University of Oslo
Department of Informatics

A Layered Approach
to Automatic
Construction of
Large Scale Petri
Nets

Modelling Railway
Systems

Ingrid Chieh Yu

Cand. Scient. Thesis

25. august 2004

Preface

This thesis is submitted to the Department of Informatics at the Uni-
versity of Oslo as part of the Candidata scientiarum (Cand. scient.)

degree. The work is carried out at the research group Precise modelling
and analysis (PMA).

I would like to thank everyone who helped me finish this thesis. First
of all, I would like to thank my tutor on this thesis, Anders Moen, for
his professional advices. Without whom there would not be any thesis.

I would also like to thank Einar Broch Johnsen for his proofreading
and Thor Georg Selid and Trygve Kaasa from Oslo Sporveier for the
railroad layouts of Oslo subway and for sharing the knowledge about
railroad engineering. Further I would like to thank Fredrik de Vibe
for much technical input, discussions and not least for his patience.
Finally thanks to my family and friends for their moral supports and
encouragements.

Ingrid Chieh Yu
25 August 2004

11

Contents

1 Introduction

2 Petri Nets
2.1 Imformal Introduction
2.2 Coloured Petri Nets
221 ColourSets
222 Guards.o
223 Arc Expressions
2.2.4 Bindings, Tokens and Markings
2.2.5 Emnabling and Firing
2.2.6 Declarationso
2.277 Notations oL
228 AnExample
2.29 Dynamic Properties
2.3 Analysis Methods
2.3.1 Simulationo
2.3.2 State Space Analysis

3 Mapping Railroad Components to Petri Nets
3.1 Railway Systems
3.1.1 Basic Components

3.2 Safety Components

111

10
11
12
14
14
16
18
18
18

3.2.1 Trains and Road Components 23
3.2.2 Turnout Component 25
3.2.3 DoubleSlip, 27
3.2.4 Rigid Crossing 27
3.2.5 Synchronised Scissors 30
3.2.6 Single 31
327 Routes 32

4 Automatic Construction 37
4.1 The Specification Language 38
4.1.1 Atomic Components 38
4.1.2 Interfaces and Rules 38
4.1.3 An Example of an Atomic Specification 39
4.1.4 Composite Specifications 40
4.1.5 The Algebra of Decomposition 45

4.2 Petri Nets and Algebra 52
4.2.1 The Composition of Petri Nets 52
4.2.2 The Decomposition of Petri Nets 56

4.3 Saturationo 60
4.3.1 Atomic Saturation 60
4.3.2 Theorem of Construction 61

5 Implementation of a Tool 67
5.1 Structure 68
5.2 Functionality L. 68
5.2.1 Atomic Specification 69
5.2.2 Specification 70
5.2.3 Saturation 72
5.2.4 The Petri Net Output 72

v

5.2.5 The Specification Output 73

5.3 Cardamom Town Ride 75
A Large Application — Oslo Subway 79
Analysis 87
7.1 The Railway Domain 87
7.2 Analysis of the Cardamom Town Railway Net 88

7.2.1 Analysis of Initial State 1 88

7.2.2 Analysis of Initial State2 94
Conclusion 97
81 Future Work 100

vi

List of Figures

2.1 Firing of a transition

2.2 CPN model of a simple sales order processing system

3.1 A railroad end and track segment
3.2 A railroad turnout
3.3 Anrailroad doubleslip.
3.4 A railroad rigid crossing
3.5 Anrailroad scissor
3.6 Arailroad single Lo
3.7 Aroad component
3.8 A turnout component
3.9 A double slip component
3.10 A rigid crossing component L.
3.11 A scissor component
3.12 Synchronised scissors
3.13 A single-right o
3.14 A modified turnout

4.1 Atomic components and interface types
4.2 Rules for specifications
4.3 Composition of specifications

4.4 Splitting a specificationo

vii

4.5
4.6
4.7

5.1
5.2
9.3
5.4
9.5
5.6

6.1
6.2
6.3
6.4
6.5

7.1
7.2

A specification that is not isolated 48

Subtraction 52
Atomic saturation 61
The data flow between RWSEditor and Design/CPN . . 68
The coordinate of components 71
Cardamom circuit 75
Cardamom circuit in RWSEditor 76
Saturation of the Cardamom circuit 76
Petri Net model of the Cardamom circuit 7
Oslosubway 80
Oslo subway technical drawings 80
Composition rules for Oslo subway 81
A fragment of the Oslo subway specification 83
A fragment of the Oslo subway Petri Net model 85
Two analysis cases 88
The Cardamom Petri Net 93

Viil

Chapter 1

Introduction

Large concurrent systems, like distributed systems, are difficult to model
and analyse, both conceptually and computationally. Railway systems
are such large and complex concurrent systems. They are complex due
to concurrent activity in railway components (e.g. trains), interaction
between components (e.g. signals and track sections), many different
behavioural possibilities and a variety of operational rules. These rules
vary from system to system and in a given system, a combination of
several operational rules may also be employed. Railway systems are
also large in the sense that they often cover vast distances and contain
many components: track arrangement, signalling equipment, locomot-
ives etc. Railway systems are often under development. It is therefore
necessary to be able to model and explore a system before it is built,
in order to test different operational ideas and make presentations of
systems we want to describe to other people.

Petri Nets [26] is a formal modelling language defined by Carl Adam
Petri in his PhD thesis “Kommunikation mit Automaten” [23]. Tt is a
generalisation of automata theory in which the concept of concurrently
occurring events can be expressed. We believe Petri Nets provide a
good framework for modelling railway systems. First, Petri Nets are
very general and can be used to describe a large variety of different sys-
tems, on different abstraction levels, software and hardware, ranging
from systems with much concurrency to systems with no concurrency.
Second, Petri Nets have an explicit description of both states and ac-
tions, where actions represent changes from one state to another. Mul-
tiple actions may take place at the same time, giving a natural model
of parallelism. Third, formal modelling languages have numerous ad-
vantages over informal languages, such as their precise meaning and

the possibility to derive properties through formal proofs. Petri Nets
support analysis by simulation and by more formal analysis methods.
Coloured Petri Nets [17] are high level Petri Nets. They are based
on original Petri Nets and have all the qualities described above, but
they are extended with programming concepts. Coloured Petri Nets
can provide primitives for definition of data types and manipulation of
their values which is practical in industrial projects.

A challenge with Petri Nets is that when they grow, they tend to be-
come hard to understand and work with!. This is specially true when it
comes to industrial systems such as railway systems, as their complexit-
ies require large amounts of time in the modelling phase. In addition it
is cumbersome to modify an existing net because of its complex struc-
ture. Even though hierarchical structures for Petri Nets have been
investigated to some extent for some high level Petri Nets and [18] in-
troduced techniques for extracting high level information from Petri
Nets, until now there has been no effective techniques for constructing
large Petri Nets.

The work on this thesis consists of three main parts:
1. Using Coloured Petri Nets to model railway systems with a com-

ponent based approach, mostly focusing on the trackwork of the
system and therefore disregarding signalling and control systems.

2. Defining a technique for automatic construction of large Petri
Nets, in the domain of railway systems.

3. Implementing a tool using this technique.

The problems addressed in this thesis can be summarised by the fol-
lowing questions:

How can we use Coloured Petri Nets to model railway components
naturally with concrete operational rules and trains?

How can we automatically construct Petri Net models?
What kind of algebra is sufficient for this construction?
What are the benefits of this construction if any?

What are the benefits of analysis methods provided by
Petri Nets, when applied to railway systems?

IThis is a general fact concerning most modelling and programming languages.

Design/CPN|1] is a computer tool supporting Coloured Petri Nets.
The tool allows modelling, simulation and analysis of Coloured Petri
Nets and is currently the most elaborate Petri Net tool. The current
version of Design/CPN is distributed, supported and developed by the
CPN group at the University of Aarhus, Denmark. Since developing
a Petri Net simulator is not a part of this thesis, Design/CPN will be
used for modelling, analysis and testing ideas.

Some of the subjects in this thesis are addressed in [34] and [21].

Overview

This thesis starts with presenting Petri Nets as the background mater-
ial in Chapter 2, where we go through the most important Petri Net
definitions. In Chapter 3 we will describe the basic railway compon-
ents and show how these components can be modelled using Petri Nets.
These components will be used when we construct railway topologies
in later chapters. A problem regarding construction of large scale Petri
Nets is addressed in Chapter 4, where we formally define techniques for
automatic construction of Petri Nets, more specifically, directed to the
construction of railway nets. In Chapter 5, we will demonstrate a tool
based on these techniques along with some examples of its use. The
demonstration of the tool carries on in Chapter 6, where it is used to
construct a real life subway system. This application helps demonstrate
the usefulness of the concepts described in Chapter 4 and such a tool.
In Chapter 7, we will use the example given in Chapter 5 as the subject
for further analysis, and finally, Chapter 8 presents the conclusion of
this thesis and suggested further work.

Chapter 2

Petri Nets

Petri Nets was proposed by Carl Adam Petri in his PhD of 1962 as
a mathematical notion for modelling distributed systems and, in par-
ticular, notions of concurrency, non-determinism, communication and
synchronisation [23|. Since then Petri Nets has been developed tre-
mendously in both theory [7] and application [25]. One of the main
attractions of Petri Nets is the way in which the basic aspects of con-
current systems are identified, both conceptually and mathematically.
As a graphically oriented language Petri Nets eases conceptual model-
ling and makes it the model of choice for many applications.

2.1 Informal Introduction

Petri Nets have few basic primitives [26]. A Petri Net is a directed graph
with nodes that are called places or transitions. Places are drawn as
circles describing the states of the system being modelled. Places may
contain tokens, and at any time the distribution of tokens among places
defines the current state of the modelled system. This distribution of
tokens in a Petri Net is called a marking. Transitions describe actions
and are drawn as rectangles. They model activities that can occur
(transitions can fire) thus changing the state of the system. Nodes of
different kinds are connected by arcs. There are two kinds of arcs, input
arcs and output arcs, an input arc connects a place to a transition and
an output arc connects a transition to a place.

Change of states occurs by transition firings. Transitions are only al-
lowed to fire if they are enabled, which they are when each of a trans-
ition’s input places contain at least one token. This means that all the

preconditions for an activity must be fulfilled before the state changes.
When a transition is enabled, it may fire, removing a token from each
of its input places and depositing a token in each of its output places,
corresponding to the postcondition of the activity. The number of input
and output tokens may differ, and the interactive firing of transitions
in subsequent markings is called a token game.

Figure 2.1 shows a Petri Net in the simplest form, illustrating the firing
of a transition t. The transition is enabled since all its input places
contain a token (before firing). Firing ¢ results in removing token from
each input place of t and adding one token to each of its output places
(after firing).

[t> t

o o

before

Figure 2.1: Firing of a transition

A Petri Net model consists of a net and the rules of a token game played
on the net. The net describes the static structure of a concurrent system
and the rules describe its dynamic behaviour. Many different classes
of Petri Nets have been developed and they differ in the construction
of the underlying net and the rules of the dynamic token game [24].
Therefore, Petri Nets is actually a generic name for the whole class of
net-based models which can be divided into three main layers:

Level 1:
Petri Nets characterised by places that can represent boolean val-
ues, i.e., a place is marked by at most one unstructured token.

Level 2:
Petri Nets characterised by places that can represent integer val-
ues, i.e., a place is marked by a number of unstructured tokens.

Level 3:
Petri Nets characterised by places that can represent high-level
values, i.e., a place is marked by a multi-set of structured tokens.

Petri Nets at the first two levels are not well suited for modelling large
real-life applications. This is due to the fact that Petri Nets in the first
two levels have no data concepts since tokens are unstructured. Hence
the models often become excessively large as all data manipulations
have to be represented directly in the net structure in the form of places
and transitions. In addition, there are no hierarchy concepts, thus it
is not possible to build a large model via a set of separate sub-models
with well-defined interfaces.

In this thesis, work is primarily based on high-level Petri Nets, in par-
ticular, Coloured Petri Nets [12] (also called CPN or CP-nets). Col-
oured Petri Nets combine the strengths of ordinary Petri Nets with the
strengths of a high-level programming language. Petri Nets provide
the primitives for process interaction, while the programming language
provides the primitives for the definition of data types and the manip-
ulations of data values, making Coloured Petri Nets suited to model
real-life applications. The most important definitions of Coloured Petri
Nets will be given.

2.2 Coloured Petri Nets

Coloured Petri Nets [16, 15] got their name because they allow the
use of tokens that carry data values and can hence be distinguished
from each other, in contrast to tokens of low level Petri Nets, which by
convention are drawn as black dots.

In this section, we will present the necessary definitions of Coloured
Petri Nets from [13], introducing their structure before considering their
behaviour.

Formally, a Coloured Petri Net is defined as follows:

Definition 1 Coloured Petri Net
A Coloured Petri Net is a tuple CPN = (X, P,T,A,N,C,G,E,I)
where:

1. X is a finite set of non-empty types, called colour sets.
2. P is a finite set of places.
3. T 1s a finite set of transitions.

4. Ais a finite set of arcs.

v

. N is a node function connecting places and transitions.

D

. Cis a colour function. C': P —— X,
7. G is a guard function. G : T —— Expr.
8. E is an arc expression function. E : A+—— Expr.

9. I is an initialisation function. P —— closedExpr.

An example Coloured Petri Net is provided in Section 2.2.8. We shall
now look closer at the different components.

2.2.1 Colour Sets

A Coloured Petri Net has colour sets (= types). The set of types
determines the data values and the operations and functions that can
be used in the net expressions. A type can be arbitrarily complex,
defined by means of many sorted algebra as in the theory of abstract
data types. Examples of types are Integers, Boolean values, Strings,
and more complex types such as Tuples, Products, Lists, etc.

Each place in a Coloured Petri Net has an associated colour set that
determines what kind of data the place can contain. For a given place,
all tokens must have data values that belong to the type associated
with the place. The colour function C' maps each place p to a type
C(p), formally defined from P into . This means that each token on
p must have a data value that belongs to C'(p).

8

2.2.2 Guards

Transitions in a Coloured Petri Net may also have guards. Guards
are boolean expressions that provide additional constraints that must
be fulfilled before transitions can be enabled. We denote the type of a
variable v by Type(v), the type of an expression expr by Type(expr), and
the set of variables in an expression by Var(ezpr). Types of variables
in a guard expression must belong to the set of colour sets. Formally,
a guard must satisfy the following condition:

YVt € T : [Type(G(t)) = Boolean N\ Type(Var(G(t))) C X

In Coloured Petri Nets, guard expressions that always evaluate to true
are omitted.

2.2.3 Arc Expressions

Before we describe arc expressions in Coloured Petri Nets, we must first
define multi-sets. This is because tokens in a Coloured Petri Net may
have identical token values and arc expressions evaluate to multi-sets
of tokens. A multi-set may contain more than one occurrence of the
same element.

Definition 2 Multi-sets
A multi-set m, over a non-empty set S, is a function m € [S — N]
which we represent as a sum:

Zm(s)'s

seS

The non-negative integers m(s) € S are the coefficients of the multi-set,
the number of occurrence of the element s in the multi-set m and s € m

iff m(s) # 0.

Given a set S and s € S, we use m(s)’s to denote that element s occurs
m(s) times in the set S. If C'(p) is the type of a place p then C(p)us
denotes the multi-set over the type C(p).

Arcs may have arc expressions that describe how the state of the CP-
net changes when transitions fire. The arc expression function £ maps
each arc a into an expression of type C(p)ss, which is a multi-set over

9

the type of its place p. The variables in each arc expression must also
form a subset of the colour sets. Formally, this means:

Va € A : [Type(E(a)) = C(p)ms A Type(Var(E(a))) C X

Having defined the structure of Coloured Petri Nets, their behaviour
may now be considered, but it is first necessary to define the binding
of variables, tokens and states in a Coloured Petri Net.

2.2.4 Bindings, Tokens and Markings

For a transition to occur, its variables must be bound to values of
their types. The variables of a transition ¢ are variables that occur
in its guard expression and in its input and output arcs expressions.
Formally, this is denoted by the set:

Var(t) = {vlv € Var(G(t)) Vv3da € A(t) : v € Var(E(a))}

where A(t) gives all input and output arcs of t.

The binding of a transition ¢ is then a function b defined on Var(t).

Definition 3 Binding of a transition
A binding of a transition t is a function b defined on Var(t), such that
the following equation evaluates to true:
Yo € Var(t) : b(v) € Type(v) A G(t)(b)
The set of all bindings for t is denoted by B(t).

G(t)(b) denotes the evaluation of the guard expression G(t) in the bind-
ing b.

Definition 4 A token element is a pair (p,c) where p € P and ¢ €
C(p). A binding element is a pair (t,b), such thatt € T and b € B(t)

TE denotes the set of all token elements.
BE denotes the set of all binding elements.

Now we may define markings of a Coloured Petri Net. A marking
consists of a number of tokens positioned in the individual places and
describes a state of a Coloured Petri Net.

10

Definition 5 A marking M is a multi-set over TE. The initial marking
My s the marking which is obtained by evaluating the initialisation
function I:

V(p,c) € TE : Mo({p,c)) = (I(p))(c)

A Marking is often represented as a function defined on P, and returns
a multi-set of tokens. If M is a marking and p a place, we denote by
M (p) the number of tokens in p in the marking M. The initialisation
function I maps each place p into a closed expression that must be
of type C(p)ams. The initial marking describes the initial state of a
Coloured Petri Net.

2.2.5 Enabling and Firing

The dynamic behaviour of Coloured Petri Nets is provided by firing
of transitions, and a transition can only fire when it is enabled. This
behaviour is also non-deterministic, for example, if multiple transitions
are enabled at the same time, multiple transitions may fire in one step,
but the number is non-deterministic.

A transition ¢ is enabled if a step is enabled with t. A step is a multi-
set over the set of binding elements BE. Let E(p,t) denote the arc
expression of an arc from place p to transition ¢ and let E(¢, p) denote
the arc expression of an arc from transition ¢ to place p. Enabling and
firing of steps are always related to the current marking of the net.

Definition 6 A step Y is enabled in a marking M if and only if:

Vp e P: (Supey Ep,t)(b) < M(p))

The expression F(p,t)(b) gives the number of tokens required from each
place p to enable t and ¢ is enabled if and only if each p contains at least
as many tokens (M (p)). When |Y| > 1, elements of Y are concurrently
enabled.

When a transition is enabled with a given binding it is ready to fire.
Firing a transition removes at least one token with proper value from
each of its input places and deposits at least one token in each of its
output places. For a concrete transition ¢, firing ¢ with binding b means
that for each place p, E(p,t)(b) number of tokens are removed from p
and E(t,p)(b) tokens are given to p.

11

Definition 7 Let Y be a step that is enabled in a marking My. Then
Y might fire from My to Ms:

Vp € P, Ma(p) = (Mi(p) = Bppyey E@, 1) (b)) + Ly E(t,) (D)

“My is reachable from My in one step” is noted as M, X, M,

By taking the sum over the multi-sets of binding elements (¢,b) € Y, we
get all the tokens that are removed from p when Y occurs. This multi-
set is required to be less than or equal to the marking of p, meaning
that each binding element (¢,b) € Y must be able to get the tokens
specified by E(p,t)(b) without sharing these tokens with other binding
elements of Y. As for non-determinism, when a number of binding
elements are enabled at the same time, there can be a possible step
that only contains some of them or if two binding elements (¢,) and
(t2,b) share tokens specified by E(p,t;)(b) and E(p,t3)(b) then it is
non-deterministic which one of them will fire, either (¢;,b) € Y or

(t2,b) € Y.

A step is an indivisible event, even in the definition of firing of a step
the subtraction is performed before the addition. The continuing firing
of steps from one marking to the next may be finite or infinite. The
finite firing sequence of markings and steps is:

M, 25 My, Vie{1,2,...,n},
while the infinite firing sequence continues forever:
M, 25 M, Yie N
If a marking M, is reachable from a marking M; then there exists a
finite firing sequence from M; to M; and is written
M; — M,

where * means zero or more steps. We denote the set of markings
reachable from a marking M by M and a marking is reachable if
and only if it belongs to the set of markings reachable from the initial
marking, M.

2.2.6 Declarations

Design/CPN uses the language CPN ML [19] which is an extension of
Standard ML. Colour sets are declared with color.

12

Integers

Integers are numerals without a decimal point and can be restricted by
the with clause.

color colourset name = int « with int-expgar; - - - int-€Xpeng »;

int-expgare and int-expenq restrict the integer colourset to an interval
and the expression int-expgart must be equal or less than int-expenq.

Enumerated values

Enumerated values are explicitly named as identifiers in the declaration
and must be alphanumeric.

color colourset name = with idy | id; | ... | idy;

Tuples

Tuples are compound colour-sets. The set of values in a tuple is
identical to the cartesian product of the values in previously declared
colour-sets. Fach of these colour-sets may be of a different kind and
there must be at least two colour-sets to form a tuple.
color colourset name = product colourset name; *
colourset namey * ... * colourset name,;

Lists

Another compound colour-set is a list. Lists are variable-length colour-
sets unlike tuples, which are fixed-length and positional colour-sets. In
lists, the values are a sequence whose colour-set must be the same type.

color colourset name = list colourset name, « with int-expy, ...
int-expy »;

The minimum and maximum length of the list can optionally be spe-
cified by the with clause.

List operators and functions are the same as in Standard ML. The
prepend operator, ::, creates a list from an element and a list by placing

13

the element at the head of the list. The concatenation operator is
denoted by *°, unlike @ in Standard ML. This is because @ is used in
Coloured Petri Nets to denote time. The concatenation operator takes
two lists and appends one list to the other.

Union

Colour-set union is a union of previously declared colour-sets.

color colourset name = union id; «:colourset name;» + ids
«:colourset names» + ... + id, «:colourset name,»;

Each id; is a unique selector for colour-set;. If colourset name; is omit-
ted, then id; is treated as a new value and may be referred to as id;.

2.2.7 Notations

Most notation used in Coloured Petri Nets is also used in Design/CPN.

Each place and transition has a name written inside respectively the
circles and squares.

Types are written in [talic letters over each place, and each token is
represented as a coloured circle inside a place. If this notation for tokens
is used, then an explanation of their types is given in a colour map. In
the syntax of Design/CPN, tokens are written as strings on the form
n‘s, representing a multi-set where n is the number of tokens of type s.
The addition of different types is represented by +-+.

A guard expression is written in brackets and located next to its trans-
ition. Each arc expression is located next to its arc. The coefficients of
the multi-set of an arc expression is omitted if it is 1.

2.2.8 An Example

The model in Figure 2.2 on the next page is a modification of an ex-
ample from [20]. It shows a train station ticket office where train pas-
sengers buy tickets before they enter the platform. If the passenger is a
child, he needs a child’s ticket, if the passenger is an adult, he needs an
adult’s ticket, in order to enter the platform. A clerk sells the tickets
and he obtains the correct tickets from a ticket machine.

14

There are four places, one transition and six arcs, each place has a
colour set. These four colour sets are; Buyer, Passenger, Staff and
Ticket.

color Buyer = with Child | Adult;

color Passenger = Buyer;

color Staff = with Clerk;

color Ticket = with ChildTicket | AdultTicket;
var buyer: Buyer;

var staff: Staff;

var ticket: Ticket;

[if buyer = Child then ticket = ChildTicket else ticket = AdultTicket]

Buyer Passenger
- 1'buyer Purchase 1'buyer .
1‘Child ++
2'Adult

1'ticket

1'ticket
Ticket

Ticket Machine

1‘ChildTicket ++ 1‘Clerk
1‘AdultTicket

Figure 2.2: CPN model of a simple sales order processing system

As indicated by the string representation of the multi-sets, the place
Entrance contains three tokens; one of value Child and two of value
Adult, the place Worker contains one token of value Clerk, the place
Ticket Machine contains two tokens; one of value ChildTicket and one
of value AdultTicket and the place Platform has no tokens. The mark-
ings in all these places constitute the current state of the net.

In this example, in order for the transition Purchase to fire, there must
be:

15

o At least one Buyer waiting in the Entrance to the ticket office.
e At least one Staff member who is working.

e At least one Ticket of the appropriate type in the. Ticket Ma-
chine

One of the possible bindings in this example is
b = (buyer = Child, staff = Clerk, ticket = ChildTicket).

With this binding, the guard expression above the transition will be
evaluated to true and transition Purchase is enabled. Output arc
expressions specify that firing Purchase will put a Staff token into
Worker, a Ticket token into Ticket Machine and a Passenger token
into Platform. This binding represents a situation where a child buyer
has bought a child’s ticket and enters the train platform. The clerk is
ready to serve another buyer and the ticket machine generates a new
child’s ticket.

2.2.9 Dynamic Properties
Dynamic properties characterise the behaviour of Coloured Petri Nets.

Some of the most interesting questions we would like to have answered
are:

e [s a given marking reachable from the initial marking?
e [sit possible to reach a marking in which no transition is enabled?

e [s there a reachable marking that puts a token in a given place?

Most problems can be categorised as boundedness or reachability prob-
lems.

Boundedness properties

Boundedness properties tell how many tokens a particular place may
contain.

Definition 8 Given a place p € P, a non-negative integer n € N and
a multi-set m € C(p)ums. Then

16

n s an integer bound for p iff
VM e ME: |M(p)| <n
m is a multi-set bound for p iff

VM € M : M(p) <m

Upper integer bounds give the maximum number of tokens each in-
dividual place may have and lower integer bounds give the minimum
number of tokens. An upper multi-set bound of a place is the smal-
lest multi-set which is larger than all reachable markings of a place.
Analogously, the lower multi-set bound is the largest multi-set which is
smaller than all reachable markings of the place. The integer bounds
give information about the number of tokens while the multi-set bounds
give information about the values the tokens may carry.

Liveness Properties

Liveness properties are about reachability, whether a set of binding
elements X remains active such that it is possible for each reachable
marking M to find an occurrence sequence starting in M and containing
an element from X. Some of the most interesting liveness property are
deadlock and progression.

If M is a marking in which no transitions are enabled, then M is called a
dead marking. Dead transitions are transitions that never are enabled.
In contrast, a live transition is a transition that always can become
enabled once more. This means that, if a system has a live transition,
there cannot be any dead markings in that system.

Definition 9 Let M be a marking and Z C BE be a set of binding
elements, then:

o M is dead iff no binding is enabled in M.
o 7 is dead iff no binding elements of Z can become enabled.

o 7 is live iff there is no reachable marking in which Z is dead.

17

2.3 Analysis Methods

A Coloured Petri Net can be analysed by means of simulations and by
formal methods such as state space analysis'|[14].

Formal methods can be used to verify that a formal system has a stated
property, analyse the system or detect errors. For a railway system we
may use formal methods to verify for example essential safety questions
or questions regarding performance of trains.

2.3.1 Simulation

A Coloured Petri Net may be simulated manually or using a computer
tool. Simulation can never give proof of correctness of a system but
only reveal errors. A simulation run gives us one possible behaviour
of the modelled system with details of each step. During a simulation,
it is possible to watch all occurring transitions, input tokens, output
tokens and markings.

In Design/CPN; the occurrence of enabling transition may be adjusted.
It is possible to force some or all enabled transitions in a marking to
fire in one step.

2.3.2 State Space Analysis

State space analysis (also called occurrence graphs or reachability graphs)
is often complemented by simulations. The basic idea underlying state
spaces is to compute all reachable states, all possible occurrence se-
quences and state changes of the system, and represent these as a
directed graph, called occurrence graph. Each reachable marking is
represented as a node, and nodes are connected by arcs. An arc repres-
ents an occurring binding element that changes its predecessor marking
to its successor marking.

Calculating the occurrence graph of a Petri Net may give a lot of useful
information about the behaviour of the net. The analysis method is
based on answering queries about the dynamic behaviours of the net
by performing searches through the occurrence graph.

!There are many other formal analysis methods like reductions, calculation and
interpretation of system invariants and checking of structural properties.

18

Chapter 3

Mapping Railroad Components
to Petri Nets

In the process of modelling railway systems using Coloured Petri Nets,
it is natural to consider how railway components and operations may
be represented as realistic as possible. It is desirable to model railway
components in such a way that they can be reused multiple times in
a railway network to form different topologies. This requires basic
railway components to be modelled with respect to the following three
properties:

1. Modularity, independence of others.
2. Topology independence.

3. Dynamic behaviour represented by tokens.

Modelling railway components as Petri Net modules allow us to con-
struct large Nets by compositions of the different Petri Net railway
components. This way of constructing railway nets reflects how rail-
roads are constructed in real life. These modules must be modelled in
such a way that they can be used to form the topologies we need, hence
they must be topology independent. Properties that are considered to
be topology independent are e.g. safe train separation and the logic
of railroad components. These topology independent properties can
be included in the Petri Net components as structures, while topo-
logy dependent properties and the dynamic behaviour is represented
by tokens.

This chapter is dedicated to describing how different railroad compon-
ents can be modelled in Coloured Petri Nets, how some operational

19

rules are built into these components and which auxiliary functions we
need in relation to the operational semantic. These components are
the basis for construction of railway topologies and analysis in later
chapters. Before we consider modelling of railway components in Col-
oured Petri Nets, an overview of the basic railway components is given
in Section 3.1.

3.1 Railway Systems

A railway system consists mainly of three essential elements [22]. The
first is the infrastructure with trackwork, signalling equipment and sta-
tions. The second is rolling stock with cars and locomotives and the
third element is different operating rules and procedures for a safe and
efficient operation. In this thesis, the focus is on the trackwork, trains
and the primary operating rules for safe train separation.

3.1.1 Basic Components

In railway systems, there are many different ways to arrange rails that
create different topologies. Even though there are many different to-
pologies, with varying complexity, we may classify elements in these
topologies, and a railway network can then be seen as a way to as-
semble these elements. These elements are therefore components of
railway systems.

Some basic components that we consider are track segments, end seg-
ments, turnouts, double slips, rigid crossings, scissors and singles. These
components are described and further explained as follows.

End Segment and Track Segment

Figure 3.1: A railroad end and track segment

The track segment is the main building block for constructing railroads
and models physical extension of a line.

20

Turnout

Points

Figure 3.2: A railroad turnout

A turnout (Figure 3.2) is an assembly of rails and movable physical
points. The points are operated electrically by a point machine to
alter the direction in which trains are routed. The turnout permits the
trains to be routed over one of two tracks, depending on the position
of the points. In addition to be the name of a railroad component, we
use the word “turnout” to describe the junctions in trackwork where
lines diverge or converge, and, as we will see, there are a number of
components that uses the concept of turnouts.

Double Slip

A double slip (Figure 3.3) is a crossing with crossover on both sides. It
has two point machines such that at each entry of the double slip, trains
may be routed to one of two tracks. This component is appropriate to
use when the area is too narrow for a scissors crossing (Figure 3.5).

Figure 3.3: A railroad double slip

21

Rigid Crossing

A rigid crossing (Figure 3.4) effects two tracks to cross at grade. It is
a crossing without movable points.

Figure 3.4: A railroad rigid crossing

Scissors

A scissor (Figure 3.5) is a track structure that connects two parallel
track with an X-shaped crossover. It consists of 4 turnouts and 1 rigid

crossing.

Figure 3.5: A railroad scissor

Single

A single (Figure 3.6) provides a connection between two parallel tracks.
Two singles can be combined to construct a universal, which is a struc-
ture that allows trains moving in both directions to cross over to the

adjacent track.

22

Figure 3.6: A railroad single

Both scissors and singles are railroad constructions that are commonly
used in today’s railroad designs.

3.2 Safety Components

Safety components are components that provide a safe train operation
where all trains are separated at any time, making collisions impossible.
In [18], non-safe road and turnout components were introduced, allow-
ing trains to pass each other on a physical line. In this section, it will be
shown how these components can be modified into safety components.

For simplicity and readability, some arc inscriptions from places with
singleton types are omitted. Empty arc inscriptions denote tokens with
data structures equal the corresponding places.
3.2.1 Trains and Road Components
Trains are tokens with data structures:

color Train = product TrainLineNo * Direction;

where

color TrainLineNo = int;

color Direction = with CL | ACL;

TrainLineNo represents the train lines and Direction represents the
two directions each train line may have, either clockwise CL or anti-
clockwise ACL. The terms clockwise and anti-clockwise have nothing
to do with any curvature of train lines, they are simply names of the
two possible directions in which a train may move.

23

Let n and dir be variables respectively of type TrainLineNo and Direc-
tion, then the variable tr(n, dir) represents a train with its correspond-
ing attributes. To distinguish trains with identical routes, we may give
each train a unique identity.

An important concept in railway systems is the block system. A block
system defines how to divide lines into fixed block sections to provide
a safe train separation by ensuring that at most one train can be in
any section at any time. In an automatic block system the clearance of
block sections is done by track clear detection devices, which are device
that detects whether a track section is occupied.

Figure 3.7 represents a road component focusing on the basal elements
of the block system. It consists of two segment places representing
physical track sections and two mowve transitions, one for each direction,
for moving trains from one segment place to the other. The railroad
track section modelled by segment places in a Petri Net road component
is coherent, making it possible to drive a train over it. This is equivalent
to a token moving from one segment place to the next.

tr(n, CL)

MoveCL

Status
Status

NoTrain

NoTrain

MoveACL
tr(n, ACL) tr(n, ACL)

Train token: o

No Train token: ’

Enabled transition: [

Figure 3.7: A road component

Each segment place has the type Status:

color Status = union tr:Train + NoTrain;

24

Tokens of this type represent the absence or presence of trains in a
section. As shown by the arcs, which implement the theory behind
track clear detection, a mowve transition is enabled if a train is in section
P1 (P2) and no train is in section P2 (P1). The transition can then
fire, exchanging two tokens, simulating that the train moves on. For
controlling train movement from one section to the next, there must be
a token of either type residing in each segment place under all markings
of the net. In the component in Figure 3.7, a train is in section PI and
no train is in section P2, so the transition MoveCL is enabled.

3.2.2 Turnout Component

A semaphore is a concept adopted by computer science from railroad
terminology. In our basic Petri Net components we often use semaphore
places [18]. A semaphore place is a place that controls the routing
of tokens in a component, so they are typically used to control the
routing of trains. Figure 3.8 on the next page is a Coloured Petri Net
model of a turnout. It consists of three segment places, Join, Left and
Right, representing respectively the stem, left and right branches of
the turnout. It has the same basic structure as the road component,
allowing only one train in each segment place. For readability, the arc
inscriptions for tokens with type NoTrain are omitted. A train can
only go from the stem entrance to the left segment place if the turnout
has control over its left branch, and similarly for the right branch. If
a train enters a turnout from one of the branches, the points must be
positioned accordingly. This routing of trains is controlled by the point
machine, here modelled as semaphore places L and R with a constant

type:
color Switch = with switch;

To be able to route a train from Join to Left, a switch token must
reside in place L so that the transition Ldir+ is enabled. After the
transition fires, the train will be in place Left and the turnout will still
be in position L. The same applies for routing trains to the right. Each
turnout component has an initial position, either left or right, indicated
by the state of the mutex pair L and R as either L or R carries a switch
token initially. The turnout in Figure 3.8 on the following page has an
initial token in place L, representing initial control in the left branch.

The position of a turnout can only be altered by adding a token in place
Change which will enable either transition SetR or SetL depending on

25

Status

tr(n, dir)

Ldir+ tr(n, dir) The Point Machine

tr(n, dir) Ldir- . Switch ,
] switch
. SetR
‘/ : -

Status
. ' i ExtControl '
tr(n, dir) , switch !

' Change
tr(n, dir) \ switch

Switch ext

tr(n, dir) (\Rd' SetlL
Ir-
Rdirt | N N\ TS TTTTTTTTTTTTmTTTTTTT
\4 tr(n, dir)
Status Switch semaphore token: ®
tr(n, din) E%“ NoTrain token: O

Figure 3.8: A turnout component

where the switch token is. Firing of either of these enabled transition
will change the points’ position. In Figure 3.8, adding a token in place
Change will enable transition SetR and after the transition has fired, a
switch token is added to R, thus changing the controlling branch from
left to right. Place Change is designed for use with external control, so
that the position of the points can be controlled and locked from e.g.
the interlocking tower or the control room. Change has constant type
EzxtControl:

color ExtControl = with ext;

In subsequent components, all point machines will be constructed as
above with the same data structures. The turnout structure is used as
the basis of all switch based components. These components use this
structure to permit trains to run over one of two tracks, for simplicity
we refer to this structure as turnout.

26

3.2.3 Double Slip

Figure 3.9 is a Petri Net model of the double slip in Figure 3.3 on
page 21. There are two pairs of points in a double slip and the entrance
to a double slip is through one of the side-branches and not from the
stem. From each entrance to a double slip there are two exits, controlled
by the adjacent point pair.

3.2.4 Rigid Crossing

A rigid crossing (Figure 3.10 on page 29) has four segment places P1,
P2, P3 and P/, each representing an entrance to the intersection (see
Figure 3.4) and four transitions:

e Transition Move 1 for moving trains from place PI to P3.
e Transition Move 2 for moving trains from P2 to Pj4.

e Transition Move 8 for moving trains from P3 to P1.

e Transition Move / for moving trains from P4 to P2.

All places carry an initial token of value NoTrain.

Since the intersection is a critical region, a semaphore place is intro-
duced to prevent more then one train passing the intersection at the
same time, i.e. at most one transition is enabled concurrently. The
semaphore place has an initial token which is taken by a train when it
enters the crossing and released when it exits.

There are no points in a rigid crossing, and therefore, when a train
enters a rigid crossing, it has only one way out of it.

27

8¢

Status Status

tr(n, dir) tr(n, dir)

53
—
Oé tr(n, dir) Rdir2+ Ldirl+
= tr(n, dir)
l©) tr(n, dir)
oo The Point Machine Rdir2- r(n, dir) Ldirl- The Point Machine
© ! Switch v ¥ | Suith
- : SetL2 t SetR1
oy ' tr(n, dir) Join :

+ ExtControl) . .
g . Status O tr(n, din) ' ExtControl
o ' (change2 : .
o ' tr(n, dir) tr(n, dir) . Changel,
w . . Switch
p— '
= '
o . SetR2 . RL SetL1
s / , =)
(@} ' tr(n, dir) -
E """"""""""""" Ldir2- tr(n, dir) Rdirl- Tttt Tttmmmmmmmmmmmmm e
g Ldir2+ Rdirl+
=)
g tr(n, dir) tr(n, dir)
-+

Status Status
tr(n, dir) Rightl

tr(n, dir)

Status

6

tr(n, ACL) tr(n, CL)
NoTrain
NoTrain
Move4 Move3
tr(n, ACL)
tr(n, ACL) Status
Status rossSemaphoj NoTrain
NoTrain
P1 O NoTrain . O P
NoTrain tr(n, CL)
tr(n, CL)
Movel Move2
NoTrain
NoTrain,
tr(n, ACL) tr(n, CL)

Q Status

P4

Cross semaphore token:

No Train token:

Figure 3.10: A rigid crossing component

29

3.2.5 Synchronised Scissors

A scissor, also called a double, is a composition of four turnouts and a
crossing, as shown in Figure 3.11.

Figure 3.11: A scissor component

Figure 3.12 on the next page shows the scissors modelled as a Petri net
component. Each point machine is modelled in the same way as before
but the turnouts are integrated with each other in such a way that on
the same track line, the right branch of one turnout is the left branch
of its adjacent turnout and that for each turnout, its branches are the
stems of two of the other turnouts. The center of the component is an
integrated rigid crossing modelled as in Figure 3.10 on the preceding
page. The initial marking of a scissor has NoTrain tokens in each track
segment, tokens of type Switch in places L1, R2, L3 and R4, indicating
the initial position of the points. There is also a semaphore token in
the crossing.

Point pairs in a scissor are pair-wise synchronised, so that for two point
pairs, changing the position of one also changes the position of the
other, i.e. Changel is synchronised with Change3 and Change2 with
Change4. Places for synchronisation of point pairs are ChangeSyn-
chronisel and ChangeSynchronise2. As an example, with the initial
marking, a train coming from place Join1 will be guided to place Join2.
For the train to move to the adjacent track we need to alter the po-
sitions of the points in both turnouts 1 and 3 by adding a token in
place ChangeSynchronisel which will enable transition SetSynchron-
1sel. This changes the positions of both point pairs by adding a token
to each pair’s Change. If it is desired to synchronise all points, a place
can be added to control the existing synchroniser (the places Change-
Syncronise).

30

tr(n, dir)

tr(n, dir)

Joinl NoTrain Rdir1-2 NoTrain Join2
Q NoTrain NoTrain Q
tr(n, dir) Rdir2-1 tr(n, dir)
tr(n, dir)
11 R2 tr(n, dir)
Change1 \Change2
R1 L2
NoTrain .
NoTrain
tr(n, dir) tr(n, dir)
NoTrain NoTrain,
DirdTo2 Dir3Tol
ExtControl ExtC |
xtControl
ChangeSynchronisel SetSynchronisel . SetSynchronise2 ChangeSynchronise2
DirlTo3 Dir2To4
NoTrain
tr(n, dir)
NoTrain
tr(n, dir)
NoTraif
oTrain
L4 R3
Change4 Change3 tr(n, dir)
tr(n, dir) R4 L.
tr(n, dir) tr(n, dir)
Join4 .
» Rdir3-4 o
Q NoTrain | NoTrain
NoTrain ‘ NoTrain

tr(n, dir)

Figure 3.12: Synchronised scissors

3.2.6 Single

Rdir4-3

tr(n, dir)

A single (Figure 3.13 on the next page) is a type of crossover for trains
to change to the adjacent track. If it is a crossover to the right, we
call it a single-right to separate it from singles that cross to the left,
called single-lefts. Single-rights and -lefts are often combined to form

universals in railway nets.

31

tr(n, CL) tr(n, CL)
Status Status
Ldir1+

% NoTrain NoTrain Leftl
NoTrain

NoTrain

Ldirl-
tr(n, ACL)

tr(n, CL) . Switch
oTrain
= SetR1 '
ExtControl '
NoTrain)
tr(n, ACL) Switch Changel
RL Setl1
Rdirl-2
®
The Point Machine Rdir2-1
I
Switch
tr(n, CL)
! ExtControl Setl.2 R2
' NoTrain
+ (change2 Switch
‘ tr(n, ACL) NoTrain
SetR2 &2
7777777777777777777 ’ tr(n, CL
o, L) Ldir2+ 0.0
Status
Status
NoTrain NoTrain
Left2 Join2
loTrain NoTraif
Ldir2-
tr(n, ACL) tr(n, ACL)

Figure 3.13: A single-right

For points in a single to be synchronised, the approach used in syn-
chronised scissors may be employed.

3.2.7 Routes

A route in the domain of railway systems is a description of a way
for trains to move across railway network from a start position to a
destination. The routes contain information about where the train
should drive when encountering turnouts and trains that follow the
same train line (normally) have the same route. Taking the routes of
trains into account, the data structure of tokens representing the trains
can be extended with the type ListRoute as follows:

color Train = product TrainLineNo * Direction * ListRoute;

32

where

color Branch = with Left | Right | Join;
color Route = product SwitchNo * Branch;

color ListRoute = list Route;

The route of a train is given by ListRoute, which is a list of pairs
of turnout identities and the positions for the points to be in (the
way trains are guided through the component). We use the variable
tr(n, dir,r) to represent a train with route r.

The turnout in Section 3.2.2 does not consider the routes of trains.
When a train enters a turnout, the train will be routed to the branch
that is currently in control, even if the train has a route that is not
synchronised with the points’ position. This means that, for example,
if a turnout has control in the left branch but the trains’ routes lead
to the right, trains will be routed to the left, disregarding their routes.
One possible scenario where this can happen, is when a point machine
delays to change the points’ position. For example, when there are two
(or more) trains arriving densely at a turnout and they have different
routes in this turnout, then the points may fail to change position in
time between these trains, so that two trains with different routes are
routed to the same branch.

Now that ListRoute constitutes a part of the token structure for trains,
correctly routing a train through a turnout therefore depends on the
physical points being in the proper position according to the route a
train is currently following. Figure 3.14 shows the turnout component
in Section 3.2.2, modified for this purpose. We need to identify turnouts
uniquely in order to construct a route for each train, so each turnout
has a unique identity represented by an Integer token, residing in place
Switch_ID. Let sID be the token holding the identity:

color SwitchNo = int;

var sID : SwitchNo;

33

Status

tr(n,dir,r)

[member((sID,Left),r)]

Ldir+ tr(n.dir,r) The Point Machine

tr(n,dir,r) Ldir-

[member((sID,Join),r)] ' Switch

SetR

Status

SwitchNo ExtControl :
tr(n,dir,r) '
tr(n,dir,r) Change

' Switch
N\ ¥
tr(n,dir,r) : Setl
[member((sID,Join),")]
[member((sID,Right).")] | Rdir+ e ,
tr(n,dir,r)
Status Switch semaphore token: (]
tr(n dir,) %t No Train token: @)
Integer token: O

Figure 3.14: A modified turnout

The function member searches for routing information from the Lis-
tRoute attribute, which is a list of tuples containing identities of turnouts
and the directions trains are to take in them.

fun member (x, [|) = false |

member (x, h::s) = x = h orelse member (x, s);

With a train token in segment place Join, the decision whether to go
left or right depends on the guards of the transition that routes the
train from its current position. If guard [member((sID, Left),r)] on
transition Ldir+ evaluates to true, then the train is to be directed to
the left branch, or to the right branch if guard [member((sID, Right),)]
on transition Rdir+ evaluates to true. If a train enters from one of the
branches, the guard [member((sID, Join), r)] must evaluate to true for
the train to be able to move to the stem even when there is only one
possible way to go. This is because we allow variable dir to be evaluated
to both CL and ACL. The guard will prevent a train from entering from
the stem to one of the branches and then being routed back, which is
possible in the turnout component in Section 3.2.2, giving a possible
livelock. With these modifications, any train that is to be routed to the

34

branch in which the turnout does not have control, will wait until the
points have changed position.

We allow different bindings for variable dir in the arc inscriptions
tr(n,dir,r), instead of constraining the directions by t¢r(n,CL,7) or
tr(n, ACL,r) as in road components. This is because we want to be
able to model turnouts on which trains move in opposite directions,
with the same component. If we add these constraints, we would have
to construct a turnout component for each direction and the component
would be topology dependent.

To summarise, a train can only move in a turnout if the points and
the travel plan are synchronised (i.e., there is a token in the correct
Switch place and the corresponding guard evaluates to true) and there
is no train in the section ahead. These modifications can be applied
to all switch based components, i.e., double slips, scissors and singles,
as described here. In the subsequent chapters we will use components
with this modifications.

Until now we have shown how track segments, turnouts, double slips,
rigid crossings, scissors and singles can be modelled in Petri Nets. We
have also shown how trains can be modelled by tokens with data struc-
tures. These components will later be used for constructing railway
nets.

35

36

Chapter 4

Automatic Construction

The process from modelling a railway system in Petri Nets to simulation
and analysis is both time consuming and complicated. As the nets
tend to be vast and complex and often difficult to handle, we observed
the need for abstraction and automatic construction when developing
complex Petri Net models, more specifically, models of railroad nets.

We have been looking into a new way of systematically constructing
Petri Net models, by introducing an abstraction layer where the sys-
tem being modelled is specified in a simple language, much closer to
the actual systems and require no particular Petri Net knowledge. It
is customary to consider the design process as starting with a specific-
ation and refining the specification step by step until one reaches an
implementation. Our approach differs from this in that we consider
the specification as a high level notion, rather then the first step in the
process of refinement. With the specification, the corresponding Petri
Net implementation is automatically constructed.

In this chapter we will present the foundation for automatic construc-
tion of Petri Net models. This allows modelling on an abstract level
while generating the Petri Net implementation. Formal theories are
specified for both levels and for the actual process of generating Petri
Nets. A concrete tool based on this approach will be presented in
Chapter 5.

37

4.1 The Specification Language

The specification language is a graphical language consisting of a set
of basic components called atomic components that are based on a
finite set of nodes N = {ny,ns,...n;} and lines L = N X N, a set of
interfaces, rules for connecting components and operators that operate
on these. We shall now look closer at these different components that
constitute the specification language.

4.1.1 Atomic Components

An atomic component C' = (L, NT) consists of a set of lines L C (N xN)
and nodes with types, N' C N xI . The lines characterise the structure
of the component, indicating how nodes are connected. Atomic com-
ponents are the smallest units in a specification and the set of atomic
components is denoted by C4.

4.1.2 Interfaces and Rules

Nodes in atomic components are either structural or interface nodes.
The structural nodes are internal nodes that are concerned with the
internal structure of the component and have no other function. Only
interface nodes can participate in a composition with other compon-
ents. An interface is based on a finite set of distinct interface types
I = {I,...,1,}. Each node of a component is equipped with an in-
terface type and components can be connected to each other according
to their types and the composition rules. These rules vary according to
the interface types and prescribe the legal ways to construct composite
components. Since structural nodes can not be connected with other
components, they have the empty type ©. Rules are defined as follows:

Definition 10 Composition rules
A set of composition rules, written R, is a set of pairs of interface
types in I, closed under symmetry such that:

1 RC{I, L) I, I, € I}

38

It is important to notice that the rules of composition are by default
closed under neither reflexivity nor transitivity. In some cases, a reflex-
ive property is useful, but in the railroad case, it may destroy the logic
of railroad constructions e.g. the requirement that two end segments
can not be connected and that turnouts can not be connected in ar-
bitrary ways. If the composition rules were transitive by default, each
component could be connected to any other, hence composition would
be too general for the domain of railway system and the composition
rules would be vacuous in some cases.

The rules of composition are essential in the process of designing a
specification, as the construction must follow certain physical laws and
engineering rules that limit the possible combinations. A completely
general approach to structural composition is therefore not appropriate
for our purpose. The composition rules serve as a guarantee for a
syntactically correct specification.

The set of atomic components, interface types and the composition
rules constitute the atomic specification, S* = (C4, I, R). Railway
specifications are constructed from an initial atomic specification and
the compositions of atomic components. These atomic components are
the high level representation of basic railroad components.

4.1.3 An Example of an Atomic Specification

Figure 4.1 gives an example of a set of atomic components of the rail-
road components: turnout, line segment, end segment, rigid crossing
and double slip. The interface nodes are denoted by colours and types.
The table in Figure 4.1 shows the set of distinct interface types, these
are the basis for the rules in Figure 4.2 and these rules determine the
nodes’ legal connections with other components. Here, two turnouts
can not be connected to each other by their T'U-1 interfaces and an
end segment can only be connected to a line segment.

The rigid crossing component’s structure is given by
Crc = (Lgre, Nko), where

N} = {(n1,0), (ns, RC-1), (n3, RC-2), (ny, RC-1), (n5, RC-2)} and
Lrc = {(nl, n2>, <n1, n3>, <n1, n4>, <n1, n5)}

The internal node n; with the empty type © is not visible in its com-
ponent because it is a structural node.

39

TU-1 RC-2
DS-1 DS-2

TU-2
DS-2 DS-1

TU-1 RC-2

Components | Interface Types
Turnout TU-1 TU-2
Track L

End-segment | END

Rigid crossing | RC-1 RC-2
Double slip DS-1 DS-2

Figure 4.1: Atomic components and interface types

Reflexive rules Component rules
(TU-1,L) (TU-2,L)

(L,L) (TU-2,TU-2) | (L,END)
(RC-1,RC-1) (RC-2,RC-2) | (RC-1,L) (RC-2,L)
(DS-1,DS-1) (DS-2,DS-2) | (DS-1, L) (DS-2,L)

Figure 4.2: Rules for specifications

4.1.4 Composite Specifications

With an initial atomic specification, which is a set of atomic compon-
ents, a set of interface types and a set of rules, a composite specification
can be constructed. The construction of specifications is done through
recursive composition, which means building an increasingly complex
structure from simple basic components.

A general specification is written (G, S4) where G = (Lg, NL) is a
connected graph — the structure of the specification — and S4 is an
atomic specification so that G is syntactically correct based on the rules
in S4. Two specifications can be joined if there are free interface nodes
that match. Informally, an interface node is free in a specification if it
is not involved in a binding. The result of joining two specifications S

40

and S5 is a new composite specification, over a concrete binding.

If i, € G is a node, then we use I} to denote the interface type of .

Definition 11 Joinable specifications

Two specifications, Sy = (G1,S%) and Sy = (Go, S4) over an atomic
specification S4 = (CA 1, R), are joinable if there exist free interface
nodes 11 € Gy and iy € Gy such that (I, 1) € R.

Since the joining between two specifications is through their nodes, we
must consider how nodes become a “composite node” and how their
types become a “composite type”. The names of the nodes in G are
distinct, the replacement function sub(n,m,G) replaces a node with
name n in G with a new node m. To replace a node in G we must
replace the occurrence of this node in both the lines L € GG and the
typed nodes N' € G, which also includes replacing the interface type
of this node. Let m; and 7 be the projection functions, 71 ({(m,n)) = m
and mo({(m,n)) = n. The type-extraction function ty takes a node and
a set of typed nodes and returns the type of this node:

ty(n, N') = my(z) if v € N' Ami(z) =n

To access the set of all type assignments, N!, from a specification,
we defined types(S) = ma(m(S)) that returns all typed nodes in a
specification S.

Definition 12 Replacement
The replacement of a node n by a node m in a specification
S = (G, S?) is carried out by the replacement function sub.

More specifically, let n, m, x and y denote nodes or interfaces, and let
(Ls, NI be a component with lines L, and typed nodes N!. Let Sy and
Sy be a specification and N be a proper extension of NI. Then

1. sub(n,m,n, NT) =m
sub(n,m,r, N') =z ifn#x
sub(n, m, (z,y), NT)= (sub(n, m,x, NT), sub(n,m,y, NT))

sub(n, (i1, is), (Ls, NI}, NT) =

(sub(n, (i1,is), Ly, NT),

SUb<<n7 tY(nv NI>>7 <<i17 i2>7 <tY(i17 NI)? tY(i% NI)>>> Nslv NI))
an € {’il,ig}

41

5. sub(n,m, S U Sy, NT) = sub(n,m, S, NI) U sub(n, m, So, NT)
6. sub(n,m, S, NT) = (sub(n,m, G, NT), S4)

Replacement is defined over the structure of the specification, this is
stated in part 6, where S remains unchanged, the nodes and types of
the atomic components are untouched throughout the recursion. Part 4
performs a replacement in component (L, NI). The lines are relabelled
and nodes are equipped with composite types.

The union of two specifications S; and S, is the union of their structure
and their atomic specifications:

Definition 13 Union of specifications
Let S; = (Gl,Sf‘> and Sy = <G2,52A) be two specifications, then the
union of Sy and Sy is given by

S1U Sy = (G UGa, S USEY.

The composition of specifications is denoted with M, and M, denotes the
concrete binding b. To preserve the information about the composition,
the names of the nodes involved in a concrete binding i; and 75 can be
combined by concatenation to form a composite name 7; o 75. In the
definition of replacement, i; 0y is written by the pair (i1, i2). With the
previous definitions, the composite specification is defined as:

Definition 14 Composition

Let S and Sy be two specifications, joinable with the binding

b = [i1, i3] over the same atomic specification.

Let NT = types(S1)U types(Sz) be the typed nodes in both specifications.
Then the composition of S1 and Sy is given by

Sl |—|b 52 = SUb(’il,’il o} iz, Sl, NI) L SUb(’iQ, le o} ig, 52, NI)

NT provides all the interface types and thus ensures that the composite
nodes get composite types. Since it does not play any significant role in
subsequent proofs, we shall make the reference to N! implicit by writing
sub(n, m, S). The new node i; o iy denotes the joining between S; and
S, into a connected graph. Figure 4.3 on the facing page illustrates the
composition of two joinable specifications.

Since composition rules are symmetric, every binding b is equal to the
reverse of b. That is, i; 079 = i3 07;. The node i3 047 can be written as

42

|1 |1. |2 |2. |1 |1.O|2 |2.
o—9© e—©0 ® ® ®
(a) Sy and S (b) S1M—(i, in) S2

Figure 4.3: Composition of specifications

i1 o 1 and the reversed binding [iq, 2] = [i2, 1] such that the formula
Sl |_|b 52 = Sl |_|5 52 18 fulﬁlled

An empty specification is an empty graph, denoted by 0, = ((), S4).
Composition with the empty specification is always permitted and is
through the empty node ¢, satisfying noe = eon = n. For empty spe-
cifications, sub(e, m, ;) = 0, since we need an non-empty specification
in order to create nodes.

Lemma 1 Composition of joinable specifications forms an abelian mon-
oid.

Proof: Composition M is an abelian monoid over equality if the
following four conditions hold:

—_

. For all joinable specifications S; and Sy, S7 M55 is a specification
2. Sl |—|b 52 — SQ |_|E Sl
3. (Sl I 52) I 53 - Sl M (SQ M 53)

4. SﬂbQ)S:@SﬂgS:S

(1) is the closure property and follows from the definition of a correct
joinable specification:

If S; = (G4, S') and Sy = (G, S?) are two joinable specifications, then
there exists free occurrences of interface nodes i; € G and s € G
such that (I;,) € R. The composition of S; and Sy with respect to
the concrete binding b = [iy, i3] is sub(iy, iy 04y, S1) Usub(ia, i1 0 i, Ss),
which is a specification (G U Gy, S4).

(2) follows from commutativity of union and that a reversed binding is

43

the same as the binding itself. Let b = [i1,] :

S1 My Sy sub(iy, i1 019, S1) U sub(iy, 11 049,.55)
sub(ig, i1 © 19, S9) LIsub(iy, i © i, S7)
sub(ig, ig 0 i1, S9) U sub(iy, is 0 i1, S1)

Sy M Sy

el [l]

Equation 2 follows from the commutativity of union and equation 3 fol-
lows from the equality of reversed names. Equation 4 is the definition
of composition.

For (3) We must show (S; M S3) MS; = Sy M (52 MS;) for distinct
binding elements by = [iy, is] and by = [iy, i3]:

(51 Miivia) 52) Miiy i) S3
é SUb(’iQ/ s ’i2/ o ig, Sl l—l[il,ig} SQ) (] SUb(’i3, i2/ o ’i3, 53)

% SUb(’iQ/ s i2/ O’i3, SUb<i1, iloig, Sl))USUb(iQ, ’ilo’iQ, SQ))USUb(’i:;, ’i2/ Oig, 53)

2 sub(iy, 41012, S1)Usub(ia, i1 0g, sub(iy , iy 03, So)UUsub(is, iy 03, S3))
4 S S
= sub(iy, i1 0 iz, 51) L sub(iz, i1 0 iz, Sy iy ia) S3)

5
=5 iy io] (52 |_|[i2/ i3] 53)

Equations 1, 2, 4 and 5 follow immediately by definition 14. The justi-
fication for equation 3 is split in two. First, set union is associative and
graph replacement distributes over union. Second, the interface node
i,y does not occur free in the specification sub(iy, i1 04z, S1) and the in-
terface node i does not occur free in the specification sub(is, iy 0i3, S3).

In (4) we need to prove the existence of the identity element (.
Let b = [iy, €]:

sub(e, i1, 0s) L sub(iy, i1, S)
sub(e, € 0 iy, M) U sub(iy, € 04y, S)
Dsr; S

S0, = sub(iy,ii o€, S) Usub(e, ii oe, ()
2 sub(iy, 11, S) Usub(e, iy, 0)
2 s5u0,
= S
2 p,us
S
L
£

44

Equations 1 and 8 are again the definition of composition. Equations 2
and 7 follow from the property of the empty node €. Since replacing a
node with itself is the identity function, we get sub(iy,i;,5) = S, and
replacing a node in an empty specification gives the empty specification
sub(e, i1, 0s) = (s, thus equation 3 and 6 are justified.

4.1.5 The Algebra of Decomposition

There are two ways to decompose a specification, split and subtraction.
Split, denoted with the symbol |, removes a binding in a specification
so that the interface nodes involved in the binding become free. The
split function does not remove any interface nodes but only frees them
as opposed to subtraction, which removes a subset of a specification.
Split is based on composition and can only be applied on composite
specifications.

Instead of creating a composite node, we want to separate it. The
replacement function for decomposition is obtained by replacing part 4
in definition 12 with:

4. sub(({i1,is), m, (Ls, NJ),
< (<217Z2> m, st I)
sub({(i1, i), <tY(<21722> N, (my m(ty (i, d2), NT))), Ny, NT,))
if m € {iy,is} and k = 1if m =i, else k =2

N') =

Definition 15 Split

Let Sy My Sy be a specification joined with binding b = [iy, i3] where
iy € S1 and iy € Sy and let N = types(S; My S2) be the typed nodes in
S1 My So. Then the splitting of Sy My So w.r.t. b is defined as

Sl|bS2 = {SUb(’il O’iQ,il, Sl, NI), SUb(il 0] ’iQ,iQ, SQ,NI)}.

The split function returns a set of specifications. Figure 4.4 on page 47
illustrates splitting of a composite specification.

Lemma 2 Splitting of a composite specification has the properties:

1. Si|pSs is a set of specifications.

2. (S1lb,52) 5,53 = S1lp, (S2lp,S3)

45

8. Slyls = 04055 = {5, 0.}
4. S1[pS2 = Sal351

Proof:
(1) follows from the definition of split.

Let S; M Sy be a specification joined with binding b = [i1, i3] where
11 € S1 and iy € Sy. Then the splitting of S7 My So w.r.t b is

Sl|b52 == {sub(il e} ig, il, Sl) s sub(il o ig,’ig, SQ)}

The result is a set of specifications {5, 52} where
Sl = <sub(i1 o} ig, ’il, Gl), SA> and SQ = <Sub(i1 o ig, ig, GQ), SA>

(2) is the associative property:

Let bl = [il,’iQ] and b2 = [’i2/,’i3] where le € Sl, ’iQ, i2/ € 52 and i3 € 53.

(S116:52) |6, 53
= {sub(iy o3, iy, 51|Ss), sub(iy ois,is, S5)}
2

= {sub(iyois, iy, {sub(ii0is,i1,S1), sub(iy0is,is, S2)}),sub(iyois, iz, S3)}

2 {sub(iyois, i1, 1)} U{sub(iy oi3, iy, sub(iy0is,is,S2)), sub(iyois,is, S3)}

é {sub(iloig,il, Sl), Sub(iloig,’ig, sub(i2/oz'3,z'2/, SQ))} U{sub i2/0i3,i3, Sg)}

(
SCIEAED!

Equations 1 and 2 are the definition of split. Equation 3 is the result
of iy o3 not being a node in S;, but in Sy. Equation 4 follows from
the fact that iy o 75 is not a node in S5 but in S,.

(3) shows the identity element by the immateriality of orders in sets
and that a reversed node is the same as the node itself:

Slo=pingls = {sub(iy o€, i1,5), sub(i; o€, ¢, 0y)}
= {sub(iy, 1, S), sub(ii,€,0,)}
= {50}
= {0, S} = {sub(iy,¢,0,), sub(iy,i1,S5)}
= {sub(eoiy,e€,0,), sub(eoiy, iy, S)}
= O3S

46

(4) is the commutative property:
Let b = [’il,iz] where le € Sl and ig € 52.

Sl|bSQ == {sub(i1 Oig,’il,Sl), sub(z'l Oig,iQ,SQ)}
= {SUb(il O’iQ,’iQ,SQ), SUb(’il Oiz,il,Sl)}
= {SUb(iQ O’il,’iQ,Sg), SUb(’iQ Oil,il,Sl)}

= 5[5
|
o—0—9© o—0 o —©°
(a) S1MSs (b) S1|SQ

Figure 4.4: Splitting a specification

The | operator decomposes a composite specification. Subtraction is
denoted with the symbol H and removes a specification (which we here
refer to as subtrahend) from a composite specification. The B oper-
ator takes a specification as input and returns a specification as output,
which means that after a specification has been removed from a com-
posite specification, the remaining specification is one specification and
not two or more. This implies that interface nodes participating in com-
positions with the subtrahend first are to be decomposed (separating
them from the subtrahend), and then be composed again, with the sub-
trahend removed. This second step requires attention on the structure
of the subtrahend. If the subtrahend is connected to more than two
interface nodes, then after we remove the subtrahend, it is not possible
to employ composition on these nodes and achieve one specification.
An example of this is shown in Figure 4.5. In 4.5 (a), the subtrahend
is connected to three nodes, ni,ny and nz, and after the subtrahend is
removed (4.5 (b)), it is not possible for all these nodes to participate in
a composition. This is because composition is a binary operation and
that if the number of interface nodes freed in the subtraction was to
be an even number larger than two, there would be no way to guar-
antee that the result would be a single specification. Furthermore, if
there was to be more than two interface nodes freed in a subtraction,
there would be no way to decide which of these should participate in
bindings and in which combinations. For these reasons, a subtrahend
is constrained to be isolated by two interface nodes, more specifically,
a subtrahend can only connect to the remaining specification by two
bindings. Definition 16 formally expresses this condition.

47

n;,/' _\ n3
--@ --— *—O ---
N, /,/
The subtrahend The subtrahend removed

(a) (b)

Figure 4.5: A specification that is not isolated

Definition 16 Isolation

Let i be a node, S a specification and S’ = (G', S4) are specifications
satisfyingVL € G': L ¢ S . Then S is isolated by two nodes ny and ny
uf

Viegv51<i € {711,77,2} Vi ¢ S/)

Now, we may define subtraction:

Definition 17 Subtraction

Let S = Sy, SalMy, S3 be a specification where by = [iy, ia], by = [iy, i3]
and NT = types(S). If (I, 13) € R and Sy is isolated by iy o iy and
1y 013, then Sy can be subtracted from S, written SH Sy, as follows:

(S1 My ia] S2 i is) S3) H .Sy
= SUb(’il o ig, ’il, Sl, NI) |—|[i1,i3] SUb(’iQ/ o) ’i3, ’i3, 53, NI)

The precondition requires that the removed specification only connects
to the remaining specification by two bindings, specifically, that the
removed specification is isolated from the remaining specifications by
interface nodes of b; and by (and only these) and that the remaining
specifications are joinable with interface nodes in b; and b,.

48

Lemma 3 Let 51,55 and S3 be specifications and let
S = Sl l—lbli[il,iﬂ SQ |_|b2:[i2, i3] 53 where
(I, I3) € R and S is isolated by i1 0 iy and iy o i3, then:

1. SH S, is a specification.

3. SHO, =8
4. SBS =,
Proof:

(1) is the definition of subtraction. By the precondition of subtraction,
S5 is connected to S7 and S5 only through two bindings and the interface
nodes of S} and S3 that are involved in these bindings are joinable if
they become free. Then the result of subtraction by disconnecting these
two bindings and then connecting S; with S3 through the same nodes
that originally were connected with Sy, gives us a new specification
S1 M.S3 where Sy is removed.

Given that the precondition of subtraction holds. There are three in-
teresting cases of subtraction of S11MS3M.S3. We give the proofs of the
closure property of these three cases:

i) If 51 = 0,, then:

(S1Mje,in] 52 i,y is) S3) B .Sy
= sub(e 0 iy, €, 05,) Mie,i SUb(ly © i3, 13,53)
= sub(e, € 0 i3, 0,) L sub(is, € 0 i3, S3)
=05, U S5 = 153

ii) If S5 = 0, then:

(Sll—l[il,iQ]Sg |—l[i2,74 53) H S,
= sub(iy 0,1, S1) Mpiy,q sub(iy o€, €,0,,)
= sub(iy, i1 0 €,51) Lsub(e, i o€, (,,)
=5 U, =5

49

iii) If S;, Sy and S5 are non-empty, then:
(S1Mi, i) 52 Mii ia) S3) 5.5,
= sub(iy 0 4g, 41, 51) Mo—liy iy) SUb(iy © 3,13, S3)
= sub(iy, 1 0143, 57) U sub(is, i1 o i3, 53)
= 51 My ig) S3

(2) (SBS1)8S, = (SHS2)8S;. Here we assume S; does not participate
in any other bindings than b; = [i1,43]. The proof uses the definition
of subtraction and composition with empty specifications, so that the
subtrahend is always surrounded by two specifications.

(SBS1)B Sy = (S Miiia] S2 M S3) B .S1) B Sy
= ((0 Mie,iv] S1 Mivsia) (52 My ia) S3)) B 51) B .5,
3 (05 Mie,ip) sUb(iq 0 12,49, S5 iy is] S3)) B S,
& (D5 My —fe,in] SUb (i1 0 @9, 9, S5) M] S3) B S,
s s Mie,ia) SUb(iy © i3, 13,53)
S3
D5 Mie,i,) sub(iy 0 da, 41, S1) My i) SUb(iy 0 d3,143,.53)) B S,
sub(iy 0 4y, 11, S1) My i) SUb(iy 043, 13,.53)) B .S)
(S1 Miiia) S2 My i) S3) B 92) B S
SBS)BS

le lloo I~ lo

s

(
(su
(
(

Equations 2 and 8 introduced empty specifications to enclose the sub-
trahend, S, between two specifications. Equations 3 and 5 are the
definition of subtraction and that i; o iy is not in S5 justifies equation
4. Equation 6 is proved in Lemma 1 (part 4), which is also used in
equation 7 together with the definition of subtraction.

The proof is a special case where Sy is a “leaf” component. However,
it can be generalised by replacing the empty specification, (J,, with e.g.
variable S, so that if S is a leaf, then S} is an empty specification.
Otherwise, Sy is the specification S; is connected to. With this gener-
alisation, the result is S} 1 .95.

For (3):
(S1 M0, M0s,) B0, = sub(iy o€, iy, S1) Msub(e, e, O,)
— 3

20

Note that (3) is not a proof of the existence of an identity element
since an empty specifications does not include a non-empty specifica-
tion. Therefore (), .5 is not defined, so VS, S B0, do not yield #,H ..

(4) shows that there is an inverse or reciprocal of each specification.

(Ds, M S2 M Ds,) B Sy = sub(e o ig, €, Bs,) Msub(iy o€, € 0,)
- @31 |—| @33 = @5
The inverse element for each specification is the specification itself.

Subtraction (B) is definable from split (|) and composition (M). This
means that the subtraction operator can be replaced by splits and joins
of specifications. We use the prefix notation of the composition oper-
ator, so 5119 can be written M(.S1, S3), and the following proof justifies
this:

Proof:
Let S = Sy My, iy S2 My is) S3 be a general specification and b = [iy, i3],
then:
|_|b((31|52|53)\52) é I—lb({sub(il o ig, il, Sl), sub(i2/ e} ig, i2/, sub(il o ig, ’ig, SQ)),
sub(i2/ @] ig, ig, Sg)}\SQ)
% |_|b<{SUb(’i1 e} ig, il, Sl), Sllb(lél o ’ig, ig, 53)})

= S1 My i) S3

The result S M, i, S3, equals the definition of subtraction:

S El SQ - (Sl rl[il,ig] 52 |_|[i2/,z'3] 53) El SQ
Hence we have proved that subtraction is definable from split and com-
position.

Equation 1 uses the definition of split. Equation 2 follows from the set
difference, by subtracting Sy, and equation 3 is the infix notation of
composition.

Figure 4.6 on the following page shows the employment of subtraction
on a composite specification.

ol

Il iluolz |2|O|3 |3| Il |1|O|3 |3|
@ L L L o—0—9©
(a)S:Sll‘ISQI‘ISg (b)SE'SQ

Figure 4.6: Subtraction

4.2 Petri Nets and Algebra

The approach presented here can be applied to many different Petri
Net dialects, e.g. Place Transition nets, Coloured Petri Nets, Timed
Petri nets etc. To not favour any particular Petri Net dialect, we will
consider the most general Petri Net, which all Petri Net dialects are
based on. A (general) Petri Net is a triple, (P,T, A), where P is a
finite set of places, T is a finite set of transitions and A is a finite set
of arcs.

Similar to the interface nodes in the specification language, some places
in a Petri Net model can participate in a connection with another Petri
Net model. We denote these places interface places. Interface types and
rules are constructed on the specification level and Petri Nets inherit
these, therefore, they are not considered here.

4.2.1 The Composition of Petri Nets

As with the composition of specifications, a formal theory for the com-
position of Petri Net components is specified. It resembles the com-
position in the specification layer, but applies to Petri Nets. Note that
the composition of two Petri Nets in this context is only through inter-
face places. It is not allowed to join two Petri Nets by standard Petri
Net semantics such as connecting transitions with places by arcs. The
composition of two Petri Nets is thus a composition of two Petri Net
models where they connect through interface places. Any Petri Net
with interface places can be composed with the empty net () py, defined
as the empty triple.

Definition 18 Joinable Petri Nets

Two Petri Nets PNy = (P1, 11, A1) and PNy = (P, Ty, As) are joinable
over a set of interface rules R, if there exists free interface places

p1 € Py and py € Py, of interface types respectively Iy and Iy, such that
(I, 1) € R.

o2

When connecting two Petri Net interface places, the input and output
arcs that are attached to these places must be redirected to and from
the new unique place that arose as a result of merging the two inter-
face places. The redirection is done by the replacement function sub,
such that the new place replaces the originally non-connected interface
places. Observe that transitions are left unchanged, since replacement
only changes the place and then redirects the arcs from transitions to
the new place.

Definition 19 Replacement

Let p, s, x and y denote places or transitions. The replacement of a place
p by a place s in a Petri Net PN = (P, T, A) written sub(p, s, PN), is
defined as:

1. sub(p,s,p) =p

2. sub(p,s,z) =x if p#x

5. sub(p, s, (z,y))= (sub(p, s,x), sub(p, s,y))

4. sub(p, s, PNy U PNy) = sub(p, s, PNy) U sub(p, s, PNy)

5. sub(p, s, PN) = (sub(p, s, P),T,sub(p, s, A))

The composition between Petri Net models is denoted by >, and <,
denotes composition of Petri Nets with the specific binding 6. Union of
Petri Nets is the union of their places, transitions and arcs, PN LI PNy
denotes the union of two Petri Nets, PN; and PNs.

Definition 20 Composition of Petri Nets

Let PNy and PNy be two Petri Nets joinable with the binding

b = [p1, p2] where p1 € P; and py € Py. Then the composition of PNy
and PNsy, is given by

PNy <, PNy = sub(py, p1 0 pa, PNy) U sub(pa, p1 © p2, PNs).

Lemma 4 Composition of joinable Petri Nets forms an abelian mon-
oid.

23

Proof: We need to prove the following:

1. For all joinable Petri Nets PNy, and PNy, PNy > PN, is a Petri
Net

2. PNlDQbPNQZPNQNEPNl
3. (PN1[><]PN2)|><]PN3:PN1[><](PN2[><]PN3)

4. PND(]b(Z)PNI@pNDQEPNIPN

(1) Given two Petri Nets PNy = (P, Ty, A;) and PNy = (P, T, Ay)
that are joinable, then by the definition of joinable Petri Nets there
exist interfaces p; € PN; and py € PN, of interface types I and I
such that (I, Is) € R. The composition of PN; and PN, with respect
to the binding b = [p1, po] is:

sub(p1, p1 © pa,PN1) U sub(py, p1 0 pa, PNy)
= (sub(p1, p1 © P2, P1), T1,sub(p1, p1 © pa, Ar))
U (sub(pa, p1 © pa, Pa), Ta, sub(pa, p1 © p2, Az))
= (sub(p1, p1 © p2, P1) Usub(ps, p1 0 pa, P2),
Ty U Ty, sub(py, p1 0 p2, Ay) Usub(pa, p1 © pa, As))

which is a composite Petri Net.
(2) follows from the commutativity of union and that a reversed binding

is the same as the binding itself:

Let PNy = (P, Ty, Ay) and PNy = (P, Ts, As) be two Petri Nets, and
p1 € PNy and p; € PN, be interface places of types I; and I where
<[1, [2) € R. Then:

PNy <y PNy = sub(py, p1 0 pa, PNy) U sub(pa, py 0 pa, PN>)
= sub(pa, p1 © p2, PN3) U sub(py, p1 o p2, PNy)

3
= sub(pz, p2 © p1, PN2) Usub(pi, ps © p1, PN1)
2 PNy iy PN,
Equations 1 and 4 are the definition of composition. Equations 2 and

3 follow from respectively the commutativity of union and the equality
of reversed names.

o4

For (3) we must show the associative property:

(PNy b PNy) bt PN3 = PNy b (PN, > PN3) for distinet binding
elements by = [py, p2] and by = [py, ps):

(PN >, o) PN2) >p,/] PNy

L sub(py, py © p3, PNy iy, o] PNo) L sub(ps, py o ps, PN3)

Z sub(py , py © s, sub(py, p1 © pa, PNy)
LI sub(pg, p1 © pa, PN3)) U sub(ps, py © p3, PN3)

= sub(py, p1 © p2, PNy) U sub(py, p1 © pa, sub(py, py © ps, PN)
LI sub(ps, py © p3, PN3))

= sub(p1, p1 © pa, PN7) LI sub(pg, p1 © pa, PNy >[p, .ps] PN3)

= PNy >, o) (PN >p,/ 3] PNj3)

Equations 1, 2, 4 and 5 follow immediately from definition 20, compos-
ition of Petri Nets. Equation 3 follows from that ps does not occur in
sub(py, p1ope, PN1) and that py does not occur in sub(ps, p> ops, PN3).
Therefore, P N, may connect with P N3 before connecting with P N; and
vice versa.

(4) is to prove the identity element for all PN. Let b = [p1, €]:

PN <, Opn = sub(py,p1 o€, PN) Usub(e,p1 o€, 0py)

= sub(py, p1, PN) Usub(e, p1, 0pn)

= PN U(Dpy

= (PUD, TUDp, AUDA)

= PN

=0pUP0rUT, 04U A)

=0py UPN

= sub(e, p1, Dpx) U sub(py, p1, PN)
sub(e, € o p1, Dpn) Usub(py, € o p1, PN)
Dpn <y PN

The results follows from the definitions. Since replacing a place with
itself is the identity function we get sub(py,p1, PN) = PN, and re-
placements in an empty Petri Net gives the empty net, thus

sub(e,pl, @PN) - Q)PN-

95

4.2.2 The Decomposition of Petri Nets

Splitting a composite Petri Net is done by removing binding elements
so that interface places become free again. The place that is a join
between two Petri Nets becomes two free interface places as before the
composition, each with a unique name. The arcs involved are also
redirected as a consequence of this.

The split operator ’||” applies to a Petri Net and gives a set of Petri
Nets:

Definition 21 Split

Let PNy >, PNy be a Petri Net joined with binding b = [p1, ps] where
p1 € Py and py € P,. Then the splitting of PNy >, PNy w.r.t. b is
defined as

PN1HbPN2 = {SUb(pl Op27p17PN1)) Sllb(pl Op27p27PN2)}-

Lemma 5 Splitting of a composite Petri Net has the properties:

1. PNy||yPNs is a set of Petri Nets.
2. (PNi[lo, PNy)|lo, PN3 = PN1||y, (PNa|[y, PNs)
3. PN||y0py = Opy||;PN = PN

4. PN1||bPN2 = PN2HEPN1

Proof:
(1) is the definition of split.

Let PNy >, PN, be a Petri Net joined with binding b = [py, ps], where
p1 € P and py € P;. Then the splitting of PNy >, PNy w.r.t b is
written:

PN1HbPN2 = {SUb(pl Op27p17PN1)7 SUb(pl Op27p27PN2)}-

The result is a set of Petri Nets { PNy, PNy} where
PN, = (sub(p1 © pa, p1, Pr)), T1, sub(py o pa, p1, A1) and
PNy = (sub(py 0 pa, pa, P2)), To, sub(py o pa, p2, Az)).

o6

(2) is the associative property:

Let by = [p1,p2] and by = [py, ps] where py € PNy, ps,py € PNy and
ps € PN3

(PN:|]5, PN3)||5, PN
L {sub(py o ps, py, PN||PNy), sub(py o ps, ps, PN3)}

= {sub(py o p3, pyr, {sub(p1 o pa, p1, PNy),
sub(py © pa, pa, PN2)}), sub(py o p3, ps, PN3)}
2 {sub(p; o p2, p1, PN7)}U
{sub(py © ps, py,sub(pi © pa, p2, PN)), sub(py o ps, ps, PN3)}
= {sub(pi 0 pa, p1, PN1),sub(py © pa, pa, sub(py © ps, py, PNa))}
U {sub(py o p3, p3, PN3)}
2 PNy, (PNs||s, PN3)

Equations 1, 2 and 5 are the definition of splitting a composite Petri
net. Equation 3 is the result of that py o ps3 is not a place in PNy, but
in PNy. That p; o py is not a place in PN3 but it is in PN, justifies
equation 4.

(3) shows the identity element (py :

PN||jpy,g@pn = {sub(pi o €, p1, PN),sub(pi o €,¢,0py)}
= {sub(py,p1, PN),sub(p1,€,0pn))}
={PN,0pn}
= {0pn, PN} = {sub(pi,€,0pn),sub(py, p1, PN)}
= {sub(eopy,€,0py),subleo py,p1, PN)}
= 0pn|[jepn PN

(4) is the commutative property:
Let b = [p1, p2] where p; € PNy and ps € PN,
PNi[|y PNy = {sub(p1 o pa, p1, PN1),sub(p1 o pa, pa, PN2)}
= {sub(pi o p2,p2, PN3),sub(p1 o pa, p1, PN1) }

= {SUb(P2 © P1, D2, PNz),sub(pz Op17p17PN1>}

57

Subtraction is also defined for Petri Net components. The operator
is denoted ©, operates on a composite Petri Net and returns a Petri
Net. The preconditions for subtraction of Petri Nets are the same as
subtraction of specifications, only applied to Petri Nets.

Definition 22 Subtraction

Let PN = PN; <, PNy <y, PN3 be a Petri Net where by = [p1, 2]
and by = [py,p3]. If (I1,13) € R and PNy is isolated by p; o py and
Dy © p3, then PNy can be subtracted from PN, written PN © PNy in
the following way:

(PNI Dby =[p1,p2] PN, 'le2:[P2/ 03] PN3) © PNy
= sub(py o pa, p1, PN) >[p1,p3) SUb(pQ/ o ps, p3, PN3)

Lemma 6 Let PNy, PNy and PN3 be Petri Nets and let
PN =PN; [by =[p1 ,po] PN, |_|b2:[p2/ 03] P N3 where
(I1,I3) € R and PNy is isolated by py o pa and py o p3, then:

1. PN © PN, s a Petri Net.
2. (PN © PN,)© PNy = (PN © PNy) © PN,
3. PNO0py =PN

4. PNO PN =0py

Proof:

(1) By the precondition of subtraction, PN, is connected to PN; and
P N3 only through two bindings and the interface places of PN; and
PNj3 that are involved in these bindings are joinable if they become
free. Then, by disconnecting these bindings, we may remove PNy and
join PNy with PNj3. The result is proved to be a composite Petri Net,
PNy <t PN,, in Lemma 4.

Given that the precondition of subtraction holds, there are three inter-
esting cases of subtraction of PN a1 PN, <1 PN3. We give the closure
property of these three cases:

o8

1) If PNl = (Z)PNN then:
(PNl N[e,pg] PN2 I><]b2:[p2/,p3] PN3)) PN2
= sub(pe o pa, €, Dpn,) (e, pa] sub(py © p3, p3, PN3)
= sub(e, € o p3, Dpy,) L sub(ps, € o p3, PN3)
= @PNl L PN3
= PN;
11) If PN3 = ®PN37 then:
(PNl [X][;m,pz} PN2 I><l[p2,,e] PNg) © PN2
= sub(py © pa, p1, PN1) >, sSub(py 0 €, €, Opn,)
= sub(py, p1 o€, PNy) Usub(e, p; o€, Dpy,)
= PN; U0pp,
=PN;
iii) If PNy, PNy and P N3 are non-empty, then:
(PNl N[pl,pz] PN2 [><][p2/,p3] PNg) S PN2

= sub(py o pa, p1, PN7) ™[p1,p3] sub(p2/ o p3, p3, PNs)
= sub(py, p1 0 p3, PN1) U sub(ps, p1 o p3, PN3)
= PN; < PNg

(2) is to prove (PN © PN;) © PNy = (PN © PNy) © PNj.

The proof is the same as for subtraction of specifications, with the spe-
cial case that PN; only connects to PNy (a leaf Petri Net component),
and can also be generalised:

(PN@PNl)@PNQ
= ((PNl >p1,p2] PNy N[PQMP:&] PN3) QPNl) © PNy

= (Dpn Xpepy) PN1 >y) (PN2 b,) PN3)) © PN O PN,
= (Dpn D po) SUD(P1 © P2, P2, PN >y ps) P N3)) © PNy
= (@PN >le,po] SUb(pl © P2, P1, PNz) D<1[p2/,p3] PN?,) © PN,

= Dpn D py) SUb(py © p3, p3, PN3)
= PN;
= (Dpn > p) sub(py © p2, p1, PN1) >y,) sub(par 0 ps, p3, PN3)) © PN,
= (sub(py o pa, p1, PN1) X[y, ps) SUb(pa 0 p3, p3, PN3)) © PNy
= ((PN; < p1,p2] P N2 >, ps] PN3) © PNy) © PN,
= (

PN © PN,) © PN,

29

As mentioned earlier for subtraction of specifications, (3) is not the
identity property since @py © PN is not defined. The result follows
from the proof of Lemma 4, part 4.

(PNy <1 0pn, > Dpny) © Dpn, = sub(py o€, p1, PNy) pxasub(e, €, Dpn,)
= PN; Upy,
- PN1

(4) shows that there is an inverse of each Petri Net.

(@PN1 > PNy > @PNg) O PNy = SUb(E O P2, €, ®PN1) > sub(p2/ O €, €, @PNg)
= 0pn, UDpn,
=0pn

For each Petri Net, the inverse element is the net itself.
|

4.3 Saturation

Saturation is an automatic construction of a Petri Net implementa-
tion from a specification. In the process of saturation, a specification,
composed of atomic components with respect to composition rules, is
taken. This specification, forming a graphical structure as described in
Section 4.1, is saturated with a Petri Net implementation.

4.3.1 Atomic Saturation

Saturation associates a high level specification with concrete Petri Nets
and can be decomposed into successive compositions of atomic satura-
tions — assignments of atomic components to a set of Petri Nets.

Definition 23 Atomic saturation
Let SA4 = (CA, 1, R) be an atomic specification. An atomic saturation,

written A, is a function from a set of atomic components to a set of
Petri Nets PN, such that:

VC € C*3!P € PN : (A(C) = P)

60

An atomic saturation is done by first constructing a library of atomic
and Petri Net components and then making an explicit assignment
between them. Specifically, it is a bijection from interface nodes to
interface places. With an atomic saturation, the implementation can
automatically be generated. Figure 4.7 shows an example of an atomic
saturation which assigns each atomic high level specification component
to a concrete Petri Net.

After an atomic saturation, each component in the specification will
be bound to a corresponding Petri Net component and compositions in
the specification level will lead to compositions in the Petri Net level.

Atomic Components

Figure 4.7: Atomic saturation

4.3.2 Theorem of Construction

A composite specification S can be measured by its number of interface
bindings, denoted n(S). We consider components built up sequentially
from 1-step interface bindings.

Definition 24 Size of specifications
We define the size of a specification m(S) by recursion:

1. If S is an atomic component, then m(S)= 0

2. if S is a composite specification S = S1 1.5y, then

61

We use 1(S) and 1(N) to denote the functions that return the free inter-
face nodes of S and interface places of N. Given a concrete binding b at
the specification level, we use A(b) to refer to the corresponding binding
at the Petri Net level, after the bijection of the binding elements.

Definition 25 Saturation

Let SA be an atomic component, A an atomic saturation, and S an
arbitrary correct specification. Suppose that S* and S are joinable over
an interface binding b. Then we define a saturation function sat such
that:

(i) sat(S4, A) = A(S4)
(ii) sat(SAM, S, A) = sat(SA, A) i sat(S, A)

Lemma 7 Let S{, S5, ..., SA | be atomic components. Then

sat(Sf |—|b1 S'ZA |_|b2 cee l—lbn 5;14—1—17 ./4) =
sat(S7', A) bagpy) sat(Ss', A) Xa,) « -+ a(by) Sat(Sik 1, A)

The lemma captures the actual process of recursively constructing a
Petri Net from its specification using saturation.

When a specification S is constructed, it can be saturated with Petri
Nets and a concrete implementation of the whole specification can be
computed. The theorem of construction states that this output im-
plementation is the same as the result of first saturating parts of the
specification and then joining these at the Petri Net level. Formally
this means:

Theorem 1 The theorem of construction
Let S1 and Sy be two correct specifications that are joinable over an
interface binding b, w.r.t. an atomic saturation A. Then

sat(S1 My S2), A) = sat(S1, A) > sat(Ss, A)

Proof: By induction over the size of both S; and 55
Induction basis: m(S1)+m(Sy) = 0

This means that both S; and S5 are atomic components, still not con-
nected to others. By the assumption of the theorem, S; and S5 are

62

joinable by the binding b. By the definition of saturation, the specific-
ation and the Petri Net implementation have equal interfaces modulo
the bijection, so that i(Sf') corresponds to i(sat(Sf',.A)) and i(S3') to
i(sat(S5!, A)).

sat(S7', A)) and sat(S3', A) are then joinable with the interface binding
A(b), where elements in A(b) are interface places. Hence

sat(S7', A) > qp sat(Sy, A) = sat(S7 My, S5, A)

Induction step: m(Sy)+mn(S2) =k + 1.

There are two possible cases, either:

(i) S; = S, M. S{* where S{* is an atomic component, or
(ii) Sy = S, M, S3' where S3' is an atomic component.

Consider (i):

sat(Sy My Sz, A) = sat((Si Me Sf‘) My Sa, A)
sat(Sy M (S) Me ST, A)
((S2 1 S)) Me S, A)
(

2 (sat(S,, A) > 45) sat(Sy, A)) B (e sat(S7', A)
£ sat(Sa, A) b4 (sat(S), A) e sat(S7, A))
S, A) 045, sat (S Me ST, A)

S M. S A) > 45 Sat(S2, A)

S1, A) D) sat(Ss, A)

wn
sV
—+
— I/

Equations 2 and 8 follow from the commutative properties of respect-
ively M and > and equations 3 and 6 are their associative properties.
With definition 25 we obtain equations 4 and 7 while 5 follows from
the induction hypothesis since (S, Iz ;) = k.

63

Consider (ii):

sat(Sy My Sa, A)) = sat(S; My (S, M S5, A)

at((S1 My S5) Me S5\, A)
sat(Sy My S.) D> A(e) sat(S3', A)
(sat(S1, A) b sat(Sy, A)) g sat(Ss', A)
sat(S1, A) g (sat(Ss, A)) sat(Sy', A))
sat (S, A)) sat(S, Me Sy, A)

< sat(S,.A) DAy sat(Ss, A)

e lee III\3

Il

Equations 2 and 5 are the associative properties of respectively M and
1. Equations 3 and 6 follow by definition 25 and equation 4 is the
induction hypothesis, m(S; My Sy) = k.

The reason for modelling railway systems is to be able to simulate
and analyse possible behaviours of the system and thus make improve-
ments. In Chapter 3.2, we presented railroad components as Petri Net
components with built-in safety. One can construct a railway layout
based on these components, but there might be other properties about
the system that one might want to explore that require a different
Petri Net implementation of the railway components. This can include
various aspects of collision detection, other kinds of train separation
principles, other interlocking principles etc., or maybe using the same
railroad components but exploring different layouts to achieve a better
performance. By storing the specification as a separate data structure
and using the saturation technique we decoupled an abstraction from
its implementation so that the two can vary independently. The time
spent designing and testing the Petri Net model is shortened since:

e [t is more manageable to model railway systems at the specific-
ation level than at the Petri Net level. Especially for engineers
unfamiliar with Petri Nets.

e With a specification, the underlying Petri Net implementation
can be replaced by other implementations without changing the
high level specification. Atomic saturation can be applied mul-
tiple times and by using a different set of Petri Net compon-
ents each time, we achieve different implementations based on
the same specification. This facilitates simulation and analysis

64

of different railway operation principles. For example, with the
same railroad specification, we can generate one Petri Net model
composed by safety components and one with collision detection
components.

e Fach component that is a part of a specification has a corres-
ponding Petri Net component after an atomic saturation. If we
remove a component, its corresponding Petri Net will also be re-
moved and if we change the specification’s composition then the
underlying Petri net will also change its composition. This means
that a specification can be modified without considering the un-
derlying implementation as the underlying implementation will
automatically comply with the specification. Typically, when do-
ing capacity research, it is often necessary to modify the railroad
layout to achieve a higher capacity.

In the next chapter, we will describe a prototype tool base on the
predefined theory.

65

66

Chapter 5

Implementation of a Tool

To prove our concept, a prototype application, which we call the RWS-
Editor, is implemented based on the algebra defined in Chapter 4. The
application automatically generates an executable Petri Net from a
specification. Since there are many existing tools that support the use
of Petri Nets, the goal was not to develop another simulator, but to be
able to interact with existing simulators, such as Design/CPN, in order
to analyse Petri Net models.

In this chapter, the functionalities of the tool will be presented along
with an outline of the implementation, is done in JAVA [2]. Since
JAVA programming is outside the scope of this thesis, we will not go
thoroughly into the implementation, but rather demonstrate the tool
and its properties. This is done mostly through some examples of how
railroad specifications are created in the tool and the Petri Nets that
are generated automatically from these specifications. We are going to
look into two cases of use of RWSEditor. One of them is a small sized
railway circuit using only two different types of railroad components,
presented in Section 5.3. Even though it is small, it is large enough to
be the subject of later analysis. Another case is the Oslo subway, which
will be presented in Chapter 6. Technical drawings were provided by
Oslo Sporveier and using these, we are able to show how an industrial,
real-sized and complex railroad system can be specified in the tool, thus
helping us demonstrate the usefulness of our concept and tool.

67

5.1 Structure

The application consists of a Railway System specification editor and
a generator. From a high level point of view, the generator takes a
set of different Petri Net railway components specified in a Petri Net
editor along with a specification and generates a Petri Net railway net
based on these components. This net can then be loaded into a Petri
Net simulator for further formal analysis. The file format used for
Petri Net input and output is eXtensible Markup Language (XML) [3].
Since Design/CPN is one of the most elaborate Petri Net tools avail-
able, supporting both design and analysis of Coloured Petri Nets at the
time being, the tool is designed to meet the DTD! (Document Type
Definition) of Design/CPN’s XML.

Figure 5.1 gives a high level representation of the data flow between
Design/CPN and RWSEditor. The tool takes railway components as
input through XML files and uses the DOM (Document Object Model)
parser to give an internal representation of the elements [4]. A high
level railway net is then created and saturated with these components.
The saturated code is then translated to XML and then imported back
into Design/CPN2.

RWSEditor
_ XML | Generator
Design/CPN DOM (java)
XML =

Figure 5.1: The data flow between RWSEditor and Design/CPN

5.2 Functionality

RWSEditor is a graphical tool. The tool provides functionality for:

I'DTD defines the document structure with a list of legal elements.

2During the course of writing this thesis, Design/CPN was replaced by CPN-
Tools. However, the XML format of Design/CPN may be converted to the XML
format of CPN Tools.

68

e describing atomic specifications:

— atomic components.
— interface nodes and their types.

— composition rules.
e constructing specifications by composition.
e saturation, both composite and atomic.
e loading XML files:

— load Petri Net components from XML files.
— load specifications from XML files.

e saving XML files:

— save specifications to XML files.
— save Petri Net implementations to XML files.

These functionalities will be described further. To avoid confusion with
JAVA Nodes, we use the term connector when referring to interface
nodes in the specification language.

5.2.1 Atomic Specification

The tool has eight built-in atomic components: end segment, turnout,
rigid crossing, track segment, left and right singles, scissors and double
slip. These are the most common components in railroad constructions
and are used to form most railroad topologies [22|. Before beginning
construction of a specification, some template atomic components must
be created so that the component column is non-empty. These com-
ponents have connectors (interface nodes) that connect to other com-
ponents, and they work as templates for a specification. Initially, every
connector of a template has the empty type ©. All components are im-
plemented as objects with unique identities and connectors are stored
in an array in each component. The connectors are also objects and
the component id and array index forms the unique identity for each
connector.

To perform composition of components, rules have to be specified. This
is done by first explicitly assigning each connector of a template with
a type chosen from a list and then making rules based on these types.

69

Types are implemented as integers and more than one connector may
have the same type.

It is also possible to have more than one copy of a given component
as a template since we want to have the possibility to have the same
component structure but with different Petri Net saturations later, e.g.
two turnout templates saturated with different Petri Net implementa-
tions. To distinguish equal templates from each other, each component
is equipped with an editable text label. When a component is created
based on a template, it inherits the template’s label, but this label can
later be changed locally.

5.2.2 Specification

Each component in a specification is unique, and the constructed spe-
cification has a graph structure. Specifications are constructed by using
the templates. When a template’s connector is chosen, the template
becomes the selected template and the chosen connector becomes the
selected connector. When a selected connector is chosen (along with
its selected template), any free connector in the specification can be
chosen, and if the chosen connector is joinable with the selected con-
nector, the specification is extended with a copy of the selected tem-
plate. Two connectors are joinable if there is a rule with both their
types. The new component will use its connector corresponding to the
selected connector (belonging to the template component) to connect
to the chosen connector. Internally, the joined connectors will refer to
each other as neighbours. It is also possible to choose two free connect-
ors of a specification and join them without using the templates, and
to disconnect two joined connectors.

RWSEditor is implemented to ease the process of large scale Petri Net
construction. Components can be rotated 360 degrees to form any
wanted layout, and the structure of components can be adjusted by
dragging their connectors. By far, the most used component is the
road component, and by using the “create multiple nodes” option, a
specified number of road components (if their template is joinable with
itself) are automatically constructed and connected as if it was done
manually step by step. This makes the construction process much more
effective.

70

The Placement of components

The placement of each component is based on the coordinates of its
connectors, which must be explicitly calculated. This is done by first
calculating the coordinate of the center point of the component, which
is the point e in Figure 5.2 (a). Thereafter, according to how many
connectors this component has, an equal number of points evenly placed
in a circle around e with a radius of ae, starting with the starting point
a.

angle c

a d b
(a) (b)

Figure 5.2: The coordinate of components

Following is the pseudo code for calculating the coordinates of the con-
nectors of a component:

calculatePositions () {

<find the center point:>

hypotenuse = 4/ (ab? 4 bc?);

angle a = cos™!(ab/hypotenuse);
radius = hypotenuse / 2;

ad = radius * cos (angle a);

de = radius * sin (angle a);

<Calculate the positions of connectors:>

make e the origin;
angle = angle between the x axis and ea; (see Figure 5.2 (b))
angle between connectors = 360/number of connectors;

<We have already the coordinates for start position, a. Must
calculate the coordinates for the remaining connectors: >

71

for (<all connectors ¢>){
angle += angle between connectors;
c.X = radius * cos(angle);
c.Y = radius * sin(angle);

}

5.2.3 Saturation

We may assign a Petri Net implementation to any template at any time
during the construction of a specification. Since each component refers
to its template, all components added to the specification will have the
same underlying Petri Net implementation as their templates. The user
can change the underlying Petri Net implementation of a template at
run time.

Before we assign Petri Nets to templates, these nets must be loaded
into RWSEditor as XML files. These files are parsed by Java library
functions (DOM) and represented internally as objects of types Place,
Transition and Arc. An assignment of a component to a Petri Net im-
plementation is done by specifying the input file and explicitly assigning
each connector of the component to an interface place.

5.2.4 The Petri Net Output

The Petri Net for the specification can be written to file according to
the DTD of Design/CPN. The algorithm that builds the composite
Petri Net will traverse components in a specification, which has an un-
directed graph structure, depth-first [33], and look at the underlying
Petri Net. The algorithm uses variables to mark both the visited com-
ponents and their visited connectors. Along the way, the algorithm will
assign each Petri Net element with a unique id and a unique name for
places and transitions. These names relay which node they corresponds
to in the specification, more precisely, a concatenation of their original
names and the components’ IDs. The time to perform the traversal
of a specification is O(|Connector|+ |Component|) where |Connector|
and |Component| are the number of connectors and components in a
specification.

72

5.2.5 The Specification Output

The specification can also be saved as an XML file. Files contain
the templates used, the constructed specification and the rules used.
RWSEditor constructs XML files in accordance with the following DTD:

<!-- Project -->
<VELEMENT rws (template, workspace, rules)?>

<!-- The template component -->
<!ELEMENT templates (nodex)>

<!-- The workspace component -->
<VELEMENT workspace (nodex)>

<!-- Composition rules -->
<IELEMENT rules (rule)x*>

<!-- The node component -->
<!ELEMENT node (info, placement, endcoordinates?, connectorx*)>
<V'ATTLIST node id ID #REQUIRED
templref IDREF #IMPLIED>
<!-- Necessary information -->
<!ELEMENT info EMPTY>
<VATTLIST 1info componenttype CDATA #IMPLIED
nodelength CDATA #REQUIRED
status CDATA #REQUIRED>
<!-- The coordinates and dimensions of the node -->
<!ELEMENT placement EMPTY>
<IATTLIST placement x CDATA #REQUIRED
y CDATA #REQUIRED

width CDATA #REQUIRED
height CDATA #REQUIRED
centerX CDATA #REQUIRED
centerY CDATA #REQUIRED>

<!-- If this is an end element (only one connector) -->

<!ELEMENT endcoordinates EMPTY>

<IATTLIST endcoordinates endplx CDATA #REQUIRED
endply CDATA #REQUIRED

73

endp2x CDATA #REQUIRED
endp2y CDATA #REQUIRED>

<!-- The connector component -->

<!ELEMENT connector (pos, neighbour?, info)>

<VATTLIST connector index CDATA #REQUIRED
noderef IDREF #REQUIRED

istemplate CDATA #REQUIRED>

<!-- Position -->

<!ELEMENT pos EMPTY>

<VATTLIST pos X CDATA #REQUIRED
y CDATA #REQUIRED>

<!-- Neighbour -->

<!ELEMENT neighbour EMPTY>
<VATTLIST neighbour node IDREF #REQUIRED
index CDATA #REQUIRED>

<!-- Vital information -->
<!ELEMENT info EMPTY>
<IATTLIST info status CDATA #REQUIRED

connectortype CDATA #REQUIRED>

<!-- Rule -->

<!'ELEMENT rule EPTY>

<VATTLIST 1rule from CDATA #REQUIRED
to CDATA #REQUIRED>

The DTD gives a description of data that constitute specifications. A
node component is a basic atomic component in the specification. It
consists of a unique id, a reference to its corresponding template, all the
calculated coordinates and dimensions and its connectors, which each
in turn has a position, a type and a reference to its joined connector,

if any.

74

5.3 Cardamom Town Ride

We consider a simple Cardamom town’s® railroad circuit consisting of
four turnouts and represented as real railroad drawings, as illustrated

in Figure 5.3.

Figure 5.3: Cardamom circuit

Figure 5.4 on the following page shows how the railroad circuit of Fig-
ure 5.3 is specified in RWSEditor, based on the atomic components
denoted Components. The tool requires that the atomic specification is
defined first, including the composition rules. In this example, the spe-
cification uses only two kinds of railroad components, track segments
and turnouts.

The saturation algorithm, based on Lemma 7 and Theorem 1 on page 62
that automatically generates Petri Net code can be invoked after the
atomic components are saturated with Petri Net turnout and road com-
ponents, for example those presented in Section 3.2. Figure 5.5 shows
how atomic saturation is done in the tool, by assigning each connector
of the templates (the atomic components) to a concrete Petri Net in-
terface place. Here, the blue connector represents the connector being
assigned.

The Petri Net code, which is a concrete implementation of the spe-
cification, is produced in the form of an XML file, ready for input into
Design/CPN. Figure 5.6 on page 77 shows the Petri Net automatic-
ally generated from the specification in Figure 5.4 in Design/CPN. In
Chapter 7, the dynamic properties of this net will be analysed.

3Cardamom Town is a children’s story, written by Thorbjgrn Egner [27].

75

o F E

] RWS Editor
File Edit Tools

Component: |Turnout w | Node length: |5|l ‘v|| Create new component ||Dri1_w = | Abs. length: [] Connector type: |1 j

Components:

~

Mouse: 235, 0 - Angle: 81

Figure 5.4: Cardamom circuit in RWSEditor

[5] rwsS Editor
File Edit Tools

Component: |Track_section ¥ | Node length: |3[I ‘VH Create new romponent ||[jri:l_w | Abs. length: [O Connector type: |1 ﬂ

Components:

—~

& E
Component name: | ROAD.xml ¥ | Interface id: |id22 = Click!

Mouse: 521, 1 - Angle: 0

Figure 5.5: Saturation of the Cardamom circuit

0'G 9INS3I

}MOITD WOUWRPIR))} JO [OPOUW 19N 1110

undien)

unAcL)

(member((s0, R

uneLy utndicn)

anAcL)

Eaconrol

nAcL)

uocLy

[member(SiD.Lef).)

wndien)

wingien
undicn

NoTrain

uncL) uncL)

undien)
Noriain

NoTrain

wAcL)

Exconrol

(member((s0.Righ,)
)

Norran

g
unoien

ungicn,

(rember(so.Le))

Lswieh

wndinn)

wingien

uindicn)

utnien

suieh

[member(i0,Jom]

\
a

— 4

uneLy
Norrain Noriain

NoTran
o

uingicn)

wtndicn uACL)

DS

Staus undien)

[member(iDRigh.0)

vndns) M
suien

wtngien)

unAcL)

oLy

NoTrain

NoTrain

Excontal
ThoTrain

unAcL)

i)

undicn)
[member(iD 3o)

vt unAcL)

wngicn wnAcLy

Norrain

ToTrain

oLy uncL)

wnAcLy

wncLy wneLy wnoL) uncLy

NoTian Norian

INoTrain INoTrain

wnAcL) wacLy wnAcL) wnacLy unAcL)

ety

uneLy

78

Chapter 6

A Large Application — Oslo
Subway

Oslo Sporveier [5] is the only public transportation company enclosed
within the city limits of Oslo! and the only subway company in Nor-
way. Oslo subway (Figure 6.1 on the following page) consists of 5 lines,
operates in two main directions, east to west and west to east, and has
a total of 103 stations. These 5 lines are:

line 1: Majorstuen - Frognerseteren - Majorstuen,

line 2: Ellingsrudasen - Osteras - Ellingsrudasen,

line 3: Mortensrud - Sognsvann - Mortensrud,

line 4: Bergkrystallen - Bekkestua - Bergkrystallen and

line 5: Vestli - Storo - Vestli.

The subway system is often undergoing changes and Oslo Sporveier is
interested in integrating Petri Nets in the system development. The
goal for Oslo Sporveier is to be able to simulate the Oslo subway and
analyse schedules of trains, including the trains’ routes through the
network, arrival and departure time at stations, maximum speeds, etc.
Being able to simulate changes in the infrastructure of the Oslo subway
system would also be a great advantage. For example, Oslo subway
is currently extending line number 5 from Storo station to Sinsen and
then to Carl Berner station, forming a circuit.

Trains run on tracks that are divided into sections that at all time
report where trains are located. Oslo subway also operates on a “fail
safe” block system principle, which is based on train/no train in the

IThere are other bus companies that have routes inside the city, but all these
routes extend outside the city.

79

@ £ n&n'{:{iﬂﬁ\ H ® Forlengelse fra Blingern bl Storo fra augest 2003
Lilleans Ferlangalse fra Storo tll Carl Baenars plass fra 2006 Westli

N
)
q“"k-\ ﬂEElingsmdésen
Con. %) F Funasg
1..\ ; Linchabmigy
%“\{-\’;;6 Ferskmiagspatken Tn:mui
b Ry Blindarm*
Oisteras
.. * Gndlia
- Ekeyenazin
1 Oppal
g
Kaolsas [E] H " Bijar
i : H . 1 Begerud
A B |
8 gﬁél:sﬁ@ 2 Eergkfystallen d L Mortensrud

Figure 6.1: Oslo subway

sections (see Section 3.2.1). In practice, this is done by an electrical
circuit with a source of current at one end and a detection device at the
other. If a section is occupied by a vehicle, its axles produce a short
circuit between the two rails. The detection device will not receive
any current and therefore detects the section as occupied. Since our
railway Petri Net components implement a block system, we may use
them without modifications.

Figure 6.2: Oslo subway technical drawings
In cooporation with Oslo Sporveier, the whole subway system has been

80

specified in the RWSEditor tool according to the technical drawings.
The drawings where partially in electronic format and partially old-
fashioned maps. Figure 6.2 depicts segments of the Oslo subway tech-
nical drawings. The topmost fragment is a part of line 5, between
Linderud and Ammerud stations and the fragment in the botton is the
crossroad between line 2 and 3, in the area between Hellerud, Haugerud
and Oppsal. According to Oslo Sporveier, the drawings shall be inter-
preted as follows:

Tracks: Divided into sections, each corresponding to three road
components.

Scissors: Shall be pairwise synchronised.

The whole of Oslo subway has been specified in RWSEditor using the
composition rules in Figure 6.3. These rules are based on 11 interface
types. It is hard to state absolute principles and rules for correct con-
struction of railroads, so we have been pragmatic in following the most
common patterns in the technical drawings.

SR-1 SR-1 SL-1 SL-1 T2 5 sc sC
O O TU-1 L-1 L-2 END RC RC

O\Q Q/O C C C E
Q O i 1

SR-2 SR-2 SL-2 sL-2 sc sc

TU-2 RC

<SR-2, SL-2>, <SR-2, L-1>, <SR-2, TU-2>, <SR-2, SR-1>
<SR-2, SL-1>, <SR-2, L-2>, <SR-2, TU-1>, <SL-2, L-1>

<SL-2, TU-2>, <SL-2, SR-1>, <SL-2, SL-1>, <SL-2, L-2>

<SL-2, TU-1>, <L-1, SC>, <L-1, TU-2>, <L-1, END>
<L-1, SR-1>, <L-1, SL-1>, <L-1, L-2>, <L-1, RC>
<L-1, TU-1>, <SC, L-2>, <TU-2, SR-1>, <TU-2, RC>
<TU-2, L-2>, <TU-2, TU-1>, <END, L-2>, <SR-1, SL-1>
<SR-1, L-2>, <SR-1, TU-1>, <SL-1, L-2>, <SL-1, TU-1>
<L-2, RC>, <L-2, TU-1>, <RC, RC>, <RC, TU-1>
<TU-1, RC>, <TU-1, TU-1>

Figure 6.3: Composition rules for Oslo subway

Take for instance the road component. It has two interface types, L-1
and L-2. These two types participate in rules with all other interface
types except themselves, which means there are no rules (L-1, L-1) or
(L-2, L-2). This is because the road components are directed, and to

81

preserve the direction, these combinations can not be used. The end
component has type END and (L-1, END) and (END, L-2) are the
only rules with this type, to ensure that trains have sufficient room for
deceleration and that they have sufficient room to properly leave any
crossing areas.

During the construction of the Oslo subway specification, we had to in-
terpret some components because the technical drawings are not com-
pletely consistent. In some places it is not clear whether a given com-
ponent is a rigid crossing or a double slip, because the usage of indicat-
ors for points is ambiguous (some turnouts have a point indicator and
others do not), and without the indicator, both components look the
same. We solved this by simply using a rigid crossing if there were no
point indicators. As for map drawings, it is not shown how many block
sections there are between stations, so the number of block sections is
determined by evaluating the distances and comparing these to draw-
ings with block sections. Furthermore, the technical drawings do not
provide details about the train stables so they were not modelled.

The specification process took approximately two working days. A frag-
ment of the specification is shown in Figure 6.4 on the next page, which
includes the track area shown by the technical drawings in Figure 6.2.
During the generation of the Petri Net, Java ran out of memory, res-
ulting in a segmentation fault. This was due to the high number of
objects generated, and increasing the runtime memory pool for Java
resolved this. The overall specification based on 8 atomic components
consists of a total of 918 components, including;:

e 752 track sections

38 turnouts

e 4 rigid crossing

33 single left

44 single right

9 scissors

38 end sections

a total of 2016 connectors

With the specification of Oslo subway and the basic railway components
given in Chapter 3.2, RWSEditor automatically generated the Petri Net

82

5] rWS Editor

File Edit Tools

| B

Component: |Track_section ﬂ Node length: |3l] |v|| Create new component ||Draw | Abs. length: [] Connector type: |1 ﬂ

Components:

4IPSt |

1] 7 |

[»

[«]

Mouse: 9312, 3610 - Angle: 21

Figure 6.4: A fragment of the Oslo subway specification

implementation. Figure 6.5 on page 85 shows a small fragment of the
generated Petri Net imported into Design/CPN, corresponding roughly
to the framed part of the upper tracks in Figure 6.4. To summarise,
the generated Petri Net has 33031 Petri Net elements, including 3455
places, 5726 transitions, 23850 arcs and 2753 initial tokens.

We found out that Design/CPN? was not able to handle Petri Nets
the size of the generated Petri Net implementation (Figure 6.5 filled
the whole working space of Design/CPN in its width), so we could
not perform neither analysis nor simulations on the net. Theoretically
speaking, given that Oslo subway is one bounded, each place contains
maximum one token at any time. This means that the occurrence
graph has a maximum of 2" reachable states, where n is the number
of places and the number of states increases exponentially with the

2We have also tried cpnTools, it succeed in processing the file but because of its
size, it is impossible to work with on the hardware we had access to.

83

number of trains. Even though real-sized railway systems have many
constraints that reduces the number of states a system can be in, e.g.
by trains following concrete routes and operational rules, calculating a
full occurrence graph still requires a vast amount of time and memory.

84

Figure 6.5: A fragment of the Oslo subway Petri Net model

86

Chapter 7

Analysis

This chapter illustrates how properties that may be interesting in the
domain of railway systems can be analysed. We look at the Cardamom
net that we constructed earlier using RWSEditor.

7.1 The Railway Domain

Some properties associated with railway systems can be reduced to
properties associated with Petri Nets. Safety, in terms of keeping trains
from colliding, is an important property associated with railway sys-
tems. To verify that a railway system is safe in this sense, we may
examine the tokens in all places that represent track sections in the
corresponding Petri Net. If we let (N, My) be a railway net N with
initial marking M,, P, be a finite set of places that represents track
sections in N and T be a function that returns the number of train
tokens in a multi-set, then a Petri Net satisfying the safety property
can be expressed as:

VM e M sc P, : T(M(s))=0V1

The formula expresses that each place in every reachable marking from
the initial marking has either no train or exactly one train.

It is often interesting to see whether a system is in progression. The
progression property indicates that the system is in a state where at
least one train is able to move. One way to find out whether a railway
system satisfies the progression property is to investigate whether at
least one train can change its current position, to the track section
ahead or behind. In a Petri Net this can be done by investigating

87

transitions that move trains forward, more specifically, the transition
firings. This property can be expressed by:

VM3IM teT, oM -2 M AtEo

where M, M’ € M and T; is a finite set of transitions that are respons-
ible for moving trains.

7.2 Analysis of the Cardamom Town Rail-
way Net

We shall take the Petri Net model of the Cardamom town railway
net generated in Section 5.3 and analyse its properties using simula-
tions and State space methods. We attempt to analyse two initial
states of the Cardamom net, one where all trains are running in the
same direction along the same route (Figure 7.1 (a)) and another where
trains are running along different routes and in different directions (Fig-
ure 7.1 (b)). In both cases, the starting point for trains remains the
same.

Figure 7.1: Two analysis cases

7.2.1 Analysis of Initial State 1

We consider an initial state, the initial marking in Figure 7.2 on page 93,
with two trains,

tr((3,CL,[(1,Right),(2,Join),(3,Join),(4,Join)])) and
tr((5,CL,[(1,Right),(2,Join),(3,Join),(4,Join)]))

running along the same route. The two red tokens are trains and the
position of each turnout is indicated by the placement of a blue token.
The grey tokens are NoTrain tokens and tokens with red borders are the
identities of turnouts. The enabled transitions in this initial marking
are marked with green borders.

88

By invoking the simulation option in Design/CPN, we may see one
possible run with tokens moving between places and the enabled trans-
itions. The first six simulation steps are shown below, the increasing
leftmost numbers indicate the step number followed by the transition
that fired. On the line that follows is the binding element, where n is the
train line (of type TrainLineNo) and r is the route (of type ListRoute):

1 MoveCL14

{n=5,r [(1,Right),(2,Join), (3,Join), (4,Join)]}

2 MoveCL30

{n=5,1 [(1,Right),(2,Join), (3,Join), (4,Join)]}

3 MoveCL20

{n=3,r1 [(1,Right),(2,Join), (3,Join), (4,Join)]}
3 RdirR31

{dir
sID

I
Q
[
B

I
(¢
=

I

[(1,Right),(2,Join), (3,Join), (4,Join)],
1}

4 RdirJ27

{dir
sID

CL, n =5, r
3}

[(1,Right),(2,Join), (3,Join), (4, Join)],

5 MoveCL25
{n =5, r = [(1,Right),(2,Join), (3,Join), (4,Join)]}

6 LdirJ23

{dir
sID

CL, n =5, r = [(1,Right),(2,Join), (3,Join), (4,Join)],
2}

6 MoveCL19

{n =3, r = [(1,Right),(2,Join), (3,Join), (4,Join)]}

89

The simulation is based on a non-deterministic choice of enabled trans-
itions. As we can see, at the beginning, train 4 will run first, leaving
two track sections behind while train & stays in the same place. Then
both trains will move concurrently for one step, after which train & will
stop again while train 5 moves on. As we have the disadvantage of not
having a real time concept represented in our model, we can not tell
how much train & is behind schedule, we may only say how many steps
or how many track sections.

With non-deterministic behaviour, we are not interested in the end
marking, but rather the dynamic behaviour of the system, the possible
markings. Here it may be interesting to see whether there are markings
where trains may crash, if all trains are in progression or if we can
achieve a deadlock. By deadlock, we mean a marking where all trains are
stuck and no transition is enabled, violating the progression property.
Here we will try to search for such a marking and whether the net is
safe using state space analysis. The state space analysis calculated the
occurrence graph for this initial marking, the graph has 156 nodes and
286 arcs. Some of the possible behaviour is summarised below.

Safety

The upper and lower integer bounds for each place in the net is cal-
culated. Design/CPN calculates the upper and lower bounds using a
function F of type Node — multi-set and calculates an integer |F'(n)|
for each node n in the occurrence graph, returning respectively the
maximum and minimum of the calculated integers.

Each line below (a total of 33 lines) has three attributes, correspond-
ing to a place in the Cardamom circuit, the upper integer bound for
that place and the lower integer bound for that place. CardamomPet-
rilNet’place _name denotes the place with name place_name in the net
named CardamomPetriNet. Lines 1 to 4 represent the Change place of
each turnout, lines 8 to 11 are their corresponding left positions and
lines 23 to 26 are their right positions. Places that hold each turnout’s
ID are in lines 30 to 33. The rest of the lines are the segment places.

90

Boundedness Properties

Best Integers Bounds Upper Lower
1 CardamomPetriNet’Changel6 0 0
2 CardamomPetriNet’Change23 0 0
3 CardamomPetriNet’Change27 0 0
4 CardamomPetriNet’Change31 0 0
5 CardamomPetriNet’Join23 1 1
6 CardamomPetriNet’Join27 1 1
7 CardamomPetriNet’Join31 1 1
8 CardamomPetriNet’L16 0 0
9 CardamomPetriNet’L23 1 1
10 CardamomPetriNet’L27 0 0
11 CardamomPetriNet’L31 0 0
12 CardamomPetriNet’Left16 1 1
13 CardamomPetriNet’P114 1 1
14 CardamomPetriNet’P115 1 1
15 CardamomPetriNet’P132 1 1
16 CardamomPetriNet’P133 1 1
17 CardamomPetriNet’P214 1 1
18 CardamomPetriNet ’P218 1 1
19 CardamomPetriNet’P219 1 1
20 CardamomPetriNet’P220 1 1
21 CardamomPetriNet’P221 1 1
22 CardamomPetriNet ’P225 1 1
23 CardamomPetriNet’R16 1 1
24 CardamomPetriNet’R23 0 0
25 CardamomPetriNet ’R27 1 1
26 CardamomPetriNet’R31 1 1
27 CardamomPetriNet’Right16 1 1
28 CardamomPetriNet’Right23 1 1
29 CardamomPetriNet’Right27 1 1
30 CardamomPetriNet’Switch_ID16 1 1
31 CardamomPetriNet’Switch_ID23 1 1
32 CardamomPetriNet’Switch_ID27 1 1
33 CardamomPetriNet’Switch_ID31 1 1

As expected, since all railway components used in the saturation process
(when we specified the net in Section 5.3) are safety components from
Section 3.2, the upper and lower bounds of all track sections are one.
Either there is a train (Train token) in the section or not (noTrain
token). There has been no changes in the positions of any turnout as

91

both the upper and lower bounds of all the Change places are 0, thus
the controlling branch of all point machines stay the same throughout
all markings of the net.

Liveness property

To find possible deadlocks, the Design/CPN function ListDeadMark-
ings() will search the entire occurrence graph, trying to find nodes that
have empty lists of output arcs. Our search results:

ListDeadMarkings() ;
val it = [] Node list

As the function returns an empty list of dead markings, there are no
deadlocks. This also means that the system satisfies the progression

property.

92

JON 1139 wourepIe)) oy, :g'L 9IS

7.2.2 Analysis of Initial State 2

We now consider the same initial state of the net as in Figure 7.2 on
the page before with the same markings, but with the trains running
in opposite directions.
tr((3,ACL,[(1,Join),(2,Left),(3,Right),(4,Right)])) and
tr((5,CL,[(1,Left),(2,Join),(4,Join)]))

running in opposite directions and following different routes. Both
trains reside in the same places as in case 1.

Liveness property

The occurrence graph for this marking contains several possible dead-
locks, each represented by a marking with trains located on the con-
flicting route, which is the route where the travel plans of both trains
overlap (see Figure 7.1 (b)).

There are different ways to avoid conflicts regarding the initial mark-
ing. One is to design road components to turn the train when it meets
an opposing train, a train in the opposite direction, e.g. from going
clockwise to anti-clockwise. Another is to wait for clearance of the con-
flicting route before entering it by checking the states of track sections
on that route. The first approach is used in [6], where trains do not
follow any concrete travel plan except for the direction. The disadvant-
age of this approach is that when two trains with different directions
meet on a conflicting route, they will both change their direction and
start to move away from each other, resulting in an unrealistic schedule
and in the worst case, repeating this pattern indefinitely, which will
be the case with our net. With the second approach, each train has
to wait until the train in the conflicting area has left. The number of
arcs needed to do the check increases proportionally with the number
of sections in the conflicting area. Using the second approach, the cal-
culated occurrence graph has a total of 228 nodes and 427 arcs with
no deadlocks. By forcing the simulator to fire all enabled transitions
in each marking we can observe the behaviour of trains in a run where
trains compete to enter the conflicting area:

6 MoveCL33
{n =5, r = [(1,Left), (2,J0in), (4,Join)]}

6 RdirJ31
{dir = ACL, n = 3, r = [(1,Join),(2,Left), (3,Right), (4,Right)],

94

10

11

17

18

18

19

19

20

sID = 1}

MoveACL30
{n=3,r1

SetR23
{}

MoveACL14
{n=3,r1

MoveACL15
{n=3,r

RdirR16

{dir = ACL, n = 3, r =

sID = 4}

MoveACL17

[(1,Join),(2,Left), (3,Right), (4,Right)]}

[(1,Join),(2,Left), (3,Right), (4,Right)]}

[(1,Join), (2,Left), (3,Right), (4,Right)]}

[(1,Join), (2,Left), (3,Right), (4,Right)],

{n =3, r = [(1,J0in), (2,Left), (3,Right), (4,Right)]}

LdirL23

{dir = ACL, n =3, r =

sID = 2}

MoveACL25

[(1,Join), (2,Left), (3,Right), (4,Right)],

{n =3, r = [(1,J0in), (2,Left), (3,Right), (4,Right)]}

SetR23
{}

RdirJ23
{dir =CL, n=5, r =

RdirR27

{dir = ACL, n =3, r =

sID = 3}

MoveCL21

[(1,Left), (2,Jo0in), (4,Join)], sID = 2}

[(1,Join), (2,Left), (3,Right), (4,Right)],

{n =5, r = [(1,Left), (2,J0in), (4,Join)]}

95

21 MoveCL20
{n =5, r = [(1,Left), (2,J0in), (4,Join)]}

In step 6, both trains moved concurrently forward, but in this step train
3 entered the conflicting area. In step 7, Train 3 continued moving
while train 5 stayed in the same track section, waiting for the position
of turnout 2 to change so that it could enter the conflicting area. In
the steps from 8 to 17 only train 3 could move since it was still in the
conflicting area and train 5 still was waiting for the clearance. It was
not until step 18 that train 3 left the conflicting area, giving train 5
clearance to enter (step 19) while train 3 this time had to wait in the
entrance to the area.

96

Chapter 8

Conclusion

In this thesis, we have seen how railway components can be modelled
using Coloured Petri Nets, formally defined a way to automatically
generate Petri Nets and implemented a tool that does this in JAVA. We
shall conclude this thesis by reconsidering and answering the questions
posed in the introduction. These questions comprise using Coloured
Petri Nets for railway modelling, automatic construction and analysis.

Railway Models as Coloured Petri Nets

How can we use Coloured Petri Nets to model railway components
naturally with concrete operational rules and trains?

We illustrated the usability of Coloured Petri Nets to model railway
systems, both the basic elements in a railway system, such as track
sections, trains etc., and behaviours like for example trains movements.

We showed how track sections can be represented naturally by places
and trains by structured tokens. Since Coloured Petri Nets are very
general, they can be used to model the different basic railway com-
ponents, such as road segments, turnouts, crossings, double slips, ri-
gid crossings, scissors and singles. These components can in turn be
composed to form different railroad topologies. Furthermore, opera-
tions that control the routing of trains can also be expressed. We have
seen how point machines explicitly can be modelled and together with
guards they can control the routing of tokens. These Coloured Petri
Net railway components implement the basal aspects of a block system
operation to ensure a safe train separation.

A Coloured Petri Net model can be used both to describe the states
of a system and the actions that alter these states. For railway sys-

97

tems, the state of a system can be represented by a given distribution
of trains in track sections. In an analogous way, the distribution of
tokens over the places defines the state of a system. That trains may
enter or leave track sections are behaviours of a railway system. This
corresponds to firings of transitions which moves tokens from places to
places, producing changes in the distribution of tokens.

Railway systems are concurrent systems and coloured Petri Nets is ad-
equate for expressing arrangements associated with concurrent systems
such as concurrency, sequencing and choice. Properties such as allow-
ing multiple trains to concurrently run on tracks and sequential train
movement can easily be expressed by the few and simple mathemat-
ical entities of Coloured Petri Nets. Another aspect worth noticing
about the benefits of using Coloured Petri Nets for railway modelling
is the possibility of modular composition and progressive modelling.
For example, we may construct a railway net by composition of the
basic railway components as we have done and these Coloured Petri
Net components can be refined with additional properties, for example
synchronisations as we have seen in the scissors components.

For the above reasons, we think Coloured Petri Nets is adequate and
well suited for modelling real life systems such as railway systems.

Automatic Construction

How can we automatically construct Petri Net models?
What kind of algebra is sufficient for this construction?
What are the benefits of this construction if any?

We introduced an abstraction by using a two layered model for auto-
matic construction of complex Petri Nets. The theory introduces a spe-
cification language with structure and rules for creating railway specific-
ations and a saturation technique. The specifications are constructed
through recursive composition, and we built a specification out of basic
components. Saturation works as a bridge between these two layers and
is the essence of automatic construction, as it takes an instance of the
specification layer, a concrete specification and generates an instance
of the Petri Net layer, a concrete Petri Net model.

We introduced an algebra for composition and decomposition for both
the specifications and the Petri Nets. Compositions are necessary for
building the specifications and the Petri Nets and decompositions to
split or remove subsets from the specifications and the Petri Nets.

98

With the approach described in Chapter 4, constructing Petri Nets by
specifications and using the saturation technique have some advantages:

First, it is more manageable to model railway systems at the specifica-
tion layer than at the Petri Net layer. In the examples of Chapter 5, we
have seen railway specifications in a style that closely resembles tech-
nical railway drawings, so no particular Petri Net knowledge is needed
and we do not need to worry about whether placements of places, trans-
itions and arcs are correct.

Second, the time spent constructing the specification is considerably
shorter than it would be had the specification been constructed using
Petri Nets. Take for example Oslo subway, an industrial sized system,
where it took two days to specify and generate an executable net using
RWSEditor. This system would perhaps require weeks or months if it
was modelled directly in Petri Nets.

Third, the structure of the layout is stored, which makes it easy to
change the underlying implementation as the underlying Petri Net com-
ponents can be replaced without altering the high level specification.
By saturating the same specification with different Petri Net compon-
ents, a set of executable Petri Net codes can be generated. This is
an effective way to simulate and analyse different railway operation
principles.

Fourth, the specification can be modified without considering the un-
derlying implementation. As we have seen in Sections 4.1 and 4.2, com-
position is defined for both the specification and the Petri Net layer. If
the structure in the specification is changed, the underlying Petri Net
implementation will automatically be modified.

Fifth, it is possible to extend the abstraction layer and Petri Net imple-
mentation layer independently. We may for example add new types of
railway components in the specification layer or even use a composite
specification as a basic building block without considering how this is
done in the Petri Net layer.

For these reasons, this way of constructing railway systems facilitates
experimentation with railway structures and behaviours. The tech-
niques presented in this thesis generalise to many application domains
and not just railway systems. Domains with many instances of com-
ponents and non-trivial but formalised grammars for connecting com-
ponents seem particularly suitable for saturations.

99

Analysis

What are the benefits of analysis methods provided by
Petri Nets, when applied to railway systems?

We have seen how occurrence graphs can be used to verify dynamic
properties of railway systems from an initial state and how simulations
can be used to observe behaviours of the system. With simulations we
may see what is actually happening in the system, where the trains are,
if they operates correctly etc.

If the net is bounded, state space analysis provides a complete know-
ledge of all its properties, because then the occurrence graph is finite.
This is the case with railway nets constructed with the defined com-
ponents — we have a finite number of initial tokens, including trains,
and all places in the Petri Nets constructed by these components are
bounded. This means that there is a finite number of states to con-
sider when analysing the behaviours. For analysing small nets, as in
Chapter 7.2, the occurrence graph is fairly small, but for Oslo sub-
way, we may see an exponential growth in size. Thus, for large Petri
Nets such as the Oslo subway model, sufficient time and memory are
necessary along with techniques to cut down the search space of an
occurrence graph.

8.1 Future Work

There are several directions for future work in the railway domain and
some of them have already started.

Modelling railway systems.

This thesis has only shown how Petri Nets can be used to implement
the basic railroad components and operations that comprise parts of an
industrial sized railway system, while signalling systems, control sys-
tems, interlocking systems, stations etc. also all constitute important
parts. Furthermore, the concept of time in this thesis correspond to the
notion of steps in the firing semantics of Petri Nets, which is implicitly
given. A more detailed modelling will require time being modelled ex-
plicitly, for example by using timed Coloured Petri Nets [15], so that
the ideas of timetables, durations and delays can be implemented. A
notion of time is also necessary to be able to analyse the performance
of systems .

100

Domain specific analysis and complexity

Domain specific analysis methods are specialised used to solve problems
in a well-defined application domain.

Complexity of general Petri Net problems has been studied in many
papers. As shown in [10, 9, 32, 28|, most interesting questions (e.g.
liveness and boundedness) about the behaviour of general Petri Nets
are EXPSPACE hard [11]. For some restricted Petri Net classes, these
problems are tractable. For railway systems, we are curious about
whether railway nets by reduction can be shown to belong to a restricted
class of Petri Nets. An important question to answer is where problems
regarding the behaviour of railway nets belong on the complexity map.

For this purpose, it is necessary to investigate generalisations of domain
specific analysis, which is to see whether we can use the advantage of
considering one particular domain, i.e. the railway domain, and its
components, to achieve better computability analysis. This approach
was taken by Wil van der Aalst in his dissertation where he showed how
Petri Nets can be used to define, analyse and implement the concept
of both logistics and workflow [29, 31, 30]. He proved for example the
relation between Free Choice Petri Nets [8] and workflow nets.

101

102

Bibliography

1]
2]
3]
4]
[5]
(6]

7]

8]

[10]

[11]

http://www.daimi.au.dk/designCPN//.
http://java.sun.com/.
http://www.w3.org/XML/.
http://www.w3.org/DOM/.
http://www.sporveien.no/.

G. Berthelot and L. Petrucci. Specification and validation of a
concurrent system: An educational project. In K. Jensen, ed-
itor, DAIMI PB: Workshop Proceedings Practical Use of High-
level Petri Nets, pages 55—-72. University of Aarhus, Department
of Computer Science, jun 2000.

Eike Best, Raymond Devillers, and Maciej Koutny. Petri Net Al-
gebra. Springer-Verlag, 2001.

Jorg Desel and Javier Esparza. Free Choice Petri nets. Number 40.
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1995.

Javier Esparza. Decidability and complexity of petri net problems
- an introduction. In Lectures on Petri Nets I: Basic Models. Ad-
vances in Petri Nets, number 1491 in Lecture Notes in Computer
Science, pages 374-428. Springer-Verlag, 1998.

Javier Esparza and Mogens Nielsen. Decidability issues for petri
nets. Petri Net Newsletter, (47):5-23, 1994.

Michael R. Garey and David S. Johnson. Computers and Intractab-

ility; A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., 1990.

103

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis
Methods and Practical Use, volume 3 of FATCS, Monographs on
Theoretical Computer Science. Springer-Verlag, 1997.

Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis
Methods and Practical Use, volume 1 of EATCS, Monographs on
Theoretical Computer Science. Springer-Verlag, 1997.

Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis
Methods and Practical Use, volume 2 of EATCS, Monographs on
Theoretical Computer Science. Springer-Verlag, 1997. Analysis
Methods.

Kurt Jensen. An Introduction to the Practical Use of Col-
oured Petri Nets. Obtained from http://www.daimi.aau.dk/
PetriNets/, 2002.

Kurt Jensen. An Introduction to the Theoretical
Aspects of Coloured Petri Nets. Obtained from
http://www.daimi.aau.dk /PetriNets/, 2002.

Kurt Jensen. A Short Introduction to Coloured Petri Nets. Ob-
tained from http://www.daimi.aau.dk /PetriNets/, 2002.

Thor Kristoffersen, Anders Moen, and Hallstein Asheim Hansen.
Extracting High-Level Information from Petri Nets: A Railroad
Case. Proceedings of the Estonian Academy of Physics and Math-
ematics, 52(4), December 2003.

Meta Software Corporation, Cambridge, MA U.S.A. Design/CPN
Reference Manual.

Meta Software Corporation, Cambridge, MA U.S.A. Design/CPN
Tutorial.

Anders Moen and Ingrid Chieh Yu. Large scale construction of
railroad models from specifications. IEEE SMC, Systems, Man
and Cybernetics, 10 2004.

Joern Pachl. Railway Operation and Control. VTD Rail Publish-
ing, 2002.

Carl Adam Petri. Kommunikation mit Automaten. Technical Re-
port Schriften des IIM Nr. 2, Bonn: Institut fiir Instrumentelle
Mathematik, 1962.

104

[24] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I:
Basic Models, volume 1491 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[25] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II:
Applications, volume 1492 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1998.

[26] Wolfgang Reisig. Petri Nets, An Introduction, volume 2 of EATCS,
Monographs on Theoretical Computer Science. Springer-Verlag,
1985.

[27] Egner Torbjorn. When the Robbers came to Cardamom Town
(English edition). Cappelen, 1993.

[28] Antti Valmari. The State Explosion Problem. In Reisig and Rozen-
berg [24].

[29] Willibrordus Martinus Pancratius van der Aalst. The Application
of Petri Nets to Workflow Management. The Journal of Circuits,
Systems and Computers, 8(1):21-66, 1998.

[30] Willibrordus Martinus Pancratius van der Aalst. Three Good
Reasons for Using a Petrinet based Workflow Management Sys-
tem. In T. Wakayama, S. Kannapan, C.M. Khoong, S. Navathe,
and J. Yates, editors, Information and Process Integration in Fn-
terprises: Rethinking Documents. Kluwer Academic Publishers,
Boston, Massachusetts, 1998.

[31] Willibrordus Martinus Pancratius van der Aalst, K. M. van
Hee, and G. J. Houben. Modelling and Analyzing Workflow
using a Petrinet based Approach. In G. De Michelis, C. El-
lis, and G. Memmi, editors, Proceedings of the second Workshop
on Computer-Supported Cooperative Work, Petri nets and related
formalisms, pages 31-50, 1994.

[32] M. Y. Vardi. An automata-theoretic approach to linear temporal
logic. Lecture Notes in Computer Science, 1043:238-266, 1996.

[33] Mark Allen Weiss. Data Structures and Algorithm Analysis in
Java. Addison Wesley, 1999.

[34] Ingrid Chieh Yu and Anders Moen. From modeling to analysis of
railway systems using coloured petri nets. In Proceedings of the
15th Nordic Workshop on Programming Theory (NWPT), 2003.

105

106

Appendix

Work on this thesis has resulted in an executable application RWSEditor,
for specifying and automatically constructing large Petri Net models of
railroads. The appendix presents the JAVA code for RWSEditor.

107

© 0 N O s W N

[T o S~ S S S S
N O g e W N = O

© 0 N O s W N

I T N N N N S S S e S o S~ S S R VR
S R ® N R O © ® N O T A W N R O

JAVA code

Listing 1: RWSEditor.java

VEX

* Topmost class.

* everything. No particular other functions.

*/

class RWSEditor {

static boolean DEBUG = false;
static XMLUtils xmlUtils;
static RWSEditorFrame frame;

public static void main (String [] args) {
frame = new RWSEditorFrame ();
xmlUtils = new XMLUtils ();

Listing 2: RWSEditorFrame.java

This class includes the main ()

method and initiates

import
import
import
import
import
import
import
import

import
import
import
import

/ * %

* The
*/
public

/%

java .
java .

awt.event . *;
awt . *;

javax.swing.x;

java .
java .
java .
.awt. Graphics2D;
.awt. BasicStroke;

java
java

java .
.beans.XMLDecoder ;

.beans. ExceptionListener;
java.

java
java

util . HashMap;
util . Vector;
util . Enumeration ;

beans.XMLEncoder ;

io .*;

RWSEditorFrame holds the utilities for RWSEditor.

class RWSEditorFrame implements MouseListener ,
KeyListener ,
ActionListener ,

ItemListener

)

MouseMotionListener {

Panel and labels */
JLabel statusbar;
JPanel toolbar;

108

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

JPanel templatebar;
JFrame frame;
JFileChooser chooser;
BackgroundPanel panel;

private int WIDTH = 900;
private int HEIGHT = 600;
private HashMap menuMap;
protected int startX , startY;
private Vector rwsNodes;

private Vector rwsNodeTemplates;

public static Insets insets;

private static RWSNode currentNodeTemplate;

private boolean createNodeTemplate;

protected final static int DRAWING = 0;
protected final static int CREATE RULES = 1;

protected static int action;

protected static JPopupMenu popup, nodePopup;
protected static Container bg;
protected boolean alwaysAbsolute = false;

private Dimension size;
JScrollPane scroller;

protected static int global largestX,
protected static int global smallestX,

protected static int meanX, meanY = 0;

int currentNumberOfConnectors = 2;

String currentComponent = "Track section";
static boolean justTheLine = false;

static int mouseX, mouseY;

/* Constuctor */

public RWSEditorFrame () {

JFrame. setDefaultLookAndFeelDecorated (true);

frame = new JFrame ("RWSEditor");

frame.setDefaultCloseOperation(JFrame .EXIT ON CLOSE);

bg = frame.getContentPane ();

JMenuBar menuBar = new JMenuBar ();

menuBar. setOpaque(true);

menuBar. setPreferredSize (new Dimension (WIDTH, 20));

JMenu m;
JMenultem item ;
menuMap = new HashMap (50);

/* Do something with this menu */

Menu [] menu = getMenu ();

for (int i=0;i<menu.length ;i++){

109

global largestY = 0;
global smallestY = 0;

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

if (menu[i] = null)

continue;

m = new JMenu(menu|i].getText ());
menuBar . add (m) ;
for (int j=0;j<menu[i].items.length;j++){

}

if (menu[i].items[j] = null)
continue;
item = new JMenultem (menu|i].items|[j].getText ());
item.addActionListener (this);
if (menu[i].items[]j].hasSC()){
if (menu [i].items [j].hasModifier ())
item.setAccelerator (
KeyStroke. getKeyStroke (
menu [i].items [j].getSC (),
menu [i].items [j].getModifier ()));
else
item .setMnemonic (menu[i].items[j].getSC());
}
menuMap . put (item , menu[i].items|[j]);
m. add (item);

rwsNodes = new Vector (500);
rwsNodeTemplates = new Vector (100);

toolbar = new JPanel (new FlowLayout ());
toolbar.setPreferredSize(new Dimension(WIDTH, 40));

toolbar .setBackground(Color. white);

toolbar.setBorder (BorderFactory.createLineBorder (Color.black));
templatebar = new JPanel (new FlowLayout());
templatebar.setPreferredSize (new Dimension (100, HEIGHT));

templatebar .setBackground(Color . white);

templatebar .

JLabel templatelabel = new JLabel("Components:");
templatebar.add(templatelabel);

JLabel connectorsLabel, nodelengthLabel, connectortypeLabel;
JComboBox connectorsCombo, nodelengthCombo;
JComboBox connectortypeCombo , actionCombo;

String

b

[| actions = { "Draw",

"Create_rules"

/* The set components */

String

[|] basicComponents = {

"End _section",
"Track section",
"Turnout" ,

"Rigid crossing",
"Double slip",
"Scissors",

110

setBorder (BorderFactory . createLineBorder (Color. black));

136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154

156
157
158
159

161
162
163
164

166
167
168
169
170
171
172
173
174
175
176
177

179
180
181
182

184
185
186
187

"Single R",
"Single L"

b

/* The size

of components */

String [] nodelengths = {

”10" ,
H20" ,
H30" ,
||40ll
||50ll
||60ll
H?Oll ,
H80" ,
||90"
||100"

}s

/* The set types */
String [|] connectortypes = {

Hlll
||2"
H3ll
)
H4ll
H5ll
)
||6"
||7ll
||8"
Hgll
)
HlO" ,
Hllll
||12"
||13"
H14"
H15"

b

/ * %

* GUI stuff

*/

actionCombo

actionCombo.
actionCombo.
actionCombo.

= new JComboBox (actions);
setSelectedIndex (0);
addActionListener (this);
setActionCommand ("action");

connectorsCombo = new JComboBox (basicComponents);
connectorsCombo. setSelectedIndex (1);
connectorsCombo.addActionListener (this);
connectorsCombo.setActionCommand ("comp");
connectorsCombo.setEditable (true);

size = connectorsCombo. getPreferredSize ();

size .width = 130;

connectorsCombo. setPreferredSize (size);

111

190
191
192
193
194
195
196
197
198

200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

238
239
240
241
242

nodelengthCombo = new JComboBox (nodelengths);
nodelengthCombo.setSelectedIndex (2);
nodelengthCombo.addActionListener (this);
nodelengthCombo.setActionCommand ("nodelength");
nodelengthCombo.setEditable (true);

size = nodelengthCombo. getPreferredSize ();

size .width = 50;

nodelengthCombo. setPreferredSize (size);

connectortypeCombo = new JComboBox (connectortypes);
connectortypeCombo.setSelectedIndex (0);
connectortypeCombo.addActionListener (this);
connectortypeCombo.setActionCommand ("connectortype");
connectortypeCombo. setEditable (true);

size = connectortypeCombo. getPreferredSize ();
size.width = 50;

connectortypeCombo. setPreferredSize (size);

JButton newTemplateButton = new JButton ("Create_new_component");
newTemplateButton. addActionListener (this);
newTemplateButton.setActionCommand ("newTemplate");

JLabel absoluteLengthLabel = new JLabel ("Abs._length:_");
JCheckBox absoluteLengthCheckbox = new JCheckBox ();
absoluteLengthCheckbox.addItemListener (this);
absoluteLengthCheckbox .setActionCommand ("absoluteLength");

JButton writeXMLFileButton = new JButton ("Write XML");
writeXMLFileButton.addActionListener (this);
writeXMLFileButton.setActionCommand ("writeXML");

connectorsLabel = new JLabel ("Component:_");
nodelengthLabel = new JLabel ("Node_length:_");
connectortypeLabel = new JLabel ("Connector_type:_");
toolbar.add (connectorsLabel);

toolbar.add (connectorsCombo);

toolbar.add (nodelengthLabel);

toolbar.add (nodelengthCombo);

toolbar.add (newTemplateButton);

toolbar.add (actionCombo);

toolbar.add (absoluteLengthLabel);
toolbar.add (absoluteLengthCheckbox);

toolbar.add (connectortypeLabel);
toolbar.add (connectortypeCombo);

frame . getContentPane ().add (toolbar, BorderLayout.NORTH);
frame . getContentPane ().add (templatebar , BorderLayout.WEST);

panel = new BackgroundPanel (this);

panel.addMouseListener (this);
panel.addMouseMotionListener (this);

112

243
244
245
246
247
248
249
250
251
252

254
255
256
257

259
260
261
262

264
265
266
267

269
270
271
272

274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294
295

insets = panel.getInsets ();

statusbar
statusbar

statusbar

= new JLabel ("");

setHorizontalAlignment

/* Add JScrollPane */
scroller = new JScrollPane (panel);
scroller.setPreferredSize (new Dimension (900, 600));
scroller .setWheelScrollingEnabled (true);

frame .setJMenuBar (menuBar);

frame . getContentPane
frame . getContentPane

frame . addKeyListener (this);

frame . pack ();
frame.setVisible (true);

/* Popup menus */
popup = new JPopupMenu ();
JMenultem connectToCPN = new JMenultem ("Connect_to_CPN_node");
connectToCPN . setActionCommand ("connectToCPN");
connectToCPN.addActionListener (this);

JMenultem createMultiple = new JMenultem ("Create_multiple_nodes");

.setPreferredSize (new Dimension (WIDTH,
statusbar .
.setOpaque (true);

(JLabel .CENTER) ;

20));

().add (statusbar, BorderLayout.SOUTH);
().add (scroller , BorderLayout.CENTER);

createMultiple.setActionCommand ("createMultiple");
createMultiple.addActionListener (this);

JMenultem connectNode = new JMenultem ("Connect_to_other_node");

connectNode .setActionCommand ("connectNode");
connectNode.addActionListener (this);

JMenultem deleteNode = new JMenultem ("Delete_node");
deleteNode .setActionCommand ("deleteNode");
deleteNode.addActionListener (this);

popup . add
popup . add
popup . add
popup . add

nodePopup
JMenultem

nodePopup

}

/ * %

* Calculate the largest X and Y values of connectors.

(connectToCPN);
(createMultiple);
(deleteNode);
(connectNode);

= new JPopupMenu ();

changeHelpText = new JMenultem ("Change_help_text");
changeHelpText .setActionCommand ("changeHelpText");
changeHelpText.addActionListener (this);

.add (changeHelpText);

113

The area of

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

* RWSNodes.

*/

public void calculateLargestXY () {

}

/*%

RWSNode rwsnode;
int local largestX , local largestY;
int nrOFComp = panel.getComponentCount ();
for (int i = 0; i< nrOFComp; i++){
rwsnode = (RWSNode) panel.getComponent (i);
local largestX = rwsnode.calculateLargestX ();
local largestY = rwsnode. calculateLargestY ();
if (local largestX > global largestX)
global largestX = local largestX;
if (local largestY > global largestY)
global largestY = local largestY;

* Calculate the smallest X and Y values of connectors.
* of RWSNodes.

*/

public void calculateSmallestXY (){

}

/* %

¥ Calculate Mean of RWSNodes areas.

RWSNode rwsnode;

Dimension d = panel. getPreferredSize ();
global smallestY= d.height *3;

global smallestX = d.width*3;

int local smallestX, local smallestY;

int nrOFComp = panel.getComponentCount ();

for (int i = 0; i< nrOFComp; i++){

rwsnode = (RWSNode) panel.getComponent(i);
local smallestX = rwsnode.calculateSmallestX ();
local smallestY = rwsnode.calculateSmallestY ();
if (local smallestX < global smallestX)

global smallestX = local smallestX;
if (local smallestY < global smallestY)

global smallestY = local smallestY;

The

area

Use these values to calculate

¥ xmlX and xmlY. We want our final Petri net to be in the center
x of Design/cpn.

*/

public void calculateMean (){

}

/* %

meanX = (global largestX + global smallestX)/2;
meanY = (global largestY + global smallestY)/2;

* Calculate the angle between the current starting point and the
* current cursor position

*/

114

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

public int calculateAngle (int ab, int bc){
double hyp = Math. sqrt (Math.pow ((double) ab, 2.0) +
Math.pow ((double) bc, 2.0));

return (int) Math. toDegrees (Math.acos(ab / hyp))

Y

}

VAL:

* Interface method

*/

public void mouseClicked (MouseEvent e){}

VAL
* Interface method
*/
public void mousePressed (MouseEvent e){
switch (e.getButton()) {
case MouseEvent .BUTTONLI:
if (!RWSNode.drawing)
recordStartingPoint (e.getX (), e.getY ());
else {

if ((e.getModifiers () & InputEvent .CIRL MASK) > 0)
createNewNode (mouseX, mouseY, false, false);

else

createNewNode (e.getX (), e.getY (), false, false);

}

break;
case MouseEvent .BUTTON3:

if (RWSConnector.selectedConnector != null){

RWSConnector . selectedConnector. unsetActive ();

RWSConnector . selectedConnector = null;

}
if (RWSNode.selectedNode != null){

RWSNode. selectedNode . setStatus (RWSNode.INACTIVE)

RWSNode . selectedNode = null;

RWSNode. drawing = false;
break;

}

panel.repaint ();

}

/ * %
* Interface method
*/

public void mouseReleased (MouseEvent e) {}
/* %

* Interface method

*/

public void mouseEntered (MouseEvent e) {}

/ * %

115

)

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

431
432
433
434

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

454
455
456
457

* Interface method
*/
public void mouseExited (MouseEvent e) {}

/ * %
* Make sure we always know where the cursor is
* This is used for creating a dotted line to ease
* the drawing process.
*/
public void mouseMoved (MouseEvent e) {
int sX, sY; /x Starting point */
int eX, eY; /*x Calculated (?) ending point x*/

if (RWSConnector.selectedConnector != null) {
sX = RWSConnector . selectedConnector. externalCenterX ();
sY = RWSConnector . selectedConnector. externalCenterY ();

else{
sX = startX;
sY = startY;

}

int ab = Math.abs(e.getX () — sX);
int bc = Math.abs(e.getY () — sY);

if ((e.getModifiers () & InputEvent .CTRL MASK) > 0) {
/* CTRL is down, calculate the angle in a set number of degrees */
if (ab < be) {
eX = sX;
eY = e.getY ();
}

else {
eY = sY;
eX = e.getX ();

}
}
else {
eX = e.getX ();
eY = e.getY ();
}
statusbar.setText ("Mouse:_ " + e.getX () + ",." + e.getY () +
"_—_Angle:_" + calculateAngle (ab, bc));
drawLine(eX, eY);

}

VAL:

* Interface method

*/

public void mouseDragged (MouseEvent e) { }

VAL:

* Interface method

*/

public void keyPressed (KeyEvent e) {}

116

460
461
462
463
464
465
466
467
468

470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

VAL:

* Interface method

*/

public void keyReleased (KeyEvent e) {}

VAL:
* Interface method
*/
public void keyTyped (KeyEvent e) {
if (e.getKeyCode () = KeyEvent.VK DELETE) {
deleteSelectedNode ();
}

}

/ * %

* Make sure a dotted line is drawn from the current starting

* point to the current cursor position
*/
private void drawLine (int mX, int mY) {

if (! RWSNode.drawing)

return;

justTheLine = true;

mouseX = mX;

mouseY = mY;

panel.repaint ();

}

VAL:

* Return the smallest of two integers

*/

private int smallest (int x, int y) {
return (x <y) 7 x : y;

}

/%%

* Return the largest of two integers

*/

private int largest (int x, int y) {
return (x >=y) 7 x : y;

}

/ * %

* Record a starting point for drawing

*/

public void recordStartingPoint (int x, int y) {
this.startX = x;
this.startY = y;
RWSNode. drawing = true;

if (RWSConnector.selectedConnector != null) {
RWSConnector . selectedConnector. unsetActive
RWSConnector . selectedConnector = null;

117

()3

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

}

/* %

* Resize scroller’s dimension

*/

public void rwsEditorResize (int X, int Y) {

}

/ * %

Dimension preSize = new Dimension (X,Y);

panel.size = preSize;
panel.setSize (preSize);

panel.validate ();
panel.repaint ();

* Create a line of multiple RWSNodes

*/

boolean rwsConnectMultiple (int num) {

}

/ * %

boolean saveState;

if (RWSConnector.selectedConnector = null ||
RWSConnector . selectedConnector.node. numberOfConnectors () != 2)
return false;

RWSNode node = RWSConnector . selectedConnector.node;

startX = RWSConnector . selectedConnector. externalCenterX ();
startY = RWSConnector.selectedConnector. externalCenterY ();
int index = RWSConnector.selectedConnector.index =— 0 7 1 : 0;
int endX = node.connectors [index]|.externalCenterX ();

int endY = node.connectors [index|.externalCenterY ();

int diffX = startX — endX;

int diffY = startY — endY;

saveState = RWSNode. drawing;

RWSNode. drawing = true;

for (int i = 0; i < num; i++) {
createNewNode (startX + diffX, startY + diffY, false, false);
startX = startX + diffX;
startY = startY + diffY;

}

RWSNode. drawing = saveState;
return true;

* Well... clears the work space

*/

public void clearWorkspace () {

panel.removeAll ();
rwsNodes. clear ();
panel.repaint ();

118

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

VAL:

* Removes an RWSNode (atomic component)

*/

public void deleteSelectedNode () {
if (RWSNode.selectedNode = null)

return;

panel.remove (RWSNode.selectedNode);
rwsNodes.remove (RWSNode.selectedNode);

for (int i = 0; i < RWSNode. selectedNode.connectors.length; i++) {

if (RWSNode.selectedNode.connectors [i].neighbour != null)
RWSNode. selectedNode . connectors [i].
neighbour.neighbour = null;

}

panel.repaint ();

}

/ %%
* Clears all templates
*/
public void clearTemplates (
rwsNodeTemplates . clear (
templatebar.removeAll ();
templatebar.repaint ();

{

)

)
) .

}

/* %
* Wrapper that also sets starting point

*/

public void createNewNode (int startX , int startY, int endX, int endY,

boolean createNodeTemplate ,

boolean absoluteLength){
recordStartingPoint (startX , startY);
createNewNode (endX, endY, createNodeTemplate, absoluteLength);

}

/ * %
* Create a new RWSNode (atomic component). Either a template, in
* which case a new node is created from scratch, or a
* specification node in which case a template node is copied
*/
public void createNewNode (int x, int y, boolean createNodeTemplate ,
boolean absoluteLength) {
RWSNode r;
if (createNodeTemplate) {
r = new RWSNode(0 + (RWSConnector .DOTDIAM /
RWSNode . RWSNODELENGTH / 2 +
(RWSConnector .DOIDIAM / 2),
RWSNode . RWSNODELENGTH * 2,
RWSNode .RWSNODELENGTH / 2 +
(RWSConnector .DOTDIAM / 2),
currentNumberOfConnectors, currentComponent ,
RWSNode. selectedNode);
rwsNodeTemplates.add (r);

2),

119

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

JPanel np = new JPanel (null);
np.setPreferredSize (new Dimension (RWSNode . RWSNODELENGTH +
RWSConnector . DOTDIAM,
RWSNode .RWSNODELENGTH +
RWSConnector .DOTDIAM)) ;
np.addMouseMotionListener (this);
np.add (r);
templatebar.add (np);
templatebar.validate ();
RWSNode. selectedNode = null;
}
else if (RWSNode.drawing) {
if (RWSNode.selectedTemplateNode = null) {
/* We don’t have any template, return. */
RWSNode . drawing = false;
return;

}

if (RWSConnector.selectedConnector != null &&
RWSConnector . selectedConnector.isConnected ())
/* The selected connector is not available */
return;

r = new RWSNode(RWSNode. selectedTemplateNode);

r.initNode (this.startX , this.startY , x, vy,
RWSNode. selectedTemplateNode. numberOfConnectors (),
RWSNode. selectedNode , false, absoluteLength ||
alwaysAbsolute);

r.setTemplate (false);

r.copyConnectorProperties (RWSNode. selectedTemplateNode);

r.addConnectors ();

rwsNodes.add (r);

panel.add (r);

}

VAL
* Debug method. Prints out information about this node’s connectors
*/
void testConnectors (RWSConnector [| connectors) {
if (connectors != null && connectors [0] != null)
for (int i = 0; i < connectors.length; i++)
System . err.println ("connectors:_" +
connectors [i].index + ",_" +
connectors [i].connectorType + ",_(" +
connectors[i].externalCenterX () + ",_" +
connectors|i].externalCenterY () + ")");
else
System . err.println ("None_yet ...");

}

/ * %
* Interface method. Handles most actions

120

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

*/
public void actionPerformed (ActionEvent e) {
/* Add railway domain information */
if (e.getSource() instanceof JComboBox){
JComboBox box = (JComboBox) e.getSource ();

try{
if (box.getActionCommand () = "comp"){

if (box.getSelectedItem ().equals(" Track section")){
currentComponent = "Track Section";
currentNumberOfConnectors = 2;

else if(box.getSelectedItem ().equals("Turnout")){
currentComponent = "Turnout";
currentNumberOfConnectors = 3;

}

else if(box.getSelectedItem ().equals("Rigid crossing"
currentComponent = "Rigid crossing";
currentNumberOfConnectors = 4;

}

else if(box.getSelectedItem ().equals("Double slip")){
currentComponent = "Double slip";
currentNumberOfConnectors = 4;

else if(box.getSelectedItem ().equals("End section")){

currentComponent = "End _section";
currentNumberOfConnectors = 1;

}

/* Crossovers, different turnout arrangements */

else if(box.getSelectedItem ().equals("Scissors")){
currentComponent = "Scissors";
currentNumberOfConnectors = 4;

}

else if(box.getSelectedItem ().equals("Single R")){
currentComponent = "Single R";
currentNumberOfConnectors = 4;

else if(box.getSelectedItem ().equals("Single L")){
currentComponent = "Single L";
currentNumberOfConnectors = 4;

}

else if (box.getActionCommand () = "nodelength")
RWSNode. setDefaultNodeLength (
Integer.parselnt ((String) box.getSelectedItem ()))
else if (box.getActionCommand () = "connectortype")

RWSConnector . selectedTemplateConnector . setConnectorType (

Integer.parselnt ((String) box.getSelectedItem ()))
else if (box.getActionCommand () = "action")
action = box.getSelectedIndex ();

catch(Exception ex){
ex.printStackTrace ();

121

A

)

)

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782

}

else if(e.getSource() instanceof JButton){
JButton button = (JButton) e.getSource();
try{
if (button.getActionCommand () = "newTemplate")
createNewNode (0, 0, true, false);

catch(Exception ex){
ex.printStackTrace ();
}
}

else if(e.getSource() instanceof JMenultem){

JMenultem source = (JMenultem) e.getSource ();
Menultem item = (Menultem) menuMap.get (source);
if (source.getActionCommand () != null &&
source . getActionCommand () == "connectToCPN") {
VAL:

* A requested is made to connect the interface (connector)
* to it’s CPN counterpart
*/
ConnectConnectorToCPNNodeFrame cc =
new ConnectConnectorToCPNNodeFrame (
RWSConnector . selectedTemplateConnector);
cc.pack ();
cc.setVisible (true);
}
else if (source.getActionCommand () != null &&
source . getActionCommand () = "createMultiple") {
CreateMultipleNodesFrame cm =
new CreateMultipleNodesFrame (this);
}
else if (source.getActionCommand () != null &&
source . getActionCommand () = "deleteNode") {
deleteSelectedNode ();
}
else if (source.getActionCommand () != null &&
source . getActionCommand () = "changeHelpText") {
new ChangeToolTipText (RWSNode.tmpSelected);

}

else if (source.getActionCommand () != null &
source . getActionCommand () = "connectNode") {
RWSConnector . connectNext = true;

}

else {
String debug;

switch(item . getKey ()){
case Menu.FILE NEW:
debug = "File _—>_New";
clearWorkspace ();
break;

122

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

case Menu.FILE OPEN ALL:
debug = "File_—>_Open_Project";
chooser = new JFileChooser();
chooser.setDialogTitle ("Open_Project");
chooser.setFileFilter (new RWSFileFilter ());
if (chooser.showOpenDialog(panel) —
JFileChooser . APPROVE_OPTION) {
clearWorkspace ();
clearTemplates ();
clearWorkspace ();
RWSEditor . xm1Utils . openProject (
chooser.getSelectedFile ().getPath (),
templatebar , panel, this);

}

break;

case Menu.FILE SAVE AILL:
debug = "File_—>_Save_Project";
chooser = new JFileChooser();

chooser.setDialogTitle ("Save_Project");
chooser.setFileFilter (new RWSFileFilter ());
if (chooser.showSaveDialog (panel) —
JFileChooser .APPROVE_OPTION) {
RWSEditor . xml1Utils.saveProject (
chooser.getSelectedFile ().getPath (),
panel , templatebar);

}

break;

case Menu.FILE OPEN CPN:
debug = "File _—>_Open_CPN_Component";
chooser = new JFileChooser();

chooser.setDialogTitle ("Open_CPN_component");
chooser.setFileFilter (new XMLFileFilter ());
if (chooser.showOpenDialog(panel) —
JFileChooser .APPROVE _OPTION) {
RWSEditor . xmlUtils .readXML (
chooser. getSelectedFile (). getPath(),
chooser. getSelectedFile ().getName());
}
break;
case Menu.FILE SAVE CPN:
debug = "File_—>_Save_CPNet";
chooser = new JFileChooser ();
chooser.setDialogTitle ("Save _CPN_component");
chooser.setFileFilter (new XMLFileFilter ());
if (chooser.showSaveDialog(panel) —
JFileChooser .APPROVE_OPTION) {
calculateLargestXY ();
calculateSmallestXY ();
calculateMean ();
RWSEditor . xml1Utils . initPrintXml (
(RWSNode) panel.getComponent (0),
chooser. getSelectedFile ().getPath ());

break;

123

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

case Menu.FILE EXIT:
System . exit (0);
debug = "File _—>_Quit";
break;

case Menu.EDIT UNDO:
debug = "Edit_—>_Undo";
break;

case Menu.EDIT DELETE:
debug = "Edit_—>_Delete";
deleteSelectedNode ();
break;

case Menu.EDIT REDO:
debug = "Edit _—>_Redo";
break;

case Menu.EDIT CLEAR:
debug = "Edit _—>_Clear";
clearWorkspace ();
break;

case Menu.EDIT CLEAR TEMPLATES:

debug = "Edit_—>_Clear_templates";
clearTemplates ();
break;

case Menu.TOOLS OPTIONS:
debug = "Tools_—>_Options";
break;

case Menu.TOOLS RESIZE:
debug = "Tools_—>_Resize";
Resize pix = new Resize (this);
break;

default :
debug = "Switch_—>_Default";

}

if (RWSEditor .DEBUG) System.err.println (debug);

}

VAL:

* Interface method

*/

public void itemStateChanged (ItemEvent e) {
if (e.getSource() instanceof JCheckBox) {

JCheckBox box = (JCheckBox) e.getSource ();
if (box.getActionCommand () = "absoluteLength")

alwaysAbsolute = e.getStateChange

}

VAL:
* Returns an array of Menu objects
*/
private Menu [] getMenu () {
Menu [] menu = new Menu [3];

124

() = ItemEvent

.SELECTED;

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

menu [0]
menu [0].

menu [0].
menu [0].

menu
menu
menu [0].

menu
menu .
menu [1].
menu [1].
menu [1].
menu [1].

menu [2]
menu
menu [2].

= new Menu("File", 10);

addItem ("New", Menu.FILE NEW, KeyEvent.VK N,
ActionEvent .CIRL MASK);

addItem ("Open_Project", Menu.FILE OPEN ALL, KeyEvent.VK O,
ActionEvent .CTRL MASK);

addItem ("Save_Project", Menu.FILE SAVE ALL, KeyEvent.VK S,
ActionEvent .CIRL MASK);

0].addItem ("Open_CPN_Component", Menu.FILE OPEN CPN);
0].addItem ("Save_CPNet", Menu.FILE SAVE CPN);

addItem ("Quit", Menu.FILE EXIT, KeyEvent.VK Q
ActionEvent .CTRL MASK);

= new Menu ("Edit", 5);

addItem ("Undo", Menu.EDIT UNDO);

addItem ("Redo", Menu.EDIT REDO);

addItem ("Delete", Menu.EDIT DELETE);

addItem ("Clear_workspace", Menu.EDIT CLEAR);

addItem ("Clear_all_templates", Menu.EDIT CLEAR TEMPLATES);

= new Menu ("Tools", 2);

2].addItem ("Options", Menu.TOOLS OPTIONS);

addItem ("Resize", Menu.TOOLS RESIZE);

return menu;

}

VEX

* Class for easing the menu handling. The menu in this case being the

* standard menu
*/

class Menu {

static final
static final
static final
static final
static final
static final
static final
static final
static final
static final
static final
static final
static final
static final
static final

line docked in the topmost section of GUI programs.

int FILE NEW = 0;
int FILE OPEN = 1;
int FILE OPEN CPN = 2;
int FILE SAVE = 4
int FILE SAVE CPN = 5;
int FILE EXIT = T
int FILE OPEN ALL = 8;
int FILE SAVE ALL = 9;
int EDIT UNDO = 100;
int EDIT REDO = 101;
int EDIT DELETE = 102;
int EDIT CLEAR = 103;

int EDIT_CLEAR TEMPLATES — 104;
int TOOLS OPTIONS = 200;
int TOOLS RESIZE = 201;

private String text;
Menultem [] items;

Menu (String

text , int length) {

125

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

this.text = text;
items = new Menultem [length |;

}

void addIltem (String text, int key) {

try{
items [getTopMostltem ()] = new Menultem (text, key);
}

catch (ArrayIndexOutOfBoundsException e) {
System . err.println ("Not_enough_room_for_element_’" + text +
"’ _in_menu_’" + this.text + "’.");

}

void addIltem (String text, int key, int sc, int modifier) {

try {
items [getTopMostItem ()] = new Menultem (text, key, sc, modifier);
¥

catch (ArrayIndexOutOfBoundsException e) {
System . err.println ("Not_enough_room_for_element_’" + text -+
"’ _in_menu_’" + this.text + "’.");

}

int getTopMostltem () {
for (int i = 0; i < items.length; i++)
if (items [i] = null)
return i;
return —1;

}

String getText () {
return this.text;
}

}

/ * %
* An item in the menu
x/

class Menultem {

private String text;
private int key;
private int sc;
private int modifier;

Menultem (String text, int key) {
this.text = text;
this.key = key;

}

Menultem (String text, int key, int sc, int modifier) {
this.text = text;
this.key = key;

126

999 this.sc = sc;

1000 this. modifier = modifier;
1001 }

1002

1003 int getKey () {

1004 return this.key;

1005 }

1006

1007 String getText () {

1008 return this.text;
1009 }

1010

1011 int getSC () {

1012 return sc;

1013 }‘

1014

1015 int getModifier () {

1016 return modifier;

1017 }

1018

1019 boolean hasSC () {

1020 return sc != 0;

1021 }

1022

1023 boolean hasModifier () {
1024 return modifier != 0;
1025 }‘

1026 }

Listing 3: RWSNode.java

import java.io.Serializable;
import java.awt.Panel;
import java.awt.event . x;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.BasicStroke;
10 |import java.awt.Rectangle;
11 |import java.awt.Point;

12
13 |import javax.swing.JPanel;
14 |import org.w3c.dom.x;

15 |import org.xml.sax.x*;

16
17 /**

18 * RWSNode objects are the atomic components of the specification

19 | * language. They have a set of RWSConnectors, which are the interface
20 * nodes of the specification language.

ot - W N

© 0w N O

21 */

22 | public class RWSNode extends JPanel implements MouselListener

23 MouseMotionListener,
24 Serializable {

127

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78

/* Array of connectors */
protected RWSConnector [] connectors;

/* id # and counter */

protected int
private static

id ;

int counter = 0;

/* For moving the center point */
protected boolean moving = false;

protected boolean mark = false;

/* The type of Node (railway domain) ie: Road,

protected String componentType;
protected String cpnComponentType;

/* Dimensions */
static protected int RWSNODELENGTH = 30;
static private int RWSNODEWIDIH = 4;

static private int ENDPOINTDIAM = RWSConnector .DOTDIAM;

/* Colors x*/

final
final
final
final
final
final

static
static
static
static
static
static

/* Status */
final public
final public

private int status;

public static RWSNode selectedNode ,
public static boolean drawing

Color
Color
Color
Color
Color
Color

USED ENDPOINTCOLOR = Color . black;
UNUSED ENDPOINTCOLOR = Color .red;
ACTIVE_RWSNODECOLOR, = Color . blue;
RWSNODECOLOR, = Color . black

NODE_FILLCOLOR = new Color (0x80, 0x80, 0x80);
NODE_INST COLOR = Color . lightGray ;

static int INACTIVE = 0;
static int ACTIVE = 1;

/* Mouse buttons */
final protected static int MOUSE LEFT = O0;

final protected static int MOUSE MIDDIE = 1;
final protected static int MOUSE RIGHT = 2;

VAL

* positionMark is used for determining whether this node has

* been given a position while printing the CPN XML.

* Used in conjunction with XMLUtils.currentMark for reusability.
* xmlX, xmlY is the "origo" for this XML component.

* relX, relY are the coordinates from the CPN component acting as
*/

protected boolean positionMark = false;

protected int xmlX, xmlY,

= false;

relX , relY;

/* Coordinates of the center of this node */

128

Switch etc.

selectedTemplateNode ,

tmpSelected;

"origo".

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

private int centerX , centerY;

/* If only one connector, we need an extra line */

private int endP1X, endP2X, endP1Y, endP2Y;

/ * %

* If this node is not a template node,
* this is a reference to it’s template
*/

protected RWSNode template;

/ * %

* If this node is a template, it should have other

* properties...
*/

protected boolean isTemplate = true;

/* Where is this node located? */

private Rectangle externalCoordinates = new Rectangle ();

connectorX;
connectorY ;

private int []
private int |[]
/%%
* This is used when the node is a template,
* case RWSNODELENGTH is set after this.
*/
protected int nodeLength;

VAL

* Constructor 1.

*/

public RWSNode () {
setOpaque (false);
setLayout (null);
addMouseListener (this);

}

/**
* Constructor 2. Might be outdated.
*/
RWSNode(int i, int nr){
connectors = new RWSConnector |[i]
RWSConnector r;

for (int j=0;j<connectors.length ;j++){
r = new RWSConnector ();

connectors [j] = r;
r.node = this;
id = nr;

129

in which

134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156
157

159
160
161
162

164
165
166
167
168
169
170
171
172
173
174
175

177
178
179
180
181
182
183
184
185

/ * %

* Constructor 3. When we copy properties from a template.

*/

RWSNode (RWSNode template){

}

/ * %

id = counter;
counter—+-+;

this.template = template;

int edges = template.numberOfConnectors ();
setOpaque (false);

setLayout (null);

componentType = template.componentType;
setToolTipText (template.getToolTipText ());
connectorX = new int [edges];

connectorY = new int [edges];

connectors = new RWSConnector [edges]|;

addMouseListener (this);

* Constructor 4. When we create a template.

*/

RWSNode(int startX , int startY, int endX, int endY, int edges,

/* %

String name, RWSNode prev){
id = counter;
counter—+-+;

setOpaque (false);

setLayout (null);

componentType = name;

setToolTipText (componentType);

connectorX = new int [edges];

connectorY = new int [edges];

addMouseListener (this);

connectors = new RWSConnector [edges|;

initNode (startX, startY, endX, endY, edges, prev, true,
addConnectors ();

selectedNode = null;
RWSConnector . selectedConnector = null;

* Adds all containers to this node’s panel.

*/

protected void addConnectors (){

for (int i = 0; i < connectors.length; i++)

130

false);

188
189
190
191
192
193
194
195
196

198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234

236
237
238
239
240

add (connectors [i], —1);

}

/%%
* Initializes the node...
*/
protected void initNode (int startX, int startY, int endX, int endY,
int edges, RWSNode prev, boolean template,
boolean absoluteLength){
setTemplate (template);
RWSConnector previousConnector = null;
if (RWSConnector . selectedConnector != null && ! isTemplate){
startX = RWSConnector.selectedConnector. externalCenterX ()
startY = RWSConnector.selectedConnector.externalCenterY ()
previousConnector = RWSConnector . selectedConnector;

)
)

}

calculatePositions (startX , startY, endX, endY, edges, absoluteLength)

this.setBounds (externalCoordinates);

if (! isTemplate){
selectedNode = this;
if (previousConnector != null)
connectConnectors (
connectors [RWSConnector .
selectedTemplateConnectorIndex ()],
previousConnector);

}

else
nodeLength = RWSNODELENGTH;

}

VAL
* Set whether this node is a template or not.
*/
protected void setTemplate (boolean set){
for (int i=0;i<connectors.length ;i++)

if (connectors [i] != null)
connectors [i].isTemplate = set;
isTemplate = set;

*

Workhorse method. Here all the coordinates of the connectors

are calculated. This is done by first calculating the coordinates
of the point located RWSNODELENGTH / 2 from (startX, startY) on the
line towards (endX, endY). This is point e in the figure:

c
/|
e / |
/ |
/| I
/ol ____|I
a d b

* XK X X X X X X X X X X *

131

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

257
258
259
260
261
262
263
264
265

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

290
291
292
293
294

* ¥ ¥

* radius of ae, starting with the starting point.

*/

private void calculatePositions (int startX, int startY, int endX, int endY,

int ab = Math.abs (endX — startX
int bc = Math.abs(endY — startY
double hyp = Math. sqrt (Math.pow

Math . pow
double angle = Math.acos(ab / hyp);

double radius;
int ad, de;
if (! absoluteLength)

radius = RWSNODELENGTH / 2;

else
radius = hyp / 2;

ad = (int) Math.round (radius * Math.cos(angle));
de = (int) Math.round (radius * Math.sin (angle));

/* external coordinates for center of node */
int extCX = (startX < endX) ? startX + ad
int extCY = (startY < endY) ? startY + de
int adjustment = (startY < endY) 7 -1

if (RWSEditor .DEBUG)

System . err.println ("(" + extCX + ",_" 4+ extCY + ")"

/* make cX, cY origo */
int x = startX — extCX;
int y = startY — extCY;
double calcX, calcY;

if (Math.abs(x) > Math.abs(radius))

Thereafter, according to how many connectors this node has,

an

equal number of points evenly placed in a circle around e with a

int num, boolean absoluteLength){

caleX = (x<0) ?—-1.0

else
caleX = x / radius;

/* calculate angle between ((0,0),(5,0)) and

angle = Math. acos (calcX);

/* How many degrees between each point? */
double degrees = (2 * Math.PI) / num;

)
)
(
(

int highestX , highestY , lowestX,

if (num =— 1){

/ * %

* If there is only one connector,
* still need this node to occupy space.

*/

if (extCX < startX){
lowestX = extCX;
highestX = startX;

132

)

(
(

1.0;

double) ab,
double) bec,

startX — ad; // center x

startY — de; // center y

(€0,0), (x,y)) */

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

}

else{
lowestX = startX;
highestX = extCX;

if (extCY < startY){
lowestY = extCY;
highestY = startY;

}

else{
lowestY = startY;
highestY = extCY;

}

else{

}

lowestX = highestX = startX;
lowestY = highestY = startY;

connectorX [0] = startX;
connectorY [0] = startY ;

if (num > 1){

}

for (int i=1;i<num;i++){

angle += degrees;

connectorX [i] = (int) (radius * Math.cos(angle) + extCX);
connectorY [i] = (int) (adjustment * (radius * Math.sin (angle))
+ extCY);

if (connectorX [i] < lowestX)
lowestX = connectorX [i];

else if(connectorX [i] > highestX)
highestX = connectorX [i];

if (connectorY [i] < lowestY)
lowestY = connectorY [i];

else if(connectorY [i] > highestY)
highestY = connectorY [i];

}

else{

/* We have only one connector */
angle += Math.PI / 2;
endP1X = (int) ((ENDPOINTDIAM ,/ 2) * Math.cos(angle) + extCX) —
lowestX + borderWidth ();
endP1lY = (int) (adjustment * ((ENDPOINTDIAM / 2) % Math.sin (angle))
+ extCY) — lowestY + borderWidth();

angle += Math.PI;
endP2X = (int) ((ENDPOINTDIAM ,/ 2) % Math.cos(angle) + extCX) —
lowestX + borderWidth ();
endP2Y = (int) (adjustment * ((ENDPOINTDIAM / 2) % Math.sin (angle))
+ extCY) — lowestY + borderWidth();

133

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

/ * %

}

/ * %

* Since the "starting connector" can be any one connector

* from connectors [0] to connectors [connectors.length - 1],
* this has to be tweaked.

x/

int j = RWSConnector . selectedTemplateConnectorIndex ();
for (int i=0;i<num;i++){
if (isTemplate)
connectors [i] = new RWSConnector (connectorX [i] — lowestX +
borderWidth (),
connectorY [i] — lowestY +
borderWidth (),
this, i, true);
else {
connectors [j] = new RWSConnector (connectorX [i] — lowestX +
borderWidth (),
connectorY [i] — lowestY +
borderWidth (),
this, j, false);

if (adjustment < 0){

J—
if(j < 0)
j = num — 1;
else{
It
if (j >= num)
I =0

}

/* Clean up */
for (int i = 0; i < num; i++) {

connectorX [i] = conmnectors [i].getP ().x +
lowestX — borderWidth ();
connectorY [i] = connectors [i].getP ().y +

lowestY — borderWidth ();
}

/* Set the center point of this node. */
centerX = extCX — lowestX + borderWidth ();
centerY = extCY — lowestY + borderWidth ();

/* Set the external coordinates */

externalCoordinates.x = lowestX — borderWidth ();

externalCoordinates.y = lowestY — borderWidth();
externalCoordinates.width = highestX — lowestX + (borderWidth() * 2);
externalCoordinates. height = highestY — lowestY + (borderWidth() * 2);

134

404
405
406
407

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

Rescale this node after a connector has been dragged

@param int xMove How much to move the connector horizontally
O@param int yMove How much to move the connector vertically
@param int index The index of the connector in connectors []
@since 1.22

* Q@return void

*/
protected void rescaleNode (int xMove, int yMove, int index) {
int lowestX , lowestY , highestX , highestY;
int oldX, oldY, newX, newY, xDiff, yDiff;
int border;

* X X ¥ ¥

/* %
* Now, we know that the connector with index index is moved x spaces
* horizontally and y spaces vertically.
* Furthermore, we know that connectors [index].internalCenterX ()
* and connectors [index].internalCenterY () provides the current
* position of the connector.
*/
if (index >= 0) {
0ldX = connectors [index].internalCenterX ();
0oldY = connectors [index].internalCenterY ();

}

else {
oldX = centerX;
oldY = centerY;

}

if (xMove > 0 || (oldX + xMove) > 0)
/* 01dX < newX or |xMove| <= 0l1ldX x*/
newX = oldX + xMove;
else
/* | xMovel| >= o0ldX */
newX = borderWidth ();

/* And the vertical direction */

if (yMove > 0 || (oldY + yMove) > 0)
newY = oldY + yMove;

else
newY = borderWidth ();

/ %%
* Find the highest and lowest (x, y) *apartx
* from connectors [index]

*/

if (index >= 0) {
lowestX = centerX + externalCoordinates.x;
lowestY = centerY + externalCoordinates.y;
highestX = centerX + externalCoordinates.x;

highestY = centerY + externalCoordinates.y;

}

else {
lowestX = connectorX [0];
lowestY = connectorY [0];

135

458
459
460
461
462
463
464
465
466

468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

highestX = connectorX [0];
highestY = connectorY [0];

}

for (int i
if (i!
if

~N

* X X X X ¥

Now,

node.

*/

int abX
int cdX
int abY
int cdY

if (cdX

= 0; i < connectors.length; i++) {

= index) {
(connectorX [i] < lowestX)
lowestX = connectorX [i];

else if (connectorX [i] > highestX)

highestX = connectorX [i];

if (connectorY [i] < lowestY)

lowestY = connectorY [i];

else if (connectorY [i] > highestY)

>

highestY = connectorY [i];

We now have the lowest possible x and y in lowestX and lowestY
if we disregard connectors [index]
calculate the difference between the points and the difference
between the lowest point apart from this to the lowest point of the

Math.abs (xMove);
lowestX — (externalCoordinates.x + borderWidth ());
Math. abs (yMove);
lowestY — (externalCoordinates.y + borderWidth ());

0) {

/* connectors [index] is the sole leftmost point */
if (xMove > 0) {
if (abX < cdX) {

}

else {

}
}

}

xDiff = —abX;
lowestX —= (cdX — abX);

else {

}

xDiff = —cdX;
if (xMove > externalCoordinates.width)

highestX += xMove — (externalCoordinates.width —

(borderWidth () * 2));

xDiff = abX;
lowestX —= (abX + cdX);

else if (xMove < 0 && abX > (oldX — borderWidth ())) {
xDiff = abX — 0ldX + borderWidth ();
lowestX —= xDiff;

}

else { /* externalCoordinates.x remains the same */

136

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

xDiff = 0;
if ((externalCoordinates.x + newX) > highestX)
highestX = externalCoordinates.x + newX;

}

/* Repeat for y (should put this in a method) */
if (edY > 0) {
/* connectors [index] is the sole topmost point */
if (yMove > 0) {
if (abY < cdY) {
yDiff = —aby;
lowestY —= (cdY — abY);
}
else {
yDiff = —cdY;
if (yMove > externalCoordinates.height)
highestY += yMove — (externalCoordinates.height —
(borderWidth () * 2));
}
}
else {
yDiff = abY;
lowestY —= (abY + cdY);
}
}
else if (yMove < 0 && abY > (oldY — borderWidth ())) {
yDiff = abY — o0ldY + borderWidth ();
lowestY —= yDiff;
}

else { /* externalCoordinates.y remains the same */
yDiff = 0;
if ((externalCoordinates.y + newY) > highestY)
highestY = externalCoordinates.y + newY,;

}

if (index >= 0) {
connectorX [index]| += xMove;
connectorY [index]| += yMove;
¥
else {
centerX 4= xMove;
if (centerX < borderWidth ())
centerX = borderWidth ();
centerY += yMove;
if (centerY < borderWidth ())
centerY = borderWidth ();

for (int i = 0; i < connectors.length; i++)
if (i != index && xDiff != 0 || yDiff != 0)
connectors [i].moveRelative (xDiff, yDiff);

if (index >= 0) {
centerX += xDiff;

137

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

centerY += yDiff;

}

/* Set the external coordinates */
externalCoordinates.x = lowestX — borderWidth ();
externalCoordinates.y = lowestY — borderWidth();

externalCoordinates.width = highestX — lowestX + (borderWidth() = 2
externalCoordinates. height = highestY — lowestY + (borderWidth() =x

if (index >= 0) {
connectors [index].setP (new Point (connectorX [index]| —
externalCoordinates.x,
connectorY [index]| —

externalCoordinates.y));

}

setSize (new Dimension (externalCoordinates.width,
externalCoordinates. height));
setBounds (externalCoordinates.x, externalCoordinates.y,

externalCoordinates.width, externalCoordinates.height);

validate ();
if (index >= 0)

connectors [index]|.validate ();
repaint ();

}

/* %
* Calculate the largest X value of this rwsNode’s connectors
*/
protected int calculateLargestX(){
int local largestX = connectorX[0]x3;
for (int i = 0; i<connectorX.length ; i++){
if (connectorX[i]*3 > local largestX)
local largestX = connectorX|[i]|x3;

}

return local largestX;

}

VAL:
* Calculate the largest Y value of this rwsNode’s connectors
*/
protected int calculateLargestY (){
Dimension bgSize = RWSEditor. frame . panel. getPreferredSize ();
int local largestY = (bgSize.height—connectorY [0])=3;
for (int i = 0; i<connectorY.length ; i++){
if ((bgSize.height—connectorY[i])*3 > local largestY)
local largestY = (bgSize.height—connectorY[i])=*3;

}

return local largestY;

}

/ * %
¥ Calculate the smallest X value of this rwsNode’s connectors

138

)
2

)

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

*/
protected int calculateSmallestX (){
int local smallestX = connectorX[0]=3;
for (int i = 0; i<connectorX.length ; i++){
if (connectorX[i|+3 < local_smallestX)
local smallestX = connectorX|[i]#*3;

}

return local smallestX;

}

VAL
* Calculate the smallest Y value of this rwsNode’s connectors
*/
protected int calculateSmallestY (){
Dimension bgSize = RWSEditor. frame . panel. getPreferredSize ();
int local smallestY = (bgSize.height—connectorY [0])=3;
for (int i = 0; i<connectorY.length ; i++){
if ((bgSize.height—connectorY|[i])*3 < local smallestY)
local smallestY = (bgSize.height—connectorY[i])=*3;

}

return local smallestY ;

~N 0

* X ¥ ¥ X *

Copies the properties from the template node.
Also (maybe not the Correct[tm] method to do it in..) sets the status
of the connectors.
Finally (should also probably be done in another method) unset the
selected connector if it can’t connect to the selected template
* connector.
*/
protected void copyConnectorProperties (RWSNode templateNode){
for (int i=0;i<connectors.length;i++) {
connectors [i].connectorType =
templateNode . connectors [i].connectorType;
connectors [i].cpnlnterface =
templateNode.connectors [i].cpnlnterface;

if (RWSConnector.selectedConnector != null) {

if (! RWSConnector.selectedConnector.canConnectTo
(RWSConnector . selectedTemplateConnector) |
RWSConnector . selectedConnector.isConnected ()){
RWSConnector . selectedConnector. unsetActive ();
RWSConnector . selectedConnector = null;
selectedNode = null;
setSelectedConnector ();
}
}
else {
setSelectedConnector ();
}

139

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

void setSelectedConnector(){
drawing = false;

for (int i=connectors.length —1;i>=0;i—) {
if (! connectors [i].isConnected() && // This connactor is free
/* It is not the same as the template connector */
i 1= RWSConnector . selectedTemplateConnector .index &&
/* This connector can connect to the template */
connectors [i].canConnectTo (
RWSConnector . selectedTemplateConnector)) {
selectedNode = this;

drawing = true;

RWSConnector . selectedConnector = connectors [i];

RWSConnector . selectedConnector. setStatus (RWSConnector . ACTIVE) ;
return;

}

/ * %
* Update this node’s status
*/
public void setStatus(int status){
this.status = status;
}

/* %
* Which mouse button was pressed?
*/
private int getMouseButton (MouseEvent e){
switch(e.getButton ()){
case MouseEvent .BUTTONLI:
return MOUSE LEFT;
case MouseEvent . BUTTON2:
return MOUSE MIDDLE;
case MouseEvent .BUTTONS:
return MOUSE RIGHT;
}

return —1;

}

/* %
* What happens when this node is clicked.
* This could also be placed in mousePressed(), have to look at it..
*/
public void mouseClicked (MouseEvent e){
RWSNode previous;

if (getMouseButton (e) == MOUSE RIGHT) {
tmpSelected = this;
RWSEditorFrame. nodePopup .show (RWSEditorFrame.bg,
e.getX () + externalCoordinates.x,
e.getY () + externalCoordinates.y);

140

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780

}

if (isTemplate) {
previous = selectedTemplateNode;
selectedTemplateNode = this;
RWSNode. setDefaultNodeLength (nodeLength);
}
else {
previous = selectedNode;
selectedNode = this;
setStatus (ACTIVE);
if (previous != null)
previous.setStatus (INACTIVE);

repaint ();
if (previous != null)
previous.repaint ();

}

public void mousePressed (MouseEvent e){}

public void mouseReleased(MouseEvent e){
if (moving) {

if (RWSConnector.hoveringConnector != null)
VAL:
* We’re over a connector, we don’t want to
* place the center point here
*/
return;

rescaleNode (e.getX () — centerX,

e.getY () — centerY, —1);
moving = false;

}

public void mouseEntered (MouseEvent e){}

public void mouseExited (MouseEvent e){}

VAL:

* Interface method

*/

public void mouseDragged (MouseEvent e) {

moving = true;

}

/* %

* Interface method

*/

public void mouseMoved (MouseEvent e) { }

public Dimension getPreferredSize () {

return new Dimension(externalCoordinates.width + ENDPOINTDIAM,
externalCoordinates. height + ENDPOINTDIAM) ;

141

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

}

/ %%
* Paint this node. We need a Graphics2D object since we want a
* thicker 1line.
*/
public void paintComponent(Graphics g){
Graphics2D g2 = (Graphics2D) g;
g2.setStroke (new BasicStroke (RWSNODEWIDTH, BasicStroke.CAP ROUND,
BasicStroke .JOIN._ROUND));
switch(status){
case ACTIVE:
g2.setColor (ACTIVE RWSNODECOLOR) ;
break;
default:
g2.setColor (RWSNODECOLOR) ;

if (!componentType.equals ("Single R") &&
I'componentType. equals ("Single L")) {
if (componentType.equals (" Track section")){
g2.drawLine(centerX , centerY ,
connectors [0].internalCenterX (),
connectors [0].internalCenterY ());
g2.setColor (Color.gray);
g2.drawLine(centerX , centerY ,
connectors [1].internalCenterX (),
connectors [1].internalCenterY ());
}
else {
for (int i=0;i<connectors.length ;i++){
g2.drawLine(centerX , centerY ,
connectors [i].internalCenterX (),
connectors [i].internalCenterY ());

}

if (componentTypel=null && componentType.equals("Turnout")){
Graphics2D g3 = (Graphics2D) g;
g.setColor (NODE_FILLCOLOR) ;
g3.setStroke (new BasicStroke (2, BasicStroke.CAP_ROUND,
BasicStroke .JOIN_ ROUND));

int [] polyX = { connectors [1].internalCenterX (),

connectors [2].internalCenterX (), centerX };
int [] polyY = { connectors [1].internalCenterY (),

connectors [2].internalCenterY (), centerY };

g3.fillPolygon (polyX, polyY, 3);

}

if (componentType != null && componentType.equals ("Double slip")){
Graphics2D g3 = (Graphics2D) g;
g3.setStroke (new BasicStroke (2, BasicStroke.CAP_ROUND,
BasicStroke .JOIN._ ROUND)) ;

142

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

g.setColor (NODE_ INST COLOR);
g3.drawLine(connectors [0].internalCenterX ()
connectors [0].internalCenterY ()
connectors [1].internalCenterX (),
connectors [1].internalCenterY ());
()’
()
()

i

)

g3.drawLine(connectors [2].internalCenterX
connectors [2].internalCenterY
connectors [3].internalCenterX
connectors [3].internalCenterY ());

)

)

int [] polyX = { connectors|[1].internalCenterX (),
connectors [2].internalCenterX (),
centerX };

int [] polyY = { connectors|[1].internalCenterY (),
connectors [2].internalCenterY (),
centerY };

int [|] poly2X = { connectors[0].internalCenterX (),
connectors [3].internalCenterX (),
centerX };

int [] poly2Y = { connectors [0].internalCenterY (),
connectors [3].internalCenterY (),
centerY };

g.setColor (NODE_FILLCOLOR) ;
g3 . fillPolygon (polyX, polyY, 3);

g3 . fillPolygon (poly2X, poly2Y, 3);
}

g2.drawLine (connectors[0].internalCenterX

(

()
connectors [0].internalCenterY (),
connectors [1].internalCenterX (),
connectors [1].internalCenterY ());

g2.drawLine (connectors[2].internalCenterX (),
connectors [2].internalCenterY (),
connectors [3].internalCenterX (),
connectors [3].internalCenterY ());

}

if (componentType != null &&
(componentType. equals ("Single R") ||
componentType. equals ("Single L"))){
if (componentType.equals ("Single R")){
for (int i = 0; i < connectors.length; i++) {
g2.drawLine (centerX , centerY ,
connectors [i].internalCenterX (),
connectors [i].internalCenterY ());
1++;
}
}
else {
for (int i = 1; i<connectors.length; i++){
g2.drawLine(centerX , centerY,
connectors [i].internalCenterX (),
connectors [i].internalCenterY ());

143

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

1++;

}

.internalCenterY
.internalCenterX (),
.internalCenterY ());

]
connectors

connectors

g2.drawLine(connectors [0].internalCenterX (),
connectors [0].internalCenterY (),
connectors [1].internalCenterX (),
connectors [1].internalCenterY ());
g2.drawLine(connectors [2].internalCenterX (),
2] ()
3] ()
3] ()

[
|
[
connectors |
[
[

}

if (connectors.length =— 1){
g2.drawLine(endP1X, endP1Y, endP2X, endP2Y);

g = (Graphics) g2;
super . paintComponent (g);

}

/ *x
* Return the corner coordinates of this node.
*/
public int externalEndX (){
return externalCoordinates.x + externalCoordinates.width;
}

/ **
* Return the corner coordinates of this node.
*/
public int externalEndY (){
return externalCoordinates.y + externalCoordinates. height ;
}

/* %
* Return the corner coordinates of this node.
*/
public int externalStartX (){
return externalCoordinates.x;
¥

/ *x
* Return the corner coordinates of this node.
*/
public int externalStartY (){
return externalCoordinates.y;
}

public int borderWidth(){
return RWSConnector .DOTDIAM / 2;
}

/ * %

144

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

* Return a (unique) textual representation of this node

*/
public String toString (){

return new String (" [RWSNode: id=" + id + ";position=(" +
externalStartX () + "," + externalStartY ()
externalEndX () + "," + externalEndY () + ")|")

}

/* %

* Sets the length of the nodes. Done from the template node.

*/

public static void setDefaultNodeLength(int length){

RWSNODELENCGTH — length ;
}

/ * %

* Return the number of connectors in this compnent.

*/

public int numberOfConnectors (){
return connectors.length ;

}

/* %
* Connects two connectors

*/

private void connectConnectors (RWSConnector mine, RWSConnector remote){

mine.neighbour = remote;
remote.neighbour = mine;

}

public static int getCounter (){
return counter;
}

VAL:

* Update the global rwsNode counter

*/

public static void setCounter (int c¢) {
counter = c;

}

/* %

* Methods necessary for XMLEncoder

*/

public void setComponentType (String type) {
componentType = type;
}

public String getComponentType () {
return componentType;
}

public int getStatus () {

145

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

}

return status;

public void setCenterX (int x) {

}

public int getCenterX () {

}

centerX = x;

return centerX;

public void setCenterY (int y) {

}

public int getCenterY () {

}

public void setEndP1X (int

}

public int getEndP1X () {

}

public void setEndP2X (int

}

public int getEndP2X () {

}

public void setEndP1Y (int

}

public int getEndP1lY () {

}

public void setEndP2Y (int

}

public int getEndP2Y () {

}

centerY = y;

return centerY ;

endP1X = x;

return endP1X;

endP2X = x;

return endP2X;

endP1lY = y;

return endPlY;

endP2Y = y;

return endP2Y;

public void setld (int id) {

}

this.id = id;

146

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

public int getld () {
return id;
}

public void setTemplate (RWSNode template) {

this.template = template;

}

public RWSNode getTemplate () {
return template;
}

public void setExternalCoordinates (Rectangle rect) {

externalCoordinates = rect;

}

public Rectangle getExternalCoordinates

return externalCoordinates;

}

public void setConnectorX (int

for (int i = 0; i < connectors.length;

[l

0 A

connectors) {
connectorX = new int [connectors.length |;

connectorX [i] = connectors [i];

}
}

public int [] getConnectorX ()
return connectorX;
}

public void setConnectorY (int

for (int i = 0; i < connectors.length;

{

[l

i++) {

connectors) {
connectorY = new int [connectors.length |;

connectorY [i] = connectors [i];

}
}

public int [] getConnectorY ()
return connectorY ;
}

public void setNodeLength (int length) {

nodeLength = length ;

}

public int getNodeLength () {
return nodeLength;
}

{

public void setConnectors (RWSConnector

if (connectors = null) {
this.connectors = null;

147

[

i++) {

connectors) {

1105 return;

1106 }

1107 this.connectors = new RWSConnector [connectors.length |;
1108 for (int i = 0; i < connectors.length; i++) {

1109 this.connectors [i] = connectors [i];

1110 this.connectors [i].fixBounds ();

1111 }

1112 }

1113

1114 public RWSConnector [] getConnectors () {

1115 return connectors;

1116 }

1117

1118 [**

1119 * Given a RWSNode component n, generate its xml code.

1120 */

1121 public static Element createElement (Document doc, RWSNode n) {
1122 Element node, e;

1123

1124 [**

1125 * The node component

1126 * <!ELEMENT node (#PCDATA | ...)*>

1127 */

1128 node = doc.createElement ("node");

1129 node.setAttribute ("id", Integer.toString (n.getId ()));
1130 if (! n.isTemplate)

1131 node.setAttribute ("templref",

1132 Integer.toString (n.template.getId ()));
1133

1134 [**

1135 * Necessary information

1136 * <!ELEMENT info EMPTY >

1137 * <VATTLIST info componenttype CDATA #IMPLIED
1138 * info nodelength CDATA #REQUIRED
1139 * info status CDATA #REQUIRED>
1140 */

1141 e = doc.createElement ("info");

1142 if (n.getComponentType () != null)

1143 e.setAttribute ("componenttype", n.getComponentType ());
1144 e.setAttribute ("nodelength", Integer.toString (n.getNodeLength
1145 e.setAttribute ("status", Integer.toString (n.getStatus ()));
1146 node.appendChild (e);

1147

1148 /%%

1149 * The coordinates and dimensions of the node

1150 * <!ELEMENT placement EMPTY >

1151 * <VATTLIST placement x CDATA #REQUIRED

1152 * placement y CDATA #REQUIRED

1153 * placement width CDATA #REQUIRED

1154 * placement height CDATA #REQUIRED

1155 * placement centerX CDATA #REQUIRED

1156 * placement <centerY CDATA #REQUIRED>

1157 */

1158 e = doc.createElement ("placement");

148

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

© ~ (=] ot - W N

e T s e =
0w N O U ke W N = O

(coords.width));
(coords. height))

Rectangle coords = n.getExternalCoordinates ();
e.setAttribute ("x", Integer.toString (coords.x));
e.setAttribute ("y", Integer.toString (coords.y));
e.setAttribute ("width", Integer.toString

e.setAttribute ("height", Integer.toString

e.setAttribute ("centerX", Integer.toString (n.getCenterX (
e.setAttribute ("centerY", Integer.toString (n.getCenterY

node.appendChild (e);

/ * %

* If this is an end element (only one connector)

* <IELEMENT endcoordinates EMPTY >

*/

if (n.connectors.length =— 1) {
e = doc.createElement ("endcoordinates");
e.setAttribute ("endplx", Integer.toString
e.setAttribute ("endply", Integer.toString
e.setAttribute ("endp2x", Integer.toString
e.setAttribute ("endp2y", Integer.toString

}

node.appendChild (e);

PRy

5B B B

.getEndP1X
.getEndP1Y
.getEndP2X
.getEndP2Y

/ **

* Walk through this node’s connectors and add them
*/

RWSConnector [] ctors = n.getConnectors ();

for (int i = 0; i < n.connectors.length; i++) {

}

node. appendChild (RWSConnector . createElement (doc,
ctors [i]));

return node;

Listing 4: RWSConnector.java

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

java.awt.event.MouseListener;
java.awt.event. MouseMotionListener;
java.awt.event . MouseEvent ;
javax.swing.JPanel;

java
java
java
java
java
java .
java.
java.
java
java

.awt
.awt .
.awt .
.awt .
.awt.

awt

. Graphics;
Color;
Dimension;
Rectangle;
Component;
. Point;

io .*;
util . x;

.beans.XMLEncoder ;
.beans.XMLDecoder ;

org.w3c.dom. *;
org.xml.sax.x*;

149

A~ N S

1)
0))

)
)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

/ %%
* RWSConnector objects are the interface nodes of the specification
* language. They belong to RWSNodes and connect these to each other.
*/
public class RWSConnector extends JPanel implements MouseListener
MouseMotionListener {

final static int DOIDIAM = 8;
private Point p;
protected RWSNode node;

protected CPNNode cpnlnterface;
protected RWSConnector neighbour;
protected int xmlld;

/* Used when traversing the graph */
protected boolean mark = false;

/* Used for moving a connector */
boolean moving = false;

boolean createElement = true;

protected static RWSConnector selectedConnector, selectedTemplateConnector ;

/* Status */

final protected static int UNUSED = O0;
final protected static int USED = 1;
final protected static int ACTIVE = 2;

/* Mouse buttons */

final protected static int MOUSE LEFT = O0;
final protected static int MOUSE MIDDLE = 1;
final protected static int MOUSE RIGHT = 2;

protected static RWSConnector hoveringConnector;
protected static boolean connectNext = false;
private int status = UNUSED;

/* Array index in node.connectors */
protected int index;

/* Type decides which connectors we can connect to */
protected int connectorType;

/

*
A1l the different rules for which connectors can connect to which.
Keys are Integer objects made from connectorTypes and values are
new hashmaps where the keys are valid connectorTypes. Values in this

of quick look-ups.

* X X X X X *

150

last hashmap are the same as the keys, they exist solely for the purpose

73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

private static HashMap rules

/* Are we a template? x*/
protected boolean isTemplate

/* Colors x*/

new HashMap () ;

true;

final static Color COLOR UNUSED = Color.red;
final static Color COLOR USED = Color. black;
final static Color COLOR_ACTIVE = Color. blue;

final private static Color []

currentColor =

new Color [| { COLOR_UNUSED,
COLOR_USED,
COLOR_ACTIVE };

VAL

* Empty constructor.

*/

public RWSConnector () {
setOpaque (false);
addMouseListener (this);

addMouseMotionListener (this);

}

/ * %
* Constructor...

*/

RWSConnector (int x, int y, RWSNode node, int index, boolean isTemplate) {

setP (new Point (x, y));
this.node = node;
this.index = index;

setOpaque (false);
addMouseListener (this);

addMouseMotionListener (this);

this.setBounds (x — (DOIDIAM / 2), y — (DOIDIAM / 2),

DOTDIAM, DOTDIAM) ;

if (selectedConnector != null)
selectedConnector.setStatus (UNUSED);
this.isTemplate = isTemplate;

}

public Dimension getPreferredSize () {
return new Dimension (DOTDIAM, DOTDIAM);

}

/* %

* Check whether this connector can connecto to another
* Q@param RWSConnector remote

*/

protected boolean canConnectTo (RWSConnector remote){

the connector this is to

151

connect to

127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174

176
177
178
179

Integer connectorTypel = new Integer (connectorType);

Integer connectorType2 = new Integer (remote.connectorType);

if (rules.containsKey (connectorTypel)){

HashMap h = (HashMap) rules.get (connectorTypel);

if (h.containsKey (connectorType2))
return true;

}

return false;

}

/ * %

* Add a rule to allow two connector types to connect to each

* others

*/

protected static void addRule (RWSConnector connl, RWSConnector conn2) {

HashMap h;

Integer cType = new Integer (connl.connectorType);

Integer canConnectTo = new Integer (conn2.connectorType);

if (rules.containsKey (cType)) {
h = (HashMap) rules.get (cType);
if (! h.containsKey (canConnectTo))
h.put (canConnectTo, canConnectTo);
¥
else {
h = new HashMap ();
h.put (canConnectTo, canConnectTo);
rules.put (cType, h);

}

if (rules.containsKey (canConnectTo)) {
h = (HashMap) rules.get (canConnectTo);
if (! h.containsKey (cType))
h.put (cType , cType);
}
else {
h = new HashMap ();
h.put (cType , cType);
rules.put (canConnectTo , h);

}

/ * %
* When a connectors status is changed from ACTIVE,
* to find out whether to set it to USED or UNUSED.
*/

public void unsetActive () {
setStatus (isConnected (
}

public boolean isActive (){
return status — ACTIVE;

) ? USED : UNUSED);

152

we need

181
182
183
184
185

187
188
189
190
191
192
193
194
195

197
198
199
200
201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

}

VAL:
* Which mouse button was pressed?
*/
private int getMouseButton (MouseEvent e){
switch(e.getButton ()){
case MouseEvent .BUTTONI:
return MOUSE LEFT;
case MouseEvent .BUTTON2:
return MOUSE MIDDLE;
case MouseEvent .BUTTONS:
return MOUSE RIGHT;
}

return —1;

}

VAL:
* Save the composition rules to xml for the specification
*/

public static Element createRulesElement (Document doc) {

Element rule, rulesElement = null;

try{
rulesElement = doc.createElement ("rules");
Iterator from = rules.keySet ().iterator ();
while (from.hasNext ()) {

Integer fromKey = (Integer) from.next ();

HashMap h = (HashMap) rules.get (fromKey);

Iterator to = h.keySet ().iterator ();

while (to.hasNext ()) {
Integer toKey = (Integer) to.next ();
rule = doc.createElement ("rule");
rule.setAttribute ("from", fromKey.toString ());
rule.setAttribute ("to", toKey.toString ());
rulesElement . appendChild (rule);

}
}
catch (Exception e) {
e.printStackTrace ();
}

return rulesElement;

—

/%%

* What happens when this connector is clicked?

* Could be placed in mousePressed...

*

* Invariant 1: If a connector was previously selected it shall no longer
* be after this

* Invariant 2: This connector shall be the selected connector after this
* unless it is the first in a "ring" which is closed

* Invariant 3: Only a left click shall be able to select a connector

153

236
237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254

256
257
258
259

261
262
263
264

266
267
268
269
270
271
272
273
274
275
276
277

279
280
281
282

284
285
286
287

*/

public void mouseClicked (MouseEvent e) {

int mouseButton;

/ %%
* Firstly,
*/

if (RWSNode.
RWSNode .
RWSNode.
RWSNode.

}

this is a click on a connector. No node shall be selected.

selectedNode

selectedNode.

selectedNode
selectedNode

!= null) {
setStatus (RWSNode.INACTIVE);

.repaint ();

= null;

/* is there a previously selected connector? x/
boolean existsPreviousConnector = selectedConnector != null;

/* is there a previously selected node? */
boolean existsPreviousNode = RWSNode. selectedNode != null;

/* Return if I am the same as the previously selected connector */
if (existsPreviousConnector &&

selectedConnector = this)
return;
mouseButton = getMouseButton (e);

/* We’re not interested in center mouse clicks */
if (mouseButton =— MOUSE MIDDLE)

return;

RWSNode previousNode = null;
RWSConnector previousConnector = null;

boolean addedRule = false;

/ * %

* This connector is part of a template

*/

if (isTemplate) {

/* Add a rule,

DON’T SAVE THE PREVIOUS connector or node */

if (RWSEditorFrame. action = RWSEditorFrame.CREATE RULES &&
mouseButton = MOUSE_RIGHT) {
addRule (selectedTemplateConnector, this);

addedRule = true;

previousNode = RWSNode. selectedTemplateNode;
RWSNode. selectedTemplateNode = null;

previousConnector

selectedTemplateConnector ;

selectedTemplateConnector = null;

}

/ * %

* Select a new template connector, save the previous one

154

290
291
292
293
294
295
296
297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

* This also makes this connector’s node the current

* template node

*/

else if (mouseButton = MOUSE LEFT) {
previousNode = RWSNode. selectedTemplateNode;
RWSNode. selectedTemplateNode = node;

previousConnector = selectedTemplateConnector ;
selectedTemplateConnector = this;

setStatus (ACTIVE);

repaint ();

RWSNode. setDefaultNodeLength (node.nodeLength);

}

if (previousConnector != null && previousConnector != this){

previousConnector . unsetActive ();
previousConnector . repaint ();

}

/ %%
* A template connector is clicked. If any connector was
* previously selected, deselect this.
*/
if (existsPreviousConnector)
selectedConnector. unsetActive ();
selectedConnector = null;
RWSNode. selectedNode = null;

if (mouseButton = MOUSE_RIGHT && !addedRule)
RWSEditorFrame. popup . show (RWSEditorFrame.bg, e.getX ()
externalCenterX (), e.getY ()
externalCenterY ());

}

/ %%
* This connector is *NOT* part of a template
*/
else {
previousConnector = selectedConnector;

previousNode = RWSNode. selectedNode;

selectedConnector = this;
RWSNode. selectedNode = node;

/* We’re not interested if it is a left click x*/
switch (mouseButton){
case MOUSE LEFT:
if (connectNext) {
if (previousConnector.connect (this)) {
previousConnector . moveConnector (
externalCenterX () —
previousConnector . externalCenterX (),
externalCenterY () —
previousConnector . externalCenterY ());

155

Jr
+

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

connectNext = false;
}
VAL:
* First, the case where we close a circle
* (The click is then on the "first" connector in the circle)
*/
else if (existsPreviousConnector && /* There must be a
previous connector */
canConnectTo (previousConnector) && /* I can connect to
the previous
(first to last
in the circle) x/
! this.isConnected () && /* I’m available */
! previousConnector .isConnected ()) { /* My peer is
available */

RWSEditor . frame . panel . repaint ();

RWSEditor . frame . createNewNode (
previousConnector . externalCenterX (),
previousConnector . externalCenterY (),
externalCenterX (), externalCenterY (),
false, true);

/* Connect the first connector in the ring to the last */

selectedConnector.neighbour = this;
neighbour = selectedConnector;
/ * %

* Connect the third last connector

* in the ring to the second last

x/

selectedConnector.node. connectors
[selectedTemplateConnector .index |. neighbour =
previousConnector ;

previousConnector . neighbour =
selectedConnector.node. connectors
[selectedTemplateConnector .index |;

previousConnector . unsetActive ();

selectedConnector.node. connectors
[selectedTemplateConnector .index |. unsetActive ();

selectedConnector. unsetActive ();

unsetActive ();

selectedConnector = null;
RWSNode. selectedNode = null;
node.setSelectedConnector ();
return;

}

/* Second, no previously selected connector */

else if (! existsPreviousConnector){
if (existsPreviousNode &&
node != previousNode)

previousNode.setStatus (RWSNode.INACTIVE);

156

397
398
399
400
401
402
403
404
405
406

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

RWSNode. selectedNode = node;
setStatus (ACTIVE);
if (isConnected ()){
RWSNode. drawing = false;
RWSEditor . frame . panel . repaint ();

}

/* Third, a connector was previously selected */
else if (existsPreviousConnector){
if (existsPreviousNode &&
node != previousNode)
previousNode.setStatus (RWSNode.INACTIVE);
previousConnector . unsetActive ();
setStatus (ACTIVE);
repaint ();

}

/* We can DRAW! Set RWSNode.drawing x*/
if (! isConnected () &&
canConnectTo (selectedTemplateConnector)){
RWSNode. drawing = true;

}
break;

case MOUSE RIGHT:

if (! addedRule)

RWSEditorFrame. popup . show (RWSEditorFrame. bg
externalCenterX (),
externalCenterY ());

return;
default :

}

/* %
* Connect
* Q@param
* @since
* @return

*/

System . err.println ("This_is_the_default_part_of_the_switch , _" +

"where_we_should -NOT_be!");

this connector to another connector
RWSConnector toConnect The peer to connect to
1.18

boolean

protected boolean connect (RWSConnector toConnect) {

if (canConnectTo (toConnect) &&

! isConnected () && /* I’m available */

! toConnect .isConnected ()) { /* My peer is available */
neighbour = toConnect ;

toConnect . neighbour = this;

unsetActive ();
toConnect . unsetActive ();

157

, e.getX ()
e.getY ()

/* I can connect to toConnect */

451
452
453
454
455

457
458
459
460
461
462
463
464
465

467
468
469
470
471
472
473
474
475

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

500
501
502
503
504

return true;

}

return false;

}

/ * %

* Interface method

*/

public void mouseDragged (MouseEvent e) {
moving = true;

}

/* %

* Interface method

*/

public void mouseMoved (MouseEvent e) { }

/* %

* Interface method

*/

public void mousePressed (MouseEvent e) { }

/* %

* Interface method

*/

public void mouseReleased (MouseEvent e){
if (moving) {
int targetX, targetY;

if (isConnected()) {
if (hoveringConnector

!= null && hoveringConnector =—

neighbour)

return; /* We’re above our own neighbour */
else {

neighbour.neighbour = null;

neighbour.unsetActive ();

neighbour = null;

}

unsetActive ();

if (hoveringConnector !
if (connect (hoveringConnector)) {

}

= null && hoveringConnector != this)

targetX = hoveringConnector.externalCenterX () —
externalCenterX ();
targetY = hoveringConnector. externalCenterY () —

externalCenterY ();

else {

else {

System.err.println

return;

158

("Could_not_connect");

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

targetX = e.getX
targetY = e.getY

) — (DOIDIAM /= 2);
) — (DOTDIAM /= 2);

S~ o~

}

int xMove = targetX;
int yMove = targetY;

moveConnector (xMove, yMove);
moving = false;

*
* Move a connector and rescale the node
* Q@param int x How much to move the connector horizontally
* @param int y How much to move the connector vertically
* @since 1.19
* Q@return void
*/
protected void moveConnector (int x, int y) {
node.rescaleNode (x, y, index);
setBounds (p.x — (DOIDIAM / 2), p.y — (DOIDIAM / 2),
DOTDIAM, DOTDIAM) ;

/%%
* Move this connector relative to the coordinates provided
* @param int x The horizontal distance to move the node
* @param int y The vertical distance to move the node
* @since 1.15
* Q@return void
*/
protected void moveRelative (int x, int y) {
pP.X +—= X;
pP.y +=Y;

setBounds (p.x — (DOIDIAM / 2), p.y — (DOIDIAM / 2),
DOTDIAM, DOTDIAM);
}

protected void fixBounds () {
this.setBounds (p.x — (DOIDIAM / 2),
p.y — (DOTDIAM / 2),
DOTDIAM, DOTDIAM);
}

VAL:

* Interface method

*/

public void mouseEntered (MouseEvent e) {
hoveringConnector = this;

}

/* %
* Interface method

*/

159

559
560
561
562
563

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

public void mouseExited (MouseEvent e) {
hoveringConnector = null;
}

/* %

* Paint this connector. Really simple.

*/

public void paintComponent(Graphics g){
g.setColor (currentColor [status]);
g.fillOval (0, 0, DOTDIAM, DOTDIAM);

}

VAL:
* Return the coordinates of this connector’s center point
*/
public int externalCenterX (){
return node.externalStartX () + p.x;
}

VAL:
* Return the coordinates of this connector’s center point
*/
public int externalCenterY (){
return node.externalStartY () + p.y;
}

/* %
* Return the coordinates of this connector’s center point
* where (0, 0) is the starting point of the connector
*/
public int internalCenterX (){
return p.x;
}

/%%
* Return the coordinates of this connector’s center point
* where (0, 0) is the starting point of the connector
*/
public int internalCenterY (){
return p.y;
}

/* %
* Set which node this connector "belongs" to.
*/
protected void setNode (RWSNode node){
this.node = node;
}

/* %

* Static method to return the index of the selected template

* node’s selected connector.
*/

protected static int selectedTemplateConnectorIndex (){

160

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

}

/ * %

if (selectedTemplateConnector != null)
return selectedTemplateConnector .index;
return 0;

* Changes this connector’s type. Affects which connectors
* it can connect to.

*/

protected void setConnectorType(int type){

}

/* %

connectorType = type;

* Change this connector’s status.

*/

protected void setStatus(int status){

}

/ * %

this.status = status;

* Are we connected?

*/

protected boolean isConnected () {

}

/ * %

return neighbour != null;

* Are we connected?
* Q@param String inter The id number of the interface to connect to
* Q@param String comp The component (actually the name of the XML file)

*/

protected void addCPNInterface (String inter , String comp) {

if (isTemplate)
node.cpnComponentType = comp;

else

node. template .cpnComponentType = comp;
CPNNode n;
Place nl = null;

HashMap cpnNodes = (HashMap) XMLUtils. cpnComponents. get (comp);
if (cpnNodes = null) {

return;
}
Iterator it = cpnNodes.keySet ().iterator ();

while (it.hasNext()) {
String key = (String) it.next ()
n = (CPNNode) cpnNodes.get (key);
if (n instanceof Place){
Place pl = (Place) n;
if (pl.getld ().equals (inter)) {
pl.setInterface (true);
nl = pl;

161

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

else
System . err.println ();
}
¥
cpnlnterface = nl;

}

/ %%
* Return the cpn node.
*/
protected CPNNode getCPNInterface(){
if (! isTemplate)
return node.template.connectors [index|.cpnlnterface;
else
return cpnlnterface;

}

/ %%

* Return what identifies this connector
*/

public String toString (){

return " [RWSConnector:id=" + node.id + "." + index + ";type=" +
connectorType + ";position=(" + externalCenterX () + "," +

externalCenterY () + ")|";

}

/ * %
* Methods necessary for XMLEncoder

*/

public void setP (Point p) {
this.p = p;
}

public Point getP () {
return p;
}

public RWSNode getNode () {
return node;
}

public void setCpnlnterface (CPNNode iface) {
cpnlnterface = iface;
}

public String getCpnlnterfaceld () {
return cpnlnterface.getld ();
}

public void setNeighbour (RWSConnector neighbour) {
this.neighbour = neighbour;
}

162

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

public RWSConnector getNeighbour ()

return neighbour;

}

public void setXmlld (int id) {

xmlld = id;
}

public int getXmlld () {

return xmlld;

}

public int getStatus () {

return status;

}

public void setIndex (int index) {

this.index = index;

}

public int getIndex () {

return index;

}

public int getConnectorType ()
return connectorType;

}

{

public static void setRules (HashMap rules) {
RWSConnector . rules = rules;

}
/%

* Create the xml code for this connector.

*/

public static Element createElement

Element conn,

/ * %

€,

* The connector component

* <!ELEMENT

connector (#PCDATA

) x>
CDATA
IDREF
CDATA

* <VATTLIST connector index

* connector noderef

* connector istemplate

*/
conn = doc.createElement ("connector");

conn.setAttribute ("noderef",
Integer.toString (c.getNode ().getld

conn.setAttribute ("index", Integer.toString (c.getIndex

#REQUIRED
#REQUIRED
#REQUIRED>

conn.setAttribute ("istemplate", c.isTemplate ? "true"

/ * %
* Position
* <!ELEMENT

pos EMPTY >

163

(Document doc, RWSConnector c¢) {

())):
)));

"false");

775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

© [P (=] ot - w N

e e
N = O

* <VATTLIST ©pos X CDATA #REQUIRED

* pos y CDATA #REQUIRED>
*/

e = doc.createElement ("pos");

e.setAttribute ("x", Integer.toString (c.getP ().x));
e.setAttribute ("y", Integer.toString (c.getP ().y));
conn.appendChild (e);

/*x
* Neighbour ("optional")
* <!ELEMENT mneighbour EMPTY >
* <VATTLIST mneighbour node IDREF #REQUIRED
* neighbour index CDATA #REQUIRED>
*/
if (c.getNeighbour () != null) {
e = doc.createElement ("neighbour");

e.setAttribute ("node",
Integer.toString (

c.getNeighbour ().getNode ().getld ()));

e.setAttribute ("index",
Integer.toString (
c.getNeighbour ().getIndex ()));
conn.appendChild (e);

}

/*x*

* Vital information

* <!ELEMENT info EMPTY >

* <VATTLIST info status CDATA #REQUIRED
* info connectortype CDATA #REQUIRED>
*/

e = doc.createElement ("info");

e.setAttribute ("status", Integer.toString (c.getStatus ()));
e.setAttribute ("connectortype",

Integer.toString (c.getConnectorType ()));
conn.appendChild (e);

return conn;

Listing 5: CPNNode.java

import
import
import
import
import

VEX

java.util. Vector;
javax.xml. parsers.x;
org.xml.sax.x;
org.w3c.dom. *;
java.io .x*;

* Superclass for internal representation of Petri Net components

*/

class CPNNode implements Serializable {

164

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

private String id;
Vector neighbours;
int xmlld = 0;
Node xmlnode;

public CPNNode (String id, Node n) {
this.id — id;
xmlnode = n;

}

VAL
* Add a neighbour component
*/
public void addNeighbour (CPNNode n) {
if (neighbours = null)
neighbours = new Vector ();
/* First, add the neighbour */
if (! hasNeighbour (n))
neighbours.add (n);
/*x
* Since this is also a neighbour of n,
* add this to n’s neighbours
*/
if (! n.hasNeighbour (this))
n.addNeighbour (this);

}

/ * %
* Return whether we have a specified neighbour
*/
public boolean hasNeighbour (CPNNode n) {
if (neighbours != null)
return neighbours.contains (n);
return false;

}

VAL

* Set this component’s id

*/

public void setld (String id) {
this.id = id;

}

VAL

* Return this component’s id

*/

public String getld () {
return id;

}

Listing 6: Place.java

2 ‘hnport javax.xml. parsers.x;

165

ot - W

© W N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

© 0 N 3 s W N

=
[=}

11
12
13
14
15
16

import org.xml.sax.x*;
import org.w3c.dom.x*;

/**

* Class for internal representation of Petri Net Places
*/

class Place extends CPNNode {

private String name;
private boolean isInterface = false;

Place (String id, Node n) {
super (id, n);
}

/ * %

* Set whether this is as interface place

*/

void setInterface (boolean inter) {
isInterface = inter;

}

VAL:
* Set this place’s name
*/
void setName (String n) {
name — 1;

}

/ %%
* Return this place’s name
*/
String getName () {
return name;
}

Listing 7: Arc.java

import javax.xml.parsers.sx;
import org.xml.sax.x*;
import org.w3c.dom.x;

/**

* Class for internal representation of Petri Net arcs
*/

class Arc extends CPNNode{

String placeend;
String transend;
int xmlPlaceend;
int xmlTransend;

Arc(String id, Node node){

166

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

ot - w N

© 0 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

super(id, node);

}

/* %

* Methods to set and get the places and transitions on the ends

* of this arc

*/

void setPlaceend (String s){
placeend = s;
}

void setTransend (String t){
transend = t;
}

String getPlaceend (){
return placeend;
}

String getTransend (){
return transend;
¥

Listing 8: Transition.java

import javax.xml.parsers.x;
import org.xml.sax.x*;
import org.w3c.dom.x*;

/ * %

* Class for intermnal representation of Petri Net Transitions

*/

class Transition extends CPNNode {

String name;

Transition (String id, Node n) {
super (id, n);
}

/ * %
* Set this transition’s name
*/
void setName (String n) {
name = 1n;
}

/* %
* Return this transition’s name
*/
String getName () {
return name;

167

}

Listing 9: XMLUtils.java

ot - W N

© w N O

import java.awt.x;

import java.io.x;

import javax.xml.parsers.x;

import javax.xml.transform .x;

import javax.xml.transform .dom. x*;
import javax.xml.transform .sax.x*;
import javax.xml.transform .stream.*;
import org.xml.sax.x*;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

import
import
import

*

* K XK X X

*/

class XMLUtils{

/ * %
* RWSConnector.mark and RWSConnector.createElement are now used in
* conjunction with currentMark to make it possible to save to CPN XML

org.w3c.dom. *;
java.util .x;
javax.swing.x*;

The XMLUtils class handles reading and generating of XML files.

- Read CPN components according to Design/CPN’s DTD,

- Write the generated CPN implementation to file according to Design/CPN’s DTD.
- Write the specification to file.

- Read the specification from file.

* more than once.

*/
boolean createPageElement = true;

Element ele;

Element cpnetEl;
Document document;

HashMap xmlNodes ,

/* These variables are used when opening a file */
private HashMap connectorsToConnect,

private int maxId = 0;

/* Every CPN node needs a unique id */
int lopeid

private boolean currentMark = false;
private String fileName;

VAL:
* HashMap cpnComponents contains a hashMap for each CPN

* components. The key is the component name and element of the

100;

cpnNodes;

allConnectors , templateNodes;

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

* hashMap is: Places, Transitions and arcs.
*/
static HashMap cpnComponents = new HashMap ();

VAL

* Read the XML file for a CPN component and create a hashMap of
* xmlNodes and a hashMap of cpnNodes.

*/

void readXML(String filepath , String filename){

File file = new File(filepath);

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance ();
try{

DocumentBuilder builder = factory.newDocumentBuilder ();
document = builder.parse (file);

xmlNodes = new HashMap () ;
cpnNodes = new HashMap ();

NodelList nl;

nl = document.getElementsByTagName("page");
Node n = nl.item(0);

nl = n.getChildNodes ();
String nodeName;
for (int i=0;i<nl.getLength ();i++){

n = nl.item(1i);

nodeName = n.getNodeName ();

if (nodeName =— "place" || nodeName — "trans" ||
nodeName =— "arc"){

xmlNodes. put (getID (n), n);

}

nl = document. getElementsByTagName("arc");

Arc a;

Place p;

Transition t;

String id;

Node tmpNode;

for (int i=0;i<nl.getLength ();i++){
n = nl.item(1i);
id = getID (n);
a = new Arc(id,n);
cpnNodes.put(id, a);

// Get a’s adjacent place (still xml node)
tmpNode = getArcEndPoint (n, xmlNodes, "placeend");
String tmpNodeName = findName (tmpNode);

// Do we have n as a CPNNode yet?

169

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156
157

id = getNodeAttribute (tmpNode, "id");
a.setPlaceend (id);
if (cpnNodes. containsKey(id))

// Yes, retrieve it from the hashmap cpnNodes

p = (Place) cpnNodes.get (id);
else{

// No, create a new Place...

p = new Place(id, tmpNode);

p.setName (tmpNodeName) ;

// ...and put it into cpnNodes

cpnNodes.put(id, p);

}

// Same thing with transitions

tmpNode = getArcEndPoint (n, xmlNodes, "transend");

tmpNodeName = findName (tmpNode);
id = getNodeAttribute (tmpNode, "id");
a.setTransend(id);
if (cpnNodes. containsKey(id))
t = (Transition) cpnNodes. get(id);
else{
t = new Transition (id ,tmpNode);
t .setName (tmpNodeName) ;
cpnNodes. put (id, t);

}

a.addNeighbour(p);
a.addNeighbour(t);

}

Iterator it = xmlNodes.keySet ().iterator ();

while (it .hasNext ()){
String key = (String) it.next ();
Node placenode = (Node) xmlNodes. get (key);

if (placenode .getNodeName (). equals("place")){
if (!cpnNodes. containsKey (key)){

p = new Place(key, placenode);
cpnNodes. put (key ,p);

}

cpnComponents. put (filename , cpnNodes);

} catch (SAXException sxe) {

// Error generated during parsing

Exception x = sxe;
if (sxe.getException() != null)
x = sxe.getException ();

x.printStackTrace ();

} catch (ParserConfigurationException pce) {

170

160
161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178

180
181
182
183
184
185
186
187
188

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212

// Parser with specified options can’t be built
pce.printStackTrace ();

} catch (IOException ioe) {
// 1/0 error
ioe.printStackTrace ();

}

VAL

% Write CPN XML file

*/

void outputXMLFile (String outfile) {

try{
PrintWriter out = new PrintWriter (new FileWriter (outfile));

NodeList nl = cpnetEl.getChildNodes ();
out.println ("<"+cpnetEl.getNodeName ()+">");

Node nl = nl.item(0);

String pageld = getNodeAttribute (nl,"id");

out.println ("<" + nl.getNodeName () +"_"+ "id=\""+pageld+"\"" +">");
nl = nl.getChildNodes ();

nl.normalize ();

for (int i = 0; i<nl.getLength (); i++){
if (nl.item (i).hasChildNodes ()) {
NodeList nl2 = nl.item (i).getChildNodes ();
out.print ("<" + nl.item (i).getNodeName ());
NamedNodeMap map = nl.item (i).getAttributes ();
for (int j = 0; j < map.getLength (); j++) {
out.print ("_" + map.item (j).getNodeName () + "=\"" +
map.item (j).getNodeValue () + "\"");
}
out.println (">");
for(int j = 0; j < nl2.getLength (); j++){
if (nl2.item (j).hasChildNodes ()) {
NodeList nl3 = nl2.item (j).getChildNodes ();
out.print ("__<" + nl2.item (j).getNodeName ());
map = nl2.item (j).getAttributes ();
for (int k = 0; k < map.getLength (); k++) {
out.print ("_" + map.item (k).getNodeName () +
"=\"" + map.item (k).getNodeValue (
+ "\”");

)
}

out.println (">");

for (int k = 0; k < nl3.getLength (); k+-+){
out.println ("____." + nl3.item (k));

}

out.println ("__</" + nl2.item (j).getNodeName ()
+ H>").
}
else
out.println ("__" + nl2.item (j));

171

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

257
258
259
260
261
262
263
264
265

}

out.println ("</" + nl.item (i).getNodeName () + ">");

}

else
out.println (nl.item (i));

}

out.println ("</"+nl.getNodeName () +">");
out.println ("</"+cpnetEl.getNodeName ()+">");
out.close ();

} catch (IOException ioe) {
// I/0 error
ioe.printStackTrace ();

}

VAL
* Methods for getting the ID, the value of a given attribute and
* a specific child node of XML
*/
String getID (Node n){
NamedNodeMap nm = n.getAttributes ();
for (int i=0;i<nm. getLength (); i++){
n = nm.item(i);
if (n.getNodeName () = "id")
return n.getNodeValue ();

}

return null;

}

String getNodeAttribute (Node n, String key){
NamedNodeMap nm = n.getAttributes ();
for (int i=0;i<nm. getLength ();i++){
n = nm.item(i);
if (n.getNodeName () = key)
return n.getNodeValue ();

}

return null;

}

Node getNodeChild (Node n, String key){
NodeList nl = n.getChildNodes ();
for (int i=0;i<nl.getLength ();i++){

n = nl.item(i);
if (n.getNodeName () = key)
return n;

}

return null;

}

VAL:

* Get the place or transition that is on one end of an arc
* @param Node a a specific xml arc node

* @param HashMap =xmlNodes hash containing all xml nodes

172

268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286

288
289
290
291
292
293
294
295
296

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

* Q@param Strinng type placeend / transend

*/

Node getArcEndPoint (Node a, HashMap xmlNodes, String type){

return (Node) xmlNodes. get (

}

getNodeAttribute (getNodeChild (a, type),

"idref"));

/* Find name of place or transition, if they exist */

String findName (Node xmlNode){

String name = "";

if (!xmlNode.getNodeName ().equals("arc")){
Node childnode = getNodeChild (xmlNode, "name");

if (childnode !=null){

childnode = getNodeChild(childnode ,"text");
if (childnode . hasChildNodes()){

NodeList namelist = childnode.getChildNodes ();
for (int i=0;i<namelist.getLength (); i++){
name = namelist.item(i).getNodeValue ();

}
}
}

return name;

}

/* This method is just for debugging */

void printout (RWSNode r) {

System .out . println ("jeg_har_ (RWS)id_:" + r.id);

if (r .connectors [0].neig

hbour != null)

System .out . println ("min_nabo_[0]_har_ (RWS)_id_:" +
r.connectors [0].neighbour.node.id);

else
System .out.println ("jeg

_har_ingen_nabo_[0]");

if (r.connectors [1].neighbour != null)
System .out . println ("min_nabo_[1]_har_ (RWS)_id_:" +
r.connectors [1].neighbour.node.id);

else
System .out. println ("jeg

_har_ingen_nabo_[1]");

if (r.connectors [0].cpnlInterface != null &&
r.connectors [1].cpnlnterface != null){
Place p = (Place) r.connectors [0].cpnlnterface;

System .out . println ("min_inter_[0]_har_id_:" +

p-getld () + "og_navn:_" + p.getName());

p = (Place) r.connectors [1].cpnInterface;
System .out . println ("min_inter_[1]_har__id_:" +

p.getld () + "og_navn:_" + p.getName() + "\n");

}

if (r.connectors [1].neighbour != null)

printout (r.connectors

[1]. neighbour.node);

173

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

/* %

* Given a root RWSNode, generate the cpn XML file. This method has some

* subrutines.

* Method PrintXML() and creatNewElement() is the main methods /
* responsibility for generating the CPN xml file from the specification.

*/
void initPrintXml (RWSNode n, String filename) {
fileName = filename;

assignXmlID (n);

printXML (n);

cpnetEl. appendChild (ele);
outputXMLFile (filename);
currentMark = ! currentMark;

}

VAL:
* Recursively assign each connector of RWSNodes with a xml_id.
* This is necessary for Design/CPN-.
*/
void assignXmlID (RWSNode node){
for (int i=0;i<node.connectors.length;i++){

if (node.connectors [i].mark = currentMark){
RWSConnector connector = node.connectors [i];
connector.mark = ! currentMark;
connector.xmlld = lopeid+-+;
if (connector.neighbour != null){
connector.neighbour.xmlld = connector.xmlld;
connector.neighbour.mark = ! currentMark;

assignXmlID (connector.neighbour.node);

}

/ * %
* For each RWSNode, retrive its underlying CPN model
* and calls createNewElement ()
* to create XML code for this CPN model.
*/
void printXML (RWSNode n){

RWSNode neighb = null;

RWSNode tmp = n;

if (tmp != null && tmp.mark = currentMark){
tmp.mark = ! currentMark;

for (int i=0; i<tmp.connectors.length;i++){
if (tmp.connectors [i].getCPNInterface () = null)

return;

tmp.connectors [i].getCPNInterface ().xmlld =
tmp.connectors [i].xmlld;

174

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

401
402
403
404

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

if (tmp.connectors [i].createElement != currentMark) {
/ %%
* This connector has not been treated yet. Therefore,
* we retrieve the underlying CPN node (CPN place) and write it.
* That means that this connector is an interface.
* We use currentMark for reusability.

*/
createNewElement (tmp.connectors [i].getCPNInterface(),
tmp. connectors [i], tmp);
tmp. connectors [i].createElement = currentMark;
if (tmp.connectors [i].neighbour != null){
VAL:
*This connector’s neighbour shall not be treated,
* as it is the same as this connector in the CPNet.
*/
tmp. connectors [i].neighbour.createElement =
currentMark;

}

String compType = (tmp.isTemplate) ? tmp.cpnComponentType
tmp . template.cpnComponentType;

HashMap cpnComp = (HashMap) cpnComponents. get (compType);

Iterator it = cpnComp.keySet ().iterator ();

while (it .hasNext ()){
String key = (String)it.next ();
CPNNode cpn = (CPNNode) cpnComp . get (key);
boolean isInterface=false;
for (int i=0; i<tmp.connectors.length;i++){
if (tmp.connectors [i].getCPNInterface() = cpn)
isInterface = true;

}

/ * %

* write xml code for CPN places

* that are not interfaces, and transitions.

*/

if (isInterface){

if (cpn instanceof Place || cpn instanceof Transition){

cpn.xmlld = lopeid+-+;
createNewElement (cpn, null, tmp);

}

Iterator iter = cpnComp.keySet ().iterator ();
/* write xml code for arcs*/
while(iter . hasNext ()){

String key =(String)iter.next ();

CPNNode cpnn = (CPNNode)cpnComp . get (key);

if (cpnn instanceof Arc){

175

429
430
431
432
433
434
435
436
437
438

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481
482

Arc a = (Arc)cp
a.xmlld = lopei

nn;

d++;

String p = a.getPlaceend ();
Place pl = (Place) cpnComp. get(p);
a.xmlPlaceend = pl.xmlld;

String t = a.getTransend ();
= (Tramnsition) cpnComp.get(t);
a.xmlTransend = tran.xmlld;
createNewElement (cpnn, null, tmp);

Transition tran

}

for (int i=0; i<tmp.connectors.length;
[i].neighbour != null &&
[i].neighbour.node.mark = currentMark){
connectors [i].neighbour.node);

if (tmp.connectors
tmp.connectors
printXML (tmp.

-

i++){

/%%

* This method generates the necessary xml code for each cpn component.
* @param CPNNode c The CPN node to be output

* Q@param RWSConnector rc The corresponding RWSConnector

* Q@param RWSNode rn The corresponding RWSNode

* @since O

* Q@return void

*/

void createNewElement (CPNNode ¢, RWSConnector rc, RWSNode rn){

Element child;
String nodeType = "";
String color = "";

Element n =null;

String orientation = "";
boolean setPosition = false
int pX, pY;

)

Dimension size = RWSEditor.frame.panel.getPreferredSize ();

/ %%

* 0OK. When we want to calculate where to place this element,

* we need some info. If this is an interface, rc != null and c

* is a Place. Then, if c¢ is the first "part" of the CPN component

* to be processed, we need to determine where to put it. Otherwise,
* we have to place c relative to the first one.

*/

if (rc != null && rc.node.positionMark = currentMark) {

rc.node. positionMark =
setPosition = true;

! currentMark;

176

484
485
486
487

489
490
491
492

494
495
496
497

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

rc.node.xmlX = (rc.externalCenterX () % 3) —

RWSEditor . frame . meanX;

rc.node.xmlY = ((size.height — rc.externalCenterY ()) x 3) —

RWSEditor . frame . meanV ;

pX = rc.node.xmlX;
pY = rc.node.xmlY;

Node posNode = getNodeChild (c¢.xmlnode,
if (posNode =— null) {

rc.node.relX = 0;

rc.node.relY = 0;

else {
try {

"posattr");

rc.node.relX = (int) Double.parseDouble (

getNodeAttribute (posNode,

llel))
)

rc.node.relY = (int) Double.parseDouble (

getNodeAttribute (posNode,

}

catch (NumberFormatException ex) {

ex.printStackTrace ();

}
}
}

else {

"y"));

Node posNode = getNodeChild (c.xmlnode, "posattr");

if (posNode != null){

try{

pX = rn.xmlX + (int) Double.parseDouble (

getNodeAttribute (posNode,

"x")) — rn.relX;

pY = rn.xmlY + (int) Double. parseDouble (

getNodeAttribute (posNode,

}

catch (NumberFormatException ex) {
ex.printStackTrace
pX = rn.xmlX — rn.relX;
pY = rn.xmlY — rn.relY;

else{

pX = rn.xmlX — rn.relX;
pY = rn.xmlY — rn.relY;

}
}

/* xml code for the page element */

if (createPageElement) {

()3

"y")) — rn.relY;

NodeList nl = document.getElementsByTagName("page");

Node nn = nl.item (0)

)

cpnetEl = document. createElement ("cpnet");

ele = document.createElement ("page");
ele.setAttribute ("id", "id"+lopeid—++);

177

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

child = document.createElement ("pageattr");
child .setAttribute ("name" ,fileName);
child .setAttribute ("number" ,

getNodeAttribute (getNodeChild (nn,

"number"));
child .setAttribute (" visbor",

getNodeAttribute (getNodeChild (nn

"visbor"));
child .setAttribute (" palette",

getNodeAttribute (getNodeChild (nn

"palette"));
ele.appendChild (child);

child = document.createElement ("mult");
child .setAttribute("insts",

getNodeAttribute (getNodeChild (nn

"insts"));
ele .appendChild (child);

child = document.createElement ("winattr");
child .setAttribute ("open",

getNodeAttribute (getNodeChild (nn

"open"));
child .setAttribute ("width",

getNodeAttribute (getNodeChild (nn

"width"));
child .setAttribute ("height",

getNodeAttribute (getNodeChild (nn

"height"));
child .setAttribute ("xpos",

getNodeAttribute (getNodeChild (nn

"XPOS”));
child .setAttribute ("ypos",

getNodeAttribute (getNodeChild (nn

"ypos"));
ele .appendChild (child);

child = document.createElement ("lineattr");
child .setAttribute("type",

getNodeAttribute (getNodeChild (nn

"type"));
child .setAttribute ("thick",

getNodeAttribute (getNodeChild (nn

"thick"));
child .setAttribute("colour",

getNodeAttribute (getNodeChild (nn

"colour"));
ele.appendChild (child);

child = document.createElement ("posattr");
child .setAttribute ("x",

getNodeAttribute (getNodeChild (nn

IIXH)) .
)

child .setAttribute("y",

178

"pageattr"),
"pageattr"),
"pageattr"),
”mult"),

"winattr"),

"winattr"),

"winattr"),

"winattr"),

"winattr"),

"lineattr"),

"lineattr"),

"lineattr"),

"posattr"),

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

getNodeAttribute (getNodeChild (nn, "posattr"),

"y"))s
ele .appendChild (child);

child = document.createElement ("box");
child .setAttribute("h",
getNodeAttribute (getNodeChild (nn, "box"),
"h”));
child .setAttribute ("w",
getNodeAttribute (getNodeChild (nn, "box"),
"W”));
ele.appendChild (child);

createPageElement = false;

}

/* Find out if this CPNNode is a Place, Transition or Arcx*/
if (¢ instanceof Place){
nodeType = "place";

Node node = getNodeChild (c.xmlnode, "type");
if (node != null){
node = getNodeChild (node,"text");
if (node.hasChildNodes ()) {
NodeList namelist = node.getChildNodes ();
for (int i = 0;i < namelist.getLength (); i++) {
color = namelist.item (i).getNodeValue ();
}

}

else if(c instanceof Transition){
nodeType = "trans";
}

else if(c¢ instanceof Arc){
nodeType = "arc";
orientation = getNodeAttribute (c¢.xmlnode, "orientation");

int id = c.xmlld;
n = document. createElement (nodeType);
n.setAttribute("id", "id"+id);

/* Generate necessary XML code for an arc */
if (¢ instanceof Arc){
n.setAttribute ("orientation", orientation);
child = document.createElement ("connattr");
child .setAttribute ("hdwidth",
getNodeAttribute (getNodeChild (¢.xmlnode,
"connattr"),

"hdwidth"));

179

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

child .setAttribute ("hdheight",
getNodeAttribute (getNodeChild (¢.xmlnode,
"connattr"),
"hdheight"));
child . setAttribute ("txtwidth",
getNodeAttribute (getNodeChild (c.xmlnode,
"connattr"),
"txtwidth"));
child .setAttribute (" txtheight",
getNodeAttribute (getNodeChild (c.xmlnode,
"connattr"),
"txtheight"));
n.appendChild (child);

}

child = document.createElement ("flags");
child .setAttribute("visible", "true");
n.appendChild (child);

child = document.createElement ("lineattr");
child .setAttribute("thick", "1");

child .setAttribute("colour", "black");
n.appendChild (child);

child = document.createElement ("textattr");
child .setAttribute("size", "10");

child .setAttribute("colour", "black");

n.appendChild (child);

child = document.createElement ("posattr");
child .setAttribute("x", Integer.toString (pX));
child .setAttribute("y", Integer.toString (pY));
n.appendChild (child);

/* Generate necessary XML code for a Place x/
if (¢ instanceof Place){
child = document.createElement ("ellipse");
child . setAttribute ("h",
getNodeAttribute (getNodeChild (¢.xmlnode,
"ellipse"),
"h')) s
child . setAttribute ("w",
getNodeAttribute (getNodeChild (c.xmlnode,
"ellipse"),
"w')) s

n.appendChild (child);

child = document.createElement ("name");

child .setAttribute("id", "id"+lopeid++);

Element childOFChild = document. createElement ("posattr");
childOFChild . setAttribute ("x", Integer.toString (pX));
childOFChild . setAttribute("y", Integer.toString (pY));
child . appendChild (childOFChild);

180

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

Node node = getNodeChild(c.xmlnode, "name");
String placeName = "";
if (node != null){
node = getNodeChild (node, "text");
if (node.hasChildNodes()){
NodeList namelist = node.getChildNodes ();
for (int i=0;i<namelist.getLength (); i++){
placeName = namelist .item(i).getNodeValue ();
}

}

childOFChild = document. createElement ("text");
Text name = document.createTextNode (placeName+rn.id);

childOFChild . appendChild (name) ;
child . appendChild (childOF Child);

n.appendChild (child);

child = document.createElement ("type");

child .setAttribute ("id", "id"+lopeid++);
childOFChild = document. createElement ("lineattr");
childOFChild . setAttribute ("colour", "black");
child . appendChild (childOFChild);

childOFChild = document. createElement ("posattr");
childOFChild . setAttribute ("x", Integer.toString (pX));
childOFChild . setAttribute("y", Integer.toString (pY+10));
child . appendChild (childOFChild);

childOFChild = document. createElement ("textattr");
childOFChild . setAttribute ("colour", "black");
child . appendChild (childOFChild);

childOFChild = document. createElement ("text");
Text t = document. createTextNode(color);
childOFChild . appendChild (t);

child . appendChild (childOF Child);

n.appendChild (child);

node = getNodeChild (c¢.xmlnode, "initmark");
String placemark = "";
if (node != null){
node = getNodeChild (node, "text");
if (node.hasChildNodes()){
NodeList namelist = node.getChildNodes ();
for (int i=0;i<namelist.getLength (); i++){
placemark = namelist.item(i).getNodeValue ();

181

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

}

child = document.createElement ("initmark");

child .setAttribute("id", "id"+lopeid++);
childOFChild = document. createElement ("lineattr");
childOFChild . setAttribute ("colour", "black");
child . appendChild (childOFChild);

childOFChild = document. createElement ("posattr");
childOFChild . setAttribute ("x", Integer.toString (pX));
childOFChild . setAttribute ("y", Integer.toString (pY—10));
child . appendChild (childOFChild);

childOFChild = document. createElement ("textattr");
childOFChild . setAttribute ("colour", "black");
child . appendChild (childOFChild);

childOFChild = document.createElement ("text");
t = document.createTextNode (placemark);
childOFChild . appendChild (t);

child . appendChild (childOFChild);

n.appendChild (child);

/* Generate necessary XML code for a Transition */
if (¢ instanceof Transition){

Node node = getNodeChild(c.xmlnode, "box");
String height = "15";
String width = "15";

if (node != null){
height = getNodeAttribute (node, "h");
width = getNodeAttribute (node, "w");

}

child = document.createElement ("box");
child . setAttribute("h", height);

child .setAttribute ("w", width);
n.appendChild (child);

child = document.createElement ("name");

child .setAttribute("id", "id"+lopeid++);

Element childOFChild = document. createElement ("posattr");
childOFChild . setAttribute ("x", Integer.toString (pX));
childOFChild . setAttribute("y", Integer.toString (pY));
child . appendChild (childOF Child);

node = getNodeChild (c¢.xmlnode, "name");
String tranName = "";

if (node != null){
node = getNodeChild (node, "text");
if (node.hasChildNodes()){
NodeList namelist = node.getChildNodes ();

182

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

for (int i=0;i<namelist.getLength (); i++){
tranName = namelist.item(i).getNodeValue ();
}

}

childOFChild = document. createElement ("text");
Text t = document. createTextNode (tranName+rn.id);
childOFChild . appendChild (t);

child . appendChild (childOFChild);

n.appendChild (child);
Node guardNode = getNodeChild (c¢.xmlnode, "cond");

if (guardNode !=null){
String guard= "";
guardNode = getNodeChild (guardNode, "text");

if (guardNode . hasChildNodes()){
NodeList namelist = guardNode.getChildNodes ();
for (int i=0;i<namelist.getLength (); i++){
guard = namelist.item(i).getNodeValue();
}

}

child = document.createElement ("cond");
child .setAttribute("id","id"+lopeid++);

childOFChild = document. createElement ("posattr");
childOFChild . setAttribute ("x", Integer.toString (pX));
childOFChild . setAttribute ("y", Integer.toString (pY+10));
child . appendChild (childOFChild);

childOFChild = document. createElement ("text");
t = document.createTextNode (guard);
childOFChild . appendChild (t);

child . appendChild (childOFChild);

n.appendChild (child);

}

node = getNodeChild (c¢.xmlnode, "time");

if (node != null){
child = document.createElement ("time");
child .setAttribute("id", "id"+lopeid++);

childOFChild = document. createElement ("posattr");
childOFChild . setAttribute ("x", Integer.toString (pX));
childOFChild . setAttribute ("y", Integer.toString (pY—>5));
child . appendChild (childOF Child);

String transTime = "";

if (node.hasChildNodes()){

183

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

NodeList namelist = node.getChildNodes ();
for (int i=0;i<namelist.getLength (); i++){
transTime = namelist.item(i).getNodeValue ();

}

childOFChild = document. createElement ("text");
t = document.createTextNode (transTime);
childOFChild . appendChild (t);

child . appendChild (childOFChild);

n.appendChild (child);

}

/* Generate necessary XML codes for an arc */
if (¢ instanceof Arc){
Arc a = (Arc) c;

// We’ll try w/o this
if (getNodeChild (c.xmlnode, "seg—conn")!=mnull){
child = document.createElement ("seg—conn");
child . setAttribute("curv",
getNodeAttribute (getNodeChild (c¢.xmlnode,
"seg—conn"),

"curv"));

n.appendChild (child);
}
child = document.createElement ("placeend");
child .setAttribute("idref", "id"+Integer.toString (a.xmlPlaceend));
n.appendChild (child);
child = document.createElement ("transend");
child .setAttribute("idref", "id"+Integer.toString (a.xmlTransend));

n.appendChild (child);
Node node = getNodeChild(c.xmlnode, "annot");

if (node !=null){
Node posNode = getNodeChild (node, "posattr");
if (posNode != null){
try{
pX = rn.xmlX + (int) Double. parseDouble (
getNodeAttribute (posNode, "x")) — rn.relX;
pY = rn.xmlY + (int) Double. parseDouble (
getNodeAttribute (posNode, "y")) — rn.relY;

catch (NumberFormatException ex){
ex.printStackTrace ();
pX = rn.xmlX — rn.relX;
pY = rn.xmlY — rn.relY;

184

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

}

String arclnscr =
node = getNodeChild (node, "text");
if (node !=null && node.hasChildNodes()){
NodeList namelist = node.getChildNodes ();
for (int i=0;i<namelist.getLength (); i++){
arcInscr = namelist .item(i).getNodeValue();
}

nn.
)

}

child = document.createElement ("annot");
child . setAttribute("id", "id"+lopeid++);

Element childOFChild = document. createElement ("text");
Text t = document.createTextNode(arcInscr);
childOFChild . appendChild (t);

child . appendChild (childOFChild);

childOFChild = document. createElement ("posattr");
childOFChild . setAttribute ("x", Integer.toString (pX));
childOFChild . setAttribute ("y", Integer.toString (pY));
child . appendChild (childOF Child);

n.appendChild (child);

}
}
ele .appendChild (n);
¥

/ * %

* Save the specification as XML file

*/

protected void saveProject (String filename, JPanel panel,
JPanel templatepanel) {

DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance ();
try {

DocumentBuilder builder = factory.newDocumentBuilder ();

Document doc = builder .newDocument ();

Element t = null, r = null; // templates and rules

Element rws = doc.createElement ("rws");

Element p = doc.createElement ("workspace");

/* Save the templatesx*/
if (templatepanel != null) {
t = doc.createElement ("templates");
for (int i = 0; i < templatepanel.getComponentCount (); i++) {
if (templatepanel.getComponent (i) instanceof JPanel &&
templatepanel.getComponentCount () >= 1) {
t.appendChild (
RWSNode. createElement (
doc, (RWSNode) ((JPanel)
templatepanel.getComponent (i)).

185

969 getComponent (0)));

970 }

971 }

972 }

973 /* Save the RWSNodes */

974 for (int i = 0; i < panel.getComponentCount (); i++) {
975 p.appendChild (RWSNode. createElement (doc, (RWSNode)
976 panel . getComponent (i)));
977 }

978 /* Save rules x/

979 r = RWSConnector . createRulesElement (doc);

980

981 if (t !'= null)

982 rws.appendChild (t);

983 rws. appendChild (p);

984 if (r != null)

985 rws.appendChild (r);

986 doc.appendChild (rws);

087 DOMSource source = new DOMSource (doc);

988 FileOutputStream out = new FileOutputStream (filename);
989 StreamResult result = new StreamResult (out);

990

991 TransformerFactory tFactory =

992 TransformerFactory.newlnstance ();

993 Transformer transformer = tFactory.newTransformer ();

994 Properties prop = new Properties ();

995 prop.setProperty (OutputKeys.METHOD, "xml");

996 prop.setProperty (OutputKeys.INDENT, "yes");

997 prop.setProperty (OutputKeys.ENCODING, "ISO-8859—1");

998 transformer . setOutputProperties (prop);

999 transformer . transform (source , result);

1000 out.close ();

1001 }

1002 catch (Exception e) {

1003 e.printStackTrace ();

1004 }

1005 }

1006

1007 [**

1008 * This method loads the specification from file and

1009 * uses the buildNode method to build the component objekts.

1010 */

1011 protected void openProject (String filename, JPanel templatePanel ,
1012 JPanel panel, RWSEditorFrame frame) {
1013 File file = new File (filename);

1014 connectorsToConnect = new HashMap ();

1015 allConnectors = new HashMap ();

1016 templateNodes = new HashMap ();

1017

1018 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance ();
1019 try{

1020 DocumentBuilder builder = factory.newDocumentBuilder ();
1021 Document doc = builder.parse (file);

1022

186

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

Element rws = doc.getDocumentElement ();
NodeList templates = ((Element)
rws . getElementsByTagName ("templates").
item (0)).getElementsByTagName ("node");
NodeList workspace = ((Element)
rws . getElementsByTagName ("workspace").
item (0)).getElementsByTagName ("node");
NodeList rules = ((Element)
rws . getElementsByTagName ("rules").
item (0)).getElementsByTagName ("rule");

JLabel templatelabel = new JLabel("Components:");
templatePanel.add(templatelabel);

/* Read templates */
for (int i = 0; i < templates.getLength (); i++) {
RWSNode node = buildNode ((Element) templates.item (i));
JPanel np = new JPanel(null);
np.setPreferredSize (new Dimension(node.getNodeLength ()
node.borderWidth () =
node. getNodeLength ()
node.borderWidth () =

np.addMouseMotionListener (frame);
np.add (node);
np.validate ();
np.repaint ();
templatePanel.add (np);
}
/* Read the specification */
for (int i = 0; i < workspace.getLength (); i++) {
RWSNode node = buildNode ((Element) workspace.item (i));
panel.add (node);
}
/* Read rules x/
HashMap levell = new HashMap ();
HashMap level2;
for (int i = 0; i < rules.getLength (); i++) {
Element rule = (Element) rules.item (i);
Integer from = new Integer (rule.getAttribute ("from"));
Integer to = new Integer (rule.getAttribute ("to"));
if (levell .containsKey (from))
level2 = (HashMap) levell.get (from);
else {
level2 = new HashMap ();
levell .put (from, level2);

}

level2 .put (to, to);

if (! levell.isEmpty ())
RWSConnector . setRules (levell);

templatePanel.validate ();
templatePanel.repaint ();

187

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

panel.validate ();
panel.repaint ();

/* Connect connectors to their respective neighbours */
Iterator it = allConnectors.values ().iterator ();
while (it.hasNext()) {
RWSConnector ¢ = (RWSConnector) it .next ();
if (connectorsToConnect.containsKey (c)) {
String key = (String) connectorsToConnect.get (c);
RWSConnector peer =
(RWSConnector) allConnectors.get (key);
c.neighbour = peer;
c.unsetActive ();

}

/* Set the counter */
RWSNode. setCounter (maxId + 1);
}
catch (Exception e) {
e.printStackTrace ();
}

¥
/%

* This method builds the components.

*/

private RWSNode buildNode (Element nodeElement) {
RWSNode node = new RWSNode ();

node.setld (Integer.parselnt (
nodeElement . getAttribute ("id")));

maxld = (node.getld () > maxId) ? node.getld () : maxId;

if (nodeElement.hasAttribute ("templref")) {
RWSNode tpl = (RWSNode) templateNodes.get (
new Integer (nodeElement.getAttribute ("templref")));
node.setTemplate (tpl);

node.isTemplate = false;

}

else {
templateNodes.put (new Integer (node.getld ()), node);
node.isTemplate = true;

}

/* Read the info element */
Element info =
(Element) nodeElement .getElementsByTagName ("info").
item (0);
if (info.hasAttribute ("componenttype"))
node . setComponentType (
info.getAttribute ("componenttype"));
node.setNodeLength (Integer.parselnt (

188

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

info.getAttribute ("nodelength")));
node.setStatus (Integer.parselnt (
info.getAttribute ("status")));

/* Read the placement element */
Element placement = (Element)
nodeElement . getElementsByTagName ("placement").item (0);
node.setExternalCoordinates (
new Rectangle (
Integer.parselnt (placement.getAttribute (
Integer.parselnt (placement.getAttribute (
Integer.parselnt (placement.getAttribute (
Integer.parselnt (placement.getAttribute (
node.setCenterX (Integer.parselnt (
placement.getAttribute ("centerX")));
node.setCenterY (Integer.parselnt (
placement.getAttribute ("centerY")));

/* If only one connector, read the endcoordinates element */
if (nodeElement .getElementsByTagName ("endcoordinates") !=
null &&
nodeElement . getElementsByTagName ("endcoordinates").
getLength () > 0) {
Element endcoordinates = (Element)
nodeElement . getElementsByTagName (
"endcoordinates").item (0);

node.setEndP1X (Integer.parselnt (

endcoordinates .

getAttribute ("endplx")));
node.setEndP1lY (Integer.parselnt (

endcoordinates .

getAttribute ("endply")));
node.setEndP2X (Integer.parselnt (

endcoordinates .

getAttribute ("endp2x")));
node.setEndP2Y (Integer.parselnt (

endcoordinates .

getAttribute ("endp2y")));

}

/* Connectors */

NodeList clist = nodeElement .
getElementsByTagName ("connector");

RWSConnector [] connectors =
new RWSConnector [clist.getLength ()];

for (int j = 0; j < clist.getLength (); j++) {
connectors [j] = new RWSConnector ();
connectors [j].setNode (node);

Element conn = (Element) clist.item (j);
connectors [j].setIndex (Integer.parselnt (
conn.getAttribute ("index")));
connectors [j].isTemplate =
(conn.getAttribute ("istemplate").equals("true")) ?

189

1185 true : false;

1186

1187 Element pos =

1188 (Element) conn.getElementsByTagName ("pos").

1189 item (0);

1190 connectors [j].setP (

1191 new Point (

1192 Integer.parselnt (pos.getAttribute ("x")),

1193 Integer.parselnt (pos.getAttribute ("y"))));
1194

1195 NodeList neighbours = conn.getElementsByTagName ("neighbour");
1196 if (neighbours != null && neighbours.getLength () > 0) {
1197 Element neighbour = (Element) neighbours.item (0);
1198 String val = neighbour.getAttribute ("node") + ":" 4
1199 neighbour.getAttribute ("index");

1200 connectorsToConnect.put (connectors [j]|, val);

1201 }

1202

1203 Element conninfo =

1204 (Element) conn.getElementsByTagName ("info").

1205 item (0);

1206 connectors [j].setStatus (

1207 Integer.parselnt (conninfo.getAttribute ("status")));
1208 connectors [j].setConnectorType (

1209 Integer.parselnt (conninfo.getAttribute ("connectortype")));
1210

1211 String key = conmnectors [j].node.getId () + ":" +

1212 connectors [j].getIndex ();

1213 allConnectors.put (key, connectors [j]);

1214 connectors [j].validate ();

1215 }

1216

1217 node.setBounds (node. getExternalCoordinates ());

1218 node.setConnectors (connectors);

1219 int [|] connectorX = new int [connectors.length |;

1220 int [|] connectorY = new int [connectors.length |;

1221 int x = node.getExternalCoordinates ().x;

1222 int y = node.getExternalCoordinates ().y;

1223

1224 for (int i = 0; i < connectors.length; i++) {

1225 connectorX [i] = x + connectors [i].getP ().x;

1226 connectorY [i] = y + connectors [i].getP ().y;

1227 }

1228

1229 node.setConnectorX (connectorX);

1230 node.setConnectorY (connectorY);

1231 node.addConnectors ();

1232 node. validate ();

1233 return node;

1234 }

1235 | }

Listing 10: BackgroundPanel.java

190

© [P | (=] ot - w N

— e
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

import
import
import
import
import
import
import
import

import

/ * %

java.awt.event . x;
java.awt.x;
javax.swing.x;
java.util .HashMap;
java.util. Vector;
java.util . Enumeration ;
java.awt.Graphics2D;
java.awt.BasicStroke;

java.io .x;

* The panel on which the specification is drawn.

*/

class BackgroundPanel extends JPanel implements Scrollable ,
MouseMotionListener {

private int maxUnitIlncrement = 1;

Dimension size = new Dimension (900, 800);

RWSEditorFrame parent;

BackgroundPanel () {

}

setAutoscrolls (true);

addMouseMotionListener (this);

BackgroundPanel (RWSEditorFrame parent) {

}

/ * %
*

*/

this.parent = parent;
setLayout (null);

Interface method

public void mouseMoved (MouseEvent e) {}

/ * %
*

*/

Interface method

public void mouseDragged (MouseEvent e) {

}

public void setMaxUnitIncrement (int pixels) {

}

/* %
*

*/

public boolean getScrollableTracksViewportHeight () {

/* The user is dragging us,

Rectangle r = new Rectangle (e.getX (), e.getY (),

scrollRectToVisible (r);
this.setAutoscrolls (true);

maxUnitIncrement = pixels;

Interface method

so scroll!

191

*/

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

return false;

}

VAL:

* Interface method

*/

public boolean getScrollableTracksViewportWidth () {
return false;

}

VAL

* Interface method

*/

public Dimension getPreferredScrollableViewportSize () {
return new Dimension (800, 600);

}

/ *x
* Interface method
*/
public int getScrollableBlockIncrement (Rectangle visibleRect ,
int orientation,
int direction) {
if (orientation = SwingConstants.HORIZONTAL)
return visibleRect.width — maxUnitIncrement;
else
return visibleRect.height — maxUnitlncrement;

}

/ %%
* Interface method
*/
public int getScrollableUnitIncrement (Rectangle visibleRect ,
int orientation ,
int direction) {
/* Get the current position. */

int currentPosition = 0;

if (orientation = SwingConstants.HORIZONTAL) {
currentPosition = visibleRect.x;

} else {
currentPosition = visibleRect.y;

}

/ %%
* Return the number of pixels between currentPosition and the
* nearest tick mark in the indicated direction.
*/
if (direction < 0) {
int newPosition = currentPosition —
(currentPosition / maxUnitIncrement)
* maxUnitIncrement;
return (newPosition = 0) ? maxUnitIncrement : newPosition;
} else {
return ((currentPosition / maxUnitIncrement) + 1)

192

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

oo ~ =] ot - W N

* maxUnitlncrement
— currentPosition;

}

public Dimension getPreferredSize () {
return size;
}

/ *x

* Paint this component

*/

public void paintComponent (Graphics g) {
super . paintComponent (g);

g.setColor (Color.white);
g.fillRect (0, 0, size.width, size.height);
if (RWSEditorFrame. justTheLine){
RWSEditorFrame. justTheLine = false;
Graphics2D g2 = (Graphics2D) g;
float [|] dash = new float [] {5};
g2.setStroke (new BasicStroke (1,
BasicStroke .CAP_ROUND,
BasicStroke .JOIN_ROUND,
(float) 1,
dash ,
(float) 1));
g2.setColor (Color.black);
if (RWSConnector.selectedConnector != null &&
RWSConnector . selectedConnector.isActive ()){
g2.drawLine (RWSConnector . selectedConnector. externalCenterX (),
RWSConnector . selectedConnector. externalCenterY (),
RWSEditorFrame. mouseX ,
RWSEditorFrame. mouseY) ;

}

else
g2.drawLine(parent .startX ,
parent .startY ,
RWSEditorFrame. mouseX
RWSEditorFrame. mouseY) ;

Listing 11: ConnectConnectorToCPNNodeFrame.java

import java.awt.event .sx;
import java.awt.x;

import javax.swing.x;

import java.util.HashMap;
import java.util.Vector;
import java.util.Enumeration
import java.util.Iterator;

193

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

import java.util.Vector;
import java.awt.Graphics2D;
import java.awt.BasicStroke;

/**

* Class for opening a pop-up window to connect a RWSConnector
* (corresponding to the interface nodes in the specification
* language) to it’s CPN counterpart

*/

class ConnectConnectorToCPNNodeFrame extends JFrame implements ActionListener {

JComboBox comps, inters;
JButton button;

JLabel labell, label2;
Container pane;

RWSConnector connector;
HashMap interfaces , cpnNodes;
Vector interFaceList;

ConnectConnectorToOCPNNodeFrame (RWSConnector connector) {
if (XMLUtils.cpnComponents. size () < 1){
/* No cpn components added yet */
dispose ();
return;

}

Iterator it = XMLUtils.cpnComponents. keySet ().iterator ();

String [|] components = new String [XMLUtils.cpnComponents.size ()];
int i = 0;
interfaces = new HashMap ();
while (it.hasNext()) {
components [i] = (String) it.next ();
cpnNodes = (HashMap) XMLUtils.cpnComponents. get (components [i]);
Iterator it2 = cpnNodes.values ().iterator ();
interFaceList = new Vector ();

while (it2.hasNext()) {
CPNNode nd = (CPNNode) it2.next ();
if (nd instanceof Place) {
interFaceList.add (nd.getId ());
}
}

interfaces.put (components [i], interFaceList);
1++;

}

this.connector = connector;

setDefaultLookAndFeelDecorated (true);
setDefaultCloseOperation (DISPOSE ON_CLOSE);

pane = getContentPane (),

labell = new JLabel ("Component_name:_");

label2 = new JLabel ("Interface_id:_");

comps = new JComboBox (components);

comps. setActionCommand ("comps");

inters = new JComboBox ((Vector) interfaces.get (components

194

101));

63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

© 0 N D s W N

e T e T e
=~ O © ® N O U A W N R O

comps.addActionListener (this);
button = new JButton ("Click!");
JPanel bg = new JPanel ();
bg.add (labell);
bg.add (comps);
bg.add (label2);
bg.add (inters);
bg.add (button)
pane.add (bg);
button.addActionListener (this);

)

}

public void actionPerformed (ActionEvent e){
if (e.getSource () instanceof JComboBox) {
if (((JComboBox) e.getSource ()).getActionCommand ().
equals ("comps")) {
Vector ifaces = (Vector)
interfaces.get (((JComboBox) e.getSource ()).
getSelectedItem ().toString ());
inters.removeAllltems ();
for (int i = 0; i < ifaces.size (); i++)
inters.addItem (ifaces.elementAt (i));
}
}

else{

connector.addCPNInterface (inters.getSelectedItem ().toString
comps. getSelectedItem ().toString

dispose ();

Listing 12: ChangeToolTipText.java

import java.awt.event .x;
import java.awt.x;

import javax.swing.x;

import java.util.HashMap;
import java.util.Vector;
import java.util.Enumeration;
import java.awt.Graphics2D;
import java.awt.BasicStroke;

/**

* Small class to open a pop-up window for changing the descriptive
* names of RWSNodes (atomic components).

*/

class ChangeToolTipText extends JFrame implements ActionListener {

JTextField text;
JButton button;
JLabel label;

Container pane;
RWSNode parent ;

195

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

© 0 N D s W N

e T e T e
=~ O © ® N O U A W N R O

ChangeToolTipText
this.parent = parent;
if (parent =— null)

dispose ();

}

(RWSNode parent) {

setDefaultLookAndFeelDecorated (true);

setDefaultCloseOperation (DISPOSE_ON CLOSE);
pane = getContentPane

label = new JLabel ("Text:_");

text = new JTextField (20);
text.setText (parent.getToolTipText
button = new JButton ("Click!");

();

JPanel bg = new JPanel ();
bg.add (label);
bg.add (text);
bg.add (button);
pane.add (bg);

button.addActionListener (this);

pack ();
setVisible (true);

());

public void actionPerformed (ActionEvent e) {

parent .setToolTipText (text.getText

dispose ();

()3

Listing 13: CreateMultipleNodesFrame.java

import
import
import
import
import
import
import
import

/ * %

* The class pops up a window so that the user may specify an integer.
* This is the number of components created when generating multiple

* connected components to facilitate fast construction.
* components with two connectors).

*/

class CreateMultipleNodesFrame extends JFrame implements ActionListener {

java .
java .

awt.event . *;
awt . *;

javax.swing.x*;

java .
java .
java .
.awt. Graphics2D;
.awt. BasicStroke;

java
java

util . HashMap;
util. Vector;
util . Enumeration ;

JTextField text;
JButton button;
JLabel label;

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

© ~ (=] ot - W N

e T s e =
0w N O U ke W N = O

Container pane;
RWSEditorFrame parent;

CreateMultipleNodesFrame (RWSEditorFrame parent) {

this.parent = parent;

setDefaultLookAndFeelDecorated(true);

setDefaultCloseOperation (DISPOSE_ON CLOSE);

pane = getContentPane ();

label = new JLabel ("Number_of_nodes:_");

text = new JTextField (4);
button = new JButton("Click!");

JPanel bg = new JPanel ();
bg.add(label);

bg.add (text);

bg.add(button);

pane.add(bg);
button.addActionListener (this);
pack ();

setVisible (true);

}

public void actionPerformed (ActionEvent e){
try {
parent.rwsConnectMultiple (Integer
}

catch (NumberFormatException ex){
ex.printStackTrace ();
}

dispose ();

Listing 14: RWSFileFilter.java

)

.parselnt (text.getText ())

import java.io.File;
import javax.swing.x;
import javax.swing. filechooser .x;

/**
* File filter for opening and saving RWS files
*/
public class RWSFileFilter extends FileFilter {

String filter , description;
public RWSFileFilter () {

this. filter = "xml";
this.description = "RWSEditor_files";

}

public RWSFileFilter (String filter) {

197

(specification) files

)s

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

© oo ~ (=] ot S w M

[R N ~ T T e~ T T e T =
A X N B O © ® N O ook W N R O

N
ot

}

this. filter = filter .toLowerCase ();
this.description = "RWSEditor_files";

public RWSFileFilter (String filter , String description) {

}

/* Accept all directories and all rws files x*/

this. filter = filter .toLowerCase ();
this.description = description;

public boolean accept (File f) {
if (f.isDirectory ())

}

/* The description of this filter x*/
public String getDescription

}

String extension = f.getName ().
substring (f.getName ().lastIndexOf (7.
if (extension != null &

return true;

(extension.equals (filter)))

return true;

return false;

return description;

Listing 15: Resize.java

0O A

") + 1).toLowerCase ();

import
import
import
import
import
import
import
import
import

YEX

* Resize the size of the working space

*/

java
java
java

.awt.event . x;
.awt . kg
.lang . x*;

javax.swing . *;

java .
java .
java .

java
java

util . HashMap;
util . Vector;

util . Enumeration ;
.awt. Graphics2D ;
.awt. BasicStroke;

class Resize extends JFrame implements ActionListener {

JTextField textX, textY;
JButton button;

JLabel labelX , labelY;
Container pane;
RWSEditorFrame parent;
int columnsize = 10;
String width;

String height ;

Resize (RWSEditorFrame parent) {

198

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

this.parent = parent;

setDefaultLookAndFeelDecorated (true);
setDefaultCloseOperation (DISPOSE ON CLOSE);

pane = getContentPane ();

width = Integer.toString (parent.panel.getWidth ());
height = Integer.toString (parent.panel.getHeight ());

labelX = new JLabel ("X:_");
textX = new JTextField (width, columnsize);
labelY = new JLabel ("Y:_");
textY = new JTextField (height, columnsize);

button = new JButton ("Click!");

JPanel bg = new JPanel ();
bg.add (labelX);

bg.add (textX);
bg.add (labelY);
bg.add (textY);

bg.add (button);
pane.add (bg);
button.addActionListener (this);

pack ();
setVisible (true);

public void actionPerformed (ActionEvent e) {
try {
if (textX.getText ().equals("") && textY.getText ().equals(""))
parent.rwsEditorResize (Integer.parselnt (width),
Integer.parselnt (height));
else if (textX.getText ().equals(""))
parent.rwsEditorResize (Integer.parselnt (width),
Integer.parselnt (textY.getText ()));
else if (textY.getText ().equals(""))
parent.rwsEditorResize (Integer.parselnt (textX.getText ()),
Integer.parselnt (height));
else
parent.rwsEditorResize (Integer.parselnt (textX.getText ()),
Integer.parselnt (textY.getText ()));
}
catch (NumberFormatException ex) {
ex.printStackTrace ();
}

dispose ();

Listing 16: XMLFileFilter.java

import java.io.File;
import javax.swing.x;
import javax.swing. filechooser .x;

199

© 0 N o »

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

VEX

* File filter for opening and saving xml files

*/

public class XMLFileFilter extends FileFilter {

/* Accept all directories and all rws files x*/

public boolean accept(File f) {

}

if (f.isDirectory ())
return true;

String extension = f.getName().

substring (f.getName ().lastIndexOf (.

if (extension != null &&
(extension.equals ("xml")))
return true;

return false;

/* The description of this filter x*/
public String getDescription () {

}

return "Design_/_CPN_XML_export_files";

200

") + 1).toLowerCase ();

