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Abstract. The Arctic is warming rapidly, especially in win-
ter, which is causing large-scale reductions in snow cover.
Snow is one of the main controls on soil thermodynamics,
and changes in its thickness and extent affect both permafrost
thaw and soil biogeochemistry. Since soil respiration during
the cold season potentially offsets carbon uptake during the
growing season, it is essential to achieve a realistic simula-
tion of the effect of snow cover on soil conditions to more ac-
curately project the direction of arctic carbon–climate feed-
backs under continued winter warming.

The Lund–Potsdam–Jena General Ecosystem Simulator
(LPJ-GUESS) dynamic vegetation model has used – up un-
til now – a single layer snow scheme, which underesti-
mated the insulation effect of snow, leading to a cold bias in
soil temperature. To address this shortcoming, we developed
and integrated a dynamic, multi-layer snow scheme in LPJ-
GUESS. The new snow scheme performs well in simulating
the insulation of snow at hundreds of locations across Russia
compared to observations. We show that improving this sin-
gle physical factor enhanced simulations of permafrost ex-
tent compared to an advanced permafrost product, where the
overestimation of permafrost cover decreased from 10 % to
5 % using the new snow scheme. Besides soil thermodynam-
ics, the new snow scheme resulted in a doubled winter respi-
ration and an overall higher vegetation carbon content.

This study highlights the importance of a correct represen-
tation of snow in ecosystem models to project biogeochem-
ical processes that govern climate feedbacks. The new dy-
namic snow scheme is an essential improvement in the sim-
ulation of cold season processes, which reduces the uncer-
tainty of model projections. These developments contribute
to a more realistic simulation of arctic carbon–climate feed-
backs.

1 Introduction

The Arctic is undergoing rapid warming, with some of the
most pronounced changes occurring during the winter (Box
et al., 2019; Natali et al., 2019). As a result, snow thickness,
the extent of snow-covered area, and snow season length
are decreasing, and this is expected to continue in the fu-
ture (AMAP, 2017; IPCC, 2014). Snow is an important abi-
otic component of the Arctic system, since it provides an
insulating cover for vegetation and soil. Snow insulation is
recognized as the primary control over soil thermodynamics
(Lawrence and Slater, 2010), and soil temperature is closely
connected to physical (i.e. permafrost active layer depth) and
biogeochemical (i.e. decomposition, greenhouse gas emis-
sion) processes (Peng et al., 2016). Observations show that
snow cover changes have played a major role in a warm-
ing trend of permafrost soils of approximately 0.3 ◦C per
decade (Biskaborn et al., 2019; AMAP, 2017). This warming
may lead to increased microbial activity, decomposition rates
and bioavailability of previously frozen soil carbon. Since
permafrost soils contain approximately 1600 Pg carbon, ac-
counting for half of the global soil carbon storage (Hugelius
et al., 2014), there is ample potential for these changes to lead
to the release of the greenhouse gases CO2 and methane. This
has the potential to accelerate global warming (Schuur et al.,
2015), which underlines the need for a better understanding
of drivers and potential feedbacks to better predict the rate
and magnitude of future carbon exchange.

Despite numerous field-based and modelling efforts to
date, it is still uncertain whether the Arctic will act as a
carbon source or sink in the future (McGuire et al., 2012;
Virkkala et al., 2021). The predicted future carbon balance
varies widely among models – between a loss of 641 PgC
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and a gain of 167 Pg C under RCP8.5 (McGuire et al., 2018) –
depending on the representation and level of detail of key
processes such as soil temperature and vegetation dynam-
ics (Schuur et al., 2015; McGuire et al., 2018). One of the
key goals of model development is to decrease uncertainty
of simulations by refining these processes. While extensive
research has been carried out on the mechanics of the grow-
ing season, few studies have been directed at cold season
processes. Recent studies suggest that the contribution of
the non-growing season to the annual carbon budget may
have been underestimated (Pirk et al., 2015; Mastepanov
et al., 2013). A recent meta-analysis by Natali et al. (2019)
found significant wintertime carbon loss and highlighted the
large spread in model simulations of non-growing season
greenhouse gas emissions. Models generally underestimated
the observed winter flux emissions due to the inaccuracies
in their simulation of cold season respiration. Natali et al.
(2019) stress the need to revise the impact of environmen-
tal drivers and feedbacks in models. Collectively, these ef-
forts demonstrate that the influence of cold season processes
on the annual carbon balance is larger than previously sug-
gested.

The ability of models to simulate physical and biological
processes in the soil is limited by the complexity of their rep-
resentation of snow. A recent snow-related model evaluation
project analysed the performance of models with different
complexity – focusing on variables such as snow-covered
area and snow season length. This SNOWMIP found that
a dynamic simulation of internal snowpack processes, such
as density and temperature calculations, is critical to sim-
ulate snow thermal profiles (Krinner et al., 2018). In addi-
tion, more complex snow schemes perform better when sim-
ulating cold season processes (Vionnet et al., 2012; Slater
et al., 2017; Wang et al., 2016). To balance computational ef-
ficiency and the need for detail, most ecosystem models use
an intermediate-complexity multi-layer snow module (Vion-
net et al., 2012; Krinner et al., 2018). Such schemes may
not capture fine-scale internal snowpack processes such as
the evolution of high-density wind slab layers, but they are
complex enough to simulate key physical processes – com-
paction, freeze–thaw cycles, and liquid water retention – that
influence the thermal dampening property of snow. Since
LPJ-GUESS had a single-layer static snow representation, it
was found to deviate from observational records of air–soil
temperature relationships – simulating cooler winter condi-
tions and performing poorly when compared to eight land
surface models (Wang et al., 2016). This showed, combined
with previous research, that the snow representation in LPJ-
GUESS needed to be revised to better capture Arctic cold
season conditions.

The primary aim of this study is to improve LPJ-GUESS’s
simulation of the insulating effect of snow. By develop-
ing and integrating a dynamic intermediate-complexity snow
scheme, we also aim to improve the soil temperature and bio-
geochemistry simulation. To investigate the effect of the new

snow scheme in LPJ-GUESS, we set out to quantify the im-
pact on physical variables, i.e. the direct impact of snow in-
sulation on soil temperature and permafrost conditions. To
further evaluate the snow-related influence on biogeochem-
istry – such as changes in growing season length – we analyse
a set of biogeochemical variables. Due to differences in soil
temperature, we expect to see changes in ecosystem produc-
tivity, heterotrophic respiration, and soil carbon pools. More-
over, we analyse the changes to vegetation dynamics and
composition. The updates to the model will allow us to as-
sess other snow-related processes and feedbacks on a global
scale, such as the impact on surface albedo and food access
to herbivores, in the future.

2 Materials and methods

LPJ-GUESS is a process-based dynamic vegetation model,
widely applied on regional and global scales (Smith et al.,
2001, 2014). For this study, we used a customized arctic ver-
sion of LPJ-GUESS 4.0 (subversion 9905). The model sim-
ulates soil freeze–thaw processes and is applicable to stud-
ies of processes at northern high latitudes (Miller and Smith,
2012). In this study we restrict simulations to the northern
circumpolar region (above 60◦ latitude) with a spatial resolu-
tion of 0.5◦× 0.5◦. The CRUNCEP global reanalysis climate
dataset version 7 was used as input for all of our model sim-
ulations (Viovy, 2016). We ran the model with a 500-year
spin-up period to establish an equilibrium vegetation state
and a 40 000-year offline spin-up period for soil conditions.

LPJ-GUESS simulates vegetation dynamics on individual
and patch scales, taking into account growth, competition for
resources, and disturbances. This feature makes it possible to
assess how changes in environmental conditions affect veg-
etation distribution and composition. In this study, we ap-
plied 15 plant functional types (PFTs) that characterize arc-
tic ecosystems (see Table S3 in the Supplement). Permafrost
dynamics follow Wania et al. (2009) and are simulated us-
ing the physical characteristics of 15 soil layers, each 10 cm
thick. Soil thermodynamics is governed by climate and snow
conditions, and the thermal properties of each soil layer de-
pend on the ice, water, air, mineral, and organic soil frac-
tions. The layer-specific thermal properties define the rate of
heat transfer through the soil column. For more details on the
model structure, see Smith et al. (2001, 2014), Wania et al.
(2009), and references therein. To assess the newly devel-
oped intermediate-complexity snow scheme’s performance
and influence, we conducted simulations with both the old
Static and the new Dynamic snow schemes.

2.1 Static snow scheme

The Static snow scheme, which has been in use in LPJ-
GUESS until now, treats snow as a single layer with constant
values for thermodynamic parameters. Snowfall is simulated
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Figure 1. Snowpack structure and physical properties. Where
z shows layer depth, W water content, I ice content, ρ density,
C heat capacity, K thermal conductivity, D thermal diffusivity, and
T layer temperature. A detailed list of the used variables can be
found in Table A1.

on any given day when precipitation (P , mm) occurs and air
temperature (Tk , ◦C) is at or below Tmax (◦C) – which is the
temperature maximum at which precipitation occurs in snow
form. Tk denotes the temperature of a layer k, in this case the
air layer. Snow density (ρk , kgm−2) and snow thermal con-
ductivity (Kk , Jm−1 K−1 s−1) are constant at 362 and 0.196,
respectively. Snow heat capacity (Ck , Jm−3 K−1) is calcu-
lated by Eq. (1) (Fukusako, 1990).

Ck = 1000ρk(0.185+ 0.00689Tk) (1)

Compaction processes are not represented in the Static
scheme. Snowmelt (melt, mm) is governed by air tempera-
ture and precipitation and follows a linear function as shown
in Eq. (2) (Choudhury and DiGirolamo, 1998).

melt= (1.5+ 0.007 ·P)(Tk − Tmax) (2)

The snowpack is homogeneous in its physical properties,
and neither internal processes nor seasonal dynamics are sim-
ulated using the Static scheme. Using this approach, snow
conditions are assumed to be uniform across the Arctic re-
gardless of air temperature regime or seasonal snow dynam-
ics. Due to the heterogeneity in Arctic surface and local cli-
matic conditions, this scheme has a limited ability to repre-
sent the variability in high-latitude ecosystems – this is the
main shortcoming of the Static snow scheme that this study
sets out to improve.

2.2 Dynamic snow scheme

The schematic structure of the multi-layer snow scheme is
shown in Fig. 1. The occurrence of snowfall on any given

day depends on air temperature and precipitation, using the
same principle as for the Static scheme. Fresh snow density
(ρfresh, kgm−3) is calculated by taking into account air tem-
perature and wind speed, following Eq. (3), where a, b, and c
are scaling parameters defined by Vionnet et al. (2012) (for
parameter values see Table A1 in the Appendix).

ρfresh = a+ b · Tmax+ cU
0.5
10 (3)

U10 denotes the 10 m height wind speed (ms−1), following
the detailed snowpack model Crocus (Vionnet et al., 2012).
To avoid unrealistically low snow density values that may oc-
cur in rare cases, the density minimum is set to 100 kgm−3.

The new snow scheme simulates internal snowpack dy-
namics with up to five snow layers, taking into consideration
each layer’s depth. Fresh snow either initiates a snowpack
or is added to already existing snow layers. If the freshly
fallen snow is added to the snowpack, the physical proper-
ties of the snow layer are updated. The number and thickness
of snow layers are defined according to predefined thresh-
olds: a new snow layer is initialized when an existing layer
exceeds twice the prescribed threshold height (2× 100 mm).
If a single snow layer exists but does not reach the minimum
height (set to 50 mm), the shallow snow layer properties are
combined with the top soil layer. Thereafter, their proper-
ties (ice, air, and liquid water fractions and heat capacity) are
scaled using weighted averages based on the layer’s ice, wa-
ter, and air fractions for the sake of computational stability.
In the case where all five layers exceed the prescribed maxi-
mum threshold, the bottom layer accumulates snow in order
to preserve and align vertical resolution near the surface of
the snowpack. The snow layer density (ρk) and depth (zk ,
m) relationship is described by Eq. (4), where Ik (kgm−2)
defines the ice content of a layer (Lawrence et al., 2019).

zk =
Ik

ρk
(4)

The density of a snow layer changes through compaction,
which is simulated by two processes: (1) mechanical com-
paction due to pressure from the overlying snow layers as
shown in Eq. (5) (Best et al., 2011).

∂ρk

∂t
=
ρkgMk

ηk
exp

(
ks

Tmax
−
ks

Tk
−
ρk

ρ0

)
(5)

The increase in the snow layer’s density (∂ρk) depends on
the mass of overlying layers (Mk , kg). ηk (106 Pas) denotes
the compactive viscosity factor, ks is an empirical constant
defined by Best et al. (2011) with a value of 4000 K, and ρ0
is a reference density (50 kgm−2). Snow density may also
change by (2) phase changes as a result of freeze–thaw pro-
cesses within the layers. If a layer’s snow or liquid water con-
tent changed during freeze–thaw events, its depth and density
properties are recalculated, taking into account the snow and
ice fractions of the layer as shown in Eq. (4).

https://doi.org/10.5194/bg-18-5767-2021 Biogeosciences, 18, 5767–5787, 2021



5770 A. Pongracz et al.: Model simulations are highly sensitive to the implemented snow scheme in LPJ-GUESS

In contrast to the Static formulation, phase changes within
the snow layers depend on the layer’s internal temperature,
and this controls the melting process in the Dynamic snow
scheme. This development enables the simulation of mid-
winter melt events and ensures an improved representation of
internal snowpack thermodynamics. Upon melt, each layer
can retain a fraction of liquid water based on Eq. (6), where
rwmin and rwmax are empirical constants and ρt is a reference
density (Wang et al., 2013; Anderson, 1976).

Wcap,max = Ik

[
rwmin+ (rwmax− rwmin)

·max
(

0,
(ρt− ρk)

ρt

)]
(6)

If the liquid water content (Wk , mm) of a layer exceeds
the maximum water holding capacity (Wcap,max, mm), water
is passed to the layer underneath following a simple bucket
model. Rain-on-snow events (ROSs) are simulated if it rains
while a snowpack is present. The energy of rainwater may
induce phase changes in the snow layers. The overflow liquid
water is forwarded to the underlying snow layers and lastly
to the top soil layer to percolate to the soil or to be discharged
as runoff.

Each layer is characterized thermodynamically by the
following physical properties: density, temperature, thermal
conductivity, heat capacity, and diffusivity (Dk , m2 d−1).
Thermal conductivity is calculated using density as shown
in Eq. (7) (Best et al., 2011), following a power function
(Jm−3 K−1).

Kk = 2.22
(
ρ
k

ρ0

)1.88

(7)

Heat capacity is determined by taking into account snow
layer density and temperature according to Eq. (1). The snow
diffusivity is calculated by Eq. (8). Soil and snow layer tem-
peratures are computed, taking into account each layer’s ther-
mal conductivity, heat capacity, and height, using the Crank–
Nicolson finite difference method to solve Eq. (9) (Lawrence
et al., 2019).

Dk =
Kk

Ck
(8)

∂T

∂t
=
∂

∂z

(
D(k)

∂T

∂z

)
(9)

The computational cycle ends by rearranging the layers
based on the depth thresholds, taking into account the po-
tential liquid water content. First we re-calculate each snow
layer’s depth based on the amount of snow and liquid wa-
ter using Eq. (4). We then re-arrange the layers by using the
leaky-bucket approach, where the snow layers are filled up
from the bottom layer (closest to the surface). If the thresh-
old depth is reached, a new snow layer is initiated and the

Figure 2. Steps in the daily computational cycle for the Dynamic
snow scheme. Blue arrows indicate workflow in case a snowpack
is present on the ground, while orange arrows show steps when a
snowpack is absent.

process continues until the total depth of the snowpack is dis-
tributed to the specific snow layers. The overflow meltwater
is passed to the soil for percolation after this step. This cycle
is repeated each day when there is a snow or rain-on-snow
event. The daily snow cycle of the Dynamic snow scheme is
depicted in Fig. 2.

Besides the changes in the representation of snow, the cal-
culation of heterotrophic respiration below 0 ◦C was changed
following a recent data synthesis (Natali et al., 2019) to bet-
ter represent arctic conditions. This adjustment was imple-
mented for both the Static and Dynamic schemes. The mini-
mum decomposition temperature was set to −20 ◦C, and the
Q10 value was set to 2.9. A comparison between the old and
new functions is shown in the Supplement (Fig. S1 in the
Supplement). This adjustment led to higher soil respiration
in both schemes during the cold season compared to the old
model set-up.

The implemented processes and physical representations
are simpler than in dedicated, high-resolution snow mod-
els – such as Crocus and SNOWPACK (Lehning et al., 2002;
Vionnet et al., 2012) – but reflect the model improvements
identified as being most important in previous model inter-
comparison studies (Krinner et al., 2018). These improve-
ments enable us to simulate a more realistic range of snow
conditions and soil thermal conditions across the Arctic.

2.3 Simulation set-up

The performance of LPJ-GUESS using both snow schemes
was compared at the site and regional levels. Modelled prop-
erties were compared to observational datasets, when avail-
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Figure 3. Snowpack dynamics at the Zackenberg GeoBasis station.
Density values for the layers are extrapolated – from three and five
layers for the observational and modelled data, respectively. The
colours of the snowpack indicate snow density.

able. We quantified the correspondence between simulated
and measured variables using statistical methods.

i. Site-level comparison.

To highlight the differences in snowpack dynamics us-
ing the two snow schemes, we compiled a detailed
single-site model–data comparison of the internal snow-
pack structure (Fig. 3). Afterwards, we ran the model
for five well-studied northern high-latitude sites in or-
der to identify how well the two snow schemes can
simulate snow and soil temperature at the site level.
These sites are Abisko, Zackenberg, Bayelva, Kytalyk,
and Samoylov – see site details in Table S1 in the Sup-
plement. Measurements of snow depth and soil tem-
perature were sorted and averaged on a daily basis –
10 years for the simulations and all available years for
observations at each site. Model outputs were examined
and compared to these time series to evaluate the snow
schemes’ ability to simulate snow depth and soil tem-
perature seasonality adequately.

ii. Regional simulations.

We conducted simulations for a set of Russian sites
(256 sites) which were part of the study by Wang
et al. (2016), as a follow-up, and re-evaluate the snow
insulation effect in LPJ-GUESS over a large region.
First, snow depth and soil temperature data were sorted
monthly for each site for the years 1980–2000. Site ob-
servations were provided by the All-Russian Research
Institute of Hydrometeorological Information – World

Data Centre (RIHMI-WDC; http://meteo.ru/, last ac-
cess: 3 January 2019). Following this, averages were
calculated for December, January, and February. The
difference between soil (25 cm depth) and air temper-
ature – henceforth 1T – was used as a proxy to eval-
uate the strength of the model-simulated insulation ef-
fect. Snow depth, soil temperature, and 1T series were
grouped according to air temperature to evaluate the in-
sulation capacity under different temperature regimes.

iii. Pan-Arctic simulations.

Finally, we conducted model simulations across the
Arctic to assess the effect of changing the snow scheme
on selected physical and biogeochemical variables and
vegetation properties. When applicable, variables were
averaged over December, January, and February to em-
phasize the effect on the winter season. Instead of the
absolute results, we show the difference between the set
of simulations, calculated as the difference between Dy-
namic and Static model outputs.

3 Results

3.1 Site-level simulations

Prior to the evaluation of the large-scale performance of
the new Dynamic snow scheme, we conducted a single-site
comparison to examine the validity of the results. These de-
tailed snowpack observations from Zackenberg helped to de-
termine whether the Dynamic scheme can simulate internal
snowpack dynamics, snow depth, and snow density.

We established the ability of the new snow scheme to sim-
ulate snow conditions by comparing a simulated snowpack
with snow depth and density observations from Zackenberg
(2013–2014 snow season). Figure 3 presents the observed
and simulated snowpack by the Dynamic and Static schemes.
This figure shows that the Dynamic scheme simulates com-
parable snow depth and that the simulated snow densities
follow the observed snow density pattern through the snow
season. Density values are compared qualitatively, since it is
difficult to accurately align the observational and modelled
layer densities. To be consequent, we used global climatic
forcing data for all simulations in this study, including this
site-scale comparison. This fact should be taken into account
when interpreting the model–data comparison in this sec-
tion – as some of the differences may be derived from the
differences in climatic data.

There are lower densities early in the snow season, with
fresh snow having low density, while density increases in
late spring, during the melt season. The Static scheme with
constant snow density simulated a somewhat higher-than-
observed snow depth. Thermal properties in snow layers
are derived from density, and this is especially important in
the Dynamic snow scheme. Dynamically simulated density
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Figure 4. Seasonal cycle of (a) snow depth and (b) soil temperature at 25 cm depth for the studied sites, comparing model simulations
and observations. Site statistics show the spread of monthly snow depth and soil temperature values for the respective sites – excluding the
summer months (June–July–August).

translates to more realistic thermal conductivity dynamics,
which governs the rate of heat transfer through the snowpack.
This feature is essential in simulating a reliable atmosphere–
snow–soil heat transfer interaction. The difference in snow
depth between the Static and Dynamic simulations is most
visible at the end of the snow season, before the start of
snowmelt – as indicated in Fig. 3, bottom panel.

Overall, the new scheme reproduces the snow dynamics
over the cold season better than the Static scheme. Taken
together, these results suggest that the Dynamic scheme is
skilled in simulating the snowpack’s internal structure and
dynamics. Since the Static scheme has a constant snow den-
sity throughout the snow season, the Dynamic scheme is ex-
pected to better capture the seasonal behaviour of snow and
soil conditions. The Zackenberg site comparison indicated
that the Dynamic scheme successfully integrated these key
processes affecting the density over the snow season. In this
study, we used a global climate forcing dataset, which may
explain some of the observed model–observation differences.
The mismatch between snow observations and simulations is
influenced by the use of the global model forcing dataset in-
stead of site-specific temperature, precipitation, or snowfall
time series.

We moved to a multi-site analysis to compare the Static
and Dynamic snow schemes on five well-documented sites.
To assess the performance of the two snow schemes, we
composed seasonal cycles based on monthly averages of (a)
snow depth and (b) soil temperature at 25 cm depth, shown in
Fig. 4. The corresponding root-mean-squared error (RMSE)

for each study site is shown in Table 1. Generally, the Dy-
namic scheme shows only minor improvements in the sim-
ulation of snow depth. Despite this, modelled soil temper-
atures are much closer to the observed values for all sites,
especially during the winter months. This behaviour high-
lights that changing the internal snowpack dynamics with
the Dynamic snow scheme had a significant effect on soil
temperature, even when the simulated snow depth differed
marginally. The changes in soil temperature are due to the
differences in snow thermal properties, which significantly
influenced the insulation capacity of the snowpack.

The implementation of the new snow scheme resulted in
significant changes within the snowpack that are responsi-
ble for the improved soil temperature simulation. The Static
scheme applies constant snow density and thermal conduc-
tivity, which defines the rate of heat transfer through the
snowpack. In the Dynamic scheme, thermal conductivity is
dependent on the dynamically updated density; therefore the
new scheme can achieve a more realistic simulation of snow
heat transfer dynamics throughout the snow season – de-
pending on environmental conditions. The Dynamic scheme
simulates snow thermal conductivity in a range from 0.04
to 0.5 Wm−1 K−1, which aligns well with literature esti-
mates of 0.021–0.65 Wm−1 K−1. This feature enables the
simulation of a wide range of conditions across the Arctic,
as opposed to the general conditions assumed by the Static
scheme.

The statistical comparison (site statistics) shows that there
is a smaller variance of modelled values of soil temperature
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Table 1. RMSE for soil temperature and snow depth for the applied snow schemes for the single site simulations.

Snow scheme Abisko Kytalyk Zackenberg Samoylov Bayelva

Soil T (◦C) Static 6.13 12.35 3.17 14.97 5.65
Dynamic 1.36 5.35 3.34 4.67 2.56

Snow depth (m) Static 0.17 0.09 0.11 0.06 0.18
Dynamic 0.14 0.07 0.10 0.12 0.12

Figure 5. Comparison of the observed and modelled snow insulation effect at the Russian sites between observations and model simulations
using the Dynamic and Static schemes. (a–c) Soil temperature and snow depth relationship. (d–f) Difference in air–soil temperature and snow
depth relationship. Snow depth presented on the horizontal axis is classified in 5 cm depth bins. Colours indicate different air temperature
regimes, and upper and lower bars show the 25th and 75th percentiles.

using the Dynamic snow scheme, which indicates an im-
provement in comparison to the Static simulations’ outputs.
The RMSE (Table 1) also shows that the Dynamic scheme
provides an improved fit of simulated soil temperature and
snow depth at most sites. Overall, we conclude that, with the
Dynamic scheme, the model is able to simulate snow and soil
temperatures that correspond better with the observed ranges.

3.2 Russian site simulations

Following the Dynamic scheme’s improved performance at
the site level, we further evaluate the model’s performance at
the regional scale for the same sites as in the previous model
intercomparison by Wang et al. (2016) that highlighted short-
comings in the snow scheme of LPJ-GUESS. Figure 5 shows
the snow insulation effect over a set of Russian sites, us-
ing the two snow schemes, where the coloured bars show
different temperature regimes. The figure is compiled from
20 winter season average values of near-surface soil temper-
ature (25 cm depth) and snow depth per site. Due to the air-
temperature-based classification, the number of samples per

bin is not balanced, which led to an uneven number of val-
ues allocated to the different groups. The top row of Fig. 5
shows that the Dynamic snow scheme has better skill in sim-
ulating the relationship between soil temperature and snow
depth than the Static scheme. It must be noted that there is
a clear difference between the current Static scheme simu-
lations and results reported by Wang et al. (2016), which is
due to recent updates in the model, independent of the snow
module, and the different climate forcing dataset used in this
study.

It is apparent from the 1T and snow depth relationship
(Fig. 5, bottom row) that the Dynamic scheme reproduces the
observed insulation effect well. Unlike the Static scheme, the
new snow module can also simulate the different insulation
behaviour depending on the air temperature regimes. The im-
proved performance of the Dynamic scheme is confirmed by
the root-mean-squared error (RMSE), shown in the Supple-
ment (Table S2 in the Supplement). RMSE decreased signif-
icantly for both the soil temperature–snow depth and 1T –
snow depth relationships. This regional analysis confirmed
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Table 2. Pan-arctic mean values for the studied variables for the Static and Dynamic simulations and their respective differences.

Variable Unit Static Dynamic Dynamic−Static Abs. diff (%) Note of changes

Snow depth m 0.36 0.30 −0.06 −15 General decrease
ALD m 0.98 1.06 0.07 7 Increase in ALD
Permafrost extent 106 km2 1.524 1.466 −0.058 4 Decrease (TTOP: 13.9)
SoilTwinter

◦C −22.65 −12.63 10.02 44 Increase in T
SoilTsummer

◦C 6.34 4.46 −1.87 −29 Decrease in T

GPPwinter gm−2 0.146 0.180 0.035 24 Increase in gross production
GPPsummer 221.10 227.72 6.62 3 Increase in gross production
NPPwinter −3.05 −5.73 −2.68 −88 Decrease in productivity
NPPsummer 156.15 156.37 0.23 0 Marginal difference
Rhwinter 2.34 7.77 5.43 232 Increase in Rh
Rhsummer 117.81 103.17 −14.64 −12 Decrease in Rh
NEEwinter 5.49 13.57 8.08 147 Increased carbon emission
NEEsummer −38.32 −53.17 −14.84 −39 Increased carbon update
NEEannual −33.90 −37.16 −3.26 −9.6 Increased C uptake

SoilC kgCm−2 11.13 11.12 −0.01 0 Marginal difference
VegC 1.86 2.12 0.26 14 Increase in vegetation C

that the new Dynamic snow scheme has an improved skill in
simulating winter soil conditions.

3.3 Pan-Arctic simulations

To assess how the two snow schemes differ in simulating sea-
sonal snow across the Arctic, we subtracted output variables
from simulations with the Static module from those with the
Dynamic module. We calculated average conditions for win-
ter (December–January–February) and summer (June–July–
August) for the period 1990–2015. The mean pan-arctic sea-
sonal dynamics of snow depth, soil temperature, and upper
soil water content are shown in the Table 2.

3.3.1 Impacts on physical variables

Figure 6a shows the difference in simulated wintertime snow
depth. The Dynamic scheme shows an overall lower snow
depth across the Arctic with the most pronounced changes
in coastal Norway and in western Siberia. On average, the
snow depth for the Dynamic scheme is 6 cm lower due to
the implementation of snow-related processes affecting snow
density and consequently snow depth.

The main aim of developing the new snow scheme was
not only to enhance the simulation of snow depth but also to
improve the simulation of snowpack properties that directly
affect soil conditions. Therefore, we investigated how the in-
ternal structural changes in the representation of snow in-
fluenced soil temperatures. The soil temperature differences
shown in Fig. 7 reveal that the new snow scheme influenced
the winter season to a large degree, both within and espe-
cially outside of the permafrost region. Winter soil tempera-
tures are higher with the Dynamic scheme, while it results
in a cooler near-surface soil temperature during the sum-

mer. A closer look at the monthly soil temperature values
in Fig. 11 showed that spring months are cooler for the
Dynamic scheme but that the difference between the two
schemes decreases towards the end of summer. This pat-
tern is more pronounced in the permafrost-underlain regions.
This shows that the Static snow scheme has too little insula-
tion and results in soil temperatures that are too cold during
the winter months, as we also show in the site simulations.
Moreover, the Static scheme also does not insulate soils suf-
ficiently during the springtime when air temperatures rise
above 0 ◦C, which allows the soil to warm up more quickly
even in the presence of a snowpack.

The depth to which the top soil thaws during summer,
and refreezes in winter, in permafrost areas is called the ac-
tive layer depth (ALD). The difference in the seasonal max-
imum active layer depth for the model simulations is shown
in Fig. 6b. Since the Dynamic scheme had warmer soil tem-
peratures, the modelled permafrost extent is smaller than
with the Static scheme. We compared our model simulations
with a recent satellite-driven permafrost extent estimate by
Obu et al. (2019a) – from here on referred to as the TTOP
model. Modelled permafrost extent was defined by the area
where the mean annual ground temperature (25 cm depth)
was below zero. The Dynamic scheme’s permafrost extent is
much closer to the TTOP model’s estimate, while the Static
scheme simulates a much larger permafrost extent, as shown
in Fig. 6c. The Dynamic scheme’s computed areal permafrost
cover, while improved compared to the Static scheme, still
overestimates the TTOP model estimates by approximately
5 % (see Table 2).

Besides governing the physical state of permafrost, snow
and soil temperature also have a large influence on the tem-
poral and spatial patterns of soil water content. We show the
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Figure 6. (a) Snow depth difference in winter months and (b) maximum ALD difference, calculated by subtracting the Static from Dynamic
simulation outputs. Modelled permafrost extent is based on mean annual ground temperature (MAGT) and plotted against the permafrost
cover estimate by Obu et al. (2019a) (TTOP model). Simulated absolute snow depth is shown in Fig. S2 in the Supplement and ALD in
Fig. S3 in the Supplement.

Figure 7. Near-surface soil temperature (25 cm depth) difference between the Dynamic and Static simulations, for winter (a) and summer (b)
seasons. Differences are calculated by subtracting the Static from Dynamic simulation outputs. The absolute simulated soil temperatures
using the two snow schemes are shown in the Supplement in Fig. S4.

simulated upper soil column water content in Fig. 8. This fig-
ure shows the mean fractional soil water content over May–
June–July. Soil water content was calculated using the aver-
age seasonal liquid water content from the top 50 cm of the
soil column. Soil water content is represented as the fraction
of the available capacity between the wilting point and field
capacity, and therefore frozen water is not included in these
values. Figure 8c shows that there is a higher water avail-
ability within the permafrost region using the Static scheme.
Water availability is a key driver of the start of the grow-
ing season, nutrient availability, and vegetation dynamics.
The time-series analysis of upper soil water content high-
lights that the snowmelt rate is not significantly different be-

tween the schemes. Still, there is a large difference in soil
temperature dynamics. The Static scheme’s soil temperature
increases more rapidly during the spring than the Dynamic
scheme’s soil temperature (see Fig. 11a and b). This results in
an earlier onset of snowmelt and earlier increase in soil water
availability and nitrogen mineralization. This affects produc-
tivity, which we assess in the coming sections. Although the
difference in water content and nitrogen mineralization be-
tween the snow schemes converges towards zero as summer
progresses, we show that the change in snow scheme had a
lasting effect beyond the cold season.

Overall, the new snow scheme had a substantial effect
on winter soil temperatures. As a result, summer conditions
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Figure 8. Mean fractional water content of the upper soil column in May, June, and July, using the Static (a) and Dynamic (b) schemes and
their difference (c). Differences are calculated by subtracting the Static from Dynamic simulation outputs.

were also altered by the snow scheme updates. It is apparent
that the largest changes in snow depth and temperature coin-
cide. For instance, along the Norwegian coast and in central
Siberia. Taken together, our results show that the Dynamic
snow scheme improved the simulation of physical variables.

3.3.2 Impacts on biogeochemical variables

Besides the impact on soil thermodynamics, we investigated
how key biogeochemical components – such as productivity
and carbon pools – were affected. The changes across sea-
sons and permafrost conditions are summarized in Figs. 11
and 12.

Our simulated soil carbon pools (Fig. S6 in the Supple-
ment) deviate from literature values (Hugelius et al., 2014)
and are consistently lower across the Arctic. The main reason
for this is the model’s representation of soil organic matter
processes. Soil carbon and nitrogen are represented by pools
that exist in the top 50 cm of the soil column (Smith et al.,
2014) and are thus only influenced by near-surface condi-
tions. Moreover, peatlands are not explicitly represented. The
differences in soil carbon between the schemes, as shown in
Fig. 9a, coincide spatially with the highest differences in soil
temperature. This suggests that the changes in soil tempera-
ture influence soil carbon in the model and therefore the rate
of respiration from soils as well. Vegetation carbon pools
(Fig. 9b) are higher in the non-permafrost region using the
Dynamic snow scheme (see Table 2 for mean values). Since
the evaluation of soil carbon is not the focus of this study,
soil carbon outputs were used to normalize the heterotrophic
respiration to be able to interpret the relative differences be-
tween schemes (Fig. 10a and b). To do so, we divided the
heterotrophic respiration by the soil carbon estimates for the
respective simulations using the two snow schemes. With the
Dynamic scheme, summer soil respiration decreased across

the Arctic. Winter respiration, on the other hand, increased,
except for in eastern Siberia. These changes in soil respi-
ration can be attributed to changes in soil temperature, as
shown in Fig. 7.

The difference in net primary productivity (NPP) between
simulations with the two snow schemes for both winter and
summer is shown in Fig. 10c and d, where positive NPP
means more carbon uptake by the vegetation. We note an
impact of the different snow schemes on summer produc-
tivity, caused by the different soil thermodynamics and soil
water availability during the spring and early summer pe-
riod. This artefact is also visible in the simulated pan-Arctic
NEE, in Fig. 10e and f, where negative NEE values indicate
a stronger uptake of carbon by ecosystems. The positive dif-
ference in winter NEE (e) shows that there is a higher car-
bon release in the winter season for the Dynamic scheme
in central Europe, western Siberia, and coastal Norway. The
mean winter NEE of the Dynamic scheme more than dou-
bled (Table 2). Compared to the Static scheme, which relates
to both the change in soil respiration and NPP. Figure 11c
and d show some interesting contrasts regarding the sea-
sonal carbon fluxes. Permafrost-underlain regions (Fig. 10c)
experience little difference in the simulated NEE. The Dy-
namic scheme simulates lower peak summer NPP. Winter
NEE in the non-permafrost region is higher using the Dy-
namic scheme, indicating a larger carbon uptake by the veg-
etation. On the other hand, we can observe an increased sink
capacity (more negative NEE) during the summer months.

3.3.3 Vegetation composition and distribution

Vegetation composition and distribution depend on the
changes in physical and biochemical variables described in
the previous section. Therefore, we investigated how the ap-
plication of the two snow schemes affected vegetation dis-
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Figure 9. The difference in simulated soil (a) and vegetation carbon pools (b) between the two schemes. Differences are calculated by
subtracting the Static from Dynamic simulation outputs.

tribution to determine if there are shifts in dominant plant
functional types (PFTs) as a result of using different snow
schemes. The dominant PFT for each simulated grid cell was
determined by selecting the PFT with the highest maximum
leaf area index (LAI) during the simulation years (1990–
2015). Using the Dynamic snow scheme, roughly half of
the sites are dominated by summergreen low shrubs and bo-
real needle-leaved evergreen trees (LSS with 25 % and BNE
with 23 %; see Table S3). Prostrate dwarf shrubs, (SPDS),
graminoid and forb tundra (GRT), and boreal needle-leaved
summergreen trees (BNS) accounted for 20 %, 8 %, and
7 % dominance, respectively. For an easier comparison be-
tween the Static and Dynamic simulations, PFT classes were
grouped into forest, open grass, shrubs, and no vegetation
categories after determining the dominant PFT in each grid
cell (classification based on Wolf et al., 2008). This classi-
fication showed that grassland classes dominate (56 %), fol-
lowed by forest cover (36 %). Shrubs dominate at 29 % of
the simulation sites. There is a negligible number of sites
with mostly bare soil. When comparing the spatial pattern
of dominant vegetation groups, we noted that there is only a
marginal difference between the Static and Dynamic simu-
lations (see Fig. S10 in the Supplement). Changes in group
dominance between the Static and Dynamic simulations oc-
curred at approximately 10 % of the sites; see Fig. S11 in
the Supplement. The Sankey diagram shows the direction of
change between the three groups. Myers-Smith et al. (2011)
suggest that increased soil temperature leads to a shift to
an increased forest height and shrub cover. Grass-to-shrub
domination change (3.1 %) was the most prevailing change,
which indeed points towards an increase in vegetation height.
However, we observe a shrub-to-grass (1.95 %) shift in dom-
ination at the same time; therefore, we cannot conclude the
main direction of changes.

3.4 Cause-and-effect relationships

As many of the reviewed processes interact with each other
in a complex, non-linear manner, change in one variable may
not translate to a direct impact on another variable. To pro-
vide an overview of our findings regarding the physical and
biogeochemical processes, we created a flow chart showing
observed changes in modelled state variables and their con-
nections. Figure 12 shows the difference between simula-
tions using the two snow schemes – calculated by subtracting
the Static from Dynamic results. Reddish box colours show
that the Dynamic scheme had higher values, and blueish
colours show that the Dynamic scheme simulated lower val-
ues than the Static scheme. The lightness and darkness of the
colours indicate the magnitude of changes between the win-
ter and summer seasons qualitatively.

Each box contains the computed difference, and Table 2
summarizes the mean changes in these key variables. Con-
sidering the spatial pattern across the Arctic, we conclude
that the pattern of changes and differences between the Static
and Dynamic simulations vary depending on the presence or
absence of permafrost cover. For a more detailed evaluation,
process relationships are therefore divided into permafrost
and non-permafrost regions. Since snow depth only affects
these variables indirectly, through insulation, it was not in-
cluded in the feedback graph. The choice of snow scheme
induced changes in near-surface temperature (T ), which is
the key governing factor over these variables. In general,
higher soil temperatures during the winter season prompt a
positive response in respiration, soil water content, and veg-
etation primary productivity. Soil temperature increased to a
greater degree in the non-permafrost region during the win-
ter season. The same increasing pattern is observed for het-
erotrophic (Rh) and autotrophic respiration (Ra), soil water
content, and NEE. Nitrogen mineralization decreased in the
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Figure 10. The difference in normalized heterotrophic respiration for winter (a) and summer (b) between the two schemes. Differences
between simulated Dynamic and Static winter (c) and summer (d) NPP. Differences between simulated Dynamic and Static winter (e) and
summer (f) NEE. Differences are calculated by subtracting the Static from Dynamic simulation outputs. Simulations for the two schemes are
shown in Figs. S5 (heterotrophic respiration), S6 (NPP), and S7 (NEE) in the Supplement.
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Figure 11. Seasonal dynamics of snow depth, soil temperature (25 cm depth), and fractional soil water content within (a) and outside of the
permafrost region (b). Seasonal dynamics of NEE and NPP within (c) and outside of the permafrost region (d).

wintertime, with a larger decrease outside of the permafrost
region. In contrast, summer months’ average soil tempera-
ture showed an overall decrease in the permafrost region.
This is due to the different thermal soil and snow dynam-
ics in the two applied snow schemes. We observed rapid heat
loss using the Static scheme, resulting in insufficient insu-
lation during the snow season. The same feature causes soil
temperature to rise rapidly in the spring, when air tempera-
ture is already above zero but a snow cover remains present.
Faster soil warming leads to increased soil water availability
that affects productivity. Respiration and NEE are slightly re-
duced for both permafrost and non-permafrost regions in the
Dynamic scheme during the summer. Differences noted for
the summer are smaller for all variables than in the winter
season.

4 Discussion

4.1 Snow scheme dynamics

The site-level analysis shows that the new Dynamic scheme
is able to simulate snow height and density adequately due
to the implementation of physical processes and a dynamic
representation of snow properties. The integrated mechanis-
tic compaction scheme and phase changes within snow layers
make it possible to simulate heterogeneous snow density and
thermal properties within the snowpack. This influences the
simulated snow density directly by altering snowpack struc-
ture. Density regulates heat transport rate through snow lay-
ers by affecting thermal conductivity (Eq. 7): lower density
results in a more insulating cover, whereas higher density and

compacted layers are a better heat-transferring medium and
exhibit lower insulation. In the Static scheme, snow density
was assumed constant through the snow season and across
all study sites. Such static snow representation is unsatisfac-
tory when simulating arctic conditions (Krinner et al., 2018).
The new snow scheme provides an improved framework for
a mechanistic snow season simulation.

The single site simulations (Sect. 3.1) provide reasonably
consistent evidence that the new snow scheme’s implementa-
tion leads to significant changes in near-surface temperature
simulation – especially at Abisko, Bayelva, and Samoylov.
As shown by Chadburn et al. (2017), the site-wise model–
data comparison is challenging since point measurements
may not be representative of a larger area due to the com-
plexity in topography and vegetation conditions. The model–
observation fit may be improved by using site-specific cli-
matic forcing instead of a global gridded dataset.

To avoid site-specific problems in the interpretation of
simulations, we also evaluated the model at a regional
scale. By comparing the results of the Russian site simula-
tions (Sect. 3.2) with those of Wang et al. (2016), we con-
clude that the development of the representation of snow in
LPJ-GUESS significantly improved air–soil temperature and
snow depth–soil temperature relationships. The Dynamic
snow scheme’s insulation capacity followed a quasi asymp-
totic trend, increasing with snow depth and slightly levelling
out after reaching the so-called effective depth at 30–40 cm
(Slater et al., 2017). The insulation capacity was, in general,
slightly lower than observations, with a notable underesti-
mation when snow depth is below 20 cm. Nonetheless, these
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Figure 12. Relationship between variables during the winter and summer seasons, within and outside of the permafrost region. The colour of
the boxes indicates the direction and qualitative magnitude of changes in the variables, based on the relative difference (%) between Dynamic
and Static schemes – shown in the boxes below the variables. Variables are shown as follows: GPP: gross primary production (gm−2);
NPP: net primary productivity (gm−2); NEE: net ecosystem exchange (gm−2); Ra: autotrophic respiration (gm−2); Rh: heterotrophic
respiration (gm−2); Nmin: net nitrogen mineralization (kgNha−1); soil water content: fraction. The relative changes in soil water content
(in %) are high in the winter due to the low fractional water content values as we only account for the liquid soil water and do not consider the
amount of frozen water in the soil. These changes correspond to small absolute changes in fractional soil water content. ∗ Note: temperature
differences are shown as absolute differences for easier readability.

results are a vast improvement over the old Static scheme, as
shown in Fig. 5.

The RMSE values (Table S2) also show that the Dynamic
scheme better captured the observed the soil temperature and
snow depth relationship than the Static scheme. RMSE was
slightly higher for the coldest air temperature regime for both
snow schemes. We note that the Static schemes’ performance
differs from what was shown in Wang et al. (2016). The rea-
sons for these differences are developments of the model
since then in components other than the snow scheme and
also the different meteorological forcing used in this study.
Our results indicate that the enhancement of snow-related
processes improves the simulation of soil temperatures in
LPJ-GUESS and that the model can be more reliably applied
to assess the impact of environmental changes on the arctic
carbon cycle.

4.2 Impact on physical and biogeochemical variables

The changes to the snow insulation capacity in the Dynamic
scheme had a significant effect on permafrost conditions.
Our pan-Arctic results showed that the Static scheme sim-
ulated near-surface soil temperatures that were too cold in
winter and too warm in summer. Permafrost extent simulated
with the Dynamic scheme agreed more closely with the per-
mafrost estimate by Obu et al. (2019a), as shown in Fig. 6.
Comparison of these findings with other studies where a new
snow scheme was introduced reiterates that the model repre-
sentation of snow strongly affects soil temperatures (Gout-
tevin et al., 2012; Wang et al., 2013). Reliable soil tem-
perature simulations are essential to study the permafrost–
climate feedback. Biskaborn et al. (2019) concluded that re-
cent warming trends of permafrost soils are partly due to
an increase in snow insulation, accelerating its degradation.
Both field observations and modelling studies have identified
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this close link between snow and permafrost conditions (Jo-
hansson et al., 2013; McGuire et al., 2016; Lawrence and
Slater, 2010). Identifying changes in permafrost-underlain
areas is important because of the potential increase in or-
ganic matter decomposition and release of greenhouse gases.
These aspects will be further evaluated in LPJ-GUESS with
the new snow scheme.

We observed a general decrease in mean NPP during the
winter and a marginal difference in the summer. Considering
the presence of permafrost, however, we noted an increase
in GPP and NPP for non-permafrost-underlain areas in sum-
mer. The significantly warmer winter soil conditions for the
Dynamic scheme caused an increase in heterotrophic respi-
ration – i.e due to faster litter decomposition rates and in-
creased microbial activity. Accordingly, soil respiration in-
creased during the winter in the non-permafrost region. Dur-
ing the summer, there is an overall minor decrease in soil
respiration due to the lower soil temperatures simulated by
the Dynamic scheme. The net effect of the above-discussed
processes is an overall increase in carbon emissions during
the winter and an increased uptake during the summer.

The impact of the new snow scheme on summer con-
ditions was surprising. These differences were caused by
the changes in spring snow and soil temperatures and
soil water availability. During springtime, soils with the
Static scheme warm more quickly, due to the lower insu-
lation, which leads to an earlier thaw and increased soil
water availability. The Dynamic scheme simulates a more
realistic atmosphere–snow–soil heat transfer, leading to a
slower temperature transition. The difference between the
schemes diminishes towards the end of the summer. Over-
all, the simulated pan-arctic carbon fluxes are systemati-
cally lower than other published values (Efren et al., 2019;
Rawlins et al., 2015; McGuire et al., 2012). Virkkala et al.
(2021) estimate an annual NEE in the range of −46 to
+10 gCm−2 yr−1, while our simulations have a mean esti-
mate around −35.5 gCm−2 yr−1 (see Table 2).

Besides the carbon fluxes, we also evaluated the simulated
annual soil and vegetation carbon pools. Vegetation pools
were more different when applying the Dynamic, while no
clear differences were apparent for soil carbon (see Table 2).
With the Dynamic snow scheme, the soil carbon pool is lower
within the permafrost region and higher outside of the per-
mafrost region. These results align well with the sensitivity
study by Gouttevin et al. (2012), which highlighted that de-
creased soil carbon stocks can be attributed to a higher respi-
ration rate and increased microbial decomposition rates.

The mean simulated soil carbon content was around
10 kgCm−2, which is much lower than the 50–100 kgCm−2

range suggested in literature (Hugelius et al., 2014; Hugelius,
2012). This difference is most likely due to the fact that we
only simulated grid cells with upland soils, while peatlands
were not represented. The inclusion of peatlands would have
led to a larger amount of soil carbon, since these ecosystems
are characterized by waterlogged soils in which decompo-

sition is suppressed – although carbon can be released as
methane. Also, all organic matter is considered to be in the
top 0.5 m of the soil in the current version of LPJ-GUESS
and is therefore only affected by the average soil tempera-
ture and moisture conditions down to 0.5 m, but not by con-
ditions further down. These aspects will be taken into ac-
count in ongoing model development. Our analysis high-
lights that the observed differences between the Static and
Dynamic schemes correlate well with the spatial pattern of
near-surface soil temperature changes. This shows that the
changes in soil temperature influence the soil carbon content
in the model. The shortcomings in soil carbon simulation will
be addressed and improved in the future, which will enable a
more reliable carbon pool assessment.

4.3 Impact on vegetation dynamics

Satellite-based studies have identified an overall greening
trend across the Arctic, in response to a warming from the
1980s until now. However, they also showed that this green-
ing trend is not uniform and certain areas have actually ex-
perienced browning (loss of greenness) during this period
(Berner et al., 2020; Myers-Smith et al., 2020). This may be
partly due to damage to vegetation following extreme winter
events (Phoenix and Bjerke, 2016). At the site level, a recent
study by Niittynen et al. (2020) showed that winter thermal
conditions are a strong control on vegetation patterns in arc-
tic landscapes. Still, it is challenging to fully understand veg-
etation responses to warming solely from remotely sensed
data or field observations, due to the scale dependency of
interpreting trends in vegetation dynamics. Moreover, most
field sites are highly concentrated in northern Scandinavia
and Alaska, which leaves the full heterogeneity of the arc-
tic and its ecosystems vastly under-sampled (Metcalfe et al.,
2018). With ecosystem models, we can fill in spatial gaps,
identify feedback loops, and assess potential future changes.

Following the assessment of the new snow scheme’s im-
pact on biogeochemical variables, we compiled the simu-
lated vegetation conditions with the two snow schemes. We
found that PFT domination changed marginally using the up-
dated snow scheme in some grid cells. The main direction
of change is a grass-to-shrub dominance shift in grid cells –
shown in Fig. S11. The forest–shrub border did not shift
much in most areas. However, the vegetation carbon pool was
higher with the Dynamic scheme, which indicates that even
though the changes are minor visually, they affected vege-
tation biomass. These comparisons show that changing the
snow scheme in LPJ-GUESS affected vegetation distribution
and composition, albeit on a small scale.

4.4 Outlook

It is well established that the Arctic is highly susceptible
to climate change, and the ongoing warming has significant
consequences for the arctic system – even if we implement
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the most strict mitigation measures (Bruhwiler et al., 2021;
AMAP, 2017). One of these consequences is a change in
snow conditions. In the near future, snow thickness will de-
crease, caused by air temperature and precipitation changes,
inducing a decrease in snow-covered area in the region
(AMAP, 2017; IPCC, 2014). Due to a later onset and ear-
lier spring melt, the snow season is expected to shorten un-
der a changing climate. Moreover, northern high latitudes are
predicted to be rain-dominated in the future (Bintanja and
Andry, 2017; Johansson et al., 2011). These changes will
strongly influence soil thermodynamics, and the observed
and projected changes will have a significant impact on arc-
tic ecosystems (Bruhwiler et al., 2021). To be able to pro-
vide robust projections of the future, we need to account for
a multitude of interlinked processes and feedbacks. Some of
the current key areas are to assess the relative sensitivity of
plant productivity to climate change, the development of de-
composition rates, and their net effect on the carbon budget.

Besides an assessment of geophysical and biogeochemi-
cal processes, LPJ-GUESS can also be used to explore fu-
ture vegetation trends to assess whether favourable grow-
ing conditions will induce further greening or whether new
stressors will prompt local- to regional-scale browning (loss
of productivity) (Myers-Smith et al., 2020). Studying fu-
ture vegetation trends across the Arctic is important from
a global perspective. A potential decrease in snow-covered
area may significantly decrease surface albedo, which would
enhance arctic warming. Consequently, changes in snow dy-
namics on a local scale influence carbon fluxes by altering
soil thermal conditions and vegetation habitat. Evaluating
snow–soil–vegetation feedbacks in future studies is therefore
relevant to further investigate climate change impacts on the
Arctic in global-scale land surface modelling.

5 Conclusions

This study shows that the representation of snow dynamics
in a dynamic vegetation model significantly influences the
simulated soil thermodynamics and related biogeochemical
variables. We show, due to the improved snow insulation ca-
pacity, that the new Dynamic snow scheme simulates more
realistic soil thermodynamics and permafrost extent than the
old Static scheme. The improved simulation of permafrost
cover can be attributed to significantly warmer winter soil
temperatures, which compare well to observations across
256 locations in Russia. We further showed the importance
of an accurate snow scheme for the simulation of biogeo-
chemical processes. Our results show that the intermediate-
complexity snow scheme had a significant impact on carbon
fluxes. Heterotrophic respiration increased during the win-
ter, which led to an increased carbon release during the cold
season. We also identified differences in soil carbon content
between the Static and Dynamic simulations. Although the
modelled soil carbon content was lower than literature val-

ues, the spatial pattern of low and high soil carbon content
aligns well with observations. A differentiation between the
seasons and accounting for permafrost presence highlighted
the differences between the two sets of simulations. Win-
tertime carbon emissions were higher using the Dynamic
scheme, both within but especially outside of the permafrost
region. The differences between the simulations were larger
within permafrost-underlain areas for the physical variables.
Besides spatial patterns, we explored seasonal differences,
which showed that summertime conditions were also af-
fected by the representation of snow. In contrast to warmer
soils in winters, soils were cooler in summer using the Dy-
namic scheme – especially in permafrost-underlain areas –
due to a delayed response to snowmelt. These differences
between the old and new snow schemes underline the im-
portance of further developing winter processes as they may
significantly affect the annual carbon budget.

These findings contribute to our understanding of the im-
pact of wintertime changes on the arctic carbon cycle. We
show that an accurate, dynamic snow scheme is essential to
investigate the full complexity of snow–soil–vegetation rela-
tionships. Models are valuable tools to aid our understanding
of large-scale climate change impacts due to the sparse avail-
ability of observations in the Arctic. Addressing identified
knowledge gaps in models is imperative to decrease the un-
certainty around carbon balance estimates. Due to the large
spread of observed and modelled seasonal and inter-annual
cycles of carbon fluxes, it is not yet possible to determine
with high certainty whether the Arctic will act as a carbon
source or sink in the future (Fisher et al., 2014; McGuire
et al., 2018). To decrease uncertainty in simulations, con-
temporary modelling efforts are directed, on the one hand,
at model inclusion (account for key, still missing processes)
and, on the other hand, at refining process formulations us-
ing observational data (McGuire et al., 2012; Fisher et al.,
2014, 2018).

In this study, we aimed to improve the representation of
the cold-season process using non-growing-season observa-
tions and findings. This enhances the versatility and applica-
bility of LPJ-GUESS as a tool to address the remaining un-
certainties regarding climate change impacts at northern high
latitudes and its consequences on a global scale. With this
model, we have the ability to investigate complex ecosys-
tem interactions under changing environmental conditions
at multiple scales, considering nitrogen cycling, permafrost
processes (freeze–thaw cycles, hydrology), stochastic vege-
tation dynamics, and also potential land cover and land use
changes. Realistic soil temperature simulations are the first
step to improve the simulation of greenhouse gas emissions
under different climate scenarios across the Arctic (Natali
et al., 2019). Our results show that by improving a process
that appears only relevant in winter, such as snow, we not
only decrease the uncertainty regarding physical and biogeo-
chemical parameters during the cold season, but we also im-
prove simulations of soil conditions and the carbon cycle in
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the growing season. Further developments will aim at im-
proving soil carbon content simulations and better assessing
plant responses to future environmental conditions during the
cold season. By accounting for snow–soil–vegetation inter-
actions in all seasons of the year, we ensure more reliable
projections of the future state of vegetation composition, per-
mafrost stability, and greenhouse gas exchange in a rapidly
warming Arctic.

Appendix A: Simulation details

Table A1. Table with used variables, their description, and units.

Variable Name Value Unit Eq. number

a Empirical variable 109 kgm−3 3
b Empirical variable 6 kgm−3 K−1 3
c Empirical variable 26 gm−7/2 s−1/2 3
Ck Thermal heat capacity Jm−3 K−1 1, 8
Dk Thermal diffusivity m2 d−1 8, 9
ηk Compactive viscosity factor 106 Pas 5
g Gravitation 9.81 ms−1 5
Ik Ice content kgm2 4, 6
k Layer index 1, 2, 4, 5, 6, 7, 8
Kk Thermal heat conductivity Jm−1 K−1 s−1 7
ks Empirical variable 4000 K 5
Mk Mass of overlaying snow layers kg 5
P Precipitation mm 2
ρk Layer density kgm−3 1, 4, 5, 6, 7
ρt Reference snow density 400 kgm−3 6
ρfresh Fresh snow density kgm−3 3
ρ0 Reference snow density 50 kgm−3 5, 7
rwmin Empirical parameter 0.03 6
rwmax Empirical parameter 0.1 6
Tk Layer temperature ◦C 2, 5, 9
Tmax Threshold for snow–water phase changes 0 ◦C 2, 3, 5
U10 Reference wind temperature at 10 m height s−1 3
zk Soil layer depth m 4, 9
Wk Water content kgm−2 6
Wcap,max Max. water holding capacity kgm−2 6
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