝐴𝐴 m2 ). (d) Same as (a) but for 
the difference in ice water path (ice water path, g/𝐴𝐴 m2 ).
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3.3. Comparison of Cloud Cover to Satellite Observations

We compare MAR and ERA5 to the Cloudsat-Calipso active satellite cloud cover product (Kay & Gettel-
man, 2009; Mace et al., 2009; Marchand et al., 2008) (Figures 3a–3c). Over the periods where Cloudsat-Ca-
lipso data is available (07/2006–02/2011), we find that MAR without active drifting snow overestimates 
cloud cover by 7.9 𝐴𝐴 ± 9.2% (Figure 3a). The slight overestimation seems to be enhanced over East Antarctica. 
Furthermore, MAR with active drifting snow increases the overestimation of cloud cover to 25.4 𝐴𝐴 ± 12.4% 
(Figure 3b). Otherwise, MAR with drifting snow shows a spatially homogenous bias with little spatial vari-
ability. For a better understanding where MAR cloud cover biases rank compared to the widely used state-
of-the-art reanalysis product ERA5 (Hersbach et al., 2020), we also compare ERA5 to the Cloudsat-Calipso 
cloud cover product. ERA5 shows a slightly larger overestimation of cloud cover (9.8 𝐴𝐴 ± 14.5%) than MAR 
without drifting snow, but 15.6% less than MAR with drifting snow.

Note however, that even though the global gridded CloudSat-CALIPSO cloud cover product here is one 
of the most advanced cloud products available for comparison with climate models, it does not include 
information about cloud cover below 720 m above the surface (Kay & Gettelman, 2009). Therefore, because 
drifting-snow clouds are mostly less than 500 m in vertical extent (Palm et al., 2018), it is hard to assess 
with the currently available products whether accounting for drifting snow in MAR improves or degrades 
the performance with respect to cloud cover. Further, below 2.75 km Cloudsat-CALIPSO data requires a 
minimum cloud thickness of 480 m in vertical extent, notably limiting the usefulness of active satellite data 
for comparison with regional climate models that include drifting snow. Conversely, biases in cloud cover 
between satellite observations and our regional climate model could also be caused by different definitions 
of what constitutes a cloud. However, we conclude that even if we would include a satellite simulator in our 
model (such as COSP), we would not be able to compare our model output to observations in a meaningful 
way, because data below 720 m is excluded in the observations due to surface clutter, the height in which 
drifting snow clouds most frequently occur.

Additionally, while there is only limited observational evidence for the size distribution of drifting snow 
particles, a case study over the South Pole station found that drifting snow particles are mostly between 30 
and 100 μm in size (Lawson et al., 2006), a range also observed for typical cloud ice crystals. This similarity 
likely indicates that drifting snow clouds have similar optical and radiative properties to “conventional” 
clouds, and therefore information about drifting-snow clouds should be added to satellite cloud cover prod-
ucts over Antarctica.

Figure 3. Comparison between Cloudsat-Calipso cloud cover, MAR and ERA5. (a) Comparison between MAR without drifting snow and Cloudsat-calipso 
cloud cover over 07/2006–02/2011. (b) Same as (a) but for the comparison with MAR including drifting snow. (c) Comparison between ERA5 cloud cover and 
the Cloudsat-Calipso cloud cover.
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3.4. Influence of Drifting Snow on the Antarctic Surface Energy 
Budget

Changes in cloud macrophysical properties (cloud cover, ice, and liquid 
water path) due to drifting snow go hand-in-hand with changes in the 
surface energy budget. In the shortwave part of the spectrum, our simu-
lation with drifting snow shows less incoming solar radiation over Ant-
arctica (Figure 4a), mostly due to an increase in cloud cover, and a slight 
increase in solid particle content as highlighted by IWP changes (Fig-
ures 2a and 2d). On average, over the grounded Antarctica Ice Sheet the 
SWD decrease is −0.49 Wm−2 and over the ice shelves it is −0.20 Wm−2. 
The second driver of the surface energy budget, downwelling longwave 
radiation, shows the opposite effect: LWD increases over all the grounded 
Antarctic Ice Sheet (+1.65 Wm−2) and over the ice shelves (+0.99 Wm−2) 
when drifting snow is active.

When looking at the net radiative effect of drifting snow (Figure  4c), 
we see that including drifting snow leads to a net radiative warming of 
+2.74 Wm−2 over the grounded Antarctic Ice Sheet and +1.43 Wm−2 over 
the ice shelves. Here, the radiative warming effect is mostly caused by an 
increase in LWD, most notably over the steep margins, and by a decrease 
in outgoing longwave radiation due to sublimation of drifting-snow par-
ticles cooling the near surface atmosphere. When looking at the climato-
logical difference in airborne snow particles caused by drifting snow (Fig-
ure 4d) we see that the snow particles ratio is mostly enhanced over the 
steeper surface slopes of Antarctica, where the gravitational pull acceler-
ates the katabatic winds. These constitute also the areas where the long-
wave warming is most enhanced in our simulation with drifting snow.

Our results further highlight the efficiency at which drifting snow en-
hances the atmospheric longwave emissivity. Overall, downwelling 
longwave radiation at the surface is a combination of atmospheric tem-
perature and emissivity (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜖𝜖 ⋅ 𝑇𝑇 4 ). The fact that we see a notable 
increase in longwave radiation at the surface despite an atmospheric 
cooling strengthens the conclusion that drifting snow is a notable-and 
often neglected-component of the Antarctic radiation budget.

We find only limited evidence for a notable contribution of net short-
wave radiation through changes in the surface albedo when accounting 
for drifting snow (not shown). Over the steeper terrain we see an increase 
in cloud cover, together with the strongest increase in cloud ice water 
path due to greater wind speeds and snow erosion, causing an enhanced 
atmospheric longwave emissivity (Figure 2d).

For future sea level rise projections, the most important result is that drifting snow can induce a radiative 
warming over Antarctica (Figure 4c). However, drifting snow is currently not implemented in many state-
of-the-art climate models, and drifting-snow modeling approaches do not systematically account for explicit 
vertical advection of drifting-snow particles in the atmosphere, nor for their thermodynamic and radiative 
interactions with the atmosphere (Lenaerts et al., 2012). Therefore, drifting snow represents a source of 
uncertainty for future projections of the Antarctic surface energy budget response to a warming climate, 
especially given that surface melt has been identified as an increasing surface ablation component over the 
ice shelves in Antarctic climate projections (Kittel et al., 2021).

3.5. Comparison With In-Situ Weather Station Data

When comparing MAR to 20 in-situ weather station observations across the Antarctic Ice Sheet, the mean 
bias is notably reduced in our simulation with active drifting snow (Figure 5, the mean bias for individual 

Figure 4. Difference in radiative components at the surface and snow 
particle ratio between MAR with and without drifting snow. (a) Difference 
in incoming shortwave radiation (SWD) at the surface in 𝐴𝐴 𝐴𝐴𝐴𝐴−2 . Red 
color indicates a greater downwelling shortwave flux in MAR with active 
drifting snow parameterization. (b) Same (a) but for the downwelling 
longwave flux at the surface. (c) Same as (a) and (b), but for the difference 
in the net radiation at the surface (𝐴𝐴 𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆 ∗ (1 − 𝛼𝛼) + 𝐿𝐿𝑆𝑆𝑆𝑆 − 𝐿𝐿𝑆𝑆𝐿𝐿 ). 
(d) Same as above but for the difference in snow particle content (g/kg), a 
measure of airborne drifting snow particles. Dots show the locations of the 
weather stations in our statistical comparison in Figure 5.
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stations can be found in Figure  1 of Supporting Information, the location of the stations in Figures  4d 
and S3 of Supporting Information). The reduction of the mean bias in absolute terms is greatest in the long-
wave part of the spectrum with −1.1 Wm−2 in the downwelling longwave radiation (LWD) and −1.6 Wm−2 
in the outgoing longwave radiation (LWU, Figure 5 first row). Additionally, MAR with drifting snow has 
no notable impact on the outgoing shortwave radiation (SWU), where the mean bias is almost constant at 
+0.07 Wm−2, while it is slightly increased in the downwelling shortwave component (SWD) at +0.46 Wm−2. 
Overall, accounting for drifting snow in MAR over Antarctica leads to a 2.17 Wm−2 better representation of 
the radiative fluxes when compared to observations (−1.6–1.1 + 0.07 + 0.46 = −2.17 Wm−2). The greatest 
improvement in the mean bias is related to the two longwave components of the surface energy budget 
when explicitly modeling drifting snow over Antarctica.

We also compared our MAR model results to observations only during drifting snow days at the location 
of a given in-situ weather station (Figure S2 of Supporting Information). We find that during drifting snow 
days the reduction in the longwave biases is even more pronounced, leading to a three times higher LWD 
bias reduction of −3.3 Wm−2, equivalent to a 50% reduction in the mean bias. Furthermore, using the same 
MAR model setup and observations it has been shown that during drifting snow events differences in LWD 
can reach up to 60 Wm−2, far outside the uncertainty of in-situ observations (Le Toumelin et al., 2021).

Comparing the change in the mean biases when accounting for drifting snow in MAR to the initial absolute 
mean biases of the control simulation without drifting snow we see a slightly different weighting (Figure 5, 
second row). Our model results with drifting snow show a −49.0% decrease of the mean bias in LWU, fol-
lowed by a −10.0% decrease in the LWD mean bias. Slightly less pronounced are the changes in SWU at 
+0.55% and a slight increase of 4.9% in the SWD component (Figure 5, second row). Conversely, the largest 
improvement in the root-mean-square-error (RMSE) occurs in LWD (−0.44 Wm−2, Figure 5, third row) and 
LWU (−0.35 Wm−2). Additionally, accounting for drifting snow leads to a minor increase in the RMSE in 
SWU of +0.084 Wm−2 and a slightly higher RMSE in the SWD component of +0.22 Wm−2. Overall, we again 
see the most notable improvement when using the active drifting snow scheme in MAR is in the incoming 
and outgoing longwave radiation.

4. Discussion
Actively modeling drifting snow in a state-of-the-art polar regional climate model (MAR) sheds light on the 
complex interactions between drifting-snow particles, clouds and subsequently the Antarctic surface ener-
gy budget. Our simulation with drifting snow clearly differ from our control simulation in 3 different ways: 
(a) Drifting-snow particles change the micro- and macrophysical properties of clouds by acting as a radia-
tively active cloud themselves, enhancing the moisture availability due to sublimation, and also potentially 
as cloud nuclei enhancing the Wegener-Bergeron-Findeisen process. (b) Drifting-snow particles change the 

Figure 5. Statistical comparison of MAR to 20 in-situ weather stations over Antarctica. First row: change in the mean bias (Wm−2) when comparing MAR with 
drifting snow to 20 in-situ observations over the entire Antarctic Ice Sheet in contrast to MAR without drifting snow. From left to right the numbers indicate 
the changes for incoming longwave, incoming shortwave, outgoing longwave and outgoing (reflected) shortwave radiation. Negative numbers indicate a better 
comparison to the observations when drifting snow is activate in MAR. Second row: same as first row but for the percentage reduction/increase in the absolute 
value of the mean bias when comparing to MAR without drifting snow. Third row: same as first row but the change in the root-mean-square-error.
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structure of the near-surface atmosphere, mainly by inducing sublimation cooling and by providing a no-
table source of moisture. (c) Drifting snow alters the cloud radiative effect and increases cloud cover across 
Antarctica, enhancing the atmospheric longwave emissivity (𝐴𝐴 𝐴𝐴 ) and reducing the shortwave transmissivity 
of the atmosphere. Overall, modeling drifting snow over the Antarctic Ice Sheet notably changes the cloud 
structure and therefore the surface energy budget.

Our results also answer the question whether accounting for drifting snow leads to a net positive or negative 
radiative effect over Antarctica. We find that drifting snow leads to a net radiation increase at the surface of 
+2.74 Wm−2 over the grounded parts of the Antarctic Ice Sheet, which could ultimately contribute to global 
sea level rise (Figure 4). Note however, that a regional analysis of MAR in coastal Adelie Land suggests 
that sublimation cooling might partly offset some of the radiative warming at the surface (Le Toumelin 
et al., 2021).

Additionally, accounting for airborne snow particles also leads to a more accurate representation of the 
surface radiative energy budget when compared to 20 in-situ weather station observations. Overall, MAR 
with active drifting snow has a 2.17 Wm−2 lower bias in radiative fluxes compared to the base version of 
MAR (Figure 5). Most improved is the representation of the longwave components, almost halving the bias 
in outgoing longwave radiation (−49%, −1.6  Wm−2), but also notably reducing the bias in downwelling 
longwave radiation (−10.0%, −1.1 Wm−2) when compared to observations (Figure 5).

Our results indicate that accounting for drifting snow is an important mechanism when modelling the 
current and future state of the Antarctic Ice Sheet. The additional radiation at the surface of +2.74 Wm−2 
due to drifting snow in MAR is of similar or greater magnitude than the roughly +2.0 Wm−2 that the Earth 
receives due to anthropogenic greenhouse gas emissions. Conversely, most of this radiative warming in our 
simulations occurs in the very cold interior plateau of Antarctica, where the surface temperatures are far 
below the melting point and the surface almost never melts. However, our results also show that essential 
cloud parameters are also altered over the margins and ice shelves, potentially indicating that future sea 
level rise projections need to take into account drifting snow as a key mechanism for accurate future Ant-
arctic climate projections.
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(https://doi.pangaea.de/10.1594/PANGAEA.919128) (Schmithüsen, 2020). From AWS4 to AWS19: Via Pan-
gea (https://doi.pangaea.de/10.1594/PANGAEA.910473) (Jakobs et al., 2020).
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