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ABSTRACT
The precision of P- and S-wave phase picking strongly determines the precision of
earthquake locations, but such picking can be challenging in the case of emergent
signals, large data sets or temporally varying seismic networks. To overcome these
challenges, we have developed the concept of an aggregated template to perform au-
tomatic picking of the P- and S-wave phases. An aggregated template is defined as a
representative event for a small area, built by aggregating the best signal-to-noise-ratio
seismic traces from events with similar waveforms (i.e. multiplet events). A template
matching procedure, based on the cross-correlation between an aggregated template
and an unpicked event, automatically determines the unpicked event P- and S-wave
phases. This method enables (1) consistent and accurate P- and S-wave phase picking
and (2) reduces processing time relative to traditional template matching by using a
clustering method that finds the most representative templates for a region, and thus
limiting the required number of templates. We established two parameters to weight
the picking precision: (1) the cross-correlation between the aggregated template and
the unpicked event and (2) the number of P- and S-wave picks determined per event.
We tested this method on 2100 events recorded in the south-west of Iceland. Nineteen
aggregated templates have been defined and used to automatically pick ∼65% of the
complete event catalogue with an accuracy within the range of the manual picking un-
certainty. These automatically picked events can then be used for event location, even
when characterized by low magnitude, low signal to noise ratios and with emergent
P-wave signals.
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INTRODUCTION AND MOTIVATION

The development of industrial activities related to fluid in-
jections such as geothermal exploitation (Majer et al., 2007;
Zang et al., 2014; Gaucher et al., 2015), carbon sequestra-
tion (Goertz-Allmann et al., 2017), or hydrocarbon produc-
tion (van der Baan and Calixto, 2017) has led to regional and
local increases of seismicity rates (Ellsworth et al., 2015; Foul-
ger et al., 2018). For example, the annual number of detected
seismic events in the US mid-continent has increased by a fac-
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tor of 13, for events withMw > 3, between 1973 and 2015, pri-
marily related to large-scale fluid injections by the hydrocar-
bon industry (Ellsworth et al., 2015). Similarly, at the In Salah
(Algeria) CO2 sequestration site (Goertz-Allmann et al., 2014)
and at the Soultz-Sous-Forêts (France) geothermal field (Rowe
et al., 2002), more than 5000 and 16,000 low-magnitude seis-
mic events were detected, respectively. To achieve the seismic
monitoring needs at these sites, increasing numbers of sen-
sors are required to be installed. This results in a dramatic
growth in the volume of seismic data to process,which inhibits
manual processing.
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Yet, for any seismological study, accurate and precise lo-
cations of seismic events are crucial. A classical way of deter-
mining earthquake locations is from the inversion of P- and
S-wave arrival times (Geiger, 1910, 1912). In this case, the lo-
cation precision will be less affected by changes in the network
but strongly dependent on the P-wave onset pick accuracy
(Pavlis, 1992). Thus, accurately identifying this phase consis-
tently for any given station and event is a fundamental re-
quirement to obtain reliable seismic event locations. The main
challenges in obtaining accurate phase picks are related to
low signal-to-noise ratios (SNR) and emergent P-wave phases,
both of which make P- and S-wave onset identification diffi-
cult. This challenge frequently occurs when projects aim to lo-
cate and characterize microseismicity (e.g. lower than magni-
tude 1), using seismological networks with generally too large
source-to-receiver distances (Ellsworth, 2013). As there are
about ten times more events to analyse for each lower unit
of magnitude that is included, large numbers of events will
need to be processed. Manual phase picking is then partic-
ularly time consuming and impractical for a single analyst.
Requiring multiple analysts will likely result in inconsisten-
cies since picking is strongly analyst dependent. Consequently,
finding an accurate automatic picking method that performs
consistently between events is vital for event processing.

Many different methods to perform automatic picking
have been developed, including the use of envelope functions,
STA/LTA, high-order statistics, neural networks etc. (see e.g.
Ross and Ben-Zion, 2014), which often require a fixed set of
parameters, which are applied to a complete data set, regard-
less of the data heterogeneity. Thus, a form of data homogene-
ity is a tacit prerequisite to successfully apply such methods. In
Iceland, where natural and induced seismicity can be recorded
on the same sensor network (Gudhnason, 2014), there is sig-
nificant waveform diversity that can compromise these classi-
cal autopicking methods.

Induced seismicity is often characterized by the repetition
of similar events or even by multiplets (seismic events occur-
ring on the same geological structure). This can, for exam-
ple, be observed at the geothermal field in Soultz-Sous-Forêts,
France (Bourouis and Bernard, 2007; Cuenot et al., 2008)
and in Basel, Switzerland (Deichmann et al., 2014). Taking
advantage of this characteristic, Shearer (1997) exploited the
waveform similarities to increase the number of event detec-
tions. Templates of representative events, generally called mas-
ter events, are cross-correlated with continuous seismic data.
A high degree of similarity in event location and source mech-
anism will result in a high cross-correlation coefficient. Thus,
once a defined threshold is exceeded, a new event is detected

(Gibbons and Ringdal, 2006; Goertz-Allmann et al., 2014;
Kraft and Deichmann, 2014).

Rowe et al. (2002) have previously applied cross-
correlation detection methods to perform automatic pick-
ing on induced events at Soult-sous-Forêts. They determined
new P- and S-picks from the time lags corresponding to the
highest cross-correlation coefficient between a master event
template and the unpicked event. About 7000 seismic events
were successfully repicked,which allowed a location precision
improvement and better fracture delineation. However, this
method requires events with high SNR on all recorded traces
to serve as master event templates. Such events do not nec-
essarily exist in every data set, with events instead exhibiting
waveform characteristics similar to Figure 1(d), where there
is both a very low SNR across the event and missing seismic
traces. In Figure 1(e) and (f), we show examples of events with
high SNR on all recording traces, but where many sensors
were not operational. This illustrates the idea of a variable
seismic network. Data gaps and missing seismic traces caused
by instrumentation problems are not uncommon and result
in a temporally variable seismic network. Events recorded on
only a subset of sensors are not suitable as master event tem-
plates. Consequently, finding the required number of master
events that are applicable for a complete data set can become
very challenging.

To address the problems associated with identifying mas-
ter events in the presence of both variable signal quality and
missing seismic traces, we have developed the concept of an
aggregated template (AT). An AT is not a single physical event
but a representative earthquake record, constructed by aggre-
gating the best SNR seismic traces from events with similar
waveforms that are assumed to occur close to each other. The
resulting AT can then act as a proxy master event for use in
an automatic picking routine based on template matching.
Thus, an AT forms the basis for consistently identifying P-
and S-wave onsets in heterogeneous data sets. Since an AT
is generated from multiple events, the problem of data gaps
and missing sensors is eliminated. In addition, we present an
automated method for their generation, avoiding the chal-
lenges associated with the manual identification of master
events.

In this paper, we first describe how an AT is generated
and how it can be applied to automatically pick phase arrivals
using template matching. Secondly, we apply this method to
automatically repick a seismic data set recorded from the
Reykjanes geothermal field (Fig. 1), located in Iceland. Finally,
we discuss the results, and the advantages and disadvantages
of this method.

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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Figure 1 Seismicity map: (a) map of Iceland, showing the plate boundary (pink line), the young volcanic rocks (<0.8 Ma, from Keilegavlen
et al., in preparation) and the study area (Reykjanes Peninsula, red square) where the main geological structures (Reykjanes Ridge, South Iceland
Seismic Zone – SISZ – and the Reykjanes–Lanagjökull Rift Zone – RLRZ) intersect each other. (b) Zoom on the Reykjanes Peninsula. Red and
yellow triangles show the location of the IM (temporary) and HSO (permanent) sensor networks, respectively. The approximate location of the
Reykjanes geothermal field (RG) is indicated by the green contour. The blue dots represent the 2160 manually picked earthquake locations. (c–f)
Examples of the detected seismic events in or close around the Reykjanes geothermal field. The three channels (E in red, N in green and Z in
blue) are superposed. P- and S-picks are symbolized by the vertical blue and orange lines, respectively. (c) An event with a high SNR and only
two stations not recording – a potential Master Event candidate. (e) An example of a low SNR event with missing traces and only four clear
P-picks – such an event cannot be selected as a master event. (e and f) Two events with high SNR but only recorded on 8 (e) and 25 (f) stations.
These events highlight the problem of changing network configuration due to missing seismic traces. These could be selected for the AT process.

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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1150 L. Duboeuf, V. Oye and B.D.E. Dando

Figure 2 General workflow for automatic P- and S-phase picking using the (a) ME- and (b) AT-based template matching.

GENERATING AGGREGATED TEMPLATES
AND THEIR APPLICATION TO AUTOMATIC
PHASE P ICKING

In Figure 2,we show the overall workflow for automatic phase
picking using both traditional master events (MEs) and aggre-
gated templates (ATs). Themost significant difference between

the two methods occurs in the formation of the templates (see
boxes A and B in Fig. 2).

A prerequisite in creating ATs is a set of seismic events
that have been detected using a predefined triggering pro-
cedure. Once a set of ATs have been created, the automatic
picking methodology can then be applied to either previ-
ously detected ‘triggered’ events or non-triggered continuous

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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seismic data, with both resulting in a set of events with picked
P- and S-wave arrivals.

The three main steps (Fig. 2b) required to automatically
determine P- and S-wave phases of unpicked seismic events
(termed ‘child events’ in this paper) using ATs are:
A. Random event selection
B. AT creation
C. Template matching

Random event selection

Using an initial set of detected but unpicked events, we ex-
tract a random selection irrespective of waveform characteris-
tics such as signal-to-noise ratio (SNR). The goal is to gather
a subset of events that have the waveform characteristics to
be representative of the complete data set and that together
constitute enough high SNR traces to be used in a set of ag-
gregated templates. Each of the randomly selected events must
subsequently be picked, eithermanually, or using an automatic
phase picker such as AR-AIC (Sleeman and van Eck, 1999). In
the case of missing stations or low SNR, these traces can be
safely ignored with only valid picks further considered in the
creation of the aggregated templates. To ensure that enough
representative events are selected, this stage and the subse-
quent workflow may be run multiple times to ensure all trig-
gered events are ultimately picked.

Aggregated Template Creation

Overview of an Aggregated Template

ATs are an alternative to traditional master event templates
and account for data sets characterized by low SNR events
and a temporally varying sensor network. Seismic waveforms
are strongly dependent on both the seismic ray travel path and
the source mechanism of the event. Consequently, events with
similar waveforms are considered to have occurred close to
each other and to have been induced by similar physical and
mechanical processes. Such events can be gathered into multi-
plet families, which we define here as clusters. An AT is built
by selecting the seismic trace with the highest SNR for each
station, based on events from a given cluster. Thus, an AT is
representative of its cluster of events and should enable the
identification of the P- and S-wave onsets for events occur-
ring in this specific area using cross-correlation. The trace ag-
gregation method has two main advantages over traditional
template events (i.e. master events). Firstly, for each station
and region, the selected seismic trace has the highest possible
SNR available in the data set, which maximizes the degree of
similarity between the AT and the newly identified highly cor-

related events (child events), due to the lack of noise contam-
ination. Secondly, the AT is generally well represented with
seismic traces on all stations, unaffected by potential instru-
ment problems or data gaps.

Three steps are required to construct a successful set of
ATs:
• Initial event selection
• Event clustering
• Final event selection and aggregation into a common tem-

plate

Initial event selection

Each AT must have a high SNR for each of its identified P-
and S-wave phases.We therefore select events where the mean
SNR is above a defined threshold (e.g. >1). Furthermore, we
provide an additional constraint using the percentage of phase
picks relative to the number of functioning stations, which
helps to ensure that the overall pick quality is high (e.g. see
Table 1 for example parameters). This is conceptually demon-
strated in Figure 3(a). With an example selection criterion of
a mean SNR > 1 and a pick percentage of >50% for the P-
wave and >30% for the S-wave, only the event in Figure 3(a4)
would not be selected due to the low mean SNR (1) and the
low pick percentage of both the P- and S-waves.

Event clustering

Since an AT should be representative of events occurring
within a certain area, we have developed a clustering method
based on a composite cross-correlation method between sta-
tions, and a composite time measure that uses the differential
S–P time between pairs of events at a common station. This
enables event clustering without requiring event locations.

To ensure that waveform similarity is considered during
the clustering, we define a geometric average cross-correlation
coefficient composite correlation measure (CM). For a given
pair of events (i, j), the CM first combines the cross-correlation
(C) of the P-wave at a single station (STA1), with the cross-
correlation of the S-wave at the same station using the geo-
metrical mean

CSTA1
i j =

√
PCSTA1

i j × SCSTA1
i j . (1)

Themean cross-correlation can then be combined for two
stations using

Ci j =
√
CSTA1
i j ×CSTA2

i j

= 4
√

PCSTA1
i j × PCSTA2

i j × SCSTA1
i j × SCSTA2

i j . (2)
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Figure 3 Illustrative example of the steps involved in creating the aggregated templates (e.g. see block B, Fig. 2b). (a) Different randomly selected
events that have been subsequently picked for consideration as candidates for the ATs. (b) Illustration of the computation of the CM and TM
values, which are used as input for the event clustering. (b1)Two events (pink and blue) where the common traces are cross-correlated. The
P-wave cross-correlation function and the maximum cross-correlation coefficient for each trace are shown in (b2), which are used to compute
the CM. (b3) The process of computing TM, for a single station 7 and pair of events. The high (CM; TM) couple of (0.8; 0.98) indicate these
events will belong in the same cluster. (c) An example of an aggregated template (AT) formed from three events from the same cluster.

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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Table 1 Parameters to set for using AT methodology

Section in the text
Main part of
the workflow

Subpart of the
workflow Parameters to set Theory Example Example values in our data set

AT creation Initial event
selection

SNR II.B.b IV.A >1
% of P- and S-picks per
event

II.B.b IV.A For P-wave
phase

For S-wave
phase

>50% >30%
Event clustering Cross-correlation

windows for P- and
S-wave picks: number
of seconds before and
after the pick

II.B.c Not given in
the text

For P-wave
phase

For S-wave
phase

0.1 s before
0.4 s after

0.1 s before
0.6 s after

(CM; TM) couple II.B.c IV.A > (0.9; 0.8)
Template

matching
Choice of the
best AT for
an unpicked
seismic event

Number of stations used
for computing the
average
cross-correlation
coefficient

II.C.a IV.B.c 8

P- and S-phase
picking if an
unpicked
event by
cross-
correlation

Extracting P- and S-wave
windows for an AT:
defining the number of
seconds before and
after P- and S-wave
picks

II.C.b.(1) Not given in
the text

For P-wave
phase

For S-wave
phase

0.05 s before
0.3 s after

0.1 s before
0.6 s after

Minimum
cross-correlation
coefficient threshold
for considering the P-
and S-automatic picks
as good

II.C.b.(2;3) IV.A For P-
wave phase

For S-
wave
phase

0.75 0.7
Maximum distance
between two stations
to consider them as
close (depend on the
network)

II.C.b.(2) Not given in
the text

3000 m

Thus, the general form of the composite CM for M sta-
tions, for a given pair of events (i,j) is

CMij = 2M

√∏M

k = 1
PCk

i j ×
∏M

k = 1
SCk

i j , (3)

where P|SCk
i j is the cross-correlation coefficient for the event

pair (i;j) at station k and for the P- or S-waves and M is the
maximum number of sensors.

To perform the cross-correlation, we first filter the data
between 2 and 30 Hz, and select windows around the P-wave
and the S-wave for which to perform the cross-correlation (see
Table 1 for details). An example of the cross-correlation for

a single pair of events recorded on three common stations is
shown in Figure 3(b1, b2).

To ensure that the clustering considers distances between
pairs of events, we use a composite time measure, TM, that
uses the geometric mean of the differential S–P times for pairs
of events, based on Stuermer et al. (2011, 2012). For a single
station (STA1), the normalized differential S–P-wave travel-
time (TSTA1

i j ) between two events (i,j) is defined as

TSTA1
i j =

⎡
⎣1 −

∣∣∣SP�tSTA1i −SP�tSTA1j

∣∣∣
max

(
SP�tSTA1i , SP�tSTA1j

)
⎤
⎦ , (4)

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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where SP�tSTA1i is the S–P travel-time for event i at station
STA1. Thus, TSTA1

i j will give values of 1, where the S–P travel-
times are identical for each event pair and be closer to 0 for
large S–P travel-time differences. An example is shown in Fig-
ure 3(b3).

We can further combine the normalized differential
travel-time for two separate stations (STA1, STA2) using their
geometric mean:

Ti j =

√√√√√
⎡
⎣1 −

∣∣∣SP�tSTA1i −SP�tSTA1j

∣∣∣
max

(
SP�tSTA1i , SP�tSTA1j , SP�tSTA2i ,SP�tSTA2j

)
⎤
⎦ ×

⎡
⎣1 −

∣∣SP�tSTA21 − SP�tSTA22

∣∣
max

(
SP�tSTA1i ,SP�tSTA1j ,SP�tSTA2i ,SP�tSTA2j

)
⎤
⎦. (5)

In generalized form, for M stations, we can simplify this
to

TMij = M

√√√√√∏M

k = 1

⎡
⎣1 −

∣∣∣SP�tki −SP�tkj

∣∣∣
tnorm

⎤
⎦, (6)

where SP�tki is the differential travel-time between the S- and
P-wave phases observed at station k for event i, and tnorm is
the maximum S–P time for all of events.

The closer CM and TM are to 1, the more similar the
events’ waveforms are and the closer their event locations
should be, making them ideal metrics for the identification of
multiplet events. The method is independent of the event loca-
tions and the velocity model, but strongly dependent on P- and
S-wave picks. Thus, there is a prerequisite to precisely pick the
P- and S-wave arrivals prior to the clustering. Since the clus-
tering is performed using only events characterized by a high
SNR from the previous selection of candidate events, the risks
of inaccurate picks are minimized. To define each cluster, we
first set a threshold for the (CM; TM) couple (e.g. 0.8; 0.9),
and only consider event pairs above this threshold. Thereafter,
we use a depth-first search algorithm based on the TM values
to identify different event clusters.

Template creation by seismic trace aggregation

For each event within a cluster, the SNR is computed sepa-
rately for each seismic trace. An AT is then built by aggregat-
ing the seismic traces with the highest SNR for each station.
This process is repeated for each cluster, so the number of ATs
is equal to the number of clusters. In Figure 3(c), we show an

example of this process, where the traces from three events are
aggregated into a single template.

Automatic picking using template matching

Once a set of ATs have been created, they can then be used to
accurately and automatically pick the P- and S-wave onsets of
unpicked events (child events) using template matching. The

three main steps involved in the template matching (as out-
lined in Fig. 2b) are (a) selecting the best matching AT for a
child event, (b) automatic picking of the P- and S-wave phases
of the child event and (c) quality control of the picked phases.

Selecting the best aggregated template for a child event

The subsequent automatic picking is based on the cross-
correlation between an AT and a child event. Thus, identify-
ing which AT has the highest similarity with the child event is
the basis for selecting the most appropriate template to gen-
erate the automatic picks. For each child event, we determine
a mean cross-correlation coefficient for each AT. However, to
ensure that the mean cross-correlation best represents the de-
gree of similarity between the child event and AT, we use only
the N highest cross-correlation coefficients in the averaging.
The choice of N is based on the number of stations that are
most frequently operational throughout a data set.We use this
approach instead of averaging over all active stations to min-
imize the risk of poor SNR traces in the child event drasti-
cally reducing the mean. The AT with the highest mean cross-
correlation coefficient is considered to be the most similar to
the child event and selected to perform the automatic phase
picking.

Automatic picking

Once an AT is selected, a child event’s P- and S-wave phases
can be automatically picked. This procedure is split into a fur-
ther 4 main steps: (1) defining the P- and S-wave time win-
dows, (2) picking the P-wave phases, (3) picking the S-wave

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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phases and (4) performing an automatic QC on the picked
phases to remove potential outliers.
(1) For each trace of the selected AT, we define a constant
time window around the P- and S-wave onsets that have al-
ready been picked (Fig. 4a). For the unpicked child event, we
define a start and end time of the event using an STA/LTA
threshold on the stacked envelope of the traces (Fig. 4b),which
we then prepend with a small time buffer to equal to the length
of the AT P-wave window, to ensure we capture the start of
the P-wave. The start of the P-wave window is given by this
event start time. We define the end of the P-wave window by
finding the maximum amplitude of the envelope, which we
assume to be the maximum S-wave amplitude, then limit our
window to 90% of the full duration from the window start
to this maximum amplitude (Fig. 4c). This helps to avoid the
S-wave onset existing within the P-wave window, while still
ensuring enough P-wave coda to be beneficial for the template
matching.
(2) For each sensor, the P-wave window of the child event is
cross-correlated with the P-wave window of the AT (Fig. 4d).
The P-wave arrival time pick for the child event is then de-
termined from the time lag obtained for the maximum cross-
correlation coefficient. To reduce the risk of inaccurate P-wave
picks, we implement an automatic quality control procedure
based on the standard deviation of the time lags for a given
child event.Where the standard deviation exceeds 20% of the
mean, we consider the event to contain P-wave pick outliers.
To identify the individual outliers, we use a threshold of plus
or minus 1 second from the median, removing any picks that
exceed this threshold. A new P-wave window is then defined
using the remaining P-wave picks, with the cross-correlation
repeated on the traces with missing picks, with the process it-
erated until the standard deviation decreases to below 20% of
the mean.

As a final refinement of the P-wave picks, we apply
the method of De Meersman et al. (2009). Stations are first
grouped together based on a predefined distance criterion. For
each group, the seismic traces are aligned on the previously
determined P-wave picks and stacked to define a pilot trace.
This pilot trace is then cross-correlated with each trace in the
group. The P-wave phases are repicked from the time lag ob-
tained for the maximum cross-correlation coefficient between
the pilot trace and the child event.
(3) To find the S-wave onsets, we first define an S-wave win-
dow, which starts at the time of the P-wave pick plus twice the
duration of the AT P-wave window and finishing at the end
of the event as defined by the STA/LTA threshold run on the
stacked envelope. The same procedure for the P-wave phase

picking is then applied to estimate the S-wave phases, with
the exception of the pick refinement method of De Meersman
et al. (2009), which is not applied due to lack of stability.
(4) The final step in the automatic P- and S-wave phase
picking is an automatic quality control to remove poten-
tially incorrect phase picks. The S–P time differential (ts −
tp) is computed for both the AT and the child event. At a
given station, these values should almost match. Where there
are significant differences based on a priori uncertainties for
the P- and S-picks, these incoherent P- and S-wave picks are
removed.

CASE STUDY CONTEXT: REYKJANES
GEOTHERMAL FIELD IN ICELAND

Our study area is the Reykjanes Geothermal System, located
at the southern point of the Reykjanes Peninsula, Iceland
(Fig. 1a). This area is a complex geological system and is char-
acterized by a transition from the off-shore parts of the Reyk-
janes Ridge towards a transform zone on land (Björnsson and
Einarsson, 1974; Thordarson and Larsen, 2007; Jakobsdóttir,
2008). This constellation results in one of the most seismically
active parts of Iceland. Recent volcanic activity accounts for
the presence of young magmatic rocks (<0.8 Ma) as well as
the unusually high temperature of 320°C at 3 km depth and
427°C at 4.6 km (Khodayar et al., 2018). Such high tempera-
tures allow for geothermal energy exploitation, which in turn
is also the source of the induced seismicity, along with the nat-
ural, tectonic seismicity.

From mid-March 2014 to mid-August 2015, the seismic
activity was recorded by 38 three-component surface geo-
phones (Blanck et al., 2019), of which 8 belong to a perma-
nent network and 30 to a temporary network (called HSO
and IM, respectively; Fig. 1b). The still operational HSO
8-sensor network consists of short-period LE-3Dlite geo-
phones, which was run by Iceland GeoSurvey (ÍSOR) on
behalf of the geothermal power plant company HS Orka
(Weemstra et al., 2016) until 2018, and is located on
the top of the Reykjanes geothermal field. The temporary
IM network was deployed in the context of the Euro-
pean Union project IMAGE (Weemstra et al., 2016; Blanck
et al., 2019) and covered the whole Reykjanes Penin-
sula. From the 30 stations, 20 were Trillium Compact
Broadband seismometers and 10 were short-period Mark
L-4C seismometers (Jousset et al., 2016). Both the sen-
sor diversity and the interstation distances (from 0.5 to
40 km) increase the network resolution and allow the record-
ing of both small and large earthquakes at a range of

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
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Figure 4 Definition of (a) AT P- and S-windows, (b) child event time duration and (c) P-wave window used to determine the best-fitting AT. (a)
The P- and S- windows definitions around the P- and S-onsets for a single AT, for the station STA6. (b) Different steps needed to estimate the
child event duration. (b1) Stacked seismic traces of the three components for seven individual stations. For each of those traces, an envelope is
computed using a Hilbert transform (b2). Finally, a stacked envelope is computed (b3). The blue crosses and lines indicate the automatic detection
of the beginning and the ending of the event determined via a STA/LTA threshold, whereas the green crosses and lines show an extended window
around it, required for further analysis. The start of the green window is used as the start of the P-window. (c) The basis for determining the end
of the P-wave window. The maximum amplitude of the envelope (c1) is used as an approximation of the S-wave, with the P-wave window end
defined at 90% of the duration from the start of the window to the maximum amplitude (c2). The selected P-wave window is shown on c3. (d)
Results of the cross-correlation for four child events (d1) with the AT (d2) for the station SYRA. (d3) The superposition of the child events (black
traces) with the AT (red dashed traces) and their corresponding cross-correlation coefficient (R).(d4) The cross-correlation function associated
with the described process (d1, d2 and d3).
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distances. The presence of both induced and natural seis-
micity in combination with instrument outages increases the
database complexity and justifies the use of the aggregated
template methodology. An STA/LTA triggering method ap-
plied on the continuous seismic data from the two seismic net-
works during three months in 2015 leads to the detection of
more than 6500 earthquakes.

RESULTS

Based on a random selection of the 6500 events, we manu-
ally picked 2160 events that occurred from mid-May to mid-
August 2015, with an uncertainty visually estimated to be 50–
100 ms for the P-wave picks and 150–200 ms for the S-wave
picks. At least four P-wave onsets and one S-wave phase were
picked per event. These events were repicked applying the ag-
gregated template (AT)methodology and the results compared
with the manual picks.

Aggregated Template Creation and Autopicking

After picking the subset of events from the complete set of trig-
gered data, we selected suitable events for the ATs by applying
thresholds based on the percentage of P-wave picks (50%),
S-wave picks (30%) and the mean signal-to-noise ratio (SNR)
of traces (>1) (see Table 1). The SNR generally decreases
with an increase in event-station distance while the per-
centage of picks per event decreases with event magnitude.
Consequently, the large event-station distances (up to 80
km) result in few P- and S-wave picks for most of these
events. The application of these thresholds left a total of 650
events from the 2160 initially selected and manually picked
events.

Figure 5 illustrates the results of the composite correla-
tion measure (CM) and the composite time measure (TM)
for each event pair from the 650 events, and the subsequent
clustering that is applied. The CM–TM distribution (Fig. 5a)
shows that most of the event pairs (red dots) have CM and
TM coefficients varying from 0.75 to 0.85 and from 0.65 to
0.75, respectively. Two hundred and fifty event pairs (within
the green box, Fig. 5a) present higher similarities (CM > 0.9)
with smaller travel-time differences (TM > 0.8). These rep-
resent 143 highly correlated individual events that when lo-
cated are well distributed along the whole peninsula (green
dots on Fig. 5b). Applying the TM-based clustering, which
is independent of any event location, which is only shown
for illustrative purposes, leads to the definition of 19 differ-
ent clusters of multiplet events, enabling the formation of 19

different ATs. Each cluster is characterized by strong wave-
form similarity, as illustrated by the 10 events of cluster no.
1 for the SYRA station (Fig. 5c). The depth distribution of
these clusters (Fig. 5d, e) is presented within two cross-sections
AA’ and BB’ (Fig. 5b). From the 19 clusters, 10 are located
within the geothermal field (highlighted by the red ellipse) and
which are almost overlapping spatially, indicating that only
minor differences separate the different ATs. This should re-
sult in better identification of the P- and S-wave phases for
child events since there is likely to be a template that is highly
similar.

From these 19 clusters, 19 ATs were created. Two exam-
ples of these 19 ATs, from cluster no. 1 (as shown in Fig. 5c)
and no. 14, are presented in Fig. 6. Both ATs show that sev-
eral events (3 and 6 events, respectively) are used to create the
ATs but also that single events dominate their makeup (event
#6752 and event #6788, respectively).

To assess the performance of the autopicking via tem-
plate matching, we used the 19 ATs to pick the 2160 events
that had already been manually picked, rather than the
complete unpicked data set, which would be the typical
application. P- and S-wave onsets are picked only when their
respective cross-correlation coefficient at a station is greater
than 0.75 and 0.7 (Table 1). Thus, 1375 seismic events, or
63.5% of the database, were automatically picked, with a
minimum of four P-wave picks and one S-wave pick per event.
Three automatically picked events are shown as examples in
Fig. 7.

Autopicking results

Analysis of the number of P- and S-wave picks

The automatic process determines between 4 and 34 P-wave
onsets and between 1 and 31 S-wave onsets per event. Pri-
marily due to power outages and other technical issues, the
number of recording seismic traces changes throughout the
monitoring period. In order to derive a consistent quality es-
timate, we compute the percentage of P- and S-wave phases
picked with respect to the number of available seismic traces.
The proportion of stations with picks in the data set (ei-
ther manually made or derived from the aggregated template
(AT) processing) varies from 10% to 100% for P-waves and
from 3% to 90% for S-waves. Figure 8(a, b) shows that in
cases where more than 25% of P- and S-wave picks were de-
termined, the number of valid picks follows a similar trend
for both the AT and the manual picks. For smaller percent-
ages of determined phase picks, the AT method finds fewer
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Figure 5 Pre-clustering event-pair analysis and cluster results used to define different ATs. (a) Normalized CM versus normalized TM. Each
coloured dot represents a couple (CM; TM) for an event pair for all sensors. The colour indicates the normalized event pair density. The
candidate event pairs all show high waveform similarity with no CM values lower than 0.6. The green rectangle indicates the event pairs selected
as suitable AT candidates: (CM; TM) ≥(0.9, 0.8). The TM value is subsequently used as input to a clustering algorithm. (b) A zoom-in of
Figure 1(b), where the green dots indicate the selected events used to create the ATs and the locations of cross-sections AA’ and BB’ are shown.
(c) Waveforms for 10 different seismic events recorded on the SYRA station (east channel), which have been grouped into a single cluster. (d and
e) AA’ and BB’ cross-sections, where the different event clusters are presented as a function of depth. Each colour indicates a separate cluster. In
total, 19 different clusters are created with 10 (marked by the red ellipse) in close proximity to each other within the reservoir of the Reykjanes
geothermal field.

P- and S-wave picks compared with manual picking. In total,
about 50% less P- and S-wave picks have been determined by
the automatic picking compared with the manual processing.
This can be explained by the often emergent character of the
P-wave onsets, which results in smaller SNRs than our defined
threshold. In cases where we could not assign a P-wave onset,
we did not attempt to identify S-wave onsets.

Analysis of P- and S-wave accuracy

The P- and S-wave pick consistency plays a significant part
in the event location quality. We define the picking accuracy
as the time difference between the automatic and the manual
picks at station i:

�tki,accuracy = tki,manual − tki,automatic, (7)
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Figure 6 Example of two ATs. (a) An AT, which has 37 P-picks and 35 S-picks. It is built from the cluster shown in Fig. 5c and mainly composed
of traces from a single event (#6752). However, four traces are used from event #819 and one event from #827. (b) A second AT, with less P-
and S-phases picked than (a). It composed of seven different events, predominantly event #6788.

where k is either a P- or S-wave phase. The observed pick
distributions are almost Gaussian with close to zero mean
(Fig. 8c, d). Approximately two-thirds of the automatic picks
have an accuracy within the range of the manual picking un-
certainty (100 and 200 ms; Table 2).

We compare the mean P- and S-wave pick differences for
each event by averaging over all stations:

�tkEV,accuracy =
∑N

i=0(t
k
manual − tkautomatic )

N
, (8)

where k is either a P- or S-wave phase, i is the station, andN is
the maximum number of stations (Fig. 8e, f). As previously ob-

served, the pick distributions are Gaussian with close to zero
mean. The mean P- and S-wave picks per event show that 47%
and 29% of the events have an accuracy of less than 100 ms.
Thus, the average time accuracy per event is higher than at the
individual stations (Table 2). This can be explained by (1) the
manually and automatically picked stations might differ for
the same event, or/and (2) the picking accuracy varies from
station to station within one event.

As a preliminary conclusion, most of the automatic picks
have a high degree of accuracy but ∼2% show rather high er-
rors (±1 s). In order to exclude potential mis-locations based
on those few, but inaccurate, phase picks,we studied how both
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Figure 7 Example of three automatically picked child events using the AT in Figure 4(a). The mean cross-correlation coefficient between the
child events and the AT varies between 0.25 and 0.99. The blue and orange vertical lines represent the P- and S-picks, respectively. (a) Event
with a high SNR. P- and S-phases are well identified and picked. (b and c) Events with a lower SNR; a lot of noise contaminates these events.
However, the mean cross-correlation coefficient is of 0.5 (b) and 0.25 (c). Some stations can be automatically picked even if the P and S-phases
are clearly difficult to identify.

the percentage of picks and the average cross-correlation co-
efficient, computed between the child event and the AT, might
influence the automatic picking accuracy.

Accuracy dependency on the number of picks and the cross-

correlation coefficient

The AT methodology is based on waveform similarity, where
the selected AT for a particular child event is determined by
the average cross-correlation coefficient. For our data set, we

used a value of eight stations for computing the average cross-
correlation coefficient (see Section II.C.a) since this represents
the number of stations that are most frequently operational
within the data set.

Even though a subset of child events can have a highmean
cross-correlation coefficient (> 0.6) and a high pick accuracy,
the full set of child events may still be characterized by a low
mean cross-correlation coefficient (<0.35; Fig. 8g, h). Such a
low coefficient is obtained despite P- and S-phases only be-
ing picked when cross-correlation coefficients at individual
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Figure 8 Analysis of the AT automatic P- and S-picking accuracy (a–h) and event locations (i–l). (a and b) The distribution of the P- and
S-percentage picks for AT (blue) and manual (yellow) methods. (c and d) The accuracy of P- and S-picks per station. (e and f) Histograms of the
P- and S-accuracy averaging per event. (g and h) Evolution of the average cross-correlation coefficient between each couple (event, AT) in function
of the P- and S-accuracy and coloured by the percentage of P- and S-picks per event. (i) Histogram of rms location error. (j) The evolution of
the mean cross-correlation coefficient as a function of the rms location error. The light blue dots indicate all the events, whereas the dark blue
dots represent events with a mean cross-correlation coefficient greater than 0.35 and an rms location error lower than 1000 m. (k) Eevolution
of the rms location error (colours) as a function of the percentage of P- and S-phases picked per event. (l) The distance difference between the
manually and automatically picked events. The light green coloured histogram uses all events, whereas the dark green histogram shows events
with a mean cross-correlation coefficient greater than 0.35 and an rms location error lower than 1000 m.

Table 2 Arrival time accuracy by comparing the (AT automatic and manual) P- and S-wave picks and the (ME automatic and manual) P- and
S-wave picks. The range from [−100 to 100] ms and [−200 to 200] ms is chosen to match the estimated manual picking uncertainty ranges

P-wave picks from S-wave picks from Mean P per single event from Mean S per single event from

EAT ME EAT ME EAT ME EAT ME
tkaccuracy [−100; 100 ] ms 66% 64% 49% 57% 47% 49% 29% 40%
tkaccuracy [−200 ; 200] ms 81% 82% 70% 76% 69% 69% 54% 65%
tkaccuracy [−1; 1] s 98% 96% 95% 96% 97% 94% 95% 93%

traces are greater than 0.75 and 0.7, respectively. What ap-
pears as a discrepancy can be explained by low SNR seismic
traces, which do not contain picks, contributing to a lower
mean cross-correlation coefficient. Thus, events with a low
average cross-correlation coefficient will still contain high
cross-correlation values for individual traces. Consequently,
events with a low average cross-correlation coefficient are
not indicative of inaccurate picking. The evolution of P- and
S-wave pick percentages per event versus the mean cross-
correlation and time accuracy (Fig. 8g, h) confirms this. The
events with the smallest percentages of P- and S-wave picks
are associated with the smallest cross-correlation coefficients

and typically the highest pick uncertainties. In contrast, events
characterized by a high percentage of P- and S-wave picks
(>40%) present a relatively high cross-correlation coefficient
(>0.6) and high accuracy (<0.2 s).

To sum up, events with a mean cross-correlation greater
than 0.35 or with at least 40% of their P- and S-wave phases
picked show high picking accuracy, making them good candi-
dates for event location. Below these thresholds, many events
also show high picking accuracy, but there are also examples
with inaccurate picks, which would potentially bias any lo-
cation procedure. For such events, we recommend a manual
quality checking of the automatic picking, before locating.
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Location from the automatic picking

In this section, we compare the event locations obtained from
the automatic and manual picking. For studying the accuracy
of automatically picked event locations, we compare them to
the locations derived from the manual picking. Since these
events require high SNR, their locations are considered rel-
atively reliable and are a good benchmark for the compari-
son. The location is performed using a differential evolution
algorithm (Storn and Price, 1997; Wuestefeld et al., 2018) for
manually picked events with more than 30% and 20%of their
P- and S-wave phases picked, respectively. The location uncer-
tainty is quantified by the rms location error, defined as:

rms error =
√
1
3
(x2 + y2 + z2), (9)

where x, y and z are the components of the location error in
Cartesian coordinates (east, north and depth) of the consid-
ered seismic event. The location errors are estimated from an
error ellipsoid which quantifies how close or far the solution
(measured observation) is from the prediction (theory). Only
events having an rms location error lower than 1000 m are
hereafter considered. Applying the same differential evolution
algorithm to the automatically picked events leads to the com-
parison of 823 seismic event locations.

Six hundred and seventy-seven automatically picked
events (i.e. 82%) give an rms location error lower than 1000
m (Fig. 8i). Fewer than 1% of events have an uncertainty of
10,000 m or greater and are excluded from this study. Events
with the highest average cross-correlation values with the AT
also result in the smallest location errors (< 1000 m; Fig. 8j).
In the same way, most of the poorly located events are char-
acterized by a low (<0.35) cross-correlation coefficient. Al-
though this observation demonstrates a link between loca-
tion error and the average cross-correlation coefficient value,
many events with a low cross-correlation coefficient are also
characterized by a small rms location error (Fig. 8j). The pre-
vious cross-correlation threshold of 0.35 is apparent and de-
lineates two different trends in the location accuracy. For val-
ues of cross-correlation greater than 0.35, the location error
is consistently small; but below this threshold, the loca-
tion accuracy has a large range with no apparent upper or
lower limit. We previously showed that the cross-correlation
coefficient is linked to the percentage of P- and S-wave
picks per event. Since the worst and best location errors are
derived from events with the smallest (<40%) and high-
est pick percentages (Fig. 8k), respectively, we can assert
that either a cross-correlation coefficient greater than 0.35

and/or 40% of picks per events will ensure a good event
location.

Considering the location uncertainty on the manually
and automatically picked events, Fig. 8(l) presents the mini-
mum location difference between the reference (manual pick-
ing) events and the AT-derived automatically picked events
(light green histogram). More than 55% of the events show
a location difference less than 1000 m but some reach a dif-
ference as large as 10 km. By only considering events with
a cross-correlation higher than 0.35 (dark green histogram),
80% of the event locations have less than 1000m of difference
compared with the reference events. Since we selected manual
events with an rms location error of less than 1000 m, they are
therefore within the location error of these events. In addition,
events with the largest distance offset from the reference loca-
tions are also removed when the cross-correlation coefficient
is above 0.35.

Thus, the AT automatic picking methodology shows a
systematic link between good picks and high location accu-
racy when the (AT; child event) couple has a cross-correlation
greater than 0.35. Below this value, manual checking is neces-
sary to modify or remove automatic picks.

DISCUSS ION

The aggregated template (AT) methodology has been devel-
oped to improve the number of locatable events and to de-
crease the processing time in challenging data sets by identi-
fying the P- and S-wave onsets through template matching.
Although a template matching approach using master events
has already been successfully used on large microseismic data
sets with a template composed of real seismic events (Rowe
et al., 2002), the AT concept is an innovation. To demonstrate
the benefits of the ATmethodology,we tested the performance
of the ATs compared with the master event (ME) templates.
Based on our knowledge of the Reykjanes data set, we were
able to identify eight events that could be used as MEs which
were well distributed along the peninsula. Based on these tem-
plates, we then repicked the previous 2160 manually picked
events.

Master Event automatic pick results, manual picking and
Aggregated Template comparison

In this section, we conduct a similar analysis as performed
to compare the AT-derived picks with the manually derived
picks (AT/manual), but instead we compare theME automatic
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Figure 9 Analysis of the ME automatic P- and S-picking accuracy (a–h) and event locations (i–l). (a and b) The distribution of the P-
and S-percentage picks for ME (pink) and manual (yellow) methods. Orange colour indicates when both methods have the same percent-
age picks and results for the superimposition of AT and ME. (c and d) The accuracy of P- and S-picks per station. (e and f) Histograms of the
P- and S-accuracy averaging per event. (g and h) The evolution of the average cross-correlation coefficient between each couple (event, ME) as
a function of the P- and S-accuracy and coloured by the percentage of P- and S-picks per event. (i) A histogram of rms location error. (j) The
evolution of the mean cross-correlation coefficient as a function of the rms location error. The light pink dots indicate all the events, whereas
the dark pink dots represent events with a mean cross-correlation coefficient greater than 0.45 and an rms location error lower than 1000 m.
(k) The evolution of the rms location error (colour bar) as a function of the percentage of P- and S-phases picked per event. (l) The distance
difference between the manually and automatically picked events. The light green coloured histogram uses all events, whereas the dark green
histogram shows events with a mean cross-correlation coefficient greater than 0.35 and an rms location error lower than 1000 m.

picking with the manual picking (ME/manual). Thereafter, we
will directly compare ME/manual with AT/manual picking.

Using the eight ME templates, it was possible to pick
1007 events with at least four P- and one S-wave picks,
i.e. 25% less than using the AT. The ME automatic and
manual P-wave pick percentage distributions (Fig. 9a) show
the same trend, despite fewer events having a high P-wave
pick percentage for the ME processing compared with the
manually picked events. In addition, above 25% of the picks
per event,ME and AT P-wave pick percentage trends (Fig. 8a)
are similar despite the ME templates being more efficient at
picking P-wave onsets (85% versus 50%). The ME S-pick
distribution (Fig. 9b) differs from the manual picking when
the pick percentage is less than 20%. Above this value,
both trends are similar (as observed for the AT results).
Approximately 54% of the S-picks are found with the ME
automatic picking, similar to the 50% obtained with the
AT picking.

The station-based and event-based pick accuracies
(Fig. 9c–f) indicate most of the ME picks have less than
0.2 s difference with the manual picks (Table 2). Although the
accuracy of the P-wave picks (Fig. 9c, e) is similar to those ob-

tained from the AT picks, the accuracy of the S-picks (Fig. 9d,
f) demonstrates some differences. In particular, using the ME
method there are 8%more events with an accuracy better than
100 ms and 3% more events with an accuracy worse than 1 s
compared with the AT picking results. Similar to the AT picks
(Fig. 8g, h), Figure 9(g, h) underlines that a low average cross-
correlation coefficient is not indicative of inaccurate picking
for the ME picks.

In summary, the ATs allow more events to be picked with
an identical number of S-onsets but less P-wave phases than
the ME templates. P-wave picks show a similar accuracy for
both templates while S-wave picks can be both more (<200
ms) or less accurate (> 1 s).

The previously used differential evolution location algo-
rithm is then applied and leads to the comparison of 610 ME
and manually picked event locations (Fig. 9i). This represents
25% less than with ATs, which is the same value as the dif-
ference between the ME- and AT-picked events (see above).
Seventy-four per cent (82% for the AT results) have an rms
location error less than 1000 m (Fig. 9i) and less than 1%
(same for the AT results) of the ME-picked events have an er-
ror greater than 10,000 m.
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Figure 10 Comparison between the AT (blue) and the ME (pink) automatic picks. (a) P-pick and (b) S-pick percentage distributions per event.
(b, d) P- and S-picks time residuals. (e) Rms location errors for AT and ME.

Both the cross-correlation coefficient (Fig. 9j) and the per-
centage of P- and S-wave picks (Fig. 9k) versus the rms lo-
cation error show a similar trend to the AT results. Above
a cross-correlation coefficient threshold (here 0.45), most of
the events show a small location error (lower than 1000 m)
whereas below this value, the location error can be either
large or small. Thus, the trend is identical to what we ob-
served with AT but for an average cross-correlation of 0.45
instead of 0.35. The use of the ATs is likely to artificially
decrease the average cross-correlation coefficient due to the
lower number of identified P-wave phases. As most of the
P-wave picks are identified with the ME templates, the aver-
age cross-correlation coefficient should bemore realistic of the
event similarity. Finally, the minimum location difference be-
tweenmanual andME-picked events shows the same tendency
as the AT/manual comparison but with more events having
higher offset distances (Fig. 9l).

Comparison of Master Event–picked and Aggregated
Template–picked events

After comparing both the AT and ME automatic picking
results with the manual picking, we now directly compare
the AT and ME automatic picking results. We identified 813
events both picked with AT and ME templates.

The distribution of AT and ME P-wave pick percent-
ages per event is similar, above 25% (Fig. 10a), even though
more ME-picked events have higher P-wave pick percent-
ages than those derived from the AT methodology. Below this
25% threshold, many more AT-picked events have smaller
P-wave pick percentages, compared with the ME template re-

sults. Thus, more P-wave picks are identified through the ME
method than the AT methodology. Conversely, for the S-pick
distribution (Fig. 10c), more AT-picked events have higher
S-pick percentages than for the ME, despite a similar distri-
bution above 25%.

The time residual (�t) is defined as follows: �t = tkobs −
tkth, where k is either a P- or S-wave phase, tobs is the auto-
matically picked time, and tth is the theoretical time obtained
from the derived event location. In comparing residuals from
the two automatic picking methods, both distributions are
Gaussian (Fig. 10b, d). The mean P-residual obtained from the
AT picks is smaller (0.8 ms) than that obtained from the ME
picking (3.6 ms). In addition, for both methods, the mean P-
pick residual is positive, meaning the automatic P-wave onsets
are delayed compared with the theoretical time. Conversely,
the mean ME and AT S-wave picks are negative, suggesting
automatic picks are picked earlier in comparison to the the-
oretical arrival times. The S-residual values are higher than
the P-residuals, highlighting the larger pick uncertainty on the
S-wave onsets compared with the P.

As shown with the AT/manual and ME/manual compar-
isons,more events picked using the ATmethodology (Fig. 10e)
have a smaller rms location error than using the ME tem-
plate (80% versus 70%with errors lower than 1000m). Thus,
when the same events are picked, the AT method gives slightly
better results than the classical ME method. The comparison
with the manual picking has also shown that the use of MEs
also gives good results. They enable the picking of events com-
ing from areas where no AT can be defined. MEs could there-
fore be used to augment ATs to ensure improved coverage of
the study area.
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CONCLUSION

We have developed an aggregated template (AT) concept in
order to perform automatic P- and S-phase picking for the
case of a large and complex database with a temporally vary-
ing network. We defined an AT as a representative event for a
small area, built by aggregating the best signal-to-noise ratio
seismic traces from events with similar waveforms. ATs are
then used similarly to master events (ME). A template match-
ing procedure, using the AT, is applied to unpicked events
to detect the P- and S-wave onsets. We tested this method
on a database composed of 2160 induced events recorded
by a varying number of seismic stations in the Reykjanes
geothermal field (Iceland). The definition of 19 ATs enabled
the automatic picking of ∼65% of this database, with 70% of
the identified P- and S-wave picks having an accuracy within
the estimated manual picking uncertainty. We identified
two main criteria for the autopicking quality: the average
cross-correlation coefficient defined between an AT and a
child event and the number of P- and S-wave picks. Thus, all
child events with a 0.35 cross-correlation coefficient (or/and
40% of P- and S-wave picks per event) can be directly located
without any manual quality checks of the arrival time picks.
Below these two thresholds, we recommend a manual quality
control. By comparing with the use of classical MEs, we note
that ATs allow more events to be automatically picked, albeit
with fewer P-wave phases. However, these P-wave phases are
picked with a similar precision between the AT andME meth-
ods. For regions where only single events occur, an AT can be
directly created from this single event, i.e. using the ME as an
AT. For regions where no previously recorded seismicity has
occurred, an AT cannot be initially generated. With the onset
of new seismicity in such a region, the set of available ATs can
be updated. Finally, the AT concept also enables a significant
reduction in computation time relative to traditional template
matching by only using the most representative template for
a region and thus limiting the required number of templates.

ACKNOWLEDGEMENTS

We thank the Research Council of Norway for funding
through the ERiS project, grant #267908 and Inga Berre,
project lead from the University of Bergen, Norway. We also
thank ÍSOR (Iceland) for access to the seismological data,
partly acquired through the EU FP7 project IMAGE.

DATA AVAILABIL ITY STATEMENT

The seismic data from the IM network used in this study are
described by Jousset et al. (2020) and can be accessed through

the frame of GEOFON (https://geofon.gfz-potsdam.de/doi/
network/4L/2014). The seismic data from the HSO network
used in this study are owned by HS Orka. Data are avail-
able on request to the corresponding author with permission
through HS Orka.

ORCID

Laure Duboeuf https://orcid.org/0000-0001-6371-3022

REFERENCES

Björnsson, S. and Einarsson, P. (1974) Seismicity of Iceland. In L.
Kristjansson (Ed.) Geodynamics of Iceland and the North Atlantic
Area. Dordrecht: Springer Netherlands, pp. 225–239.

Blanck, H., Jousset, P., Hersir, G.P., Ágústsson, K. and Flóvenz, Ó.G.
(2019) Analysis of 2014–2015 on- and off-shore passive seismic
data on the Reykjanes Peninsula, SW Iceland. Journal of Volcanol-
ogy and Geothermal Research, 391, 106548. https://doi.org/10.
1016/j.jvolgeores.2019.02.001

Bourouis, S. and Bernard, P. (2007) Evidence for coupled seismic and
aseismic fault slip during water injection in the geothermal site of
Soultz (France), and implications for seismogenic transients. Geo-
physical Journal International, 169(2), 723–732. https://doi.org/10.
1111/j.1365-246X.2006.03325.x

Cuenot,N.,Dorbath,C. andDorbath, L. (2008) Analysis of themicro-
seismicity induced by fluid injections at the EGS Site of Soultz-sous-
Forêts (Alsace, France): Implications for the characterization of
the geothermal reservoir properties. Pure and Applied Geophysics,
165(5), 797–828. https://doi.org/10.1007/s00024-008-0335-7

De Meersman, K., Kendall, J.-M. and van der Baan, M. (2009) The
1998 Valhall microseismic data set: an integrated study of relocated
sources, seismic multiplets, and S-wave splitting.Geophysics, 74(5),
B183–B195. https://doi.org/10.1190/1.3205028

Deichmann, N., Kraft, T. and Evans, K.F. (2014) Identification
of faults activated during the stimulation of the Basel geother-
mal project from cluster analysis and focal mechanisms of the
larger magnitude events. Geothermics, 52, 84–97. https://doi.org/
10.1016/j.geothermics.2014.04.001

Ellsworth, W. (2013) Injection-induced earthquakes. Science,
341(6142), 1225942. https://doi.org/10.1126/science.1225942

Ellsworth, W., Llenos, A.L., McGarr, A., Michael, A.J., Rubinstein,
J.L.,Mueller,C.S., et al. (2015) Increasing seismicity in the U.S.mid-
continent: implications for earthquake hazard. The Leading Edge,
34(6), 618–626. https://doi.org/10.1190/tle34060618.1

Foulger, G.R., Wilson, M.P., Gluyas, J.G., Davies, R.J. and Julian,
B. (2018) Global review of human-induced earthquakes. Earth-
Science Reviews, 178, 438–514. https://doi.org/10.1016/j.earscirev.
2017.07.008

Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P.A.,
vanWees, J.D. and Kohl, T. (2015) Induced seismicity in geothermal
reservoirs: a review of forecasting approaches. Renewable and Sus-
tainable Energy Reviews, 52, 1473–1490. https://doi.org/10.1016/
j.rser.2015.08.026

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
of Geoscientists & Engineers.,Geophysical Prospecting, 69, 1147–1166



1166 L. Duboeuf, V. Oye and B.D.E. Dando

Geiger, L. (1910) Herbsetimmung bei Erdbeben aus den Ankun-
fzeiten. K. Gessell. Will. Goett, 4, 331–349.

Geiger, L. (1912) Probability method for the determination of earth-
quake epilefts from the arrival time only. Bulletin St. Louis Univer-
sity, 8, 60–71.

Gibbons, S.J. and Ringdal, F. (2006) The detection of low mag-
nitude seismic events using array-based waveform correlation.
Geophysical Journal International, 165(1), 149–166. https://doi.
org/10.1111/j.1365-246X.2006.02865.x

Goertz-Allmann, B.P., Kühn, D., Oye, V., Bohloli, B. and Aker, E.
(2014) Combining microseismic and geomechanical observations
to interpret storage integrity at the In Salah CCS site. Geophysical
Journal International, 198(1), 447–461. https://doi.org/10.1093/
gji/ggu010

Goertz-Allmann, B.P., Gibbons, S.J., Oye, V., Bauer, R. and Will,
R. (2017) Characterization of induced seismicity patterns derived
from internal structure in event clusters. Journal of Geophysical
Research: Solid Earth, 122(5), 3875–3894. https://doi.org/10.1002/
2016JB013731

Gudhnason, E.Á. (2014) Analysis of seismic activity on the western
part of the Reykjanes Peninsula, SW Iceland, December 2008–May
2009 (Master’s thesis, Faculty of Earth Sciences, University of Ice-
land, p. 83).

Jakobsdóttir, S.S. (2008) Seismicity in Iceland: 1994–2007. Jökull, 58,
75–100.

Jousset, P., Blanck, H., Franke, S., Metz, M., Ágústsson, K., Verdel,
A., et al. (2016) Seismic tomography in Reykjanes, SW Iceland. Ex-
tended Abstract European Geothermal Congress, Strasbourg.

Jousset, P., Hersir, G.P., Blanck, H., Kirk, H., Erbas, K., Hen-
sch, M., et al. (2020) IMAGE (Integrated Methods for Ad-
vanced Geothermal Exploration). Deutsches GeoForschungsZen-
trum GFZ. Other/Seismic Network. https://doi.org/10.14470/
9Y7569325908

Khodayar, M., Björnsson, S., Gudhnason, E.Á., Nielsson, S., Axels-
son, G. and Hickson, C. (2018) Tectonic control of the Reyk-
janes geothermal field in the oblique rift of SW Iceland: from re-
gional to reservoir scales.Open Journal of Geology, 8(3), 333–382.
https://doi.org/10.4236/ojg.2018.83021

Kraft, T. and Deichmann, N. (2014) High-precision relocation
and focal mechanism of the injection-induced seismicity at the
Basel EGS. Geothermics, 52, 59–73. https://doi.org/10.1016/j.
geothermics.2014.05.014

Majer, E.L., Baria, R., Stark,M., Oates, S.J., Bommer, J., Smith, B. and
Asanuma, H. (2007) Induced seismicity associated with enhanced
geothermal systems. Geothermics, 36(3), 185–222. https://doi.org/
10.1016/j.geothermics.2007.03.003

Pavlis, G.L. (1992) Appraising relative earthquake location errors.
Bulletin of the Seismological Society of America, 82(2), 836–859.

Ross, Z.E. and Ben-Zion, Y. (2014) Automatic picking of direct
P, S seismic phases and fault zone head waves. Geophysical

Journal International, 199(1), 368–381. https://doi.org/10.1093/
gji/ggu267

Rowe, C.A., Aster, R.C., Phillips, W.S., Jones, R.H., Borchers, B.
and Fehler, M.C. (2002) Using automated, high-precision repick-
ing to improve delineation of microseismic structures at the Soultz
geothermal reservoir. In Trifu, C.I. (Ed.) The Mechanism of In-
duced Seismicity:. Pageoph Topical Volumes. Springer, pp. 563–
596. https://doi.org/10.1007/978-3-0348-8179-1_24

Shearer, P.M. (1997) Improving local earthquake locations using the
L1 norm and waveform cross correlation: application to the Whit-
tier Narrows, California, aftershock sequence. Journal of Geophys-
ical Research: Solid Earth, 102(B4), 8269–8283. https://doi.org/10.
1029/96JB03228

Sleeman,R. and van Eck,T. (1999) Robust automatic P-phase picking:
an on-line implementation in the analysis of broadband seismogram
recordings. Physics of the Earth and Planetary Interiors, 113(1),
265–275. https://doi.org/10.1016/S0031-9201(99)00007-2

Storn, R. and Price, K. (1997) Differential evolution – a simple and
efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 11(4), 341–359. https://doi.org/
10.1023/A:1008202821328

Stuermer, K., Kummerow, J. and Shapiro, S.A. (2011) Waveform
similarity analysis at Cotton Valley, Texas. In 81st SEG Annual
Meeting, San Antonio, TX, USA. Expanded Abstract, 1669–1673.
https://doi.org/10.1190/1.3627524

Stuermer, K., Kummerow, J. and Shapiro, S.A. (2012) Multiplet based
extraction of geological structures. In 82nd SEG Annual Meeting,
Las Vegas, Nevada, USA. Expanded Abstracts, 1–5. https://doi.org/
10.1190/segam2012-1048.1

Thordarson, T. and Larsen, G. (2007) Volcanism in Iceland in histori-
cal time: volcano types, eruption styles and eruptive history. Journal
of Geodynamics, 43(1), 118–152. https://doi.org/10.1016/J.JOG.
2006.09.005

van der Baan, M. and Calixto, F.J. (2017) Human-induced seismicity
and large-scale hydrocarbon production in the USA and Canada.
Geochemistry, Geophysics, Geosystems, 18(7), 2467–2485.
https://doi.org/10.1002/2017GC006915

Weemstra, C., Obermann, A., Verdel, A., Paap, B., Blanck, H., Guðna-
son, E.Á., et al. (2016) Time-lapse seismic imaging of the Reykjanes
geothermal reservoir. In Proceedings of the European Geothermal
Congress. European Geothermal Energy Council (EGEC), Stras-
bourg.

Wuestefeld, A., Greve, S.M., Näsholm, S.P. and Oye, V. (2018)
Benchmarking earthquake location algorithms: a synthetic com-
parison. Geophysics, 83(4), KS35–KS47. https://doi.org/10.1190/
geo2017-0317.1

Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A.,
et al. (2014) Analysis of induced seismicity in geothermal reservoirs
– an overview. Geothermics, 52(Supplement C), 6–21. https://doi.
org/10.1016/j.geothermics.2014.06.005

© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
of Geoscientists & Engineers.,Geophysical Prospecting, 69, 1147–1166


