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PARTICLE REPRESENTATION FOR THE SOLUTION OF THE

FILTERING PROBLEM. APPLICATION TO THE ERROR

EXPANSION OF FILTERING DISCRETIZATIONS

DAN CRISAN, THOMAS G. KURTZ, AND SALVADOR ORTIZ-LATORRE*

Dedicated to the memory of Professor Hiroshi Kunita

Abstract. We introduce a weighted particle representation for the solution
of the filtering problem based on a suitably chosen variation of the classi-

cal de Finetti theorem. This representation has important theoretical and

numerical applications. In this paper, we explore some of its theoretical con-
sequences. The first is to deduce the equations satisfied by the solution of

the filtering problem in three different frameworks: the signal independent
Brownian measurement noise model, the spatial observations with additive

white noise model and the cluster detection model in spatial point processes.

Secondly we use the representation to show that a suitably chosen filtering
discretisation converges to the filtering solution. Thirdly we study the leading

error coefficient for the discretisation. We show that it satisfies a stochastic

partial differential equation by exploiting the weighted particle representation
for both the approximation and the limiting filtering solution.

1. Introduction

Many phenomena of interest are not completely observable, so it is natural to
look for ways of estimating what is not observable about a phenomenon in terms of
what is. A natural approach to this problem is to create a mathematical model for
the phenomenon that relates what is observable to what is not. Then the model
can be used to constrain or estimate the possibilities for the unobserved quantities
in terms of the observed quantities. If the mathematical model is stochastic,
then a natural way of formulating the solution of this problem is to compute
the conditional distribution of what is not known given what is known. If the
unknown and known quantities are evolving in time, the problem of computing
these conditional distributions as functions of time is referred to as stochastic
filtering.

Stochastic filtering has a illustrious history that can be traced back to the work
of Kolmogorov, Krein and Wiener from the 1940’s1. Over the last fifty years,
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Professor Kunita has made fundamental contributions to the study of the sto-
chastic filtering problem. A representative selection of his work on the subject is
incorporated in [10, 22, 16, 17, 18, 19, 20, 21], and covers : the stochastic partial
differential equations connected with stochastic filtering for the classical model
considered here in Section 2.1, the stochastic filtering problem for models in which
the signal is a general semi-martingale, the ergodic properties of nonlinear filter-
ing processes, the associated stability and approximation problems in nonlinear
filtering theory, the nonlinear filtering Cauchy problem, the asymptotic behavior
of the nonlinear filtering errors of Markov processes, the analysis of the innovation
process, the long time behavior of the solution of the filtering equations, etc.

The work [10] deserves special consideration. It contains a self-contained, fully
rigorous derivation of filtering equations. It is based on an approach that requires
the innovation process first considered by Kailath only a year earlier. It also uses
the existence of a reference probability measure obtained from the original one by
means of a transformation due to Girsanov that was, at the time, barely a decade
old. It used a (by now classical) representation of square integrable martingales
(appearing in Kunita’s earlier work with Watanabe) to remove the assumption of
independence between the measurement noise and the signal. The treatment in
[10] of the filtering problem was much cleaner than existing contemporary works
and allowed, among other things, for the treatment of controlled system processes.

The current work offers an alternative to Kunita’s treatment of the filtering
equations. In common with [10], we still make use of the reference probability
measure (as described below). However, the main tool for the derivation of filter-
ing equations is a certain weighted particle representation for the solution of the
filtering problem. Let us describe next the intuition behind this representation:

The simplest version of the filtering problem is one in which the model consists
of two random variables, say X and Y , where Y is known to the observer and X is
not. Although X is not known, we know the probability distribution of X and, in
fact, the joint law of (X,Y ). Assume the random variables are defined on a sample
space (Ω,F , P ), with X taking values in a space U and Y taking values in a space
O, which we will always take to be complete, separable metric spaces. In all the
examples we consider, these will be function spaces. Typically, we characterize the
conditional distribution in terms of the conditional expectations EP [f(X)|Y ] for
a sufficiently large class of functions f .

Central to our analysis is the notion of a reference probability measure. If
P << Q with dP = LdQ, Bayes formula says

EP [f(X)|Y ] =
EQ [f(X)L|Y ]

EQ [L|Y ]
.

If X = h(U, Y ), L = L(U, Y ), and U and Y are independent under Q, then

EP [f(X)|Y ] =

∫
f(h(u, Y ))L(u, Y )µU (du)∫

L(u, Y )µU (du)
,

where µU is the distribution of U . If we can find such a Q, that will be our
reference probability measure.
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These comments suggest a method for simplifying the calculation of conditional
distributions: Find a reference probability measure under which what we don’t
know is independent of what we do know. Then, as in [11], let U1, U2, . . . be iid
with distribution µU , and we have

EP [f(X)|Y ] = lim
N→∞

∑N
k=1 f(h(Uk, Y ))L(Uk, Y )∑N

k=1 L(Uk, Y )
.

Note that (U1, Y ), (U2, Y ), . . . is an exchangeable sequence with tail σ-algebra T =
σ(Y ) (see Corollary 7.25 of [13]), and de Finetti’s theorem gives

lim
N→∞

1

N

N∑
k=1

f(h(Uk, Y ))L(Uk, Y ) = EQ [f(U1, Y )L(U1, Y )|T ]

= EQ [f(U1, Y )L(U1, Y )|Y ]

=

∫
f(h(u, Y ))L(u, Y )µU (dx) a.s. Q.

In the context of stochastic processes and the Kallianpur-Striebel formula ([14]),
this limit suggests a natural approach to the derivation and representation of fil-
tering equations. We introduce a weighted particle representation for the solution
of the filtering problem based on a suitably chosen variation of the classical de
Finetti theorem. This representation has important theoretical and numerical
applications. In this paper, we explore some of its theoretical consequences.

The first is to deduce the equations satisfied by the solution of the filtering prob-
lem in three different frameworks: the signal independent Brownian measurement
noise model, the spatial observations with additive white noise model, and the
cluster detection model in spatial point processes. We cover this topic in Section
2.

Second, we use the representation to show that a suitably chosen filtering dis-
cretization converges to the filtering solution. We cover this topic in Section 3.
This discretization is one of three procedures required to develop any numerical
method approximating the solution of the filtering problem. See, for example,
Chapters 8, 9 and 10 in [1] for concrete examples of numerical schemes for solving
the filtering problem.

Third, we study the leading error coefficient for the discretization introduced
in Section 3. In Section 4, we show that it satisfies a stochastic partial differential
equation by exploiting the weighted particle representation for both the approx-
imation and the limiting filtering solution. Based on these representations, an
extension of the classical Richardson extrapolation result can also be obtained.
This is the subject of a subsequent work.

Particle representations are flexible tools that can be used for many other sto-
chastic dynamical systems. In this paper, particle representations are used to
characterize the solution of the filtering problem by deducing the corresponding
filtering equation, and it is also used to show the convergence of a certain dis-
cretization of the filtering solution. However, particle representations have many
other applications. In [25], they are used to prove uniqueness for a class of stochas-
tic partial differential equations that includes filtering equations. In [4], particle
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representations are used to study the solution of a nonlinear stochastic partial
differential equation. In particular, the authors show, under mild nondegeneracy
conditions on the coefficients, that the solution charges every open set and, under
slightly stronger conditions, that the solution is absolutely continuous with respect
to Lebesgue measure with strictly positive density. Such results would be very hard
to obtain (under the same general assumptions) by other methods such as PDE
methods (Sobolev embedding theorems) or Malliavin calculus. Separately, in [5],
a similar particle representation is used to study a class of semilinear stochastic
partial differential equations with Dirichlet boundary conditions that includes the
stochastic Allen-Cahn equation and the Φ4

d equation of Euclidean quantum field
theory. Particle representations arise naturally in the study of McKean-Vlasov
type models, for example, [24, 15, 4] where the representations are used to prove
limit theorems.

We should emphasize that what we are deriving here are particle representations
of the filter rather than particle approximations.2 There is a massive area of re-
search regarding particle approximations of the distributions of evolving dynamical
system, which we shall not discuss here.

2. Derivation of Filtering Equations

In the Introduction, we applied de Finetti’s theorem to derive a representation
of a conditional expectation in terms of what we called a reference probability
measure. In this section, we use this argument to derive stochastic equations
giving the solution of the filtering problem in three different settings. The first of
these is the familiar observation of a diffusion in Gaussian white noise. The second
is similar, but includes a noise process that is common to both the signal and the
observation. In addition, the observation process is infinite dimensional. In the
third example, the signal and observations are given by spatial point processes.

To avoid certain technicalities, we assume that all σ-algebras are complete and
all filtrations are complete and right continuous.

2.1. Observation of a diffusion in Gaussian white noise.

2.1.1. The model. The signal is given by an Itô equation in RdX ,

X(t) = X(0) +

∫ t

0

σ(X(s))dB(s) +

∫ t

0

b(X(s))ds, (2.1)

for dB-dimensional standard Brownian motion B, continuous dX × dB matrix-
valued σ, and continuous RdX -valued b, and the observation by

Y (t) =

∫ t

0

h(X(s))ds+W (t), (2.2)

where h : RdX → RdY is measurable and W is a RdY -valued standard Brownian
motion that is independent of B. What is known to the observer is Y and what

2The type of weighted particle representations considered here were mentioned briefly in [24]
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is not known is X, or assuming uniqueness for (2.1), B. We assume that X does
not explode, as would be the case if σ and b have at most linear growth, that is

|σ(x)|+ |b(x)| ≤ K1 +K2 |x| . (2.3)

For simplicity, we assume E[|X(0)|m] < ∞ for all m > 0, and note that under
the linear growth assumption, an exercise with Itô’s formula shows that for each
m ≥ 2, implies

E[ sup
0≤s≤t

|X(s)|m] < Dm
1 e

Dm
2 t, ∀t > 0, (2.4)

for appropriate constants D1, D2, see Proposition 7.2 in [26].

2.1.2. The reference probability space. We take (Ω,F , Q) to be a probability space
on which are defined independent Brownian motions B and Y , both independent of
X(0), with the same dimensions as B and Y above. Let the signal X be defined on
(Ω,F , Q) as the solution of (2.1), that is, under Q, what is known is independent
of what is not known. We note that many presentations of filtering problems
begin with (Ω,F , P ) and obtain Q by change of measure from P . That approach
requires P and Q to be equivalent in the sense that P << Q and Q << P . In
many settings, constructing the model starting with Q is more straightforward
and does not require Q << P . Let

L(t) = exp

{∫ t

0

hT (X(s))dY (s)− 1

2

∫ t

0

|h|2(X(s))ds

}
,

that is,

L(t) = 1 +

∫ t

0

L(t)hT (X(s))dY (s),

and assume that h satisfies conditions ensuring that L is a martingale. To ensure
that L is a martingale one can proceed as follows: since L is a positive local
martingale it is a supermartingale and it suffices to show that EQ [Lt] = 1. Assume
that ∫ t

0

|h|2(X(s))ds <∞, Q-a.s. (2.5)

Under Q, Y is a Brownian motion independent of X and the law of∫ t

0

hT (X(s))dY (s),

given FXt := σ (Xs : s ≤ t), is that of a Gaussian random variable with mean zero

and variance
∫ t
0
|h|2(X(s))ds. Therefore, we can write

EQ
[

exp

{∫ t

0

hT (X(s))dY (s)

}∣∣∣∣FXt ] = exp

{
1

2

∫ t

0

|h|2(X(s))ds

}
,

which yields EQ
[
Lt| FXt

]
≡ 1 and, therefore, EQ [Lt] = 1. For example, (2.5) is

trivially satisfied if h is bounded. Then defining dP|Ft
= L(t)dQ|Ft

, under P , by
Theorem A.8, B and W given by

W (t) = Y (t)−
∫ t

0

h(X(s))ds
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are independent standard Brownian motions. Consequently, under P , X and Y
have the joint distributions of (2.1) and (2.2).

2.1.3. Filtering equations. Let {FYt } be the (completed) filtration generated by
the observations Y . Then, assuming EQ[|ϕ(X(t))L(t)|] <∞, we have the Kallian-
pur-Striebel formula [14]

EP
[
ϕ(X(t))|FYt

]
=

EQ
[
ϕ(X(t))L(t)|FYt

]
EQ
[
L(t)|FYt

] .

Let X1, X2, . . . be iid copies of X that are independent of Y under Q, and let

Lk(t) = 1 +

∫ t

0

Lk(s)h(Xk(s))T dY (s).

We define the unnormalized conditional distribution ρ by

ρs(ϕ) ≡ EQ
[
ϕ(X(s))L(s)|FYs

]
= EQ

[
ϕ(Xk(s))Lk(s)|FYs

]
,

and the exchangeability of {(Xk, Y )} ensures

lim
N→∞

1

N

N∑
k=1

ϕ(Xk(s))Lk(s) = EQ[ϕ(X(s))L(s)|FYs ]. (2.6)

With reference to Appendix A.1, since {(Xk, Lk)} is exchangeable, by de Finetti’s
theorem, the sequence determines a random probability measure, which we will
call the de Finetti measure,

Ξ = lim
N→∞

1

N

N∑
k=1

δ(Xk,Lk) a.s.

on CRdX×[0,∞)[0,∞) and a probability measure-valued process

V (·) = lim
N→∞

1

N

N∑
k=1

δ(Xk(·),Lk(·)) in probability,

in CP(RdX×[0,∞))[0,∞). Of course, the unnormalized conditional distribution is

ρt(C) =

∫
RdX×[0,∞)

a1C(x)V (dx× da, t).

Lemma 2.1. Assume |h| is bounded. Then as with (2.4), for each m ≥ 2, there
exists D3 such that

EQ[ sup
0≤s≤t

L(s)m] ≤ eD3t. (2.7)

We assume (2.4) and (2.7) for all m > 0. Then, for ϕ ∈ C2(RdX ) satisfying
|ϕ(x)| ≤ C1 + C2|x|m,

ϕ(X(t)) = ϕ(X(0)) +

∫ t

0

∇ϕT (X(s))σ(X(s))dB(s) +

∫ t

0

Aϕ(X(s))ds,

where for a(x) = σ(x)σT (x)

Aϕ(x) =
1

2

∑
i,j

aij(x)∂i∂jϕ(x) + b(x) · ∇ϕ(x),
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and

ϕ(X(t))L(t) = ϕ(X(0)) +

∫ t

0

L(s)dϕ(X(s))ds+

∫ t

0

ϕ(X(s))dL(s)

= ϕ(X(0)) +

∫ t

0

L(s)∇ϕ(X(s))Tσ(X(s))dB(s)

+

∫ t

0

L(s)Aϕ(X(s))ds+

∫ t

0

ϕ(X(s))L(s)h(X(s))T dY (s).

Then for {(Xk, Lk)} given above,

ϕ(Xk(t))Lk(t) = ϕ(Xk(0)) +

∫ t

0

Lk(s)∇ϕ(Xk(s))Tσ(Xk(s))dBk(s) (2.8)

+

∫ t

0

Lk(s)Aϕ(Xk(s))ds

+

∫ t

0

ϕ(Xk(s))Lk(s)h(Xk(s))T dY (s),

where {Bk} is the sequence of independent standard Brownian motions associated
to the sequence of signals {Xk}. We claim that we can average both sides as in
(2.6) and obtain the following:

Theorem 2.2. For the model in Section 2.1, the unnormalized conditional distri-
bution ρ satisfies

ρt(ϕ) = ρ0(ϕ) +

∫ t

0

ρs(Aϕ)ds+

∫ t

0

ρs(ϕh)dY (s), (2.9)

the Zakai equation, and by Itô’s formula, we have the Kushner-Stratonovich equa-
tion.

πtϕ = EP [ϕ(X(t))|FYt ] =
ρt(ϕ)

ρt(1)

=
ρ0(ϕ)

ρ0(1)
+

∫ t

0

1

ρs(1)
dρs(ϕ)−

∫ t

0

ρs(ϕ)

ρs(1)2
dρs(1)

+

∫ t

0

ρs(ϕ)

ρs(1)3
d[ρ·(1)]s −

∫ t

0

1

ρs(1)2
d[ρ·(ϕ), ρ·(1)]s

= π0ϕ+

∫ t

0

πsAϕds+

∫ t

0

(πsϕh− πsϕπsh)dY (s)

+

∫ t

0

σ2πsϕπs|h|2ds−
∫ t

0

σ2πsϕhπshds

= π0ϕ+

∫ t

0

πsAϕds+

∫ t

0

(πsϕh− πsϕπsh)(dY (s)− πshds).

Proof. The term on the left and the first term on the right of (2.8) average as in
(2.6). The average over 1 ≤ k ≤ N of the second term on the right is a continuous,



8 DAN CRISAN, THOMAS G. KURTZ, AND SALVADOR ORTIZ-LATORRE

mean zero martingale with quadratic variation

1

N2

N∑
k=1

∫ t

0

Lk(s)2∇ϕ(Xk(s))Tσ(Xk(s))σ(Xk(s))T∇ϕ(Xk(s))ds,

which, under the growth and moment conditions above, converges to zero implying
the average converges to zero by Doob’s inequality. The averages of the integrands
in the last two terms converge to the integrands in the last two terms of (2.9) by
Lemma A.6, so the next to the last terms converges by elementary calculus and
the last term converges by the stochastic integral convergence result, Theorem 2.2
in [23]. �

In the terminology of [25], the infinite sequence {(Xk, Lk)} gives a particle
representation of the Zakai equation. The point here is not just that {(Xk, Lk)}
gives a derivation of the Zakai equation. The representation can, for example, be
used to prove uniqueness (see [25]) and derive approximations (see Section 4).

2.2. Spatial observations with additive white noise.

2.2.1. The model. The basic outline of the argument above works in many dif-
ferent situations. We again take the signal to be a diffusion in RdX , but now we
assume that the stochastic inputs include both a dB-dimensional standard Brow-
nian motion B and a space-time Gaussian white noise W . In particular,

X(t) = X(0)+

∫ t

0

σ(X(s))dB(s)+

∫ t

0

b(X(s))ds+

∫
S0×[0,t]

α(X(s), u)W (du×ds),

(2.10)
where E[W (C, t)] = 0 and

E[W (C, t)W (D, s)] = µ0(C ∩D)t ∧ s,
t, s ≥ 0 and C,D ∈ B(S0), the Borel sets for some complete, separable metric
space, S0.

We assume that the observations are given by Y (C, t), t ≥ 0 and C ∈ B(S0),
where

Y (C, t) =

∫ t

0

∫
C

h(X(s), u)µ0(du)ds+W (C, t). (2.11)

Consequently, σ is a dX × dB-dimensional matrix-valued function, b and α are
RdX -valued, and h is R-valued. For simplicity, assume σ, b, α, and h are bounded
and continuous and that µ0 is a finite measure.

Then the generator for X is

Aϕ(x) =
1

2

∑
aij(x)∂i∂jϕ(x) +

∑
bi(x)∂iϕ(x), ϕ ∈ C2

c

(
RdX

)
,

where

a(x) = σ(x)σ(x)T +

∫
S0

α(x, u)α(x, u)Tµ0(du).

We can write

X(t) = X(0) +

∫ t

0

σ(X(s))dB(s) +

∫
S0×[0,t]

α(X(s), u)Y (du× ds) (2.12)
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+

∫ t

0

(b(X(s))−
∫
S0

α(X(s), u)h(X(s), u)µ0(du))ds,

so Y is what we know and B is what we don’t know.

2.2.2. The reference probability space. Consequently, we assume B and Y are
defined on a measurable space (Ω,F), and there is a probability distribution Q on
F such that under Q, Y is Gaussian white noise on S0×[0,∞) with E[Y (C, t)] = 0,
t ≥ 0, C ∈ B(S0) and

E[Y (C, t)Y (D, s)] = µ0(C ∩D)t ∧ s,

and B is a standard dB dimensional Brownian motion independent of Y . Both
are independent of X(0).

Then take dP|Ft
= L(t)dQ|Ft

where

L(t) = 1 +

∫
S0×[0,t]

L(s)h(X(s), u)Y (du× ds),

and under P , (X,Y ) has the joint distribution of the original model.

2.2.3. Filtering equations. Under Q, X is a diffusion with generator

AQϕ(x) =
1

2

∑
aij(x)∂i∂jϕ(x) +

∑
ci(x)∂iϕ(x),

where

ci(x) = bi(x)−
∫
S0

α(x, u)h(x, u)µ0(du),

and under P , X is a diffusion with the original generator

Aϕ(x) =
1

2

∑
aij(x)∂i∂jϕ(x) +

∑
bi(x)∂iϕ(x),

that is, X is the signal of the original model.
Then

ϕ(X(t))L(t)

= ϕ(X(0)) +

∫ t

0

L(s)∇ϕ(X(s))Tσ(X(s))dB(s)

+

∫
S0×[0,t]

L(s)(∇ϕ(X(s)) · α(X(s), u))Y (du× ds)

+

∫ t

0

L(s)AQϕ(X(s))ds+

∫
S0×[0,t]

L(s)ϕ(X(s))h(X(s), u))Y (du× ds)

+

∫ t

0

L(s)∇ϕ(X(s))T
∫
S0

α(X(s), u)h(X(s), u)µ0(du)ds.

To obtain the particle representation, we let Bk be independent, standard Brow-
nian motions, independent of Y on (Ω,F , Q). Let

Xk(t) = Xk(0) +

∫ t

0

σ(Xk(s))dBk(s) +

∫
S0×[0,t]

α(Xk(s), u)Y (du× ds)
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+

∫ t

0

(
b(Xk(s))−

∫
S0

α(Xk(s), u)h(Xk(s), u)µ0(du

)
ds

Lk(t) = 1 +

∫
S0×[0,t]

Lk(s)h(Xk(s), u)Y (du× ds).

Then, as before,

ρt(ϕ) = EP [ϕ(X(t))L(t)|FYt ] = lim
N→∞

1

N

N∑
k=1

ϕ(Xk(t))Lk(t).

Since

ϕ(Xk(t))Lk(t)

= ϕ(Xk(0)) +

∫ t

0

Lk(s)∇ϕ(Xk(s))Tσ(Xk(s))dBk(s)

+

∫
S0×[0,t]

Lk(s)(∇ϕ(Xk(s)) · α(Xk(s), u)Y (du× ds)

+

∫ t

0

Lk(s)Aϕ(Xk(s))ds+ ϕ(Xk(s))h(Xk(s), u))Y (du× ds),

under appropriate moment conditions and applying convergence results of [24] to
the Y integral instead of [23], averaging gives

Theorem 2.3.

ρt(ϕ) = ρ0(ϕ) +

∫ t

0

ρs(Aϕ)ds

+

∫
S0×[0,t]

ρs(∇ϕ · α(·, u) + ϕh(·, u))Y (du× ds),

determines the unnormalized conditional distribution and the corresponding Kush-
ner–Stratonovich equation is

πtϕ =
ρt(ϕ)

ρt(1)

= π0ϕ+

∫ t

0

πsAϕds

+

∫
S0×[0,t]

(
πs(∇ϕ · α(·, u) + ϕh(·, u))− πsϕπsh(·, u)

)
Y (du× ds)

+

∫ t

0

∫
S0

(
πsϕπsh(·, u)− πs(∇ϕ · α(·, u) + ϕh(·, u))

)
πsh(·, u)µ0(du)ds

= π0ϕ+

∫ t

0

πsAϕds∫
S0×[0,t]

(
πs(∇ϕ · α(·, u) + ϕh(·, u))− πsϕπsh(·, u)

)
Ỹ (du× ds)

where

Ỹ (C, t) = Y (C, t)−
∫ t

0

∫
C

πsh(·, u)µ0(du)ds.
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2.3. Cluster detection in spatial point processes.

2.3.1. The model. The following example is a simplified version of the models
considered in [29, 28]. Natural settings in which this problem might arise include
internet packets that form a malicious attack on a computer system, financial
transactions that form a collusive trading scheme, and, the example considered in
[29], earthquakes that form a single seismic event.

Let E be a measurable space and C(E) be the collection of counting measures
on E and C(E × [0,∞)) the collection of counting measures on E × [0,∞). The
observations form a marked point process O with marks in E, that is for t ≥ 0,
O(·, t) ∈ C(E), that include the cluster C (the signal) and the noise N

O(A, t) = N(A, t) + C(A, t), A ∈ B(E), t ≥ 0.

For simplicity, we will assume the O(E, t) is finite for all t.
For ξ1 and ξ2 independent Poisson random measures on E× [0,∞)× [0,∞) with

mean measure ν × ` × `, ` denoting Lebesgue measure, γ a nonnegative function
on E, and λ : E×C(E× [0,∞))→ [0,∞), N and C can be written as solutions of

N(A, t) =

∫
A×[0,∞)×[0,t]

1[0,γ(u)](v)ξ1(du× dv × ds) (2.13)

C(A, t) =

∫
A×[0,∞)×[0,t]

1[0,λ(u,ηs−)](v)ξ2(du× dv × ds),

where η is given by

ηt(A× [0, r]) =

∫
A×[0,t]

1A(u)1[0,r](s)C(du× ds), A ∈ B(E), r ∈ [0, t],

that is, ηt is the collection of points in the cluster up to time t. The noise, N ,
is a space-time Poisson process. We assume there exists λ0 such that λ(u, η) ≤
λ0(u) for all η and that

∫
E
γ(u)ν(du) < ∞ and

∫
E
λ0(u)ν(du) < ∞. Assuming

N(E, 0) = C(E, 0) = 0, these assumptions assure that N(E, t) is Poisson dis-
tributed with mean t

∫
E
γ(u)ν(du) and that C(E, ·) is dominated by a Poisson

process. Consequently, existence and uniqueness follow by construction from one
jump to the next.

Of course, if E is a finite set, this model is essentially a filtering model for
counting processes as studied by Bremaud [2].

2.3.2. The reference probability space. On (Ω,F , Q), let N and C be independent
Poisson random measures with mean measures ν0(du × ds) = γ(u)ν(du)ds and
ν1(du × ds) = λ0(u)ν(du)ds respectively. At each point (u, t) in O = N + C, let
θ(u, t) = 1, if (u, t) ∈ C and θ(u, t) = 0 otherwise. Then Q{θ(u, t) = 1|O} =

λ0(u)
λ0(u)+γ(u)

, and hence, under Q, what is known, O, is independent of what is not

known, {θ(u, t) : (u, t) ∈ O}. Note also that the θ(u, t) are independent of each
other, and η and θ are related by

ηt(A× [0, r]) =
∑

(u,s)∈O(A×[0,r])

θ(u, s), A ∈ B(E), r ∈ [0, t]. (2.14)



12 DAN CRISAN, THOMAS G. KURTZ, AND SALVADOR ORTIZ-LATORRE

However, under Q, O is not independent of the signal C. This is in contrast to
the models in sections 2.1 and 2.2 Under Q,

C̃(A, t) = C(A, t)−
∫ t

0

∫
A

λ0(u)ν(du)ds, A ∈ B(E), t ≥ 0, (2.15)

is a martingale random measure. In particular, for each A ∈ B(E), (2.15) is a
{Ft}-martingale for Ft = σ(C(A, s), N(A, s) : s ≤ t, A ∈ B(E)).

Let L satisfy

L(t) = 1 +

∫
E×[0,t]

(
λ(u, ηs−)

λ0(u)
− 1)L(s−)(C(du× ds)− λ0(u)ν(du)ds)

= 1 +

∫
E×[0,t]

(
λ(u, ηs−)

λ0(u)
− 1)L(s−)θ(u, t)O(du× ds)

−
∫
E×[0,t]

(λ(u, ηs−)− λ0(u))L(s)ν(du)ds.

At each point (u, s) ∈ C

L(s) =
λ(u, ηs−)

λ0(u)
L(s−),

so L is a nonnegative local martingale, and setting τn = inf{t : L(t) ≥ n}, Ln(t) =
L(t ∧ τn) is a martingale. Recall that for the original cluster detection model, O
is dominated by a Poisson process with mean measure dt × (γ(u) + λ0(u))ν(du),
and hence O has finitely many jumps per unit time. Consequently, under P ,
supt≤T L(t) < ∞ for all T , and P{limn→∞ τn = ∞} = 1. Hence, by Lemma 3.3

of [12], pp.166, P|Ft
<< Q|Ft

with dP
dQ = L(t) on Ft. Under P , for all A, by the

results in Section A.2 below,

C(A, t)−
∫
A×[0,t]

λ(u, ηs)ν(du)ds (2.16)

is a local martingale, N is independent of C, and is a Poisson random measure
with mean measure ν0, that is, under P , (N,C) has the distribution of the solution
of (2.13).

2.3.3. Filtering equations. Let θk (u, s) be independent realizations of θ (u, s) and
ηk its associated counting process given by (2.14). Observing that

ϕ(ηkt )Lk(t)

= ϕ(ηk0 ) +

∫
E×[0,t]

(
ϕ(ηks− + δ(u,s))

λ(u, ηks−)

λ(u)
− ϕ(ηks−)

)
Lk(s−)Ck(du× ds)

−
∫
E×[0,t]

ϕ(ηks )
(
λ(u, ηks )− λ(u)

)
Lk(s)ν(du)ds

= ϕ(ηk0 )

+

∫
E×[0,t]

(
ϕ(ηks− + δ(u,s))

λ(u, ηks−)

λ(u)
− ϕ(ηks−)

)
Lk(s−)θk(u, s)O(du× ds)

−
∫
E×[0,t]

ϕ(ηks )
(
λ(u, ηks )− λ(u)

)
Lk(s)ν(du)ds,
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and after averaging over k, we deduce

Theorem 2.4. The unnormalized conditional distributions satisfies

ρt(ϕ) = ρ0(ϕ)−
∫
E×[0,t]

ρs (ϕ(·) (λ(u, ·)− λ(u))) ν(du)ds

+

∫
E×[0,t]

ρs−(ϕ
(
·+ δ(u,s)

) λ(u, ·)
λ(u)

− ϕ(·), ) λ(u)

λ(u) + γ(u)
O(du× ds)

and

πtϕ = π0ϕ

+

∫
E×[0,t]

πs−
(
ϕ
(
·+ δ(u,s)

)
λ(u, ·)

)
− πs−λ(u, ·)πs−ϕ

πs−λ(u, ·) + γ(u)
O(du× ds)

−
∫
E×[0,t]

(πs (ϕ(·)λ(u, ·))− πsϕπsλ(u, ·)) ν(du)ds

Remark 2.5. In most settings, the difficulty of computing the distribution of 2O(E,t)

possible states would be prohibitive. The compromise in [29] is to structure the
model in such a way that it is possible to compute πtϕ = EP [ϕ(ηs)|Fs] for a
“small” collection of ϕ.

Suppose one observes ui at time τi and yi = (ui, τi). Let

θ(yi)(·) = 1{yi is a point in the cluster}

and

θ0(yi)(·) = 1{yi is the latest point in the cluster}.

One needs to be able to evaluate

πtλ(u, ·)

which is accomplished under a Markov scenario.
Consider

λ(u, ηt) =

O(E,t)∑
i=1

λ(u, yi)θ0(yi) + ε(u),

Then the goal is to obtain a closed system for

πtθ0(yi), πtθ(yi), πtθ(yi)θ0(yj).

See Section 1.3 of [28].

3. Convergence of First Order Discretizations

The solution of the stochastic filtering problem depends on both the signal and
on the observation process. However the manner in which it depends on both
ingredients is different. Let us take, as an example, the framework described in
Section 2.1. By Kallianpur-Striebel’s formula, we have that

πt(ϕ) = EP
[
ϕ(X(t))|FYt

]
=

EQ
[
ϕ(X(t))L(t)|FYt

]
EQ
[
L(t)|FYt

] ,
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where Q is the reference measure. Under Q, X and Y are independent and

L(t) = exp

{∫ t

0

hT (X(s))dY (s)− 1

2

∫ t

0

|h|2 (X(s))ds

}
. (3.1)

Because of the conditioning with respect to the observation σ-algebra, the obser-
vation path can be assumed to be fixed to a particular realisation (the one that is
actually observed). Although this fact is not immediately clear from the expression
appearing in (3.1), a simple integration by parts of the stochastic integral in (3.1)
can justify the observation path dependence of Lt, see e.g. [3, 8] for further details.
The signal process enters into the solution of the filtering problem through its law.
The pathwise behavior of the signal plays no role; it is just its law that is needed to
compute πt(ϕ). Any numerical resolution of the solution of the filtering problem
involves a discretization of the observation path as well as the approximation of
the law of the signal. The error in the numerical approximations of πt(ϕ) will then
depend on the observation path discretization error as well as the error due to the
approximation of the signal. In the following, we will analyze the error due to
the observation path discretization by exploiting the particle representation of the
various quantities involved. In this section we show, under very general conditions,
that the discretization error tends to 0 as the time discretization mesh converges
to 0, and in the next section we compute the order of convergence as well as the
leading error coefficient.

Typically, the observation data is recorded at discrete times, and only these
data are made available and used. For example, if the set of data {Y k

n
, k ≥ 0} is

available, we can use the approximation

πnt (ϕ) =
EQ
[
ϕ(X(t))Ln(t)|FYt

]
EQ
[
Ln(t)|FYt

] , (3.2)

where for t = k/n,

Ln(k/n)

= exp

(
k−1∑
i=0

(
hT (X(i/n)) (Y ((i+ 1)/n)− Y (i/n))− 1

2n
|h|2((X(i/n))

))
.

(3.3)

More generally, we can embed the above approximation into the usual continuous
time version. Let τn (s) = j 1

n for s ∈
[
j 1
n , (j + 1) 1

n

)
, and let Ln(t) be given by

Ln(t) = exp

(∫ t

0

hT (X(τn (s)))dY (s)− 1

2

∫ t

0

|h|2(X(τn (s)))ds

)
(3.4)

and then re-write (3.2) as

πnt (ϕ) =
ρnt (ϕ)

ρnt (1)
, (3.5)

where ρnt is the Picard approximation with time step 1/n for the unnormalized
conditional distribution ρ

ρnt (ϕ) , EQ
[
ϕ (X (t))Ln (t)| FYt

]
.
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Proposition 3.1. For all ϕ ∈ CP
(
RdX

)
, we have that

lim
n→∞

ρnt (ϕ) = ρt (ϕ) , and lim
n→∞

πnt (ϕ) = πt (ϕ)

in probability. Moreover, limn→∞ ρn = ρ and limn→∞ πn = π in probability, where
the convergence is in the space of continuous measure-valued paths.

Proof. As announced, we use the particle representation for the respective measure
valued processes ρn, ρ, πn and π. Let X1, X2, . . . be i.i.d. copies of X that
are independent of Y under Q, and let Lnk be the exponentials corresponding to
X1, X2, . . . defined as above, i.e.,

Lnk (t) = exp

(∫ t

0

hT (Xk(τn (s)))dY (s)− 1

2

∫ t

0

|h|2(Xk(τn (s)))ds

)
Lk(t) = exp

(∫ t

0

hT (Xk(s))dY (s)− 1

2

∫ t

0

|h|2(Xk(s))ds

)
.

Then, the particle representations give

ρnt (ϕ) = lim
N→∞

1

N

N∑
k=1

ϕ (Xk (t))Lnk (t)

and

ρt (ϕ) = lim
N→∞

1

N

N∑
k=1

ϕ (Xk (t))Lk (t) ,

where ϕ is a continuous function with at most polynomial growth, and convergence
is assured by the exchangeability of {(Lnk , Xk)} and {(Lnk , Xk)}.

We apply Lemma A.1 with Zn = ((X1, L
n
1 ) , (X2, L

n
2 ) , ...) . Note that, in this

example, Nn =∞. Thanks to Remark A.2 it suffices to check the convergence of
Zn to Z in C(RdX× [0,∞))

∞ [0,∞) in probability. For fixed k, one has that

EQ
[

sup
0≤s≤t

|Lnk (s)− Lk(s)|2
]
→n→∞ 0.

for all t ≥ 0. This follows from the inequality |ey − ex| ≤ (ex+ey)
2 |x− y| combined

with similar estimates as those in Lemmas 3.6 and 3.9 in [6]. Therefore, (Xk, L
n
k )

converges in probability to (Xk, Lk) when n tends to infinity. Lemma A.1 b) yields
that

lim
n→∞

V n = lim
n→∞

lim
N→∞

1

N

N∑
k=1

δ(Xk,Ln
k) = lim

N→∞

1

N

N∑
k=1

δ(Xk,Lk) = V,

in CP(RdX×[0,∞)) [0,∞).

The moment estimates on Xk, Lnk , and Lk ensure that for each ψ ∈ CP
(
RdX

)
and m > 0 and each T > 0,

sup
n

E[sup
t≤T

ψ(Xk(t))(Lnk (t)m + 1)]

= sup
n

E[sup
t≤T

∫
RdX×[0,∞)

ψ(x)(am + 1)Vn(dx× da, t) <∞.
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Then keeping in mind that

ρnt (ϕ) =

∫
RdX×[0,∞)

aϕ(x)V n(dx× da, t)

and

ρt(ϕ) =

∫
RdX×[0,∞)

aϕ(x)V (dx× da, t),

the result follows by applying Lemma A.5. In particular, for all ϕ ∈ CP
(
RdX

)
,

we have that

lim
n→∞

ρnt (ϕ) = ρt (ϕ)

in probability, with the convergence of the measure valued processes

lim
n→∞

ρn = ρ, and lim
n→∞

πn = π,

being an immediate consequence of the above and of the Kallianpur-Striebel for-
mula. �

A similar result can be obtained for the second framework (Spatial observations
with additive white noise). The above convergence result does not give an estimate
of the order of convergence. This is not possible under the general assumptions of
stated in section 2.1.2 on the functions h, b and σ. However, we can do this under
more restrictive assumptions. This is the goal of the next section.

4. Leading Error Coefficient for the Picard Discretization

In this section, we are using the same framework as in sections 2.1 and 3, as
well as the same notation introduced therein. In addition, to prove the relative
compactness result of Theorem 4.4 below, we will require that σ, b, h ∈ C6

b

(
RdX

)
.

Heuristically, the main goal of this section is to show that

ρnt = ρt −
1

n
Ut + o

(
1

n

)
, t ∈ [0,∞),

where U is a process characterized as a solution of a certain stochastic evolution
equation.3 The exact statement of the result is contained in Theorem 4.4 below.
The main technical tool to do this is, again, the particle representations of the var-
ious processes involved. To be more precise, let CkP be the space of k-differentiable
functions with at most polynomial growth. Then, for ϕ ∈ CkP consider the quan-
tities

Ek,nt (ϕ) , nϕ (Xk (t)) (Lk (t)− Lnk (t)) ,

UN,nt (ϕ) ,
1

N

N∑
k=1

Ek,nt (ϕ) ,

and note that, combining the results in the previous sections, we get

lim
N→∞

UN,nt (ϕ) = EQ
[
ϕ (X (t))n (L (t)− Ln (t))| FYt

]
3A similar expansion holds for πt using a straightforward application of the Kallianpur-

Striebel’s formula.
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= n (ρt (ϕ)− ρnt (ϕ)) , Unt (ϕ) .

The goal is to find an evolution equation for the limit of Un when n tends to
infinity. This is attained in Theorem 4.4. Let us introduce first two preliminary
results. The first is related to a martingale process that will converge to a Brownian
motion as n tends to infinity. The second is the evolution equation for the process
Un.

Consider the sequence of processes Rn = {Rnt }t≥0 , n ∈ N, defined by

Rn (t) , 2
√

3

∫ t

0

(
n (s− τn (s))− 1

2

)
dY (s) . (4.1)

Lemma 4.1. Under Q, (Y,Rn) converges in distribution to (Y,R), where R is a
dY -dimensional standard Brownian motion independent of Y and the Bk.

Proof. The process (Y,Rn) is a 2dY -dimensional martingale as Rn is a stochastic
integral with respect to the Brownian motion Y . Moreover, observe that[

Y i, Y j
]
t

= [Rn,i, Rn,j ]t = [Y i, Rn,j ]t = 0, i 6= j,[
Rn,i

]
t

= 12

∫ t

0

(
n (s− τn (s))− 1

2

)2

ds = t+O
(
n−1

)
, (4.2)

[
Y i, (Rn)i

]
t

= 2
√

3

∫ t

0

(
n (s− τn (s))− 1

2

)
ds = O

(
n−1

)
.

The result follows by the martingale central limit theorem, for example, Theorem
1.4, Chapter 7 in [9]. �

Let {Sn}n≥1 be a sequence of real-valued random processes. In what follows

we will use the notation Sn = O (n−p) for some p ≥ 0 to indicate that

EQ
[

sup
0≤s≤t

|Sn (s)|2
]1/2

≤ C (t)

np
, t ≥ 0,

for some positive constant C (t) .

Proposition 4.2. For each ϕ ∈ C4
P and n ∈ N, the process Un satisfies, the

following approximate evolution equation:

Unt (ϕ) =

∫ t

0

Uns (Aϕ) ds+

∫ t

0

Uns
(
ϕhT

)
dY (s) +

1

2

∫ t

0

ρns
(
ϕAhT

)
dY (s) (4.3)

+
1

2
√

3

∫ t

0

ρns
(
ϕAhT

)
dRn (s)

+
1

2
√

3

dY∑
i=1

∫ t

0

ρnτn(s)

(
tr
(
Õσ,ϕ,hi

))
dRn,i (s)

+
1

2

dY∑
i=1

∫ t

0

ρnτn(s)

(
tr
(
Õσ,ϕ,hi

))
dY i (s) + Γnt (ϕ),

where Γn(ϕ) is a process satisfying Γn(ϕ) = O
(
n−1/2

)
for all ϕ ∈ C3

P , and

Õσ,ϕ,hi
(x) =

1

2

(
Oσ,ϕ,hi

(x) +OTσ,ϕ,hi
(x)
)
,
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with

Oσ,ϕ,hi
(x) = σT (x)∇ϕ (x)∇hTi (x)σ (x) .

We give the proof of Proposition 4.2 in Section 4.1 below.

Lemma 4.3. For each ϕ ∈ C4
P and t > 0, we have that

sup
n∈N

EQ
[

sup
0≤s≤t

|Uns (ϕ)|2
]
≤ C (t, ϕ) ,

for some positive constant C (t, ϕ).

Proof. Theorem 2.3 in [6], with m = 1, states that, for any ϕ ∈ C2
P , there exists a

constant C (not depending on n but possibly on t, ϕ, b, σ, and h) such that

sup
n

sup
0≤s≤t

EQ
[
|Uns (ϕ)|2

]
<∞,

This estimate clearly yields that, for any t ≥ 0 and ϕ ∈ C4
P (we need the

additional smoothness to ensure that Aϕ ∈ C4
P )

C̄t := sup
n

(
sup

0≤s≤t
EQ
[
|Uns (Aϕ)|2

]
+ sup

0≤s≤t
EQ
[
|Uns (ϕh)|2

])
<∞,

By Proposition 4.2, we can write

Unt (ϕ) =

∫ t

0

Uns (Aϕ) ds+

∫ t

0

Uns
(
ϕhT

)
dY (s) + St (ϕ) ,

where in St (ϕ) we put all the terms in equation (4.3) not containing Un. We
deduce that

EQ
[

sup
0≤s≤t

|Uns (ϕ)|2
]
≤ 3EQ

[
sup

0≤s≤t

∣∣∣∣∫ s

0

Unr (Aϕ) dr

∣∣∣∣2
]

+ 3EQ
[

sup
0≤s≤t

∣∣∣∣∫ s

0

Unr
(
ϕhT

)
dY (r)

∣∣∣∣2
]

+ 3EQ
[

sup
0≤s≤t

|Ss (ϕ)|2
]

, 3(In1 + In2 + In3 ).

and, therefore, it suffices to bound In1 , I
n
2 and In3 to justify the claim. Using

Cauchy-Schwarz’ inequality and Fubini’s theorem we obtain

In1 ≤ EQ
[

sup
0≤s≤t

s

∫ s

0

|Unr (Aϕ)|2 dr
]
≤ t
∫ t

0

EQ
[
|Unr (Aϕ)|2

]
dr ≤ t2C̄t,

All the remaining terms are stochastic integrals with respect to continuous mar-
tingales and can be controlled by means of Doob’s maximal inequality. �

We are now in a position to state and prove the main result of this section.
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Theorem 4.4. Let {Un}n≥1 be the sequence of measure-valued processes given by

Unt = n (ρt − ρnt ) , t ∈ [0,∞).

Then for each ϕ ∈ C8
P , the sequence

{
Un (ϕ) , Un (Aϕ) , Un

(
ϕhi
)
, i = 1, . . . , dY

}
is relatively compact in CR2+dY [0,∞), and every limit point satisfies

Ut (ϕ) =

∫ t

0

Us (Aϕ) ds+

∫ t

0

Us
(
ϕhT

)
dY (s) +

1

2

∫ t

0

ρs
(
ϕAhT

)
dY (s) (4.4)

+
1

2
√

3

∫ t

0

ρs
(
ϕAhT

)
dR (s) +

1

2
√

3

dY∑
i=1

∫ t

0

ρs

(
tr
(
Õσ,ϕ,hi

))
dRi (s)

+
1

2

dY∑
i=1

∫ t

0

ρs

(
tr
(
Õσ,ϕ,hi

))
dY i (s) ,

where R is a Brownian motion independent of Y and all Bk.

Proof. Fix ϕ ∈ C6
P . This assumption along with the assumptions on σ, b, and h,

assure that Aϕ ∈ C4
P and hence that the estimate in Lemma 4.3 applies. Using

this estimate on the integrands in the first two integrals on the right of (4.3), we see
that these integrals are relatively compact in CR[0,∞). The remaining terms on
the right converge by the convergence of ρn. Consequently, {Un(ϕ)} is relatively
compact in CR[0,∞). Moreover, if we take ϕ ∈ C8

P , Aϕ ∈ C6
P , so the integrands

in the first two terms are relatively compact, and (4.4) is satisfied for any limit
point. �

Remark 4.5. Note that we do not know if equation 4.4 has a unique solution and,
therefore, we cannot claim that the sequence {Un}n≥1 is convergent.

4.1. Proof of Proposition 4.2. We can combine (2.8) and

ϕ (Xk (t))Lnk (t) = ϕ (Xk (0)) +

∫ t

0

Lnk (s)∇ϕTσ (Xk (s)) dBk (s)

+

∫ t

0

Lnk (s)Aϕ (Xk (s)) ds+

∫ t

0

Lnk (s)ϕhT (Xk (s)) dY (s)

−
∫ t

0

Lnk (s)ϕ (Xk (s)) {h (Xk (s))− h (Xk (τn (s)))}T dY (s) .

(4.5)

to write a more convenient expression for Ek,nt (ϕ), that is,

Ek,nt (ϕ) = nϕ (Xk (t)) (Lk (t)− Lnk (t))

=

∫ t

0

n {Lk (s)− Lnk (s)}∇ϕTσ (Xk (s)) dBk (s)

+

∫ t

0

n {Lk (s)− Lnk (s)}Aϕ (Xk (s)) ds

+

∫ t

0

n {Lk (s)− Lnk (s)}ϕhT (Xk (s)) dY (s)
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+

dY∑
i=1

∫ t

0

nLnk (s)ϕ (Xk (s)) dMn,i
k (s) ,

where the processes Mn,i
k are defined by

Mn,i
k (t) ,

∫ t

0

(hi (Xk (s))− hi (Xk (τn (s)))) dY i (s) .

Moreover, using Itô’s formula , we can write

nMn,i
k (t) =

∫ t

0

n

[∫ s

τn(s)

∇hTi σ (Xk (u)) dBk (u) +

∫ s

τn(s)

Ahi (Xk (u)) du

]
dY i (s)

=

∫ t

0

∫ s

τn(s)

n∇hTi σ (Xk (u)) dBk (u) dY i (s)

+

∫ t

0

∫ s

τn(s)

nAhi (Xk (u)) dudY i (s)

=

∫ t

0

∫ s

τn(s)

n∇hTi σ (Xk (u)) dBk (u) dY i (s)

+

∫ t

0

Ahi (Xk (τn (s)))n (s− τn (s)) dY i (s)

+

∫ t

0

∫ s

τn(s)

n {Ahi (Xk (u))−Ahi (Xk (τn (s)))} dudY i (s)

=

∫ t

0

∫ s

τn(s)

n∇hTi σ (Xk (u)) dBk (u) dY i (s) +Kn,i
k (t) + In,ik (t) ,

where

Kn,i
k (t) ,

∫ t

0

Ahi (Xk (τn (s)))n (s− τn (s)) dY i (s) ,

In,ik (t) ,
∫ t

0

∫ s

τn(s)

n {Ahi (Xk (u))−Ahi (Xk (τn (s)))} dudY i (s) .

Since,

(n (s− τn (s))) dY i (s) =
dRn,i (s)

2
√

3
+

1

2
dY i (s) ,

we can write

Kn,i
k (t) =

1

2
√

3

∫ t

0

Ahi (Xk (s)) dRn,i (s) +
1

2

∫ t

0

Ahi (Xk (s)) dY i (s) ,

and

nMn,i
k (t) =

∫ t

0

∫ s

τn(s)

n∇hTi σ (Xk (u)) dBk (u) dY i (s)

+
1

2
√

3

∫ t

0

Ahi (Xk (s)) dRn,i (s)
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+
1

2

∫ t

0

Ahi (Xk (s)) dY i (s) + In,ik (s) .

Finally, we can also write

Ek,nt (ϕ) =

∫ t

0

n {Lk (s)− Lnk (s)}∇ϕTσ (Xk (s)) dBk (s)

+

∫ t

0

n {Lk (s)− Lnk (s)}Aϕ (Xk (s)) ds

+

∫ t

0

n {Lk (s)− Lnk (s)}ϕhT (Xk (s)) dY (s)

+

dY∑
i=1

∫ t

0

Lnk (s)ϕ (Xk (s))

∫ s

τn(s)

n∇hTi σ (Xk (u)) dBk (u) dY i (s)

+

dY∑
i=1

1

2

∫ t

0

Lnk (s)ϕAhi (Xk (s)) dY i (s)

+

dY∑
i=1

1

2
√

3

∫ t

0

Lnk (s)ϕAhi (Xk (s)) dRn,i (s)

+

dY∑
i=1

∫ t

0

Lnk (s)ϕ (Xk (s)) dIn,ik (s) ,
7∑
i=1

Ai.

The result follows by averaging over 1 ≤ k ≤ N in the previous equation and
taking limits when N tends to infinity, combined with Lemmas A.6, 4.6 and 4.7:

• For the term on the left hand side of the previous equation we have

lim
N→∞

1

N

N∑
k=1

Ek,nt (ϕ) = lim
N→∞

UN,nt (ϕ) = Unt (ϕ) .

• For the term A1 we can write

lim
N→∞

1

N

N∑
k=1

∫ t

0

n {Lk (s)− Lnk (s)}∇ϕTσ (Xk (s)) dBk (s)

= EQ
[∫ t

0

n {L (s)− Ln (s)}∇ϕTσ (X (s)) dB (s)

∣∣∣∣FYt ]
= EQ

[
EQ
[∫ t

0

n {L (s)− Ln (s)}∇ϕTσ (X (s)) dB (s)

∣∣∣∣FYt ∨ FV0 ]∣∣∣∣FYt ] = 0.

• For the term A2, using Proposition 3.15 in [1], we can write

lim
N→∞

1

N

N∑
k=1

∫ t

0

n {Lk (s)− Lnk (s)}Aϕ (Xk (s)) ds

= EQ
[∫ t

0

n {L (s)− Ln (s)}Aϕ (X (s)) ds

∣∣∣∣FYt ]
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=

∫ t

0

nEQ
[
{L (s)− Ln (s)}Aϕ (X (s))| FYs

]
ds

=

∫ t

0

Uns (Aϕ) ds.

• The terms A3, A5 and A6 are treated similarly as the term A2. Note that
the processes Rn,i are FYt -adapted.
• For the term A4 we apply Lemma 4.7.
• For the term A7 we apply Lemma 4.6.

The process Γnt (ϕ) =
∑dY
i=1

(
Φn,it (ϕ) + Ψn,i

t (ϕ)
)

, where Φn,1t (ϕ) and Ψn,i
t (ϕ) are

the processes in the statement of Lemmas 4.6 and 4.7.

4.2. Auxiliary lemmas.

Lemma 4.6. For all i = 1, ..., dY and ϕ Borel measurable with at most polynomial
growth, let

In,ik (t) =

∫ t

0

∫ s

τn(s)

n {Ahi (Xk (u))−Ahi (Xk (τn (s)))} dudY i (s) .

Then,

lim
N→∞

1

N

N∑
k=1

∫ t

0

Lnk (s)ϕ (Xk (s)) dIn,ik (s) = Φn,it (ϕ) ,

where Φn,it (ϕ) = O
(
n−1/2

)
.

Proof. Applying Lemma A.6 we have that

lim
N→∞

1

N

N∑
k=1

∫ t

0

Lnk (s)ϕ (Xk (s)) dIn,ik (s)

= EQ
[∫ t

0

Ln (s)ϕ (X (s)) dIn,i (s)

∣∣∣∣FYt ] ,
where

dIn,i (s) =

(∫ s

τn(s)

n {Ahi (X (u))−Ahi (X (τn (s)))} du

)
dY i (s) .

In what follows we will use the more compact notation

∆i
n (u) , Ahi (X (u))−Ahi (X (τn (s))) , τn (s) ≤ u ≤ s.

Note that, using Proposition 3.15 in [1], we can write

EQ
[∫ t

0

Ln (s)ϕ (X (s)) dIn,i (s)

∣∣∣∣FYt ]
= EQ

[∫ t

0

Ln (s)ϕ (X (s))

(∫ s

τn(s)

n∆i
n (u) du

)
dY i (s)

∣∣∣∣∣FYt
]

=

∫ t

0

EQ
[
Ln (s)ϕ (X (s))

(∫ s

τn(s)

n∆i
n (u) du

)∣∣∣∣∣FYs
]
dY i (s)
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, Φn,it (ϕ)

Moreover, using Burkholder-Davis-Gundy inequality, Jensen’s inequality for con-
ditional expectation, the law of total expectation, Fubini’s theorem and Cauchy-
Schwarz inequality we obtain

EQ
[

sup
0≤t≤T

∣∣∣∣EQ [∫ t

0

Ln1 (s)ϕ (X1 (s)) dIn,i1 (s)

∣∣∣∣FYt ]∣∣∣∣2
]

≤ EQ
∫ T

0

∣∣∣∣∣EQ
[
Ln (s)ϕ (X (s))

(∫ s

τn(s)

n∆i
n (u) du

)∣∣∣∣∣FYs
]∣∣∣∣∣

2

ds


≤ EQ

∫ T

0

∣∣∣∣∣Ln (s)ϕ (X (s))

(∫ s

τn(s)

n∆i
n (u) du

)∣∣∣∣∣
2

ds


=

∫ T

0

EQ
∣∣∣∣∣Ln (s)ϕ (X (s))

(∫ s

τn(s)

n∆i
n (u) du

)∣∣∣∣∣
2
 ds

≤
∫ T

0

EQ
[
|Ln (s)ϕ (X (s))|4

]1/2
EQ
∣∣∣∣∣
(∫ s

τn(s)

n∆i
n (u) du

)∣∣∣∣∣
4
1/2

ds.

Using Jensen’s innequality and Itô’s formula we get that

EQ
∣∣∣∣∣
(∫ s

τn(s)

n∆i
n (u) du

)∣∣∣∣∣
4


≤ (s− τn (s))
3
n4
∫ s

τn(s)

EQ
[∣∣∆i

n (u)
∣∣4] du

≤ Cn


∫ s

τn(s)

EQ
∣∣∣∣∣
∫ u

τn(s)

∇ (Ahi)
T
σ (X (v)) dB (v)

∣∣∣∣∣
4
 du

+

∫ s

τn(s)

EQ
∣∣∣∣∣
∫ u

τn(s)

A2hi (X (v)) dv

∣∣∣∣∣
4
 du


= B1 +B2

Due to the hypothesis on σ, b and h we have that ∇ (Ahi)
T
σ has at most polyno-

mial growth, which combined with the bound (2.4) yields that

EQ
[

sup
0≤s≤T

∣∣∣∇ (Ahi)
T
σ (X (s))

∣∣∣4] = C (T, h, b, σ) <∞.

Therefore, using Burkholder-Davis-Gundy innequality we obtain

B1 ≤ Cn
∫ s

τn(s)

EQ
∣∣∣∣∣
∫ u

τn(s)

∣∣∣∇ (Ahi)
T
σ (X (v))

∣∣∣2 dv∣∣∣∣∣
2
 du
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≤ Cn
∫ s

τn(s)

(u− τn (s))

∫ u

τn(s)

EQ
[∣∣∣∇ (Ahi)

T
σ (X (v))

∣∣∣4] dvdu
≤ C (T, h, b, σ)n

∫ s

τn(s)

(u− τn (s))
2
du

≤ C (T, h, b, σ)n−2

For the term B2 one can use similar reasonings as for B1 to obtain that

B2 ≤ C (T, h, b, σ)n−4,

and, hence,

EQ
∣∣∣∣∣
(∫ s

τn(s)

n∆i
n (u) du

)∣∣∣∣∣
4
1/2

≤ Cn−1

On the other hand, using Hölder’s innequality, the bounds for Ln in Lemma 3.9
in [6], that ϕ has at most polynomial growth and (2.4) we get that

sup
s∈[0,T ]

sup
n∈N

EQ
[
|Ln (s)ϕ (X (s))|4

]
<∞.

Combining the previous estimates we can conclude that Φn,it (ϕ) = O
(
n−1/2

)
.
�

Lemma 4.7. For all i = 1, ..., dY and ϕ ∈ C3
P , we have that

lim
N→∞

1

N

N∑
k=1

n

∫ t

0

Lnk (s)ϕ (Xk (s))

∫ s

τn(s)

∇hTi σ (Xk (u)) dBk (u) dY i (s)

=
1

2
√

3

dY∑
i=1

∫ t

0

ρnτn(s)

(
tr
(
Õσ,ϕ,hi

))
dRn,i (s)

+
1

2

dY∑
i=1

∫ t

0

ρnτn(s)

(
tr
(
Õσ,ϕ,hi

))
dY i (s) + Ψn,i

t (ϕ) ,

where Ψn,i
t (ϕ) = O

(
n−1/2

)
.

Proof. We can write

n

∫ t

0

Lnk (s)ϕ (Xk (s))

∫ s

τn(s)

∇hTi σ (Xk (u)) dBk (u) dY i (s)

= n

∫ t

0

{Lnk (s)ϕ (Xk (s))− Lnk (τn (s))ϕ (Xk (τn (s)))}

×
∫ s

τn(s)

∇hTi σ (Xk (u)) dBk (u) dY i (s)

+ n

∫ t

0

Lnk (τn (s))ϕ (Xk (τn (s)))

∫ s

τn(s)

∇hTi σ (Xk (u)) dBk (u) dY i (s)

, Ck,1 + Ck,2.
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Using similar reasonings as for the term A1 in the proof of Proposition 4.2), one
has that

lim
N→∞

1

N

N∑
k=1

Ck,2 = 0.

Using integration by parts we obtain

Lnk (s)ϕ (Xk (s))− Lnk (τn (s))ϕ (Xk (τn (s)))

=

∫ s

τn(s)

Lnk (u)ϕhT (Xk (τn (s))) dY (u)

+

∫ s

τn(s)

Lnk (u)Aϕ (Xk (u)) du+

∫ s

τn(s)

Lnk (u)∇ϕTσ (Xk (u)) dBk (u)

, Dk,1(s) +Dk,2 (s) +Dk,3 (s) ,

and using Itô’s formula∫ s

τn(s)

∇hTi σ (Xk (u)) dBk (u)

= ∇hTi σ (Xk (τn (s))) (Bk (s)−Bk (τn (s)))

+

∫ s

τn(s)

∫ u

τn(s)

∇
(
∇hTi σ

)T
σ (Xk (v)) dBk (v) dBk (u)

+

∫ s

τn(s)

∫ u

τn(s)

A
(
∇hTi σ

)T
(Xk (v)) dvdBk (u)

, Ek,1(s) + Ek,2 (s) + Ek,3 (s) .

Hence, the term Ck,1 can be written as the sum of nine terms

Ck,1 =

3∑
l,m=1

n

∫ t

0

Dk,l(s)Ek,m(s)dY i (s) .

The terms containing as a factor Dk,2 (s) , Ek,2 (s), and Ek,3 (s), after averaging
over 1 ≤ k ≤ N and taking limit when N tends to infinity, yield processes which
are at least of order O

(
n−1/2

)
. With similar reasonings as in Lemma 4.6 we can

identify these processes as:

Ψn,i,1
t (ϕ) , n

∫ t

0

EQ
[∫ s

τn(s)

Ln (u)Aϕ (X (u)) du

× ∇hTi σ (X (τn (s))) (B (s)−B (τn (s)))
∣∣FYs ] dY i (s) ,

Ψn,i,2
t (ϕ) , n

∫ t

0

EQ
[∫ s

τn(s)

Ln (u)Aϕ (X (u)) du

×
∫ s

τn(s)

∫ u

τn(s)

∇
(
∇hTi σ

)T
σ (X (v)) dB (v) dB (u)

∣∣∣∣∣FYs
]
dY i (s) ,



26 DAN CRISAN, THOMAS G. KURTZ, AND SALVADOR ORTIZ-LATORRE

Ψn,i,3
t (ϕ) , n

∫ t

0

EQ
[∫ s

τn(s)

Ln (u)Aϕ (X (u)) du

×
∫ s

τn(s)

∫ u

τn(s)

A
(
∇hTi σ

)T
(X (v)) dvdB (u)

∣∣∣∣∣FYs
]
dY i (s) ,

Ψn,i,4
t (ϕ) , n

∫ t

0

EQ
[∫ s

τn(s)

Ln (u)ϕhT (X (τn (s))) dY (u)

×
∫ s

τn(s)

∫ u

τn(s)

∇
(
∇hTi σ

)T
σ (X (v)) dB (v) dB (u)

∣∣∣∣∣FYs
]
dY i (s) ,

Ψn,i,5
t (ϕ) , n

∫ t

0

EQ
[∫ s

τn(s)

Ln (u)∇ϕTσ (X (u)) dB (u)

×
∫ s

τn(s)

∫ u

τn(s)

∇
(
∇hTi σ

)T
σ (X (v)) dB (v) dB (u)

∣∣∣∣∣FYs
]
dY i (s) ,

Ψn,i,6
t (ϕ) , n

∫ t

0

EQ
[∫ s

τn(s)

Ln (u)ϕhT (X (τn (s))) dY (u)

×
∫ s

τn(s)

∫ u

τn(s)

A
(
∇hTi σ

)T
(X (v)) dvdB (u)

∣∣∣∣∣FYs
]
dY i (s) ,

Ψn,i,7
t (ϕ) , n

∫ t

0

EQ
[∫ s

τn(s)

Ln (u)∇ϕTσ (X (u)) dB (u)

×
∫ s

τn(s)

∫ u

τn(s)

A
(
∇hTi σ

)T
(X (v)) dvdB (u)

∣∣∣∣∣FYs
]
dY i (s) ,

There are two terms left:

Fn,ik,1 (t, ϕ) , n
∫ t

0

(∫ s

τn(s)

Lnk (u)ϕ (Xk (u))hT (Xk (τn (s))) dY (u)

)
×∇hTi σ (Xk (τn (s))) (Bk (s)−Bk (τn (s))) dY i (s) ,

and

Fn,ik,2 (t, ϕ) , n
∫ t

0

(∫ s

τn(s)

Lnk (u)∇ϕTσ (Xk (u)) dBk (u)

)
×∇hTi σ (Xk (τn (s))) (Bk (s)−Bk (τn (s))) dY i (s) .

For the term Fn,ik,1 (t, ϕ), using integration by parts with Lnk (u)ϕ (Xk (u)), we
can write

Fn,ik,1 (t, ϕ) = n

∫ t

0

Lnk (τn (s))ϕhT (Xk (τn (s))) (Y (s)− Y (τn (s)))

×∇hTi σ (Xk (τn (s))) (Bk (s)−Bk (τn (s))) dY i (s)

+ Ψk,n,i,8
t (ϕ) + Ψk,n,i,9

t (ϕ) + Ψk,n,i,10
t (ϕ)
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We get, using similar reasonings as for the term Ck,2, that

lim
N→∞

1

N

N∑
k=1

n

∫ t

0

Lnk (τn (s))ϕhT (Xk (τn (s))) (Y (s)− Y (τn (s))) = 0,

and the following terms

Ψn,i,8
t (ϕ) , lim

N→∞

1

N

N∑
k=1

Ψk,n,i,8
t (ϕ)

= n

∫ t

0

EQ
[∫ s

τn(s)

∫ u

τn(s)

Ln (r)∇ϕTσ (X (r)) dB (r)hT (X (τn (s)))

× dY (u)∇hTi σ (X (τn (s))) (B (s)−B (τn (s)))
∣∣FYs ] dY i (s)

Ψn,i,9
t (ϕ) , lim

N→∞

1

N

N∑
k=1

Ψk,n,i,9
t (ϕ)

= n

∫ t

0

EQ
[∫ s

τn(s)

∫ u

τn(s)

Ln (r)Aϕ (X (r)) drhT (X (τn (s))) dY (u)

× ∇hTi σ (X (τn (s))) (B (s)−B (τn (s)))
∣∣FYs ] dY i (s)

Ψn,i,10
t (ϕ) , lim

N→∞

1

N

N∑
k=1

Ψk,n,i,10
t (ϕ)

= n

∫ t

0

EQ
[∫ s

τn(s)

∫ u

τn(s)

Ln (r)ϕ (X (r))hT (X (τn (s))) dY (r)

× hT (X (τn (s))) dY (u)

× ∇hTi σ (X (τn (s))) (B (s)−B (τn (s)))
∣∣FYs ] dY i (s) ,

which are at least of order O
(
n−1/2

)
.

For the term Fn,ik,2 (t, ϕ), using integration by parts with Lnk (u)∇ϕTσ (Xk (u)),
we can write

Fn,ik,2 (t, ϕ) = n

∫ t

0

Lnk (τn (s))∇ϕTσ (Xk (τn (s))) (Bk (s)−Bk (τn (s)))

×∇hTi σ (Xk (τn (s))) (Bk (s)−Bk (τn (s))) dY i (s)

+ Ψk,n,i,11
t (ϕ) + Ψk,n,i,12

t (ϕ) + Ψk,n,i,13
t (ϕ) . (4.6)

Denote the first term on the right hand side of the previous equation by F̂n,ik,2 (t, ϕ),
and consider the following matrices

Oσ,ϕ,hi (x) , σT (x)∇ϕ (x)∇hTi (x)σ (x) ,

and

Õσ,ϕ,hi
(x) ,

1

2

(
Oσ,ϕ,hi

(x) +OTσ,ϕ,hi
(x)
)
.
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Then, F̂n,ik,2 (t, ϕ) can be further expanded using again integration by parts

F̂n,ik,2 (t, ϕ) = n

∫ t

0

Lnk (τn (s))∇ϕTσ (Xk (τn (s))) (Bk (s)−Bk (τn (s)))

×∇hTi σ (Xk (τn (s))) (Bk (s)−Bk (τn (s))) dY i (s) .

= n

∫ t

0

Lnk (τn (s)) (Bk (s)−Bk (τn (s)))
T

×Oσ,ϕ,hi
(Xk (τn (s))) (Bk (s)−Bk (τn (s))) dY i (s)

= n

∫ t

0

Lnk (τn (s))

∫ s

τn(s)

(Bk (u)−Bk (τn (s)))
T

×
(
Oσ,ϕ,hi

+OTσ,ϕ,hi

)
(Xk (τn (s))) dBk (u) dY i (s)

+
n

2

∫ t

0

Lnk (τn (s))

× tr
((
Oσ,ϕ,hi

+OTσ,ϕ,hi

)
(Xk (τn (s)))

)
(s− τn (s)) dY i (s)

= 2n

∫ t

0

Lnk (τn (s))

×
∫ s

τn(s)

(Bk (u)−Bk (τn (s)))
T
Õσ,ϕ,hi

(Xk (τn (s))) dBk (u) dY i (s)

+ n

∫ t

0

Lnk (τn (s)) tr
(
Õσ,ϕ,hi (Xk (τn (s)))

)
(s− τn (s)) dY i (s)

On the one hand, using similar reasonings as for the term Ck,2, we have

0 = lim
N→∞

1

N

N∑
k=1

2n

∫ t

0

Lnk (τn (s))

×
∫ s

τn(s)

(Bk (u)−Bk (τn (s)))
T
Õσ,ϕ,hi

(Xk (τn (s))) dBk (u) dY i (s) .

On the other hand, recalling the expression for n (s− τn (s)) dY i (s), we get

n

∫ t

0

Lnk (τn (s)) tr
(
Õσ,ϕ,hi

(Xk (τn (s)))
)

(s− τn (s)) dY i (s)

=
1

2
√

3

∫ t

0

Lnk (τn (s)) tr
(
Õσ,ϕ,hi (Xk (τn (s)))

)
dRn,i (s)

+
1

2

∫ t

0

Lnk (τn (s)) tr
(
Õσ,ϕ,hi (Xk (τn (s)))

)
dY i (s) ,

and

lim
N→∞

1

N

N∑
k=1

1

2
√

3

∫ t

0

Lnk (τn (s)) tr
(
Õσ,ϕ,hi (Xk (τn (s)))

)
dRn,i (s)

=
1

2
√

3

∫ t

0

ρnτn(s)

(
tr
(
Õσ,ϕ,hi

))
dRn,i (s) ,
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lim
N→∞

1

N

N∑
k=1

1

2

∫ t

0

Lnk (τn (s)) tr
(
Õσ,ϕ,hi

(Xk (τn (s)))
)
dY i (s)

=
1

2

∫ t

0

ρnτn(s)

(
tr
(
Õσ,ϕ,hi

))
dY i (s)

With similar reasonings as in Lemma 4.6, we can identify the processes in (4.6)
after the averaging and limiting procedure. That is

Ψn,i,11
t (ϕ) , lim

N→∞

1

N

N∑
k=1

Ψk,n,i,11
t (ϕ)

= n

∫ t

0

EQ
[∫ s

τn(s)

∫ u

τn(s)

Ln (r)∇
(
∇ϕTσ

)T
σ (X (r)) dB (r) dB (u)

× ∇hTi σ (X (τn (s))) (B (s)−B (τn (s)))
∣∣FYs ] dY i (s)

Ψn,i,12
t (ϕ) , lim

N→∞

1

N

N∑
k=1

Ψk,n,i,12
t (ϕ)

= n

∫ t

0

EQ
[∫ s

τn(s)

∫ u

τn(s)

Ln (r)A
(
∇ϕTσ

)T
σ (X (r)) dB (r) dB (u)

× ∇hTi σ (X (τn (s))) (B (s)−B (τn (s)))
∣∣FYs ] dY i (s)

Ψn,i,13
t (ϕ) , lim

N→∞

1

N

N∑
k=1

Ψk,n,i,13
t (ϕ)

= n

∫ t

0

EQ
[∫ s

τn(s)

∫ u

τn(s)

Ln (r)∇ϕTσ (X (r))hT (X (τn (s))) dY (r)

× dB (u)∇hTi σ (X (τn (s))) (B (s)−B (τn (s)))
∣∣FYs ] dY i (s) ,

which are at least of order O
(
n−1/2

)
. Finally, Ψn,i

t (ϕ) =
∑13
j=1 Ψn,i,j

t (ϕ).
�

Appendix A. Appendix

A.1. Limits for particle representations. As we will see, particle representa-
tions are useful in deriving approximations and computing limits. In the following

lemma from [15], Nn may be finite or infinite. If Nn = ∞, then by 1
Nn

∑Nn

k=1 zk,

we mean limm→∞
1
k

∑m
k=1 zk.

Lemma A.1. Let Zn = (Zn1 , . . . , Z
n
Nn

) be exchangeable families of DE [0,∞)-
valued random variables such that Nn ⇒∞ and Zn ⇒ Z in DE [0,∞)∞. Define

Ξn = 1
Nn

∑Nn

k=1 δZn
k
∈ P(DE [0,∞))

Ξ = limm→∞
1
m

∑m
k= δZk

V n(t) = 1
Nn

∑Nn

k=1 δZn
k (t) ∈ P(E)

V (t) = limm→∞
1
m

∑m
k=1 δZk(t)

Then
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a) For t1, . . . , tl /∈ {t : E [Ξ {x : x(t) 6= x(t−)}] > 0}

(Ξn, V
n(t1), . . . , V n(tl))⇒ (Ξ, V (t1), . . . , V (tl)) .

b) If Zn ⇒ Z in DE∞ [0,∞), then V n ⇒ V in DP(E)[0,∞). If Zn → Z in
probability in DE∞ [0,∞), then V n → V in DP(E)[0,∞) in probability.

Remark A.2. If the Znk are in CE [0,∞), then every D can be replaced by C. In
particular, in this case, DE [0,∞)∞ = CE∞ [0,∞).

Remark A.3. If zn converges in DP(E)[0,∞) to z ∈ DP(E)[0,∞), then for any

bounded continuous f : E → R, xn given by xn(t) =
∫
E
f(u)zn(t, du) converges

to x given by x(t) =
∫
E
f(u)z(t, du) in DR[0,∞). We need similar results for

unbounded f .

Lemma A.4. Let E be locally compact and C0(E) be the space of continuous
functions vanishing at infinity. Let {µn} ⊂ P(E) and µn ⇒ µ. Suppose ϕ ∈
C(E), ϕ > 0, and supn

∫
E
ϕdµn < ∞. Then if f ∈ C(E) and f

ϕ ∈ C0(E),

limn→∞
∫
E
fdµn =

∫
E
fdµ.

Proof. Let E∞ denote the one point compactification and dνn = ϕdµn. Then since
supn νn(E∞) <∞, {νn} is relatively compact inMf (E∞), the finite measures on

E∞, and every limit point is of the form ϕµ+ pδ∞. Consequently, if f
ϕ ∈ C0(E),

lim
n→∞

∫
E

fdµn = lim
n→∞

∫
E∞

f

ϕ
dνn =

∫
E

fdµ.

�

Lemma A.5. Let E be locally compact. Suppose zn converges in DP(E)[0,∞) to
z ∈ DP(E)[0,∞) and for each T = 1, 2, · · · , there exists ϕT ∈ C(E), ϕT > 0, such
that

sup
n

sup
t≤T

∫
E

ϕT (u)zn(t, du) <∞.

If f ∈ C(E) and for each T , f
ϕT
∈ C0(E), then yn(t) =

∫
E
f(u)zn(t, du) converges

to y given by y(t) =
∫
E
f(u)z(t, du) in DR[0,∞).

Proof. Suppose tn → t. By Lemma A.4, if zn(tn) → z(t), then yn(tn) → y(t)
and if zn(tn) → z(t−), yn(tn) → y(t−). Since {zn} converges in DP(E)[0,∞), by
Lemma 3.6.5 of [9], yn → y in DE [0,∞). �

Lemma A.6. Let {ξk} ⊂ CR[0, T ] be exchangeable with

E[ sup
0≤t≤T

|ξk(t)|] <∞, (A.1)

and let Tt = ∩Nσ(ξN (s), ξN+1(s), . . . : s ≤ t). Then setting ζ(t) = E[ξ1(t)|Tt],

lim
N→∞

sup
0≤t≤T

∣∣∣∣∣ 1

N

N∑
k=1

ξk(t)− ζ(t)

∣∣∣∣∣ . a.s.
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Proof. Let U0
k (t) = ξk([t]) and

U jk(t) = ξk(
[2jt]

2j
)− ξk(

[2j−1t]

2j−1
).

Then

ξk(t) =
∞∑
j=0

U jk(t)

and

ζ(t) = lim
N→∞

1

N

N∑
k=1

ξk(t) =
∞∑
j=0

lim
N→∞

1

N

N∑
k=1

U jk(t) for all t a.s. (A.2)

Note that the convergence on the right involves countably many applications of de
Finetti’s theorem for real exchangeable sequences

{
{ξk( i

2j )} : i, j = 0, 1, . . .
}

. The
interchange of the limit and the sum follows from (A.1). Since we are assuming
all σ-algebras are completed,

Tt = ∨ i

2j
≤t ∩N σ(ξN (

i

2j
), ξN+1(

i

2j
), . . .).

Let δ > 0 and let ωk(δ) be the modulus of continuity of ξk, that is,

ωk(δ) = sup
0≤s,t≤T,|s−t|≤δ

|ξk(t)− ξk(s)|.

Since the modulus of continuity of an average is less than or equal to the average
of moduli of continuity, it follows that

ωζ(δ) ≤ E[ω1(δ)|TC ] a.s. (A.3)

Since it is sufficient to consider a sequence of δ converging to zero, there exists an
event of probability one on which (A.2) and (A.3) hold and hence ζ is continuous.

�

A.2. Martingales and change of measure. This section follows [27], Section
III.8. Let {Ft} be a filtration and assume that P |Ft

<< Q|Ft
, for all t ≥ 0, and

that L(t) is the corresponding Radon-Nikodym derivative. Then L is an {Ft}-
martingale on (Ω,F , Q).

Lemma A.7. Z is a P -local martingale if and only if LZ is a Q-local martingale.

Proof. Note that for a bounded stopping time τ , Z(τ) is P -integrable if and only
if L(τ)Z(τ) is Q-integrable. Let σ be any stopping time such that Z(σ ∧ ·) is
a P -martingale. We want to show that L(σ ∧ ·)Z(σ ∧ ·) is a Q-martingale The
integrability requirement follows from the previous observation taking τ = σ ∧ t.
For the martingale property, by Bayes formula, EP [Z(σ∧(t+h))−Z(σ∧t)|Ft] = 0
if and only if EQ[L(σ∧(t+h))(Z(σ∧(t+h))−Z(σ∧t))|Ft] = 0 which is equivalent
to

EQ [L(σ ∧ (t+ h))Z(σ ∧ (t+ h))|Ft] = EQ [L(σ ∧ (t+ h))Z(σ ∧ t)|Ft]
= L(σ ∧ t)Z(σ ∧ t).

�
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Theorem A.8. If M is a Q-local martingale, then

Z(t) = M(t)−
∫ t

0

1

L(s)
d[L,M ]s (A.4)

is a P -local martingale. (Note that the integrand is 1
L(s) , not 1

L(s−) .)

Proof. Note that LM − [L,M ] is a Q-local martingale. We need to show that
LZ is a Q-local martingale. But letting V denote the second term on the right of
(A.4), we have

L(t)Z(t) = L(t)M(t)− [L,M ]t −
∫ t

0

V (s−)dL(s),

and both terms on the right are Q-local martingales. �
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