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Abstract

We propose a new mathematical model to learn capillary leakage coefficients

from dynamic susceptibility contrast MRI data. To this end, we derive an

embedded mixed-dimension flow and transport model for brain tissue perfu-

sion on a subvoxel scale. This model is used to obtain the contrast agent con-

centration distribution in a single MRI voxel during a perfusion MRI

sequence. We further present a magnetic resonance signal model for the con-

sidered sequence including a model for local susceptibility effects. This allows

modeling MR signal-time curves that can be compared with clinical MRI data.

The proposed model can be used as a forward model in the inverse modeling

problem of inferring model parameters such as the diffusive capillary wall con-

ductivity. Acute multiple sclerosis lesions are associated with a breach in the

integrity of the blood-brain barrier. Applying the model to perfusion MR data

of a patient with acute multiple sclerosis lesions, we conclude that diffusive

capillary wall conductivity is a good indicator for characterizing activity of

lesions, even if other patient-specific model parameters are not well-known.
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1 | INTRODUCTION

Multiple sclerosis (MS) is characterized by a cascade of inflammatory reactions that result in the formation of acute
demyelinating lesions (MS plaques). Acute lesions are associated with an impaired blood-brain barrier (BBB).1 In
healthy brain tissue, the tight junctions between endothelial cells forming the blood vessel walls are an efficient barrier
for most molecules in the brain capillaries. In active MS lesions, tight junctions have been found to be damaged or
open.2 Because of an autoimmune reaction, immunological cells can pass the BBB and attack the myelin sheath
covering the electrical pulse conducting axons, leading to dysfunctions of the central nervous system.3 Magnetic reso-
nance (MR) enhancement, using contrast agents such as gadolinium-based molecules, corresponds to areas of
inflammation and contrast agent leakage into the extravascular space. Furthermore, it is related to the histologic age of
the plaques.4 Advanced imaging techniques, such as perfusion MR imaging (perfusion MRI), aim at the characteriza-
tion of the temporal evolution of enhancing lesion formation in relapsing-remitting MS.5 Perfusion MRI is sensitive to
inflammatory activity and can depict active lesions previous to gadolinium enhancement and even after its disappear-
ance.6 Furthermore, it has been shown that perfusion in lesions is highly dynamic and related to the activity and tem-
poral evolution of the lesions.7,8 Cross-sectional studies in normal appearing white matter (NAWM) have also
demonstrated abnormal perfusion behavior in patients with MS compared with healthy controls (for review, see
Lapointe et al9).

Dynamic susceptibility contrast MRI (DSC-MRI) has proven to be informative when assessing the integrity of the
BBB.10,11 In a typical DSC-MRI study, contrast agent is administered intravenously (bolus injection), and whole brain
MR image sequences are recorded with a repetition time of about 2 seconds over a few minutes.11 NAWM is distin-
guished from inflammatory plaques by image contrast and differences in intensity-time curves. Using adequate post-
processing techniques, qualitative assessment of leakage coefficients allows to identify contrast-enhancing lesions in an
automated way.12 Although today, perfusion MRI is not considered a standard procedure in the neuroimaging workup
of MS, it enables a classification of lesions according to parenchymal leakage of an MR contrast agent because of differ-
ences in perfusion behavior.13 Perfusion imaging, both DSC and dynamic contrast enhanced (DCE), may provide infor-
mation about the leakiness of the tissue under investigation. In this work, we investigate DSC-MRI. However, the
extension of the method to DCE-MRI is conceivable.

For the interpretation of images obtained in a DSC-MRI study, the gray scale image sequence is postprocessed to
provide indicators within regions of interest to the radiologist. Two typical signal intensity-time curves from the brain
white matter, with the characteristic first pass signal dip, are shown in Figure 1. Mathematical models (forward model)
for contrast agent perfusion in the brain tissue can help understanding the underlying reasons for a particular
intensity-time curve of a voxel, by identifying and analyzing the model parameters, which are able to reproduce the
MRI data. This process is also known as solving the inverse problem. To this end, the model parameters are tuned by
using parameter estimation techniques. Forward models are typically based on a two-compartment pharmacokinetic
tracer model and are parameterized by a small number of parameters.14-16 Figure 2 visualizes a two-compartment
model conceptually, with compartments representing plasma and extravascular, extracellular space. The plasma com-
partment is supplied by a flux determined by an arterial input function (AIF).17 The AIF can be estimated from voxels

FIGURE 1 Signal intensity-time curves in a contrast-enhancing lesion (red) and in normal appearing white matter (NAWM) (blue)

with the respective sampling locations in the brain (left). Signal values are normalized to the precontrast baseline. Data obtained by gradient

echo-echo planar imaging (GRE-EPI), at magnetic field strength 3T, repetition time TR = 1400 ms, echo time TE = 29 ms, flip angle α = 90∘,

voxel size 1.8 × 1.8 × 5 mm, and an image resolution of 256 × 256 pixels per slice
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that are mostly constrained within a larger afferent artery.18 The plasma compartment exchanges mass with the extra-
vascular, extracellular space proportionally to its permeability-surface product. Common indicators derived from such
models are the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT), and leakage
coefficients.10,12,19

A routinely used state-of-the-art postprocessing procedure and model is described in Boxerman et al.12 Such models
have to reflect two processes: (a) the perfusion process governed mainly by bio-fluid-mechanical principles and (b) the
physical process of nuclear magnetic resonance (NMR) exploited to acquire the MR image. There have been many sug-
gestions for improving the modeling of the latter process.20-23 It  has been suggested that the local

24,25
subvoxel tissue

structure has a significant effect on the NMR signal. However, all previous studies, including the recent study by
Semmineh et al,23 rely on state-of-the-art two-compartment models for the perfusion process providing only average
concentrations in two tissue compartments within a voxel.

To overcome the limitations of two-compartment models, we present a perfusion model on a subvoxel scale,
including the capillary network structure. Fully, three-dimensionally resolved fluid-mechanical models of brain tissue
perfusion imply prohibitively complex and computationally expensive simulations because of the large number of
vessels, their nontrivial geometrical embedding, and the complex geometry of the extravascular, extracellular space.26

To reduce complexity, we use a mixed-dimension embedded model description, where blood vessels are represented by
a network of cylindrical segments, which are embedded into the extravascular space, represented by a homogenized
three-dimensional continuum. The model reduction, which is described in more detail in the following, leads to a
coupled system of one-dimensional partial differential equations for flow and transport in the vessels and
three-dimensional partial differential equations for flow and transport in the extra-vascular space. Related models have
been used to study the proliferation of cancer drugs,27-29 the transport of oxygen,30-34 and nanoparticle transport for
hypothermia therapy.35 A recent study36 describes contrast agent perfusion based on diffusive transport with a
mixed-dimension model. The herein presented fluid-mechanical model is similar to the drug proliferation model
described in Cattaneo and Zunino27,37 and introduced in Possenti et al.28 It is derived here for the specific application of
contrast agent perfusion in brain tissue. The mathematical background of such models is analyzed in several
works.28,38-42

The fluid-mechanical model is coupled to an NMR signal model. We propose that the local distribution of the con-
trast agent and resulting local susceptibility effects obtained by a subvoxel scale model may better explain the NMR sig-
nal response of the tissue. The application of this new perfusion model is demonstrated for the example of MS lesions.

In the following, we refer to the subvoxel spatial scale, ranging from a few micrometers to several hundreds of
micrometers, as mesoscale. We call the scale below the mesoscale, which includes the molecular scale, microscale, and
refer to the scale above as macroscale.

2 | MIXED-DIMENSION EMBEDDED MODEL FOR BRAIN TISSUE
PERFUSION

The tissue is conceptually decomposed into two domains. The vascular compartment comprises blood vessels, including
the capillary lumen, the endothelial surface layer, the basement membrane, and blood. The extravascular compartment
includes cells, the extracellular matrix (ECM), and the interstitial fluid. The compartments communicate by the
exchange of fluids and molecules over the capillary wall (transmural exchange). In the following three sections, the
assumptions are discussed separately for both compartments and the transmural exchange. These subdomain models
are then combined, to obtain the mixed-dimension tissue perfusion model.

FIGURE 2 Schematic figure of a two-compartment pharmacokinetic model for tissue perfusion.

Concentrations are denoted by C(t), where the subscript a stands for aterial, p for plasma, and e for

extravascular, extracellular space, Fp is the plasma flux, and PS denotes the permeability-surface

product, a proportionality constant of the transmural exchange rate

KOCH ET AL. 3 of 25



2.1 | Vascular compartment

Blood flow can generally be described by the Navier-Stokes equations. Assuming negligible radial velocities, long ves-
sels (compared with their radius), low Reynolds numbers (Re � 1), nonpulsatile flow, and rigid vessel walls, the equa-
tions can be simplified to a one-dimensional description by averaging over cross-sections.43 To this end, we describe
each vessel segment by a parametrization of its centerline with the local variable s ∈ [0,1] and the cross-section area Av:
= Av(s). We further introduce the effective vessel radius rv, such that Av(s) = πrv

2(s), and a local cylindrical coordinate
system with radial, angular, and axial coordinates r, θ, z, respectively. We employ a homogenized continuum model for
blood, using an apparent viscosity, μB. Assuming a constant hematocrit of 45%, the apparent viscosity can be described
as a function of the effective vessel radius by an empirical relation,44 derived from experimental data,

μB =0:001� 220�exp −2:6rvð Þ−2:44�exp −0:06� 2rvð Þ0:645� �
+3:2

� �
Pa s: ð1Þ

Blood density is assumed constant, ρB = 1050 kg m–3.45 Under these assumptions, the flow in the lumen of a capil-
lary vessel can be described by

∂

∂s
AvρBvvð Þ= −

∂

∂s
ρBAv

rv2

8μB

∂pv
∂s

� �
= q̂m, ð2Þ

with the mean velocity vv, the rate of mass exchange with the extravascular compartment, q̂m , in kg s–1, the cross-sec-
tion-averaged pressure pv.

The transport of contrast agent can be described by an advection-diffusion equation. By integration of the three-
dimensional equations over the vessel cross-section, the model can be reduced to a one-dimensional equation for the
cross-section-averaged molar concentration cv,

43

Av
∂cv
∂t

+
∂

∂s
Avωvvcv−AvD

c
B
∂cv
∂s

� �
= q̂c, ð3Þ

where Dc
B is the binary diffusion coefficient of the contrast agent in blood. The exchange with the extravascular com-

partment is modeled by the flux q̂c , in mol s–1. The shape factor ω>0 reflects the variation of axial velocity profiles in
vessel cross-sections,43

ω=
1
Av

ð2π
0

ðrv
0
χ rð Þϕ rð Þr drdθ, and

1
Av

ð2π
0

ðrv
0
f rð Þr drdθ=1 for f∈ χ,ϕf g, ð4Þ

where χ(r) and ϕ(r) are the dimensionless velocity profile and the dimensionless concentration profile, respectively. As
it has been observed that small nanoparticles are likely to be distributed evenly,46 we choose ω = 1.

In the following, we consider the gadolinium-based contrast agent Gadobutrol. For the perfusion MRI sequence, it
is administered intravenously in solution, with a concentration of 1 mol l–1. Gadobutrol has the chemical formula
C18H31GdN4O9, corresponding to a molar mass of Mc = 604.715 g mol–1.47 In high concentrations, Gadobutrol has a sig-
nificant influence on fluid density and viscosity. However, the concentrations arriving in the brain tissue sample are
strongly diluted by diffusion and dispersion along the tortuous path through the vascular network, so that the influence
on blood density and viscosity can be neglected in this study. The binary diffusion coefficient of Gadobutrol in plasma
can be estimated by means of the Stokes-Einstein radius, rhy = 0.9 nm,48

Dc
B =

kBT
6πμPrhy

≈1:9�10−10m2s−1, ð5Þ

where μP = 1.32 Pa s49 denotes the blood plasma viscosity, T the temperature in K, and kB the Boltzmann constant.
At bifurcations in the vessel network, where the equations for each segment must be coupled, we enforce conserva-

tion of mass and the continuity of fluid pressure and contrast agent concentration.
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2.2 | Extravascular compartment

The extravascular compartment is modeled as a porous medium with a rigid solid skeleton, consisting of cells, fibers,
and ECM. Flow of a single fluid phase, the interstitial fluid, through a porous medium is described by the Darcy law50

r� ρIvtð Þ= −r� ρI
μI
Krpt

� �
= qm, ð6Þ

where ρI,μI are density and viscosity of the interstitial fluid, vt the filter velocity vector, K the intrinsic permeability tensor
of the extravascular compartment, and qm (kg s–1m) the mass exchange with the vascular compartment. We assume con-
stant density and viscosity, ρI = 1030 kg m–3, μI = 1.32 Pa s, given that contrast agent concentrations in the extravascular
compartment are even smaller than in the blood stream, and we consider perfusion an isothermal process. Furthermore,
we choose an isotropic intrinsic permeability k = 8.3�10−18 m2,51 where K = k I. The transport is modeled by an advection-
diffusion equation,

ϕ
∂ct
∂t

+r� vtct−Derctð Þ= qc, ð7Þ

where ϕ denotes the porosity, the ratio of pore volume to total volume in a representative elementary volume, De is the
effective diffusion coefficient, and qc (kg s

–1 m3) is the contrast agent mass exchange with the vascular compartment. We
assume that the interstitial space in the ECM, with pore throat diameters of around 50 nm,26 still allows for a viscous flow
regime. Furthermore, it is assumed that Gadobutrol will not enter cells. The effective diffusion coefficient in the porous
medium can be estimated as De = τϕDc

I , where τ denotes the tortuosity of the ECM and Dc
I the binary diffusion coeffi-

cient of contrast agent in interstitial fluid for which we choose the same value as for the binary diffusion coefficient of
contrast agent in plasma Equation (5). Following the literature for tortuosity and porosity values,26 we choose τ = 0.4
and ϕ = 0.2, which yields, De≈ 1.5 � 10−11 m2 s–1.

2.3 | Transmural exchange

The wall of continuous capillaries consists of an endothelial surface layer, a basal membrane, and a layer of charged
proteins, called glycocalyx.52 Mass exchange can occur passively through the endothelial tight junctions or through
transcellular pathways. Here, we consider only transport by advection and diffusion, following Formaggia et al.45 Given
a blood vessel volume fraction of 3%, an average thickness of the endothelial surface layer of 1 μm,53 and an average
vessel radius of 10 μm, the volume fraction of the capillary wall is less than 1% of the tissue volume. The capillary wall
can be conceptually reduced to a two-dimensional interface, denoted by Γ, separating the vascular from the extravascu-
lar compartment. Note that this results in a pressure jump across Γ, which is inversely proportional to wall permeability
and wall thickness. According to the Starling hypothesis,54,55 the transmural flux of a fluid is proportional to the
hydraulic and colloid osmotic pressure gradients between capillary lumen and interstitial space

q̂m = -ρILpSv pv−�ptð Þ−σ πv−�πtð Þ½ �, ð8Þ

where Lp is the filtration coefficient, with units m Pa–1 s–1, Sv = 2πrv is the circumference of the vessel,

�pt sð Þ=
1

Sv sð Þ
ð2π
0
pt

����
rv

rv sð Þ dθ ð9Þ

is the average hydraulic pressure on the vessel wall,27 πv, �πt , denote the osmotic pressure in capillary lumen and inter-
stitial space (averaged over the vessel surface analogous to Equation 9), respectively, and 0≤ σ ≤ 1 is the osmotic reflec-
tion coefficient. The difference in osmotic pressure results from large plasma proteins in the blood stream, such as
albumin, and effectively draws fluid into the vessels. For the in silico experiments, we assume the osmotic pressures to
be constant, with Δπ= πv−�πt =2633 Pa.56 Furthermore, we choose σ = 1. For the vascular domain, the hydraulic and
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osmotic pressures averaged for each cross-section on the vessel wall coincide with the cross-section-averaged value
defined on the vessel centerline for the reduced vessel model.27 Hence, we omit the average operator.

The contrast agent is assumed to be transported by advection with the plasma, as well as by molecular diffusion.
The reduction of the vessel wall to a surface leads to a concentration jump across the vessel wall, which is inversely pro-
portional to diffusive wall conductivity and wall thickness. The transmural transport is described as55

q̂c = -DωSv cv−�ctð Þ+ q̂m
ρI

1−σcð Þcup, ð10Þ

where Dω is the diffusive wall conductivity in m s–1,

�ct sð Þ= 1
Sv sð Þ

ð2π
0
ct

����
rv

rv sð Þ dθ ð11Þ

is the average contrast agent mole fraction on the vessel wall,

cup =
cv if q̂m <0

�ct if q̂m >0

	
ð12Þ

denotes the mole fraction in upwind direction, and 0 ≤ σc ≤ 1 denotes the solvent-drag reflection coefficient. As the
considered contrast agent is a small molecule and the endothelial tight junctions are damaged in lesion tissue, we set
σc = 0, neglecting reflection. Determining Dω from MRI data is the major objective of this work.

The mass balance Equations (2), (3), (6), and (7) are coupled by Equations (8) and (10), whereas Equations (6) and
(7) are described in the three-dimensional extravascular domain Ω, while Equations (2) and (3) are associated with the
one-dimensional vascular domain Λ. We follow the concept suggested by D'Angelo28: If the source terms, q̂m, q̂c , are
defined as line sources along the vessel centerline in the three-dimensional domain, while the three-dimensional quan-
tities, pt, ct, are evaluated as the average values on Γ, then, the resulting exchange term is a good approximation of the
source term in a nonreduced three-dimensional setting. To this end, we define qm, the source term in Equation (6), as

qm = − q̂mδΛ, with
ð
Ω
f xð ÞδΛ dx=

ð
Λ
f xð Þ ds 8f xð Þ,

ð
Ω
δΛ dx=1, ð13Þ

so that qm is a line source restricted by the Dirac delta function δΛ to the centerline of a vessel. Analogously, we set
qc = − q̂cδΛ, for the source term in Equation (7).

2.4 | Vessel geometry, boundary conditions, and initial conditions

We base our vascular model on a small network of capillaries from the superficial cortex of the rat,34,57 which we consider
a sufficient approximation of the actual capillary network geometry for type of model analysis presented in this work. The
network has the dimensions 150 × 160 × 140 μm and is shown in Figure 3. The location of inflow and outflow boundaries
is given in this data set. For the inflow boundaries, Secomb et al34 provide velocity estimates based on the vessel radius,
which are applied as Neumann boundary conditions. The inflow velocities range from 0.5 to 3.5 mm s–1, depending on
the vessel radius. At the outflow boundaries, we enforce Dirichlet boundary conditions for the pressure, pv,
out = 1.025 � 105 Pa. The computational grid including vascular morphology, segment radii, and segment velocity estimates
are given in Data S3. The vessel radii are constant for each segment defined in the grid but vary from segment to segment.

The domain initially contains no contrast agent. During the perfusion MR study, 10mL contrast agent (0.1 mmol
per kg body weight) is administered intravenously as a solution at 5 mL s–1 and a concentration of 1 mol L–1. The
injected fluid thus forms a sharp bolus. However, the bolus disperses significantly before it reaches the brain capillaries.
Therefore, the concentration inflow profile to the capillary network has to be estimated from the parameters of the
bolus injection. To this end, we use an ansatz from Quarles et al.22
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cv,in tð Þ= at−2
p te− t=tp + b 1−e− t=tp


 �
, ð14Þ

which describes a concentration profile starting at cv, in(0) = 0 mol m−3 and approaching an equilibrium concentration
b (mol m−3, contrast agent is equally distributed in the whole body blood volume), with a single peak after the arrival
of the bolus. The parameters a (mol s m−3) and tp (s) are shape parameters of the capillary input function and can be
interpreted as the scaling parameter for the area under the curve, and the time to peak, respectively, in the absence of
recirculation (b = 0). The parameter values are patient-specific and also depend on the location in the brain. Values for
a, b, and tp are discussed below, in the context of parameter estimation.

At the inflow boundary, contrast agent influx is enforced by a Neumann boundary condition. At the outflow bound-
ary, the normal mole fraction gradient is set to zero, and the advective component flux is computed by a first-order
upwind scheme. For the extracellular compartment, we enforce symmetry boundary conditions everywhere, assuming
that the modeled domain is surrounded by domains with similar properties.

2.5 | Mixed-dimension embedded model for tissue perfusion

In summary, the complete coupled fluid mechanical model of tissue perfusion reads as

1. Find pt and pv such that

−
∂

∂s
ρBAv

rv2

8μB

∂pv
∂s

� �
= q̂minΛ,

−r� ρI
μI
Krpt

� �
= − q̂mδΛ inΩ,

q̂m = -ρILpSv pv−�ptð Þ−σ πv−πtð Þ½ �,

ð15Þ

2. then find ct and cv such that

Av
∂cv
∂t

+
∂

∂s
Avvvcv−AvD

c
B
∂cv
∂s

� �
= q̂c inΛ,

ϕ
∂ct
∂t

+r� vtct−Derctð Þ= − q̂cδΛ inΩ,

q̂c = -DωSv cv−�ctð Þ+ q̂m
ρI

1−σcð Þcup,

ð16Þ

FIGURE 3 The capillary network grid extracted from

measurements in the rat cortex34,57 and the Cartesian

computational grid for the extravascular domain used for the model

analysis in this study. The tubes are scaled with the respective vessel

radius. The color visualizes hydraulic pressure from high (red) to

low (blue). The cones indicate the flow direction
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subject to the Neumann and Dirichlet boundary conditions on the inflow and outflow boundaries of the vascular com-
partment, ∂Λ, respectively, and no-flow boundaries for the boundaries of the extravascular domain, ∂Ω, as discussed in
the previous section.

This model stands in contrast to the often employed two-compartment kinetic modeling approaches, because it
resolves mesoscale flow phenomena and because it is based on parameters with a clear physical interpretation.

3 | NMR SIGNAL MODEL

A model linking concentration fields with the NMR signal response are required to connect the results of the fluid
mechanical model to clinical MRI data. To this end, we develop a model of NMR on the mesoscale. In the following,
we describe a gradient echo, echo planar sequence (GRE-EPI) commonly used in DSC-MRI. This fast imaging tech-
nique allows acquisition of an entire brain image stack in less than 2 seconds. Thus, after the injection of a contrast
agent, a time series of such images can be acquired, where the characteristic signal-time curve for every voxel is depen-
dent on the evolution of the contrast agent concentration distribution on the mesoscale.

The GRE-EPI sequence starts with a radio frequency (RF) pulse, which reorients the magnetic moments in the tis-
sue sample, with the flip angle α to the main magnetic field B0. The RF pulse causes the magnetic moments to precess.
Energy dissipation, characterized by an exponential decay with the longitudinal and transversal relaxation times, T1,
T*
2, relaxes the magnetization into the initial state aligned with B0. According to Quarles et al,22 the GRE-EPI voxel sig-

nal during a DSC-MRI perfusion sequence can be modeled as

S tð Þ= S0 1−e−TR=T1
� �

e−TE=T*
2 �sin αð Þ

1−e−TR=T1 �cos αð Þ , ð17Þ

where the repetition time, TR, is the time between two RF pulses and the effective echo time, TE, is the time between
RF pulse and signal readout. The baseline signal S0 > 0 depends, i.a., on tissue proton density and the MR scanner
hardware. In the following, we look only at the normalized signal Sn tð Þ= S tð ÞS−1

pre , where Spre is the signal before the
contrast agent bolus arrives in the tissue sample. The precontrast signal, Spre, contains all constant factors in Equa-
tion (17), including S0. It follows from Equation (17) that a shortening of T*

2 results in a decrease of NMR signal
strength, while a shortening of T1 results in signal enhancement.

The following two sections introduce the models for the relaxation rates R1 cv,ctð Þ=T−1
1 cv,ctð Þ, R*

2 cv,ctð Þ=T*−1
2 cv,ctð Þ,

which are both functions of the contrast agent concentrations cv and ct computed by the fluid-mechanical model pres-
ented in Section 2. Semmineh et al23 developed a model including an artificial microstructure using a combination of a
finite perturbator method21 and a finite-difference solution of the Bloch-Torrey equations. However, their model is
coupled to a two-compartment tracer perfusion model, only providing voxel-averaged concentrations. In contrast, the
presented perfusion model computes the subvoxel distribution of the contrast agent concentration. We follow Quarles
et al,22 to develop a model considering the spatial and temporal distribution of the contrast agent.

3.1 | Transversal relaxation in tissues with locally heterogeneous microstructure

The transversal relaxation rate, R*
2 , depends on the complex local microstructure of the tissue24 and is altered by the

presence of the contrast agent. We are only interested in the signal change relative to the baseline, so we split the relax-
ation rate in a static precontrast contribution and a time-dependent contribution depending on the contrast agent
concentration,

R*
2 =
cR*
2 +R*

2,pre: ð18Þ

The relaxation rate for a subvoxel control volume can be described by contributions of three compartments, the vas-
cular compartment (v), the extracellular, extravascular space (t), and the cellular compartment (s), weighted by their
volume fractions, ϕv, ϕt, and ϕs,

22
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R*
2 =ϕvR

*
2,v +ϕtR

*
2,t +ϕsR

*
2,s: ð19Þ

According to Kiselev,25 the rate in each compartment β ∈{v,t,s} comprises contributions on three spatial scales

R*
2,β =R*

2,β,micro +R*
2,β,meso +R*

2,β,macro: ð20Þ

The rate R*
2,macro describes effects of static local inhomogeneities of the magnetic field B0, which are time-indepen-

dent. Since the static effects do not depend on the contrast agent concentration, they are included in the precontrast
relaxation rate, R*

2,pre. The rate R*
2,β,micro depends on the local chemical composition. The effects are independent of the

pulse sequence. Gadolinium-based contrast agent molecules increase the relaxation rate, which can be described by a
linear relationship,25

R*
2,β,micro = r2cβ +R*

2,β,pre,micro, ð21Þ

where r2 is the molar relaxivity and cβ the local molar contrast agent concentration in compartment β. The molar T2

relaxivity, r2, of Gadobutrol at 3T and 37
�
C is approximately 3.9 m3 mol–1 s.58 Here, we assume that the contrast agent

cannot enter the cells, cs = 0; hence, R*
2,s,micro = 0.

The term R*
2,meso stems from a mesoscale effect. The magnetic field perturbations induced by the difference in mag-

netic susceptibility in the blood vessel and the extravascular space increase the relaxation rate of the extravascular space
in proximity of a blood vessel. The generated magnetic field perturbations are several orders of magnitude smaller than
B0. Furthermore, the influence decays rapidly with distance to the vessel surface. Therefore, we consider each segment
of the vessel network to cause a perturbation independent of the other segments. The increase in R*

2 for a given tissue
sample caused by mesoscopic magnetic field perturbation will then be the superposition of all n segment perturbations

R*
2,t,meso = κB

Xn
i=0

φi ~cv−~ctj ji, ð22Þ

where ~cv−~ctj j is the difference of the average vessel surface concentrations, given by the average over the entire vessel
surface contained in this sample. The factor κB≥ 0 is an ad-hoc parameter, scaling the strength of these perturbations.
The proportionality factor ϕi models the decay of the influence of the with distance from the vessel wall. We set
φi = rv

2/r2, assuming a quadratic decay, where r is the distance to the vessel center line and rv the radius of the vessel
segment. The susceptibility contrast likewise increases the transversal relaxation rate, which we model by

R*
2,v,meso = κB j~cv−~ct j : ð23Þ

The same effect occurs at the cell surfaces, induced by the difference in magnetic susceptibility between interstitial
space and cells. Note that we consider cells not to be invaded by contrast agent. We include this effect by adding a term
to Equation (22),

R*
2,t,meso = κB

Xn
i=0

φi ~cv−~ctj ji + κT j~ct,s j , ð24Þ

and to the relaxation rate of the cell compartment,

R*
2,s,meso = κT j~ct,s j , ð25Þ
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where κT ≥ 0 is a second ad-hoc parameter, determining the strength of these perturbations, and ~ct,s is the average
molar concentration on all cell surfaces contained in a tissue sample. Furthermore, we assume that there is no direct
interface between the cells and the vascular compartment.

Combining Equations (19), (21), and (23) to (25), we obtain a formulation for the transversal relaxation rate depen-
dent on the concentration fields and the volume fractions of the three compartments:

R*
2 =R*

2,pre + r2 ϕvcv +ϕtctð Þ+ϕv κB ~cv−~ctj jð Þ

+ϕt κB
Xn
i=0

φi ~cv−~ctj ji + κT ~ct,sj j
 !

+ϕs κT ~ct,sj jð Þ:

ð26Þ

3.2 | Longitudinal relaxation with contrast agent administration

Similar to T*
2 , the contrast agent also shortens T1. However, the effects occur merely on the microscale. Thus, we can

model the relaxation rate R1 = 1/T1 of the tissue sample by

R1 = r1 ϕvcv +ϕtctð Þ+R1,pre, ð27Þ

where we implicitly assumed that contrast agent does not enter cells, cs(x, t) = 0. The molar T1 relaxivity, r1, of
Gadobutrol at 3T and 37

�
C is approximately 3.2 m3 mol–1 s.58

3.3 | Voxel signal

The relaxation rates, R*
2 and R1, Equations (26) and (27), are computed for each control volume (cell) in the three-

dimensional domain Ω. The volume fraction of the vascular domain, ϕv, is computed by integrating over the volume of
all vessels within a control volume and dividing this number by the volume of the control volume. The average values
~ct,s and ~ct are approximated by the discrete cell values. The average ~cv is computed by intersecting the vessel centerline
mesh with the mesh discretizing Ω and attributing the surface of the intersecting vessels to the intersected control vol-
ume. A local NMR signal can then be computed for each control volume by using Equation (17). The voxel signal is
determined by the volume average of all control volume signals. To this end, we assume that the size of our domain is
large enough to be representative for an entire voxel, which is commonly about 10 to 20 times larger in diameter than
the given domain.

4 | NUMERICAL TREATMENT AND IMPLEMENTATION

The equations of the fluid flow equation system, Equation (15), and the contrast agent transport system, Equation (16),
are discretized with a cell-centered finite volume method with a two-point flux approximation in space and an implicit
Euler method in time. The two systems are only coupled in one direction, such that Equation (16) depends on the pres-
sure field computed in Equation (15), but Equation (15) can be solved independently of Equation (16). Furthermore,
Equation (15) is stationary, so that the pressure field only has to be computed once per perfusion experiment. The dis-
crete systems are assembled in a block-matrix structure in residual form,

JuΔu=
Au
v Cu

v!t

Cu
t!v Au

t

� 
Δuv
Δut

� 
=

ruv
rut

� 
, u∈ p,xf g, ð28Þ

where u is the respective discrete primary variable (fluid pressure in Equation 15, contrast agent mole fraction in Equa-
tion 16), and Δu denotes the difference of the current solution to the solution of the previous time step (or to the initial
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guess for stationary problems). The Jacobian matrix Ju can be split into blocks, where Au
v is the block with derivatives of

the residual ruv with respect to the degrees of freedom uv of the discrete vascular domain Λh⊆Λ, Cu
v!t contains deriva-

tives of the residual ruv with respect to the degrees of freedom ut of the discrete extra-vascular domain Ωh⊆Ω, and
Au
t , C

u
t!v are defined analogously in terms of the residual rut .

The linear equation systems, Equation (28), are solved using a left preconditioned stabilized biconjugate gradient
method,59 with the block diagonal preconditioner

P−1 =
ILU0 Au

v

� �
0

0 ILU0 Au
t

� �" #−1

, ð29Þ

where ILU0(A) denotes an incomplete LU-factorization of the matrix A using A's sparsity pattern (zero fill-in).59

We assume that the influence of the subvoxel contrast agent evolution during a single image acquisition on the
NMR signal is negligible, and thus, Equation (17) is solved as a postprocessing step after each time step of the perfusion
model.

The model converges in time and space to a reference solution computed on a very fine grid and a very small time
step size. The convergence study is described in detail in Data S1. As a result of the convergence study, we choose our
computational grids such that the largest grid cell does not exceed 8 μm. This results in a run time of a few seconds on
a normal laptop for a single forward model run.

The model is implemented with the open-source porous media simulator DuMux,60 which is based on the Distrib-
uted Unified Numeric Environment (DUNE).61,62 The implementation of the mixed-dimension embedded tissue perfu-
sion model is based on a recent extension of DuMux for multidomain porous media problems, first described by Koch
et al63 for the simulation of root-soil interaction in the vadose zone. We refer to this publication for a more detailed
description of the discretization, assembly procedure, and software implementation of mixed-dimension embedded
models. The source code used for all numerical experiments in this work is publicly available at https://git.iws.uni-
stuttgart.de/dumux-pub/Koch2019a.

5 | INVERSE MODELING USING CLINICAL MRI DATA

We use clinical MRI data to evaluate the presented model. We choose a patient with relapsing-remitting MS from a
clinical study with 12 MS patients, diagnosed according to the revised McDonald criteria,64 and showing at least one
contrast enhancing lesion on MRI. The data are selected from a previous study that has been published elsewhere65

and fully anonymized for further analysis. For the employed GRE-EPI protocol, 19 parallel images with a slice thick-
ness of 5 mm are taken 80 times during an acquisition time of 119 seconds. The sequence parameters are given in the
caption of Figure 1. From these images, a clinical expert annotated a voxel within a Gadolinium enhancing MS lesion
(sample L) and a corresponding voxel in NAWM (sample N). Figure 1 shows the samples L and N, together with the
respective voxel locations in the MRI slice.

Several model parameters can be assigned a fixed value, either because the parameter assumes a well-known fixed
value given in the literature or because the parameter is not expected to significantly affect the results of this particular
study and an approximate value can be obtained from the literature. However, there are also parameters that are inher-
ently patient-specific and cannot be directly measured or parameters for which the measurement data are not available
for the given patient. These parameters are, a, b, tp, κB, κT, T1,pre, T*

2,pre, Lp, and Dω. Determining these parameters for a
given signal-time curve constitutes an inverse problem. In particular, we aim to determine Dω, which may quantify con-
trast agent leakage, and thus has direct clinical relevance.

In the following, we briefly discuss typical values or value ranges for these parameters. The shape parameters, a, b,
tp, determine the inflow profile of the bolus arriving at the voxel under study. They are generally varying from voxel to
voxel. In particular, a and tp depend on the voxel location and vessel network structure, as well as the resulting bolus
dilution during transport through the vessel tree. The equilibrium contrast agent concentration, b, depends on the
patient's blood volume. Neglecting the filtration of contrast agent in the kidney, and contrast agent leakage, the upper
bound for b is the administered amount of contrast agent divided by the total blood volume. However, b can become
lower in regions of contrast agent leakage and is dependent on the severity of the leakage and the size of the affected
region in the brain. Here, we choose values for a, b, and tp within large enough bounds to ensure physically meaningful
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inflow profiles. The parameters κB and κT are dimensionless scaling factors for the effect of mesoscale T*
2 shortening

because of the magnetic susceptibility contrast at the interface of the vascular and the extravascular, extracellular com-
partment and the interface of the extravascular, extracellular and the cell compartment, respectively. Because these
values depend on the tissue architecture, κB and κT can also mitigate errors in the NMR signal prediction caused by
patient-specific variations in vessel geometry. The precontrast relaxation times T1, pre and T*

2,pre vary from voxel to
voxel. From Equation (17), it is clear that T*

2,pre cancels when S(t) is normalized. Therefore, the value of T*
2,pre is not crit-

ical for the present study. Thaler et al66 measured T1, pre in patients with relapsing-remitting MS for several lesion types.
They reported values between 1.9 seconds for black holes and 0.8 seconds for NAWM, at 3T. The filtration coefficient
Lp characterizes the fluid mass exchange between the vascular and the extravascular compartment. Baxter and Jain51

suggest Lp =2.7�10−12 mPa–1 s–1 for normal subcutaneous and Lp =2.1�10−11 mPa–1 s–1 for tumor tissue. While in nor-
mal brain tissue, the contrast agent stays in the blood stream, it leaves the vascular compartment over the vessel wall in
regions where the BBB is impaired. Therefore, the filtration coefficient Lp is likely to be elevated in such tissue, because
of opened tight junctions. The diffusive capillary wall conductivity, Dω, characterizes the diffusive transport of contrast
agent between the vascular and the extravascular compartment. It depends, ia, on the molecular diffusion coefficient of
the contrast agent, the wall thickness, porosity, and the tortuosity of the transmural pathway.

5.1 | Parameter estimation

In a preliminary model investigation, we use the parameter estimation toolbox PEST67 to find the parameter set that
minimizes the sum of squared differences, Eopt

�� ��2
2, between the simulated signal-time curve and the MRI data. For the

parameter estimation, we employ the truncated singular value decomposition algorithm, available in PEST. The esti-
mated parameter values for the best fit against the curves N and L, cf, Figure 1, as well as the corresponding kEoptk2,
are given in Table 1.

A comparison of the simulated and measured NMR signals, Figure 4, indicates that the model can reproduce the
measured curves well. Table 1 shows that the diffusive wall conductivity, Dω, is estimated to be low for the NAWM
sample (N), and high for the lesion sample (L), with a difference of three orders of magnitude, while the other parame-
ters are within the same order of magnitude. To better understand the influence of the diffusive wall conductivity on
the computed NMR signal, we compute the mass of contrast agent in the extravascular space

mc
t =
ð
Ω
ϕMcct dx, ð30Þ

at the end of the simulation, tend = 112 s. Additionally, we compute the total mass of contrast agent going into the
domain over the entire time of the simulation,

TABLE 1 Parameter values

obtained by a global optimization

algorithm for the best fit of model and

MRI data, minimizing kEoptk2

Parameter Best Fit (L) Best Fit (N)

a 30.08 mol s m–3 30.03 mol s m–3

b 1.20 mol m–3 0.61 mol m–3

tp 4.75 s 6.03 s

Lp 7.20 � 10−12 m Pa–1 s–1 1.00 � 10−12 m Pa–1 s–1

Dω 8.20 � 10−8 m s–1 1.01 � 10−10 m s–1

κB 14.19 35.59

κT 0.73 1.00

T1, pre 1.76 s 2.00 s

kEoptk2 0.055 0.082

Note: The second column shows the parameters for the lesion sample (L), the last column the parameters for
the NAWM sample (N).

Abbreviations: MRI, magnetic resonance imaging; NAWM, normal appearing white matter.
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minj =
ðtend
0

ð
∂Λin

AvvvM
ccv dadt: ð31Þ

The results are shown in Figure 5 for different wall diffusivities. The other parameters were chosen as in Table 1,
sample L. It can be seen that for Dω < 1.0�10−9 m s–1, there is almost no leakage into the extravascular space, ie, the
BBB is intact. For Dω > 3.0�10−6 m s–1, the leakage of contrast agent into the extravascular space has reached a plateau
and does not increase further with Dω. For such high wall diffusivities, the contrast agent mole fractions in vascular
and extravascular space reach an equilibrium. This situation would lead to a flat NMR signal (as seen, for instance, in
the uppermost curve in Figure 6 for Dω), which is not observed in any of the clinical data. Therefore, such high values
of Dω are unlikely to be physiologically sensible. For the values of Dω in Table 1, this means that there is little to no con-
trast agent leakage for sample N, while there is significant leakage for sample L. This is in accordance with the present
understanding of the pathology, which assumes leaky vessel walls in MS lesions.

However, the problem of finding best-fit parameters is typically ill-conditioned or even ill-posed as the solution may
be non-unique, such that the employed parameter estimation method may not be reliably applied. Therefore, we dis-
cuss other methods to further analyze the model parameters in the subsequent sections.

5.2 | Parameter sensitivity

For a better understanding of the influence of the patient-specific parameters on the signal-time curve, as well as the
sensitivity of the model output to the model input parameters, we perform a simple sensitivity analysis, where

FIGURE 4 Simulated normalized nuclear magnetic resonance (NMR) signals compared with magnetic resonance imaging (MRI) data

(see Figure 1), using the best-fit parameter estimates given in Table 1. Left—the result for the lesion sample (L), right—the result for the

normal appearing white matter (NAWM) sample (N)

FIGURE 5 The mass of contrast agent in the extravascular

space at tend = 112 s for different wall diffusivities. The left axis

shows the contrast agent mass in the extravascular space, mc
t . The

right axis shows the ratio of mc
t to the total injected contrast agent

mass minj in percent
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parameters are individually varied, while all other parameters are kept constant at the values listed in Table 1. The
results of this study are shown in Figure 6 for sample L and in Figure 7 for sample N. It can be seen that the parameter
sensitivity is different for L and N (which correspond to different locations in the parameter space). Such behavior char-
acterizes nonlinear model response.

(A) (B)

FIGURE 6 Influence of different flow, transport, and nuclear magnetic resonance (NMR) parameters on the signal-time curve. The

parameters are individually varied, while the other parameters are chosen as in Table 1 (sample L)
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5.2.1 | Capillary input function

The shape parameters a and tp of the capillary input function have a strong influence on the first pass dip of the NMR
signal. The influence is directly related to the T*

2 shortening caused by the contrast agent in the blood vessels. Compar-
ing the respective curves in Figures 6 and 7 shows that contrast agent leakage dampens the influence of a and tp. The
difference in concentration between the vascular and extravascular space decreases in the presence of leakage,

(A) (B)

FIGURE 7 Influence of different flow, transport, and nuclear magnetic resonance (NMR) parameters on the signal-time curve. The

parameters are individually varied, while the other parameters are chosen as in Table 1 (sample N)
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attenuating the T*
2-shortening mesoscale effects. For sample L, a also influences the signal in later times in the presence

of leakage. A higher a indicates a larger contrast agent bolus, which will also result in a higher amount of leakage lead-
ing to a signal increase at later times, because of the T1-shortening effect of the contrast agent in the extravascular
space. In the absence of leakage (sample N), the late signal is only affected significantly by the equilibrium concentra-
tion b. For sample L, b has a significant influence on the late signal slope. In that case, the signal slope is directly related
to the leakage rate. With a higher b, the gradient of the contrast agent concentration over the vessel wall is higher, lead-
ing to a higher leakage rate. For b =0, the slope is negative, indicating that leaked contrast agent flows back into the
vascular compartment.

5.2.2 | NMR parameters

The NMR parameters, κB, κT, T1, pre, have an equally strong but different effect on the NMR signal. The scaling parame-
ter κB for the mesoscale T*

2 effects from the vascular wall affects the signal strength almost linearly throughout the
entire simulation. For κB =0, ie, if mesoscale effects on T*

2 relaxation are neglected, the early time signal enhancement
due to T1 shortening becomes even stronger than the signal decrease because of T*

2 shortening, as clearly seen in
Figure 7. This illustrates that it is essential for the NMR signal model to include mesoscale effects. The scaling parame-
ter κT for the mesoscale T*

2 effects from the cell walls only influences the signal in the presence of leakage (sample L).
This is evident, since the difference between the contrast agent concentration in the cells and the extravascular, extra-
cellular compartment is zero, in the absence of leakage. Figure 6 shows that signal decrease due to T*

2 shortening in the
extravascular compartment exceeds signal enhancement because of T1 shortening, if κT is chosen too large. Because this
is not seen in any of the clinical data, κT is likely to be small (κT <10). The precontrast longitudinal relaxation time, T1,

pre, shows a direct influence on the signal-enhancing effect of T1 shortening. If T1 is already elevated before the admin-
istration of contrast agent, the T1 shortening has a strong signal-enhancing effect. If T1, pre is closer to T1 values mea-
sured for NAWM,66 the signal-enhancing effects are significantly weaker. Figure 6 suggests that signal enhancement is
small if T1, pre is not elevated, even in the presence of leakage.

5.2.3 | Leakage coefficients

The leakage coefficients for advective and diffusive transmural transport, Lp and Dω, show a very similar qualitative
influence on the NMR signal. However, the sensitivity of the NMR signal with respect to changes in Lp is significantly
lower than the sensitivity with respect to changes in Dω. This suggests that the main mechanism for transmural contrast
agent leakage is of diffusive nature. Furthermore, note that changing Dω, while keeping the other parameters constant,
can change the signal-time curve from the shape of sample N to the shape of sample L and vice versa. This further
emphasizes that diffusive wall conductivity plays a dominant role in characterizing curve shapes.

5.3 | Bayesian parameter inference

To complete our critical assessment of the proposed model, we ask and attempt to answer the question: What can we
learn about the model parameters, given the MRI data? Bayesian parameter inference is a method to estimate unknown
parameters of a model, given some prior knowledge about the parameters, and observations, while quantifying the
uncertainty that is inherent to such a parameter estimation. Let θ denote the parameters of the model ℳ and X the vec-
tor of observed values. The Bayes theorem, applied to the problem of parameter inference, states that

p θjXð Þ= p X jθð Þp θð Þ
p Xð Þ , ð32Þ

where p(θ|X) is the posterior distribution, ie, the probability of θ given the observation data X. p(X|θ) is the likelihood
function, ie, the probability of the X being from the same population as the model prediction, given θ. p(θ) is the prior
distribution reflecting prior knowledge about the parameters θ, before knowing the observations. p(X) is the marginal
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likelihood, a normalization constant, not depending on θ. Now, let Y = ℳ(θ) be the model prediction given the parame-
ters θ. We assume that we can write

X =Y + ϵ, ϵ ~N 0,σ2
� �

, ð33Þ

where ϵ is the combination of measurement error and unbiased model error and σ its standard deviation. The likeli-
hood that any model answer, Y, comes from the same population as the measurement, X, is a Gaussian likelihood

p X jθð Þ/ exp −

P
i

Xi-Yið Þ2

2σ2

0B@
1CA, ð34Þ

if the errors of all observations are assumed to be uncorrelated. The standard deviation, σ, has to be estimated for the
given MRI data and the proposed model. The measurement error is estimated from the MRI data obtained before the
contrast agent bolus reaches the tissue sample, where the measurement is assumed to fluctuate around a constant base-
line signal. To this end, we take 100 random signal samples from the brain slice shown in Figure 1, normalize the signal
to the mean of the first 10 sample data points, and compute the standard deviation of all such baseline data points
across all samples, yielding σ = 0.009. Furthermore, we assume that our mathematical model captures the most signifi-
cant physical processes. The model error is assumed to be sufficiently estimated using, in total, a standard deviation of
σ = 0.009. We are aware that this assumption may be too restrictive in which case the estimated model parameters may
additionally include modeling uncertainties that may compromise their physical interpretability for the underlying
physical process. However, the estimated standard deviation of σ = 0.009 represents a rather large uncertainty given rel-
ative signal changes in the order of 0.1, see Fig. 4. To estimate the effect of assuming a larger model uncertainty, we run
a second numerical experiment with a 10-fold increase of the standard deviation.

Markov chain Monte Carlo (MCMC) methods are methods to sample from the posterior distribution p(θ|X) without
the need to compute marginal likelihood, which is generally expensive. MCMC draws samples on a random walk
through the parameter space, creating a representative set of samples from the posterior distribution, after a sufficient
number of iterations. These samples form a Markov chain such that the parameters with which the sample is generated
in one step only depend on the parameters in the previous step. Herein, we use the ensemble sampler proposed in
Goodman and Weare,68 which is implemented in the Python module emcee.69 Its algorithm features an ensemble of
interdependent Markov chains (so-called walkers), enabling multiple parallel forward model runs within one step. For
a brief description of the algorithm, see Data S2. We refer to the literature68,69 for a comprehensive discussion.

In the following, Bayesian parameter inference is used to compute the probability distribution of the patient-specific
model parameters, under physical parameter constraints, given a signal-time curve from a voxel of a perfusion MRI
sequence. To this end, we choose the prior distributions of the parameters to be uniform distributions within the bounds
given in Table 2. The ensemble sampler is configured with k= 100 walkers. The parameter vector is θ = [a, b, tp, log10Dω, T1,

pre, κB, κT]
T, so that N = 7. The parameter Lp remains fixed to reduce the dimension of the parameter space. Its influence on

the NMR signal has been shown in the previous section to be significantly weaker than the influence ofDω (see Figure 6).

TABLE 2 Prior distribution for

parameters inferred by a Markov chain

Monte Carlo method

Parameter Prior Distribution Unit

a uniform in [0,200] mol s L–1

b uniform in [0,2.0] mol L–1

tp uniform in [0,15] s

−log10Dω uniform in [5, 12] m s–1

Lp fixed at 1�10−12 m Pa–1 s–1

T1, pre uniform in [0.8,2.0] s

κB uniform in [0,100] -

κT uniform in [0,100] -
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The sampler convergence is estimated using the integrated autocorrelation time, τf,
68

τf =
X∞

t= −∞

Cf tð Þ
Cf 0ð Þ , with Cf tð Þ= 1

M− t

XM− t

k=1

f k−μf


 �
f k+ t−μf


 �
, ð35Þ

where f = f if gMi=1 is a finite chain of length M, for example, the value of parameter a for each sample in the Markov
chain and μf its arithmetic mean. We use an estimate of the integrated autocorrelation, τf,e, using the Python module
acor.70,71 We compute this estimate for the chain of each parameter, θi, and use the maximum and minimum values,
τmax =max0≤ i<Nτθi,e, τmin =min0≤ i<Nτθi,e . The sampler is run until the sample size, j>100 � τmax, and the change in
the autocorrelation time estimate from sample j− τmax to sample j is less than 1%. The resulting histograms for each
parameter and their covariance with respect to the other parameters is visualized in Figure 8 for sample L and Figure 9
for sample N (cf, Figure 1). The plots show the results for σ = 0.009. The results with a 10 times larger σ are given in
Data S4. To eliminate artifacts from the burn-in phase of the MCMC algorithm, the first 10 � τmax samples are discarded.
To have only independent samples, every τmin sample of the remaining samples is chosen,68 while the others are dis-
carded. The solid black lines in Figures 8 and 9 show the parameter values of Table 1 that were obtained previously
with PEST.

To interpret the results, we recall the original question: What can we learn about the model parameters, given the
MRI data? If the posterior distribution of a parameter is close to uniform, ie, close to the prior distribution (see
Table 2), the data did not provide any additional information about this parameter. This is, for example, the case for a,
b, and κT in Figure 9 for which the 90% credible interval is wide. In contrast, if the posterior distribution differs signifi-
cantly from the prior distribution, the data provide significant information on this parameter. This is the case for the
parameters Dω and κT in Figure 8, which is consistent with the observation in Figures 6 and 7 that the sensitivity of the
NMR curve with respect to those parameters is high, such that only a small range of values for those parameters is
likely to match the model results with the clinical MRI data. Furthermore, there seem to be correlations between sev-
eral parameters. For instance, the inflow curve parameters a and b show a strong and nonlinear correlation with MR
model parameter κB for both samples, L and N. For high values of a and b, which corresponds to an increase in the
amount of contrast agent entering the tissue sample, it is more likely that κB is low, which decreases the effect of
contrast-induced signal reduction. Conversely, a high κB is more likely if a and b are low. This effect is expected, since
high concentration values correspond to a higher signal reduction in the vascular compartment, see Equa-
tions (21) and (27).

Most interestingly, the distribution of Dω in Figure 8 differs significantly from the distribution of Dω in Figure 9.
Both distributions are shown as histograms in Figure 10 for the experiment with σ = 0.009, as well as for the experi-
ment with an increased model and measurement error uncertainty. For sample L, the inferred posterior distribution of
the diffusive wall conductivity has a distinct peak around Dω = 9�10−8 m s–1 (3 � 10−7 m s–1 for high σ). Furthermore, it
shows that values below Dω = 3�10−8 m s–1 are unlikely, suggesting significant transmural contrast agent leakage with
a high probability. For sample N, the inferred diffusive wall conductivity is likely low (<5 � 10−9 m s–1), suggesting little
to no leakage; see Figure 5. For low σ, the results suggest that Dω values between 3 � 10−9 and 3 � 10−8 m s–1 are more
likely than respective lower values. This could indicate that there may be a small amount of contrast agent leakage in
the NAWM sample. That this effect may indeed occur is suggested in several clinical studies.8,73 However, this effect
cannot be seen for the numerical experiment where σ is assumed 10 times higher (Figure 10, right). Here, all values
below Dω = 1�10−8 m s–1 are equally likely. Consequently, the indication of leakage in the given NAWM sample could
also be an artifact resulting from an overconfidence in the accuracy of the measurement or model data. Moreover, more
than 50% (70% for high σ) of the Dω sample values fall below 3 � 10−9 m s–1 (including the value obtained with the opti-
mization approach in the previous section), which corresponds to virtually no contrast agent leakage. Because of the
significant difference between the posterior distributions for Dω in both samples (L and N), in particular, the observa-
tion that low Dω are likely for sample N, while they are unlikely for sample L, we conclude that the two samples can be
distinguished just on the basis of Dω, without looking at the estimates for the other parameters. The uncertainty in Dω

reflects the fact that all other parameters are uncertain as well. Consequently, the estimate of Dω may be improved with
additional information about other parameters. Such information might be, for instance, a direct measurement of
T1, pre, estimations of the AIF, or data from other MR sequences of the same patient. Furthermore, knowledge that a
parameter is expected to be similar in a certain region of the brain could enable learning from other voxel data of the
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same sequence. In the Bayesian framework, such information can be included incrementally, where the posterior distri-
butions of the previous Bayesian update are the prior distributions of the next Bayesian update.

The values estimated for Dω cannot be compared with values from two-compartment models straightforwardly.
These models are formulated on the macroscale using averaging techniques. The relation of fluid-mechanical models
on the mesoscale (as considered in this work) and models formulated on the macroscale is yet to be better understood
and is addressed in some recent studies.74-77 However, values for the diffusive wall permeabilities have been estimated
from direct measurements with single or multiple capillaries from different tissues.78-81 The values and methods are

FIGURE 8 Histograms of model parameter distributions after learning from magnetic resonance (MR) voxel data from a lesion (see

Figure 1, sample L). The assumed standard deviation for the measurement error is σ = 0.009. The histograms on the diagonal are the

histograms for single parameters; the scatter plot in the matrix shows the covariance between the respective row and column parameters

(plot generated with72). The histogram titles show median, fifth and 95th percentile (visualized as dashed lines). The horizontal and vertical

solid black lines show the parameter values for sample L of Table 1
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reviewed in previous studies.82,83 We are not aware of such measurements for Gadobutrol. Nevertheless, Dω values can
be assumed to be similar for molecules with similar properties as Gadobutrol (hydrophilic, M = 604.715 g mol–1,47

rhy ≈ 0.8 nm48). For example, for sucrose (hydrophilic, M = 342.30 g mol–1, rhy ≈ 0.45 nm84) values in the order of
1.4 � 10−6 m s–1 are reported for frog mesentery82 and skeletal muscle tissue,83 depending on the measurement method.
For (normal) brain tissue in dogs, no significant permeability is reported,78 meaning that the pathway through the
endothelial tight junctions of the BBB is impermeable for sucrose. The filter mechanisms and anatomy of the capillary
wall are assumed to be similar in different species.85 Previous studies80,83 suggest a strong dependence on molecule size,

FIGURE 9 Histograms of model parameter distributions after learning from magnetic resonance (MR) voxel data from normal

appearing white matter (NAWM) (see Figure 1, sample N). The assumed standard deviation for the measurement error is σ = 0.009. The

histograms on the diagonal are the histograms for single parameters; the scatter plot in the matrix shows the covariance between the

respective row and column parameters (plot generated with72). The histogram titles show median, fifth and 95th percentile (visualized as

dashed lines). The horizontal and vertical solid black lines show the parameter values for sample N of Table 1
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so that for the Gadobutrol molecule with twice the size of the sucrose molecule, the expected value for skeletal muscle
tissue would be one order of magnitude lower than that of sucrose, see Michel and Curry, Fig. 1.83 Hence, the Dω values
for the lesion sample compare to physiological values of other tissues where capillary walls are known to be more per-
meable to small molecules86 than in the brain. In comparison with our estimated value for sample L, this suggests sig-
nificant leakage and a strong increase in transmural permeability in comparison with NAWM. The values for NAWM,
with two orders of magnitude lower Dω values, signify impermeable capillary walls and are in good agreement with the
common assumption that the BBB is impermeable for Gadobutrol.

6 | MODEL LIMITATIONS AND OUTLOOK

The current model relies on a single exemplary vessel geometry. Today, patient-specific subvoxel vessel geometries can-
not be routinely measured. Hence, the influence of different vessel geometries on the presented results has to be
investigated.

Furthermore, the used model of the inflow curve, Equation (14), neglects recirculation in the form of a second or
third pass of the contrast agent. In particular, the effect of the second pass of the bolus cannot be captured and might
lead to more uncertainty in the estimation of other model parameters. In a future step, the inflow curve model can be
improved to include recirculation and to be derived from AIF measurements. Including such measurements adds infor-
mation about the inflow parameters and may thus lead to narrower estimates of other model parameters. Moreover, we
used a rather simple approach for the estimation of the model error. In future work, the model error can be more rigor-
ously analyzed, for example, by including the SD of the error model as a random variable. In this way, Bayesian param-
eter inference provides an estimate for the model error alongside the estimates of the other model parameters. This
may increase the uncertainty of the provided parameter estimations.

The presented model considers processes in a subvoxel tissue sample that is surrounded by tissue with the same
properties. However, contrast-enhancing lesions in the brain typically span over several MRI voxels; see Figure 1. Fur-
thermore, patterns such as ring-like shapes have been observed for MS,87 suggesting processes on a larger scale or possi-
ble intervoxel dependencies. Such effects cannot be included in the model in its current state, since simulation of
several voxels is prohibitively expensive because of the large number of blood vessels.

The applicability of the presented model has yet to be confirmed in a clinical environment. This would be of special
relevance for monitoring of pharmacologic effects and drug efficacy, for example, in drugs that are targeted against
immune cell trafficking. It is to be analyzed how reliable the method predicts diffusive capillary wall conductivities over
a wider range of patient-specific data.

A current drawback of the method is the computational time required to infer diffusive capillary wall conductivities
and contrast agent leakage. However, the computational cost can most likely be improved by applying model reduction
techniques and machine learning algorithms. Likewise, homogenization techniques can be used for model reduc-
tion.74,75 However, such techniques are difficult to apply because of the hierarchical structure of the microcirculation.
For all approaches, the presented model can be used as theoretical basis and as validation tool.

(A) (B)

FIGURE 10 Histograms for Bayesian parameter inference, when learning from normal appearing white matter (NAWM) data or

contrast-enhancing lesion data. A low diffusion coefficient is most likely for the NAWM data, while a high diffusion coefficient is most likely

for the contrast-enhancing lesion data
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7 | SUMMARY AND CONCLUSION

We presented a mixed-dimension fluid-mechanical model for contrast agent brain tissue perfusion on the subvoxel scale.
The blood vessels are considered as a network of cylindrical tubes. The extravascular compartment is modeled as a porous
medium. The presented discretization results in a coupled system of partial differential equations of three-dimensional
and one-dimensional equations. The fluid-mechanical model can describe the three-dimensional evolution of the contrast
agent concentration on the subvoxel scale. We further proposed an NMR signal model, describing the influence of the
contrast agent on the NMR voxel signal, including mesoscale effects. A convergence study suggests that the combined
model is consistent and converges to a unique solution on grid and time step refinement. Using parameter estimation, it
was shown that the model can describe two characteristic NMR signal curves from clinical data obtained by DSC-MRI for
a patient with MS lesions, and that the estimated model parameters provide a meaningful physical interpretation. Bayes-
ian parameter inference, with the given model and clinical DSC-MRI data, showed that the two given NMR signal curves
can be distinguished and characterized, only on the basis of the estimated diffusive capillary wall conductivity distribu-
tions. The study suggests that the NMR signal curve, given the model, is informative about some patient-specific model
parameters, such as the diffusive capillary wall conductivity, and less informative about others, such as the tissue's T1

relaxation time before contrast agent administration. Furthermore, the uncertainty of the diffusive capillary wall conduc-
tivity predictions could be quantified in the Bayesian framework. For a sample from within an MS plaque in the brain
white matter, a value of Dω = 8.2�10−8 m s–1 was estimated using optimization. This value corresponds to significant con-
trast agent leakage into the extravascular space. With Bayesian parameter inference, we obtained a median value of
Dω = 7.8�10−8 m s–1 and an equal-tailed 90% credible interval with lower bound 4.7 � 10−8 m s–1 and upper bound
1.1 � 10−7 m s–1, which contains the value obtained with optimization. With a 10-fold increase of the standard deviation of
the assumed modeling and measurement error, slightly higher values for Dω were estimated to be more likely, and the
uncertainty increased (median: 3.2 � 10−7 m s–1; 90% credible interval: 6.3 � 10−8 to 9.1 � 10−7 m s–1). However, the values
are still clearly distinguishable from those estimated for a NAWM sample, where no significant leakage is observed. The
values are comparable with the diffusive wall conductivity estimated from experiments with hydrodynamically similar
substances in skeletal muscle tissue. The results agree with the observation that endothelial tight junctions are opened in
MS lesions.2 In summary, the presented model constitutes a useful tool to study contrast agent perfusion on a subvoxel
scale and may lead to an improved understanding of the subvoxel processes beyond the scope of this paper.
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