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Abstract
Equilibrium climate sensitivity (ECS) and transient climate response (TCR) are both measures of
the sensitivity of the climate system to external forcing, in terms of temperature response to CO2

doubling. Here it is shown that, of the two, TCR in current-generation coupled climate models is
better correlated with the model projected temperature change from the pre-industrial state, not
only on decadal time scales but throughout much of the 21st century. For strong mitigation
scenarios the difference persists until the end of the century. Historical forcing on the other hand
has a significant degree of predictive power of past temperature evolution in the models, but is not
relevant to the magnitude of temperature change in their future projections. Regional analysis
shows a superior predictive power of ECS over TCR during the latter half of the 21st century in
areas with slow warming, illustrating that although TCR is a better predictor of warming on a
global scale, it does not capture delayed regional feedbacks, or pattern effects. The transient
warming at CO2 quadrupling (T140) is found to be correlated with global mean temperature
anomaly for a longer time than TCR, and it also better describes the pattern of regional
temperature anomaly at the end of the century. Over the 20th century, there is a weak correlation
between total forcing and ECS, contributing to, but not determining, the model agreement with
observed warming. ECS and aerosol forcing in the models are not correlated.

1. Introduction

The climate system of the Earth responds to a per-
turbation to the top of atmosphere (TOA) radiat-
ive balance through a change in temperature. This
imbalance constitutes a radiative forcing of the cli-
mate system, and the magnitude of the response is
determined by the strength of the forcing and the net
radiative feedback. The climate sensitivity, quanti-
fied as a change in global mean temperature resulting
from a given forcing, is a quantity of central import-
ance to future climate projection, but it is also elusive
as it depends on the time scale, forcing agent and state
of the climate system (e.g. Collins et al 2013, Marvel
et al 2016, Stevens et al 2016, Pfister and Stocker 2017,
Richardson et al 2019, Rugenstein et al 2020).

A number of measures of climate sensitivity are
used in the literature, and here we focus primarily on
equilibrium climate sensitivity (ECS) and transient

climate response (TCR), two different measures of
the sensitivity of the climate system to external for-
cing, in terms of temperature response to doubling of
atmospheric CO2 concentration. The idealised equi-
librium response ECS is often approximated by extra-
polation from non-equilibrium simulations, result-
ing in an effective climate sensitivity (or EffCS) that
in fact underestimates the true ECS (e.g. Armour et al
2013, Rugenstein et al 2020). In the absence of a large
set of equilibrated simulations, we follow common
practice (e.g. Grose et al 2018, Flynn and Mauritsen
2020, Meehl et al 2020) and refer to the effective cli-
mate sensitivity simply as ECS.

Regardless of what measure or method is used,
quantifying climate sensitivity poses a challenge. A
recent assessment (Sherwood et al 2020) narrows
the long-standing uncertainty range of sensitivity,
but emphasizes that further constraining its value
remains an important goal. Estimates of climate
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sensitivity from coupled models diverge, and for
instance current-generation models (from the sixth
phase of the coupled model intercomparison project,
CMIP6 (Eyring et al 2016)) as a group have been
found to have higher sensitivities than the previous
generation models, CMIP5 (Forster et al 2020, Meehl
et al 2020, Nijsse et al 2020, Zelinka et al 2020). This
difference holds for both ECS and TCR. For current
as well as previous model generations, ECS and TCR
are positively correlated, so that a model with high
sensitivity on short time scale (high TCR) generally
also has high sensitivity on long time scale (high ECS)
(Yoshimori et al 2014,Meehl et al 2020). TCR is lower
than ECS as ocean heat uptake delays surface warm-
ing (e.g. Hansen et al 1985, Nijsse et al 2020).

For TCR or any other transient measure of sens-
itivity (see also T140 used by Gregory et al 2015,
Grose et al 2018, Sanderson 2020), the uncertainty
is dependent not only on uncertainty in forcing and
feedbacks but also on uncertainty in the rate of heat
transfer to the deep ocean (Lutsko and Popp 2019).
Whereas ECS refers to an idealised state of equilib-
rium, TCR, with its transient nature, has been argued
to be of greater relevance for the prediction of climate
change over the nearer future of decades to cen-
turies, and thereby for policy decisions on mitiga-
tion strategies (Frame et al 2005, Allen and Frame
2007, Knutti et al 2017, Tokarska et al 2020). Ana-
lysis of CMIP5 models has indicated, however, that
ECS overall explains more of the model spread in
the global mean temperature trend over the 21st cen-
tury than TCR, and is thereby a more useful meas-
ure for describing model spread in projected global
temperature change (Gregory et al 2015, Grose et al
2018). As pointed out by Sanderson (2020), a single
number cannot be expected to describe future tem-
perature change, and ensembles of simulated future
warming under given scenarios are our most com-
plete way of depicting and communicating future
change. Still, the spread in response among models is
related to their sensitivities, and the question remains
which sensitivity measure better explains the variab-
ility in future temperature change on a given time
scale.

The uncertainty in sensitivity and forcing, par-
ticularly the contribution from changes in aerosol,
allows for different combinations of forcing and sens-
itivity to be compatiblewith a given temperature evol-
ution. For earlier generation models, a relation has
been highlighted between ECS and total radiative for-
cing, consistent with a compensation between sens-
itivity and aerosol forcing magnitude (Kiehl 2007).
However, no robust correlation between aerosol for-
cing and ECS has been found in subsequent model
generations (Forster et al 2013, Meehl et al 2020,
Smith et al 2020), and the question of whethermodels
display a correlation between total forcing and sensit-
ivity, and whether such a relation would be indicative
of tuning, has remained open.

In this study, we investigate the relation between
sensitivity metrics, forcing, and past and projected
temperature change in the latest coupled climate
models. Following the methods of studies on earlier
generationmodels, we address the questions of which
sensitivity metric is more closely related to simulated
temperature anomaly (section 3.1), how regional
temperature change relates to the global mean sensit-
ivity metrics (section 3.2), and how forcing and sens-
itivity compensate (section 3.3).

2. Methods

The present analysis is based on the CMIP6 models
listed in table S1 (available online at stacks.iop.org/
ERL/16/064095/mmedia), as described in the
following.

2.1. Climate sensitivity metrics
The values of ECS listed in table S1 are taken from
Meehl et al (2020) and represent approximations
made from simulations of abrupt quadrupling of the
atmospheric CO2 concentration. The method, ini-
tially suggested by Gregory et al (2004), is based on
the radiative budget of the climate system, described
as:

N= F−α∆T, (1)

where N is the TOA radiative imbalance, F is the
imposed constant forcing, α is the climate feedback
parameter and∆T is the change in global mean sur-
face air temperature (GMSAT) caused by the imposed
forcing (compared to some reference temperature in
a system with no imposed forcing). In this frame-
work, the feedback parameter is assumed to be time-
invariant, and a linear regression of N(t) against
T(t) from model output then gives the values for
α and F, and the ECS is given by 0.5F/α, where
the factor 0.5 is applied because the abrupt-4xCO2
experiment is used rather than an experiment with
doubled CO2 amounts. Dividing the response to
quadrupled CO2 forcing by two introduces an error,
as it assumes a linearity that has been found not to
hold, especially for high sensitivities (Jonko et al 2013,
Bloch-Johnson et al 2015, Tsutsui 2017, Rugenstein
et al 2020). More important to note, however, is the
assumption of a constant feedback parameter, which
is invalidated by pattern effects, i.e. that the time
evolving spatial patterns of surface warming trigger
different combinations of regional feedbacks at differ-
ent times, causing discrepancies between regression-
based estimates of ECS depending on the time period
used. Recent temperature evolution has for instance
inducedmore damping cloud feedback than is expec-
ted as warming continues, and hence underestimates
ECS (Armour et al 2013, Stevens et al 2016, Tsutsui
2017, Andrews et al 2018, Silvers et al 2018, Dong et al
2020, Gregory et al 2020). Following common prac-
tice (e.g. Grose et al 2018, Flynn and Mauritsen 2020,
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Meehl et al 2020, Smith et al 2020, Wang et al 2021),
however, we take the value derived from regression of
150 years of an abrupt-4xCO2 simulation, divided by
two, to represent ECS.

The TCR values are taken from Meehl et al
(2020) and are diagnosed from experiments in which
CO2 concentrations are increased by 1% per year
(1pctCO2). The TCR is calculated as the temperat-
ure difference between pre-industrial conditions and
the mean of a 20-year period centred on the 70th
year of the experiment; the time at which the CO2

concentration has doubled (Flato et al 2013). Simil-
arly, the transient temperature response at the time
of quadrupling of CO2 in 1pctCO2 simulations is used
e.g. by Grose et al (2018) and Sanderson (2020), and
included here for comparison, referred to as T140.

2.2. Explaining variance in temperature evolution
The method for investigating the relationship
between model simulated temperature change and
different sensitivity indices in different forcing scen-
arios follows that of Grose et al (2018).

A running mean was calculated for the temper-
ature change from 1861 to 2100 for each model
and each scenario, for global mean and for specified
regions respectively. Each individual year was repres-
ented by the mean of the 20 years centred on the year
in question. The data were extrapolated 10 years past
the year 2100 to allow for averages to be calculated in
the last 9 years of the simulations, using coefficients
obtained through a linear regression of the last 20
years of the data set. A similar extrapolation was per-
formed at the beginning of the time series. The run-
ning mean minimizes the impact of interannual vari-
ability of the climate system on the warming (Grose
et al 2018). For each year a linear regression was then
performed between the GMSAT change since 1861
and the ECS, TCR, and T140, respectively, using the
data from all available models.

In addition to the analysis of the different sens-
itivity indices, the same method was used to exam-
ine if historical forcing in models is related to their
simulated past and future temperature evolution.
The forcings used were the 1850–2014 global mean
effective radiative forcing (ERF) from aerosols (Faer)
and well-mixed greenhouse gases (FGHG), and the
total anthropogenic ERF (Fant). These were calculated
from 30-year time slice experiments with sea sur-
face temperatures (SSTs) fixed to pre-industrial con-
ditions, with present-day aerosols, greenhouse gases
and total anthropogenic forcing, respectively, com-
pared to a pre-industrial control simulation, as in
Smith et al (2020). Hence, like the sensitivity metrics,
these forcing quantifications are not time depend-
ent. Table S1 lists the forcings for the CMIP6 mod-
els providing the necessary output (a subset of which
are given in Smith et al 2020). As for the sensitiv-
ity metrics, correlations between the forcing meas-
ures and the GMSAT change are used to quantify and

compare the skill of the differentmeasures in explain-
ing model spread in simulated past and future tem-
perature change.

Globally gridded correlations between sensitiv-
ity indices and 1850–1869 to 2080–2099 temperat-
ure change under shared socioeconomic pathways
(SSP5-8.5) were also calculated, and for this model
data were interpolated to a common 1.5◦ × 1.5◦ grid.

2.3. Future scenarios
Grose et al (2018) studied the future temperature
projections following the representative concentra-
tion pathways (RCPs) of CMIP5. The RCPs exem-
plify different scenarios of future warming, character-
ized by different pathways for the climate forcing. For
example, RCP4.5 has a climate forcing of approxim-
ately 4.5Wm−2 by year 2100 (van Vuuren et al 2011).
In CMIP6 the RCPs are combined with so called
shared SSPs to create more complex scenarios, tak-
ing societal difficulties in mitigation of and adaption
to climate change into account (O’Neill et al 2014).
The scenarios that are available from most model-
ling centres are SSP1-2.6 (denoting the combination
of SSP1 with RCP2.6), SSP2-4.5 and SSP5-8.5. The
availability of SSP runs in the CMIP6 models con-
sidered is indicated in table S1.

2.4. Relation between forcing and sensitivity
The investigation of the relation between forcing
and sensitivity follows Kiehl (2007) and Forster et al
(2013), who surveyed that relationship in previous
generation models. Consistent with these studies, the
forcing is here estimated directly from the histor-
ical simulations rather than from single-forcing times
slice experiments as in section 2.2. Historical for-
cing estimates are based on equation (1), from which
Kiehl (2007) argued that for a given energy imbal-
ance and temperature change, such as those observed
for the 20th century, there is an inverse relationship
between forcing and ECS. The ECS is the temperat-
ure change after equilibriumhas been reached follow-
ing a doubling in CO2, so at equilibrium, equation
(1) becomes: F2×CO2 = α∆T2×CO2 = αECS), mean-
ing that equation (1) can be generally rewritten as:

F= N+
F2×CO2∆T

ECS
. (2)

Using the method described by Forster et al
(2013), the forcing in the historical simulation of each
model was calculated through a two-step procedure
based on equation (1). In the first step, the abrupt-
4xCO2 experiment was used in the same way as in
the calculation of the ECS, as described in section 2.1.
N was regressed against T to obtain α, where N and
T are both defined as differences from pre-industrial
conditions. In the second step, it was assumed that α
is constant in time and independent of forcing, and
equation (1) was applied on the temperature change
and difference in TOA radiative imbalance since 1850

3
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Figure 1. (a) 20 year running mean for GMSAT anomaly compared to pre-industrial conditions (year 1861), (b) GMSAT trend in
100 year moving window, (c) GMSAT trend in 50 year moving window. Thin lines show GMSAT from each individual model,
from all three SSPs. Thick lines show the multimodel means for each SSP. The historical line ends at 2014 in (a), and ends when
there is a difference between the scenarios in (b), (c).

from the historical simulation to obtain the total for-
cing Ftotal at year 2003 (as the 2001–2005 average).
Following Forster, the temperature and TOA radi-
ation in the abrupt-4xCO2 and historical experiments
were first corrected for TOA radiative imbalance in
the pre-industrial control simulation (piControl, see
figure S1) and for any drift, by fitting and subtract-
ing a linear trend for each model in the abrupt-
4xCO2 and historical experiments. Table S1 lists the
adjusted ERF (Ftotal) for 2003 in the models where
abrupt-4xCO2 simulations were made available for
the calculation. Again, the assumption that α is con-
stant is in fact not valid, so although the method
is consistent with previous studies, and across mod-
els, it introduces errors in the forcing estimate. For a
smaller number of models in RFMIP (Radiative For-
cing Model Intercomparison Project), it is possible
to calculate the transient total forcing F from pre-
industrial control simulations with all forcing agents,
as described by Pincus et al (2016) and also used
by Gregory et al (2020). We refer to this more cor-
rectly estimated total forcing as FRFMIP, and list it in
table S1, noting that it agrees within 10% with the
Ftotal estimates in four out of five models, while for
IPSL-CM6A-LR, FRFMIP is 40% greater than Ftotal.

3. Results

3.1. Relating forcing and sensitivity metrics to past
and projected temperature change
Figure 1 shows the development of the GMSAT
anomalies in the models listed in table S1, in histor-
ical simulations and under three different future scen-
arios. In SSP1-2.6, the temperature stabilizes during
the 21st century and the 50- and 100-year trends reach
their maximum in the early 2000 s, while in SSP2-4.5

trends are reduced later and GMSAT is still increasing
in 2075, and in SSP5-8.5 the 50- and 100-year trends
in temperature continue to increase and the temper-
ature anomalies grow increasingly towards the end of
the 21st century.

Figure 2 shows snapshots of the relation between
the sensitivity metrics (ECS, TCR and T140) and
1850–2014 forcings (Faer, FGHG and Fant), respectively,
and temperature change since 1861 for 20-year aver-
ages centred around the years 1900, 1975, and 2050
(under SSP5-8.5). These three years were selected to
illustrate the contrast between the historical period,
when Fant dominates the correlation to temperature
change with varying contribution from FGHG and
Faero, and the future period when sensitivity domin-
ates (see further figure 3). In each case the coefficient
of determination,R2, and statistical significance at the
95% level is indicated in figure 2.

The 1861–1900 GMSAT anomaly is small, and
sometimes even negative (indicating that the trend
is negligible compared to the internal variability in
temperature), and correlations with sensitivity met-
rics are negligible. For the period 1861–1975when the
temperature anomaly is still small, this remains the
case, but for the future projection period 1861–2050
(SSP5-8.5) the sensitivity metrics display a posit-
ive correlation with the GMSAT anomaly, and TCR
more so than ECS. The spread in sensitivity among
models is also smaller for TCR. T140 has a sim-
ilar correlation as ECS with GMSAT anomaly at this
time.

The correlation between total anthropogenic for-
cing and GMSAT anomaly, on the other hand, is
only significant for the historical snapshots (1900 and
1975) andnear zero for the future projection snapshot
(figure 2). The correlation with individual forcing
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Figure 2. Scatterplots of GMSAT and climate sensitivity indices (a)–(c) and 2014 forcings (d)–(f) in SSP5-8.5. Temperature
anomalies represent the change from 1861 to 1900 (a), (d), 1975 (b), (e), and 2050 (c), (f), respectively. Linear fits are shown in
the cases where the correlation is non-zero at 95% significance (i.e. p-value is lower than 0.05), and the coefficient of
determination (R2) is noted for each fit. Note the different scale on the y-axis in the bottom row.

components (Faer,FGHG) is for all cases small, and
statistically significant only for FGHG at 1900.

Figure 3 shows howR2 for the correlation between
GMSAT, sensitivity metrics and forcing measures
changes over time for the three SSPs, from the year
1850 to 2100. The relationship between warming
and climate sensitivity is negligible in the historical
period, increases strongly in the early 2000s and then
remains high in all three future scenarios. The total
anthropogenic forcing instead correlates with the
modelled temperature anomaly during most of the
20th century, but does not determine model spread
in the future projections.

This confirms the picture of warming during the
historical period being determined by model forcing
strength while feedback strength, and hence sensitiv-
ity metrics, play a more prominent role in predicting
temperature change in the future, when CO2 forcing
dominates and total forcing is less uncertain (Crook
and Forster 2011, Forster et al 2013, Grose et al 2018,
Lutsko and Popp 2019). The individual components
of anthropogenic forcing, compared to pre-industrial
conditions, remain largely uncorrelated with temper-
ature anomaly throughout the period.

For comparison of the different sensitivity indices,
it is useful to look first at the SSP5-8.5 scenario
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Figure 3. R2 between GMSAT anomaly and sensitivity indices and 2014 forcings, respectively, for (a) SSP5-8.5, (b) SSP2-4.5, and
(c) SSP1-2.6. Time series from 1850 to 2100. Solid lines indicate non-zero correlation at 95% significance (i.e. p-value is lower
than 0.05).

Figure 4. R2 between temperature anomaly and sensitivity indices and 2014 forcings, respectively, for SSP5-8.5, in six different
latitude bands representing SH and NH high latitudes (a), (d), SH and NH mid-latitudes (b), (e) and SH and NH tropics (c), (f).
Time series from 1900 to 2100. Solid lines indicate non-zero correlation at 95% significance (i.e. p-value is lower than 0.05). Prior
to 1900 correlations are not significant.

(figure 3(a)), which is most similar to the 1pctCO2
simulations that TCR and T140 are derived from.
Here, R2 for TCR levels out at ca. 0.75 by the end
of the 21st century, meaning that the inter-model
spread in TCR explains 75% of the variance in the
inter-model spread in projected change in GMSAT.
For T140 and ECS, the degree of explanation becomes
even larger, with anR2 of 0.9 by 2100. Considering the
effects of warming patterns and time-dependent feed-
backs (section 2.1), this is consistent with TCR rep-
resenting a sensitivity that includes only the feedbacks
that dominate in early stages of the warming, whereas
delayed feedbacks are to a greater extent captured by

T140, taken 70 years later, and of course also by ECS
that includes the adjustment of ocean heat uptake to
equilibrium, that neither of the transient measures
can capture. In the mitigation scenarios SSP5-4.5 and
SSP1-2.6 (figures 3(b) and (c)), where the temperat-
ure is more stabilized, ECS does not surpass the tran-
sient measures in predictive power within the 21st
century. In the CMIP6 abrupt-4xCO2 simulations,
from which the ECS is estimated, there is a shift in
the feedback parameter after around 3–5 K warming
(on average 4 K, see figure 3 of Meehl et al 2020).
This warming is reached in SSP5-8.5 around the same
time as R2 for ECS surpasses those for the transient
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Figure 5. (a) Surface air temperature change between
1850–1869 and 2080–2099 under SSP5-8.5 (∆T),
multimodel mean for 29 CMIP6 models (see table S1).
(b)–(d) R2 for the correlation between gridded∆T and
climate sensitivity metrics TCR, T140, and ECS,
respectively. Stippling indicates that correlations are not
significant at the 95% confidence level.

measures (figures 1 and 3), while in the mitigation
scenarios an average warming of 4 K is not reached
within the 21st century.Hence, theweaker correlation
between ECS and GMSAT change in the mitigation
scenarios could relate to the weaker warming in those
scenarios compared to the stronger forcing scenario.
These results differ slightly from those of Grose et al
(2018), who in their figure 2 showed the ECSR2 in the
CMIP5 models to meet or surpass the TCR R2 earlier
for all scenarios.

For correlations with temperature trends (figure
S2), the R2 value for ECS becomes larger than that for
TCR by the year 2000 in all scenarios. This confirms
the greater relevance of ECS on longer time scales,
beyond 2100, seen in figure 3, as the later and lar-
ger GMSAT anomalies increasingly contribute to the
temperature trend.

The climate sensitivity is greater, and the global
mean temperature trend is overall larger in CMIP6
than in CMIP5 in all three scenarios reviewed

(comparing figure 1 with a and b of figure 3 of
Grose et al 2018). This may partly explain the differ-
ences in predictive power of ECS and TCR between
CMIP5 and CMIP6, for both temperature anom-
alies (figure 3) and temperature trends (figure S2).
A stronger positive temperature trend and higher
sensitivity indicates a climate with a longer response
time, which is farther from equilibrium, and for
which ECS is a less suitable measure of the temperat-
ure evolution. A relation between response time and
sensitivity follows from equation (1) with assumed
time-invariant α (see Hansen et al 1985). It is also
manifest as a positive correlation between ECS and
response time scale for the abrupt-4xCO2 simulations
in the studied model ensemble (figure S3). Dividing
the CMIP6 models into two subsets based on their
sensitivity indeed suggests that ECS performs better
for the lower sensitivity models, and less well for the
higher sensitivity models, but the robustness of this
analysis is limited by the small sample size (figure S4).

3.2. Regional variations
Further insight can be gained from separating the
GMSAT into land and ocean, which yields higher cor-
relation with ECS earlier for the ocean only case (see
figure S5). This is in line with ECS better describing
slow or delayed warming, and shifts in feedback dom-
inance from evolving temperature patterns occurring
over the ocean.

An even greater difference, however, is seen from
separating the correlationswith temperature anomaly
into northern (NH) and southern hemisphere (SH)
averages. In the SH, ECS clearly dominates the degree
of explanation of projected temperature anomaly (see
figure S6), which can only partly be explained by the
ocean dominance of the SH. A more detailed separa-
tion of the temperature anomaly into latitude bands,
shown in figure 4, points specifically at the trop-
ics in SH and NH, and SH mid-latitudes as regions
where the correlation between temperature anomaly
and ECS becomes quite high. In the NH mid- and
high latitudes, where the early transient warming is
large, TCR explains more variation in model spread
in temperature.

The relation between regional temperature
change and global mean sensitivity metrics is further
illustrated in figure 5 which shows R2 for the correl-
ation between 1850–1869 and 2080–2099 warming
and the three sensitivity indices, respectively, for each
grid point on the map. This figure can be compared
with figure 4 in Grose et al (2018), except that it uses
a different reference period for the warming.

The correlation overall increases with stronger
forcing scenario (not shown), and figure 5 shows
SSP5-8.5, where the temperature change is most
prominent at the end of the century. T140 has
the overall highest correlation values, i.e. this
sensitivity metric best describes the pattern of
regional temperature anomaly at the end of the
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Figure 6. (a) Relationship between 2003 adjusted forcing and ECS in CMIP6 models. Red markers represent forcing calculated
based on linear regression in abrupt-4xCO2 forcing simulations and historical simulations (Ftotal), and blue markers represent
forcing calculated from fixed pre-industrial SST simulations with transient forcing (FRFMIP). The black line shows equation (2),
with parameters given by Kiehl (2007), and dashed lines showing the±0.2 Wm−2 uncertainty. (b) Relationship between effective
radiative forcing from aerosols and ECS, with Faer calculated from single-forcing fixed SST simulations. The numbering of the
models corresponds to table S1.

century. Compared to CMIP5 (figure 4 of Grose et al
2018), the pattern for correlation with ECS is similar,
but both TCR and T140 are in CMIP6 better correl-
ated with regional temperature anomalies, particu-
larly in the NH. In agreement with Grose et al (2018),
however, correlations are weak in the SouthernOcean
and the North Atlantic for all three sensitivity indices.
These are areas where the relative standard deviation
in temperature is large (not shown) and the low
correlation indicates that the regional temperature
anomaly in those areas is not directly coupled to the
global mean temperature change, neither transient
(TCR, T140) nor approximately equilibrated (ECS).

Even though the gridded correlations in
figures 5(b)–(d) are almost exclusively statistically
significant, we cannot assign statistical significance
to the geographical distribution of their differences,
with the small sample size.

3.3. Are forcing and sensitivity correlated?
Using model spread in sensitivity and historical for-
cing to explain variability in past and future simulated
temperature also leads to the question whether for-
cing strength and sensitivity in themodels are related,
so that high-sensitivity models are also low-forcing
models, and vice versa.

Figure 6(a) shows adjusted ERF and ECS for each
of the CMIP6 models where total forcing could be
calculated (see section 2.4) with the method of For-
ster et al (2013), and in addition those from the
RFMIP pre-industrial SST simulations. The theoret-
ical line from Kiehl (2007), valid for the 20th cen-
tury temperature change and change in ocean heat
content, is included in the figure. A majority of the
models fall within the given uncertainty range of

±0.2Wm−2, but there is significant spread around
the line. The value for R2 is low (0.28 when calculated
with respect to the theoretical line and 0.31 when
calculated with respect to the least-squares best fit),
comparable to what Forster et al (2013) found for
CMIP5 models, and not large enough to suggest a
direct compensation between forcing and sensitivity.
Figure 6(b) in turn shows the ERF from aerosol for-
cing only (Faer) in relation to ECS, as also shown by
Smith et al (2020) and Meehl et al (2020) for two dif-
ferent and partly overlapping subsets of CMIP6mod-
els. Our figure includes those models, and an addi-
tional six models, as described in section 2.4, and no
significant correlation is found (R2 = 0.00).

In figure 6(a) the forcing is taken as an average
for five years (2001–2005 for 2003), but interannual
variability, not least in the natural component of the
total forcing,makes the analysis sensitive to the choice
of year, and for example 2008 (2006–2010) and 2012
(2010–2015) have greater spread, and R2 values of
0.19 and 0.17 respectively, calculated for the best-fit
lines in each case (not shown).

4. Discussion and conclusion

We have presented relations between climate sensit-
ivity indices, forcing and temperature change in an
ensemble of CMIP6models. Comparing the behavior
of these models to that of earlier generation models
provides both confirmation and contradiction of pre-
vious findings.

As expected, models with higher sensitivity dis-
play greater warming, but compared to the findings
of Grose et al (2018) for CMIP5, we see more clearly
for CMIP6 that the transient sensitivity metrics (TCR
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and/or T140) remain similar or superior to ECS in
terms of degree of explanation of projected global
mean temperature anomaly throughout the 21st cen-
tury, across three future scenarios: SSP1-2.6, SSP2-4.5
and SSP5-8.5. However, in the SSP5-8.5 scenario
in particular, the predictive power of TCR becomes
smaller relative to that of T140 and ECS before the
end the century. This is consistent with evolving SST
patterns changing the balance of feedbacks, and TCR
(that is defined as thewarming at year 70 of a transient
simulation) not being able to capture delayed feed-
backs, the effects of which T140, and of course ECS,
can better incorporate.

The relative and absolute increase in ECS correla-
tion, over TCR, is indeed seen particularly in regions
where delayed feedbacks due to changing SST pat-
terns are expected to occur, such as the Southern
Ocean and the equatorial Pacific (see Dong et al
2020). Hence, contrary to Grose et al (2018), we argue
that in areas where warming is delayed compared to
the global mean (like the Southern Ocean and North
Atlantic), TCR does not well represent the evolution
of the regional mean temperature, and ECS instead
gains predictive power. It is also clear that these slowly
warming areas are those where the local temperature
anomaly at the end of the century is least related to
the global mean warming, and global mean measures
of sensitivity.

A possible explanation for the overall greater and
longer lasting correlations of GMSAT with TCR in
the current analysis, compared to that of Grose et al
(2018), may be the greater sensitivity and warming
trend in the CMIP6model ensemble compared to the
CMIP5, rendering a temperature evolution farther
from equilibrium that makes ECS less relevant for a
longer time.

Grose et al (2018) did not include any compar-
ison to different forcing agents, but confirmed that
historical warming is related to model forcing while
feedback strength plays a greater role in predicting
future temperature change (Crook and Forster 2011,
Forster et al 2013). This is reaffirmed by the results
of this study, both by the fact that the relationship
between warming and climate sensitivity is stronger
in future scenarios than in the past, and that there
is a positive correlation between warming and total
anthropogenic forcing during most of the 20th cen-
tury. The model spread in historical forcing (differ-
ence between 1850 and 2014) provides some degree
of explanation for the spread in historical evolution
of GMSAT in the models (20%–40%), i.e. models
with larger total forcing (related to less negative aero-
sol forcing) have warmed more throughout the 20th
century. The model spread in historical forcing how-
ever rapidly loses predictive power towards the end
of the 20th century, as the importance of sensitivity
increases. Correlations for individual anthropogenic
forcing components (from GHG and aerosol) are
low for the whole historical period and a separation

in time of their relevance as predictor of temperat-
ure anomaly cannot be made. Aerosol forcing does
indeed reach a maximum during the second half of
the 20th century (Shindell et al 2013), but the single
measure of forcing at 2014 does not capture this tem-
poral variation. Compared to the sensitivity metrics,
the model spread in forcing is small, and cannot
explain the spread in temperature anomalies, which
also remains small over the historical period com-
pared to the future projections. The lack of correl-
ation between historical forcing and future projec-
tion may be seen as a reassurance that models are
not tuned too heavily to the historical forcing, as that
would have affected their feedbacks, and simulated
warming (see Lutsko and Popp 2019).

Forcing and climate sensitivity are key factors
for determining the Earth’s temperature evolution,
and it is possible that intermodel variation in ECS
is compensated by intermodel variation in forcing,
resulting in models with very different ECS rep-
licating a similar historical warming (Kiehl 2007,
Knutti 2008). While Kiehl (2007) initially demon-
strated such an inverse relation between ECS and for-
cing in nine coupled models, prior to CMIP3, Forster
et al (2013) performed the same analysis on CMIP5
models and found that only a subset of models,
within the 90% uncertainty range of the observed 100
year linear temperature trend, fit the expected inverse
relationship suggested by Kiehl (2007). Accordingly,
as expected for models reasonably reproducing the
observed warming, our results indicate some adher-
ence among theCMIP6models to the theoretical rela-
tion described by Kiehl (2007), but with significant
spread and a weak correlation (R2 = 0.28 for 2003,
and even lower for other time periods).

The explanation for the partial compensation
between sensitivity and forcing has particularly been
sought in aerosol forcing, which indeed contributes
the greatest uncertainty to the total forcing, but with
inconclusive results. While Smith et al (2020) find
a weak non-significant positive correlation between
Faer and ECS among a set of CMIP6 models, which
they argue suggests thatmodels are not tuning present
day aerosol forcing to reproduce observed warm-
ing, Meehl et al (2020), using a different subset of
CMIP6 models, actually find a weak negative correl-
ation. Contrary to Chylek et al (2016) they are not
able to relate differences to model aerosol representa-
tion complexity. Wang et al (2021) take yet another
step, and show specifically that models with more
negative aerosol-cloud interaction havemore positive
cloud feedback, which is reasonable given that these
are in turn the greatest contributors to uncertainty in
Faer and ECS, respectively (e.g. Bellouin et al 2020,
Zelinka et al 2020). The difference between Faer and
ECS correlations found by Meehl et al (2020) and
Smith et al (2020) is suggested by Wang et al (2021)
to be due to the set of models by Smith et al (2020)
being less consistent with the observed temperature
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record, but this is not a fully adequate explanation:
the index used by Wang et al (2021) to quantify devi-
ation from observed temperature is in fact distributed
very similarly across the model subsets (median and
standard deviation is 0.24± 0.10 for all models listed
by Wang et al (2021), 0.24± 0.09 for those used by
Smith et al (2020) and 0.24± 0.11 for those in Meehl
et al (2020)).

With our larger set of CMIP6 models, we find the
covariation between Faer and ECS to be negligible.
This shows that temperature change is not being used
systematically as a direct or single constraint on the
balance between anthropogenic forcing and climate
sensitivity in the models, and alludes to the greater
complexity of model tuning: neither aerosol forcing,
ECS, cloud feedback nor aerosol-cloud interaction
are single tunable parameters, and global mean tem-
perature is not the only tuning target (Bender 2010,
Mauritsen et al 2012,Hourdin et al 2017, Schmidt et al
2017, Mauritsen and Roeckner 2020).

Our results are of use in the continued work on
emergent constraints on climate sensitivity, as a guid-
ance to what measure of sensitivity is actually the
most meaningful to constrain, depending on the time
period in focus. Based on the CMIP6model ensemble
studied, TCR has more predictive power than ECS
for the temperature evolution during the remainder
of the century, in mitigation scenarios. For the most
business-as-usual like scenario, ECS takes over with
higher correlation with model spread in temperature
projection around 2075. In both cases, the longer-
term transient measure T140 remains at a high cor-
relation with GMSAT. TCR also already varies less
among the models than ECS, although model agree-
ment is of course only a necessary and not a suf-
ficient condition for a correct estimate. The spread
amongmodels in a given scenario, determined largely
by the model sensitivities, is the range of future cli-
mate evolution available to the community and to
policy makers, and our results give an indication as
to how that range can be narrowed by constraints not
least on transient climate sensitivity metrics.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
esgf-node.llnl.gov/search/cmip6/.

Acknowledgments

F B and L H acknowledge financial support from
the Swedish Research Council for Sustainable Devel-
opment (Formas), Grant No. 2018-01797, and the
Swedish e-Science Research Centre (SeRC). Fund-
ing for F B, A E and T S is also partly provided by
the FORCeS project funded by the European Union’s
Horizon 2020 programme, Grant Agreement No.
821205.We acknowledge theWorld Climate Research

Programme, which, through its Working Group
on Coupled Modelling, coordinated and promoted
CMIP6. We thank the climate modeling groups for
producing and making available their model output,
the Earth System Grid Federation (ESGF) for archiv-
ing the data and providing access, and the multiple
funding agencies who support CMIP6 and ESGF. The
data handling was enabled by resources provided by
the Swedish National Infrastructure for Computing
(SNIC) at the National Supercomputer Centre (NSC)
partially funded by the Swedish Research Council
through Grant Agreement No. 2016-07213.

ORCID iDs

Linnea L Huusko https://orcid.org/0000-0003-
3298-6153
Frida A-M Bender https://orcid.org/0000-0003-
4867-4007
Annica M L Ekman https://orcid.org/0000-0002-
5940-2114
Trude Storelvmo https://orcid.org/0000-0002-
0068-2430

References

Allen M R and Frame D J 2007 Call off the quest Science 318 582–3
Andrews T et al 2018 Accounting for changing temperature

patterns increases historical estimates of climate sensitivity
Geophys. Res. Lett. 45 8490–9

Armour K C, Bitz C M and Roe G H 2013 Time-varying climate
sensitivity from regional feedbacks J. Clim. 26 4518–34

Bellouin N et al 2020 Bounding global aerosol radiative forcing of
climate change Rev. Geophys. 58 e2019RG000660

Bender F A-M 2010 A note on the effect of GCM tuning on
climate sensitivity Environ. Res. Lett 3 014001

Bloch-Johnson J, Pierrehumbert R T and Abbot D S 2015
Feedback temperature dependence determines the risk of
high warming Geophys. Res. Lett. 42 4973–80

Collins M et al 2013 Long-term climate change: projections,
commitments and irreversibility Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on
Climate Change ed T F Stocker et al (Cambridge: Cambridge
University Press)

Crook J A and Forster P M 2011 A balance between radiative
forcing and climate feedback in the modeled 20th century
temperature response J. Geophys. Res. 116 D17

Crook J A and Forster P M 2016 Indirect aerosol effect increases
CMIP5 models’ projected arctic warming J. Climate
29 1417–28

Dong Y, Armour K C, Zelinka M D, Proistosecu C, Battisti D S,
Zhou C and Andrews T 2020 Intermodel spread in the
pattern effect and its contribution to climate sensitivity in
CMIP5 and CMIP6 models J. Clim. 33 7755–75

Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J
and Taylor K E 2016 Overview of the coupled model
intercomparison project phase 6 (CMIP6) experimental
design and organization Geosci. Model Dev. 9 1937–58

Flato G et al 2013 Evaluation of climate models climate change
2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change ed T F Stocker
et al (Cambridge: Cambridge University Press)

Flynn C and Mauritsen T 2020 On the climate sensitivity and
historical warming evolution in recent coupled model
ensembles Atmos. Chem. Phys. 20 7829–42

10

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://orcid.org/0000-0003-3298-6153
https://orcid.org/0000-0003-3298-6153
https://orcid.org/0000-0003-3298-6153
https://orcid.org/0000-0003-4867-4007
https://orcid.org/0000-0003-4867-4007
https://orcid.org/0000-0003-4867-4007
https://orcid.org/0000-0002-5940-2114
https://orcid.org/0000-0002-5940-2114
https://orcid.org/0000-0002-5940-2114
https://orcid.org/0000-0002-0068-2430
https://orcid.org/0000-0002-0068-2430
https://orcid.org/0000-0002-0068-2430
https://doi.org/10.1126/science.1149988
https://doi.org/10.1126/science.1149988
https://doi.org/10.1029/2018GL078887
https://doi.org/10.1029/2018GL078887
https://doi.org/10.1175/JCLI-D-12-00544.1
https://doi.org/10.1175/JCLI-D-12-00544.1
https://doi.org/10.1029/2019RG000660
https://doi.org/10.1029/2019RG000660
https://doi.org/10.1088/1748-9326/3/1/014001
https://doi.org/10.1088/1748-9326/3/1/014001
https://doi.org/10.1002/2015GL064240
https://doi.org/10.1002/2015GL064240
https://doi.org/10.1029/2011JD015924
https://doi.org/10.1029/2011JD015924
https://doi.org/10.1175/JCLI-D-15-0362.1
https://doi.org/10.1175/JCLI-D-15-0362.1
https://doi.org/10.1175/JCLI-D-19-1011.1
https://doi.org/10.1175/JCLI-D-19-1011.1
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/acp-20-7829-2020
https://doi.org/10.5194/acp-20-7829-2020


Environ. Res. Lett. 16 (2021) 064095 L L Huusko et al

Forster P M et al 2020 Latest climate models confirm need for
urgent mitigation Nat. Clim. Change 10 7–10

Forster P M, Andrews T, Good P, Gregory J M Jackson L S and
Zelinka M 2013 Evaluating adjusted forcing and model
spread for historical and future scenarios in the CMIP5
generation of climate models J. Geophys. Res. Atmos.
118 1139–50

Frame D J, Booth B B B, Kettleborough J A, Stainforth D A,
Gregory J M, Collins M and Allen M R 2005 Constraining
climate forecasts: the role of prior assumptions Geophys. Res.
Lett. 32 L09702

Gregory J M, Andrews T, Ceppi P, Mauritsen T and Webb M J
2020 How accurately can the climate sensitivity to CO2 be
estimated from historical climate change? Clim. Dyn.
54 129–57

Gregory J M, Andrews T and Good P 2015 The inconstancy of the
transient climate response parameter under increasing CO2

Phil. Trans. R. Soc. A 373 20140417
Gregory J M, IngramW J, Palmer M A, Jones G S, Stott P A,

Thorpe R B, Lowe J A, Johns T C and Williams K D 2004 A
new method for diagnosing radiative forcing and climate
sensitivity Geophys. Res. Lett. 31 3

Grose M R, Gregory J, Colman R and Andrews T 2018 What
climate sensitivity index is most useful for projections?
Geophys. Res. Lett. 45 1559–66

Hansen J, Russell G, Lacis A, Fung I, Rind D and Stone P 1985
Climate response times: dependence on climate sensitivity
and ocean mixing Sci. 229 857–9

Hourdin F et al 2017 The art and science of climate model tuning
Bull. Amer. Meteor. Soc. 98 1559–66

Jonko A K, Shell K M, Sanderson B M and Danabasoglu G 2013
Climate feedbacks in ccsm3 under changing CO2 forcing.
Part II: variation of climate feedbacks and sensitivity with
forcing J. Climate 26 2784–95

Kiehl J T 2007 Twentieth century climate model response and
climate sensitivity Geophys. Res. Lett. 34 L22710

Knutti R 2008 Why are climate models reproducing the observed
global surface warming so well? Geophys. Res. Lett.
35 L18704

Knutti R, Rugenstein M and Hegerl G 2017 Beyond equilibrium
climate sensitivity Nat. Geosci. 10 727–36

Lutsko N J and Popp M 2019 Probing the sources of uncertainty
in transient warming on different timescales Geophys. Res.
Lett. 46 11,367–11,377

Marvel K et al 2016 Implications for climate sensitivity from the
response to individual forcings Nat. Clim. Change
6 386–9

Mautistsen T et al 2012 Tuning the climate of a global model
J. Adv. Model. Earth Syst. 4 3

Mautistsen T and Roeckner E 2020 Tuning the MPI-ESM1.2
global climate model to improve the match with
instrumental record warming by lowering its climate
sensitivity J. Adv. Model. Earth Syst. 12 e2019MS002037

Meehl G A, Senior C A, Eyring V, Flato G, Lamarque J-F,
Stouffer R J, Taylor K E and Schlund M 2020 Context for
interpreting equilibrium climate sensitivity and
transient climate response from the CMIP6 Sci. Adv.
6 eaba1981

Nijsse F J MM, Cox P M and Williamson M S 2020 Emergent
constraints on transient climate response (TCR) and
equilibrium climate sensitivity (ECS) from historical
warming in CMIP5 and CMIP6 models Earth Syst. Dynam.
11 737–50

O’Neill B C et al 2014 The roads ahead: narratives for shared
socioeconomic pathways describing world futures in the
21st century Global Environ. Change 42 169–80

Pfister P L and Stocker T F 2017 State-dependence of the climate
sensitivity in earth system models of intermediate
complexity Geophys. Res. Lett 44 20

Pincus R, Forster P M and Stevens B 2015 The Radiative
Forcing Model Intercomparison Project (RFMIP):
experimental protocol for CMIP6 Geosci. Model. Dev.
9 3447–60

Richardson T B et al 2019 Efficacy of climate forcings in PDRMIP
models J. Geophys. Res. 124 12824–44

Rugenstein M et al 2020 Equilibrium climate sensitivity estimated
by equilibrating climate models Geophys. Res. Lett
47 e2019GL083898

Sanderson B 2020 Relating climate sensitivity indices to
projection uncertainty Earth Syst. Dyn. 11 721–35

Schmidt G A, Bader D, Donner L J, Elsaesser G S, Golaz J-C,
Hannay C, Molod A, Neale R B and Saha S 2017
Practice and philosophy of climate model tuning across six
US modeling centers Geosci. Model Dev. 10 3207–23

Sherwood S et al 2020 An assessment of Earth’s climate sensitivity
using multiple lines of evidence Rev. Geophys.
58 e2019RG000678

Shindell D T et al 2013 Radiative forcing in the ACCMIP
historical and future climate simulations Atmos. Chem. Phys.
13 2939–74

Silvers L G, Paynter D and Zhao M 2018 The diversity of cloud
responses to twentieth century sea surface temperatures
Geophys. Res. Lett. 45 391–400

Smith C J et al 2020 Effective radiative forcing and adjustments in
CMIP6 models Atmos. Chem. Phys. 20 9591–9618

Stevens B, Sherwood S C, Bony S and Webb M J 2016 Prospects
for narrowing bounds on Earth’s equilibrium climate
sensitivity Earth’s Future 4 512–22

Tokarska K B, Stolpe M B, Sippel S, Fischer E M, Smith C J,
Lehner F and Knutti R 2020 Past warming trend constrains
future warming in CMIP6 models Sci. Adv. 6 12

Tsutsui J 2017 Quantification of temperature response to CO2
forcing in atmosphere-ocean general circulation models
Climate Change 140 287–305

van Vuuren D P et al 2016 The representative concentration
pathways: an overview Climate Change 109 5

Wang C, Soden B, Yang W and Vecchi G 2021 Compensation
between cloud feedback and aerosol-cloud interaction in
CMIP6 models Geophys. Res. Lett. 48 4

Yoshimori M, Watanabe M, Shiogama H, Oka A, Abe-Ouchi A,
Ohgaito R and Kamae Y 2014 A review of progress towards
understanding the transient global mean surface
temperature response to radiative perturbation Prog. Earth
Planet. Sci. 3 21

Zelinka M D et al 2020 Causes of higher climate sensitivity in
CMIP6 models Geophys. Res. Lett. 47 e2019GL085782

11

https://doi.org/10.1038/s41558-019-0660-0
https://doi.org/10.1038/s41558-019-0660-0
https://doi.org/10.1002/jgrd.50174
https://doi.org/10.1002/jgrd.50174
https://doi.org/10.1029/2004GL022241
https://doi.org/10.1029/2004GL022241
https://doi.org/10.1007/s00382-019-04991-y
https://doi.org/10.1007/s00382-019-04991-y
https://doi.org/10.1098/rsta.2014.0417
https://doi.org/10.1098/rsta.2014.0417
https://doi.org/10.1029/2003GL018747
https://doi.org/10.1029/2003GL018747
https://doi.org/10.1002/2017GL075742
https://doi.org/10.1002/2017GL075742
https://doi.org/10.1126/science.229.4716.857
https://doi.org/10.1126/science.229.4716.857
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/JCLI-D-12-00479.1
https://doi.org/10.1175/JCLI-D-12-00479.1
https://doi.org/10.1029/2007GL031383
https://doi.org/10.1029/2007GL031383
https://doi.org/10.1029/2008GL034932
https://doi.org/10.1029/2008GL034932
https://doi.org/10.1038/ngeo3017
https://doi.org/10.1038/ngeo3017
https://doi.org/10.1029/2019GL084018
https://doi.org/10.1029/2019GL084018
https://doi.org/10.1038/nclimate2888
https://doi.org/10.1038/nclimate2888
https://doi.org/10.1029/2012MS000154
https://doi.org/10.1029/2012MS000154
https://doi.org/10.1029/2019MS002037
https://doi.org/10.1029/2019MS002037
https://doi.org/10.1126/sciadv.aba1981
https://doi.org/10.1126/sciadv.aba1981
https://doi.org/10.5194/esd-11-737-2020
https://doi.org/10.5194/esd-11-737-2020
https://doi.org/10.1016/j.gloenvcha.2015.01.004
https://doi.org/10.1016/j.gloenvcha.2015.01.004
https://doi.org/10.1002/2017GL075457
https://doi.org/10.1002/2017GL075457
https://doi.org/10.5194/gmd-9-3447-2016
https://doi.org/10.5194/gmd-9-3447-2016
https://doi.org/10.1029/2019JD030581
https://doi.org/10.1029/2019JD030581
https://doi.org/10.1029/2019GL083898
https://doi.org/10.1029/2019GL083898
https://doi.org/10.5194/esd-11-721-2020
https://doi.org/10.5194/esd-11-721-2020
https://doi.org/10.5194/gmd-10-3207-2017
https://doi.org/10.5194/gmd-10-3207-2017
https://doi.org/10.1029/2019RG000678
https://doi.org/10.1029/2019RG000678
https://doi.org/10.5194/acp-13-2939-2013
https://doi.org/10.5194/acp-13-2939-2013
https://doi.org/10.1002/2017GL075583
https://doi.org/10.1002/2017GL075583
https://doi.org/10.5194/acp-20-9591-2020
https://doi.org/10.5194/acp-20-9591-2020
https://doi.org/10.1002/2016EF000376
https://doi.org/10.1002/2016EF000376
https://doi.org/10.1126/sciadv.aaz9549
https://doi.org/10.1126/sciadv.aaz9549
https://doi.org/10.1007/s10584-016-1832-9
https://doi.org/10.1007/s10584-016-1832-9
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1029/2020GL091024
https://doi.org/10.1029/2020GL091024
https://doi.org/10.1186/s40645-016-0096-3
https://doi.org/10.1186/s40645-016-0096-3
https://doi.org/10.1029/2019GL085782
https://doi.org/10.1029/2019GL085782

	Climate sensitivity indices and their relation with projected temperature change in CMIP6 models
	1. Introduction
	2. Methods
	2.1. Climate sensitivity metrics
	2.2. Explaining variance in temperature evolution
	2.3. Future scenarios
	2.4. Relation between forcing and sensitivity

	3. Results
	3.1. Relating forcing and sensitivity metrics to past and projected temperature change
	3.2. Regional variations
	3.3. Are forcing and sensitivity correlated?

	4. Discussion and conclusion
	Acknowledgments
	References


