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We present a numerical scheme for the solution of nonlinear mixed-dimensional PDEs 
describing coupled processes in embedded tubular network system in exchange with a 
bulk domain. Such problems arise in various biological and technical applications such 
as in the modeling of root-water uptake, heat exchangers, or geothermal wells. The 
nonlinearity appears in form of solution-dependent parameters such as pressure-dependent 
permeability or temperature-dependent thermal conductivity. We derive and analyze a 
numerical scheme based on distributing the bulk-network coupling source term by a 
smoothing kernel with local support. By the use of local analytical solutions, interface 
unknowns and fluxes at the bulk-network interface can be accurately reconstructed 
from coarsely resolved numerical solutions in the bulk domain. Numerical examples 
give confidence in the robustness of the method and show the results in comparison 
to previously published methods. The new method outperforms these existing methods 
in accuracy and efficiency. In a root water uptake scenario, we accurately estimate the 
transpiration rate using only a few thousand 3D mesh cells and a structured cube grid 
whereas other state-of-the-art numerical schemes require millions of cells and local grid 
refinement to reach comparable accuracy.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Nonlinear elliptic equations arise in the description of fluid flow in porous media where permeability depends on the 
water pressure (e.g. Richards’ equation) or the description of heat conduction where the thermal conductivity depends on 
temperature. In this work, we discuss a numerical scheme to solve such equations in the presence of an embedded thin 
tubular transport system exchanging mass or energy with the embedding bulk domain. This exchange is modeled by local 
source terms and results in coupled systems of mixed-dimensional partial differential equations. A motivating example 
is the simulation of root water uptake from soil when considering complex three-dimensional root network architectures 
explicitly [1], which allows to predict the complex water distribution in the soil around roots.

Consider a bounded Lipschitz domain � ⊂R3 with an embedded tubular network. The tube centerlines form a network 
of curves connected at branching points which is denoted by �, as shown in Fig. 1. In this work, we want to discuss 
stationary mixed-dimensional nonlinear equation systems of the form
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Fig. 1. Embedded tubular network system. The network of line segments � with radius function R is embedded into the bulk domain �. The sub-
domains � and � are equipped with the (local) coordinate systems (x1, x2, x3) and (r , θ , s), respectively. Source terms coupling equations on � and �
are distributed in the neighborhood of � in �, i.e. r ≤ �(s). This technique allows to bridge the dimensional gap between the one-dimensional equations 
describing processes in � and the three-dimensional equations describing processes in �.

−∇· (Db(ûb)∇ûb
)= qδ� in �, (1.1a)

−∂s (De∂sue) = −q on �, (1.1b)

q := −|P |γ (	P ûb − ue
)
, (1.1c)

with suitable boundary conditions on ∂� and ∂�. In the specific case of network branches ending in �, we always impose 
no-flow (Neumann) boundary conditions. We assume M : [0, 1] → R3, s �→ x to be a parametrization of �. The operators 
∇· and ∇ are the spatial divergence and gradient operators in �, and ∂s denotes the derivative in direction of s. The scalar 
unknowns in � and � are denoted by ûb (b for “bulk”) and ue (e for “embedded”). The diffusion coefficients Db > 0 and 
De > 0 are positive and continuous and Db is a (possibly nonlinear) function of ub . In the source term, γ is a diffusive 
permeability and P = P (s) is the cross-sectional tube perimeter at s. Moreover, 	P is an average operator such that 	P ûb

denotes the average of ûb on the perimeter P for a given s,

	P u := 1

|P |
∫
P

u dζ, (1.2)

where ζ is some suitable parameterization of P in R3. Furthermore, we introduce

û©
b (s) := 	P ûb(s), (1.3)

explicitly referring to the average of ûb . The term δ� in Eq. (1.1a) restricts the source term on the centerline in the sense of 
distributions. That means, we define the right-hand-side of Eq. (1.1a) as a line source

qδ� :=
1∫

0

δ(M(s) − x)q(s)ds (1.4)

where δ is the Dirac delta distribution. From definition (1.4) follows the property∫
�

qδ�η(x)dx =
∫
�

q(s)η(M(s))ds, ∀η ∈ C∞(�), (1.5)

that is for all smooth test functions η, provided that q has sufficient regularity. For a discussion of the regularity require-
ments, we refer to [2–4]. We remark that the given formulation of the property includes the simpler case η = 1 in �. 
Property (1.5) implies that the balanced quantity (e.g. mass) is conserved.

The mixed-dimensional model (1.1) based on line sources, can be derived from a corresponding model with the three-
dimensional tubular network structure cut out from �, by assuming that the tube radii R are much smaller than average 
distance between tubes [5,4]. We remark that the well-posedness of problem (1.1) for constant Db has been shown in 
weighted Sobolev spaces in [2].

The water distribution around a three-dimensional root network taking up water from the embedding soil can be mod-
eled by Eq. (1.1a) [6–8,1]. In this case, the unknowns are hydraulic pressures in root and soil, and Db corresponds to the 
hydraulic conductivity. Soil can be viewed as a three-phasic porous medium composed of the solid matrix and two fluid 
phases, air and water. With decreasing water content the soil’s hydraulic conductivity decreases drastically, and at the same 
time, capillary forces increase which attract water to the hydrophilic solid matrix [9]. Under the assumptions of local me-
chanical equilibrium a direct and nonlinear relationship between the local water pressure and the hydraulic conductivity 
2
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can be found [10,11]. At low water saturation, high pressure gradients are necessary to move water in dry soil. According 
to the cohesion-tension theory [12,13], transpiration at the plant leaves causes a high suction potential in plant roots and 
plants can maintain water uptake even in relatively dry soils. The root water uptake rate (q) is proportional to the root-soil 
pressure difference [7]. This can cause large local pressure gradients around roots [13,14] which are difficult to approximate 
with standard numerical schemes. We will use root water uptake as the motivational application and in the numerical 
examples in this work.

Problem (1.1) also arises for heat conduction problems, for example when modeling the temperature distribution around 
geothermal well systems [15,16]. Here, Db corresponds to the thermal conductivity, which generally depends on tempera-
ture [17]. When modeling the flow field around a well in a confined aquifer under high injection rates the surrounding rock 
undergoes deformations. The hydraulic conductivity of the rock depends on the pore pressure.

The paper is structured as follows. Motivated by the results of [18], in Section 2 we propose a distributed source model 
to replace problem (1.1). In Section 3, we design a numerical scheme to accurately approximate the interface unknowns 
and hence Eq. (1.1c), locally for each tubular segment. The resulting reconstruction algorithm in the presence of nonlinear 
coefficient Db—and the extensions of the ideas of [18] to that case—is the main contribution of this work. The method 
is based on local analytical solution obtained by means of Kirchhoff transformation. In Section 4, we show and discuss 
numerical results. In particular, in Sections 4.3.1 and 4.3.2 we investigate the reconstruction scheme numerically for a series 
of carefully constructed verification scenarios. Finally, in Section 4.4, we simulate root water uptake with a realistic root 
network obtained from MRI measurement and compare our results against a numerical reference solution obtained with 
state-of-the-art methods.

2. The distributed source model

The introduced model formulation (1.1), leads to solutions ûb which exhibit singularities on �. It is therefore difficult 
to construct efficient and accurate numerical schemes for solving problem (1.1) [3,4,18]. However, for a precise description 
of the source term coupling the network and bulk domain, it is crucial to accurately approximate the solution in the 
neighborhood of the network. Koch et al. [18] suggest to solve a modified problem

−∇· (Db(ub)∇ub) = q�� in �, (2.1a)

−∂s (De∂sue) = −q on �, (2.1b)

q = −|P |γ (û©
b − ue), (2.1c)

with the same boundary conditions as for problem (1.1), and where �� denotes a set of non-negative kernel functions ��,i
that distribute q around a vessel segment i over a small radially-symmetric tubular support region with radius �(s) > 0 and 
��,i = 0 outside the support region (compact support), cf. Fig. 1. We point out that problem (2.1) has a modified solution 
denoted by ub that is usually close to ûb but may differ significantly in the neighborhood of the network. Moreover, the 
source term (2.1c) depends on û©

b rather than u©
b , an important distinction that will become clear in the following, in 

particular in Section 3, where we explain how to compute û©
b for problem (2.1).

Remark 1. We choose kernel functions ��,i(s) along each segment i in the form [18]

��,i(�) = �−2ϕ(r�−1) with

2π∫
0

�(s)∫
0

��,ir drdθ = 1 ∀s, (2.2)

where the function ϕ is a positive symmetric mollifier [19,20] defined on a disc perpendicular to the vessel segment, cf. 
Fig. 1. An example for such kernel functions is given in Eq. (2.3). The kernel functions �� have dimension L−2 (L: length) 
and bridge the dimensional gap of 2 between Eq. (2.1a) and Eq. (2.1b). In this work we use a uniform distribution,

��,i(r) =
{

1
π�2 r ≤ �,

0 r > �.
(2.3)

Remark 2. For � → 0, such kernel functions ��,i converge to Dirac delta functions in the sense of distributions [21]. In this 
sense, problem (2.1) is close to problem (1.1). However, solutions to (2.1) with � > 0 have higher regularity than solutions 
to (1.1). Moreover, we emphasize that the limiting case � → 0 is not interesting in practice, and it is known that solutions 
to problem (1.1) are difficult to approximate numerically [3]. Instead, both problems (2.1) and (1.1) shall be considered 
approximations of the more accurate resolved interface model, where the bulk-network interface is explicitly resolved and 
the mass exchange is formulated in terms of boundary conditions on that interface, cf. [22,23]. In Section 4, we will show 
that solving problem (2.1) with � > R can yield better approximations to the solution of the fully-resolved model problem 
on coarse computational grids than solving problem (1.1).
3
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Fig. 2. The distributed source model. (A) Exemplary application: root water uptake from soil. Cross-sectional cut through root embedded in soil. (B) 
Terminology for radial symmetric setup, root radius and kernel support radius for local source distribution. (C) Effect of the regularization kernel on the 
local soil pressure solution. Symbols: ub,0, regularized unknown at the tube centerline; û©

b , (average) bulk interface quantity (e.g. soil pressure); ue , physical 
quantity inside the tube (e.g. root pressure); R , tube radius; �, kernel support radius.

Remark 3. For � ≤ R , û©
b can be approximated by 	P ub . However, for � > R , this approximation is poor as the distribution 

kernel leads to a locally regularized solution ub �= ûb (visualized in Fig. 2). Hence, an algorithm approximating ûb from ub
in the latter case is required and will be presented in Section 3.

When simulating systems with large networks of thousands of tubes (e.g. root systems) resolving the local solution 
around each network segment requires fine local computational meshes. The kernel distributes the source or sink term 
in a local neighborhood around network segments. This leads to a smooth ub which is easy to approximate by standard 
numerical schemes, see Fig. 2 for schematic representation at the example of a root segment cross-section. Unfortunately, 
the value of ub at the tube-bulk interface does not correspond to the interface value of the line source model (1.1) anymore, 
i.e. 	P ub �= û©

b . In the following, we exploit the fact that we know how the introduced kernel function modifies the local 
solution around a single isolated tube segment. The design of a method to reconstruct û©

b accurately from the smooth 
solution ub— in the presence of the nonlinearity introduced by the diffusion coefficient Db— is discussed subsequently in 
Section 3 and is the main contribution of this work.

Finally, we recall that the linear case, that is Db = const., is discussed in [18]. For the particular case of root water uptake, 
local corrections based on the analytical solutions of the Richards equation have been proposed in [24]. However, the scheme 
is only presented in the discrete setting for a single voxel. The authors of [14] suggest to solve local radial-symmetric 
problems at every root segment, introducing additional unknowns. Again, the method is only presented in the discrete 
setting. In this work, we follow [18] and present a model formulated in a continuous setting which allows generalization to 
any suitable discretization method and simplifies the analysis of possible sources of errors. Moreover, the source distribution 
kernel allows to control the accuracy of the interface reconstruction in interplay with the mesh size. Apart from getting rid 
of singularities, problem formulation (2.1) has the advantage that it does not require that the computational grid resolves 
the length scale R to yield accurate approximations of q [3], but relaxes this requirement to the grid being required to 
resolve the length scale �, a selectable model parameter. It has been demonstrated [18] that this formulation allows to 
significantly reduce the error in q, ue , and ub for coarse grids.

3. Local reconstruction of interface unknown and flux

In this section, we describe a method to accurately reconstruct the interface unknown û©
b for a given tube segment from 

the evaluation of the smoothed solution ub on the centerline �. The Kirchhoff transformation, well-known from the solution 
of heat conduction problems [25, Eq. (10)] allows us to transform Eq. (2.1a) such that the nonlinearity only appears in the 
source term. We then derive a local analytical solution for ub depending on tube and kernel radius. From this analytical 
solution, we deduct a nonlinear equation to compute û©

b from a point evaluation of ub . We conclude by discussing the 
validity of the approach for the case of tubular networks.

3.1. Kirchhoff transformation

Equation (2.1) is a nonlinear equation system, if the diffusion coefficient Db depends on ub . Let us introduce the following 
Kirchhoff transformation [26]

T : ub �→ ψ =
ub∫

Db(ũb)dũb, (3.1)
0

4
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Fig. 3. An exponential diffusion coefficient function. Used for model verification tests in this work. The diffusion coefficient is given by Db(ub) =
max(D0 exp{k(ub − 1)}, Dmin), where D0 = 1, and Dmin = 1 × 10−6. The middle and right plot show the Kirchhoff transformation, T (ub), as defined in 
Eq. (3.1) and its inverse function, T −1(ψ). The analytical expressions for T (ub) and T −1(ψ) are given in Appendix A.

and we define ψ̂ analogously in terms of ûb . The chain rule yields

∇ψ = Db(ub)∇ub, (3.2)

which allows us to rewrite the left-hand-side of Eq. (2.1a),

−∇ · ∇ψ = q��, (3.3)

in terms of the transformed variable ψ . Note that the left-hand-side is now a linear operator, and the nonlinearity is 
contained in the source term

q = −|P |γ (	P T −1(ψ̂) − ue), (3.4)

in terms of the inverse Kirchhoff transformation. This is an essential step, since Eq. (3.3) can be solved analytically in a 
simple radially-symmetric setting, cf. Section 3.2.

Remark 4. Since Db is assumed positive and continuous, T is a strictly monotonically increasing function and we can 
uniquely define its inverse, T −1. However, depending on the choice of Db(ub), the image of T can be a strict subset (ψc , 
∞) of R, and consequently T −1 may be only defined on (ψc , ∞) [26]. This means not all solutions ψ of Eq. (3.3) have 
corresponding solutions ub . For example, for the exponential function Db = D0 exp{k(ub − 1)} and k ∈ R+ , a function that 
fulfills our preconditions on Db and that we will use subsequently in numerical verification tests, this is indeed the case. 
There, ψc corresponds to ub = −∞ and is well-defined. Nevertheless, T −1 is typically ill-conditioned around ψc (unbounded 
derivatives). This is evident in Fig. 3 for k = 5 where it becomes clear that the derivative can get arbitrarily large. (The same 
holds true for the Van Genuchten-Mualem model commonly used for the permeability in root-soil interaction, see Fig. 12
at θrθ

−1
s in Section 4.4.)

Proposition. Fortunately, this singularity disappears in the non-degenerate case [26]

Db(ub) ≥ Dmin for some Dmin > 0. (3.5)

In this case both T and T −1 are defined on all of R. For instance, this property can be achieved for the exponential function Db by 
using Dmin as its lower bound, i.e. Db := max(D0 exp{k(ub − 1)}, Dmin).

The functions shown in Fig. 3 are regularized in this way using Dmin = 1 × 10−6 (see k = 5).

3.2. Local cylinder model and interface reconstruction

Firstly, let us consider an infinitely long straight cylinder of radius R embedded in an infinite domain �∞ ⊂R3 with ue

being a given constant. Solving problem (2.1) then reduces to finding radially symmetric solutions by solving

−1

r

∂

∂r

(
rDb(ub)

∂ub

∂r

)
= q(ue, û©

b )��, (3.6)

on a cross-sectional plane in local cylinder coordinates. By using the Kirchhoff transformation, Eq. (3.1), and the definition 
of û©

b , Eq. (1.3), we obtain

−1 ∂
(

r
∂ψ

)
= q(ue,	P T −1(ψ̂))��. (3.7)
r ∂r ∂r

5
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As discussed above, q is now a nonlinear function of ψ̂ (which solves Eq. (3.7) for � → 0). Using the uniform distribution 
kernel, Eq. (2.3), which is only non-zero in the local support region defined by the kernel radius �, we obtain an analytical 
solution,

ψ(r) =
⎧⎨
⎩ψ̂© − q

2π

[
r2

2�2 + ln
( �

R

)− 1
2

]
r ≤ �

ψ̂© − q
2π

[
ln
( r

R

)]
r > �,

(3.8)

in terms of the transformed variable ψ and

ψ̂© := 	P ψ̂
�≤R= 	P ψ. (3.9)

We refer to [18] for more details about the construction of the analytical solution (3.8).
Continuing in this setting and evaluating Eq. (3.8) at r = δ, where 0 ≤ δ < � denotes a distance to some point close to 

the tube centerline (r = 0), yields

ψ̂© = ψδ + q

2π

[
δ2

2�2
+ ln

(�

R

)
− 1

2

]
, (3.10)

where we introduced the symbol ψδ := ψ(r = δ). We note that we evaluated ψ in the region regularized by the source 
distribution kernel. Moreover, recall that the coupling source term is given by

q = −|P |γ (û©
b − ue), (3.11)

and with the Kirchhoff transformation and radial symmetry, we know that

ψδ = T (ub,δ) and ψ̂© = 	P ψ̂ = T (	P ûb) = T (û©
b ). (3.12)

Result 1. If we can estimate ub,δ (for example by the discrete cell value in a finite volume discretization), we can find the interface 
pressure û©

b by solving a nonlinear equation composed of Eqs. (3.10) to (3.12),

T (ub,δ) − T (û©
b ) − |P |γ

2π

[
δ2

2�2
+ ln

(�

R

)
− 1

2

](
û©

b − ue

)
= 0, (3.13)

which then allows to compute the source term q, given by Eq. (3.11). This means that an accurate approximation of ub,δ and ue is 
sufficient to compute a good approximation of q(û©

b , ue).

This also suggests that we can indeed solve problem (2.1) instead of problem (1.1) while retaining a good approximation 
of q, ue and ûb (for r > �).

Remark 5. In the case that Db is a constant, Eq. (3.13) can be explicitly solved for û©
b as shown in [18].

Remark 6. To see that Eq. (3.13) has a unique solution, it is sufficient to show that the expression on the left side is mono-
tone with respect to û©

b . In general, this only holds under some conditions. First, we assume that the kernel radius is chosen 
large enough such that ln

( �
R

)≥ 0.5. With this assumption, the third term is a monotonically decreasing (linear) function of 
û©

b . Due to the assumption of positive diffusion coefficients, the functional −T is also monotonically decreasing. It follows 
the monotonicity of the entire left hand side expression in Eq. (3.13) (constant terms do not influence the monotonicity), 
and Eq. (3.13) therefore has a unique solution.

For the general three-dimensional case, the second equality in Eq. (3.12) is only an approximation. The equality holds 
here due to the radial symmetry of the solution. This condition is violated in the presence of multiple arbitrarily-oriented 
tubes as they readily occur in tubular network structures (microvasculature, root systems, fiber networks). We motivate in 
the next section why this error is expected to be small.

3.3. Multiple interacting parallel tubes

Let us consider the case of many parallel tubes where the solution ub only varies linearly along the tubes. Hence, we 
can consider a two-dimensional cross-sectional plane and denote with x ∈R2 a position on this plane. Due to the linearity 
of the Laplace operator in Eq. (3.3), we can obtain a general solution for ψ by superposition

ψ =
N∑

ψ j + H, ψ j = −q j f j(x), (3.14)

j=1

6
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where H is some harmonic function (for example chosen such that the boundary conditions are satisfied),

q j = −|P j|γ j(û©
b, j − ue(x j)), (3.15)

f j(x) =

⎧⎪⎨
⎪⎩

1
2π

[
||x−x j ||22

2�2
j

+ ln
(

� j
R j

)
− 1

2

]
||x − x j||2 ≤ � j,

1
2π

[
ln
( ||x−x j ||2

R j

)]
else.

(3.16)

We remark that û©
b, j in q j depends on contributions from all partial solutions ψ j . To simplify notation, we assume �i ≤ Ri in 

the following (û©
b,i = 	Pi ûb = 	Pi ub). Applying the linear averaging operator (defined in Eq. (1.2)) on both sides of Eq. (3.14)

and assuming that the tubes do not overlap yields

	Pi ψ = 	Pi ψi +
N∑

j=1, j �=i

ψ j(xi) + H(xi)

= 	Pi ψi + ψ(xi) − ψi(xi), (3.17)

where we used the mean value theorem for harmonic functions, i.e. 	Pi ψ j = ψ j(xi). From this, it follows that

ψ(xi) − 	Pi ψ = ψi(xi) − 	Pi ψi

= qi(	Pi f i − f i(xi))

= |Pi|γi(û©
b,i − ue(xi))( f i(xi) − 	Pi f i)

= |Pi|γi(û©
b,i − ue(xi)) f i(xi), (3.18)

since the source term qi is independent of xi and 	Pi f i = 0. Finally, assuming that

	Pi ψ = 	Pi T (ub) ≈ T (	Pi ub) = T (û©
b ), (3.19)

yields the reconstruction equation

T (ub(xi)) − T (ũ©
b,i) − |Pi|γi(ũ©

b,i − ue(xi)) f i(xi) = 0, (3.20)

which is equivalent to Eq. (3.13) with δ = 0. The ũ©
bi

≈ û©
b,i resulting from solving Eq. (3.20) is an approximation due to 

Eq. (3.19). This extends our result from the single vessel case to multiple parallel vessels, but with the introduction of some 
approximation error due to the nonlinearity of Db . Since Eq. (3.20) only requires point evaluations of ub , the result extends 
to �i > Ri as long as the kernel support regions do not overlap.

3.3.1. Error estimate for the approximation of the average operator
In the following, we estimate the error associated with approximation (3.19) in the reconstruction of the interface un-

known. Let us assume that ψ(xi) and ue(xi) are given and denote with ub the exact solution. Again, to simplify notation, 
we assume �i ≤ Ri . Subtracting Eq. (3.18) from Eq. (3.20) yields

	Pi ψ − T (ũ©
b,i) = Fi(û©

b,i − ũ©
b,i), (3.21)

where Fi := −|Pi |γi f i(xi) ≥ 0. Assuming that Db ∈ C1(U ) (i.e. T ∈ C2(U )), for some U ⊂R such that ub(�) ⊂ U , and using 
Taylor’s Theorem results in

ψ = T (u) = T (û©
b,i) + T ′(û©

b,i)(u − û©
b,i) +

u∫
û©

b,i

T ′′(ũ)(u − ũ)dũ, (3.22)

for any u ∈ U . Inserting the exact solution and applying the averaging operator on both sides give

	Pi ψ = T (û©
b,i) + 	Pi

⎛
⎜⎜⎝

ub∫
û©

b,i

T ′′(ũ)(ub − ũ)dũ

⎞
⎟⎟⎠ , (3.23)

and inserting this expression into Eq. (3.21) results in
7
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Fi(û©
b,i − ũ©

b,i) = T (û©
b,i) − T (ũ©

b,i) + 	Pi

⎛
⎜⎜⎝

ub∫
û©

b,i

T ′′(ũ)(ub − ũ)dũ

⎞
⎟⎟⎠ . (3.24)

The above equation can be equivalently written as

ũ©
b,i∫

û©
b,i

(T ′(ũb) − Fi) dũb = 	Pi

⎛
⎜⎜⎝

ub∫
û©

b,i

T ′′(ũ)(ub − ũ)dũ

⎞
⎟⎟⎠ . (3.25)

By assuming that there exists some constant C̃i , independent of Ri , such that∣∣∣∣∣∣∣∣
ũ©

b,i∫
û©

b,i

(T ′(ũb) − Fi) dũb

∣∣∣∣∣∣∣∣
≥ C̃i

∣∣∣ũ©
b,i − û©

b,i

∣∣∣ , (3.26)

which for example holds if D−1
b (Fi) /∈ [min(ũ©

b,i, ̂u
©
b,i), max(ũ©

b,i, ̂u
©
b,i)], it holds that

C̃i

∣∣∣ũ©
b,i − û©

b,i

∣∣∣≤
∣∣∣∣∣∣∣∣
	Pi

⎛
⎜⎜⎝

ub∫
û©

b,i

T ′′(ũ)(ub − ũ)dũ

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

(3.27)

≤ 0.5‖D ′
b‖L∞(ub(Pi))	Pi (ub − û©

b,i)
2 (3.28)

≤ 0.5‖D ′
b‖L∞(ub(Pi))(ess sup

Pi

ub − ess inf
Pi

ub)
2. (3.29)

If the solution ub is sufficiently smooth (e.g. C1 or Lipschitz continuous), we deduce from the inequality above that the 
error introduced by the approximation ũ©

b,i is O(R2
i ). Furthermore, it also shows that there is no error if Db = const., i.e. 

Eq. (2.1a) is a linear diffusion equation, or if ub is constant on Pi (i.e. radial symmetric solution).

Remark 7. In a numerical scheme, the exact solution ψ is approximated by some discrete solution ψh , for which it holds that 
|ψ(xi) − ψh(xi)| = O(h2) (h denotes the discretization length, see Section 4) when using a second order scheme. Therefore, 
the approximation ψh(xi) ≈ ψ(xi) introduces an error of O(h2), whereas the error introduced by the approximation 	Pi ψ ≈
T (û©

b,i) is in the order of O(R2
i ). This suggests that on grids where h > Ri , 	Pi ψ ≈ T (û©

b,i) yields a good approximation, 
without being the main source of error. This result is supported by the numerical results in Section 4. Since the goal of 
the kernel method is to allow coarser grids by choosing kernel support radii � > Ri while maintaining accuracy [18], grid 
resolutions with h > Ri correspond to the typical use case.

3.4. Multiple arbitrarily-oriented tubes

The numerical method introduced above for single or parallel tubes can also be applied for the general three-dimensional 
case with arbitrarily-oriented tubes. However, for arbitrarily-oriented tubes an additional error is introduced because the 
mean value property of harmonic functions, used for ψ j to derive Eq. (3.18), is no longer valid.

The additional error depends on |	Pi ψ j − ψ j(xi)| = |q j ||	Pi f j − f j(xi)|, with j �= i and f j as defined in Eq. (3.16). 
Assuming that the kernel support regions are non-overlapping, we apply Taylor’s Theorem to deduce the following estimate

|	Pi f j − f j(xi)| ≤ C

2
R2

i . (3.30)

Assuming that a contribution of another tube has the shape of a line source, the constant C can be computed, yielding

|	Pi f j − f j(xi)| ≤ R2
i

4π(‖xi − E⊥
j (xi)‖2 − Ri)

2
, (3.31)

where B Ri (xi) denotes a ball of radius Ri centered at xi , and E⊥
j orthogonally projects x onto the centerline of tube j. The 

derivation of the estimate is given in Appendix B. We note that most other tubes in a large network system embedded in 
� are far away from the segment i, and therefore the error is small. Close tubes may cause a signification error. However, 
8
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average distances to the closest neighbor tube in relevant applications are often 10Ri and larger. With these estimates and 
by using similar arguments as in Section 3.3.1, we conclude that also for the case of arbitrarily-oriented tubes, the error 
introduced by reconstructing ũ©

b,i from Eq. (3.20) using approximation (3.19) is not dominant on grids where h > Ri . This 
conclusion is supported by numerical experiments, e.g. [23].

Finally, the line segments in practical networks are finite and kinks and bifurcations may introduce additional errors since 
there the kernel support regions of two connected vessels may overlap and the assumption of discrete cylinders as segments 
may result in errors in the estimation of the network surface area. In [23], the author proposes a numerical method that 
does not suffer from these errors since the tube interface is explicitly resolved by the three-dimensional computational 
mesh. It is shown that the approximation of kinks and bifurcations with cylinder segments do not introduce significant 
errors and that these errors are irrelevant in practical simulations of tissue perfusion or root water uptake.

4. Numerical results and discussion

In this section, we investigate numerically convergence properties of the introduced method and the influence of its 
numerical parameters, in particular, the kernel width � and the reconstruction distance parameter δ, on the approximation 
error. Moreover, we investigate which model errors are involved with relaxing the assumptions under which Result 1 was 
derived in Section 3.2, concluding with a root water uptake simulation.

The three-dimensional bulk domain � and the network domain � are spatially decomposed into the meshes �h and 
�h consisting of control volumes (cells) K� ∈ �h and K� ∈ �h , respectively. The discretization length, i.e. the maximum 
cell diameter, is denoted as h. To discretize the nonlinear diffusion problem (2.1) in space, a cell-centered finite volume 
method with a two-point flux approximation is employed [18]. The resulting nonlinear system of equations is solved with 
Newton’s method. To solve the learnized system of equations within each Newton iteration, we use the same linear solver 
as described in [18], that is, a stabilized bi-conjugate gradient method with a block-diagonal incomplete LU-factorization-
based preconditioner. All presented methods and simulations are implemented using the open-source software framework 
DuMux [27] with the network grid implementation dune-foamgrid [28] for representing the embedded network domain.

For general nonlinear constitutive models (e.g. the Van Genuchten curves in Section 4.4), the Kirchhoff transformation 
Eq. (3.3) and its inverse are computed numerically. Here, we use numerical integration based on the double exponential 
transformation [29] and Brent’s method for the inverse transformation. For fast evaluation of the inverse transformation, 
the functional T −1(ψ) is replaced by a lookup table with local linear interpolation and a high sampling rate. The nonlinear 
interface reconstruction, Eq. (3.13) (single tube) or Eq. (3.20) (multiple tubes), is solved using Brent’s method. For the 
numerical integration routine used for the distributed source terms in the three-dimensional case, we refer the interested 
reader to [18].

4.1. Analytical solutions for multiple parallel tubes

In this section, we derive for the verification of the introduced method, two types of analytical solutions based on the 
superposition of point source solutions. We consider an infinite two-dimensional domain � ⊂ R2 that cuts through N
parallel non-overlapping circular tubes of different radii Ri . The flow resistance that the tubes pose to flow through � and 
its volume are neglected so that � can be extended inside the tube radius and comprises the entire plane without circular 
cut-outs.

The error involved with this assumption has been numerically analyzed in [23] and found to be small. The assumption 
is also commonly used in 1d-3d models [30,31,5,2,32,3,33,18] based on the underlying assumption that tube radii are small. 
As noted in the beginning of this section, an analytical solution for ψ can be obtained by superposition, see Eq. (3.14). The 
analytical solution for ub is then found by numerical or exact inversion of the Kirchhoff transformation.

In the following, we compute the coefficients of such solutions numerically for given tube center positions xi , tube radii 
Ri , and ue,i , fixed γi , given Db(ub), and �i ≥ Ri . For a fully determined analytical solution, we require N average interface 
unknowns û©

b,i , and some constant Cψ (corresponds to the choice H ≡ Cψ in Eq. (3.14)). Furthermore, we have N equations

û©
b,i = 1

|Pi|
∫
Pi

T −1(ψ(x))dx ≈
K ip∑

k=1

T −1(ψ(xi,k))wi,k, (4.1)

where xi,k ∈ R2, wi,k ∈ R+ are K ip integration points and weights. We choose xi,k to be uniformly distributed on Pi . To 
compute the solution numerically, we choose û©

b,1 and then solve Eq. (4.1) with a Newton method, where in every step the 
dense linear system⎡

⎢⎢⎢⎢⎢⎣

∂r1
∂Cψ

∂r1
∂u1

· · · ∂r1
∂uN

∂r2
∂Cψ

∂r2
∂u1

...
. . .

∂rN ∂rN

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�Cψ

�u2
...

�uN

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

r1
r2
...

rN

⎤
⎥⎥⎥⎦ , (4.2)
∂Cψ ∂uN

9
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is solved, where ui is short notation for û©
b,i and

ri = û©
b,i −

K ip∑
k=1

T −1(ψ(xi,k))wi,k = 0, (4.3)

are the nonlinear residuals. The partial derivatives are approximated by numerical differentiation. The resulting solution is 
denoted as Ub .

In a variation of the above algorithm we use

r̃i = ũ©
b,i − T −1

⎛
⎝ K ip∑

k=1

ψ(xi,k)wi,k

⎞
⎠= 0, (4.4)

and the resulting solution is denoted as Ũb . This variation exactly corresponds to the approximation (3.19). We will show in 
the subsequent numerical experiments that a distributed source scheme with an interface reconstruction based on Eq. (3.20)
in a setup corresponding to the two-dimensional parallel tube setup converges to the modified solution Ũb . However, Ub
and Ũb are very similar so that the error ||Ub − Ũb,h|| for a numerical approximation Ũb,h is small in practice. Examples of 
Ub for three parallel tubes are shown Fig. 4.

4.2. Discrete error measures

To quantify the discretization errors, we define the following relative discrete L2-errors for the unknown ub , its trans-
formed variable ψ = T (ub), and the source term q as

Eub = 1

ub,ref

⎡
⎣ 1

|�h|
∑

K�∈�h

|K�| (ub,K�
− Ub,K�

)2

⎤
⎦

1
2

, (4.5)

where ub,ref is a constant reference value chosen as 1 (unless otherwise indicated) and ub,K�
and Ub,K�

are the numerical 
and analytical solutions evaluated at the center of K�;

Eψ = 1

ψref

⎡
⎣ 1

|�h|
∑

K�∈�h

|K�| (ψK�
− �K�

)2

⎤
⎦

1
2

, (4.6)

where ψref is chosen as 0.1 (unless otherwise indicated), and

Eq = 1

qref

⎡
⎣ 1

|�h|
∑

K�∈�h

(
qK� − Q K�

)2

⎤
⎦

1
2

, (4.7)

where qK�
and Q K�

are the numerical and the exact source for the tube segment K� , defined as the integral of q in 
Eq. (2.1a) over K� and qref = max

K�∈�h

|Q K�
|. Finally, we analogously define relative discrete L2-errors with respect to the 

modified analytical solution Ũ (see Section 4.1), and accordingly denote them as Ẽub , Ẽψ , Ẽq . We note that all errors are 
reported against the regularized solution ub rather than the line source solution ûb . The exact solutions for ue and q are 
equivalent in both settings.

4.3. Grid convergence tests

In the following, we present grid convergence tests against the analytical solution for a single tube and against the 
analytical solutions of Section 4.1 for multiple parallel tubes. The diffusion coefficient Db(ub) is chosen as exponential 
function shown in Fig. 3 with D0 = 0.5. Analytical expressions for the Kirchhoff transformation and its inverse are given in 
Appendix A. The diffusive wall permeability γ is chosen as 1.

As motivated in Section 4.1, we expect that the numerical solution converges to the modified solution Ũb . However, Ub
and Ũb are expected to be very similar. They are identical for a single infinite tube, where the approximation (3.19) is exact.

4.3.1. Single tube convergence rates
Let us consider Eq. (2.1a) for an infinite straight tube with constant ue embedded in an infinite bulk domain. The problem 

reduces to solving Eq. (3.6). The analytical solution is given by Eq. (3.8). Note that for this radially symmetric case Eq. (3.19)
is exact. We therefore only report errors with respect to Ub since Ub and Ũb (as described in Section 4.1) are identical for 
10
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2, 0.15, 0.1), �i = Ri (left) and �i = 2Ri (right), and various 
he scale is cut off at ub = 0 (hence the white hole in the 

Ri (left) the minimum of ub is found to be −6 × 104. We 
struction algorithm needs to reconstruct the average ub on 
 circle) into a function that is much easier to approximate 

11
Fig. 4. Contour plot of the analytical solution Ub for three parallel tubes. Cross-sectional perimeter shown by black circles. Plotted for tube radii R = (0.

exponential diffusion coefficient functions (Fig. 3, D0 = 0.5). The higher k the larger the gradients at the tube-bulk interface (denser contour lines). T
biggest tube for k = 5). The minimum and maximum values of ub are given under each plot. Note that due to the large gradients in the case k = 5, �i =
therefore consider this case a hard-to-solve test case. We note that by increasing the kernel radius �, ub is mollified (left vs. right). The interface recon
the black line (tube-bulk interface) shown in the left figure, regardless of �. The mollifier turns ûb (equivalent to ub on the left figure outside the black
by numerical schemes. However, using the proposed algorithm, ûb can be reconstructed from ub .
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Fig. 5. Grid convergence of relative discrete errors for single infinite tube. The kernel radius is � = 5R and the tube radius R = 0.01. h is the discretization 
length. Following a pre-asymptotic range, second order convergence in all variables is observed for h ≤ �.

Fig. 6. Grid convergence for relative discrete errors E and Ẽ . The maximum tube radius is Rmax = 0.2 (the three tube radii are 0.2, 0.15, 0.1), kernel radii 
are �i = 2Ri and the exponential rate parameter is k = 1.

the single tube case. We choose R = 0.01, � = 0.05, û©
b = 0.5, ue = 0.1, and numerically solve Eq. (3.6) on the unit interval 

with the analytical solution prescribed as Dirichlet boundary conditions at r = 1. The source term is computed based on ue

using the proposed interface reconstruction, Eq. (3.13).
Grid convergence results are shown in Fig. 5. The grid is uniformly refined, starting from h = 20R . Initially, we observe 

a pre-asymptotic range since the kernel support is not resolved by the grid yet. After the 3rd refinement, where h = �, all 
errors decay quadratically with uniform grid refinement for all quantities, the primary variable ub , the transformed variable 
ψ , and the numerical source term q. As observed by [18], the onset of second-order convergence is determined by the 
kernel radius rather than the tube radius. This allows for good control of the error even for simulations where fine grids are 
not feasible.

4.3.2. Multiple parallel tubes
Next, we consider a two-dimensional domain � = [−1, 1] × [−1, 1] that perpendicularly cuts three tubes with radii 

(Rmax, 34 Rmax, 12 Rmax) centered at x1 = (−0.5, −0.5), x2 = (0.5, −0.5), x3 = (0, 0.5), respectively. The tube unknowns ue,i

are given by (0.3, 0.2, 0.1) and the kernel radii are (0.4, 0.3, 0.2), respectively. The average interface unknown of the largest 
tube û©

b,1 is fixed as 0.8. The analytical solutions Ub and Ũb are computed as described in Section 4.1. The solution Ub is 
shown for different k in Fig. 4 for �i = Ri and �i = 2Ri .

In the following, we investigate the influence of the exponential rate parameter k of Db(ub) and the influences of the 
tube radii Rmax on the discretization and the error involved in approximation Eq. (3.19). We compute grid convergence both 
against Ub and Ũb . The mesh �h is uniformly refined starting with 4 × 4 cells. On boundaries, we enforce the respective 
analytical solution as Dirichlet boundary condition for ub .

In the first case, we set k = 1 and Rmax = 0.2. The errors Eub , Eψ and Eq are shown in Fig. 6 with uniform grid refine-
ment. As motivated in Section 4.1, we see convergence to the modified analytical solution Ũb . Second-order convergence 
is observed for all relevant quantities. For the convergence test against Ub , we observe a non-reducible error. Due to the 
way the analytical solution is constructed, we can identify this error as the model error caused by approximation (3.19). 
However, most interestingly, this error is very small (less than 0.1% for Ẽq) in this case and shows only an influence in the 
convergence plot for grid discretization length below the tube radius, i.e. h < Rmax.
12
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Fig. 7. Grid convergence of source errors for different exponential coefficients k. Source errors Eq and Ẽq for k = 0.1,1,3 and 5 with R = (0.2,0.15,0.1).

Fig. 8. Grid convergence of source errors for different tube radii R . Source errors Eq and Ẽq with k = 1 and Rmax = 0.2,0.1,0.05,0.02.

In the second case, we investigate more challenging cases by varying k, cf. Fig. 3. The source error for different k is 
shown in Fig. 7. As convergence of all three fields ub , ψ , q is confirmed in Figs. 5 and 6, we only report errors for q in the 
following, allowing for a more concise presentation.

For k = 0 the exponential function reduces to a constant. Therefore, this case corresponds to the linear stationary dif-
fusion equation analyzed in [18]. Due to the mean value theorem for harmonic functions, approximation (3.19) is exact 
and Ub = Ũb . The larger k the stronger the changes in Db . In particular, as shown in Fig. 4, the gradient of ub at the tube 
interface is large for larger k and the value of ub varies considerably along the tube perimeter. Nevertheless, the largest 
observed error for k = 5 is Eq ≈ 1%, and only dominates the discretization error for h < Rmax.

In a third case, we fix k = 1 and vary the tube radii Rmax = 0.2, 0.1, 0.05 and 0.02. The analytical solution is computed 
such that the source term of the largest tube is equivalent for all cases. The source errors are presented in Fig. 8. It is 
evident that the error due to approximation (3.19) decreases with smaller tube radius. This is in good agreement with 
the error estimate in Section 3.3.1. In particular, we can see again that the error is only relevant in comparison to the 
discretization error for h < Rmax.

4.3.3. Influence of the kernel radius �
In the fourth test case, we investigate the influence of the kernel radius � on the discretization error. Therefore, we 

choose a case where the approximation error due to Eq. (3.19) does not dominate the total model error. We choose Rmax =
0.05 and k = 1. The discretization length h is fixed at 0.125. All other parameters are the same as in Section 4.3.2. The kernel 
radius is increased from 2Ri to 12Ri . The resulting source errors Eq with respect to the analytical solution Ub are shown 
in Fig. 9. The error decays with increasing kernel radius. Interestingly, the speed of this decay is comparable with the error 
decay by grid refinement and matches the observations in [18] for the linear diffusion equation. It can also be seen that as 
soon as the kernel regions of the largest two tubes start to overlap the source error increases again. The error decay is best 
explained by the better approximation of ub(xi) used in the reconstruction algorithm, cf. Eq. (3.13) and Eq. (3.20). Since ub
is increasingly regularized with increasing kernel support, it becomes easier to approximate the function numerically.
13
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Fig. 9. Source errors Eq for different kernel radii �. The maximum tube radius is Rmax = 0.2 and k = 1. Semi-logarithmic plot. Exact source terms Q i are 
the same for all �.

Fig. 10. Grid convergence of source errors with non-zero δ. Source errors Eq and Ẽq for different exponential coefficients k = 0.1, 1, 3 and 5 with R =
(0.2, 0.15, 0.1), where δ is defined as the mean distance between the tube and bulk cell containing the tube (in green). δ = 0 (in black) is the situation 
where the tube is located at the center of the bulk cell. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

4.3.4. Discrete evaluations of ub,δ or ub,0
As noted in Section 3.2, the reconstruction allows to consider that the numerically measured quantity ub,K�

in cell K�

does not represent the value on the centerline but rather a value in some distance δ. This is particularly relevant for coarse 
discretizations where it may make a difference whether the root segment is located in the middle or the corner of a 3D 
cell.

As a fifth case, we present the results of the second case (where ub,K�
is interpreted as u0) in comparison with results 

for which we assumed in the reconstruction that ub,K�
represents the ub,δ and δ is chosen as the mean minimum distance 

between tube segment and bulk cell [34],

δ = 1

|K�|
∫

K�

min
x′∈K�

||x − x′||2 dx. (4.8)

The resulting source errors are shown in Fig. 10. We observe that the error is significantly reduced. As for the previous 
cases, the error curve flattens as soon as the error is dominated by the mean value approximation error.

4.4. Root–soil interaction scenario

In the following application scenario, we compute root water uptake with small root system architecture obtained from 
MRI measurements. The scenario is similar to benchmark scenario C1.2 presented in [35]. However, we solve a stationary 
problem for various root collar pressures enforced as Dirichlet boundary conditions at the root collar.
14
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Fig. 11. Root conductivities and radius for a lupin root system. Left and middle, age-dependent hydraulic root conductivities from [35]. The axial root 
conductivity Kax corresponds to De and the radial root conductivity Kr corresponds to γ in the nonlinear diffusion equation. Right, 8-day-old lupin root 
system reconstructed from MRI data (courtesy of M. Landl, FZ Jülich). Grid data available from [36]. The root segment radius is visualized to scale. The 
rooting depth is about 10 cm. Figure adapted from [37].

Fig. 12. Van Genuchten-Mualem model. Left, relative permeability kr and capillary pressure pc over water content θ using the Van Genuchten-Mualem 
model for a loamy soil, K = 5.899 12 × 10−13 m2, θr = 0.08, θs = 0.43, α = 4.077 × 10−4 Pa−1, n = 1.6. Right, the relative permeability kr as a function of 
soil water pressure ps . The term μ−1 Kkr(ps) in the root-soil scenario corresponds to Db(ub) in the general nonlinear diffusion model.

To make it easier for readers familiar with root-soil interaction, we introduce several symbols and relate them to the 
symbols in Eq. (2.1). The soil pressure ps and root pressure pr (in Pa) correspond to the unknowns ub and ue . The term 
μ−1 Kkr corresponds to Db , where μ = 1 × 10−3 Pa s is the viscosity of water, K (in m2) is the intrinsic permeability of the 
solid matrix, and kr is the dimensionless relative permeability. Relative permeability is commonly modeled as a nonlinear 
function of water content which in turn can be described by a nonlinear function of soil water pressure. The axial root 
conductivity Kax (in m4 Pa−1 s−1) corresponds to De , and the radial root conductivity Kr (in m Pa−1 s−1) corresponds to γ . 
We can then reformulate problem (2.1) to obtain a stationary root-water uptake model neglecting gravity,

−∇· (μ−1kr(ps)K∇ps
)= q�� in �, (4.9a)

−∂s (Kax∂s pr) = −q on �, (4.9b)

q = −2π R Kr(p̂©
s − pr), (4.9c)

where p̂©
s denotes the average soil pressure at the root-soil interface.

Let θ = S wθs denote the water content, where S w is the water saturation and θs is the water content at saturation (equal 
to the porosity of the soil), and let θr denote the residual water content. The relative permeability is modeled by the Van 
Genuchten-Mualem model [10,11]

kr(Se) = Sλ
e [1 − (1 − S1/m

e )]2,

Se(pc) = ((αpc)
n + 1

)−m
,

pc(ps) = −ps,

(4.10)

where pc (in Pa) is called capillary pressure, Se = θrθ
−1
s and θr , θs , α, n, m = 1 − n−1 are material-dependent parameters. 

In the following, we use a parametrization corresponding to loam given in [35], see Fig. 12. The functions in Eq. (4.10)
are plotted in Fig. 12. The axial and radial root conductivities vary along the roots dependent on the root age. These root 
conductivity values are plotted in Fig. 11. For tabularized values, we refer to [35].

The root system shown in Fig. 11 is embedded in a box-shaped domain with dimension 8 × 8 × 15 cm. The top of the 
box intersects with the root collar at x3 = 0 cm. The bottom of the domain is located at x3 = −15 cm. We prescribe a water 
15
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Fig. 13. Model comparison for root water uptake scenario. Simulation result for pr,c = −1 × 105 Pa. Left, root pressure distribution in the root. Right, 
vertical cut through the soil domain (a box of 8 × 8 × 15 cm centered at x = (0, 0, −7.5) cm) in the x2 − x3-plane at x1 = 0.7 cm. The left cut shows the 
soil saturation for a projection-based mixed-dimension method with fully resolved root-soil interface [PS]. The computational mesh has 12M cells and the 
average cell diameter of the smallest 10% of cells is h10 = 82 μm. The right cut shows the corresponding saturation distribution for the new kernel-based 
mixed-dimension scheme [DS] on a mesh with 60k cells and hmin = 0.25 cm.

saturation of S w = 0.4 (corresponding to ps = 0.78 × 105 Pa) at all sides except for the top boundary where we enforce a 
zero-flow Neumann boundary condition. In the root domain, we prescribe no-flow boundary conditions at root tips and a 
fixed pressure pr,c at the root collar. We solve the same scenario for pr,c = 0.0, −0.5 × 105, −1.0 × 105, −2.5 × 105, and 
−5.0 × 105 Pa. With decreasing root pressure, the flow rate of water leaving the domain at the root collar (transpiration 
rate) increases and the root-soil interface dries out. Dry soil (low water saturation) corresponds to a strong decrease of the 
local hydraulic conductivity, cf. Fig. 12.

We compare the results obtained with the presented distribution kernel-based method (DS) for �i = 3Ri and δ chosen as 
in Section 4.3.4 with two previously published methods. In [23] the root-soil interface is fully resolved by a locally refined 
unstructured three-dimensional mesh. The roots are modeled with Eq. (4.9b) on a network of line segments. The solution pr
(or ue) is projected onto the closest surface on the three-dimensional mesh to evaluate a source term similar to Eq. (4.9c). 
Since the root-soil interface is resolved, this resolved-interface method (PS) does not suffer from the approximation errors 
described in the previous sections, however, this comes at a higher computational cost as we will demonstrate. Secondly, we 
compare the result to results obtained with the method presented in [3] and adapted for root-soil interaction as described 
in [34]. There, the source term is restricted to the tube-bulk interface, and the bulk interface unknown is obtained by an 
average over the tube perimeter. We abbreviate this method by CSS (cylindric surface source) in the following. All methods 
are implemented in a common software framework using DuMux [27,34] and are therefore easily comparable. In fact they 
share most of the source code and mostly differ in the way the soil and root domain are coupled.

The simulation result for pr,c = −1 × 105 Pa and both methods PS and DS is shown in Fig. 13. A close-up shows the 
locally refined grid necessary to resolve the root-soil interface. Due to the regularizing effect of both the distribution kernel 
and the coarse grid the DS solution ub does not contain the low saturation values found on the interface in the PS solution. 
Hence, the question is if these values can be accurately reconstructed from ub . As a global measure of how accurate the 
source terms q are approximated, we compute the transpiration rate at the root collar. Due to mass conservation, the 
transpiration rate is given by

rT =
∫
�

q(s)ds. (4.11)

Transpiration rates for all three methods and all root collar pressures are shown in Fig. 14. Firstly, it can be observed 
that the DS method approximates all transpiration rates with a maximum relative difference of 3% to the high fidelity PS 
solution, notably using a quite coarse grid (h = 5 mm). Using the same grid resolution the CSS method shows a difference 
of 10% for pr,c = 0 Pa and even 60% for pr,c = −5 × 105 Pa. Since CSS is a consistent method the results improve with grid 
refinement. The difference to the reference solution is comparable to that of DS in terms of the transpiration rate only when 
using strong local grid refinement resulting in a mesh of 1.9M cells. Although the finest mesh used for the PS method in 
this work is locally refined with a total of 12M cells and well-resolved root-soil interface (cf. Fig. 13), the grid convergence 
results shown in the right-most plot in Fig. 14 suggest that the transpiration rate is not fully converged yet. Interestingly, 
following the trend, the transpiration rate is expected to get even closer to the solution of the DS method for which the 
computed transpiration rate is stable with grid refinement already for rather coarse grids.

Fig. 15 shows the reconstructed interface soil pressures p̂©
s for all root segments in the mesh over the domain depth 

for the case pr,c = −5 × 105 Pa. For PS, p̂©
s is computed as a numerical integral over all coupling surface facets; for CSS 
16
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Fig. 14. Predicted transpiration rates for different grids and methods. [DS] distributed source method (this paper), [CSS] cylinder surface method, cf. [3,34], 
[PS] projection method, resolved root-soil interface, cf. [23]. The symbol h10 denotes the average diameter of the smallest 10% of the cells. The DS method 
uses a uniform mesh with cell diameter h ≡ h10. The coarse mesh for the CSS method is the same uniform mesh as for DS. The fine mesh for CSS is a 
locally refined mesh.

Fig. 15. Average soil pressure on the interface. p̂©
s for different methods and pr,c = −5 ×105 Pa. [DS] distributed source method (this paper), [CSS] cylinder 

surface method, cf. [3,34], [PS] projection method, resolved root-soil interface, cf. [23]. The symbol h10 denotes the average diameter of the smallest 10% of 
the cells. The DS method uses a uniform mesh with cell diameter h ≡ h10. The values are computed per root segment. Meshes for CSS are 8k, 1.9M cells, 
for DS 8k, 61k cells, and for PS 12M cells, respectively.

as numerical integral over the cylinder surface; for DS it is the reconstructed value using the proposed reconstruction 
algorithm Eq. (3.20). The PS solution is considered a reference, although the results in Fig. 14 suggest that the result is not 
fully converged, the results can be considered quite accurate with less than 3% difference in the transpiration rate to the 
DS method and the CSS method with strong local grid refinement. It can be seen that for the CSS method and the coarse 
grid, the interface soil pressure is overestimated explaining the large overestimation of the transpiration rate. With local 
grid refinement there is a much closer match with the PS solution. However, we note that in particular for the larger roots 
(low p̂©

s ), difference between PS and CSS is still clearly visible. On the other hand, the DS closely matches the PS solution 
even for a coarse grid discretization. The largest difference is observed towards the root tips (highest p̂©

s ). The difference 
is improved by grid refinement. Note that at h = 2.5 mm and given that �i = 3Ri the kernel support around most smaller 
root segments is hardly resolved by one mesh cell, cf. Fig. 11. Therefore, this close match between the novel DS method and 
the PS method using a fully-resolved root-soil interface and more than a thousand times more mesh cells is remarkable. 
This shows that the root water uptake problem, in particular in drier soils is clearly dominated by large and very localized 
gradients at the root-soil interface that are difficult to approximate for standard numerical schemes.

Finally, we remark that there is a strong reduction in computational time associated with the advantage of using a coarse 
grid discretization and a structured cube grid for the three-dimensional domain. While the DS method used 1 s (wall-clock 
time) per simulation for the 8k grid (5 min for 4M cells), the interface resolving PS method used 2.7 h for 11M cells. The 
DS method also required on average less Newton iterations. This can be attributed to the fact that the nonlinearity in Db

is shifted into the reconstruction algorithm, whereas the numerical solution is regularized. For the projection method the 
large interface gradients have to be approximated by the discrete solution.
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5. Summary and final remarks

Mixed-dimensional methods are efficient methods for solving coupled mixed-dimensional PDEs arising from flow and 
transport processes in systems with tubular network systems embedded in a bulk domain. The bulk is represented by a 
three-dimensional mesh, the tubes are given as a network of cylinder center-line segments, and the meshes are typically 
non-matching. If the diffusion coefficient in the bulk domain depends on the unknown concentration a coupled nonlinear 
diffusion equation has to be solved. Its solution may exhibit large local gradients at the tube-bulk interface. This is for 
example the case when modeling water transport in soils with embedded root systems. Roots take up water from the soil 
and transport it upwards toward the atmosphere. In particular in dry soils, water uptake causes a strong local drop in the 
hydraulic conductivity leading to large pressure gradients around root segments.

We introduced an efficient numerical method for the solution of such nonlinear mixed-dimensional PDEs. The method is 
based on source distribution in a finite neighborhood region of the network, in combination with a nonlinear reconstruction 
scheme for interface unknowns. The method is based on several approximations we have analyzed. We estimated the errors 
associated with the approximations and showed in series of numerical verification tests that these errors remain small in 
practical applications. We used the new method to simulate root water uptake using a realistic root network. In comparison 
with existing methods, we showed that the novel method outperforms other methods in both accuracy and efficiency. While 
the numerical results clearly show that the method accurately solves stationary problems, time-dependent problems are yet 
to be investigated in future work. However, preliminary results with root water uptake and slowly varying conditions (e.g. 
diurnal cycles) suggest that the method remains accurate.

Due to the possibility to use coarse computational grids in comparison with the tube diameter of the embedded net-
works, the presented method allows to perform simulations with large networks with reasonable 3D grid resolutions. Coarse 
grid discretizations (h � R) in mixed-dimensional methods effectively lead to a distribution of any exchange source term 
q of an embedded tube into a neighborhood of diameter h. However, since local variations of a bulk unknown ub cannot 
be resolved, the approximation of a source term depending on ub evaluated on the tube-bulk interface suffers from signif-
icant errors. By deliberately introducing a distribution kernel for the source term, ub is locally modified and deviates from 
the real solution. However, by construction, the behavior of ub in the vicinity of the tube-bulk interface is better under-
stood and it is possible to develop an interface reconstruction scheme, see Eq. (3.13) and Section 3.2. We have shown that 
the reconstruction significantly reduces the discretization error. Another approach is the Peaceman well model known in 
reservoir engineering [30,38,39]. Peaceman devises a reconstruction method eliminating discretization errors for one spe-
cific discretization scheme, and with some assumptions on the structure of the mesh and the orientation of the well tube. 
Methods based on the discrete formulation have also been explored for root water uptake simulations [24,40,14]. In con-
trast, the distributed source approach used in this work is formulated in the continuous setting which allows the analysis 
of the problem from a different perspective, and is applicable for any discretization scheme. Furthermore, the model re-
mains valid in the case that the discretization length is smaller than the tube radius, which may readily occur if the tube 
radii vary significantly in the network (e.g. large root systems). The distribution kernel effectively relaxes the strong dis-
cretization length restriction on the tube radius present in methods that require a direct numerical approximation of the 
interface unknown [18]. Our observations extend the results of [18] to the nonlinear case and indicate that as soon as the 
discretization length is in the range of the kernel radius (h ≈ �) the error in the source term is already reasonably small for 
many application scenarios. In effect, this property allows to improve the solution accuracy for simulations where finer grid 
discretization is not feasible, e.g. because of high computational costs.
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Appendix A. Exponential diffusion coefficient function

For numerical verification tests, we choose the following exponential function for Db(ub) as an example for a strongly 
nonlinear function (depending on the rate parameter k),

Db(ub) = max(D0 exp{k(ub − 1)}, Dmin)

=
{

Dmin ub ≤ uc

D0 exp{k(ub − 1)} ub > uc
,

(A.1)

where D0 is a constant diffusion coefficient, uc = 1 + 1
k ln{ Dmin

D0
} such that Db is continuous, and Dmin = D0ε (where ε > 0

is a small constant) is a minimal diffusion coefficient, for the purpose of rendering the Kirchhoff transformation, T (ub), and 
its inverse, T −1(ψ), well-defined on all of R (see Section 3.1).

We obtain analytical expressions for T (ub) and T −1(ψ) by splitting the integral range depending on the sign of uc and 
depending which one of ub and uc is larger. The Kirchhoff transformation, as defined in Eq. (3.1), is given for uc ≤ 0 by

T (ub) =
{

Dmin(ub − uc) + D0
k

(
Db,r(uc) − Db,r(0)

)
ub ≤ uc

D0
k

(
Db,r(ub) − Db,r(0)

)
ub > uc,

(A.2)

and for uc > 0 by

T (ub) =
{

Dminub ub ≤ uc
D0
k

(
Db,r(ub) − Db,r(uc)

)+ D0 Db,r(uc)uc ub > uc,
(A.3)

where Db,r(ub) = exp{k(ub − 1)}. The inverse transformation, for the case that uc ≤ 0, is given by

T −1(ψ) =
⎧⎨
⎩

1
Dmin

(
ψ − D0

k

(
Db,r(uc) − Db,r(0)

))+ uc ψ ≤ T (uc)

1 + 1
k ln

{
k

D0
ψ + Db,r(0)

}
ψ > T (uc),

(A.4)

and for the case that uc > 0, by

T −1(ψ) =
{ 1

Dmin
ψ ψ ≤ T (uc)

1 + 1
k ln

{
k

D0
(ψ − D0 Db,r(uc)uc) + Db,r(uc)

}
ψ > T (uc).

(A.5)

The functions Db(ub), T (ub), and T −1(ψ) are plotted for D0 = 1 and ε = 1 × 10−6 in Fig. 3.

Appendix B. Error estimate for arbitrarily-oriented tubes in 3D

In the following we want to derive an estimate for |	Pi f j − f j(xi)|. Using the multivariate Taylor expansion for f j for 
any x ∈ B Ri (xi) yields

f j(x) = f j(xi) + ∇ f j(xi) · (x − xi) +R2(x − xi), (B.1)

with the second-order residual |R2(x − xi)| ≤ C
2 ‖x − xi‖2

2 and the constant

C := sup
|α|=2

(
sup

x∈B Ri (xi)

|∂α f j(x)|
)

. (B.2)

Applying the averaging operator to Eq. (B.1) results in

|	Pi f j − f j(xi)| ≤ C

2
R2

i . (B.3)

We then assume that the contributions from neighboring tubes contributions from all neighboring tubes j can be for-
mulated in terms of line sources and that the tubes are non-overlapping. The influence of segment sources decays faster 
with the distance than for the line source, so we consider this a conservative assumption. The corresponding functions f j

are given by

f j(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2π

[ ||x−E⊥
j (x)||22

2�2
j

+ ln
(

� j
R j

)
− 1

2

]
||x − E⊥

j (x)||2 ≤ � j,

1
2π

[
ln

( ||x−E⊥
j (x)||2

R j

)]
else,

(B.4)
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where E⊥
j orthogonally projects x onto the centerline of tube j.

For such functions (assuming non-overlapping kernel support regions), the constant C can explicitly be estimated by 
calculating the second-order derivatives. We note that gradients of the assumed f j are aligned with the radial direction of 
a cylinder coordinate system (r, θ, s) implied by centerline j. Therefore, it is enough to analyze radial derivatives of f j :

∂ f j

∂r
= 1

2πr
,

∂2 f j

∂r2
= − 1

2πr2
. (B.5)

With the definition of C , this results in the estimate

|	Pi f j − f j(xi)| ≤ R2
i

4π inf
x∈B Ri (xi)

‖x − E⊥
j (x)‖2

2

= R2
i

4π(‖xi − E⊥
j (xi)‖2 − Ri)

2
,

(B.6)

where for the last equality we have used the assumption that E⊥
j (xi) /∈ B Ri (xi).
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