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A B S T R A C T   

Identifying and understanding limiting conditions is at the centre of ecology and biogeography. Traditionally, 
associations between climate and occurrences of organisms are inferred from observational data using regression 
analysis, correlation analysis or clustering. Those methods extract patterns and relationships that hold 
throughout a dataset. We present a computational methodology called redescription mining, that emphasizes 
local patterns and associations that hold strongly on subsets of the dataset, instead. We aim to showcase the 
potential of this methodology for ecological and biogeographical studies, and encourage researchers to try it. 

Redescription mining can be used to identify associations between different descriptive views of the same 
system. It produces an ensemble of local models, that provide different perspectives over the system. Each model 
(redescription) consists of two sets of limiting conditions, over two different views, that hold locally. Limiting 
conditions, as well as the corresponding subregions, are identified automatically using data analysis algorithms. 

We explain how this methodology applies to a biogeographic case study focused on China and southern Asia. 
We consider dental traits of the large herbivorous mammals that occur there and climatic conditions as two 
aspects of this ecological system, and look for associations between them. 

Redescription mining can offer more refined inferences on the potential relation between variables describing 
different aspects of a system than classical methods. Thus, it permits different questions to be posed of the data, 
and can usefully complement classical methods in ecology and biogeography to uncover novel biogeographic 
patterns. 

A python package for carrying out redescription mining analysis is publicly available.   

1. Introduction 

Among the central perspectives in ecology and biogeography is 
uncovering patterns in the organization of ecological systems and as-
semblages, and the processes that underlie them (Cox et al., 2020; 
Dansereau, 1957; MacArthur and Wilson, 1967; Ovaskainen and 
Abrego, 2020). Contemporary biogeographical studies are data inten-
sive, span increasingly large spatial and temporal scales and require 
rigorous computational approaches (Pearse and Peres-Neto, 2017). 
Such analyses typically aim at extracting generic patterns and relations 
from large observational datasets and highlighting contrasts between 
different subsets of the data. Most common computational approaches 
in biogeography (Jongman et al., 1995; Legendre and Legendre, 2012) 

include correlation analyses, regression analyses, ordination and 
clustering. 

Partitioning techniques, known as clustering, have been part of the 
toolbox in ecological studies for nearly a century (Kulczynski, 1928). 
More recently, Kreft and Jetz (2010) and Vavrek (2016) compared clus-
tering methods to identify biogeographic patterns from species distribu-
tion data and fossil datasets, respectively. Kreft and Jetz (2010) found that 
the clusters identified this way were overall similar to the classic primary 
geographical divisions of the world’s biota, but also exhibit notable dif-
ferences in the assignment of some subregions, such as, in particular, 
Madagascar, the Sahara, northern Africa and the Arabian Peninsula. 

Ordination techniques aim to reduce the dimensionality of the data 
while retaining as much information as possible from the original 
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dimensions. Ordination techniques differ in internal distance measures 
and complexity of the projection. Examples include general purpose ap-
proaches such as Principal Component Analysis (PCA; Pearson, 1901; 
Hotelling, 1933) or Non-metric Multidimensional Scaling (NMDS; Krus-
kal, 1964) as well as approaches that are more specifically designed for 
ecology, such as Outlying Mean Index (OMI; Dolédec et al., 2000) and 
Ecological Niche Factor Analysis (ENFA; Hirzel et al., 2002). 

Regression analysis is broadly used in ecology and biogeography for 
modelling relationships between variables (see e.g. Ordoñez et al., 2009). 
Many species distribution models are built on regression (Elith and Leath-
wick, 2009). New methodological developments aim to take into account 
spatial (Mellin et al., 2014), multi-scale (Beever et al., 2006) structure of the 
data or interactions between species (Krapu and Borsuk, 2020). 

Combinations of techniques are commonly used as well. For 
example, Thomas et al. (2019), combine ordination and clustering to 
investigate how well functional groups explain variance in species traits, 
while He et al. (2017) identify zoogeographical regions of China through 
a combination of clustering, ordination and regression analysis. 
Advanced machine learning techniques are also making their way into 
biogeographic analysis, Brown et al. (2020), for instance, recently pro-
posed to use support vector machines (SVM) to learn a multi- 
dimensional boundary between two entities such as populations or 
species, and examine possible biological overlaps. 

Redescription mining, on which we focus here, combines partition-
ing techniques, such as clustering, and modelling techniques, such as 
regression. It identifies multiple local models on subsets of data, and 
automatically generates sets of limiting conditions and the corre-
sponding split of the data. This is where redescription mining departs 
from most classical analysis methods that identify global models and do 
not yield explicit and interpretable limiting conditions. 

The main idea is to identify two sets of limiting conditions such that, 
ideally, at any locality they either both hold true or both do not. Thus, 
redescription mining requires two perspectives of an ecosystem. In this 
case study, we search for relationships between dental traits of mammals 
that occur at localities and the climatic conditions of these localities. For 
example, limiting conditions could require that more than 80% of large 
herbivores in the region have high crowned teeth and, on the other 
hand, that the mean annual precipitation and the mean temperature of 
the warmest quarter in the region be lower than 500 mm and 18 ◦C, 
respectively. We would then expect few or no regions satisfying one set 
of conditions but not the other, that is, having the specified percentage 
of high-crowned teeth but with rainfall or temperature above the spec-
ified thresholds, or vice-versa, satisfying the climatic constraints but 
having a small percentage of high-crowned teeth. 

Here, we tailor redescription mining for analyses in ecology and 
biogeography. We showcase the potential of this method on a case study 
looking for associations between the distribution of mammalian dental 
traits and the climatic conditions of their habitats. Our study focuses on 
China and southern Asia, which is a pivotal region for biogeographic 
analyses, due to the complex Asian monsoon climate system and 
biogeography, affecting the living conditions of approximately one-third 
of the global human population. 

Redescription mining was first introduced as a computational data 
analysis method in computer science (Ramakrishnan et al., 2004). In 
addition to algorithmic studies (see references in Galbrun and Miettinen, 
2017), this method has been applied, among others, in bio-informatics 
(Ramakrishnan and Zaki, 2009) and medicine (Mihelčič et al., 2017). 

We show how redescription mining can identify biologically mean-
ingful limiting conditions. We also show how those sets of conditions, in 
the form of redescriptions, can be used to computationally identify or 
refine zoogeographic units, such as ecoregions. 

2. Materials for the case study 

China and southern Asia constitute one of the most zoogeographi-
cally complex regions in the world due to its diverse environmental 
gradients, its climatic position, as well as its geological history and 
spatial inter-connectedness (Ficetola et al., 2017; He et al., 2017). The 
climate system of China and southern Asia are distinct from any other 
region in the world. 

Variations brought by the Asian monsoon strongly affect the condi-
tions for life in the region (Yamada et al., 2019; Zhao et al., 2010). The 
plant and animal biomes are diverse and often constitute unique 
biodiversity hotspots (Z. Tang et al., 2006; Huang et al., 2015). Despite 
the fact that modern flora and fauna in China and Southern Asia have 
been strongly fragmented by human activities (He et al., 2018)—which 
is true for most of the temperate latitudes today—associations between 
fauna and climate appear to be robust and are subject to active ongoing 
research (Ficetola et al., 2017; He et al., 2017). 

The goal of this case study is to analyze regional patterns of associ-
ation between dental traits of large herbivorous placental mammals and 
the climatic context of their habitats. Dental proxies used in our analysis 
are known as dental ecometrics (Eronen et al., 2010; Vermillion et al., 
2018; Žliobaitė et al., 2016). Teeth of mammalian herbivores closely 
reflect the types of plant food their owners can effectively process and 
convert into energy. Even though each area typically hosts a range of 
structural types of plant food, different climates will determine which 
vegetation dominates. Therefore, the distribution of dental traits within 
faunal communities can provide more robust information about local 
environmental conditions at the global scale, compared to the presence 
or absence of specific species, especially of the past ecosystems (Liu 
et al., 2012). 

Previously, we found that global zoogeographic patterns do not 
directly apply to China and southern Asia (Galbrun et al., 2018). The 
results suggested complex climate–dental-trait associations prevailing 
within those spatially compact and climatically unique areas. We hy-
pothesized that the monsoonal climate in these regions may make the 
conditions attractive for seasonal immigrants from the temperate zones. 

2.1. Study region and datasets 

The units of our analysis are cells identified by placing a 50 km × 50 
km grid over the world map, which we call localities. Each locality is 
characterized by climatic variables as well as variables representing the 
distribution of dental traits among species occurring at the locality. 
Functional dental traits are macroscopic, they are defined in such a way 
that little variation is expected within species, and trait scores can be 
assigned at the species level (Oksanen et al., 2019). For each locality and 
each dental trait, we compute the average value over occurring species. 
We discard localities with fewer than three species, considering that the 
data in such cells are too sparse for the distribution of dental traits to be 
informative. In short, our dataset consists of a pair of matrices, Localities 
× Dental traits and Localities × Climate and contains 4416 localities. 
Dental traits and Climate comprise respectively 11 and 21 numerical 
variables. All variables are listed in Table 1. 

2.2. Climatic variables 

The climate data come from the WorldClim dataset,1 which builds on 
extrapolated observations from weather stations. The climatic variables 
are listed in the right panel of Table 1. We reuse the dataset processed by 
M. Lawing as reported in (Oksanen et al., 2019). In addition, we 
considered the net primary productivity (NPP), computed from the 
mean annual temperature (T~Y) and total annual precipitation (PTotY) 
as follows: 

1 http://www.worldclim.org/ 
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We apply a logarithmic transformation to all precipitation variables 
prior to the analysis with the classical methods. Indeed, these methods 
rely on identifying linear correlations between variables and are there-
fore sensitive to the measurement scale. Redescription mining does not 
require such transformation as it selects thresholds for the limiting 
conditions independently of the measurement scale. 

2.3. Dental trait variables 

Species occurrence data come from the list of the International Union 
for Conservation of Nature.2 Fig. 1 depicts the number of species 
occurring at each locality in the study region. We reused the dataset that 
has been processed by M. Lawing with an extra interpretation of acute 
lophs as reported in (Oksanen et al., 2019). Dental data have been 
compiled using the dental trait scoring scheme reported in (Žliobaitė 
et al., 2016). Teeth are scored by visual inspection, typically of the 
second upper molar, identifying the presence or absence of specific 
structural elements and counting specific components, such as cutting 
edges. The dental variables are listed in the left panel of Table 1. We 
reuse the scores for species from the study of (Galbrun et al., 2018) with 
several updates and modifications as follows. 

First, we use the average ordinated hypsodonty score instead of 

binarizing hypsodonty categories, to better align with previous dental 
ecometric studies. Rather than describing a locality using three variables 
(fraction of brachydont, mesodont and hypsodont species respectively), 
we now represent this information with a single variable (averaged 
hypsodonty). For example, a locality having 30% brachydont, 20% 
mesodont and 50% hypsodont species, corresponds to mean ordinated 
hypsodonty of 0.3 ⋅ 1 + 0.2 ⋅ 2 + 0.5 ⋅ 3 = 2.2. This treatment has been 
used before in ecometric studies (Eronen et al., 2010; Fortelius et al., 
2002; Liu et al., 2012; Žliobaitė et al., 2016). The study of (Galbrun 
et al., 2018) used binary treatment hoping for higher resolution pat-
terns, but this appeared to be unnecessary. 

Second, we add three dental traits variables, namely exclusively 
obtuse lophs (OO), thickened enamel (ETH) and transverse loph count 
(LOPT). The exclusively obtuse lophs variable is intended to capture the 
dental morphology of a generalist, such as a goat. Its value can be 
derived from the rest of dental traits. For a species, exclusively obtuse 
lophs takes value one if no specialized types of loph-related structures 
are present (no acute lophs, no structural fortification, no flatness of the 
occlusal surface). Thickened enamel is an experimental trait scored 
approximately by visual inspection and takes value one if the dental 
enamel appears to be thicker than regularly seen in molars of other 
species of a similar size. In this study, the average presence of thickened 
enamel has a strong taxonomic association with suids. Finally, the 
transverse lophs count is computed in the same way as the longitudinal 
lophs count (LOP) used in our previous study (Galbrun et al., 2018), 
except that the direction of cutting structures has to span across the 
tooth row instead of along the tooth row. Both longitudinal loph count and 
transverse loph count variables have strong taxonomic associations. The 
longitudinal loph count is high when selenodonts (particularly bovids and 
cervids) dominate the faunal community. The transverse loph count is 
never dominantly high in faunal communities and increases in the 
presence of tropical non-Artyodactyls, such as elephants, tapirs or 
browsing rhinos. 

For this analysis, we only use freely available software and libraries. 
The datasets used in this study along with the scripts for performing the 
analysis with classical methods as well as with redescription mining, are 
publicly available at https://github.com/zliobaite/redescription-China. 

3. Preamble: classical analysis methods 

In order to highlight the perspectives of redescription mining, we 
first outline patterns and relations that can be produced with the most 
common classical analysis methods, namely correlation analysis, prin-
cipal component analysis, regression analysis and clustering. We use 
implementations provided by the Python SciPy,3 scikit-learn4 and 
Statsmodels5 libraries. 

3.1. Pairwise correlation and scatter plots 

Many methods exist for assessing pairwise-relation of numeric vari-
ables, the simplest and most popular of which is linear correlation 
(Pearson correlation coefficient). A correlation coefficient (r) indicates 
the strength of pairwise association, for example, PWetM and PWetM (r 
= 0.995) vary together, and TSeason and TIso (r = − 0.843) vary in 

Table 1 
List of the dental traits and bioclimatic variables.  

Dental variables 

HYP Average ordinated hypsodonty 
LOP Average longitudinal loph count 
HOD Average ordinated horizodonty 
AL Fraction of taxa with acute lophs 
OL Fraction of taxa with obtuse lophs 
SF Frac. of taxa with structural fortification of cups 
OT Frac. of taxa with flat occlusal topography 
CM Frac. of taxa with coronal cementum 
OO Frac. of taxa with exclusively obtuse lophs 
ETH Frac. of taxa with thickened enamel 
LOPT Average transverse loph count  

Climatic variables 

T~Y Mean Annual Temperature 
T~RngD Mean Diurnal Range 
TIso Isothermality 
TSeason Temperature Seasonality 
T+WarmM Max Temperature of Warmest Month 
T− ColdM Min Temperature of Coldest Month 
TRngY Annual Temperature Range 
T~WetQ Mean Temperature of Wettest Quarter 
T~DryQ Mean Temperature of Driest Quarter 
T~WarmQ Mean Temperature of Warmest Quarter 
T~ColdQ Mean Temperature of Coldest Quarter 
PTotY Annual Precipitation 
PWetM Precipitation of Wettest Month 
PDryM Precipitation of Driest Month 
PSeason Precipitation Seasonality 
PWetQ Precipitation of Wettest Quarter 
PDryQ Precipitation of Driest Quarter 
PWarmQ Precipitation of Warmest Quarter 
PColdQ Precipitation of Coldest Quarter 
NPP Net Primary Productivity 

Temperature and precipitation are measured respectively in degrees Celsius (◦C) 
and in millimeters (mm). 

NPP = min(3000/(1+ exp(1.315 − 0.119⋅T∼Y) ) , 3000⋅(1 − exp( − 0.000664⋅PTotY) ) ).

2 https://www.iucn.org/ 

3 https://www.scipy.org/, see scipy.cluster.hierarchy  
4 https://scikit-learn.org/stable/, see sklearn.decomposition.PCA, sklearn. 

cluster.KMeans and sklearn.metrics  
5 https://www.scipy.org/, see statsmodels.api.GLS 
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opposite directions. A visual inspection of scatter plots further allows to 
detect pairs of variables that are strongly related but not in a purely 
linear way, like PTotY and NPP, or more weakly related in a clearly non- 
linear way, like T~DryQ and PWarmQ, for instance. Non-linear methods 
(such as Spearman rank correlation) or methods for categorical variables 
are available for quantifying pairwise relationships further, if necessary, 
but stand-alone correlation analysis does not give a multivariate 
perspective on data. 

3.2. Multivariate projections 

Several linear and non-linear methods exist for projecting data into a 
lower-dimensional space, the most common of which is Principal 
Component Analysis (PCA) (Hotelling, 1933; Pearson, 1901). The dataset 
is projected into new dimensions, called the principal components, which 
are positioned orthogonally to each other. For visual analysis, the pro-
jection is typically restricted to the first two principal components, i.e. 
along the two uncorrelated dimensions that preserve the largest amount 
of variance. 

The PCA projection plot in Fig. 2(a) gives an overview of relations 
between variables. We can identify groups of strongly related variables. 
For instance, expectedly, monthly and quarterly temperature variables 
(T+WarmM, T− Cold, T~WarmQ, etc.) behave in a strongly coordinated 

manner. We also see that SF and TIso are strongly correlated, and 
negatively correlated with PSeason. 

3.3. Regression models 

Regression models are commonly used for making predictions of 
unobserved variables, as well as summarizing relationships between 
variables. Various techniques are available for building regression 
models, starting from single-variable to multi-variable models, from 
least squares to robust regularized regressions (Hastie et al., 2001), one 
can also add interaction components, making regression models non- 
linear. 

While PCA belongs to unsupervised methods, meaning that no 
particular perspective or variable is preferred or targeted and the anal-
ysis aims at characterizing the structure of the data, regression belongs 
to supervised methods, meaning that particular relationships are 
assumed and the model detects whether such relationships are present. 
For instance, the value of PTotY can be estimated accurately from OO 
(comparatively low Akaike’s information criterion (AIC) and high F- 
statistic values) but models for predicting TIso from the same trait 
variable do not show a good linear fit. Crucially, the relationships 
extracted in regression analysis are expected to be valid across most of 
the dataset, that is, global models are obtained. 

Fig. 1. Map of the species richness. Number of different species of large herbivorous mammals occurring at each locality.  

Fig. 2. PCA projection of the variables and maps of clusterings. The variables are projected on the first two components identified by the principal component 
analysis, considering all variables together (a). The maps show clusterings from k-means (b) and HCA with median linkage function (c), both for k = 5 clusters. To the 
left of each map, we list the different clusters, with the number of localities they contain. 
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3.4. Clustering 

Among the many computational techniques available for clustering 
(Jain and Dubes, 1988), k-means and different variants of hierarchical 
cluster analysis (HCA) are commonly used in ecology. 

The k-means algorithm (Lloyd, 1982) is an iterative procedure that 
alternates between assigning data points to the closest cluster center and 
recomputing the cluster centers. Agglomerative HCA (Ward, 1963) 
starts with each data point as a distinct cluster. An algorithm then 
iteratively combines the most similar clusters pairwise, constructing a 
hierachy of clusters, until a single cluster remains. Practically, the pro-
cess is often stopped early, when a desired number of clusters is reached. 
Different criteria for measuring the distance between two clusters lead 
to variants of the algorithm. Let d(x,y) denote the distance between two 
data points x and y, and cX denote the centroid of cluster X. The distance 
D(U,V) between two clusters U and V is defined as follows in different 
HCA methods, also referred to as linkage functions, including: 

average a.k.a. Unweighted Pair-Group Method using arithmetic 
Averages (UPGMA), the average distance between cluster members, D 
(U,V) =

∑
(u,v)∈U×V(u,v)/(|U| ⋅ |V| ) 

centroid a.k.a. Unweighted Pair-Group Method using Centroids 
(UPGMC), the distance between cluster centroids, D(U,V) = d(cU,cV) 

median a.k.a. Weighted Pair-Group Method using Centroids 
(WPGMC), a variant of UPGMC weighted by the size of the clusters 

For illustration of clustering we use all and variables except HOD and 
LOPT, which we found to be mostly constant within the focus area. We 
standardized each variable, i.e. we separately centered and rescaled 
each variable by subtracting the mean and dividing by the standard 
deviation. Distances between data points were measured with the or-
dinary Euclidean distance metric (L2 norm). 

Example clusterings from k-means and HCA with median linkage 
function, both for k = 5 clusters are shown in Fig. 2(b) and (c), 
respectively. Here we do not enforce spatial connectivity of the localities 
within clusters, however connectivity tends to emerge automatically 
due to the connectivity of species occurrences and the spatial coherence 
of climatic trends. Different methods group the localities differently, but 
some areas emerge across most of the clusterings, regardless of minor 
variations in the specific localities involved. In particular, localities from 
the Tibetan plateau and expanding towards the east are often grouped 
into a cluster (drawn in shades of light blue) and similarly for areas from 
the Indian subcontinent and the Indochinese peninsula (shades of red 
and purple), as well as for areas of eastern China (shades of green and 
brown). 

Fig. 3 (top) schematically illustrates how these classical methods 
operate on a tabular dataset. Clustering identifies different subsets in the 
data but does not directly offer explanations for why entities are grouped 
in a particular way and which variables are primarily responsible for the 
structure. In other words, clustering does not provide models or de-
scriptors of the subsets. Regression or correlation analyses, on the other 
hand, provide models or descriptors, but they must hold across the 
whole dataset, without distinctions between subsets. In contrast, re-
descriptions constitute local models. 

4. Redescription mining methodology 

The result of redescription mining can be viewed as an ensemble of 
local models providing multiple perspectives over an ecosystem. The 
data subsets on which these local models are built can overlap. The local 
models are not functions, in the sense of a standard regression, but 
paired collections of limiting conditions, in this case, limits on the 
climate coupled with limits on the proportion of dental traits among the 
population of herbivores. 

Redescription mining is the process of automatically identifying and 
statistically evaluating limiting conditions and corresponding data 
subsets. Different algorithms exist for mining redescriptions. Here we 
introduce the underlying concepts and one algorithmic approach, which 

we tailored for biogeographic analyses. See (Galbrun and Miettinen, 
2017) for more details about the method. Fig. 3 (bottom) schematically 
illustrates and summarizes the main concepts of redescription mining. 

4.1. Concepts and definitions 

With this method, associations are captured as pairs of logical for-
mulas—also known as queries—expressing constraints on the values that 
the variables might take. Each such query defines a subset of localities 
where the corresponding constraints are satisfied, called the support of 
the query. The algorithmic process constructs pairs of queries, over 
climate and dental traits variables respectively, such that the two cor-
responding sets of localities overlap as much as possible. In this way, the 
method generates alternative descriptions of a subset of localities, in 
terms of their climatic conditions, on one hand, and of prevailing dental 
traits, on the other hand, hence the name redescription. Queries can be 
seen as hypotheses about associations between variables, and rede-
scription mining as a process to automatically generate and evaluate 
those hypotheses. 

As a practical example, consider the following query over climatic 
variables: 

qC = [19.6 ≤ T +WarmM ≤ ] AND [116 ≤ PWarmQ].

We use the Iverson bracket to specify satisfiability conditions, that is, 
in our case, the ranges in which the numerical variables must take value. 
The query above selects localities where the maximum temperature of 
the warmest month (T+WarmM) is between 19.6 and 38.5 ◦C and the 
precipitation of the warmest quarter (PWarmQ) is greater than 116 mm. 
The support of this query, denoted as supp(qC), is the set of localities 
where the specified temperature and precipitation conditions are 
satisfied. 

Then, a redescription is a pair of queries, one over climate variables 
and one over dental trait variables respectively denoted as qD and qC, 
having similar supports, that is, such that their respective sets of satis-
fying localities overlap as much as possible. The support of a rede-
scription is the subset of localities at which both queries are satisfied, i.e. 
the set of localities that meet both the climate as well as the dental 
conditions. Overloading the notation, we denote the support of a rede-
scription R = (qD,qC) as supp(R), which is such that 

supp(R) = supp(qD) ∩ supp(qC).

The accuracy of a redescription is a measure of the validity of the 
relationship across the dataset. The accuracy could be assessed using any 
similarity measure between sets. The Jaccard coefficient (Jaccard, 1901) 
is generally used for this purpose because it is intuitive and symmetric, 
in the sense that the two compared sets are exchangeable. Formally, the 
Jaccard coefficient is defined as 

J(R) =
|supp(qD) ∩ supp(qC)|

|supp(qD) ∪ supp(qC)|
.

Informally, we are trying to maximize the number of localities where 
both queries are satisfied while minimizing the number of localities 
where only one of them is. To assess the statistical significance, we 
compute a that indicates how likely it is that the support of the rede-
scription is as large or larger than observed, given the size of the support 
of the two queries it consists of, assuming the queries are independent. 

4.2. Analysis procedure and parameter settings 

Multiple algorithms have been proposed for finding accurate and 
statistically significant redescriptions. In this study, we use the algo-
rithm (Galbrun and Miettinen, 2012), which is a greedy algorithm in the 
sense that it makes a locally optimal choice at each iteration. In the 
initialization phase, the algorithm tests all variable pairs, in our case 
each dental variable with each climatic variable, aiming to form simple 

E. Galbrun et al.                                                                                                                                                                                                                                



Ecological Informatics 63 (2021) 101314

6

redescriptions. In the extension phase, the algorithm then iterates over 
these basic redescriptions and extends them, aiming to improve the 
accuracy of the redescription. Specifically, generates redescriptions by 
appending new variables to the current queries, at each step keeping the 
best candidates for further extension. 

We performed the analysis using SIREN,6 an interface that allows to 
automatically generate redescriptions with various algorithms, 
including, and to visualize, cluster and interactively edit the re-
descriptions (Galbrun and Miettinen, 2018). 

The method requires manually setting several parameters, described 
in more details in the user guide.7 In particular, about half a dozen pa-
rameters allow to set thresholds on the size of the support of the output 
redescriptions and to control the length and complexity of their queries. 

We required that at least 1% of localities satisfy both queries (Min-
SuppIn) and that at least 30% of localities satisfy neither of the queries 
(MinSuppOut). In other words, the intersection of the supports of the 
two queries (the support of the redescription) and their union were 
required to contain at least 1% and at most 70% of all localities. This is 
an inclusive choice, not overly restrictive, that aims at capturing local 
patterns. Increasing the upper threshold further would jeopardize the 
local aspect of the analysis, and would lead to something more akin to 
non-linear regression. For a redescription to be informative, its support 
should neither be too large nor too small, and we found these thresholds 
to provide a good balance, and small variations in these parameters did 
not impact the results much. 

We used two different setups when running the REREMI algorithm. In 
the first run, we allowed only conjunctive queries on both sides (i.e. we 
explicitly forbid the use of ‘OR’) and restricted the number of variables 

to three dental variables and two climate variables. In the second run, 
we allowed dental queries to involve disjunctions, and climate queries to 
contain up to three variables, but tightened the requirement of accuracy 
gain. Specifically, under this constraint, a candidate query can be 
extended by automatically adding the next variable only if the accuracy, 
as measured by the Jaccard coefficient, increases by a least 0.1. The goal 
is to obtain interpretable, not overly complex (long) queries. This can be 
achieved either explicitly, by limiting the number of variables and the 
operators used in the queries, as in the first run, or implicitly, by 
allowing increased complexity only if it brings substantial improvement 
in terms of accuracy, as in the second run. 

4.3. Selecting individual redescriptions for further analyses 

Redescription mining typically outputs a large number of re-
descriptions, each holding on a subregion within the dataset. Subregions 
can overlap, and the same subregion can potentially be described by 
different variables. Analysts might manually sift through individual re-
descriptions. However, it is not practical to analyze large collections of 
redescriptions, since many of them contain similar information. There-
fore, computational means are needed to remove redundant (very 
similar) redescriptions and identify the most informative (distinct) 
patterns. 

In this study we approach this challenge in three ways. First, we rank 
and filter redescriptions automatically using accuracy and redundancy 
measures. Among the top-listed redescriptions, we pick a few pairs for 
further analysis by visually inspecting maps of the corresponding sub-
regions. We also analyze the top-listed redescriptions as a group, by 
means of clustering, allowing us to identify coherent computational 
ecoregions for the study area. In other words, we perform our analysis 
and reach conclusions through a combination of automated and manual 

Fig. 3. Schema of classical methods we consider (top) and redescription mining, including a summary of important notations (bottom). Classical methods can be 
separated into variable-centered approaches (including correlation analysis and regression analysis) and locality-centered approaches (including clustering). 
Redescription mining aims to combine these two types of approaches. 

6 http://cs.uef.fi/siren/main/  
7 http://cs.uef.fi/siren/help/ 
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processing. 
The first run, with strict explicit constraints, generated 271 re-

descriptions while the second run, with stringent threshold on accuracy 
gains, generated 188 redescriptions. Either run took about 50 min to 
complete on a commodity laptop. 

We filter the two collections separately, ranking the redescriptions 
by decreasing accuracy and removing any redescription having more 
than 90% of its support in common with a higher-ranked one. That is, a 
redescription Rx is removed from the set of results if it contains a more 
accurate redescription Ry such that 

⃒
⃒supp(Rx) ∩ supp

(
Ry
)⃒
⃒

min
( ⃒
⃒supp(Rx) |,|supp

(
Ry
)
|
) > 0.9.

We then inspect more closely the top-ten remaining redescriptions 
from both lists. We denote the ten redescriptions produced by the first 
run, i.e. using only conjunctions, and ordered by decreasing accuracy as 
R1.1–R1.10. Similarly, the ten redescriptions produced by the second 
run, i.e. under the stricter improvement requirement, and ordered by 
decreasing accuracy are denoted as R2.1–R2.10. All the selected re-
descriptions have s close to zero, without correction for multiple testing 
which is not yet possible with existing methods. 

In summary, the twenty selected redescriptions were obtained using 
automated processes driven primarily by accuracy with the second run 
yielding more compact but somewhat less accurate redescriptions than 
the first. 

4.4. Using redescriptions as building blocks for identifying new ecoregions 

While individual redescriptions and the associated limiting conditions 
can be analyzed in isolation (Section 5.2), they can also be used in com-
bination as lenses to characterize ecosystems (Section 5.1). Conceptually, 
each redescription can be thought of as a basic ingredient. Each locality 
then can be described by a recipe, that involves some of these ingredients 
(redescriptions that hold true at that locality) but not others. We can then 
find similar localities in terms of their redescription profiles and denote 
them as distinct ecoregions. The procedure is as follows. 

Each locality is represented by a binary vector recording whether or 
not the corresponding redescription holds at the locality, which we refer 
to as the support membership vector. The distance h(u,v) between two 
localities is measured as the Hamming distance, i.e. the number of 
mismatches, between their respective support membership vectors. In 
other words, the distance between localities u and v is the number of 
redescriptions that hold at either of the two localities but not both. The 
distance is zero if the localities satisfy exactly the same redescriptions. 

Clusters are then formed by applying a hierarchical agglomerative 
procedure to the support membership vectors. As with standard hier-
archical clustering methods, we obtain different variants depending on 
how the distance between clusters is measured, and hence how the next 
pair of clusters to merge is selected. The distance D(U,V) between two 
clusters U and V is defined as follows in the different redescription 
clustering methods: 

sizes the maximum distance between cluster members, i.e. 
D(U,V) = max(u,v)∈U×Vh(u,v). Ties are broken in favor of pairs of clusters 
having similar sizes. 

ones the maximum distance between cluster members, i.e. 
D(U,V) = max(u,v)∈U×Vh(u,v). Ties are broken in favor of pairs of clusters 
sharing more positive matches, first, and having similar sizes, second. 

wdist the sum of distances between cluster members, i.e. 
D(U,V) =

∑
(u,v)∈U×Vh(u,v), directly taking into account the sizes of the 

clusters. 
Because the clusters are generated based on which redescriptions the 

localities support, the redescriptions that are most represented within 
each cluster provide a characterization for it. In other words, the queries 
of the redescriptions can be used to understand what are the properties 
that lead to localities being grouped together into a cluster. Each cluster 

can be interpreted as a computationally identified ecoregion. 

5. Case study: biogeographic analysis with redescription mining 

The goal of this case study is to illustrate the type of insights and 
interpretations that can potentially be obtained from redescriptions. We 
first explain how an analysis can be performed at the ecosystem level, 
using redescriptions as ingredients. Then, we focus on a few selected 
redescriptions to show what type of information they can capture. 

5.1. Computationally identifying ecoregions with redescription summaries 

We obtain summaries in terms of the twenty most accurate re-
descriptions with the different clustering variants and for k = 3, 5 and 7 
clusters. These clusterings reflect limiting conditions in terms of dental 
traits and climate variables. We focus on the summary obtained with the 
widst clustering variant, as it accounts for cluster sizes in a natural way, 
and is therefore fairly interpretable. The summary obtained by setting 
the number of clusters to 5, which gives the best compromise between 
number of clusters and total distance, is shown in Fig. 4. 

The left panel of Fig. 4 shows a map of the resulting geographic 
clusters. As above with the support of redescriptions, the clusters tend to 
span over contiguous localities, not because we enforce spatial con-
nectivity but, rather, as a consequence of autocorrelation within the 
variables. Since the clusters summarize the interplay between the sup-
port of multiple redescriptions, individual redescriptions are not ex-
pected to match the boundaries of any single cluster. 

The results suggest generally similar distinct biogeographical regions 
as the clustering analysis based on raw dental traits and climate data 
(Section 3), such as the Tibetan Plateau, East China and India. However, 
they exhibit a lower similarity between India and Southeast Asia and 
between the Tibetan Plateau and northern China, but a greater similarity 
between southern China and Southeast Asia and between southern 
China and northern China. A much finer spatial structure over southern 
China and Southeast Asia is captured, which seems to correspond well to 
the distribution of plant relicts found in these regions (Huang et al., 
2015). 

The right panel of Fig. 4 shows how the localities supporting the 
redescriptions are distributed among these cluster regions. This can be 
used to look up the redescriptions that are most represented within a 
cluster (darker cells) and understand the reasons that led to the cluster 
being formed. For instance, redescriptions R2.1 and R1.2 are very spe-
cific to cluster A, which corresponds to the Tibetan plateau. The Tibetan 
Plateau and surrounding regions, indeed, have been highlighted as one 
of the most complex and distinct biotas on Earth (He et al., 2020), that 
also underwent striking changes over time. Redescriptions R1.8, R2.6 
and R1.10 and R1.5 are particularly well represented in cluster B, while 
redescriptions R2.5 and R1.4 are represented in both B and C, as well as 
cluster D to a lesser extent. Most of the remaining redescriptions are 
represented in cluster C, as well as cluster D, cluster E, or both. 

The geographic clusters of the redescriptions summary can be 
thought of as computational ecoregions. For comparison, the terrestrial 
ecoregions8 as defined by Olson and Dinerstein (2002) are plotted in 
Fig. 5 and listed in Table 2. While the original mapping is primarily 
based on vegetation, zoogeographically adjusted variants (Holt et al., 
2013) offer by and large the same conclusions with somewhat more 
pronounced separation between India and southern Asia. 

We observe some correspondences between the terrestrial ecor-
egions and the clustering that emerges from the support of the re-
descriptions. These results suggest that the patterns extracted 
automatically from the dental traits distribution and climatic variables, 
without any geospatial information, closely correspond to manually 
defined terrestrial ecoregions. Redescription cluster A closely matches 

8 http://maps.tnc.org/gis_data.html 
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the Montane Grasslands and Shrubland ecoregion (ecoregion 10 in Fig. 5 
and Table 2). Redescription cluster B closely captures Temperate 
Broadleaf and Mixed Forests (ecoregion 4) and Temperate Conifer Forests 
(ecoregion 5). The narrow band of temperate forest along the southern 
slope of the Himalayas is especially well captured. Redescription cluster 
C largely matches Tropical and Subtropical Moist Broadleaf Forests 
(ecoregion 1) except some misses in India. Redescription cluster E 
mainly covers inland India and matches Tropical and Subtropical Moist as 
well as Dry Broadleaf Forests (ecoregions 2 and 1), while redescription 
cluster D collects many isolated patches nearby coasts, to the exclusion 

of coasts corresponding to Deserts and Xeric Shrubland (ecoregion 13), to 
Mangroves (ecoregion 14), and to Broadleaf Forest ecoregions (ecoregions 
1, 2 and 4). 

Comparison with the map of species richness of large herbivorous 
mammals (Fig. 1) reveals a good overlap of cluster D with the regions 
showing low number of species over Southeast Asia, Bangladesh and the 
southern coast of China. This implies that cluster D may emerge due to a 
lack of data. However, Cluster D also appears to be visually similar to the 
distribution of plant relicts, i.e. “plant groups that were once widespread 
in the Northern Hemisphere but are now restricted to some small 

Fig. 4. Redescription summary. Redescription-based clustering with the wdist variant and k = 5 clusters. The left-hand side panel shows a map of the five cluster 
regions formed by the supports of the top ten redescriptions from both runs. The table in the right-hand side panel shows the repartition of the supports of the 
redescriptions across these cluster regions. Each column of the table corresponds to one of the cluster regions and each row corresponds to a redescription. The shade 
of the cells indicates the fraction of localities from the region belonging to the support of the redescription, with black cells meaning that the entire region belongs to 
the support of the redescription. 

Fig. 5. Distribution of the twenty redescriptions across terrestrial ecoregions. The left-hand side panel shows a map of the terrestrial ecoregions in the study region, 
with the border between the Palearctic (north) and Indomalaya (south) biogeographic realms as a red line (Olson and Dinerstein, 2002). The table in the right-hand 
side panel shows the repartition of the support of the redescriptions across these ecoregions. Similarly as in Fig. 4, each column of the table corresponds to one of the 
ecoregions and each row corresponds to a redescription. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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isolated areas”, in southern China (Huang et al., 2015). Therefore, this 
represents a region (corresponding to cluster D in our results) with a 
unique climate-vegetation association, which cannot be observed in 
other places anymore nowadays. Cluster D also relates to the potential 
distribution of Savannahs in Asia (Fig. 1 in Ratnam et al., 2016) and its 
spatially fragmented nature is similar to the distribution of high 
mammalian diversity regions in Asia (Brum et al., 2017). These lines of 
evidence may explain the lack of spatial connectivity of cluster D, and 
indicate that the seemingly randomly distributed regions of cluster D are 
more likely to arise from their unique biogeographical features as re-
flected by their climate and dental traits together. We emphasize that 
cluster D does not emerge by doing clustering analysis on dental traits or 
climate variables alone, highlighting the potential of redescription 
mining for recognizing unique biogeographical regions (e.g. biodiversity 
hotpots or Savannahs). 

This part of our analysis has a close connection to the recent work of 
He et al. (2017). The main distinction, apart from the fact that we 
include southern Asia in addition to China, is in the source information. 
He et al. (2017) used species occurrence lists, while we primarily relied 
on functional dental traits. This way, our species coverage is narrower, 
but hopefully provides a direct biomechanical link, with vegetation as 
an interface between plants and the animals that eat them. Functional 
dental traits primarily relate to limiting rather than average climatic 
conditions for herbivores (Žliobaitė et al., 2016). Given those method-
ological differences it is reassuring to observe a general match in the 
prominence of the Tibetan plateau and the East–West division. 

5.2. Insights from individual redescriptions 

We now take a closer look at a selection of individual redescriptions. 
We analyze individual redescriptions from two runs. We selected the 
most accurate matching redescriptions from each run. As visible from 
the support maps in Fig. 6, the selected redescriptions characterize 
distinctive regions. 

Redescriptions R2.1 and R1.2 cover the Tibetan plateau. Redescrip-
tion R2.1 requires longitudinal loph count (LOP) to be close to maximum 
and no thickened enamel (ETH), which in the context of our experi-
mental scoring relates to the absence of suids. Redescription R1.2 re-
quires obtuse lophs (OL) to be close to maximum, indicating generalist 
herbivory (Oksanen et al., 2019), and structural fortification (SF) to be 
very low, which hints towards seasonal environments lacking humid 
woodlands (Žliobaitė et al., 2018), as well as low proportion of thick-
ened enamel (ETH) as before. From the climatic perspective, rede-
scription R2.1 prescribes low temperatures in the warmest quarter 
(T~WarmQ) and low annual precipitation (PTotY), while redescription 
R1.2 prescribes a low mean annual temperature (T~Y) and high but not 
extreme seasonality of the temperature (TSeason). Indeed, these re-
descriptions align with harsh seasonal environments in combination 

with generalist dental morphologies. Note that R2.1 seems to capture 
even harsher and continental climates than R1.2. The support of R1.2 is 
smaller than the support of R2.1 and does not cover part of the south-
eastern Tibetan plateau. 

Redescriptions R2.2 and R1.1 cover the majority of the continental 
part of the Indomalaya biogeographic realm, yet have tightly restricted 
queries both from the dental and climatic perspectives, which associate 
with relatively wet and woody habitats. Both dental queries require a 
low share of exclusively obtuse lophs (OO), which suggests a dominance 
of browsers in closed habitats and is in line with dominant closed woody 
vegetation in that region. The dental query of the second redescription 
excludes extreme high longitudinal loph count (LOP), which suggests a 
combination of selenodont and non-selenodont teeth, which is expected 
in the context of near-tropical woody vegetation. From the climatic 
perspective, both redescriptions require the temperature of the wettest 
quarter (T~WetQ) to be warm, but not too hot, suggesting the presence 
of an extremely favorable growing season. The second redescription, 
R1.1, further requires annual precipitation (PToY) not to be too low. 
Overall, these redescriptions and their support regions hint towards an 
accommodating environment, which does not require extremely 
specialized teeth and supports a high richness of herbivore species (cf. 
Fig. 1). 

Redescriptions R2.5 and R1.4 describe a subset of the Indomalaya 
biogeographic realm, excluding inland India but extending north into 
China. Both dental queries require hypsodonty (HYP) to be relatively 
low. Redescription R1.4, further requires a low loph count (LOP) and a 
low share of obtuse lophs (OO), similarly to the previous pair of re-
descriptions covering the Indomalaya realm (R2.2 and R1.1). Both 
climate queries require temperatures of the warmest month (T+WarmM) 
to range from rather mild to quite hot (from ca. 20 ◦C to ca. 40 ◦C). 
Redescription R1.4 further constrains precipitation of the warmest 
quarter (PWarmQ), excluding extreme dryness. Curiously, the two re-
descriptions cover costal areas of India and the foothills of the Hima-
layas, but not central India, where hypsodonty tends to be higher. 

Redescriptions in the last pair (R2.6 and R1.8) show a curious spatial 
pattern. They cover primarily mainland East China and southern Asia, 
extending into a narrow strip spanning across the slope of the Himalaya 
mountains, without ever including the top (Tibetan plateau) nor the 
bottom (central India) of the mountain range (cf. bottom row of Fig. 6). 
The dental queries of both redescriptions include acute lophs (AL). The 
specified range of values is broad, allowing all except total and near- 
absence, and is thus not particularly informative. However, high pro-
portions of acute lophs generally indicate seasonal temperate environ-
ments with abundant woody cover (Oksanen et al., 2019), of deciduous 
forests in particular. The second redescription includes a constraint to 
low proportion of structurally fortified molars (SF). Structural fortifi-
cation is generally a characteristic of tropical woody environments, and 
often comes along with high hypsodonty (Žliobaitė et al., 2018). Only 
temperature variables appear in the climate queries of both re-
descriptions. The first redescription allows a wide range of temperatures 
during the warmest quarter (T~WarmQ), down to a rather cold lower 
bound (6 ◦C). The second redescription instead involves the mean 
annual temperature (T~Y), also allowing a wide range of values, down 
to rather low values (− 5.5 ◦C). 

The last two pairs of redescriptions (R2.5 and R1.4) and (R2.6 and 
R1.8) are quite similar in terms of their geographic coverage, with the 
latter pair almost eschewing the Indomalayan realm while having a 
much broader coverage along the Himalayan slope and more coverage 
in more northern parts of the region. On the climate side, both pairs 
emphasize the warmest periods of the year, with the latter pair having a 
lower threshold for the warmest temperature. In terms of traits the first 
pair emphasizes (lack of extreme) durability via hypsodonty (HYP), 
while the second pair emphasizes the cutting capacity via acute lophs 
(AL). 

Overall, an in-depth analysis of every obtained redescription would 
normally be infeasible. Indeed, our runs produced a total of 459 

Table 2 
List of the terrestrial ecoregions (Olson and Dinerstein, 2002).  

1 Tropical and Subtropical Moist Broadleaf Forests 
2 Tropical and Subtropical Dry Broadleaf Forests 
3 Tropical and Subtropical Coniferous Forests 
4 Temperate Broadleaf and Mixed Forests 
5 Temperate Conifer Forests 
6 Boreal Forests/Taiga 
7 Tropical and Subtrop. Grasslands, Savannas and Shrublands 
8 Temperate Grasslands, Savannas and Shrublands 
9 Flooded Grasslands and Savannas 
10 Montane Grasslands and Shrublands 
11 Tundra 
12 Mediterranean Forests, Woodlands and Scrub 
13 Deserts and Xeric Shrublands 
14 Mangroves 
98 Inland Water 
99 Rock and Ice  
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redescriptions. Each redescription represents one local perspective to-
wards an ecosystem. One can select individual redescriptions for anal-
ysis using quantitative criteria, or use them together as elements in 
structural analyses of ecosystems. This type of analysis also has potential 
in studies of past and future ecosystems, where some elements can be 
expected to vary over time. Decomposing an ecosystem into such 
functional elements might help, for instance, investigate which aspects 
of the system are changing over time and which aspects remain constant. 

6. Conclusions 

Redescription mining is a methodology for extracting local patterns 
between two perspectives over the same system. It can be seen as a 
hybrid of regression modelling and cluster analysis. Indeed, it delineates 
subsets of the data, similarly to clustering, and also captures 

relationships between variables, similarly to regression. Some de-
scriptions might be generic and hold across a large number of localities, 
whereas other descriptions might be very specific and hold only at few 
localities. 

In our case study, we analyze dental traits and climate variables in 
China and southern Asia via redescription mining. We show that indi-
vidual redescriptions allow to identify spatial associations between 
dental traits and climate variables, while redescription summaries (i.e. 
clusterings based on the redescriptions) can delineate distinct biogeo-
graphic areas within this region. We show how an ecosystem level 
analysis can be carried out using redescriptions as elements, and then 
zoom into selected redescriptions to show how they can capture 
ecological limiting conditions. 

The results based on redescriptions reveal a finer spatial structure 
over southern China and Southeast Asia, which seems to correspond well 

Fig. 6. Focus maps of example redescriptions. Lo-
calities that support both queries, only the dental 
trait query and only the climate query, are drawn in 
purple, in red and in blue, respectively. For each 
redescription, we list the query over dental traits 
variables (qD), the query over bioclimatic variables 
(qC), the accuracy of the redescription (J) as well as 
the size of its support as a percentage of the total 
number of localities (supp %). (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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to plant relicts found in these regions. In contrast, the results of the 
classical clustering focus on the differences within the Tibetan Plateau. 
These discrepancies highlight the potential added value of using 
redescriptions-based clusters to delineate biologically meaningful 
ecoregions with finer structure. 

Different from regression methods that require strong assumptions 
on the shape of the association across the whole data set (e.g. linear or 
logarithmic), redescription mining allows a broader exploration of 
different associations for different subsets of the data, that can not be 
detected by classical methods. Redescription mining searches for pairs of 
descriptions that intersect in their areas of validity. In the ecological 
sense, a redescription automatically extracts and pairs collections of 
limiting conditions, such that if one collection of conditions is satisfied, 
the other is also very likely to be satisfied. Since redescription mining 
works by automatically identifying limiting conditions from two per-
spectives, it naturally lends itself to ecological analyses, where limiting 
conditions often play a central role. 

Through redescriptions, localities can be characterized in different 
ways in terms of the available variables, e.g. specific occurring species, 
species richness, vegetation types, average climate or elevation. The 
methodology is not limited to finding associations across space, when the 
considered objects have geospatial coordinates like the localities consid-
ered in this study. It can also be used to identify associations across time or 
biological organisms. It can be applied to different types of variables 
describing various aspects of an ecosystem, such as species abundance, 
plant traits, human disturbances, etc., and to other regions, depending on 
the research questions. We believe that redescription mining offers an 
interesting complementary tool for biogeographic and ecological analyses. 

One can select individual redescriptions for analysis using quanti-
tative criteria, or use them all together as elements for structural ana-
lyses of ecosystems. This type of approach also has potential for studying 
past and future ecosystems, for instance to help tell apart aspects of the 
system that are changing over time from those that remain constant. 
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Liu, L., Puolamäki, K., Eronen, J., Mirzaie Ataabadi, M., Hernesniemi, E., Fortelius, M., 

2012. Dental functional traits of mammals resolve productivity in terrestrial 
ecosystems past and present. Proc. R. Soc. Lond. B Biol. Sci. 279, 2793–2799. 
https://doi.org/10.1098/rspb.2012.0211. 

Lloyd, S., 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 (2), 
129–137. https://doi.org/10.1109/TIT.1982.1056489. 

MacArthur, R., Wilson, E., 1967. The Theory of Island Biogeography. Princeton 
University Press. 

E. Galbrun et al.                                                                                                                                                                                                                                

https://github.com/zliobaite/redescription-China
https://doi.org/10.1111/j.1366-9516.2006.00260.x
https://doi.org/10.1111/2041-210X.13363
https://doi.org/10.1111/2041-210X.13363
https://doi.org/10.1073/pnas.1706461114
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0020
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0020
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0025
https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1749-4877.2010.00192.x
https://doi.org/10.1111/j.1749-4877.2010.00192.x
https://doi.org/10.1038/s41559-017-0089
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0050
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0050
https://doi.org/10.1002/sam.11145
https://doi.org/10.1007/978-3-319-72889-6
https://doi.org/10.1007/978-3-319-72889-6
https://doi.org/10.1145/3007212
https://doi.org/10.26879/786
https://doi.org/10.26879/786
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1111/jbi.12892
https://doi.org/10.1371/journal.pone.0199735
https://doi.org/10.1371/journal.pone.0199735
https://doi.org/10.1038/s42003-020-01154-2
https://doi.org/10.1038/s42003-020-01154-2
https://doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
https://doi.org/10.1126/science.1228282
https://doi.org/10.1037/h0071325
https://doi.org/10.1038/srep14212
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0115
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0115
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0120
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0125
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0125
https://doi.org/10.1111/2041-210X.13371
https://doi.org/10.1111/2041-210X.13371
https://doi.org/10.1111/j.1365-2699.2010.02375.x
https://doi.org/10.1111/j.1365-2699.2010.02375.x
https://doi.org/10.1007/BF02289694
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0145
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0145
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0150
https://doi.org/10.1098/rspb.2012.0211
https://doi.org/10.1109/TIT.1982.1056489
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0165
http://refhub.elsevier.com/S1574-9541(21)00105-9/rf0165


Ecological Informatics 63 (2021) 101314

12

Mellin, C., Mengersen, K., Bradshaw, C., Caley, M., 2014. Generalizing the use of 
geographical weights in biodiversity modelling. Glob. Ecol. Biogeogr. 23 (11), 
1314–1323. https://doi.org/10.1111/geb.12203. 
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