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Abstract

The feed-forward Artificial Neural Network has been used for a multitude
of regression tasks, and its descendants have expanded the domain to
(amongst others) image [28] and speech[4] [5] recognition, filtering social
networks[13], and machine translation[37][51].

While conventional artificial neural networks (ANNs) and their vari-
ations2 work well on data represented in euclidean space 3 (images, vectors,
matrices, etc.), they struggle to work on data in non-euclidean space. Graph
Neural Networks (GNNs) expand Recurrent Neural Networks (RNN) [52]
[47] to directly process graphs in the form of adjacency matrices.

The computational complexity of GNN’s makes them ill fitted for
conventional Graph Processing Units (GPUs), the purpose of this thesis is
to investigate the viability of a new Artificial Intelligence Accelerator: The
Intelligence Processing Unit.

2f.ex.: Convolution [31], Recurrent [21], etc.
3Standard N-dimensional space.
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Chapter 1

Introduction

1.1 Background and Motivation

As Artificial Neural Networks (ANNs) and Graph Neural Networks
(GNNs) grow in complexity, the duration of training networks increases.
As the processing time increases, the necessity for better High Performance
Computing (HPC) accelerators becomes increasingly important.

Modern machine learning algorithms trained by Reinforcement Learn-
ing use Graphical Processing Units (GPUs) to perform mass throughput
data processing.

The GPU architecture is particularly suited for image processing and
dense matrix operations on conventionally structured data sets. However,
it is not particularly suited for graph data, or sparse data sets.

The Intelligence Processing Unit (IPU) is a state-of-the-art High Per-
formance Computing processor for AI acceleration produced by Graph-
core. Mounted in sets of four in the m2000 Machine, the IPU is set to prom-
ise built-in scalability for processing extremely large parallel processing
workloads.

While GPUs are now matured as a product, the IPU is still very new,
the first machine released in 2018 and its second in 2020.

To analyse the IPU and its supporting libraries, I intend to implement
an existing Graph Neural Network: The Spatio-Temporal Graph Convo-
lutional Network [56], in the coding language C++ on the IPU. With the
results from this project, I hope to measure the performance of the IPU Mk.
2 as an AI processor, discern the maturity of the Graphcore libraries and the
IPU’s supporting software, and ultimately analyse the IPU’s capabilities as
an accelerator.

1.2 Problem Statement

The requirements of high performance accelerators for AI have increased
continuously as machine learning algorithms become more complex.
Where historically machine learning algorithms have been employed
Graph Processing Units, the budding frontier of Graph Neural Networks
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and their unpredictable core-to-core behaviour requires increased compu-
tational flexibility.

The Intelligence Processing Unit (IPU) promises much higher compu-
tational flexibility due to its design. Does the IPU outperform the GPU for
these tasks?

1.3 Research Question

It is the intention of this thesis to investigate the promise of Graphcore’s
Intelligence Processing Unit (IPU) as an alternative machine learning
accelerator for the Graph Neural Network Domain.

The approach is to implement the Spatio-Temporal Graph Neural
Network (STGCN) on the IPU in Graphcore’s Poplar API and comparing it
to the original STGCN trained on a GPU.

1.4 Contributions

The contributions of this thesis entail the completed and verified forward
implementation of the Spatio-Temporal Graph Neural Network, a custom-
ized implementation of the backward pass of the same algorithm, and a
comparison between the historic STGCN on the GPU and the produced
STGCN for the IPU. It will be shown that the IPU delivers on the promised
computational power.

1.5 Outline

This thesis has 11 chapters divided into 3 parts:

Part I: Introduction After the introductory chapter follows chapter 2:
delving into the background of graph neural networks and their deeper
motivations, the most main models, and the different challenges inherent
to them; chapter 3: Inspecting the Intelligence Processing Unit, its own
motivations and challenges; and chapter 4: the related works.

Part II: The Project This part details the project itself. In chapter 5
there is a thorough walk-through of the Spatio-Temporal Graph Neural
Network; chapter 6 details the projected planning of the project, details
on occurring issues, and motivation for the approach decided upon;
chapter 7 describes the implemented model, details on the code, and the
implemented structures; and finally in chapter 8 the results are represented.

Part III: Discussion Chapter 9 details observations in regards to the
implementation, detailing four of the main takeaways from the work
itself. Chapter 10 focuses on comments on the technology (software and
hardware). Finally chapter 11 is the conclusion of the work.
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Chapter 2

Background I: Graph Neural
Networks

2.1 Motivation

While tasks dependent on euclidean data (f.ex. image processing)
have been the focus of academic research, in no small part due to
accelerators focusing optimization for dense operations, the field of graph
representation models has not been given the same attention. Graph data is
inherently non-euclidean in representation, and operations on them open
an entire new domain of AI tasks that conventional euclidean based ANN’s
have failed on.

2.2 Preliminary

For the purpose of making the rest of this chapter comprehensible, some
introduction into graphs, terminology, and adjacency matrix representation
is required:

Figure 2.1: Graphs

The Directed graph is denoted as G = (V, E) where V is the vertices
and E is the edges. A vertex is represented as vi ∈ V and an edge as
eij = (vi, vj) ∈ E. A directed graph is illustrated in figure 2.1.

The adjacency matrix A is derived as an n× n matrix where

5



Figure 2.2: Recurrent Graph Neural Network

This figure is taken from "A Comprehensive Survey on Graph Neural
Networks" by Zonghan Wu et al.[52].

Aij =

{
0 when eij /∈ E
1 when eij ∈ E

(2.1)

A graph might have an attributed graph X which holds information of
its vertex attributes, X ∈ Rn×d which is a vertex feature matrix with xv ∈ Rd

representing the feature vector of a vertex v. The graph may have edge
attributes Xe, where Xe ∈ Rn × c is an edge feature matrix with xe

u,v ∈ Rc

representing the feature vector on an edge (v, u).
An undirected graph is a special case of the directed graph where

∀vij∃vji , i.e., a graph where edges always go both ways. Note that the
adjacency matrix of an undirected graph is symmetric. An undirected
graph is illustrated in figure 2.1.

The Spatial-Temporal Graph (STG) exists in the context of the Spatio-
Temporal Graph Neural Network. It has permanent vertices but edges
exist in spans of time. In addition, the STG has vertex inputs that change
dynamically over time. It is used to map dynamic systems.

Table 2.1 displays some common notations that are used throughout
this document.

Notation Description
X ∈ Rn×d The feature matrix of a graph.
xv ∈ Rn The feature vector of the node v.
Xe ∈ Rm×c The edge feature matrix of a graph.
xe
(u,v) ∈ Rc The edge feature vector of the edge (v, u).

Table 2.1: Commonly used notations

2.3 Main Variations

2.3.1 The Recurrent Graph Neural Network (RecGNNs)

Early research into GNNs mostly focused on directed acyclic graphs [47],
these GNNs were adaptions of the Recurrent Neural Networks (RNNs) that
apply a static set of parameters over nodes recurrently to extract high-level
node representations. Zonghan Wu et al. labeled these Recurrent Graph
Neural Networks [52] in their taxonomy.

Important works:
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• Graph Neural Network (GNN*)1 [47]: To handle general types of
graphs (e.g., acyclic, cyclic, directed, undirected), Scarcelli et al.
extends prior recurrent models in their GNN*. Using the information
diffusion mechanism the GNN* updates node states by exchanging
neighbourhood node states in a recurrent fashion until a stable
equilibrium is met. The node’s hidden state is updated by

h(t)
v = ∑

u∈N(v)
f (xv, xe

(v,u), xu, h(t−1)
u )

where f (·) is a recurrent parametric function, and h(0)
v is initialized

randomly. The GNN* is applicable to all nodes, regardless of differing
number of neighbours, unknown neighbourhood ordering, etc, due
to the sum operation. The function f should be a contraction mapping
to ensure convergence, this means points mapped to a latent plane
have their distance shrunk2. To enable the GNN* to operate on cyclic
graphs, the GNN* alternates the stage of node state propagation and
the stage of parameter gradient computation.

• Graph Echo State Network (GraphESN) [17]: The GraphESN in-
creases the training efficiency of the GNN* by employing an echo
state network. It has an encoder and an output layer. The encoder
is not trained and does not require training. A contractive state trans-
ition function recurrently updates node states until the graph state
reaches convergence. The output function is a simple feed-forward
linear unit.

• Gated Graph Neural Network (GGNN) [34]: GGNN use Gated
Recurrent Units (GRUs) [10], the GRUs ensuring convergence and
eliminates the need to constrain parameters to achieve this. The
employment of a GRU also means the recurrence is reduced to a fixed
number of steps. Its update function is

ht
v = GRU(ht−1

v , ∑
u∈N(v)

Wh(t−1)
u ),

where u, v∈ E is the node to be updates and its neighbour(s)
respectively, and h(0)

v = xv. The GGNN uses back-propagation
through time (BPTT) algorithm, which is a problem when working on
large graphs, as the recurrent functions need to be run multiple times
over all nodes, which forces the GGNN to store the intermediate state
of all nodes in memory.

2.3.2 The Convolutional graph Neural Network (ConvGNNs)

The ConvGNN is closely related to the RecGNN, where the RecGNN
iterates node states by contractive constraints, the ConvGNN is designed to

1This is to mean the GNN as proposed by Scarcelli et al. in [47], to avoid ambiguity
labeled GNN*.

2In the case where f is a neural network, it is suggested that a penalty term be applied
to the Jacobian Matrix.
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Figure 2.3: Convolutional Graph Neural Network

This figure is taken from "A Comprehensive Survey on Graph Neural
Networks" by Zonghan Wu et al. [52].

address cyclic mutual architectural dependencies by using a fixed number
of different weights in each.

The spatial ConvGNN is heavily based on its non-graph variant
(the Convolutional Neural Network) but applied to a nonuniform non-
Euclidean space. The first work towards a spatial ConvGNN is the Neural
Network for Graphs [39] (NN4G).

Figure 2.4: A comparison of RecGNNs and ConvGNNs.

This figure is taken from "A Comprehensive Survey on Graph Neural
Networks" by Zonghan Wu et al. [52].

Important works:

• Neural Network for Graphs (NN46) [39].

• Contextual Graph Markov Model (CGMM) [3]: proposed a probab-
ilistic model that maintains spatial locality and has the strength of
probabilistic interpretability.

• Diffusion Convolution Neural Network (DCNN) [2]: The DCNN
uses diffusion-convolution operations to learn diffusion based rep-
resentations.

• Message Passing Neural Network (MPNN) [19]: MPNN outlined a
general framework for spatial-based Convolutional Graph Neural
Networks. MPNN is very flexible, able to assume many existing
frameworks by assuming different learnable and readout functions.
The readout function generates representations based of the full
graph using the hidden node representation. MPNN manages this
by considering graphs as a message passing process, and iterating
passing to propagate information.

8



• Graph Isomorphism Network (GIN) [54]: Keyulu Xu et al. showed
that the MPNN and similar implementations were unable to distin-
guish graph structures using the embedding product. To remedy this,
GIN introduces a learnable parameter to adjust the weight of the cent-
ral node.

• Graph Attention Network (GAT) [49]: GAT implements attention
mechanisms to learn the relative weights between connected nodes
(pairwise), this allows GAT to treat neighbourhood contributions to
central nodes as non-identical and not predetermined. The GAT uses
a LeakyReLU activation function.

2.3.3 The Spectral Convolutional Graph Neural Network (SCGNN)

The SCGNN is derived from a background in signal processing, allowing
for the extraction of statistical patterns in large-scale high-dimensional
data sets. They extract local features from the graph, but are limited by
their learned filters being domain dependent, meaning the filters can’t be
applied to another graph [52].

Important works:

• Chebyshev Spectral CNN (ChebNet) [14]: The ChebNet would
reduce the computational complexity of eigen-decomposition from
O(n3) to O(m) by using multiple simplifications and approximations.
The ChebNet in specific uses Chebyshev polynomials. Due to its
localized filters, the ChebNet can extract local features independent
of the graph’s total size. .

• CayleyNet [32]: Building on the ChebNet, the CayleyNet uses Cayley
polynomials instead. The Cayley Polynomials are parametric rational
functions that allows the CayleyNet to capture narrow frequency
bands.

• Graph Convolutional Network (GCN) [25]: The GCN introduces an
approximation upon the ChebNet, the GCN is from a spatially based
perspective aggregating features from a node’s neighbourhood.

• Adaptive Graph Convolutional Network (AGCN)[26]: The AGCN
uses a residual graph adjacency matrix though a learnable distance
function that takes two node features as inputs to learn hidden struc-
tural relations unspecified by just just the conventional adjacency
matrix.

• Dual Graph Convolutional Network (DGCN) [58]: As its name
suggests, the DGCN introduces dual graph architecture (i.e. using
two graph convolutional layers in parallel). While the two layers are
otherwise similar, the normalized adjacency matrix Āand the Positive
Pointwise Mutual In-formation (PPMI) allows the DGCN to encde
both local and global structure information without stacking multiple

9



Figure 2.5: Graph Auto-Encode

This figure is taken from "A Comprehensive Survey on Graph Neural
Networks" by Zonghan Wu et al.[52].

layers. The PPMI is defined such:

PPMIv1,v2 = max(log
count(v1, v2) · |D|)
count(v1)count(v2)

), 0),

where v1, v2 ∈ V, |D| = ∑v1,v2
count(v1, v2), and count(·) returns

the number of a times a given node (or nodes) occur (or co-occur)
in sampled random walks.

Comparing Spatial and Spectral models.

Spatial models have been preferred over spectral models due to efficiency,
generality, and flexibility[52]. ConvGNNs can run operations directly
on the graph representation via information propagation, the Spectral
models in contrast must handle the entire graph or perform eigenvector
computations. Spectral models (particularly those heavily dependent on
Fourier transformations) assume fixed graphs, and thus are not generalize-
able to new graphs. Lastly, the the spectral model assumes nondirected
graphs as input, and unlike the spatial model can not be implemented on
un-directed graphs.

2.3.4 The Graph Autoencoder (GAE)

Graph autoencoders (GAEs) have two main types: Network embedders
and graph generators. The GAE deep neural architecture maps nodes
into latent feature spaces, and from latent representations decodes graph
information.

Different GAE use different neural networks as encoders, amongst
them multi-layer perceptrons, ConvGNNs, RNN, Long short-term memory
(LSTM) networks (i.e. RNN), and RecGNNs. The GAE decoder is
often a neural network (multi-layer perceptron, LSTM, or deconvolutional
network, among others), but can also be a similarity measure, an identity
function or a decision process [52].

Network Embedding

A network embedding is a vector representing a node while preserving
the node’s topological information. To learn network embeddings the

10



GAE use a decoder to enforce network embeddings to preserve topological
information via reconstructing the adjacency matrix or positive pointwise
mutual information matrix (PPMI).

Important works:

• Deep Neural Network for Graph Representations (DNGR) [9]: The
DNGR encodes and decodes the PPMI. Defined:

PPMIv1,v2 = max(log
count(v1, v2) · |D|)
count(v1)count(v2)

), 0),

where v1, v2 ∈ V, |D| = ∑v1,v2
count(v1, v2), and count(·) returns

the number of a times a given node (or nodes) occur (or co-occur) in
sampled random walks. It manages this by using a stacked denoising
autoencoder. The learned latent representation are robust even with
missing values, and preserve highly non-linear regularity behind
data.

• Structural Deep Network Embedding (SDNE) [50]: SDNE aims to
preserve node first-order and second-order proximity by using a
stacked autoencoder. Like the DNGR, the SDNE ignores node
features and concerns itself only with node structural information.

• Variational Graph Autoencoder (VGAE)[27]: Using GCN [25] to
encode both structural information and node features at the same
time, the VGAE aims to reconstruct the adjacency matrix, and from
this gain the relational information of the nodes. VGAE is trained by
minimizing the negative cross entropy given the original adjacency
matrix A and the reconstructed Â, defined as:

Âv,u = dec(zu, zv) = σ(zT
u , zv)

where zv is the embedding of node v, and σ is the activation function.
VGAE is an expansion upon GAE* from the same paper, it expands
upon GAE* by optimizing the variational lower bound L by using the
Kullback-Lieber divergence function.

• Adverserial Regularized Variational Graph Autoencoders (ARVGA)
[43]: The ARVGA employs generative adversarial networks (GAN)
to learn the generative distribution of the data.

Graph Generation

The GAE used for graph generation are usually designed with the
molecular graph generation problem in mind. These GAEs propose new
graphs either sequentially or globally.

GAE use multiple graphs to learn graphs generative distrbution and
graph structure by decoding hidden representations.

Early work -Gomez et al. [20], Kusner et al. [29], and Dai et al. [11]-
on GAE used SMILES strings with deep Convolutional Neural Networks
as encoders and deep Recurrent Neural Networks as decoders.
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Later works show that generating graphs iteratively costs structural
information, but generating graphs in single steps is unsalable due to the
memory footprint (O(n2)).

Important works:

• Deep Generative Model of Graphs (DeepGMG) [35]: While the works
of Gomez et al. [20], Kusner et al. [29], and Dai et al. [11] are
domain specific, DeepGMG is made applicable to general graphs by
iteratively adding nodes and edges to a graph until a given criterion
is met. It makes the assumption that the probability of a graph is the
sum of all possible permutations:

p(G) = ∑
π

p(G, π)

where π denotes a node ordering. The graph generation is done by
a RecGNN iteratively making decisions (ie. making nodes or edges).
This way it captures complex joint probability of all nodes and edges
in the graph.

• Graph Recurrent Neural Network (GraphRNN) [55]: In the
GraphRNN, it was proposed to use two RNNs: one graph-level RNN
that adds new nodes to a node sequence and an edge-level RNN that
produces binary sequences3 indicating connections between the new
node and previously existing node.

• Graph Variational Autoencoder (GraphVAE) [45]: GraphVAE out-
puts entire graphs at a time, being a global approach to the Graph
Generation problem. It manages this by using a ConvGNN as an en-
coder and a MLP as a decoder. To learn, it optimizes a variational
lower bound defined as:

L(φ, θ; G) = Eq(z|G)[−log pθ(G|z)] + KL[qφ(z|G)||p(z)]

, where p(z) follows a Gaussion prior, qφ(z|G) is a posterior distri-
bution defined by the encoder, qθ(G|z) is the generative distribution
defined by the decoder, and φ and θ are learnable parameters.

• Regularized Graph Variational Autoencoder (RGVAE) [38]: Due
to issues with the base GraphVAE regarding controlling global
properties of the generated graph, such as connectivity, validity,
and compatibility amongst nodes, the RGVAE introduces validity
restraints on the GraphVAE to regularize the output distribution of
the encoder.

• Molecular Generative Adversarial Network (MolGAN) [8]: The Mol-
GAN applies a generative adversarial network (GAN) to construct
graphs indistinguishable from empirical data. The generator makes
fakes for the discriminator to compare against the data.

3An Adjacency Vector
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2.3.5 Spatial-Temporal Graph Neural Networks (STGNN)

The STGNN intends to extrapolate both spatial and temporal data from a
Spatial-Temporal graph. A spatia-temporal graph changes over time, and
often has signals moving over the graph (making walks). The STGNN can
be designed to forecast future node values or classifications, or predicting
the labels of the graph itself.

STGNNs that employ RNNs use graph convolution to capture spatial-
temporal dependencies. Graph Convolutional Recurrent Network (GCRN)
uses an LSTM to achieve this. To better examine the process, Zonghan Wu
et al. showed given a basic RNN:

H(t) = σ(WX(t) + UH(t−1) + b),

after including the necessary graph convolution functions we have:

H(t) = σ(Gconv(X(t), A; W) + Gconv(H(t−1), A; U) + b)

where the graph convolutional layer is denoted Gconv(·) [52].
Important Works:

• Diffusion Convolutional recurrent Neural Network (DCRNN) [33]:
Focusing on the traffic forecasting problem, the DCRNN is designed
to treat the problem as a diffusion across the road map. Adopting
a decoder and encoder framework, it can project the node values of
future steps.

• Structural Recurrent Neural Network (Structural-RNN) [22]: The
Structural-RNN suggests using a node-RNN on edge-RNNs, thus
handling temporal informatin in more aspects at once. It uses
multiple node groups and edge groups to select which RNNs should
be used at a given situation.

• Spatio-Temporal Graph Convolutional Network(STGCN) [56]: Like
the Structural-RNN the STGCN uses multiple ANNs to extract dif-
ferent features, in the case of the STGCN it is different convolutional
blocks. To extract spatial features, it uses graph convolutional neural
networks that use Chebyshev polynomials for approximation, and
for temporal features it employs gated CNNs.

• Graph Wavenet [53]: Wavenet suggests an adoptive adjacency
matrix, that through stochastic gradient descent learns hidden spatial
dependencies. They achieve this by randomly initializing two node
embedding dictionaries with learnable parameters E1, E2 ∈ RN×c, the
matrix they used was defined:

Ã = SoftMax(ReLU(E1ET
2 )),

The E1 is the source node embedding and E2 is the target node
embedding, Multiplying E1 and E2 reveals spatial dependency
weights between source and target nodes, and the ReLU activation
function eliminates the weak dependencies.
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The STGNN inherits issues regarding computational expenses from
the GNNs used in its execution. In the examples above Structural-GNN
requires two RecGNNs [22] and STGCN uses multiple ConvGNN [56]. The
general challenges of GNNs are addressed in the Challenges section, the
challenges mentioned therein are even more prevalent for the STGNN.

2.4 Challenges

Practical Challenges

The GNNs -while powerful- are computationally demanding and might
require large and unwieldy data sets. The computational requirements
of the GNN means the run-time environment of the GNN is often Non
Uniform Memory Access (NUMA) architectures or computer clusters.

[24] shows that unoptimized sparse matrix algorithms can be dis-
astrously slow, in the paper they have timed the spMV-E algorithm to more
than 9 million seconds ( 113 days) with the LiveJournal dataset [48] (the
LiveJournal dataset constitutes 4,847,000 nodes and 68,993,000 edges, for a
density of 2.94e-04).

Data Usage:

While sparse matrices can spare a lot of data real-estate compared to the
dense matrix representation, the datasets necessary to represent molecules,
city traffic networks, or physics-based systems are still likely to be massive.

Sparse Matrix Multiplication:

Dense matrix multiplication allows computers to use consistent data access
patterns, this makes these matrices optimal for Single Instruction Multiple
Data (SIMD) optimizations and other non-algorithmic improvements.

The sparse matrix does boast a significantly lower data-size for hyper-
sparse matrices, but at the cost of computational predictability. Workloads
are likely to become unbalanced between parallel threads if the sparse
matrix itself is unbalanced, the values of addresses can not be located
using table coordinates4, and accessing data column major is even more
computationally expensive.

Communications:

In the case of clusters, or architectures -like NUMA- where there are core
groupings, there are new concerns: redundant memory usage (primarily
replication across cores) and communication latency between processes.

When processes have separate memory there rises a necessity of
duplicate memory dependent on requirements.

4Where the dense matrix Gd has Gd(i, j) stored at G[i][j], the sparse matrix (using f.ex.
the Yale-format) has to locate the Gs(i, j) using a search.
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More importantly, to avoid every independent core holding a complete
duplicate of the memory, processeses usually broadcast information to
each other. Alok Tripathy et. al., proposes multiple algorithms to reduce
communication [1]. The outlined 1D, 2D, and 3D algorithms show great
promise, communication of dense matrices going down by 2× given 4×
more devices, i.e. scaling with

√
P.

2.5 Conclusion

The modern GNN algorithms are powerful tools that work on problems
with normal neural networks have long had much issue with F.ex.
predictive toxicology [17], protein-protein interactions [49], chemical
synthesis [8], and future prediction of networks [33] [56].

The main hurdle of the GNN is that it is more computationally
expensive than conventional neural networks and the optimization is less
straight forward.
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Chapter 3

Background II: Intelligence
Processing Unit

3.1 Layout And Latency

The Intelligence Processing Unit is a HPC processor designed for al-
gorithms exhibiting frequent irregular memory accesses. It focuses on fine-
grained parallelism.

The IPU works on irregular memory access model by having many
independently executing tiles, in contrast to CUDA cores. The IPU-
TileTM(Tile) has one core and a segment of memory.
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Figure 3.1: IPU architecture
(Mk. 2), courtesy of Graphcore.

The layout of the IPU is illustrated in Figure 3.1 and the IPU’s hierarchy
is described in Table 3.1. Historically, on the Mk. 1 IPU the tile to
tile transfer rate is proximity dependent, being minimal within islands
and increasing by roughly 1.25 ns for each island further away from the
exchange. In general internal collumn latency ranges from 37 ns to 59 ns,
cross column latency peaking out at 100 ns [23]. Similar sources on the IPU
Mk. 2 are absent at the time of writing, but is estimated to be similar.

Set Contents Tot. Tiles
Tile 1 Core + SRAM 1
Island 4 Tiles 4
Column 23 Islands 92
IPU 16 Columns 1472

Table 3.1: Hierarchy of the Mk2. IPU

Specifically the IPU boasts 900 MB1 of memory, divided across said tiles.
The Mk1 on the M1000 machine was a two-chip machine, but the newer

M2000 machine have four chips and performs significantly better: 7 to 9
times faster than its predecessor when training neural networks and 8 times
faster in regards to inference processing [16].

1The Colossus Mk. 1 has only ≈ 300 MP
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The 59.4 billion TSMC produced 7nm transistors delivers roughly 250
Trillion Operations per Second (TOPS) across the 1,472 cores and 900MB
SRAM. This is interconnected across a 2.8Tb/s low-latency fabric [16].

Figure 3.2: The M2000 Board

A graphical interpretation of the IPU board is displayed in Figure 3.2.

3.2 Programming Model

The IPU employs static computational graphs created on the host.

Other sources place the creation of such graphs as being at compile
time (see [7], which is accurate to the graph but introduces ambi-
guity as the exterior program has its own compile-time. Hence,
"compile-" and "run-time" will always refer to the computational
graph, unless otherwise specified.

The computational graph is defined by alternating layers of states and
computational vertices. States refer to the memory stored in tensors. The
computational vertices are operations applied to the states, leading into the
next state.
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Figure 3.3: Example IPU Computational Graph

In Fig. 3.3 the alternating layers are illustrated. Note that Graphcore
defines vertices as mapped to specific tiles.

The vertices are all associated with codelets, where a codelet is a piece
of code executed on a tile (see sSction 3.1 and Table 3.1). Codelets can
run in parallel at the same vertex layer as long as they do not write
to the same state. All codelets of a vertex layer must compute before
entering the next state layer. On the state layer, consistency is enforced
across the tensors, creating a strict bulk-synchronous parallel superstep
communication structure. See Section 3.3 for more on the BSP.

3.3 Bulk Synchronous Parallel

The IPU employs Bulk Synchronous Parallelism to organize compute and
exchange operations. It does this in supersteps, each superstep having one
stage of local computation, followed by communication, and finally a
barrier.

During the local computation, there is no communication between
processes, each process doing computations relying exclusively on local
memory.

In the computation step, there is all-to-all exchange of data, this
entailing both sending and receiving data. There is no computation during
this step.

During the barrier phase, there is no computation or communication,
save that necessitated by the barrier itself.

The BSP is motivated by memory contention in simultaneous memory-
bound computation and communication being difficult, if not outright
impossible [30]. Within a BSP structure memory transfer buffers are
redundant, saving overall memory support and increasing communication
efficiency. Luk Buchard, et al. notes that the BSP model demands that
all transfers must be planned at compile time, which is not beneficial for
unpredictable memory transfers (such as sparse data transfers required by
the BFS algorithm. See Section 4.2) [7].
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Chapter 4

Related Work

Other researchers have also worked on the applications of various al-
gorithms to the IPU.

4.1 Traditional HPC tasks on the IPU

Louw and McIntosh-Smith present that the IPU framework can be used to
implement structured grid stencil computations and has performance com-
parable to modern GPU’s. Due to the alternative cache-less memory-model
of the IPU many of the existing stencil optimizations are inapplicable. In
further experiments with 2D convolutions in Gaussian Blur application,
the paper claims the IPU has large performance benefits, particularly for
the 16-bit precision computation [36].

4.2 Breadth First Search algorithms on the IPU

My personal involvement in this was confined to the first implementation,
finished late August 2020, however, Luk Buchard’s continued work on
performance and published his paper on it in June 2021[7]. Luk et al.[7]
showed that with a typical 1.5× speedup over the fastest competing GPU
and CPU codes. The low memory capacity, ≈ 300mb, proved one of
the Colossus Mk. 1’s main issues, limiting its overall usefulness. This
made it more suited for tasks with higher time-complexities, or even NP-
hard optimization problems. It is further commented that kernelization
techniques become more valuable if they make it possible to shrink
problems to fit on the IPU [7].

4.3 The IPU as an Accelerator for Particle Physics
simulations

Mohan, et al., further researches the IPUs usefulness in the domain of
Particle Physics, and finds promising results. They show that the IPU
trains generative-adversarial networks (GANs) faster in all cases, and
with small batch sizes (. O(100)) the IPU outperforms the GPU by a
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factor typically in the comfortable range of 4 to 5. In the case of their
experiment, they tested the first generation IPU (GC2) against the Nvidia
TESLA P100 (GPU), Intel Xeon Platinum 8168 (CPU), and Intel Xeon
E5-2680 v4 (CPU). Further implementation of a Kálmán filter also gives
complimenting results. While their implementations are self-admittedly
too different for fair comparisons, the IPU is shown to be much faster. A
final note of import in the paper is the acknowledgment that the IPU and
its framework are easy to work with, and places the supporting works of
the paper in a six-month time-span with no participants having previous
IPU programming experience [40].

4.4 The IPU as an Accelerator on Multi-Horizon Fore-
casting for Limit Order Books

In the domain of machine learning Zhang and Zohren show that the IPU
does infact also outperform contemporary GPU’s in regards to training
networks, and in the case of training an encode decoder model being 4.5+
times faster than the GPU in question. Their experiments were on single-
GPU to single-IPU performance, testing with with the NVIDIA GeForce
RTX 2080 GPU [57].
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Part II

The project
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Chapter 5

The Spatio-temporal Graph
Convolutional Network

In this section we give insights into the Spatio-temporal Convolutional
Network (STGCN) from 2018. This is -in its entirety- the work of Bing
Yu, Haoteng Yin, and Zhanxing Zhu, who are responsible for the research
in this chapter. This chapter attempts to convey the information in their
paper: Spatio-Temporal Graph Convolutional Networks: A Deep Learning
Framework for Traffic Forecasting[56].

5.1 Preliminary

5.1.1 Data structuring

In the STGCN, traffic networks are defined on a graph. The observation V t

is linked into the graph by a a pairwise connection. In this fashion the data
point V t can be interpreted as a graph signal defined on a graph1 G. Thus
at time step t the graph Gt = (Vt, E , W), here Vt is a finite set of vertices that
reflect the observations from n monitor stations in a traffic network E is the
edges indicating the connectedness between the observation stations; and
W ∈ Rn×n describes the weighted adjacency matrix.

1Undirected or directed
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Figure 5.1: Graph-structured traffic data.

Vt denotes the current traffic at timestep t, recorded in a graph structured
data matrix.

5.1.2 Performing Graph Convolutions

Regular grid convolutions are not applicable to the general graph. In
2018 (when the STGCN paper was published), contemporary methods of
generalizing convolution to structured data forms to expand the spatial
definition of a convolution[42] while the other was to manipulate the
spectral domain with graph Fourier transforms[6]. The former (Niepert
et al., 2016) rearranges the vertices to form certain grid forms more
accommodating to conventional graph operations, while the latter (Bruna
et al., 2013) employs a spectral framework to apply convolutions in spectral
domain.

For the STGCN Bing Yu et al. introduced a new convolution operator
"∗G", the operation views and employs spectral graph convolution as a
multiplication of a graph signal x ∈ R with a graph kernel Θ

Θ ∗G x = Θ(L)x = Θ(UΛUT)x = UΘ(Λ)UTx, (5.1)

where the graph Fourier basis U ∈ Rn×n is the matrix of eigenvectors of the
normalized Laplacian L = In − D−

1
2 WD−

1
2 = UΛUT ∈ Rn×n (In is here an

identity matrix, D ∈ Rn×n is the diagonal degree matrix with Dii = ∑j Wij);
Λ ∈ Rn×n is the diagonal matrix of eigenvalues of L, and filter Θ(Λ) is also
a diagonal matrix.

5.1.3 Approximations

Due to the computational expense of the graph kernel two approximation
efforts are employed.

Chebyslev Polynomials Approximation

By restricting the kernel Θ to a polynomial of Λ as Θ(Λ) = ∑K−1
k=0 θkλk,

where θ ∈ RK is a vector of polynomial coefficients. K is the kernel size
for the graph convolution, this variable determines the maximum radius of
convolution for a given central node.
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A Chebyslev polynomial Tk(x) can be employed to approximate
kernels: Θ(Λ) ≈ ∑K−1

k=0 θkTk(Λ̃) where λ̃ = 2Λ/λmax − In
2. With this, the

graph convolution can be written as,

Θ ∗G x = Θ(L)x ≈
K−1

∑
k=0

θkTk(L̃)x, (5.2)

where Tk(L̃) ∈ Rn×n is the Chebyshev polynomial of order k evaluated
at the scaled Laplacian L̃ = 2L/λmax − In

By computing K-localized convolutions through the polynomial ap-
proximations recursively the computational cost of Eq.5.1 to O(K|E |).

1st-order Approximation

By stacking multiple localized graph convolutional layers with the first-
order approximation of the graph Laplacian, the authors acquire a layer-
wise linear formulation. By further implementing a deeper architecture
to recover spatial information in depth, the authors avoid being limited
to the explicit parameterization given by the polynomials. Due to neural
network scaling and normalization, the authors also make the assumption
that λ ≈ 2, further simplifying Eq. 5.2 to,

θ ∗G x ≈ θ0x + θ1(
2

λmaxL− In
)x

≈ θ0x− θ1(D−
1
2 WD−

1
2 )x,

(5.3)

where θ0 and θ1 are shared parameters of the kernel. By replacing
θ0 and θ1 with a parameter θ parameters are constrained and numerical
performance is stabilized, θ = θ0 = −θ1.; W and D are renomarlized
accoring to W̃ = W + In and D̃ii = ∑j W̃ij. By these means the authors
reexpress the graph convolution as,

Θ ∗G x = θ(In + D−
1
2 WD−

1
2 )x

= θ(D̃−
1
2 W̃D̃−

1
2 )x,

(5.4)

A vertical stack of graph convolutions with a 1st-order approximation
achieves a similar effect to K-localised convolutions horizontally, and this
exploits the information of a (K-1)-order neighborhood of central-nodes.

The authors also reason their decision in that a layer-wise linear
structure scales good with parameters and becomes significantly more
efficient for large-scale graphs, due to the order of the approximation being
one in all cases.

2Here λmax is the largest eigenvalue of L
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5.2 Extracting Spatial Features with Graph Convolu-
tion

Figure 5.2: The STGCN Model layout

Element Algorithm Page
Temporal Gated-Conv 3 48

Spatio Graph-Conv 5 50
ST-Conv Block 5 50
Output Layer 7 51

Table 5.1: Page Reference Algorithms

The greater architecture of the STGCN model is illustrated in figure 5.2,
and table 5.1 refers where said elements can be found in pseudo-code.

5.2.1 Generalizing the Graph Convolution

[56] shows how their graph convolution operator ∗G on x ∈ R can be
extended to multi-dimensional matrices. They generalize the operation
over a signal given Ci channels X ∈ RN×Ci to be:

yi =
Ci

∑
i=1

θi,j(L)xi ∈ Rn, 1 ≤ j ≤ Co, (5.5)

in which the Ci × Co
3 are the vectors of Chebyshev coefficients Θi,j ∈

RK. Here we denote the graph convolution of 2-D variables with "Θ ∗G X"
with Θ ∈ RK,Ci ,Co . Illustrated in 5.1, the input is composed of M frame of
road graphs, where the frame vt is regarded as a matrix where the column

3Ci and Co are the input and output dimension size of the feature map, respectively.
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i holds the vector value of vt at the ith node of graph Gt, said vector having
the length Ci.

In the model at all timesteps t of M the equal graph convolution is
applied on Xt ∈ Rn×Ci with the kernel Θ in parallel. This way Bing Yu,
et al. further generalized the graph convolution to 3-D variables, expressed
as "Θ ∗G X " with X ∈ RM×n×Ci

5.2.2 Extracting Temporal Features with a Gated CNN

While there is much presidence for Recurrent Neural Networks (RNN) in
this field, Bing Yo, et al. opts for a Convolutional approach, citing slow
iterations, complex gate mechanisms, and a slow response to dynamic
changes[56] in RNNs. Inspired by Gehring et al., 2017[18] they employ
instead convolutional structures on the time axis, capturing the temporal
dynamic behaviours of traffic flows.

In 5.2 on the right we see the Temporal Gated-Convolution block:
containing a one dimensional convolution leading to a gated linear
unit (GLU). Note the convolution employs a Kt wide kernel. The
aforementioned convolution on sequences of length K samples ranges of
size Kt without padding, this shortens the resulting sequence by Kt − 1.
In this regard the temporal convolution on each node can be regarded as
a length-M sequence with Ci channels Y ∈ RM × Ci. The model uses a
temporal convolution kernel Γ ∈ RKt×Ci×2Co maps an input Y to a single
element [PQ] ∈ R(M−Kt+1)×(2Co). P and Q is split in two with the same size
as channels. The gated convolution is thus defined as,

Γ ∗T Y = P� σ(Q) ∈ R(M−Kt+1)×Co , (5.6)

where P and Q are the input of the respective GLU gates; � denotes
the element-wise Hadamard product. σ(Q) is the sigmoid gate, it controls
which input P of the current states are relevant for discovering the
compositional structure and dynamic variances in time series.

5.2.3 Spatio-temporal Convolution Block (ST-Conv block)

The ST-Conv Block process graph-structured time series to fuse spatial and
temporal domain features.

In 5.2 (mid) the ST-Conv Block is illustrated. We see two temporal-
gated convolution layers "sandwich" the spatial graph convolution. This
"sandwich" design has a spatial layer bridging two temporal layers,
a feature that according to the authors is responsible for achieving
fast spatial-state propagation from graph convolution through temporal
convolutions. Furthermore, this structure aids the network applying
bottleneck strategies to achieve scale compression and feature squeezing,
this is achieved by down-scaling and up-scaling of channels C though the
layers.

To avoid overfitting, a normalization layer is applied pen-ultimately in
every ST-Conv block, immediately before a dropout operation.
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The ST-Conv Block takes and returns 3D tensors as input/output. For
an input vl ∈ RM×n×Cl

of block l and output vl+1 ∈ R(M−2(Kt−1))×n×Cl+1
the

computation of the convolution block is given by

vl+1 = Γl
1 ∗T ReLU(Θl ∗G (Γl

0 ∗T v ∗ l)), (5.7)

where Γl
0 and Γl

1 are the upper and lower temporal kernel within block l,
respectively; Θl is the spectral kernel of the graph convolution; ReLU(·) is
the function of the rectified linear unit.

5.2.4 The Output Layer

After two stacked ST-Conv Blocks there is a final Output layer (see 5.2).
This final layer maps the outputs of the last ST-Conv block to a single-
step prediction. This way the STGCN can obtain a final output Z ∈ Rn×c,
with this it calculates a speed prediction for n nodes by applying a linear
transformation across c-channels as v̂ = Zw + b, where w ∈ Rc is the
weight vector and b is the bias. The authors employed L2 Loss to measure
the performance of their model, giving the loss function of the STGCN for
traffic prediction as

L(v̂; Wθ) = ∑
t
||v̂(vt−M+1, ..., vt, Wθ)− vt+1||2, (5.8)

where Wθ are all trainable parameters in the model; vt+1 is the ground
truth.
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Chapter 6

Development

6.1 Planning

The overarching goal of the project is to implement the Spatio-Temporal
Graph Convolutional Network[56] on Graphcore’s Intelligence Processing
Unit. The initial plan would follow a series of developmental steps:

• Sequential C++ implementation.

• Parallelized C++ implementation employing OpenMP.

• IPU implementation.

At the time it was assumed the transition from C to IPU would be more
convenient than a direct to IPU approach. The terminal decision was to
implement the stgcn directly on the IPU as C code, not making intermediate
OpenMP or TensorFlow versions.

A point is made that a C++ implementation is indeed desired, even in
front of a much simpler python implementation. While the code could be
far more easily be implemented in python, doing minimal work to refit
the code for the IPU’s python-supported eco-system, this implementation
would only illustrate computational performance differences, without
giving much insight into the device itself.

6.2 Translating the Blueprint

The project involves implementing the Spatio-Temporal Graph Convolu-
tion Network[56] to work on the IPU. This meant there was a strong blue-
print for the STGCN written in Python.

Translating the Python code to C introduced a series of immediate
challenges:

• Python-specific slice operations.

• Implementation of API operations.

• C implementation decisions.
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6.2.1 Python-specific slice operations

Unlike C++, Python employs basic slicing for arrays and matrices. This
slicing is heavily used in the original STGCN code and could potentially
bloat the memory usage in a C++ implementation.

6.2.2 Implementation of API operations

The original code employs heavy use of the TensorFlow (v1) library, the
implementation sets up a TensorFlow internal program it calls multiple
times, and as such the entire loop iteration of the machine learning
algorithm is internally based in its operations. It was early decided to
implement the C++ code using TensorFlow for C++.

6.2.3 C implementation decisions

A lot of C implementation decisions became integral to the initial devel-
opment of the software. It was opted for using Tensor-Flow for C++ to
alleviate the need to code every employed matrix operation.

As mentioned in the planning section, it was later decided to code
directly on the GraphCore API for C++.

6.3 TensorFlow C++ implementation challenges

Due to the heavy use of TensorFlow in the original implementation, a
heavy effort was put into implementing a solution using TensorFlow,
which would (theoretically) bridge into a parallel GPU solution, and due to
TensorFlow’s IPU crossover API’s likely a good starting point for the IPU
implementation as well.

However, this proved to be far more complicated to attempt than
initially believed.

TensorFlow c++ installation: While TensorFlow is easily installed and
well documented for Python, installation and documentation for the C++
variants are another matter. The webpage details that it does exist for
C++, but there is no installation guide for this library. In addition, there
is a Language Binding installation for C, but this is to create TensorFlow
support in other languages, not for direct C support.

TensorFlow’s limited IPU support: The support for the IPU for
TensorFlow does not work like its GPU support. Like many other libraries,
TensorFlow has implemented GPU support for computational graph as an
optional choice, ie. automatic. To the contrary, the support for the IPU
is included as separate implementation in the TensorFlow Keras library of
Python. This meant that while a C++ TensorFlow implementation might be
feasible, it does not lead into an IPU implementation, as it would be based
on unrelated functions and -unlike GPU implementations- would not be
inherently supported.

A lot of the aforementioned issues have a relatively simple solution by
simply using GraphCore’s own API directly.
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6.4 Using GraphCore’s C++ API: Poplar

The IPU requires the construction of a static computational graph, i.e. the
CPU side creates a program to be ran on the IPU, that can interface with the
CPU throughout. This means that all input into the IPU has to be addressed
explicitly, and C/C++ objects and data cannot be directly transferred.

The API does however have support for C++ primitives, and has
advanced support for machine-learning operations1.

The Graphcore API works similarly to other static computational graph
systems (F.ex. Tensorflow) in that a graph is compiled dynamically in the
code, before being executed as an object.

Its main differences are tied to its tile-based implementation and the
care that has to be made for it.

Like all performance optimization, understanding the architecture it is
based on is a necessity. The IPU’s main features are its distributed memory
model and the enforced Bulk Synchronous Parallel execution leaves
memory optimization as a crucial consideration for any implementation.

The inbuilt support for this is the tile-mapping system, a property of
the tensor object. Transfer of data between tiles is automatized, and end-
users do not need to implement the transfer of data between tiles. The
default tile-mapping supported (during early development) only specific
and linear tile-mapping.

Specific tile-mapping requires the user to set the distinct tile a tensor or
subtensor is mapped to.

Linear tile-mapping distributes a tensor object across the tiles as
described in the Graphcore API documentation:

"The variable will be spread evenly across the tiles with the element
ordering matching the tile number ordering."

- Graphcore: Poplar and PopLibs API Reference

Certain functions automatically tile-map their tensor output based on
planned function calls or input options. Examples of these:

• poplin::createInput: createInput is a function designed to create a
special tile-mapped tensor as a parameter for the poplin::convolution
function, it and its sister function createWeights takes a Con-
vParams2, which is used to optimize tile-mapping efficiency without
manual entry.

• poplin::createWeights: see createInput.

• poplin::createBiases: createBiases takes as input a tensor which the
biases are to be applied to, and allocates tile-mapping for efficient
application later.

1Not including weight and bias optimization functions
2Convolution Parameters
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• poprand::dropout: The dropout function takes a tensor of the output
shape as reference, the output will not be written to the reference, but
it will use the same tile-mapping.

To maximize the performance of the IPU, it is crucial to employ
the correct tile-mapping, minimizing the most expensive communication
patterns.

6.5 Design Approach

Disambiguation: This section is on planned desiscions relating the
project, for information on the produced code see chapter 7: "The IPU
STGCN Implementation".

It was decided early that adherence to the blueprint would lead
to a minimum of ambiguity and make it easier in the later stages
of development to test the code. Recreating Python code in other
languages often incurs some overhead code for utility purposes, and
further additional code would likely be necessary to facilitate TensorFlow
like functionality in the interface between the CPU and the replacement of
the aforementioned: Poplar libraries.

Due to the likeness between the TensorFlows and Poplar APIs, a lot of
the code has natural correlating functions in the other, with some notable
exceptions. This correlation means that the resulting code is markedly
similar to the blueprint (ie. the TensorFlow STGCN code[56]).

The main difference in regards to this implementation is the absence in
Poplar of TensorFlow’s inherent object-operation relation.

TensorFlow does in Python have the upstream of a variable defined
as a part of it, when TensorFlow runs a session it is run in regards
to a list of objects, executing so that the aforementioned objects are
calculated according to the functions trace of said objects.

Unlike TensorFlow, Poplar’s variables are defined exclusively as data
containers with tile-mapping, without regards to upstream computation.

This distinction means that the handling of the computational graph in
Poplar requires additional measures due to a lower level of abstraction.

6.5.1 On the use of API

The project is mostly aligned with inspecting the IPU as an accelerator and
working with its API, as such the intent is to rely, if possible, on the IPU’s
inbuilt libraries and not custom solutions.

Furthermore, the STGCN model (ref fig. 5.2) itself is a time-sensitive
target for optimization. If possible, custom implementation of supporting
code is to be avoided as it neither aids in accessing the IPU or its libraries.
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6.5.2 On the implementation of back-propagation

The IPU’s API does not have any innate support for back-propagation,
in the sense that there are no functions to compile a back-propagation
operation over a sequence, and there is little to no support for generating
gradients for back-propagation either.

While there are specific references to back-propagation in the form of
forward and backwards passes, specifically in regards to recurrent units,
there is little overall support.

In section 10.2.4 I will talk about inspecting programs and its hypothet-
ical use for the purpose of working on programs. However, here I would
like to supplement that I believe the tensors themselves should be classifi-
able as gradients, inputs, and weights, etc.. Overall I believe such changes
would allow the poplar libraries to become more flexible, making it pos-
sible for developers to create reusable functions for generating program-
matic by-products akin to back-propagation.

What back-propagation is to be added has to be made from scratch,
most likely in the same functions as the layer they are propagating error
over, or using cached variables.

It follows from this that learning will be difficult to implement and has
not been made a major target of this project.

What work has been devoted to backpropagation had to be done from
scratch in its entirety.

6.6 Implementation Issues

6.6.1 Data Over-saturation

The early poplar STGCN configuration would not be able to compile the
graph due to over-saturating the tiles. This is to say that one of the tiles
would be prescribed too much memory for its local SRAM to contain.

This issue was circumvented by reducing the batch-size, but not solved.
The single-tile overload highlights a bigger underlying weakness

with the IPU architecture: The importance of smart tile-mapping, and
the discrepancy between absolute memory capacity and effective memory
capacity.

While the IPU Mk. 2 boasts a total of ≈900 MB of memory, the capacity
of any given tile is no more the ≈ 0.6 MB. Meaning that if the division
across the tiles are uneven the effective memory capacity decreases rapidly
in tandem with the unevenness of data management.

6.6.2 Verifiable output

Due to the randomizing step of dropouts, performed at the end of each
Spatio-Temporal Convolution Block (more about this at section 5.2.3,
during runs intended for optimization the results can no be verified as
accurate against the original implementation.
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However, when verifying the results before the dropout, and then
inserting the post-dropout numbers from the python code into the IPU
code for continuity purposes the accuracy before each dropout was
calculated to roughly {≈ −5e−6,≈ 5e−6}, and the final error is down to
the range {≈ −5e−5,≈ 5e−5}. The error is unlikely to aggregate beyond
reasonable accuracy over these two dropouts.

∆M = Mc++ −Mpy

E− = MIN(∆M)

E+ = MAX(∆M)

Er = (E−, E+)

(6.1)

Error is calculated as outlined in equation 6.1, where ∆M is a matrix
with the point-wise subtraction of Mpy (the python computed matrix) from
Mc++ (the native computed result); further the error range Er is defined as
the range between the biggest negative error and biggest positive error.

6.6.3 Standard Computational Bugs

While not hyper relevant to the project, a plethora of minor issues were
necessarily removed during the development, most of these standard issue
bugs like the wrong use of operation, out of sequence operations, or simply
a misreading of either the poplar or TensorFlow documentation.

6.6.4 Flawed Sequence Embedding

One of the pen-ultimate flaws that was worked on during the project was
a minor issue where an operation was not computed in order due to being
embedded in the erroneous sequence.

This issue is one of the more complicated to root out, but it is simple to
rectify.

6.6.5 Error in Cross-Iteration verification

This issue came after the model produced accurate results, however, when
the model was re-executed the an error was introduced.

This error was traced back to a de-randomization step injected to verify
accuracy across random operations. This extra step relied on an additional
matrix to contain the Python post-randomization product.

6.6.6 Back-propagation

During backpropagation the data-stream would become saturated with inf,
-inf, and nan states.

While several errors where found the ultimate cause was not de-
tected. This is addressed further in the chapter 7: "The IPU STGCN
Implementation".
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Chapter 7

The IPU STGCN
Implementation

7.1 Layout

7.1.1 Files

+−− data
| +−− csv_reader . hpp
| +−− d a t a _ u t i l i t y . hpp
+−− main . cpp
+−− model
| +−− convolution . cpp
| +−− l a y e r . cpp
| +−− meta_veri fy . cpp
| +−− model_assets . hpp
| +−− model . cpp
| +−− t ranspose . cpp
+−− time
| +−− time_run . cpp
+−− u t i l

+−− arguments . cpp
+−− arguments . hpp
+−− i p u _ i n t e r f a c e . cpp
+−− i p u _ i n t e r f a c e . hpp
+−− Logger . cpp
+−− Logger . hpp
+−− math . cpp
+−− Matrices . cpp
+−− u t i l . hpp

Figure 7.1: Files
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Figure 7.1 outlines the file/folder hierarchy. Note that some other folders
are required for python-synchronized runs.

The model’s main assets are all confined to the model folder.

7.1.2 Structures

A list of the objects and their functions:

class CSVReader in data/csv_reader.hpp

A utility class for reading .csv files. This class object is almost exclusively
employed by the read_csv function, see section 7.1.3.

• CSVReader(std::string filename, std::string delm);
Constructor, prepares reader.

• void read();
Reads the file into a vector<vector<string> > architecture with inherent
structure.

• std::vector<std::vector<std::string> > get_raw();
Returns the vector<vector<string< > object holding the CSV data,
given that it has been initiated with the read() function of this object.

• size_t outer();
Returns the length of the outer input raw-vector.

re turn CSVReader : : raw . s i z e ( ) ;

• size_t inner();
Returns the length of the first element in the raw vector

re turn CSVReader : : raw [ 0 ] . s i z e ( ) ;

class Dataset in data/data_utility.hpp

The dataset class is a container for three different Matrix_4D objects, this is
used as a container for the train, valid, and test matrices.

• private size_t tot_size(vector<size_t> &shape);
Calculate the product of all variables in the shape.

• private void transfer(Matrix_2D &src, Matrix_4D &dst, int len_seq,
int n_frame, int n_route, int day_slot, int offset );
Copies between data segments.

• private void remember_shape(vector<size_t> a, vector <size_t> b);
Retain shape a in b.
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• Dataset(Matrix_2D &data_seq, int config[3], size_t n_route, size_t
n_frame, size_t day_slot = 288, vector<vector<size_t> > shapes =
vector<vector<size_t> > 0, 0, 0 ) : train(shapes[0], "Training Se-
quence"), valid(shapes[1], "Validation Sequence"), test (shapes[2],
"Testing Sequence"), shape_train(4), shape_valid(4), shape_test(4);
Sets up the inherent wrapper, duplicates multiple values, and con-
verts others to z_score variants.

class Logger in util/Logger.hpp

This function opens and overwrites a file given as input, used to log activ-
ity without clogging up the terminal.

• Logger(string s, string m_entry = " Logfile ");
Creates or overwrites a file with the new name m_entry.

• Logger();
Deconstructor, close the file.

• void log(string s, string end = "\n", bool announce = false);
Append a string s to the file.

class Raw_Matrix in util/Matrices.cpp

A simple raw data-space, used as underlying buffer for inheritor classes to
impose dimensionality on.

• Raw_Matrix(size_t n, string titled = "Untitled") : title(titled);
Creates an underlying data segment of size n, also embeds a title
(titled).

• Raw_Matrix();
Deconstructor.

• float *ptr_to_raw();
Returns a pointer to the underlying data.

• void glorot_fill(size_t fan_in, size_t fan_out);
fills the values of this raw data segment with glorot random values.

• void fill_mat(float val);
Fill matrix with the float val.

• size_t _size();
Returns the size of the underlying data segment.

• float mean();
Calculates the mean of the underlying array.
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• float standard_deviation(float mean);
Calculate standard deviation given a mean.

• size_t nnz();
Count zeroes in segment.

• float nnz_percent();
Return percentage of segment that is zeroes.

• void z_score(float mean, float std);
Convert data to z_score of data:

z_score(D[i]) = (D[I]− µ)/σ,

where µ is the mean, D[i] is element i of the underlying data array,
and σ is the standard deviation. This overwrites existing data
segments.

• void z_inverse1(float *x, float mean, float std);
Rewrites the internal data according to calculation:

D[i] = (x[i]× σ) + µ

class Matrix_2D : public Raw_Matrix in util/Matrices.cpp

Applies a 2d matrix overlay to the raw matrix.

• Matrix_2D(size_t size, vector<size_t> shape, string titled="Untitled")
: Raw_Matrix(size, titled);
Constructor, creates a 2d matrix overlay to an invoked underlying
Raw_Matrix.

• Matrix_2D();
Deconstructor, empty.

• float* operator[](size_t idx);
allows 2D accessing of the raw underlying memory.

class Matrix_4D : public Raw_Matrix in util/Matrices.cpp

Applies a 4d matrix overlay to the raw matrix. The shape of this 4D matrix
is a 4D cuboid and is referenced as such

• Matrix_4D(vector<size_t> shape, string titled="Untitled") : Raw_Matrix(shape[0]*shape[1]*shape[2]*shape[3]);
Constructor, associate underlying values for ease of access later.

• float* operator[](size_t cube);
returns the address of an underlying cuboid in the 4d cuboid, given
by:

1Misnomer: This calculates reverse z_score

40



re turn &data [ZYX* cube ] ;

Where ZYX is the product Z × Y × X and Z, Y, and X are the inner
three dimensions of the 4d cuboid.

• size_t cube_nnz(ssize_t w, size_t z);

class Arguments in util/arguments.hpp

Simply a wrapper object for the terminal arguments, defaults values on its
own.

• void set(string s, string v); Attempts to set a dictionary item s to the
value s.

• Arguments(int argc, char const *argv[]);
Basic constructor, calls set on all values argv.

class FeedinVector in util/ipu_interface.hpp

Feedin vector creates a buffer that can either be filled with an external
matrix or float (distributed to the entire vector). This can be used to feed in
a tensor to the IPU with a single value (most commonly zero).

FeedinVector has the following three functions, omitting the decon-
structor:

• FeedinVector(size_t s);
Constructor, mallocs an area of s floats.

• void copy_in(float * data);
Attempts to copy data to the FeedinVector’s space.

• void valfill(float x);
Fill every item in the array with the float x.

class FileFedVector in util/ipu_interface.hpp

The FileFedVector works much like the FeedinVector, but instead reads a
file into its buffer automatically. This is used extensively to fill in tensors.

The FileFedVector has only one function, its constructor:

• FileFedVector(string filename, size_t _size),

this function automatically creates a memory array of size _size ×
sizeo f ( f loat) and fills it with the contents of the file rawdata/<filename>.txt.
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class IPU_Interface in util/ipu_interface.hpp

A wrapper object for multiple poplar objects, and handles multiple graph
interactions.

• Tensor_Entry2 new_entry(string s, Tensor t, int type=0, float
*ptr=dummy) size_t unique_exp_adr();
tensor entry is used in a list for reacquisition of arrays based on
names, and are automatically tilemapped before compilation.

• size_t unique_exp_adr();
Creates a unique expression to append to a string to ensure that it will
not match a string search.

• void update_allocated_bytes(vector<size_t> shape);
A function to count allocated bytes on the IPU.

• size_t tensor_size(vector<size_t> shape);
Returns the product of the items in shape, ie:← shape[0]× shape[1]×
...× shape[size(shape)].

• string shape_display(vector<size_t> shape, string name = "x",
string end="\n");
Creates a string that displays the values in shape, starting with name
and terminated with end.

• string shape_display(Tensor &t, string name = "x", string end="\n");
Similar to the above, working on t.shape() instead of a shape.

• Tensor expandTensor(Graph &g, Tensor &t, vector<size_t> shape,
string name="");
Expand the tensor t such that is has the new shape shape, it will not
shrink dimensions.

• size_t exists(std::string s);
Verifies whether or not a tensor entry with the name s in the list of
archived tensors.

• Tensor getVariable(Graph &g, std::string name, std::vector<size_t>
shape=NULL_VECTOR, int type=3, float *ptr=dummy);
This will create and automatically store a tensor of the shape in shape,
with the name name and an attached finalization protocol.

• Tensor getVariable_OLD(Graph &g, std::string name, std::vector<size_t>
shape=NULL_VECTOR, int type=3, float *ptr=dummy);
This function attempts to retrieve an existing tensor labeled name, if
not existing it will attempt to create one.

2Tensor entry is defined as: std::tuple<std::string, Tensor, int, float*>
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• Tensor padTensor(Graph &g, Tensor &core, vector<size_t> av-
ant_padding, vector<size_t> post_padding);
This is similar to expandTensor, however it does not look at the in-
put size of the core, rather expanding it as the expand tensors av-
ant_padding and post_padding directs. As such, the resulting shape
can be calculated by:

shapenew = {padpre[0] + shapeold[0] + padpost[0],
padpre[1] + shapeold[1] + padpost[1],
...
padpre[n− 1] + shapeold[n− 1] + padpost[n− 1]},

(7.1)

where n is the shape length of the shape of the core, and padpre
and padpost are shorthand for avant_padding and post_padding
respectively.

• Tensor getExistingVariableSlice(std::string name, std::vector<size_t>
shape=NULL_VECTOR, std::vector<size_t> offset=vector<size_t>{0,
0, 0, 0}, int type=0, float *ptr=dummy);
This function attempts to find an archieved tensor with the name
name, and attempts to extract a shape-shaped slice starting at the off-
set. With default parameters, it will only handle 4D tensors. The
requirement of type and pointer is vestigial code from earlier func-
tionality.

• void addVariable(std::string s, Tensor &t, int type=AUTOFL_
TENSOR, float *ptr=dummy);
This archives the tensor t under the label s, it also stores compile-time
filling protocol and if entered its feed-in address, this is the address
used to feed certain tensors with CPU side data..

• Tensor getAlternatingSpace(string type, std::vector<size_t> shape);
This function is a SRAM-recycling function, designed to allow for
reusing the alternating layer data, it returns a space designated by
the type, alternating between two different nonoverlapping segments
of said data. While not infinitely thread safe, this function is very
useful in acquiring large segments of data with a relatively high
chance of not damaging the downstream pipeline. It is to the best
of my knowledge, not employed erroneously in the current code, but
it should not be employed unless the downstream is safe, and never
as an input node.

• float random(float top, size_t div = 10000);
This functions aquires a raw random value from C++’s inbuilt rand()
function, it then performs a set of functions on it to get a random
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number in a given range:

r = rand()
rc = r % (top + 0.5)

rd = r/

{
rc if rc 6= 0
1 otherwise

rt = rd % div

v = rc +
rd

div

(7.2)

• void glorot_fill(float *ptr, size_t len, std::vector<std::size_t> shape);
This function is designed to fill a range from ptr of length len with
glorot random numbers. It should do this by calling the function
random with the value sd × 2 + 1 and subtacting sd, where sd is
defined as:

sd =

√
6

nin − nout
(7.3)

where nin and nout are in regard to nearby convolutions. With this,
the final random values should be in the range (−sd, sd].

• Engine finalize_and_run(Graph &g, Program model, bool run=false);
This function has its own subsection: section 7.1.3.

• Program notification(Graph &g, string notification);
This function returns a Program that gives a notification with the
message given (var: string notification), used for debugging purposes.

• void retain(FileFedVector &ffv);
This function will hold onto the FileFedVector, a countermeasure
against garbage collection.

7.1.3 Functions

This section contains functions from the repositories. Functions with a
parameter Sequence &bwd also attempts to construct a backward pass of
their function.

int read_csv(string path, Matrix_2D &data)

This function initiates a CSV_Reader (ref section 7.1.2) object, activates it to
read the CSV, then it parses it into data.

Engine finalize_and_run(Graph &g, Program model, bool run=false)

Found in class IPU_Interface, this function is given its own section to better
see all its functions.

The function has multiple distinct phases:
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• Create Graph Tensor Writes:
Iterates over the archived tensors, facilitates a write to the graph.
In the simpler cases of glorot randoms, FeedIn tensors, or FileFed
tensors, it simply employs the poplar Graph.createHostWrite(...) func-
tion. In the vaguely more complicated case of zeroed out arrays it
adds itself to a queue of zeroed arrays. These are initiated overlap-
ping due to the identical region, saving space in the process.

• Compile Graph:
A call to poplar::compileGraph(...).

• Mounting Graph to Engine:
Initiation of the Engine(...) class.

• Prepare and Deploy Engine:
Prepares and deploys the engine, using preexisting poplar calls.

• Data Transfers:
Iterates over the archived tensors, this time for transfer to the unit.

– if Zero tensor then load a sized segment of a zeroed data segment
to the IPU.

– if Glorot tensor then Create a glorot random area, fill it with the
required random numbers, and transfer them to the IPU.

– if FeedIn tensor then Load a region starting at the pointer with
the required size to the IPU.

– if FileFed tensor then Load a region starting at the pointer with
the required size to the IPU.

– if Autofill Tensor then Do not fill this tensor, for various reasons
this tensor does not require preinitiated variables.

• Run [Optional]:
If the input parameter run is set to true, also test-run the application.
This had a vestigial function during early testing.

void layer_entry_note (IPU_Interface &ipu, string layer, string scope,
string notes="");

This function adds prints a debug notification when entering a given model
layer function.

void layer_exit_note (IPU_Interface &ipu, string layer, string scope,
string notes="");

This function adds prints a debug notification when exiting a given model
layer function.
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Tensor transp_0123_0231 (IPU_Interface &ipu, Graph &g, Tensor &in,
Tensor &out, Sequence &seq);

Vestigial function wrapper, the original functionality involved constructing
a computation set that would perform a transposition of the nature
(0, 2, 3, 1), currently it calls ::dimShuffle() on the tensor with configuration
"{0, 2, 3, 1}" and copies into the out tensor. While it is not necessary to copy,
this mimics the previous functionality.

Tensor transp_0123_0312 (IPU_Interface &ipu, Graph &g, Tensor &in,
Tensor &out, Sequence &seq);

Vestigial function wrapper, the original functionality involved constructing
a computation set that would perform a transposition of the nature
(0, 3, 1, 2), currently it calls ::dimShuffle() on the tensor with configuration
"{0, 3, 1, 2}" and copies into the out tensor. While it is not necessary to copy,
this mimics the previous functionality.

Tensor gconv (IPU_Interface &ipu, Graph &g, Tensor &src, Tensor &dst,
Tensor &theta, size_t Ks, size_t c_in, size_t c_out, Sequence &seq,
Sequence &bwd, string scope="unscoped");

This function correlates to a function of the same name in the original STGCN
implementation [56].
This function creates a program sequence that performs a graph convolu-
tion as introduced in [56], outlined in algorithm 1. The aforementioned
algorithm does not describe the functions full functionality, but it does de-
scribe the layer embodied in the model.

Algorithm 1: Graph Convolution
input : X, φ, θ, Ks, c_in, c_out
output: Xconv : Convolved Graph Data
/* X : Input */
/* φ : Graph Kernel */
/* θ : Trainable Graph Kernel */
/* Ks : Kernel size of Graph Convolution */
/* cin, cout : size of input/output channel respectively */

1 begin
2 n← outer shape of phi
3 Xt ← XT(0,2,1)

4 Xr ← reshape(Xt, [−1, n])
5 Xm ← Xr × φ
6 Xmr ← reshape(Xm, [−1, cin, Ks, n])

7 Xmt ← X
T(0,3,1,2)
mr

8 Xmtr ← reshape(Xmt, [−1, cin × Ks])
9 Xmm ← Xmtr × θ

10 Xgconv ← reshape(xmm, [−1, n, cout])
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Tensor layer_norm (IPU_Interface &ipu, Graph &g, Tensor &src, Tensor
&dst, Sequence & Seq, Sequence &bwd, string scope="unscoped");

This function correlates to a function of the same name in the original STGCN
implementation [56].
The layer_norm function performs as it name insinuates a layer normaliza-
tion, this is described further in algorithm 2. The aforementioned algorithm
does not describe the functions full functionality, but it does describe the
layer embodied in the model.

Algorithm 2: Layer Normalization
input : X, γ, β
output: Xnorm
/* X : Input */
/* γ : Trainable Kernel */
/* β : Trainable Bias */

1 begin
2 µ← mean(X)
3 σ← std_Deviation(X, µ)

4 Xnorm = (X− µ)/
√

σ + 1e−6 × γ + β

Tensor temporal_conv_layer(IPU_Interface &ipu, Graph &g, Tensor
&src, Tensor &dst, size_t Kt, size_t c_in, size_t c_out, Sequence &seq,
Sequence &bwd, string scope="unscoped", string act_func="relu");

This function correlates to a function of the same name in the original STGCN
implementation [56].
The temporal convolution is described in length in algorithm 3. The afore-
mentioned algorithm does not describe the functions full functionality, but
it does describe the layer embodied in the model.

Tensor spatio_conv_layer (IPU_Interface &ipu, Graph &g, Tensor &src,
Tensor &dst, size_t Ks, size_t c_in, size_t c_out, Sequence &seq,
Sequence &bwd, string scope="unscoped");

This function correlates to a function of the same name in the original STGCN
implementation [56].
The spatio convolution layer employs the Graph Convolution, the former
described in algorithm 4 and the latter in algorithn 3. The aforementioned
algorithms do not describe the functions full functionality, but it does
describe the layer embodied in the model.
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Algorithm 3: Temporal Graph Convolution
input : X, Kt, cin, cout, α
output: Xconv: Temporal Convolution Results.
/* X : Input */
/* Ks : Kernel size of Temporal Convolution */
/* cin, cout : size of input/output channel respectively */
/* α : activation function */

1 begin
2 o, T, n← dimensions 0, 1, and 2 of X
3 if cin > cout then
4 wtin ← trainable variable shaped(1, 1, cin, cout)
5 xin ← 2D-conv(X, wtin) // PAD="SAME", stride={1,1,1,1}
6 else if cin < cout then
7 Z ← zeros([o, T, n, cout − cin])
8 Xin ← concat(X, Z)
9 else

10 Xin ← X

11 Xin ← Xin[:, Kt− 1 : T, :, :]
12 if α = ”GLU” then
13 Kiw = Kiw × 2// Kiw: The inner Kernel Width
14 else
15 Kiw ← cout// Kiw: The inner Kernel Width

16 wt← Trainable variable shaped[Kt, 1, cin, Kwi]
17 bt← Trainable variable shaped[Kwi]
18 Xconv ← 2D-conv(X, wt) + bt

/* PAD="VALID", stride={1,1,1,1} */
19 if α = ”GLU” then
20 Xsig ← sigmoid(Xconv[:, :, :,−cout :])
21 Xconv ← (Xconv[:, :, :, 0 : cout] + Xin)× Xsig

22 else if α = ”linear” then
/* Do nothing, auto returns Xconv */

23 else if α = "sigmoid" then
24 sigmoid(Xconv)
25 else if alpha = "relu" then
26 relu(Xconv)
27 else
28 Terminate, an unsuported activation function has occured.
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Algorithm 4: Spatial Convolution Layer
input : X, Ks, cin, cout
output: Xsc
/* X : Input */
/* Ks : Spatial Convolution with */
/* cin, cout : Channel width in and out of layer */

1 begin
2 T, n← dimensions 1 and 2 of X, counting from zero.
3 if cin > cout then
4 wsin ← trainable variable shaped[1, 1, cin, cout]
5 xin ← 2D-conv(X, wtin) // PAD="SAME", stride={1,1,1,1}
6 else if cin < cout then
7 Z ← zeros([o, T, n, cout − cin])
8 Xin ← concat(X, Z)
9 else

10 Xin ← X

11 ws← trainable variable shaped[Ks× cin, cout]
12 bs← trainable variable shaped[cout]
13 Xr ← reshape(X, (−1, T, n, cout))
14 Xconv ← GCONV(Xr, ws, Ks, cin, cout) + bs
15 Xcr ← reshape(Xconv, [−1, T, n, cout])
16 Xsc ← RELU(Xcr[:, :, :, 0 : cout] + Xin)

Tensor st_conv_block (IPU_Interface &ipu, Graph &g, Tensor &src,
size_t Ks, size_t Kt, size_t channels[3], Sequence &seq, Sequence &bwd,
string scope="unscoped", string act_func="GLU");

This function correlates to a function of the same name in the original STGCN
implementation [56].
The st-conv-block, or the spatio-temporal graph convolution block, is
visualized in figure 5.2 and described in algorithm 5. The aforementioned
algorithm does not describe the functions full functionality, but it does
describe the layer embodied in the model.

Tensor fully_con_layer (IPU_Interface &ipu, Graph &g, Tensor &src,
Tensor &out, size_t n, size_t channel, Sequence &seq, Sequence &bwd,
string scope="unscoped");

This function correlates to a function of the same name in the original STGCN
implementation [56].
The fully connected layer is the final layer to the output layer, it is described
in algorithm 6. The aforementioned algorithm does not describe the
functions full functionality, but it does describe the layer embodied in the
model.
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Algorithm 5: ST-Conv Block
input : X, Ks, Kt, C, kb, α
output: Xout
/* X : Input */
/* Ks, Kt : Spatial and Temporal Convolution size */
/* C : Channel vector, 3 numbers */
/* kb : Keep Probability for dropout */
/* α : Activation function */

1 begin
2 cin, ct, coo ← C
3 Xs ← Temporal Graph Convolution(X, Kt, csi, ct, α)
4 Xt ← Spatial Convolution(Xs, Ks, ct, ct, )
5 Xo ← Temporal Graph Convolution(Xt, Kt, coo, coo, ”relu”)
6 Xout ← dropout(Xo, kb)

Algorithm 6: Fully Connected Layer
input : X, n, c
output: X f c

/* X : Input */
/* n : width */
/* c : channel */

1 begin
2 w← trainable variable shaped[1, 1, c, 1]
3 b← trainable variable shaped[n, 1]
4 X f c ← 2D-conv(X, w) + b // PAD="SAME", stride={1,1,1,1}
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Tensor output_layer (IPU_Interface &ipu, Graph &g, Tensor &src, Tensor
&x2, size_t T, Sequence &seq, Sequence &bwd, string scope, string
act_func="GLU");

This function correlates to a function of the same name in the original STGCN
implementation [56].

Algorithm 7: Output Layer
input : X, T, α
output: Xout
/* X : Input */
/* T : Kernel size of temporal convolution. */

1 begin
2 n, c← dimensions 1 and 2 of X, counting from zero.
3 Xi ← Temporal Graph Convolution(X, T, c, c, α)
4 Xln ← Layer Normalization(Xi)
5 Xo ← Temporal Graph Convolution(Xln, 1, c, c, ”sigmoid”)
6 Xout ← Fully Connected Layer(Xo, n, c)

tuple<Program, Program, Tensor> build_model(size_t blocks[2][3], Ar-
guments args, IPU_Interface &ipu, Graph &g)

This function constructs the model, ie. fig. 5.2. It returns a tuple containing
the forward pass, backward pass, and output respectively.

string _shapestring(vector<size_t> shape);

Simply returns a shape vector’s contents as a string representing said
shape.

vector<size_t> out_shape(vector<size_t> input_shape, vector<size_t>
kernel_shape, vector<size_t> padding = vector<size_t>{1, 1, 1, 1}, vec-
tor<size_t> stride = vector<size_t>{1, 1, 1, 1});

This function calculates the out_shape given a convolution with the given
parameters.

Tensor conv2D_w_bwd(IPU_Interface &ipu, Graph &g, Tensor &input,
vector<size_t> filter_shape, string filter_scope, string bias_scope, Tensor
&output, Sequence &seq, Sequence &bwd, bool biased, bool same)

The conv2D_w_bwd is a wrapper of the Poplar convolution environment
that creates a forward and backward convolution operation.

It will create a program for the forward pass and save it in the
Sequence &Seq and create a backward pass implementation that it embeds
in Sequence &bwd.
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The forward pass thus entails:

X⊗ θ + β = σ (7.4)

or (if same is set to true):

X⊗= θ + β = σ (7.5)

where in is the input, θ is the filter, β is the bias, ⊗ is the convolution
operation, and ⊗= is a variant of the convolution that zero-pads the input
such that the result has the same shape as the input.

Dependent on repo it will either attempt to initiate the weight and
possible bias as glorot random values or read values from files dependent
on the filter_scope and bias_scope variables.

The bools biased and same toggle bias and padding respectively.
The implementation of back-propagation employs the already existing

poplar update functions for weights and biases, however as no functional
way to find the backward error using single-poplar functions, this is
implemented from scratch:

Given the 2D function for finding the error w.r.t. the input

∂L
∂X

=
∂L
∂σ
⊗� 180◦rot{θ} (7.6)

where θ ∈ Rh×w is the filter of the forward pass, ∂L
∂σ ∈ RH′×W ′ is the loss

propagated through the backward pass, and ⊗� is a full convolution, that
is to say that zero-padding is applied in such a manner that the output
has dimensions R(H′+h−1)×(W ′+w−1), or more comprehensibly: given that
the first parameter of the full convolution is the output of the forward
convolution this operation will return a matrix with the same dimensions
as the input of the forward convolution: RH×W .

The forward pass of a convolution involving channels is more com-
plex, as the input becomes the three-dimensional: RCin×W×H, the filter
becomes four-dimensional: RCin×Cout×w×h, such that the output has shape
RCout×H′×W ′ . To work this backwards, the outer two dimensions of the filter
have to be transposed.

Note: The rotation of θ is synonymous with reversing both dimensions of
the filter:

180◦rot
(

a1,1 a1,2
a2,1 a2,2

)
=

(
a2,2 a2,1
a1,2 a1,1

)
↔
(
l
(

a1,1 a1,2
a2,1 a2,2

))
=↔

(
a2,1 a2,2
a1,1 a1,2

)
=

(
a2,2 a2,1
a1,2 a1,1

) (7.7)

Using this we can utilize the poplar::Tensor::reverse(unsigned int
dimension) function to rotate the matrix.
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Tensor verify_same_2(Graph &g, Tensor &res, Tensor &inp, Sequence
&seq, string label = "UNTITLED_VER", bool correct = false);

This function prints the difference (and on deep verification dimension-
wise difference) of two tensors. This is the function that calculates equation
6.1.

Tensor verify_same(IPU_Interface &ipu, Graph &g, Tensor &res, string
file, Sequence &seq, bool correct = false);

This function calls verify_same_2 after reading the file with name
"rawdata/<file>.txt" to a tensor.

Tensor verification_pass(IPU_Interface &ipu, Graph &g, Tensor &inp,
string file, Sequence &seq);

The verification_pass function will only execute code if the compile-time
variable -D_VERIFY is set. If it is active, it will call verify_same.

Tensor derandomize(IPU_Interface &ipu, Graph &g, Tensor &rnd, string
file);

Simply returns the contents of the file "rawdata/<file>.txt" fitted into a
tensor of the same shape as rnd.

7.2 Forward Pass

The functions listed in section 7.1.3 are were made with the forward pass
in mind, and were later retrofitted to also construct the backward pass.

The forward pass is designed to follow the original STGCN model [56]
as closely as possible, the model is described at length in chapter 5.

To make the two models ([56] and this project) relatively comparable
the functions responsible for creating the different layers have been made
such that the C++ variants have a natural Python equivalent.

7.3 Backward Pass

7.3.1 Preliminary

In the python implementation [56] the backwards pass is automat-
ically generated by either an RMSPropOptimizer or an AdamOPtim-
izer from calls to tf.train.RMSPropOptimizer(...).minimize(...) or
tf.train.AdamOptimizer(...).minimize(...) respectively.

These functions are relatively speaking black boxes, making it difficult
to inspect the computational graph responsible for the learning process.

Thus the backward pass as it is implemented in this solution is made
from scratch and does not equate the forward pass of the Python variant.
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7.3.2 Backpropagation

The basic theory of the backwards pass is to propagate an error L
backwards through the algorithm.

For linear transformations like transposition and reshaping of matrices
the backpropagation simply involves reversing the operation.

For more complicated operations like matrix multiplication, and
convolutions backpropagation involves calculating the partial in respect to
the inputs.

The generic function

Given a generic function
f (x, θ) = σ

and the calculated error of the output ∂L
∂σ the backward pass calculates ∂L

∂x
and ∂L

∂θ and applies the latter to θ.

Matrix Multiplication

The matrix multiplication is the natural representation of the multi layer
perceptron, and thus the main target of backpropagation.

We take the basic example

X� θ = σ

where we have the input X ∈ RK,L, filter θ ∈ RL,M, and output σ ∈ RK,M.
Given the error ∂L

∂σ ∈ RK,M we want to find the errors w.r.t to X: ∂L
X , and

θ: ∂L
θ .
Following the concept of backpropagation [44]:

∂L
∂X

=
∂L
∂σ
� θT (7.8)

∂L
∂θ

= XT � ∂L
∂σ

(7.9)

Note: the matrix multiplication between two tensors with shapes (K, L)
and (L, M) will have the shape (K, M).

2D Convolution

We have a given convolution between X ∈ RH,W and θ ∈ Rh,w:

X⊗ θ = σ

and the error of σ ∈ RH−h+1,W−w+1: ∂L
∂σ . We want to find the errors ∂L

∂X and
∂L
∂θ of X and θ respectively.

The in-grain understanding of a convolution follows:

σi,j =
h

∑
∆=1

w

∑
δ=1

(
Xi+∆,j+δ ∗ θ∆,δ

)
(7.10)
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Following the work of Pavithra Solai [46], we have that:

∂L
∂X

=
∂L
∂σ
⊗� 180◦rot{θ} (7.11)

and
∂L
∂θ

= X⊗ ∂L
∂σ

(7.12)

Here the operation ⊗� is the operation that zero-pads the input such
that the output has the same shape as the original input X.

2D Convolution with Channels

The more complex cases with channels have an at-surface similar opera-
tion:

X⊗ θ = σ

where the shapes are of higher dimensionality:

X ∈ RCin,H,W

θ ∈ RCin,Cout,h,w

σ ∈ RCout,H−h+1,W−w+1

(7.13)

Defining the behaviour of multi-dimensional convolutions we have:

σc,i,j =
Cin

∑
4=1

h

∑
∆=1

w

∑
δ=1

(
X4,i+∆,j+δ ∗ θ4,c,∆,δ

)
(7.14)

We have to address the extra dimensions in regard to the backward
pass.

To get an error w.r.t. to the input with the input’s shape, one must
transpose the outer dimensions of the kernel [41], giving:

∂L
∂X

=
∂L
∂σ
⊗� ↔l

(
180◦rot{θ}

)
(7.15)

As it is already implemented in Poplar, we do not have to calculate ∂L
∂θ .

Gated Linear Units

The Gated Linear Unit (GLU):

GLU(X) = (X⊗Wa + ba) ∗ σ(X⊗Wb + bb) (7.16)

where σ is the sigmoid function, Wa and Wb are weights, and ba and bb are
biases, has a derivative defined as

∇[X ∗ σ(X)] = ∇X ∗ σ(X) + X ∗ σ′(X)∇X (7.17)

according to Yann N. Dauphin, et al. [12].
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Batch Layer Normalization

The batch layer normalization, detailed in algorithm 2:

δX =
(X− µ)√
σ + 10−6

∗ γ + β (7.18)

has the derivative

δσ−1 =
N

∑(δZ ∗ γ) (i)

δX̂ = δγx ∗ γ (ii)

δxµ1 = δX̂ ∗ σ−1 (iii)

δσ =
1

2 ∗
√

σ + ε
∗ −1
(σ + ε)2 ∗

N

∑(δX̂ ∗ (X− µ)) (iv)

δsq =
1
N
∗

1 . . . 1
...

. . .
...

1 . . . 1


(N,D)

∗ δ
√

σ (v)

δxµ2 = 2 ∗ (x− µ) ∗ δsq (vi)
δx1 = (δxµ1 + δxµ2) (vii)

δµ = −(
N

∑ δx1)−1 (viii)

δx2 =
1
N
∗

1 . . . 1
...

. . .
...

1 . . . 1


(N,D)

∗ δµ (ix)

δX = δx1 + δx2 (x)

(7.19)

according to Stanford [15].

7.3.3 Terminal State

Efforts to make the backwards pass functional was ultimately left in
an ambiguous state, requiring further development to implement a
contemporary learning algorithm. The original STGCN [56] model used
RMSProp and ADAMOptimziers, and these two would be the desired
targets of such further development.
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Chapter 8

Results

8.1 Experiment I: Verifying Forward Pass

For the model to be of any interest, it is essential that it produces the correct
results.

This experiment is to verify that given the same input variables, the
model produces identical results to the original[56] code.

To actually be able to verify the results, some measures have to be
employed to

It is not the intent to measure the accuracy of the trained data in this
experiment, rather that it is the same mathematical series of operations as
the original[56].

• Trained Variable Insertion: Trained variables from the original code
is to be employed in their respective places in the produced model.

• Derandomization: Due to the random results of the dropout
function, the pipeline becomes inherently unverifiable across this
operation. As such, the results of the dropout operation from the
original code is supplanted with the output of dropout of the IPU
variant.

The dropout operation is the last operation of the ST-Conv-block, see
fig. 5.2. To verify that the aforementioned derandomization is not hiding
error, I verify the accuracy of the pre-randomization, hence referred to as
predrop. Following this we have three important points to verify: predrop 1,
predrop 2, and the model output.

To calculate how accurate the results are at any given step, we use the
the equations 6.1. For quick reference, it is reiterated here:

∆M = Mc++ −Mpy

E− = MIN(∆M)

E+ = MAX(∆M)

Er = (E−, E+)
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Error is calculated as outlined in equation 6.1, where ∆M is a matrix with
the point-wise subtraction of Mpy (the python computed matrix) from
Mc++ (the native computed result); further the error range Er is defined
as the range between the biggest negative error and biggest positive error.

Point ErrorPre
Min ErrorPre

Max
Drop 1 -7.62939e-06 6.67572e-06
Drop 2 -1.04904e-05 1.04904e-05
Output -8.34465e-07 8.34465e-07

Table 8.1: Error

The results of this process are displayed in table 8.1. Due to the error
after randomization in this case being zero (as it is parsed over), one should
consider the aggregation of error over these elements as a genuine concern.

As there is inherently concern with the aggregation of errors, we can
see that by the small nature of the error in predrop, it should not explode.

8.2 Experiment II: Timing Forward Pass

The second experimental setup employed is to run the STGCN forward
pass N times. Due to the very short elapse of the forward pass a relatively
high odd N is suggested.

We compare the following entries:

Code Version Machine Notes Core Count
STGCNGPUT NVIDIA Tesla T4 Code from [56] 25601
STGCNGPUV NVIDIA V100 SXM3 Code from [56] 51201
STGCNIPU1 IPU Colossus 2 1 IPU(s) 14722
STGCNIPU2 IPU Colossus 2 2 IPU(s) 29442
STGCNIPU4 IPU Colossus 2 4 IPU(s) 58882
STGCNIPU8 IPU Colossus 2 8 IPU(s) 117762

Table 8.2: Experiment II: Configuration Map

1: Cuda Cores, 2: IPU Tile

The configurations of the STGCN are listed in table 8.2.
The only parameter introduced is to restrict the batch size to 30 1 , we

run the model 101 times.

1This batch size is only possible on commits of the repository that predate the
implementation of the backwards pass.

58



Code Version Median Average Min Max
STGCNGPUT 11.41119 11.69903 11.24454 39.26921
STGCNGPUV 4.30584 4.66168 4.18591 33.7596
STGCNIPU1 1.03255 1.03333 1.00372 2.54524
STGCNIPU2 3.83186 3.84557 3.80070 5.10547
STGCNIPU4 2.79797 2.82104 2.77530 5.39448
STGCNIPU8 4.7773 4.79508 4.74420 8.39822

Table 8.3: Experiment II: Results in ms

Figure 8.1: Experiment II: Speedup

Speedup (T4) and (V100) are calculated in respect to the median, they
are graphed to the right vertical axis. Speedup T4 is in respect to
STGCN(GPU)T, ie. STGCNGPUT and Speedup V100 is in respect to
STGCN(GPU)V, ie. STGCNGPUV .

The results are tabulated in table 8.3 and graphed out in figure 8.1.
There are several observations that can be made immediately:

• Powerful Initial Speedup: The speeedup over the v100 are explained
with the FP32 statistics of both devices. The Nvidia V100 SCM3 has a
theoretical FP32 performance of 15.67 TFLOPS, where the IPU boasts
a performance of 62.5 TFLOPS. The roughly 4 times higher FP32 is
seen in the speedup of roughly 4.

• Slowdown on secondary chip: A significant slowdown when
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employing two IPUs is emblematic of communication bloat, however,
as the number of tiles are doubled and the relative speedup from one
IPU to two IPUs is ≈ .25 we see that the number of tiles does not
explain this slowdown.

• Relative Speedup on third and fourth IPU: While not a significant
speedup compared to a single IPU, four IPUs executes significantly
faster than two. This suggests that the overhead of using multiple
IPU’s is partially alleviated by increasing the number of cores, or at
the very least that it is less significant.

The expected result of running on multiple IPU’s should be a steady
speedup-decay as the number of IPU’s increases. This is mostly tied
to communication[7]. This is to say that the expected performance at
four IPU’s should fall at roughly 4.35 assuming a linear degradation.
As exponential decay is more likely, it should be a little faster yet.

• Slowdown on fifth through eighth chip: A preface to this obser-
vation is that the M2000 machine architecture has four chips on a
board[16], meaning that as we transition from four to eight chips we
are adding another layer of communication between the most distant
elements. The further decaying speedup of this transition is then un-
derstandable, particularly in the scope of the previous major decay
from one to two IPUs.

However, there are some significant caveats to these results.
In the related works section we address similar strong results on the

IPU, however most work on the IPU is currently limited to problems on one
accelerator (see section 4). One of the major benefits of GPUs is superior
scalability, something that is significantly more difficult with the current
iterations of the IPU.

GPU’s can work on far larger problems, exploiting scalability to
increase throughput. Illustrated in our results are the challenges of
implementing IPU code that can exploit multiple chips at the same time.
Considering the IPU-Machine (M2000) consists of no less than four chips
[16] the issues with effectively applying them in tandem -even over just
four chips- becomes a more significant drawback of the architecture.

The overall IPU v. GPU performance when projecting high numbers of
both is less favourable to the IPU than initial numbers on single IPU v. GPU
performance may suggest. This only pertains to large models, as if possible,
data-parallel experiments are projected to still be far more efficient on IPUs.

In conversation with Alexander Titterton, an AI Field Applications
Engineer at Graphcore, the relative speedup at four chip execution
was suggested caused by the extra PCI-connections (See Figure 3.2),
postulated that the extra memory transfer flexibility reduced the overall
communications time.
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8.3 Experiment III: Estimating Training Time

Using the current implementation of the back-propagation we can make a
rough estimate of how long a training process could take on the IPU.

The experiment is attempted under the following conditions for both
python and IPU variant of the STGCN’s:

◦ Batch Size 10
◦ Epochs 50
◦ Batches 911

Note: The number of batches are the number of trainable series in the
dataset.

The STGCN for GPU is run on a NVIDIA Tesla T4.
Further, the learning rate is set to 0 for the IPU variant, while the GPU

runs with learning rate 10−3. This is to protect the IPU pipeline from
numbers that could impact the cycle count.

A concern is that altering the learning rate will alter the performance.
To verify both that the GPU performs similarly over a normal learning rate2

and a learning rate of 0, and to test the relative performance between an IPU
and a GPU both with learning rate 0, the GPU was also tested at 0 learning
rate.

Figure 8.2: Training Time

GPU-0 and the IPU are both tested with learning rate 0.

The GPU performs very similarly over learning rates 0 and 10−6,
indicating that the performance numbers are not off base.

The ≈ 22 time speedup seen in figure 8.2 is very promising. However,
the comparison hides some caveats.

2Standard Learning Rate: 10−3
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Figure 8.3: Forward Pass

Figure 8.4: Backward Pass

62



Figure 8.5: Comparing Passes

The ratio represents the difference in speed between forward and backward
passes.

The diagnostics figures 8.3, 8.4, and 8.5 illuminate the situation.

Note that the median performance of the IPU forward pass is twice as
fast as it was with batch size 30, but the GPU has no performance boost
from the lower batch size. Considering the speedup of 11 on batch size 30
between these two devices, it then follows that if one has not changed and
the other is twice as fast that the final performance of the IPU in this case
should be roughly 20 times faster.

That the GPU operates similarly at batch size 10 and 30 makes
sense, the GPU workload is dependent on the size of its warps due to
vector parallelization. The IPU has no such dependency. Assuming the
GPU performs similarly when running with a batch size of 30 the real
throughput speedup is likely closer to ≈ 7.

Keeping in mind that the backward pass of the IPU implementation is
nothing more than an estimation of the backpropagation, we should note
that the ratio between forward and backward passes (as seen in figure 8.5)
are very different from the GPU to the IPU.

Due to the Python implemented backpropagation being a blackbox, it
is difficult to verify to which degree this ratio is dependent on the Python
implementation. We can assume that the backward propagation on the
IPU is the outlier, in which case the Backward/Forward ratio can be used
to extrapolate a backwards pass IPU performance that might be more
accurate.

Multiplying the duration of a forward pass on the IPU with the ratio
experienced between forward and backward passes on the GPU gives us
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that a possibly more accurate backward pass time is 1.7ms approximately3.
Assuming the training time is accurate and we observe a rounded down

speedup of 20 the GPU would still have to operate equally fast at batches
an order of magnitude larger to execute at similar efficiency.

It is concluded that training neural networks on the IPU is faster than
standard GPU implementations.

3

Estimate = TIPU(Forward) ∗ TGPU(Backward)
TGPU(Forward)

= 0.52 ∗ 3.3 = 1.716
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Part III

Discussion
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Chapter 9

Implementation Observations

9.1 4D array index order

This is in regards to the STGCN code [56].
The 2D convolution: ⊗, takes in the simplest instructive case a grey-

scale image (ie. a 2D matrix) and applies a 2D filter. The dimensions of
the image are height (H) and width (W). In the case of colored images (f.ex
RGB) the image is conceptualized as multiple grayscale images in different
channels (C), creating a 3D cuboid. A visualization of this for a possible
RGB image is displayed in figure 9.1.

Figure 9.1: RGB Image, configured Channel×Height×Width

Here Z → C, Y → H, X → W. The line labeled "Contiguous"
display the order of data entries in sequential memory.

In the case of machine learning, multiple images are processed in a
batch. To avoid iteration over the batch size (N), the entire set is often
configured as a 4D matrix.

The default order for this used by tf.nn.conv2d1 is NHWC: batch,
height, width, and channels. The inner cuboids (HWC) of the NHWC
format is illustrated in figure 9.2. This is fine for point-wise operations,
and likely very unproblematic for images with very few channels (like 3,
which is common for RGB images).

1Link: https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
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Figure 9.2: RGB Image, configured Height×Width×Channels

Here Z → H, Y →W, X → C

This is however not the case for the STGCN, which employs multiple
different number of channels. The channels for the STGCN represent the
width of their internal layers, and their default values range from 1 to 1282.

The use of NHWC mainly becomes a problem when memory accesses
are not being made across channels, but rather across the shape of the
image.

Another note on the ordering here is that the STGCN code makes
frequent use of transpositions, some of which would be redundant had
the matrix been in NCHW format throughout, which is the cause of some
redundancy.

This issue is also something that becomes more important on the IPU as
the IPU has stricter limitations to the convolution inputs, see section 10.2.1.

9.2 Memory Saturation

The STGCN code in its most naive implementation is very memory
intensive, demanding upward of 1000 mb of data. While the initial tensor
input (by default) is of dimensions: [50, 12, 228, 1]3 and the second
dimension is decreased to 1 throughout the two ST-Conv Blocks, the
channels are expanded to 128. For brevity, assuming each layer output had
its own tensor output, the IPU has little capacity to contain the tensors.

The simplest way to work around this is to reduce the batch size,
however, the strict limitations are a general concern for large algorithms.

For implementations where large data-segments are non-recyclable,
this issue is far more prevalent. A good example of this is the backwards
pass of a multilayer perceptron.

2Specifically there are four temporal convolution layers over two spatio temporal blocks,
the layers do the following channel conversions: 1→ 32, 32→ 64, 64→ 32, and 32→ 128.

3[Batch Size × History × Depth × Channels]
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9.3 Issues in operations with inherent reductions

Due to the premium any memory segment comes at, the XInPlace(...)
operations (f.ex: addInPlace(...), subInPlace(...), mulInPlace(...), divInPlace(...)),
are very useful. They become particularly useful in the case of the back-
propagation, where we want to adjust existing variables. We are going to
constrain this subject to the addInPlace(...) function, although suffice it to
say the same traits are applicable to all similar XInPlace(...) functions.

β ∈ RN

δβ ∈ RB×N

Add-in-place: β← β + δβ

(9.1)

The overview of the add-in-place (omitting calculations to get δβ) is
outlined in equations 9.1. Here B is the batch-size of the learning set, and
N is the length of β.

Note that δβ does not go into β, and so the operation is more adequately
explained as the operation:

βn ← βn +
B

∑
b

δ
β
b,n (9.2)

In poplar, these operations are allowed and should in theory work most
of the time. However, due to tile-mapping issues, it will not execute the
reduction first, but rather try to write to the space multiple times, ie:

β1 ← β1 + δ
β
1,1, β1 ← β1 + δ

β
2,1, ... β1 ← β1 + δ

β
B,1

β2 ← β2 + δ
β
1,2, β2 ← β2 + δ

β
2,2, ... β2 ← β2 + δ

β
B,2

...

βN ← βN + δ
β
1,N , βN ← βN + δ

β
2,N , ... βN ← βN + δ

β
B,N

(9.3)

This set of operations is theoretically fine if operations can be computed
atomically4 with respect to elements in β. However, the Poplar system
responsible for inPlace operations does not take this into considerations,
and may on its own distribute the tasks across the tiles in such a manner
that multiple tiles will be writing to the same elements in β.

Due diligence: I do commend them for avoiding reductions, as
reductions are inherently some of the most time-consuming operations
across high-count multi-core architectures, exponentially worse on multi-
IPU’s [7]. However, in this case the reduction is recommended.

9.4 Backpropagation memory consumption on the
IPU

The IPU operates with significantly less memory (9MB) capacity than
contemporary GPU’s (NVIDIA Tesla T4: 16GB). As a consequence of this,

4I.e writes are protected from race-conditions.
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the IPU operates with a far smaller capacity for model complexity.
During the backward pass calculating error with respect to a filter in

matrix multiplication and convolutions are calculated using the input (See
Equations 9.4 and 9.5 respectively).

∂L
∂θm

= XT � ∂L
∂σ

(9.4)

∂L
∂θc

= X⊗ ∂L
∂σ

(9.5)

Here X is the input of the forward pass, and ∂L
∂σ being the error with

respect to the output of the convolution.
The implication of this is that a machine learning algorithm will have

to store the inputs of any multi-parameter function. With this the amount
of data one can recycle in the implementation is reduced by a significant
margin.

The IPU, with its far lower total memory capacity, is thus far more fitted
to algorithms that are more friendly to memory recycling.

70



Chapter 10

Comments on Poplar and the
IPU

This chapter is dedicated to noting final thoughts and comments on the
Poplar libraries for the IPU, the IPU itself, and its supporting software.

10.1 Useful traits

POPLAR has many strong traits, particularly its performance.

10.1.1 Recognizable and intuitive tensors

The IPU tensors work much like familiar data structures from python,
particularly reminiscent of the tensorflow objects. This is natural as
Tensorflow’s keras package has support for running on the IPU.

The aforementioned tensors cannot be accessed as basic data structure,
much like other systems designed for lazy execution, but has all the wanted
basic operations inbuilt: slicing, custom multidimensional transpositions,
reversal across dimensions, etc., making it fairly intuitive when translating
algorithms to POPLAR.

The only unfavorable interaction throughout development with the
tensors is that their transpose functionality is not ideal. As is the
transpose function only performs transpositions on 2D matrices, and any
other transpose operation over ND objects is instead the functionality of
the function dimShuffle. As dimShuffle is not a recognized synonym of
transpositions, is further ambigious as a term, and the documentation of
dimShuffle does not contain the phrase transpose1 the function is not easily
found in non-extensive searches of the Tensor documentation unless you
know what you are looking for.

10.1.2 Native Support for Most Operations

Another strong side of the IPU is its inbuilt support for all conventional
machine learning operations, making it possible to implement machine

1As of documentation on SDK 2.1.0
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learning algorithms, even in C++, with minimal custom codellet creation.
This is however limited to strict machine learning operations, or more

broadly defined in the terms of dense operations, ie. operations over
sections of data with predictable memory accessing. As seen in [7] sparse
operations are still behind dense operations in implementation.

10.1.3 High Performance

In section 8.2: "Experiment II: Timing Forward Pass" the computational
power of the IPU is displayed, boasting a per-core efficiency of 19 times the
GPU2. This efficiency is even more notable as the IPU Tiles are not warped
like CUDA Cores, and can work on individual tasks. The benefit of which
is further deliberated on in section 10.1.4: "Graph Applications.

While the aforementioned performance can be suffocated by cross-IPU
latency 3these challenges are likely to dissipate as the architecture matures,
and sufficient tools are created to give developers easy access to more
efficient tile-mapping.

10.1.4 Graph Applications

Graph algorithms, like the ones mentioned in chapter 2: "Background
I: Graph Neural Networks", are growing in popularity as sparse data
structures are becoming more popular. While GPU’s can execute sparse
operations effectively if empowered with sufficient optimization efforts,
the IPU stands to offer on-demand high efficiency graph operations in the
future.

10.2 Comments

In this section I attempt to describe the issues that have arose when using
the Graphcore API, and the IPU in general.

10.2.1 Documentation Deficiencies

Important omissions

The Graphcore API has extensive support for many operations, but
important features of these operations are some times not outlined in
the documentation. There are two particular examples of this that
underline the importance of these omissions, and how they can make the
documentation at times confusing:

The first is attached to the use of convolutions, this has already been
addressed in subsection 6.4, but in brief: a convolution requires an Object
ConvParams (Convolution Parameters) and have further 3 functions to
create tensors for input, weights, and biases based on the aforementioned
parameters and a function that adds created bias to a convolution output.

2NVIDIA Tesla T4
3further addressed in section 8.2
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Nowhere in the documentation4 does it explain the differences between
the functions that create input, weights, and biases and the regular tensor
creation functions, or addBiases from a simple addition operation.

In conversation with the GraphCore support, it came to the fore that the
distinction between the create[Input/Weights/Biases] functions and the
standard functions is custom memory-mapping, an essential distinction.

The latter is in regards to the dropout function, this is also mentioned
in subsection 6.4. The dropout function has the interface:

Tensor dropout ( poplar : : Graph &graph ,
const poplar : : Tensor * seed ,
const u i n t 3 2 _ t seedModifier ,
const poplar : : Tensor &input ,
const poplar : : Tensor &reference ,
double keepProbabi l i ty ,
double sca le ,
bool outputClonesRef ,
poplar : : program : : Sequence &prog ,
const poplar : : DebugContext

&debugContext = { } )

Figure 10.1: Dropout Function Signature, POPLAR

The function does the same as similar functions in different systems
like Tensorflow and PyTorch: multiplying the input with a random mask
of ones and zeros, the probability of ones is given in keepProbability.

Most important is the parameter "reference", the reference was de-
scribed in the documentation as:

"A tensor that specifies the layout of the output tensor. Must be
the same shape as the input."

It is notably omitted what the reference is a reference for in the
documentation, however in conversation with GraphCore support it was
explained that this was for the purpose of memory mapping.

In summation, the GraphCore API has a lot of significant and useful
features, but its documentation often omits to explain said features. This in
turn can make it arduous to implement otherwise simple functionalities, or
simply difficult to employ efficiently.

The Backward pass

One of machine learning’s most staple operations is the backward pass
informed by backpropagation[44], used to train weights and biases. In
many frameworks there are advanced functions to calculate the backward

4At the time of writing
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pass and inherent gradients from the logical execution graph, this hand’s
off approach is not found in the Graphcore API for C++.

Note that when using TensorFlow with Python for IPU, such functions
are prebuilt and inherent to TensorFlow, thus requiring no implementation
for native code. This makes implementation of IPU code from python far
more convenient. This is why I do not count it as a grievance that similar
functionality does not exists for C++ Poplar, instead my grievance is with
the existing support for backwards pass and gradient calculation not having
any easily accessible resources.

There are functions in the documentation that seem custom made
specifically for the aforementioned purposes, particularly prevelant in the
popnn::Lstm package. In the aforementioned package there are functions
like lstmBwd(...) which by documentation reference running a backward
pass on an Long Short-Term Memory network, using that operations on
the IPU can have an alternate functionality defined for their backward
operation.

With what appears to be extensive support for these machine learning
tools, it is disappointing that the resources necessary to efficiently use them,
or to know their inherent limitations5, is sorely missing.

Convolution

Convolution is one subject the aforementioned issues with documentation
intersect.

Strange choices in order: The documentation makes a strange choice to
place the explanation of the convolution options (ie. OptionFlags) in the
documentation of the createWeights(...) function instead of the more logical
convolution(...) function. The createWeights documentation does appear
before convolution(...), which slightly justifies it, however createWeights
also occurs before the createInputs(...) and createBiases(...) documentation,
both of which should be before createWeights in alphabetical order and
one of which (createInputs(...) is another candidate to have the option flag
documentation.

The Convolutional Parameters: Not to be confused with the Option
flags, the Convolutional Parameters are stored in a class object Con-
vParams. The ConvParam class requires a series of inputs: dataType,
batchSize, inputFieldShape, kernelShape, inputChannels, outputChannels,
and numConvGroup. These parameters are of course necessary to imple-
ment an effective convolution, however they are not sufficiently described
in the documentation to make implementation easy. Furthermore, when
inspecting the parameters one finds that due to the very strict dimensional
ordering of the input, weights, and kernel they are also to a degree redund-
ant. The input is required to have the shape {batchSize, inputChannels,

5f.ex: Which functions does not have a backward functionality,
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...} where ... is the inputFieldShape. Giving the input shape as a full vec-
tor should be sufficient to fill these out, making for a more concise overall
documentation.

The create functions: The three functions createBiases(...), createIn-
puts(...), and createWeights(...) are designed to create tensors of the ap-
propriate dimensions and more importantly automatically map the tensors
such that tile-mapping is optimal for the following convolution and adding
of the bias. While this is very useful, the tile-mapping feature is notably
omitted from the documentation throughout, leaving one with little clue as
to why they exist.

The backward convolution support: First it is worth noting that there
are functions in the ecosystem of the convolution that suggest the support
for backwards propagation, or straight up makes it much easier. These
include calculateWeightDeltas(...), convolutionWeightUpdate(...), convolu-
tionBiasUpdate(...), and fullyConnectedWeightTranspose(...). This is to a
certain degree essential to appreciate, as it is not necessary for the base
convolution. The weight delta should be calculated:

δW = i⊕ rot180◦{E}

where i is the input and E is the error gradient. Meaning that the convo-
lution environment as some support for the backwards pass convolutions
(⊕). However, it does not entail details on the final convolution, the one
designed to acquire the back-propagated error gradient w.r.t. the input.

Due to the immense thoroughness with which the convolution environ-
ment has been engineered, it seems unlikely that some support for this con-
volution too is omitted, particularly as the backwards convolution imple-
mented independently would require an entirely new environment over-
lapping at points with the forward environment, undermining the forward
pass.

10.2.2 Advanced Tilemapping Support

There are two promoted ways to map tensors to tiles: Graph.setTileMapp-
ing(const Tensor &t, unsigned tileNum) and Graph.setTileMapping(const
Tensor &t, const TileToTensorMapping &mapping). The former of these
two will map a tensor (or potentially a tensor slice) to a specific tile, and
the latter uses either the tilemapping of another tensor (acquired through
getTileMapping(...) or getVariableTileMapping(...)) or VariableMapping-
Method, an enum that prescribes how to devide the tensor among the
nodes. Note that VariableMappingMethod is an enum with only two vari-
ations: NONE and LINEAR, where NONE defers to setTileMapping and
LINEAR "The variable will be spread evenly across the tiles with the ele-
ment ordering matching the tile number ordering.".

This means that there are two promoted ways to map data: fine-
grained by hand or naively. There are other ways too, which should be

75



noted, amongst them the aforementioned create(Input/Weights/Biases)
mentioned in subsections 6.4 and 10.2.1, however these methods are
inscrutable to the developer, making it difficult to otpimize a pipeline.

With the importance of efficient memory management in high time-
complexity algorithms on multicore architectures it would be desirable
with more variable mapping methods, or a resource map over different
functions that manage memory mapping on some to allow programmers
to more efficiently map memory pipelines.

The biggest motivator of large-scale mapping strategies are reduction
operations. While we have so far looked at single IPU implementations,
previous work on the IPU[7] and results from this project has illustrated
that multi-IPU code suffers significantly higher from cross-IPU latency
aggravated further during reduction.

The first suggestion are variable mapping methods that work to map
within certain constrains, primarily to place elements of a dimension on
the same tile. On all cases where this is possible this is posed to eliminate
cross-IPU transfer latency with reductions on these dimensions.

Secondly, I would suggest a customized memory distribution based on
per-tile memory density. By this I mean a function to map a tensor across
the tiles attempting not to spread the data too sparsely, as this is likely to
also cause issues.

A third suggestion is to have functions to optimize tile-mapping with
natural constraints. While this is unlikely to be optimal, it is highly likely
to be more optimal than the naive linearly mapped tensors.

10.2.3 Tensor visualisations

While not a large concern: on memory-intensive tasks where recycled
memory becomes a necessity it would be useful to be able to view the
memory pipeline and review its integrity.

10.2.4 Sequence and Program Inspection

One feature that is sorely lacking from the API is the ability to review a
program and further inspect the input/output tensors of such programs at
run-time.

The best example of the usefulness of this feature would be viable
implementations of back-propagation as a product of an existing sequence
of programs. Currently the back-propagation has to be implemented at
the same time as its corresponding layer (or storing variables for later
facilitation), creating a potentially bloated code without cross-project re-
usability.

10.2.5 Multi-IPU support

The issues with multiple IPUs seen in section 8.2: "Experiment II: Timing
Forward Pass", and further addressed in section 10.2.2: "Advanced
Tilemapping Support" still remains one of the biggest drawbacks of the
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IPU: demanding high amounts of custom optimization for efficient multi-
IPU systems in poplar.

10.2.6 Poplar as an algorithm development tool

While it is possible to develop graph algorithms [7] and Machine Learning
Algorithms in Poplar, Poplar is in large designed for internal use at
Graphcore. This has come out in conversations with people at the company
after most of the experiments were concluded.

Poplar is the foundation for their internal frameworks, i.e. their support
for PyTorch and TensorFlow, and intermediate levels between Poplar and
these frameworks are responsible for handling tile-mapping, multi-IPU
handling, and various memory and computational optimizations. Most of
the published computational results from Graphcore are achieved in these
higher level frameworks.

This is to say that Poplar is not designed to be (or maintained as)
a library for users to implement machine learning algorithms in. From
members of the Graphcore applications teams it has been suggested that
work in the domain is better
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Chapter 11

Conclusion

The primary contribution in regards to this work is the implementation of
the Spatio-Temporal Graph Convolutional Network in Graphcore’s Poplar
framework. With the forward pass verified to the margin of rounding
errors, this implementation can be employed to accurately compare the
Graphical Processing Unit execution [56] performance of the original
implementation with the Intelligence Processing Unit variation of the same
code.

As shown in section 8.2 where the performance of the Nvidia V100
SCM3 and the IPU Colossus 2 are compared w.r.t. the STGCN it is shown
that the IPU delivers on its promise of 62.5 TFLOPS performance when
with its ≈ 4X speedup over the V100 and its 15.67 TFLOPS.

The secondary contributions is an attempt to approximate the learning
rate of the machine learning algorithm by implementing back-propagation
and RMSProp. While the numbers in regards to the results of these
contributions are less reliable they are equally promising. The IPU is shown
to deliver on its performance promises again.

The aforementioned result that the IPU performs with an≈ 4X speedup
over the V100 is the primary finding in regards to the hardware of the IPU.
The dense operation matchup between the GPU and IPU is unfavourable to
the IPU, and it outperforming the former highlights the promise it delivers
on a true Graph Algorithm Accelerator.

Currently the main drawback of the IPU architecture is its still limited
memory capacity. Currently models on the IPUs are limited in size by
the constrain of the chip’s on-board memory and the inhibiting memory
transfers. Hopefully future variants of the IPU architecture will follow the
current trend of increased memory capacity.

The technology lags behind w.r.t. the software: Poplar being a pro-
hibitively low level framework for machine learning purposes. While not
available when the project began, the higher level alternatives Popart, Pop-
torch, and its support for TensorFlow supposedly make the development
significantly simpler. Particularly in the domain of graph algorithms does
this bear an impact, constraining users between the lackluster support for
sparse operations on modern high level frameworks and the low level Pop-
lar systems.
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Even with the challenges faced by the architecture and its accompany-
ing software the IPU delivers on promised performance, and more import-
antly delivers a computational flexibility that is intrinsically not achievable
with the architecture of a Graph Processing Unit. The result is an architec-
ture that can compete with Graph Processors in their ideal condition and
retain their performance into the sparse domain.

Of particular interest are other Graph Neural Networks to future
research on IPU based models. The domain is relatively unexplored and
the IPU is the primary technology addressing the computational challenges
of the field.

Another direction research can be directed is optimization on the In-
telligence Processing Units. Optimizations for Graph Processing Units are
not inherently applicable to IPU and the IPU poses new and interesting to-
pological problems, both for Tile to Tile communication optimizations and
IPU to IPU optimizations. In fact optimization of the Static Computational
graph and the tile-mapping within is perhaps one of the spaces with the
greatest rooms for improvement.
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