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Infinite-dimensional compressed sensing deals with the recovery of analog signals 
(functions) from linear measurements, often in the form of integral transforms 
such as the Fourier transform. This framework is well-suited to many real-world 
inverse problems, which are typically modeled in infinite-dimensional spaces, and 
where the application of finite-dimensional approaches can lead to noticeable 
artefacts. Another typical feature of such problems is that the signals are not 
only sparse in some dictionary, but possess a so-called local sparsity in levels 
structure. Consequently, the sampling scheme should be designed so as to exploit 
this additional structure. In this paper, we introduce a series of uniform recovery 
guarantees for infinite-dimensional compressed sensing based on sparsity in levels 
and so-called multilevel random subsampling. By using a weighted �1-regularizer we 
derive measurement conditions that are sharp up to log factors, in the sense that they 
agree with the best known measurement conditions for oracle estimators in which 
the support is known a priori. These guarantees also apply in finite dimensions, 
and improve existing results for unweighted �1-regularization. To illustrate our 
results, we consider the problem of binary sampling with the Walsh transform 
using orthogonal wavelets. Binary sampling is an important mechanism for certain 
imaging modalities. Through carefully estimating the local coherence between the 
Walsh and wavelet bases, we derive the first known recovery guarantees for this 
problem.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Compressive sensing (CS), introduced by Candès, Romberg & Tao in [1] and Donoho in [2], has been an 
area of substantial research during the last decade. The key observation, which lays the foundation for this 
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line of research, is that a sparse vectors x ∈ CM , can be recovered from m < M linear measurements, under 
suitable conditions on the measurements, using convex optimization algorithms [3,4].

Imaging has been one of the most successful areas of application of CS. However, in this area, the sparsity 
assumption is typically too general, to explain the performance of CS algorithms in practice; instead, 
the correct assumption is to impose a certain sparsity pattern. Examples include all applications using 
Fourier samples – such as Magnetic Resonance Imaging (MRI) [5–7], surface scattering [8], Computerized 
Tomography (CT) and electron microscopy – as well as applications using binary sampling, e.g. fluorescence 
microscopy [9], lensless imaging [10] and numerous other optical imaging modalities [11–13]. Natural images, 
when sparsified via a wavelet (or more generally, X-let) transform, are not only sparse, but have specific 
sparsity structure [14,15]. For wavelets, which will be our sparsifying transform in this paper, natural images 
have coefficients where most of the large entries are concentrated at the coarse scales, and progressively 
fewer at the fine scales (termed asymptotic sparsity in [14]).

In the presence of structured sparsity, it is natural to ask how best to promote this additional structure. In 
[14] it was proposed to do this via the sampling operator. Wavelets partition the frequency space into dyadic 
bands corresponding to distinct scales. Hence, by choosing Fourier samples in these bands corresponding 
to the local sparsities, one obtains a structured sampling scheme – a so-called multilevel sampling scheme 
– which promotes the asymptotic sparsity structure. The practical benefits of such schemes have been 
demonstrated in [15] for various different imaging modalities, including MRI, Nuclear Magnetic Resonance 
(NMR) spectroscopy, fluorescence microscopy and Helium Atom Scattering. Theoretical analysis has been 
presented in [14] (nonuniform recovery) and [16,17] (uniform recovery in the finite-dimensional setting).

1.1. Main results

This paper has two main objectives. First, we generalize existing uniform recovery guarantees [16,17]
from the finite-dimensional to the infinite-dimensional setting. This extension is important for practical 
imaging. Although much of the compressive imaging literature considers the recovery of discrete images 
(i.e. finite-dimensional arrays) from discrete measurements (e.g. the discrete Fourier transform), modalities 
such as MRI, NMR and others are naturally analog, and hence better modeled over the continuum (i.e. 
functions, and the continuous Fourier transform). Indeed, as we will see in Section 2.3, discretizing such a 
problem leads to measurement mismatch [18], and in the case of wavelet recovery, the wavelet crime [19, 
Page 232], both of which can introduce artefacts in the reconstruction [20]. In this paper, we consider signals 
as functions f ∈ L2([0, 1)) and work with continuous integral transforms, thus avoiding these pitfalls.

In our theoretical analysis, we also improve the uniform recovery guarantee given in previous works 
[16,17]. Unlike previous results, our recovery guarantees are, up to log factors, optimal: specifically, they 
agree with those of the best known measurement conditions for oracle least-square estimator based on a 
priori knowledge of the support [21]. We do this by replacing the standard �1-minimization decoder by a 
certain weighted �1-minimization decoder; an idea originally proposed in [22].

Our second objective is to consider binary sampling. Previous works have addressed the case of (discrete 
or continuous) Fourier sampling. Yet many imaging modalities, e.g. fluorescence microscopy and lensless 
imaging, require binary sampling operators. To do so, we replace the Fourier transform

Ff(ω) :=
∫

[0,1)

f(x)e−2πiωx dx, f ∈ L2([0, 1)),

by the binary Walsh transform

Wf(n) :=
∫

f(x)wn(x) dx, f ∈ L2([0, 1))

[0,1)
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where wn : [0, 1) → {+1, −1}, n ∈ Z+ := {0, 1, . . .} denote the Walsh functions. This is a widely used 
sampling operator in binary imaging [9,10], and often goes under the name of Hadamard sampling in the 
discrete case. Working with this continuous transform, we provide analogous guarantees for binary sampling 
to those for Fourier sampling. As a side note, we remark that working in the continuous setting also simplifies 
the analysis (specifically, the derivation of so-called local coherence estimates) over working directly with 
the discrete setup.

We note that in this paper we only consider recovery guarantees for one dimensional functions. We expect 
that the setup for higher dimensional function will deviate slightly from what we present here, and we save 
this discussion for future work.

The outline of the remainder of this paper is as follows. We commence in Section 2 by reviewing previous 
work, and in particular, the existing finite-dimensional theory. We then introduce an abstract infinite-
dimensional model for isometries U acting on �2(N) in Section 3. Here we will derive sufficient conditions 
for such operators to provide uniform recovery guarantees. In Section 4 we continue this work by finding 
conditions for which the cross-Gramian U between a wavelet and Walsh basis satisfies these conditions. 
Finally in Sections 5 and 6 we present proofs of our main results.

2. Sparsity in levels in finite dimensions

2.1. Notation

We call a vector x ∈ CN s-sparse if |supp(x)| ≤ s, where supp(x) = {i : xi �= 0}. We write A � B if there 
exists a constant C > 0, independent of all relevant parameters, so that A ≤ CB, and similarly for A � B. 
Furthermore we define the following projection operator.

Definition 2.1 (Finite dimensional projection operator). Let N ∈ N and Ω ⊆ {1, . . . , N}. We let PΩ denote 
an N × N or |Ω| × N projection operator, depending on the context. Whenever PΩ ∈ CN×N , it acts as 
follows

(PΩx)i =
{
xi if i ∈ Ω
0 otherwise

(2.1)

on a vector x ∈ CN . In the same way, we define the projection operator PΩ ∈ C|Ω|×N by discarding all the 
zero entries of PΩx in (2.1). If Ω = {Nk−1 + 1, . . . , Nk} we write PNk−1

Nk
= P{Nk−1+1,...,Nk}, and simply PNk

if Nk−1 = 0.

2.2. Finite model

Let V ∈ CN×N be a measurement matrix, e.g., a Fourier or Hadamard matrix, denoted VFour and VHad, 
respectively, and let Ω ⊂ {1, . . . N} with |Ω| = m < N . In a typical finite-dimensional CS setup we consider 
the recovery of a signal x ∈ CN from measurements y = PΩV x + e ∈ Cm, where e ∈ Cm is a vector of 
measurement error. If x is sparse in a discrete wavelet basis, one then recovers its coefficients by solving the 
optimization problem

minimize
z∈CN

‖z‖1 subject to ‖PΩV Ψ−1z − y‖2 ≤ η (2.2)

where Ψ ∈ CN×N is a discrete wavelet transform and η ≥ ‖e‖2 is a noise parameter. Usually one would 
scale V ∈ CN×N so that it becomes orthonormal and choose an orthonormal wavelet basis, so that the 
matrix U = V Ψ−1 = V Ψ∗ acts as an isometry on CN . Here Ψ∗ denotes the adjoint of Ψ.
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Suppose that U is indeed an isometry. To obtain a uniform recovery guarantee for the above system, one 
typically first shows that the matrix A = 1√

pPΩU ∈ Cm×N , with p = m
N , satisfies the Restricted Isometry 

Property (RIP) with high probability.

Definition 2.2 (RIP). Let 1 ≤ s ≤ N and A ∈ Cm×N . The Restricted Isometry Constant (RIC) of order s
is the smallest δ ≥ 0 such that

(1 − δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 ∀x ∈ Σs,

where Σs denotes the set of s-sparse vectors in CN . If 0 ≤ δ < 1 we say that A has the Restricted Isometry 
Property (RIP) of order s.

For matrices satisfying the RIP, it can be shown that �1-minimization can recover sparse vectors, as 
illustrated by the next theorem.

Theorem 2.3 ([4, Thm. 6.12]). Suppose the RIC δ2s of order 2s of a matrix A ∈ Cm×N satisfies δ2s <

4/
√

41 ≈ 0.62. Then for any x ∈ CN and e ∈ Cm with ‖e‖2 ≤ η, any solution x̂ ∈ CN of

minimize
z∈CN

‖z‖1 subject to ‖z − (Ax + e)‖2 ≤ η

satisfies

‖x− x̂‖2 ≤ C√
s
σs(x)1 + Dη

where C, D > 0 are constants dependent on δ2s only and σs(x)1 = inf{‖x − z‖1 : z ∈ Σs}.

For an isometry U ∈ CN×N the question of whether or not PΩU satisfies the RIP is related to the 
so-called coherence of U :

Definition 2.4 (Coherence). Let U ∈ CN×N be an isometry. The coherence of U is

μ(U) = max
i,j=1,...,N

|Uij |2 ∈ [N−1, 1].

With this term defined, we look at measurement conditions ensuring that PΩU satisfies the RIP. Combined 
with Theorem 2.3, this ensures stable and accurate recovery of sparse vectors using �1-minimization.

Theorem 2.5 ([4, Thm. 12.32, see also page 371]). Let U ∈ CN×N be an isometry and let 0 < δ, ε < 1. 
Suppose Ω = {t1, . . . tm} ⊆ {1, . . . , N} where each tk is chosen uniformly and independently at random from 
the set {1, . . . , N}. If

m � δ−2 · s ·N · μ(U) ·
(
log(2m) log(2N) log2(2s) + log(ε−1)

)
then with probability 1 − ε the matrix A = 1√

pPΩU ∈ Cm×N , with p = m
N , satisfies the RIP of order s with 

δs ≤ δ. The constant implied by � is universal, and does not depend on any of the parameters.

(We slightly abuse notation here in that we allow for possible repeats of the values ti that make up Ω.) 
Thus if the coherence μ(U) ≈ N−1 we obtain the RIP of order s using approximately s measurements up 
to constants and log factors.
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Historical note 2.6. The RIP, introduced above, can be traced back to the work by Candès & Tao in [23] and 
[24]. The former introduces the so-called uniform uncertainty principle, and the latter defines the restricted 
isometry constant, which is similar to how we define the RIP above. In [24] they also derived sufficient 
conditions for exact recovery of s-sparse vectors via �1-minimization. These sufficient conditions have been 
improved several times, [25–27], resulting in Theorem 6.12 in [4]. See notes section in [4] for an in-depth 
discussion. Theorem 2.5 follows from Theorem 12.32 in [4], and the discussion around Example 3, page 371. 
Theorem 12.32 is based on the results in [28]. See notes section in [4, Chap. 12] for further details.

There are, however, two problems with this approach. First, in our setup, where U = V Ψ∗ is the product 
of a Fourier or Hadamard matrix and a discrete wavelet transform, the coherence μ(U) ≈ 1. Hence satisfying 
the RIP requires at least m ≈ N measurements. Second, the RIP asserts recovery for all s-sparse vectors of 
wavelet coefficients, and thus does not exploit any additional structure these coefficients possess. However, 
as stated, wavelet coefficients are highly structured: large wavelet coefficients tend to cluster at coarse scales, 
with coefficients at fine scales being increasingly sparse.

Motivated by this, the following structured sparsity model was introduced in [14]:

Definition 2.7 (Sparsity in levels). Let M = [M1, . . . , Mr] ∈ Nr, M0 = 0, with 1 ≤ M1 < · · · < Mr = M

and let s = (s1, . . . , sr) ∈ Nr. We say that the vector x ∈ CM is sparse in levels if

|supp(x) ∩ {Ml−1 + 1, . . . ,Ml}| ≤ sl for l = 1, . . . , r.

In this case we say that x is (s, M)-sparse, where s and M are called the local sparsities and sparsity levels, 
respectively. We denote the set of all (s, M)-sparse vectors by Σs,M.

As noted above, randomly subsampling an isometry U is a poor measurement protocol for coherent 
problems such as Fourier–Wavelets. Instead, in [14] it was proposed to sample in the following structured 
way:

Definition 2.8 (Multilevel random subsampling). Let N = [N1, . . . , Nr] ∈ Nr, where 1 ≤ N1 < · · · < Nr = N

and m = (m1, . . . , mr) ∈ Nr with mk ≤ Nk − Nk−1 for k = 1, . . . , r, and N0 = 0. For each k = 1, . . . , r, 
let Ωk = {Nk−1 + 1, . . . , Nk} if mk = Nk − Nk−1 and if not, let tk,1, . . . , tk,mk

be chosen uniformly and 
independently from the set {Nk−1 +1, . . . , Nk}, and set Ωk = {tk,1, . . . , tk,mk

}. If Ω = ΩN,m = Ω1∪· · ·∪Ωr

we refer to Ω as an (N, m)-multilevel subsampling scheme.

In the definition above, notice that if mk = Nk − Nk−1, then there is no randomness involved, and we 
let Ωk = {Nk−1 + 1, . . . , Nk}. That is, we fully sample level k. For Fourier or Walsh sampling with wavelet 
reconstruction, it is sometimes necessary to fully sample the r0 first levels, since images seldom are sparse 
in wavelets at coarse scales. In many of our theorems, we have therefore included a parameter r0, which 
accounts for the deterministic sampling of the first r0 sampling levels. If r0 = 0, we do not fully sample any 
level.

For this structured model, the following extension of the RIP was first introduced in [16].

Definition 2.9 (RIPL). Let s, M ∈ Nr be given local sparsities and sparsity levels, respectively. For a matrix 
A ∈ Cm×N the Restricted Isometry Constant in Levels (RICL) of order (s, M), denoted δs,M, is the smallest 
δ ≥ 0 such that

(1 − δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 ∀x ∈ Σs,M.

We say that A has the Restricted Isometry Property in Levels (RIPL) if 0 ≤ δ < 1.
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We shall see that this leads to uniform recovery of all (s, M)-sparse vectors, but first we define the best 
(s, M)-term approximation error of x ∈ CN . That is

σs,M(x)p := inf{‖x− z‖p : z ∈ Σs,M}.

Theorem 2.10 ([16, Thm. 4.4]). Let s, M ∈ Nr be local sparsities and sparsity levels, respectively. Let 
αs,M = maxk,l=1,...,r sl/sk and s = s1+· · ·+sr. Suppose that the RICL δ2s,M ≥ 0 for the matrix A ∈ Cm×M

satisfies

δ2s,M <
1√

r(√αs,M + 1
4 )2 + 1

. (2.3)

Then, for x ∈ CM and e ∈ Cm with ‖e‖2 ≤ η, any solution x̂ of

minimize
z∈CM

‖z‖1 subject to ‖z − (Ax + e)‖2 ≤ η

satisfies

‖x− x̂‖2 ≤ (C + C ′(rαs,M)1/4)σs,M(x)1√
s

+ (D + D′(rαs,M)1/4)η

where C, C ′, D, D′ > 0 are constants which only dependent on δ2s,M.

In [17] Li & Adcock investigated conditions under which a subsampled isometry U ∈ CN×N satisfies the 
RIPL. It was shown that the number of samples required to satisfy the RIPL was related to the so-called 
local coherence properties of U :

Definition 2.11. Let U ∈ CN×N be an isometry and N, M ∈ Nr be given sampling and sparsity levels. The 
local coherence of U is

μk,l = μk,l(N,M) = max{|Uij |2 : i = Nk−1 + 1, . . . , Nk, j = Ml−1 + 1, . . . ,Ml}.

Theorem 2.12 ([17, Thm. 3.2]). Let U ∈ CN×N be an isometry. Let r ∈ N, 0 < δ, ε < 1, and 0 ≤ r0 ≤ r. 
Let Ω = ΩN,m be an (N, m)-multilevel random subsampling scheme, and let (s, M) be given local sparsities 
and sparsity levels, respectively. Let m̃ = mr0+1 + . . . + mr and s = s1 + . . . + sr. Suppose that the mks 
satisfy

mk = Nk −Nk−1, for k = 1, . . . , r0, (2.4)

and

mk � δ−2 · (Nk −Nk−1) ·
(

r∑
l=1

slμk,l

)
·
(
r log(2m̃) log(2N) log2(2s) + log(ε−1)

)
(2.5)

for k = r0 + 1, . . . , r. Then, with probability at least 1 − ε, the matrix

A =

⎡⎢⎢⎣
1√
p1
PΩ1U

...
1√ PΩr

U

⎤⎥⎥⎦ where pk = mk

Nk −Nk−1
for k = 1, . . . , r (2.6)
pr



B. Adcock et al. / Appl. Comput. Harmon. Anal. 55 (2021) 1–40 7
satisfies the RIPL of order (s, M) with constant δs,M ≤ δ. The constant implied by � is universal, and does 
not depend on any of the parameters.

This theorem provides sufficient conditions on the number of local measurements mk needed to ensure 
uniform recovery explicitly in terms of local sparsities sk and local coherences μk,l. In particular, if the 
local coherences are suitably well-behaved, then recovery may still be possible from highly subsampled 
measurements, even though the global coherence may be high (see next). Note that the condition (2.4), 
whereby the first r0 sampling levels are saturated, models practical imaging scenarios where the low Fourier 
frequencies are typically fully sampled. For an in-depth discussion on the choice of r0 we refer to [17, Sec. 
3.2].

To illustrate this theorem, in [29] the authors consider the one-dimensional discrete Fourier sampling 
problem with sparsity in Haar wavelets. For the Haar wavelet basis we choose an ordering where the first 
level {M0 + 1, M1} = {1, 2} consists of the scaling function and mother wavelet and the subsequent levels 
are chosen so that {Ml−1 + 1, . . . , Ml} = {2l−1 + 1, . . . , 2l} consists of the wavelets at scale l− 1. This gives 
the sparsity levels

M = [21, 22, . . . , 2r],

where r = log2(N) (assumed to be an integer). Next we define the entries in the Fourier matrix VFour ∈
CN×N as

VFour =
(

1√
N

exp(2πi(j − 1)ω/N)
)N/2, N

ω=−N/2+1, j=1
,

where we have started the ordering of the rows with negative indices for convenience. We define the sampling 
levels for the frequencies ω in dyadic bands with W1 = {0, 1} and

Wk+1 = {−2k + 1, . . . ,−2k−1} ∪ {2k−1 + 1, . . . , 2k}, k = 1, . . . , r − 1.

Notice that for a suitable reordering of the rows of VFour these bands correspond to the sampling levels 
N = [21, 22, . . . , 2r].

Theorem 2.13 ([17, Cor. 3.3]). Let N = 2r for some r ≥ 1 and let U = VFourΨ−1 ∈ CN×N , where Ψ
is the Haar wavelet matrix. Let 0 < δ, ε < 1 and let N = M = [21, . . . , 2r]. Let m = m1 + · · ·mr and 
s = s1 + · · · sr. For each k = 1, . . . , r suppose we draw mk Fourier samples from band Wk randomly and 
independently, where

mk � δ−2 ·
( r∑

l=1

2−|k−l|sl

)(
r log(2m) log(2N) log2(2s) + log(ε−1)

)
.

Then with probability at least 1 − ε the matrix (2.6) satisfies the RIPL with constant δs,M ≤ δ. The constant 
implied by � is universal, and does not depend on any of the parameters.

Here, for convenience, we have taken r0 = 0; see [17] for further discussion on this point.

2.3. Shortcomings

These results have two primary shortcomings, which we now discuss in further detail. The key issue is that 
they are limited to finite dimensions. As noted in Section 1, applying finite-dimensional recovery procedures 
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Fig. 1. Reconstructions (using Walsh samples) of f(t) = φ4,4(t), where φ is the Daubechies scaling function, corresponding the 
wavelets with four vanishing moments. Upper left: Reconstruction from the first 16 Walsh samples using an infinite-dimensional 
CS model (described in Section 3). In this model, the reconstruction space is spanned by the M = 32 first wavelet and scaling 
functions. Upper right: Truncated Walsh series based on the first 32 Walsh samples. Lower left: Reconstruction from the first 16
Walsh samples using the finite-dimensional (32 × 32) CS model. Lower right: Reconstruction from the first 32 Walsh samples using 
the finite-dimensional (32 × 32) CS model. Note that the right images just correspond to different ways of visualizing the results. 
In particular, in the upper right image, we show a high-resolution Walsh function in an infinite-dimensional model. In the two 
lower images, we show vectors of length 32, and thereby commit the wavelet crime.

to analog problems can result in artefacts. For simplicity, let N = 2p. We have argued that analog signals 
should be modeled as elements in L2([0, 1)), rather than CN . Yet, above we have tried to use discrete tools 
for recovering the signal f ∈ L2([0, 1)) by replacing Wf and Ff with VHad and VFour, respectively. Next we 
argue that this construction leads to both measurement mismatch and the wavelet crime.

Let χ[a,b) denote step functions on the interval [a, b) and set Δk,p = [k2−p, (k + 1)2−p). We see that 
replacing Wf with VHad ∈ CN×N is equivalent to replacing f by e.g. f̃ =

∑N−1
k=0 ckχΔk,p

for some c ∈ CN , 
since W f̃ = VHadc. Clearly, W f̃ will be a poor approximation to Wf . We refer to this as measurement 
mismatch.

Next let φ0, φ1 denote a scaling function and wavelet, respectively, and set φs
j,k = 2j/2φs(2j · −k) for 

s ∈ {0, 1}. By construction the solution x̂ of (2.1) will be the coefficients of a function f̂ written in a basis 
consisting of both wavelets and scaling functions. Equivalently we can represent f̂ in the basis {φ0

j,k}N−1
k=0

using the coefficients c = Ψ−1x̂ ∈ CN . The wavelet crime is whenever we let c represent pointwise samples 
of f i.e., ck = f(k/N).

What does this mean for reconstruction? To illustrate the issue we provide a similar example to the 
first numerical simulation in [30], showing how finite-dimensional compressed sensing fails to recover even a 
function that is 1-sparse (meaning it has only one non-zero coefficient) in its wavelet decomposition. Indeed, 
in Fig. 1 we consider the problem of recovering a function f from samples of the continuous Walsh transform. 
In particular, we choose f(t) = φ4,4(t), where φ is the Daubechies scaling function, corresponding to the 
wavelet with four vanishing moments. To ensure that the wavelet decomposition of f is 1-sparse, we use a 
wavelet reconstruction basis starting at scale J0 = 4 (see Definition 4.3 for complete setup). Fig. 1 shows the 
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poor performance of CS using the discrete finite-dimensional setup when applied to a continuous problem. 
Conversely, the infinite-dimensional CS approach, which we develop in the next sections, gives a much higher 
fidelity reconstruction from exactly the same samples as used in the finite-dimensional case. In fact, the 
infinite-dimensional CS reconstruction recovers f perfectly up to numerical errors occurring from solving 
the optimization problem. We also observe the slightly paradoxical phenomenon in the finite-dimensional 
case: more samples do not improve performance. This is due to the fact that the finite-dimensional CS 
solution with full sampling coincides with the truncated Walsh series (direct inversion) approximation. This 
approximation is clearly highly suboptimal, as demonstrated in Fig. 1.

We note in passing that the above crimes stem from too early a discretization of the inverse problem. 
Our infinite-dimensional CS approach replaces VHadΨ−1 by a finite section of the isometry U ∈ B(�2(N))
representing the change of basis between the continuous Fourier or Walsh transform and wavelet basis.

On a related note, even if one were to ignore the above issues, estimating the local coherences μk,l in the 
discrete setting for anything but the Haar wavelet becomes extremely complicated. Conversely, by moving 
to the continuous setting, these estimates become much easier to derive. We do this later in the paper for 
arbitrary Daubechies’ wavelets with the Walsh transform.

The second shortcoming relates to Theorem 2.10. It says that we can guarantee recovery of all sparse 
signals provided the matrix A ∈ Cm×M satisfies the RIPL with constant

δ2s,M <
1√

r(√αs,M + 1
4 )2 + 1

.

Here r is the number of levels and αs,M = maxk,l=1,...,r sl/sk is the sparsity ratio. Inserting the above 
inequality into Theorem 2.12 gives a sampling condition of the form

mk � r · αs,M · (Nk −Nk−1) ·
(

r∑
l=1

μk,lsl

)
· L

where L is the log factors. This means that the sparsity ratio αs,M will affect the sampling condition in all 
sampling levels. Thus for signals where we expect the local sparsities to vary greatly from level to level (e.g. 
wavelets) this will lead to an unreasonably high number of samples.

To overcome this problem, using an idea from [22], we replace the �1-regularizer in the optimization 
problem (2.2) with a weighted �1-regularizer. For a suitable choice of weights, this removes the factor of 
αs,M in the various measurement conditions. As we show, these guarantees are optimal up to constants and 
log factors.

3. Extensions to infinite dimensions

3.1. Notation

We will continue with the notation we introduced above, extended to infinite dimensions. That is, we still 
let PΩ denote the projection onto the span of the canonical basis index by Ω (see Definition 2.1), but we now 
let it be an element in either B(�2(N)) or B(�2(N), C|Ω|). Note that if PΩ ∈ B(�2(N)), then PΩ = P 2

Ω = P ∗
Ω, 

and we simply write PΩ. If, however, PΩ ∈ B(�2(N), C|Ω|), then PΩ �= P ∗
Ω, since P ∗

Ω : C|Ω| → �2(N), however, 
with slight abuse of notation we still write PΩ rather than P ∗

Ω. Also, recall that if Ω = {1, . . . , M}, we write 
PM , rather than P{1,...,M}, and if Ω = {M + 1, . . . , K}, we write PM

K as before. Furthermore, recall that 
P⊥
M := I − PM , where I is the identity operator on CN or �2(N), depending on the context.

Remark 3.1 (Remark about projection adjoints and dimensions). Throughout the document, we do not 
specify the dimensions of the projection operators, as the same operator can have different dimensions 
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depending on the context. Furthermore, (as a consequence) we do not use the adjoint of a projection 
operator. For example, for an operator U ∈ B(�2(N)), we write PΩUPM , rather than PΩUP ∗

M , and we 
will treat PΩUPM either as an element in C|Ω|×M or B(�2(N)), depending on the context. This has the 
advantage (see many of the theorems) that we can apply PΩUPM both to a sequence x ∈ �2(N) and a 
vector z ∈ CM . Finally, we use the same notation for finite dimensional matrices. That is, if M < K and 
A ∈ Cm×K is a finite dimensional matrix, we write APM , rather than AP ∗

M , as in the infinite-dimensional 
case, and APM can be either a m ×M or a m ×K matrix, depending on the context.

We still assume that the signal f is an element of L2([0, 1)). As in the finite dimensional case, we call 
a vector x ∈ �2(N) (s, M)-sparse if PMx is (s, M)-sparse and P⊥

Mx = 0. Here M = Mr and we refer 
to it as the sparsity bandwidth of x. For an isometry U ∈ B(�2(N)) we define the coherence of U as 
μ(U) = sup{|Uij |2 : i, j ∈ N}.

3.2. Setup

Next we describe the setup for a general sampling basis Bsa = {bsa1 , bsa2 , bsa3 , . . . , } and a sparsifying basis 
Bsp = {bsp1 , bsp2 , bsp3 , . . . , }, both assumed to be orthonormal bases of L2([0, 1)). In Section 4, we specialize 
this so that Bsa is the Walsh sampling basis and Bsp is a wavelet sparsifying basis. This will enable us to 
derive concrete recovery guarantees for f . The setup below is, however, completely general.

For the two bases Bsa and Bsp we can represent f using the coefficients y = {〈f, bsan 〉}n∈N and x =
{〈f, bspn 〉}n∈N , respectively. To change the representation from Bsa to Bsp we define the following matrix.

Definition 3.2. Let Bsa = {bsa1 , bsa2 , bsa3 , . . . , } and Bsp = {bsp1 , bsp2 , bsp3 , . . . , } be orthonormal bases for 
L2([0, 1)). The change of basis matrix U ∈ B(�2(N)) between Bsa and Bsp is the infinite matrix with 
entries

Uij =
〈
bspj , bsai

〉
We will denote this matrix by U = [Bsa, Bsp].

Notice in particular that since Bsa and Bsp are orthonormal, U = [Bsa, Bsp] is an isometry on �2(N) and 
we can write y = Ux.

Next let Ω = Ωm,N= Ω1 ∪ . . . ∪ Ωr be a given multilevel random sampling scheme with |Ω| = m. We 
refer to N = Nr as the sampling bandwidth of Ω (as discussed in Section 3.3, this will be chosen in terms of 
the sparsity bandwidth to ensure stable truncation of U). Now define the matrix

H :=

⎡⎢⎣1/√p1PΩ1U
1/√p2PΩ2U

. . .
1/√prPΩr

U

⎤⎥⎦ ∈ Cm×∞, where pk = mk/(Nk −Nk−1) (3.1)

and we use the slightly unusual notation Cm×∞ for the operators B(�2(N), Cm). Due to the scaling factors 
1/√pk we consider scaled noisy measurements

ỹ = DPΩy + e= DPΩUx + e = Hx + e ∈ Cm, (3.2)

where D ∈ Cm×m is a diagonal matrix with the corresponding scaling factors 1/√pk found in H along the 
diagonal and e is the measurement noise.

Suppose that x is approximately (s, M)-sparse with sparsity bandwidth M . It is tempting to form the 
finite matrix A = HPM ∈ Cm×M and solve the minimization problem
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minimize ‖z‖1 subject to ‖Az − ỹ‖2 ≤ η.

However, note that the truncation of H to A introduces an additional truncation error HP⊥
Mx. Indeed,

Ax− ỹ = −(HP⊥
Mx + e),

and this poses a problem since for the above decoder we require η ≥ ‖HP⊥
Mx + e‖2 in order for PMx to be a 

feasible point. For some applications we might have a rough estimate of ‖e‖2, but any estimate of ‖HP⊥
Mx‖2

would require a priori knowledge of x, the signal we are trying to recover. This is generally impossible. (We 
note in passing that there is some recent work [31] which derives CS recovery guarantees in the absence of 
feasibility of the target vector PMx, but the application of this work to the sparse in levels model is not 
clear).

To overcome this issue, we will introduce a data fidelity parameter K ≥ M and assume we know ‖e‖2

so that we can let η > ‖e‖2. Then there will always exist a K ′ ≥ M such that PKx lies in the feasible set 
{z ∈ CK : ‖Az − ỹ‖2 ≤ η} corresponding to the augmented matrix

A = HPK (3.3)

for all K ≥ K ′. In practice (for the general case) it will also be impossible to determine a sufficient value for 
K, but for fixed η > ‖e‖2 there will always exist a K, such that PKx is a feasible point. It should, however, 
be noted that there are special cases, such as Walsh sampling and wavelet recovery, where sufficient values 
for K are known; see Remark 4.9.

This aside, as previously mentioned, we also now modify the optimization problem to include weights. 
Specifically, let M, s ∈ Nr be given sparsity levels and local sparsities respectively. For positive weights 
ω = (ω1, . . . , ωr+1) we define

‖x‖1,ω :=
r+1∑
l=1

ωl‖PMl−1
Ml

x‖1,

with Mr+1 = K for x ∈ CK . Notice that this weighted regularizer assigns constant weights on each sparsity 
level. With this in hand, our recovery procedure is

minimize ‖z‖1,ω subject to ‖Az − ỹ‖2 ≤ η,

with A as in (3.3) and η ≥ ‖Ax − ỹ‖2.

3.3. The balancing property

We now discuss the relation between the sampling and sparsity bandwidths N and M . From generalized 
sampling theory [30] we know that we must choose N ≥ M to obtain a stable mapping between the first N
sampling basis functions and the first M sparsity basis functions. The degree of stability for this solution 
will depend of the so-called balancing property:

Definition 3.3. Let U : �2(N) → �2(N) be an isometry. Let 0 < θ < 1 and N ≥ M ≥ 1. Then U has the 
balancing property with constant θ if

‖PMU∗PNUPM − PM‖2 ≤ 1 − θ.
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Note that for general orthonormal bases, the balancing property many not hold for small values of 
N , even if N ≥ M . However, it always holds for sufficiently large N (for fixed M) [30, Sec. 5]. Indeed, 
PMU∗PNUPM → PMU∗UPM ≡ PM in the operator norm, hence the balancing property holds with θ
arbitrarily close to 1 for large enough N .

Below we shall see that this property will also affect our recovery guarantees, but it will be camouflaged 
as the quantity ‖G−1‖2, where G =

√
PMU∗PNUPM . This gives the following relation.

Lemma 3.4. Let U ∈ B(�2(N)) be an isometry. Suppose for some fixed pair M, N ∈ N that U satisfies 
the balancing property with constant 0 < θ < 1. Then the matrix G =

√
PMU∗PNUPM is Hermitian and 

positive definite. Furthermore, G is invertible and

‖G−1‖2 ≤ 1/
√
θ. (3.4)

3.4. G-adjusted Restricted Isometry Property in Levels (G-RIPL)

Our theoretical analysis requires a RIP-type property for the matrix HPM . However, as implied in the 
previous discussion, the finite matrix PNUPM ∈ CN×M (from which HPM is constructed) is not an isometry 
for any N ≥ M . In particular, unlike in finite dimensions E(PMH∗HPM ) = PMU∗PNUPM = G2 is not the 
identity. In order to handle this situation, we introduce the following generalization of the RIP:

Definition 3.5 (G-RIPL). Let A ∈ Cm×M , G ∈ CM×M be invertible, M = (M1, . . . , Mr) be sparsity levels 
and s = (s1, . . . , sr) be local sparsities. The sth G-adjusted Restricted Isometry Constant in Levels (G-RICL)
δs,M is the smallest δ ≥ 0 such that

(1 − δ)‖Gx‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖Gx‖2
2, ∀x ∈ Σs,M.

If 0 < δs,M < 1 we say that the matrix A satisfies the G-adjusted Restricted Isometry Property in Levels 
(G-RIPL) of order (s, M).

The G-RIPL is of course completely general and can be stated for any G. However, in the following we 
let G =

√
PMU∗PNUPM and show that the matrix A = HPK (or equivalently, HPM – note that Σs,M

consists of vectors z with P⊥
Mz = 0) satisfies the G-RIPL for this particular G.

First, however, we show in Theorem 3.6 below that the G-RIPL implies uniform recovery. For this, we 
introduce the following notation:

Sω,s :=
r∑

l=1

ω2
l sl and ζs,ω = min

l∈{1,...,r}
ω2
l sl.

Notice in particular that for the choice ω = (1, . . . , 1, ωr+1) we have Sω,s = s1 + . . .+ sr and for the choice 
ω = (s−1/2

1 , . . . , s−1/2
r , ωr+1) we have Sω,s = r. Finally, we let κ(G) = ‖G‖2‖G−1‖2 denote the condition 

number of G.

Theorem 3.6 (The G-RIPL implies uniform recovery). Let A ∈ Cm×K , G ∈ CM×M with K ≥ M and 
let M, s ∈ Nr be given sparsity levels and local sparsities, respectively. Let ω ∈ Rr+1 be positive weights. 
Suppose APM∈ Cm×M satisfies the G-RIPL of order (t, M) with constant δt,M ≤ 1/2 and

tl = min
{
Ml −Ml−1, 2

⌈
4κ(G)2Sω,s

ω2
l

⌉}
for l = 1, . . . , r. (3.5)

Let
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ωr+1 ≥
√

Sω,s

(
1
3

(
1 + (Sω,s/ζs,ω)1/4

)−1
+ 2

√
2‖APM

K ‖1→2‖G−1‖2

)
. (3.6)

Let η ≥ 0, x ∈ CK , e ∈ Cm with ‖e‖2 ≤ η and set y = Ax + e. Then any solution x̂ of the optimization 
problem

minimize
z∈CK

‖z‖1,ω subject to ‖Az − y‖2 ≤ η (3.7)

satisfies

‖x− x̂‖1,ω ≤ Cσs,M(x)1,ω + D‖G−1‖2
√

Sω,sη (3.8)

‖x− x̂‖2 ≤ (1 + (Sω,s/ζs,ω)1/4)
(
C
σs,M(x)1,ω√

Sω,s

+ D‖G−1‖2η

)
(3.9)

where C = 2(2 +
√

3)/(2 −
√

3), D = 8
√

2/(2 −
√

3) and σs,M(x)1,ω = inf{‖x − z‖1,ω : z ∈ Σs,M}.

Notice that the condition on δ in the above theorem is fundamentally different from the condition found in 
Theorem 2.10. In the latter one requires δ2s,M < (r(√αs,M + 1

4 )2 +1)−1/2 where αs,M = maxk,l=1,...,r sk/sl
is the sparsity ratio. Thus for sparsity levels where the local sparsities vary greatly, this bound will be 
unreasonably small.

In the above theorem we have removed this sparsity ratio term, by setting δ = 1/2, and require δt,M ≤ δ

where tl ≥ 2 
⌈
4κ(G)2Sω,sw

−2
l

⌉
. For the unweighted case this leads to a condition of the form

tl ≥ 2
⌈
4κ(G)2(s1 + . . . + sr)

⌉
,

which does not take the local sparsity into account, since each tl would have to be greater than the total 
sparsity of the signal. However, by considering the weights ω = (s−1/2

1 , . . . , s−1/2
r , ωr+1) we obtain a condition 

of the form

tl ≥ 2
⌈
4κ(G)2rsl

⌉
,

where tl is independent of sk for k �= l. Thus, for this choice of weights each tl only depend on sl, something 
which gives greater flexibility for signals where the sparsity ratio αs,M is large. Moreover, this also means 
that we can write the requirement in Theorem 3.6 as δ2	4κ(G)2rs
,M ≤ 1/2, and avoid the sparsity ratio term 
αs,M as was the problem in Theorem 2.10.

Finally, recall that ωr+1 is the last weight in the weighted �1-norm ‖ · ‖1,ω, and notice that in the above 
theorem we have introduced a lower bound for ωr+1 in (3.6) which depends on APM

K . This is necessary, 
since the G-RIPL only put conditions on the first M columns of A ∈ Cm×K . Thus, to ensure that the 
minimizer (of length K) of (3.7) does not have a large component in the last K −M entires it is needed to 
ensure that the weight ωr+1 satisfies the lower bound in (3.6).

3.5. Sufficient condition for the G-RIPL

In Definition 2.11 we defined the local coherence μk,l of an isometry U ∈ CN×N . We extend this to 
isometries U ∈ B(�2(N)) in the exact same way

μk,l = μk,l(N,M) = max{|Uij |2 : i = Nk−1 + 1, . . . , Nk, j = Ml−1 + 1, . . . ,Ml}.

This yields the following theorem providing sufficient conditions on the number of samples, required for 
A = HPM to have the G-RIPL.
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Theorem 3.7 (Subsampled isometries and the G-RIPL). Let U ∈ B(�2(N)) be an isometry, and let Ω = ΩN,m
be an (N, m)-multilevel random sampling scheme with r levels. Let M, s ∈ Nr be sparsity levels and local 
sparsities, respectively. Let ε, δ ∈ (0, 1) and let 0 ≤ r0 ≤ r, with m̃ = mr0+1 + · · ·+mr. Let s = s1 + · · ·+ sr
and

L = r · log(2m̃) · log(2N) · log2(2s) + log(ε−1).

Suppose G =
√
PMU∗PNUPM is non-singular. If

mk = Nk −Nk−1, k = 1, . . . , r0, (3.10)

and

mk � δ−2 · ‖G−1‖2
2 · (Nk −Nk−1) ·

( r∑
l=1

μk,l · sl
)
· L, (3.11)

for k = r0 + 1, . . . , r then with probability at least 1 − ε, the matrix

A =

⎡⎢⎣1/√p1PΩ1UPM

...
1/√prPΩr

UPM

⎤⎥⎦ where pk = mk

Nk −Nk−1
for k = 1, . . . , r (3.12)

satisfies the G-RIPL of order (s, M) with constant δs,M ≤ δ. The constant implied by � is universal, and 
does not depend on any of the parameters.

We notice that these measurement conditions are identical to the once we find in Theorem 2.12, except 
the extra term ‖G−1‖2. However, Theorem 2.12, concerns the RILP, which is a special case of the G-RIPL 
with G = I. It is, therefore, natural that this term disappears.

3.6. Overall recovery guarantee

Combining Theorem 3.6 and Theorem 3.7, we now find measurement conditions which ensure recovery 
of (s, M)-sparse signals.

Corollary 3.8 (Overall recovery guarantee for subsampled isometries). Let U ∈ B(�2(N)) be an isometry, 
and let Ω = ΩN,m be an (N, m)-multilevel random sampling scheme with r levels. Let M, s ∈ Nr be sparsity 
levels and local sparsities, respectively, and let ω = [s−1/2

1 , . . . , s−1/2
r , ωr+1] be weights. Let ε ∈ (0, 1) and 

0 ≤ r0 ≤ r. Let m = m1 + . . . + mr, m̃ = mr0+1 + · · · + mr, s = s1 + · · · + sr, and

L = r · log(2m̃) · log(2N) · log2(2s) + log(ε−1).

Let H ∈ Cm×∞ be as in (3.1) and set A = HPK . Let x ∈ �2(N), e1 ∈ Cm and η > 0. Set e = HP⊥
Kx + e1

and ỹ = Ax + e. Suppose

(i) we choose M and N so that U satisfies the balancing property with constant 0 < θ < 1,
(ii) we choose η ≥ ‖e1‖ and K so that ‖HP⊥

Kx‖2 ≤ η′,
(iii) the weight ωr+1 satisfies

ωr+1 ≥
√
r

(
1

3(1 + r1/4)
+ 2
√

2
θ
‖APM

K ‖1→2

)
,
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(iv) the mk’s satisfy mk = Nk −Nk−1 for k = 1, . . . , r0 and

mk � θ−2 · r · (Nk −Nk−1) ·
( r∑

l=1

μk,lsl

)
· L for k = r0 + 1, . . . , r. (3.13)

Then with probability 1 − ε any solution x̂ of the optimization problem

minimize
z∈CK

‖z‖1,ω subject to ‖Az − ỹ‖2 ≤ η + η′

satisfies

‖PKx− x̂‖1,ω ≤ Cσs,M(PKx)1,ω + D

√
r√
θ
(η + η′) (3.14)

‖PKx− x̂‖2 ≤ (1 + r1/4)
(
C
σs,M(PKx)1,ω√

r
+ D

1√
θ
(η + η′)

)
(3.15)

where C = 2(2 +
√

3)/(2 −
√

3) and D = 8
√

2/(2 −
√

3).

Suppose that x is exactly (s, M)-sparse. Then the above theorem guarantees exact recovery of x via 
weighted �1 minimization subject to the corresponding measurement condition. We note in passing that 
this measurement condition is the same, up to the log terms, as sufficient conditions derived recently in 
[21] for oracle estimators that assume a priori knowledge of supp(x). While it is unknown whether or not 
these are strictly sharp, this does at lead indicate that the proposed weighted �1-minimization problem, in 
particular, with the specific weights used above, is an appropriate approach.

4. Recovery guarantees for Walsh sampling with wavelet reconstruction

Having presented the abstract infinite-dimensional CS framework in full generality, the remainder of 
the paper is devoted to its application to the case of binary sampling with the Walsh transform with 
sparsity in orthogonal wavelet bases. In particular, this means that the isometry U is now known, and all 
quantities depending on U will be estimated to derive concrete measurement conditions for (s, M)-sparse 
wavelet recovery using Walsh sampling. Our goal is to derive theorems similar to Theorem 2.12 for different 
wavelets and combine these theorems with Corollary 3.8 to get overall recovery guarantees.

We start this section by describing the general setup of Walsh functions and wavelets in Sections 4.1 and 
4.2, before presenting the main recovery guarantees in Sections 4.3 and 4.4.

4.1. Walsh functions

For any number n ∈ Z+ = {0, 1, 2, . . .} there exists a unique dyadic expansion

n = n120 + n221 + . . . + nj2j−1 + · · ·

where nj ∈ {0, 1} for j ∈ N. Similarly any x ∈ [0, 1) can be written in its dyadic form as

x = x12−1 + x22−2 + · · · + xj2−j+

with xj ∈ {0, 1} for all j ∈ N. For a dyadic rational number x this expansion is not unique, as one may 
use either a finite expansion, or an infinite expansion where xi = 1 for all i ≥ k for some k ∈ N. In such 
cases we always consider the finite expansion. In practice this means that we have removed countably many 
singletons from [0, 1).
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Definition 4.1. Let n ∈ Z+ and x ∈ [0, 1). The Walsh function wn : [0, 1) → {+1, −1} is given by

wn(x) := (−1)
∑∞

j=1(nj+nj+1)xj (4.1)

We note that in the literature there are different definitions of Walsh functions, and the above definition is 
sometimes called the sequency-ordered Walsh function. It has the advantage that on the interval [0, 1), wn has 
n sign changes. Another popular choice is the Paley-ordered Walsh function defined by wP

n := (−1)
∑∞

j=1 njxj . 
The Paley-ordered Walsh function of sometimes more practical to work with for establishing theoretical 
properties of Walsh functions. However, it has the disadvantage that its frequency, which we take to be the 
number of sign changes, is not equal to n. In the following we therefore work with the sequency-ordered 
Walsh function. For an in-depth discussion of the different orderings of Walsh functions we refer to [32, 
Chap. 1].

We note that the 2r first Walsh functions gives rise to the entries in the Hadamard matrix

(VHad)i,j = wi−1((j − 1)/2r) where i, j = 1, . . . , 2r.

Definition 4.2 (Walsh basis). Define the Walsh basis as

Bwh := {wn : n ∈ Z+}

where “wh” is an abbreviation for Walsh-Hadamard.

We note that this is an orthonormal basis of L2([0, 1)), see, e.g., [33, Chap. 2.6].

4.2. Wavelet transform

Let φ : R → R and ψ : R → R be an orthonormal scaling function and wavelet [34], respectively, with 
minimal support, corresponding to a multiresolution analysis (MRA). Note that this could both be the 
classical “Daubechies wavelet” with a minimum-phase or “symlets” which are close to being symmetric, but 
with a larger phase [35, Page 294]. Let

φj,k(x) := 2j/2φ(2jx− k) and ψj,k(x) := 2j/2ψ(2jx− k) (4.2)

denote the scaled and translated versions.
A wavelet ψ is said to have ν vanishing moments if

∞∫
−∞

xkψ(x) dx = 0 for 0 ≤ k < ν.

For orthogonal wavelets with minimum support, the support depends on the number of vanishing mo-
ments. That is

supp(φ) = supp(ψ) = [−ν + 1, ν]. (4.3)

While this system constitutes an orthonormal basis of L2(R), in our case we require an orthonormal basis 
of L2([0, 1)). There exist several constructions of wavelets on the interval, but we only consider periodic 
extensions and the orthogonal boundary wavelets introduced by Cohen, Daubechies and Vial in [36], which 
preserves the number of vanishing moments.
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For wavelets on the interval we need to replace the 2ν wavelets/scaling functions intersecting the bound-
aries at each scale, with their corresponding boundary-corrected counterparts. We postpone the formal 
definition of periodic and boundary wavelets until we need it, in the proof sections. But to simplify the 
notation let

φ0
j,k :=

⎧⎪⎪⎨⎪⎪⎩
φboundary
j,k for k ∈ {0, . . . , ν − 1}

φj,k for k ∈ {ν, . . . , 2j − ν − 1}
φboundary
j,k for k ∈ {2j − ν, . . . , 2j − 1}

,

φ1
j,k :=

⎧⎪⎪⎨⎪⎪⎩
ψboundary
j,k for k ∈ {0, . . . , ν − 1}

ψj,k for k ∈ {ν, . . . , 2j − ν − 1}
ψboundary
j,k for k ∈ {2j − ν, . . . , 2j − 1}

,

where φboundary
j,k and ψboundary

j,k are either a periodic wavelet/scaling function or the boundary wavelet/scaling 
functions introduced in [36]. For the former extension we say that φs

j,k, s ∈ {0, 1} “originate from a periodic 
wavelet” while for the latter we say that it “originate from a boundary wavelet”.

We will throughout assume that J0 ∈ Z+ satisfies 2J0 ≥ 2ν in case ν ≥ 2, while J0 ≥ 0 for ν = 1. 
This will ensure that for each j ≥ J0 there exists at least one k ∈ {0, . . . , 2j − 1} such that supp(φj,k) =
supp(ψj,k) ⊆ [0, 1) for all j ≥ J0.

Definition 4.3. For a fixed number of vanishing moments ν, minimum wavelet decomposition J0 and a 
boundary extension which is either periodic or boundary wavelets, let φs

j,k be the corresponding wavelets 
and scaling functions. We define

BJ0,ν
wave =

{
φ0
J0,0, . . . , φ

0
J0,2J0−1, φ

1
J0,0, . . . , φ

1
J0,2J0−1, φ

1
J0+1,0, . . . , φ

1
J0+1,2J0+1−1, . . .

}
Both Bwh and BJ0,ν

wave are orthonormal bases for L2([0, 1)). See, e.g., [35, Thm. 7.6] for the periodic 
extension and [36] for the vanishing moments preserving boundary extension.

4.3. Recovery guarantees

From Section 3 there are four unknown factors depending on U which need to be estimated. These 
are the local coherences μk,l, the norm ‖HPM

K ‖1→2 where H is given by (3.1), the condition number 
κ(G) = ‖G‖2‖G−1‖2 and the factor ‖G−1‖2 found in condition (3.11).

For the two latter factors we have G =
√
PMU∗PNUPM . Furthermore we know that ‖G‖2 ≤ 1 since U is 

an isometry. In practice we therefore only need to determine an upper bound ‖G−1‖2 and from Lemma 3.4
we know that ‖G−1‖2 ≤ 1/

√
θ, where 0 < θ < 1 is the balancing property constant. In other words, it 

suffices to determine when the balancing property holds with a given θ.
The following three propositions estimate these quantities for the case U = [Bwh, BJ0,ν

wave].

Proposition 4.4. Let U = [Bwh, BJ0,ν
wave]. For each θ ∈ (0, 1), there exists a constant q =qθ ≥ 0, such that U

satisfies

‖P2kU∗P2k+qθUP2k − P2k‖2 ≤ 1 − θ for all k ∈ N.

That is, U satisfies the balancing property with constant θ, for each pair {N = 2k+qθ , M = 2k}k∈N .

Note that Proposition 4.4 is a consequence of Theorem 1.1 in [37], see Section 6.6 for details.
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Proposition 4.5. Let U = [Bwh, BJ0,ν
wave] with ν ≥ 3 and let

M = [2J0+1, . . . , 2J0+r] and N = [2J0+1, . . . , 2J0+r−1, 2J0+r+q] with q ≥ 0,

be sparsity and sampling levels, respectively. Then the local coherences of U scale like

μk,l � 2−J0−k2−|l−k|.

Proposition 4.6. Let U = [Bwh, BJ0,ν
wave] and let M, N ∈ Nr be sparsity and sampling levels. Let Ω = Ωm,N

be a multilevel random sampling scheme, and let H be as in (3.1). Then

‖HP⊥
K‖1→2 �

√
N

K
.

We can now present the two main theorems in this section. We point out that these are only valid for 
ν ≥ 3 vanishing moments. For ν = 1, the corresponding wavelet is the Haar wavelet, and will be considered 
in the next subsection. For ν = 2, the coherence of U = [Bwh, BJ0,2

wave] does not decay as fast as for the other 
wavelets. Whether this is because our coherence bounds are not sharp enough for this wavelet or if it is 
because the coherence of U = [Bwh, BJ0,2

wave] decays more slowly is not known. We do, however, present some 
numerics in Section 6.5 which indicate that it is potentially the latter.

Theorem 4.7. Let U = [Bwh, BJ0,ν
wave] with ν ≥ 3 and let

M = [2J0+1, . . . , 2J0+r] and N = [2J0+1, . . . , 2J0+r−1, 2J0+r+q] with q ≥ 0,

be sparsity and sampling levels, respectively. Let s ∈ Nr be local sparsities. Suppose q is chosen so that U
satisfies the balancing property with constant 0 < θ < 1 and set G =

√
PMU∗PNUPM . Let ε, δ ∈ (0, 1) and 

let 0 ≤ r0 ≤ r, with m̃ = mr0+1 + · · · + mr. Let s = s1 + · · · + sr and

L = r · log(2m̃) · log(2N) · log2(2s) + log(ε−1).

If

mk = Nk −Nk−1, k = 1, . . . , r0, (4.4)

and

mk � δ−2 · θ−1 · 2q max{k+1−r,0} ·
( r∑

l=1

2−|k−l|sl

)
· L

for k = r0 + 1, . . . , r, then with probability at least 1 − ε, the matrix in (3.12) satisfies the G-RIPL of order 
(s, M) with constant δs,M ≤ δ.

We notice the similarity between this theorem and Theorem 2.12, which considers the finite-dimensional 
Fourier-Haar wavelet problem. In particular, the same type of local measurement conditions is required to 
ensure a RIPL-like condition for the matrix A. The main difference is that since we now consider a finite 
section of an isometry U ∈ B(�2(N)), we get the extra term θ−1 from the balancing property between 
N and M , and the extra factor 2q = N/M in the r’th sampling level. Since N = M and θ = 1 in the 
finite-dimensional setup, this is natural.
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We note that while the constant implied by � in Theorem 3.7 is just a numerical constant independent 
of all parameters, the constant implied by � in the above theorem depends on the wavelet. In particular, 
Theorem 4.7 follows from Theorem 3.7 by using an upper bound � μk,l on the local coherences (see 
Theorem 6.8). The constant implied by � can, therefore, vary if we change the wavelet basis. The same 
comment also holds for Theorem 4.8 below.

Next, we present an overall recovery guarantee for Walsh sampling and orthonormal wavelet reconstruc-
tion with ν ≥ 3 vanishing moments in infinite dimensions. Notice that the measurement conditions are 
identical to the once above, except for the extra factor r, introduced by our particular choice of weights. 
As discussed at the end of Section 3.4, this factor is inevitable if we want to get measurement conditions 
independent of the total sparsity s = s1 + . . . sr.

Theorem 4.8. Let U = [Bwh, BJ0,ν
wave] with ν ≥ 3 and let

M = [2J0+1, . . . , 2J0+r] and N = [2J0+1, . . . , 2J0+r−1, 2J0+r+q], with q ≥ 0

be sparsity and sampling levels, respectively. Let s ∈ Nr be local sparsities, ω = (s−1/2
1 , . . . , s−1/2

r , ωr+1) be 
weights and let m ∈ Nr be sampling densities. Let ε ∈ (0, 1) and let 0 ≤ r0 ≤ r. Let m = m1 + . . . + mr, 
m̃ = mr0+1 + · · · + mr, s = s1 + . . . + sr, and

L = r · log(2m̃) · log(2N) · log2(2s) + log(ε−1).

Let H ∈ Cm×∞ be as in (3.1) and set A = HPK . Let x ∈ �2(N), e1 ∈ Cm and η > 0. Set e = HP⊥
Kx +e1

and ỹ = Ax + e. Suppose

(i) we choose q = qθ as in Proposition 4.4 so that U satisfies the balancing property with constant 0 <
θ < 1,

(ii) we choose η ≥ ‖e1‖ and K so that ‖HP⊥
Kx‖2 ≤ η′,

(iii) the weight ωr+1 satisfies

ωr+1 ≥
√
r

(
1

3(1 + r1/4)
+ 2
√

2
θ
‖APM

K ‖1→2

)
,

(iv) the mk’s satisfy mk = Nk −Nk−1 for k = 1, . . . , r0 and

mk � θ−2 · r · 2q max{k+1−r,0}
( r∑

l=1

2−|k−l|sl

)
· L for k = r0 + 1, . . . , r. (4.5)

Then with probability 1 − ε any solution x̂ of the optimization problem

minimize
z∈CK

‖z‖1,ω subject to ‖Az − ỹ‖2 ≤ η + η′

satisfies

‖PKx− x̂‖1,ω ≤ Cσs,M(PKx)1,ω + D

√
r√
θ
(η + η′) (4.6)

‖PKx− x̂‖2 ≤ (1 + r1/4)
(
C
σs,M(PKx)1,ω√

r
+ D

1√
θ
(η + η′)

)
(4.7)

where C = 2(2 +
√

3)/(2 −
√

3) and D = 8
√

2/(2 −
√

3).
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Fig. 2. The absolute values in log scale of the matrix PMUPM for U = [Bwh, BJ0,ν
wave], with ν = 1 (left) and ν = 4 (middle). The 

rightmost image is the colorbar. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Remark 4.9. Note that the second condition (ii) can be guaranteed using Proposition 4.6. Indeed, it suffices 
for K to satisfy ∥∥P⊥

Kx
∥∥

1√
K

� η′√
N

.

Hence, given any a priori estimates on the decay of the coefficients x (such as in the case of wavelets), one 
can use this to determine a suitable K.

4.4. Uniform recovery for Haar wavelets

Below we shall see that for the Haar wavelet, PNUPN will be an isometry for N = 2r where r ∈ N. This 
can also be seen from Fig. 2, where U = [Bwh, BJ0,ν

wave] is perfectly block diagonal for ν = 1. This means 
that the G-RIPL, reduces to the I-adjusted RIPL, or simply the RIPL, which we know from the finite 
dimensional case. Notice in particular that we also avoid any considerations where K > M = N as above, 
since HP⊥

M = 0.

Proposition 4.10. Let U = [Bwh, BJ0,1
wave] and let N = 2k, for some k ∈ N with k ≥ J0 + 1. Then PNUPN is 

an isometry on CN .

Proposition 4.11. Let U = [Bwh, BJ0,1
wave] and let M = N = [2J0+1, . . . , 2J0+r] be sparsity and sampling levels, 

respectively. Then the local coherences of U are

μkl =
{

2−J0−k+1 if k = l

0 if k �= l

These propositions have several consequences. First, since PNUPN is an isometry, we have that the 
balancing property constant θ = 1, and since M = N , we have that N/M = 1 = 20, which implies that the 
q in Theorems 4.7 and 4.8 are zero. Furthermore, due to the block diagonal structure of U = [Bwh, BJ0,1

wave], 
we shall see below that the measurements in level k now only depend on the local sparsity sk, rather than 
an exponentially decaying sum of local sparsities of the form 

∑r
l=1 2−|k−l|sl, which we are used to from 

the above theorems. This follows immediately from Proposition 4.11 where the local coherences μkl = 0 for 
k �= l.
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Theorem 4.12. Let U = [Bwh, BJ0,1
wave] and let M = N = [2J0+1, . . . , 2J0+r] be sparsity and sampling levels. 

Let s ∈ Nr be local sparsities and m ∈ Nr be local sampling densities. Let ε, δ ∈ (0, 1) and 0 ≤ r0 ≤ r. Let 
m̃ = mr0+1 + . . .+mr and s = s1 + . . .+sr. Suppose that the mk’s satisfy mk = Nk−Nk−1 for k = 1, . . . , r0
and

mk � δ−2sk
(
r log(2m̃) log(2N) log2(2s) + log(ε−1)

)
, for k = r0 + 1, . . . , r. (4.8)

If Ω = ΩN,m is an (N, m)-multilevel random sampling scheme, then with probability at least 1 −ε the matrix 
(3.12) satisfies the RIPL of order (s, M) with constant δs,M ≤ δ. The constant implied by � is universal, 
and does not depend on any of the parameters.

Proof. Using Proposition 4.10 we know that PNUPN is an isometry. Thus inserting the local coherences 
from Proposition 4.11 into (2.5) in Theorem 2.12 gives the result. As the wavelet is fixed, it follows from 
Theorem 2.12 that the numerical constant implied by � is independent of all parameter choices. �

Finally, we present the overall recovery guarantee for Walsh sampling and Haar wavelet recovery. Notice 
that the block diagonal structure of U = [Bwh, BJ0,1

wave] allows us to remove many of the technical conditions 
of Theorem 4.8, yet the measurement conditions are identical to the one from Theorem 4.12 above, except 
for the extra r factor, introduced by our particular choice of weights.

Theorem 4.13. Let U = [Bwh, BJ0,1
wave] and let M = N = [2J0+1, . . . , 2J0+r] be sparsity and sampling levels. 

Let s ∈ Nr be local sparsities, ω = (s1/2
1 , . . . , s1/2

r ) be weights and m ∈ Nr be local sampling densities. Let 
ε ∈ (0, 1) and let 0 ≤ r0 ≤ r. Let m = m1 + . . .+mr, m̃ = mr0+1 + · · ·+mr and s = s1 + . . .+ sr. Suppose 
we sample mk = Nk −Nk−1 for k = 1, . . . , r0 and

mk � r · sk ·
(
r log(2m̃) log(2N) log2(2s) + log(ε−1)

)
,

for k = r0 + 1, . . . , r. Let Ω = ΩN,m be an (N, m)-multilevel random sampling scheme and let H ∈ Cm×∞

be as in (3.1) with A = HPM . Let x ∈ �2(N) and e ∈ Cm with ‖e‖2 ≤ η for some η ≥ 0. Set ỹ = Ax + e. 
Then any solution x̂ of the optimization problem

minimize
z∈CM

‖z‖1,ω subject to ‖Az − ỹ‖2 ≤ η

satisfies

‖PMx− x̂‖1,ω ≤ Cσs,M(PMx)1,ω + D
√
rη

‖PMx− x̂‖2 ≤ (1 + r1/4)
(
C
σs,M(PMx)1,ω√

r
+ Dη

)

with probability 1 − ε, where C = 2(2 +
√

3)/(2 −
√

3) and D = 8
√

2/(2 −
√

3). The constant implied by �
is universal, and does not depend on any of the parameters.

Proof. Proposition 4.10 gives G =
√
PMU∗PNUPM =

√
I = I. Next notice that Sω,s = r and that PMx ∈

{z ∈ CM : ‖Az − ỹ‖2 ≤ η} since ‖HP⊥
M‖ = 0. Using Theorem 3.6 we see that we can guarantee recovery of 

(s, M)-sparse vectors, if A satisfies the RIPL with constant δt,M ≤ 1/2, where tl = min{Ml −Ml−1, 8rsl}. 
Using Theorem 4.12 gives the result. �
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5. Proofs of results in Section 3

When deriving uniform recovery guarantees via the RIP, it is typical to proceed as follows. First, one 
shows that the RIP implies the so-called robust Null space Property (rNSP) of order s (see Def. 4.17 in [4]). 
Second, one the shows that the rNSP implies stable and robust recovery. Thus the line of implications reads

(RIP) =⇒ (rNSP) =⇒ (uniform recovery).

A similar line of implications holds for the RIPL and the corresponding robust Null Space Property in levels 
(rNSPL); see Def. 3.6 in [16].

Both of the recovery guarantees for matrices satisfying the rNSP and rNSPL consider minimizers of the 
unweighed quadratically-constrained basis pursuit (QCBP) optimization problem. In our setup we consider 
minimizers of the weighted QCBP. We have therefore generalized the rNSPL to what we call the weighted 
robust null space property in levels.

For the sufficient condition for the G-RIPL in Theorem 3.7, the proof follows along similar lines as in 
[17]. We only sketch the main differences here.

5.1. The weighted rNSPL and norm bounds

For a set Θ ⊆ {1, . . . , M} and a vector x ∈ CM we let the vector xΘ be given by

(xΘ)i =
{
xi i ∈ Θ
0 i /∈ Θ

.

We also define

Es,M = {Θ ⊆ {1, . . . ,M} : |Θ ∩ {Ml−1 + 1, . . . ,Ml}| ≤ sl, for l = 1, . . . , r}.

Definition 5.1 (Weighted rNSP in levels). Let M, s ∈ Nr be sparsity levels and local sparsities, respectively. 
For positive weights ω ∈ Rr+1, we say that A ∈ Cm×M satisfies the weighted robust Null Space Property in 
Levels (weighted rNSPL) of order (s, M) with constants 0 < ρ < 1 and γ > 0 if

‖xΘ‖2 ≤ ρ‖xΘc‖1,ω√
Sω,s

+ γ‖Ax‖2 (5.1)

for all x ∈ CM and all Θ ∈ Es,M.

Lemma 5.2 (Weighted rNSPL implies �(1,ω)-distance bound). Suppose that A ∈ Cm×M satisfies the weighted 
rNSPL of order (s, M) with constants 0 < ρ < 1 and γ > 0. Let x, z ∈ CM . Then

‖z − x‖1,ω ≤ 1 + ρ

1 − ρ
(2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω) + 2γ

1 − ρ

√
Sω,s‖A(z − x)‖2. (5.2)

Proof. Let v = z − x and Θ ∈ Es,M be such that ‖xΘc‖1,ω = σs,M(x)1,ω. Then

‖x‖1,ω + ‖vΘc‖1,ω ≤ 2‖xΘc‖1,ω + ‖xΘ‖1,ω + ‖zΘc‖1,ω

= 2‖xΘc‖1,ω + ‖xΘ‖1,ω + ‖z‖1,ω − ‖zΘ‖1,ω

≤ 2σs,M(x)1,ω + ‖vΘ‖1,ω + ‖z‖1,ω,
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which implies that

‖vΘc‖1,ω ≤ 2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω + ‖vΘ‖1,ω. (5.3)

Now consider ‖vΘ‖1,ω. By the weighted rNSPL, we have

‖vΘ‖1,ω ≤
√
Sω,s‖vΘ‖2 ≤ ρ‖vΘc‖1,ω +

√
Sω,sγ‖Av‖2.

Hence (5.3) gives

‖vΘ‖1,ω ≤ ρ
(
2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω + ‖vΘ‖1,ω

)
+
√
Sω,sγ‖Av‖2,

and after rearranging we get

‖vΘ‖1,ω ≤ ρ

1 − ρ

(
2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω

)
+ γ

1 − ρ

√
Sω,s‖Av‖2.

Therefore, using this and (5.3) once more, we deduce that

‖z − x‖1,ω = ‖vΘ‖1,ω + ‖vΘc‖1,ω

≤ 2‖vΘ‖1,ω +
(
2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω

)
≤ 1 + ρ

1 − ρ

(
2σs,M(x)1,ω + ‖z‖1,ω − ‖x‖1,ω

)
+ 2γ

1 − ρ

√
Sω,s‖A(z − x)‖2,

which gives the result. �
Lemma 5.3 (Weighted rNSPL implies �2 distance bound). Suppose that A ∈ Cm×M satisfies the weighted 
rNSPL of order (s, M) with constants 0 < ρ < 1 and γ > 0. Let x, z ∈ CM . Then

‖z − x‖2 ≤
(
ρ + (1 + ρ)(Sω,s/ζs,ω)1/4/2

) ‖z − x‖1,ω√
Sω,s

+
(
1 + (Sω,s/ζs,ω)1/4/2

)
γ‖A(z − x)‖2. (5.4)

Proof. Let v = z − x and Θ = Θ1 ∪ · · · ∪ Θr, where Θl ⊆ {Ml−1 + 1, . . . , Ml}, |Θl| = sl is the index set of 
the largest sl coefficients of PMl−1

Ml
v in absolute value. Then

‖vΘl
‖2 =

√∑
i∈Θl

|vi|2 ≥ √
sl min

i∈Θl

|vi| ≥
√
sl max

Ml−1<i≤Ml

i/∈Θl

|vi|, l = 1, . . . , r,

which gives

‖vΘc‖2
2 =

r∑
l=1

∑
Ml−1<i≤Ml

i/∈Θl

|vi|2 ≤
r∑

l=1

max
Ml−1<i≤Ml

i/∈Θl

|vi|
∑

Ml−1<i≤Ml

i/∈Θl

|vi|

≤
r∑

l=1

‖vΘl
‖2√
sl

∑
Ml−1<i≤Ml

i/∈Θl

|vi| ≤ max
l=1,...,r

{‖vΘl
‖2

ωl
√
sl

} r∑
l=1

ωl

∑
Ml−1<i≤Ml

i/∈Θl

|vi|

≤ max
l=1,...,r

{‖vΘl
‖2

ωl
√
sl

}
‖vΘc‖1,ω.
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Since ‖vΘl
‖2 ≤ ‖vΘ‖2 we deduce that

‖vΘc‖2 ≤

√
‖vΘ‖2‖vΘc‖1,ω

minl=1,...,r{ωl
√
sl}

=

√
‖vΘ‖2‖vΘc‖1,ω√

ζs,ω
.

Applying Young’s inequality ab ≤ 1
2a

2 + 1
2b

2, we obtain

‖vΘc‖2 ≤ (Sω,s/ζs,ω)1/4

2
‖vΘc‖1,ω√

Sω,s

+ (Sω,s/ζs,ω)1/4

2 ‖vΘ‖2.

Hence

‖v‖2 ≤ ‖vΘ‖2 + ‖vΘc‖2 ≤
(
1 + (Sω,s/ζs,ω)1/4/2

)
‖vΘ‖2 + (Sω,s/ζs,ω)1/4

2
‖vΘc‖1,ω√

Sω,s

.

We now use the weighted rNSPL to get

‖v‖2 ≤
(
ρ + (1 + ρ)(Sω,s/ζs,ω)1/4/2

) ‖vΘc‖1,ω√
Sω,s

+
(
1 + (Sω,s/ζs,ω)1/4/2

)
γ‖Av‖2.

To complete the proof, we use the inequality ‖vΘc‖1,ω ≤ ‖v‖1,ω. �
5.2. Weighted rNSPL implies uniform recovery

Theorem 5.4. Let M, s ∈ Nr be sparsity levels and local sparsities, respectively, and let ω ∈ Rr+1 be positive 
weights. Let A ∈ Cm×K and suppose that APM satisfies the weighted rNSP in levels of order (s, M) with 
constants ρ =

√
3/2 and γ > 0. Let x ∈ CK , with K > M and e ∈ Cm with ‖e‖2 ≤ η. Set y = Ax + e. If

ωr+1 ≥
√
Sω,s

(
1

3(1 + (Sω,s/ζs,ω)1/4)
+ 2γ‖APM

K ‖1→2

)
(5.5)

then any solution x̂ of the optimization problem

minimize
z∈CK

‖z‖1,ω subject to ‖Az − y‖2 ≤ η (5.6)

satisfies

‖x− x̂‖1,ω ≤Cσs,M(x)1,ω + Dγ
√
Sω,sη

‖x− x̂‖2 ≤
(
1 + (Sω,s/ζs,ω)1/4

)(
C
σs,M(x)1,ω√

Sω,s

+ Dγη

)
,

where C = 2(2 +
√

3)/(2 −
√

3) and D = 8/(2 −
√

3).

Proof. Recall that ρ =
√

3/2, and notice that this gives C/2 = (1 + ρ)/(1 − ρ) and D/2 = 2/(1 − ρ). Next 
we consider the bound (5.5), and note that this bound implies

ωr+1 ≥ γ
√
Sω,s‖APM

K ‖1→2/ρ (5.7)

1 + 2ρ ≥ 1 + 2γ
√
Sω,s‖APM

K ‖1→2/ωr+1 (5.8)
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1 + ρ ≥ 1 − ρ + 2γ
√
Sω,s‖APM

K ‖1→2/ωr+1 (5.9)
C

2 ≥ 1 + D

2 γ
√
Sω,s‖APM

K ‖1→2/ωr+1. (5.10)

We also note that (5.5) implies

ωr+1 ≥
(

1
3(1 + (Sω,s/ζs,ω)1/4)

+ 2γ‖APM
K ‖1→2

)√
Sω,s

≥
(

2
C(1 + (Sω,s/ζs,ω)1/4)

+ D

C
γ‖APM

K ‖1→2

)√
Sω,s

which can be written as

(1 + (Sω,s/ζs,ω)1/4)(C/2) 1√
Sω,s

≥
(
(D/2)(1 + (Sω,s/ζs,ω)1/4)γ‖APM

K ‖1→2 + 1
)
/ωr+1. (5.11)

Next set v = x − x̂ and consider the �(1,ω)-bound. First notice that since APM satisfies the weighted rNSPL, 
Lemma 5.2 gives

‖PMv‖1,ω ≤(C/2) (2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω) + (D/2)γ
√
Sω,s‖APMv‖2. (5.12)

Here the last term can be bounded by

‖APMv‖2 ≤ ‖Av + y − y‖2 + ‖APM
K v‖2 ≤ 2η + ‖APM

K ‖1→2

ωr+1
‖PM

K v‖1,ω (5.13)

≤ 2η + ‖APM
K ‖1→2

ωr+1

(
‖PM

K x‖1,ω + ‖PM
K x̂‖1,ω

)
, (5.14)

since both x and x̂ are feasible. We also observe that

2σs,M(PMx)1,ω − ‖PMx‖1,ω + ‖PM
K x‖1,ω = 2σs,M(PMx)1,ω + 2‖PM

K x‖1,ω − ‖x‖1,ω

= 2σs,M(x)1,ω − ‖x‖1,ω
(5.15)

Combining (5.12), (5.14), (5.10) and (5.15) gives

‖v‖1,ω ≤‖PMv‖1,ω + ‖PM
K x‖1,ω + ‖PM

K x̂‖1,ω

≤(C/2)
(
2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω

)
+ ‖PM

K x‖1,ω + ‖PM
K x̂‖1,ω

+ (D/2)γ
√
Sω,s‖APMv‖2

≤(C/2)
(
2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω

)
+ Dγ

√
Sω,sη

+
(

1 + (D/2)γ
√
Sω,s

‖APM
K ‖1→2

ωr+1

)(
‖PM

K x‖1,ω + ‖PM
K x̂‖1,ω

)
≤(C/2)

(
2σs,M(x)1,ω + ‖x̂‖1,ω − ‖x‖1,ω

)
+ Dγ

√
Sω,sη.

Using that x̂ is a minimizer of (5.6) gives the desired bound.
We now consider the �2-bound. First note that

‖v‖2 ≤ ‖PMv‖2 + ‖PM
K v‖2 ≤ ‖PMv‖2 + 1 ‖PM

K v‖1,ω. (5.16)

ωr+1



26 B. Adcock et al. / Appl. Comput. Harmon. Anal. 55 (2021) 1–40
We shall also need

(ρ + (1 + ρ)(Sω,s/ζs,ω)1/4/2) 2
1 − ρ

+ (1 + (Sω,s/ζs,ω)1/4/2)

=(D/4)
(
2ρ + (1 + ρ)(Sω,s/ζs,ω)1/4 + (1 − ρ) + (1 − ρ)(Sω,s/ζs,ω)1/4/2

)
=(D/4)

(
(1 + ρ) + 1

2 (3 + ρ)(Sω,s/ζs,ω)1/4
)

≤(D/2)
(
1 + (Sω,s/ζs,ω)1/4

)
.

(5.17)

Again, since APM satisfies the weighted rNSPL we can apply Lemma 5.3, Lemma 5.2 and inequality (5.17)
to obtain the bound

‖PMv‖2 ≤
(
ρ + (1 + ρ)(Sω,s/ζs,ω)1/4/2

) ‖PMv‖1,ω√
Sω,s

+
(
1 + (Sω,s/ζs,ω)1/4/2

)
γ‖APMv‖2

≤
(
1 + (Sω,s/ζs,ω)1/4

)
(C/2) 2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω√

Sω,s

+
(
ρ + (1 + ρ)(Sω,s/ζs,ω)1/4/2

) 2γ
1 − ρ

‖APMv‖2

+
(
1 + (Sω,s/ζs,ω)1/4/2

)
γ‖APMv‖2

≤
(
1 + (Sω,s/ζs,ω)1/4

)
(C/2) 2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω√

Sω,s

+(D/2)
(
1 + (Sω,s/ζs,ω)1/4

)
γ‖APMv‖2.

(5.18)

Combining (5.16), (5.18), (5.14), (5.11) and (5.15) now gives

‖v‖2 ≤
(
1 + (Sω,s/ζs,ω)1/4

)
(C/2) 2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω√

Sω,s

+ (D/2)
(
1 + (Sω,s/ζs,ω)1/4

)
γ‖APMv‖2 + 1

ωr+1
‖PM

K v‖1,ω

≤
(
1 + (Sω,s/ζs,ω)1/4

)
(C/2) 2σs,M(PMx)1,ω + ‖PM x̂‖1,ω − ‖PMx‖1,ω√

Sω,s

+
(
(D/2)

(
1 + (Sω,s/ζs,ω)1/4

)
γ
∥∥APM

K

∥∥
1→2 + 1

) ‖PM
K x‖1,ω + ‖PM

K x̂‖1,ω

ωr+1

+
(
1 + (Sω,s/ζs,ω)1/4

)
Dγη

≤
(
1 + (Sω,s/ζs,ω)1/4

)
(C/2) 2σs,M(x)1,ω + ‖x̂‖1,ω − ‖x‖1,ω√

Sω,s

+
(
1 + (Sω,s/ζs,ω)1/4

)
Dγη

Using that x̂ is a minimizer of (5.6) completes the proof. �
5.3. G-RIPL implies weighted rNSPL

Theorem 5.5. Let A ∈ Cm×M and let G ∈ CM×M be invertible. Let M ∈ Nr be sparsity levels, s, t ∈ Nr be 
local sparsities and let ω ∈ Rr be positive weights. Let 0 < ρ < and suppose that A satisfies the G-RIPL of 
order (t, M) with constant 0 < δt,M < 1, where
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tl = min
{
Ml −Ml−1, 2

⌈(
1 + δt,M
1 − δt,M

)
κ(G)2

ρ2ω2
l

Sω,s

⌉}
, for l = 1, . . . , r. (5.19)

Then A satisfies the weighted rNSP in levels of order (s, M) with constants 0 < ρ < 1 and γ =
‖G−1‖2/

√
1 − δ.

Proof. Let x ∈ CM and let Θ = Θ1 ∪ · · · ∪ Θr, where Θl is the set of the largest sl indices of PMl−1
Ml

x in 
absolute value. If tl = Ml−Ml−1, let Tl,0 = {Ml−1+1, . . . , Ml} and let Tl,k = ∅ for k ≥ 1. For tl < Ml−Ml−1
let Tl,0 be the index set of the largest tl/2 values of |PMl−1

Ml
x|, and let Tl,1 be the index set of the next tl/2

largest values and so forth. In the case where there are less than tl/2 values left at iteration k, we let Tl,k

be the remaining indices. Let Tk = T1,k ∪ · · · ∪ Tr,k and let T{0,1} = T0 ∪ T1. Since Θ ⊆ T{0,1} we have

‖xΘ‖2
2 ≤ ‖xT{0,1}‖2

2 ≤ ‖G−1‖2
2‖GxT{0,1}‖2

2 ≤ ‖G−1‖2
2

1 − δ
‖AxT{0,1}‖2

2 (5.20)

where δ = δt,M. Note that

AxT{0,1} = Ax−
∑
k≥2

AxTk
.

Then using the triangle inequality, and that xTk
∈ Σt,M, we get

‖AxT{0,1}‖2
2 = ‖Ax‖2 +

∑
k≥2

‖AxTk
‖2

≤ ‖Ax‖2 +
√

1 + δ
∑
k≥2

‖GxTk
‖2

≤ ‖Ax‖2 +
√

1 + δ‖G‖2
∑
k≥2

‖xTk
‖2.

Set Δ = {l ∈ {1, . . . , r} : tl < Ml −Ml−1} and notice that Tl,k = ∅ for l ∈ {1, . . . , r} \ Δ and k ≥ 1. Thus 
for k ≥ 2 we get

‖xTk
‖2
2 =

∑
l∈Δ

‖xTl,k
‖2
2 ≤

∑
l∈Δ

2‖xTl,k−1‖2
1

tl
=
∑
l∈Δ

2‖xTl,k−1‖2
1ω

2
l

tlω2
l

≤
∑

l∈Δ 2‖xTl,k−1‖2
1,ω

minl∈Δ{ω2
l tl}

≤
2‖xTk−1‖2

1,ω

minl∈Δ{ω2
l tl}

.

Therefore

‖AxT{0,1}‖2 ≤ ‖Ax‖2 +
√

2(1 + δ)‖G‖2√
minl∈Δ{ω2

l tl}
∑
k≥2

‖xTk−1‖1,ω

≤ ‖Ax‖2 +
√

2(1 + δ)‖G‖2√
minl∈Δ{ω2

l tl}
‖xT c

0 ‖1,ω

≤ ‖Ax‖2 +
√

1 + δ‖G‖2

minl∈Δ{ωl

√
tl/2}

‖xΘc‖1,ω.

Combining this with (5.20) results in
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‖xΘ‖2 ≤
√

1 + δ

1 − δ
‖G‖2‖G−1‖2

√
Sω,s

minl∈Δ{ωl

√
tl/2}

‖xΘc‖1,ω√
Sω,s

+ ‖G−1‖2√
1 − δ

‖Ax‖2

≤ρ
‖xΘc‖1,ω√

Sω,s

+ ‖G−1‖2√
1 − δ

‖Ax‖2.

(5.21)

By construction of Θ, we have that ‖xΘ′‖2 ≤ ‖xΘ‖2 and ‖xΘc‖2 ≤ ‖x(Θ′)c‖2 for any Θ′ ∈ Es,M. Combining 
this with Equation (5.21) establishes the weighted rNSPL of order (s, M) with 0 < ρ < 1 and γ =
‖G−1‖2/

√
1 − δ. �

5.4. Proof of Theorem 3.6

Proof of Theorem 3.6. First notice that for 0 < δ ≤ 1/2 we have

1 + δ

1 − δ
≤ 3.

Hence using Theorem 5.5 with 0 < δt,M ≤ δ ≤ 1/2 and ρ =
√

3/2 we see that Equation (5.19) simplifies 
to Equation (3.5). This implies that APM satisfies the weighted rNSPL of order (s, M), with constants 
ρ =

√
3/2 and γ =

√
2‖G−1‖2. Now since

ωr+1 ≥
√
Sω,s(1

3 (1 + (Sω,s/ζs,ω)1/4)−1 + 2
√

2‖APM
K ‖1→2‖G−1‖2)

we know from Theorem 5.4 that any solution x̂ of (3.7) satisfies (3.8) and (3.9). �
5.5. Proof of Theorem 3.7

Proof of Theorem 3.7. We recall that U ∈ B(�2) is an isometry and that

A =

⎡⎢⎢⎢⎢⎣
1/√p1PΩ1UPM

1/√p2PΩ2UPM

...
1/√prPΩr

UPM

⎤⎥⎥⎥⎥⎦ ∈ Cm×M , where pk = mk/(Nk −Nk−1),

and m = m1 + . . . + mr. Note that

‖Ax‖2 − ‖Gx‖2 = 〈(A∗A−G∗G)x, x〉.

Now let

Ds,M,G =
{
η ∈ CM : ‖Gη‖2 ≤ 1, | supp(η) ∩ {Mk−1 + 1, . . . ,Mk}| ≤ sk, k = 1, . . . , r

}
,

and define the following seminorm on CM×M :

‖|B‖|s,M,G := sup
z∈Ds,M,G

|〈Bz, z〉| .

Then we see that

δs,M = ‖|A∗A−G∗G‖|s,M. (5.22)
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Notice also that pk = 1 and Ωk = {Nk−1 + 1, . . . , Nk} for k = 1, . . . , r0. Next notice that the matrix PΩk

can be written as

PΩk
=

mk∑
i=1

etk,i
e∗tk,i

,

where {ei}∞i=1 is the standard basis on �2(N). It now follows that

A∗A =
r∑

k=1

1
pk

PMU∗PΩk
UPM =

r∑
k=1

1
pk

mk∑
i=1

PMU∗etk,i
e∗tk,i

UPM (5.23)

= PMU∗PNr0
UPM +

r∑
k=r0+1

mk∑
i=1

Xk,iX
∗
k,i, (5.24)

where Xk,i are random vectors given by Xk,i = 1√
pk
PMU∗etk,i

. Note that the Xk,i are independent, and 
also that

E(A∗A) = PMU∗PNr0
UPM +

r∑
k=r0+1

mk∑
i=1

E
(
Xk,iX

∗
k,i

)

= PMU∗PNr0
UPM +

r∑
k=r0+1

mk

pk(Nk −Nk−1)

Nk∑
j=Nk−1+1

PMU∗eje
∗
jUPM

= PMU∗PNr0
UPM + PMU∗P

Nr0
Nr

UPM

= PMU∗PNUPM (5.25)

= G∗G, (5.26)

where G ∈ CM×M is non-singular by assumption. Hence, combining this with (5.22) and (5.23), we see that

δs,M =

∥∥∥∥∥
∣∣∣∣∣

r∑
k=r0+1

mk∑
i=1

(
Xk,iX

∗
k,i − E(Xk,iX

∗
k,i)
)∥∥∥∥∥
∣∣∣∣∣
s,M

. (5.27)

Having detailed the setup, the remainder of the proof now follows along very similar lines to that of [17, 
Thm. 3.2]. Hence we only sketch the details.

The first step is to estimate E (δs,M). Using the standard techniques of symmetrization, Dudley’s in-
equality, properties of covering numbers, and arguing as in [17, Sec. 4.2], we deduce that

E (δs,M) ≤ D + D2, D = C1

√
rQ‖G−1‖2

2 log(2m̃) log(2M) log2(2s)
m

, (5.28)

where C1 > 0 is a universal constant, m̃ =
∑r

k=r0+1 mk, and

Q = max
k=r0+1,...,r

r∑
l=1

μk,lsl
pk

. (5.29)

In particular,

E (δs,M) ≤ δ/2,
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provided

C2Q
∥∥G−1∥∥2

2δ
−2r log(2m̃) log(2M) log2(2s) ≤ 1, (5.30)

where C2 > 0 is a universal constant. Using this, Talagrand’s theorem and using the fact that ‖PNUPM‖2 ≤
‖U‖2 = 1 (see [17, Sec. 4.3]) we deduce that

P (δs,M ≥ δ) ≤ exp
(
−3δ2/(8(3 + 7δ)Q

∥∥G−1∥∥2
2)
)
.

In particular,

P (δs,M ≥ δ) ≤ ε,

provided

80
3 Q
∥∥G−1∥∥2

2δ
−2 log(ε−1) ≤ 1.

Combining this with (5.29) and (5.30) now completes the proof. �
5.6. Proof of Corollary 3.8 and Lemma 3.4

Proof of Corollary 3.8. We must ensure that all the conditions are met to be able to apply Theorem 3.6
with PKx.

First notice that for weights ω = (s−1/2
1 , . . . , s−1/2

r , ωr+1) we have Sω,s = r and ζs,ω = 1. Next we note 
that condition (ii) implies that PKx is a feasible point since ‖HPKx − ỹ‖2 ≤ ‖HP⊥

Kx‖2 + ‖e1‖2 ≤ η + η′.
Let G =

√
PMU∗PNUPM . Combining condition (i) and Lemma 3.4 gives ‖G−1‖2 ≤ 1/

√
θ and since 

‖G‖2 ≤ 1 we also have κ(G) = ‖G‖2‖G−1‖2 ≤ 1/
√
θ. Inserting the above equalities and inequalities into 

the weight condition for ωr+1 in Theorem 3.6 gives condition (iii).
Next we must ensure that APM satisfies the G-RIPL of order (t, M) with δt,M ≤ 1/2 where

tl = min
{
Ml −Ml−1, 2

⌈
4θ−1rsl

⌉}
. (5.31)

According to Theorem 3.7 this occurs with probability 1 − ε if the mk’s satisfy condition (iv). The error 
bounds (3.14) and (3.15) now follows directly from Theorem 3.6. �
Proof of Lemma 3.4. First notice that the balancing property is equivalent to requiring

σM (PNUPM ) ≥
√
θ (5.32)

where σM (PNUPM ) is the Mth largest singular value of PNUPM . Indeed, since U is an isometry, the matrix 
PM − PMU∗PNUPM is nonnegative definite, and therefore

‖PMU∗PNUPM − PM‖2 = sup
x∈CM ,‖x‖2≤1

〈(PM − PMU∗PNUPM )x, x〉 (5.33)

= sup
x∈CM ,‖x‖2≤1

(‖PMx‖2 − ‖PNUPMx‖2) (5.34)

= 1 − inf
x∈CM ,‖x‖2=1

‖PNUPMx‖2 (5.35)

This gives (5.32). Next let G =
√
PMU∗PNUPM and notice that σM (G) = σM (PNUPM ). This gives 

‖G−1‖2 = 1/σM (G) ≤ 1/
√
θ. �



B. Adcock et al. / Appl. Comput. Harmon. Anal. 55 (2021) 1–40 31
6. Proofs of results in Section 4

In Section 4 we found concrete recovery guarantees for the Walsh sampling and wavelet reconstruction, 
using the theorems in Section 3. The key to deriving Walsh-wavelet recovery guarantees boils down to 
estimating the quantities μk,l, ||HPM

K ||1→2 and ||G−1||2 ≤ 1√
θ
. All of these quantities depend directly on 

U = [Bwh, BJ0,ν
wave], and to control them we have to estimate how the entries of U changes for varying 

n, j, k and s. We therefore start this section by setting up notation for wavelets on the interval and stating 
some useful properties of Walsh functions. Then in Section 6.3 and 6.4 we will estimate μk,l, followed by a 
discussion of the sharpness of this estimate for ν = 2 in Section 6.5. We will then finish in Section 6.6 by 
estimating ||HPM

K ||1→2, show how θ scales for varying M and N , and prove Theorem 4.7 and 4.8.

6.1. Wavelets on the interval and regularity

In section 4.2 we introduced orthogonal wavelets on the real line, but we did not make any formal 
definitions of the wavelets we used at the boundaries of the interval [0, 1). Next we consider the two boundary 
extensions, periodically and boundary wavelets. To simplify the exposition we define the following sets

Λν,j,left := {0, . . . , ν − 1}, Λν,j,mid := {ν, . . . , 2j − ν − 1},
Λν,j,right := {2j − ν, . . . , 2j − 1} Λj = Λν,j,left ∪ Λν,j,mid ∪ Λν,j,right

At each scale j ≥ J0, the periodic wavelet basis consists of the usual wavelets and scaling functions ψj,k, 
φj,k for k ∈ Λν,j,mid and the periodic extended functions φper

j,k and ψper
j,k for k ∈ Λν,j,left ∪Λν,j,right. These are 

defined as

φper
j,k := φj,k|[0,1)+φj,2j+k|[0,1) for k ∈ Λν,j,left (6.1)

φper
j,k := φj,k−2j |[0,1)+φj,k|[0,1) for k ∈ Λν,j,right (6.2)

and similarly for ψper
j,k . Strictly speaking we could have defined these periodic extensions only for k =

0, . . . , ν − 2 and k = 2j − ν + 1, . . . , 2j − 1, but to unify the notation for both boundary extensions we have 
chosen the former.

Next we have the boundary wavelet basis with ν vanishing moments. This wavelet basis consists of the 
same interior wavelets as the periodic basis, but with 2ν boundary scaling and wavelet functions.

φleft
k , φright

k , ψleft
k , ψright

k , for k = 0, . . . , ν − 1.

As for the interior functions we also define the scaled versions as

φleft
j,k (x) := 2j/2φleft

k (2jx), φright
j,k (x) := 2j/2φright

k (2jx),
ψleft
j,k (x) := 2j/2ψleft

k (2jx), ψright
j,k (x) := 2j/2ψright

k (2jx).
(6.3)

The names ‘left’ and ‘right’ correspond to the support of these functions. That is

suppφleft
j,k = suppψleft

j,k = [0, 2−j(ν + k)]

suppφright
j,k = suppψright

j,k = [2−j(2j − ν − k), 1]

for k = 0, . . . , ν − 1.
In the following we shall see that all of our results holds for both periodic and boundary wavelets, but 

their treatment in some of the proofs differs slightly. To make the treatment as unified as possible we make 
the following definition.
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Table 1
The Lipschitz regularity of Daubechies 
wavelets with ν vanishing moments. See [34, 
Page 239].
ν 2 3 4
α 0.55 1.08 1.61

Definition 6.1. We say that φs
j,k, s ∈ {0, 1} “originates from a periodic wavelet” if

φ0
j,k :=

⎧⎪⎪⎨⎪⎪⎩
φper
j,k for k ∈ Λν,j,left

φj,k for k ∈ Λν,j,mid

φper
j,k for k ∈ Λν,j,right

, φ1
j,k :=

⎧⎪⎪⎨⎪⎪⎩
ψper
j,k for k ∈ Λν,j,left

ψj,k for k ∈ Λν,j,mid

ψper
j,k for k ∈ Λν,j,right

.

We say that φs
j,k “originates from a boundary wavelet” if

φ0
j,k :=

⎧⎪⎪⎨⎪⎪⎩
φleft
j,k for k ∈ Λν,j,left

φj,k for k ∈ Λν,j,mid

φright
j,2j−1−k for k ∈ Λν,j,right

, φ1
j,k :=

⎧⎪⎪⎨⎪⎪⎩
ψleft
j,k for k ∈ Λν,j,left

ψj,k for k ∈ Λν,j,mid

ψright
j,2j−1−k for k ∈ Λν,j,right

.

With these functions defined now for both boundary extensions, the definition of BJ0,ν
wave is also clear. Next 

we make a note on the regularity of these orthogonal wavelets.

Definition 6.2. Let α = k + β, where k ∈ Z+ and 0 < β ≤ 1. A function f : R → R is said to be 
uniformly Lipschitz α if f is k-times continuously differentiable and for which the kth derivative f (k) is 
Hölder continuous with exponent β, i.e.,

|f (k)(x) − f (k)(y)| < C|x− y|β , ∀x, y ∈ R

for some constant C > 0.

Generally we shall be interested in wavelets which are uniformly Lipschitz α ≥ 1. For ν = 1 we have the 
discontinuous Haar wavelet which is not uniformly Lipschitz. For ν = 2, 3, 4 we have the values of α found 
in Table 1. As can be seen from the table, we have α ≥ 1 for ν = 3 and ν = 4.

To show that α ≥ 1 also for ν = 5, 6, 7, . . ., we can use the following argument. Let q > 0 and recall that 
Ff denotes the Fourier transform of f ∈ L2(R). A well-known fact is that if |Ff(t)| � (1 + |t|)1−q for all 
t ∈ R, then f is uniformly Lipschitz with constant α for any α < q [34, Page 216]. For orthonormal wavelets 
with minimal compact support, as considered in this paper, it can be shown (see [34, Eq. (7.1.23)]) that q
is exactly equal to

q = ν − 1 −
log |Pν(3

4 )|
2 log 2 where Pν(t) =

ν−1∑
n=0

(
ν − 1 + n

n

)
tn.

Moreover, we have that ν−1/23ν−1 ≤ Pν(3/4) ≤ 3ν−1 (see [34, Page 226]), so that a lower bound for q is 
q ≥ ν − 1 − (ν − 1) log 3/(2 log 2) = (ν − 1)(1 − log 3/(2 log 2)) ≥ 0.205 · (ν − 1). This implies that q > 1 for 
ν ≥ 6. For ν = 5 it can be shown by direct calculation of P5(3/4), that q ≈ 1.17 (see also [34, Table at p. 
226]).

There are several ways of estimating the regularity α of Daubechies wavelets and the values for α in 
Table 1 are estimated using a different argument. See [34, Chap. 7] for an in-depth treatment of this topic.
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We end this paragraph by noticing that each of the boundary functions φleft
k , φright

k and ψleft
k , φright

k are 
constructed as finite linear combinations of the interior scaling function φ and wavelet ψ. Thus all of these 
boundary functions have the same regularity as φ and ψ.

6.2. Properties of Walsh functions

Definition 6.3. For x, y ∈ [0, 1), write x =
∑∞

i=1 xi2−i and y =
∑∞

i=1 yi2−i for xi, yi ∈ {0, 1}. We define

x⊕ y :=
∞∑
i=1

(xi ⊕ yi)2−i

where xi ⊕ yi := |xi − yi|.

Proposition 6.4. For j, m, n ∈ Z+ and x, y ∈ [0, 1), the Walsh function satisfies the following properties

1∫
0

wn(x)wm(x) dx =
{

1 if m = n

0 otherwise
(6.4)

wn(x⊕ y) = wn(x)wn(y) (6.5)

wn(2−jx) = w�n/2j�(x) (6.6)

Proof. Equation (6.5) and (6.4) can be found in any standard text on Walsh functions e.g., [33], whereas 
the last follows by inserting j zeros in front of x’s dyadic expansion. �

Next we prove a short lemma which will be useful later.

Lemma 6.5. For n ∈ N, let p ≥ 0 be an integer such that 2p ≤ n < 2p+1. Denote the interval Δk,r =
[2−rk, 2−r(k + 1)) for k ∈ {0, . . . , 2r − 1}, r ∈ Z+. Then wn is constant on each of the intervals Δk,p+1, 
k ∈ {0, . . . , 2p+1 − 1}, and for each pair of intervals (Δ2k,p+1, Δ2k+1,p+1) k ∈ {0, . . . , 2p − 1}, wn attains 
the value 1 on exactly one of them and −1 on the other. w0 is constant equal to 1 on all of [0, 1).

Proof. Let x, z ∈ [0, 1) and n ∈ N have binary representations (xi)i∈N , (zi)i∈N and (ni)i∈N , respectively, 
and recall that

wn(x) = (−1)
∑∞

j=1(nj+nj+1)xj . (6.7)

Since 2p ≤ n < 2p+1, we know that np+1 = 1 and ni = 0 for i > p + 1. Let k ∈ {0, . . . , 2p − 1} and 
notice Δk,p = Δ2k,p+1 ∪ Δ2k+1,p+1. We also notice that all x ∈ Δk,p have the same p first binary digits 
and that if x ∈ Δ2k,p+1, then xp+1 = 0, whereas for x ∈ Δ2k+1,p+1 we have xp+1 = 1. For x, z ∈ Δk,p+1, 
k ∈ {0, . . . , 2p+1 − 1}, we then have xi = zi for i = 1, . . . , p + 1, which implies that wn is constant 
on Δk,p+1 since ni = 0 for i > p + 1. Furthermore, we know that the sum in (6.7), contains the term 
(np+1 + np+2)xp+1 = (1 + 0)xp+1. Since xp+1 = 0 for x ∈ Δ2k,p+1 and xp+1 = 1 for x ∈ Δ2k+1,p+1, 
k ∈ {0, . . . , 2p − 1}, it follows that wn have different sign on the two intervals. That w0 ≡ 1 follows 
immediately. �
6.3. Bounding the inner product |〈φs

j,k, wn〉|

The entries in U = [Bwh, BJ0,ν
wave], consist of 〈φs

j,k, wn〉 for different values of j, ks and n. Thus in order to 
determine the local coherences we need to find a upper bound of this inner product. Next we derive such 
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a bound for ν ≥ 2 vanishing moments and discuss its sharpness. For ν = 1 we determine the magnitude of 
each matrix entry explicitly.

Lemma 6.6. Let wn ∈ Bwh and let φs
j,k ∈ BJ0,ν

wave for ν ≥ 2. For j ≥ J0, s ∈ {0, 1} and k ∈ Λj we have

∣∣〈φs
j,k, wn

〉∣∣ ≤ 2−j/22ν max
l∈Γk

{∣∣∣W [
φs(· + l)

∣∣
[0,1)

] (⌊ n
2j
⌋)∣∣∣} (6.8)

where

Γk =

⎧⎪⎪⎨⎪⎪⎩
{0, . . . , ν + k − 1} for k ∈ Λν,j,left;
{−ν + 1, . . . , ν − 1} for k ∈ Λν,j,mid;
{k − ν + 1, . . . , 2j − 1} for k ∈ Λν,j,right.

and

φs =

⎧⎪⎪⎨⎪⎪⎩
φleft
k if k ∈ Λν,j,left

φ if k ∈ Λν,j,mid

φright
2j−1−k if k ∈ Λν,j,right

, for s = 0 and φs =

⎧⎪⎪⎨⎪⎪⎩
ψleft
k if k ∈ Λν,j,left

ψ if k ∈ Λν,j,mid

ψright
2j−1−k if k ∈ Λν,j,right

, for s = 1

if φs
j,k originates from a boundary wavelet and

Γk = {−ν + 1, . . . , ν − 1}, φs = φ for s = 0 and φs = ψ for s = 1

if φs
j,k originates from a periodic wavelet.

Proof. First notice that for any x ∈ [0, 1) and k ∈ {0, 1, . . . , 2j − 1} we have

x

2j + k

2j =
∞∑
i=j

xi−j+12−i−1 +
j∑

i=1
ki2−j−1+i

=
∞∑
i=j

xi−j+12−i−1 ⊕
j∑

i=1
ki2−j−1+i = x

2j ⊕ k

2j .

(6.9)

Next, we consider the interior wavelets φs
j,k, i.e., k ∈ Λν,j,mid. We start by noticing that for k ∈ Λν,j,mid, 

supp(φs
j,k) = [2−j(−ν+1 +k), 2−j(ν+k)] and k+l ∈ {0, . . . , 2j−1} for k ∈ Λν,j,mid and l ∈ {−ν+1, . . . , ν−1}. 

Combining this and Equations (6.9) and (6.5) we get

〈
φs
j,k, wn

〉
=

1∫
0

φs
j,k(x)wn(x) dx

=
2−j(ν+k)∫

2−j(−ν+1+k)

2j/2φs(2jx− k)wn(x) dx

= 2−j/2
ν∫

φs (x)wn

(
x + k

2j

)
dx
−ν+1
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= 2−j/2
ν−1∑

l=−ν+1

1∫
0

φs (x + l)wn

(
x + l + k

2j

)
dx (6.10)

= 2−j/2
ν−1∑

l=−ν+1

1∫
0

φs (x + l)wn

(
x

2j ⊕ l + k

2j

)
dx

= 2−j/2
ν−1∑

l=−ν+1

wn

(
l + k

2j

) 1∫
0

φs (x + l)wn

( x

2j
)

dx

= 2−j/2
ν−1∑

l=−ν+1

wn

(
l + k

2j

)
W
[
φs

0,−l

∣∣
[0,1)

] (⌊ n
2j
⌋)

Taking the absolute value and using the triangle inequality now gives

|
〈
φs
j,k, wn

〉
| ≤ 2−j/22ν max

l∈Γk

{∣∣∣W [
φs(· + l)

∣∣
[0,1)

] (⌊ n
2j
⌋)∣∣∣}

The key in the above argument is to restrict the integral to the support of φs
j,k, perform a change of variable 

and then apply Equation (6.9) to introduce the ⊕ operator. That suppφs
j,k ⊂ [0, 1] ensures that we can 

apply Equation (6.9) also for k ∈ Λν,j,left ∪ Λν,j,right. The wavelets on the boundaries are therefore handled 
in the same manner. We note that the factor 2ν remains the same also for these wavelets since their support 
will be an interval or the union of two intervals, with total length at most 2ν in both cases. �
Lemma 6.7 ([38]). Let f : [0, 1) → R be uniformly Lipschitz 0 < α ≤ 1. Then

|Wf(n)| =

∣∣∣∣∣∣
1∫

0

f(x)wn(x) dx

∣∣∣∣∣∣ � (n + 1)−α

for n ∈ Z+.

Proof. This lemma follows from Lemma 6.2 in [38]. For completeness of this paper we redo the main steps. 
Suppose n �= 0 and let p ≥ 0 be an integer be such that 2p ≤ n < 2p+1. For convenience we denote the 
interval Δk,p := [2−pk, 2−p(k + 1)). Due to the Lipschitz regularity we know that there exits a constant 
C > 0 such that f(x) ≤ f(t) + C|t − x|α for all x, t ∈ [0, 1). Hence, for each k ∈ {0, . . . , 2p − 1} we have

sup
x∈Δk,p

f(x) ≤ f(2−pk + 2−(p+1)) + C2−(p+1)α

sup
x∈Δk,p

−f(x) ≤ −f(2−pk + 2−(p+1)) + C2−(p+1)α

Next notice that Δk,p = Δ2k,p+1 ∪ Δ2k+1,p+1. From Lemma 6.5 we know that on each interval Δk,p, wn is 
constant equal to 1 on one of the subintervals Δ2k,p+1, Δ2k+1,p+1, and equal to −1 on the other. Hence∣∣∣∣∣∣∣

∫
Δk,p

f(x)wndx

∣∣∣∣∣∣∣ ≤ 2−p
∣∣∣(f(2−pk + 2−(p+1))C2−(p+1)α

)
+
(
−f(2−pk + 2−(p+1)) + C2−(p+1)α

)∣∣∣
≤ C2−p−pα.

Thus we get
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|Wf(n)| ≤
2p−1∑
k=0

∣∣∣∣∣∣∣
∫

Δk,p

f(x)wndx

∣∣∣∣∣∣∣ ≤ C2−pα ≤ 2C
(n + 1)α

as desired. �
Theorem 6.8. Let φs

l,t ∈ BJ0,ν
wave with ν ≥ 3 and let wn ∈ Bwh. For l ≥ J0 and 2k ≤ n < 2k+1 with k ∈ Z+, 

we have

|
〈
φs
l,t, wn

〉
|2 � 2−k2−|l−k|

for all t ∈ Λl and s ∈ {0, 1}. For n = 0 the bound hold with k = 0.

Proof. Recall from the discussion at the end of Section 6.1, that for ν ≥ 3 the Lipschitz regularity α of ψ
and φ is lower bounded by α ≥ 1. Moreover, the same hold for all boundary functions, since these are finite 
linear combinations of ψ and φ. Thus, it is clear that φs

l,t has regularity α if ψ and φ have it, regardless of 
boundary extension.

To obtain the bound above, we combine Lemma 6.6 and Lemma 6.7 with α = 1. This gives

∣∣〈φs
l,t, wn

〉∣∣2 ≤ 2−l4ν2 max
a∈Γt

{∣∣∣W [
φs(· + a)

∣∣
[0,1)

] (⌊ n
2l
⌋)∣∣∣2} (6.11)

� 2−l 1
(
⌊
n
2l

⌋
+ 1)2

≤ 2−l 1
(�2k−l� + 1)2 ≤ 2−k2−|l−k| (6.12)

where Γt is as in Lemma 6.6, and depends on the boundary extension. �
Theorem 6.9. Let wn ∈ Bwh and let φs

l,t ∈ BJ0,1
wave for l ≥ J0 and t ∈ Λl. Then

|
〈
φ0
l,t, wn

〉
|2 =

{
2−l if n < 2l

0 otherwise

|
〈
φ1
l,t, wn

〉
|2 =

{
2−l if 2l ≤ n < 2l+1

0 otherwise
.

Proof. These equalities can be found in either [38] or [39, Lemmas 1 and 2]. �
6.4. Proofs of Proposition 4.5, 4.10 and 4.11

Using the above results we are now able to determine the local coherences of U = [Bwh, BJ0,ν
wave].

Proof of Proposition 4.5. We use the bound found in Theorem 6.8. Recall that M = [2J0+1, . . . , 2J0+r] and 
N = [2J0+1, . . . , 2J0−1+r, 2J0+r+q]. For fixed l ∈ {1, . . . , r} and k ∈ {2, . . . , r} we have

μk,l = max
{
|
〈
φs
J0−1+l,t, wn

〉
|2 :

Nk−1≤n<Nk

t∈ΛJ0−1+l,s∈{0,1}, if l=1
s=1 if l>1

}
,

� 2−(J0−1+k)2−|(J0−1+l)−(J0−1+k)| � 2−J0−k2−|l−k|.

For l ∈ {1, . . . , r} and k = 1 we have N0 = 0. This gives
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μk,l = max
{
|
〈
φs
J0−1+l,t, wn

〉
|2 :

0≤n<N1
t∈ΛJ0−1+l,s∈{0,1}, if l=1

s=1 if l>1

}
,

� 2−(J0−1+l) � 2−J0−k2−|l−k|. �
Proof of Proposition 4.10. Since both BJ0,1

wave and Bwh are orthonormal, U = [Bwh, BJ0,1
wave] is an isometry on 

�2(N), i.e., U∗U = I ∈ B(�2(N)). Let N = 2k for some k ∈ N with k ≥ J0 + 1. Using Theorem 6.9 we see 
that

P⊥
NUP ∗

N =
{〈

φs
j,t, wn

〉
:

n≥2k

s=1,J0≤j<k,t∈Λj , or
s=0,j=J0,t∈ΛJ0

}
= 0.

Next, for clarity, let PN = PN
N ∈ B(�2(N)) and interpret PN : �2(N) → CN . This gives

(PNUP ∗
N )∗(PNUP ∗

N ) = PNU∗P ∗
NPNUP ∗

N = PNPN
N U∗PN

N UPN
N P ∗

N

= PNPN
N P ∗

N = I ∈ CN×N . �
Proof of Proposition 4.11. We use the bound found in Theorem 6.9. Recall that M = N = [2J0+1, . . . , 2J0+r]. 
For fixed k, l ∈ {1, . . . , r} we have that

μk,l = max
{
|
〈
φs
J0−1+l,t, wn

〉
|2 :

Nk−1≤n<Nk

t∈ΛJ0−1+l,s∈{0,1}, if l=1,
s=1 if l>1

}

=
{

2−J0−l+1 if l = k

0 otherwise
. �

6.5. About the sharpness of the local coherence bounds

As can be seen from Proposition 4.11, the coherence bounds for ν = 1 are sharp. However, for ν ≥ 2, 
we have not discussed their sharpness. In fact, none of the results in this paper consider the case for ν = 2
vanishing moments. The reason for this is that these wavelets have a Lipschitz regularity α ≈ 0.55, which 
means that the bound in Theorem 6.8 would have less rapid decay if we had included these wavelets in the 
theorem. To simplify the presentation we have chosen to exclude them.

We will argue that Theorem 6.8 does not seem to extend to wavelets with ν = 2 vanishing moments. Let 
M = N = [2J0+1, . . . , 2J0+r] and U = [Bwh, BJ0,ν

wave] for ν ≥ 2. Notice that setting ν = 2 does only affect the 
local coherence estimates μk,l for k ≥ l. For k < l, the local coherences are unaffected by the regularity of 
the wavelet. This follows from Lemma 6.6, by using that |W[φs(· + l)](0)| ≈ 1. Next consider the case where 
k ≥ l, then Theorem 6.8 suggests that μk,l/μk+1 ≈ 4 for ν ≥ 3.

We now consider Table 2 and notice that for ν = 2, all of the 18 entries in Table 2 have values less than 
4. This suggest that the bound in Theorem 6.8 does not extend to the case of ν = 2 vanishing moments. 
From the same table we also observe that for ν = 4, the bound in Theorem 6.8 seem to be quite sharp. 
While there are a few entries that are less than 4, most are very close, if not larger than this value.

6.6. Proofs of remaining results in Section 4

Proof of Proposition 4.4. This proposition is a consequence of Theorem 1.1 in [37]. The mentioned theorem 
is only stated for the boundary wavelets preserving vanishing moments. We start this proof by showing how 
Theorem 1.1 in [37] implies the desired result. We then comment on how to extend Theorem 1.1 to periodic 
wavelets as well.
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Table 2
Left: Fraction between the local coherences for U = [Bwh, B3,2

wave] and M = N =
[24, . . . , 211]. Right: Fraction between the local coherences for U = [Bwh, B4,4

wave] and 
M = N = [25, . . . , 212].

μk,l/μk+1,l l = 1 l = 2 l = 3
k = 2 3.017
k = 3 2.532 1.854
k = 4 3.292 2.532 1.846
k = 5 3.653 3.293 2.534
k = 6 3.828 3.653 3.293
k = 7 3.914 3.828 3.654
k = 8 3.957 3.914 3.828

μk,l/μk+1,l l = 1 l = 2 l = 3
k = 2 4.342
k = 3 6.160 3.439
k = 4 3.643 6.202 3.503
k = 5 4.060 3.639 6.286
k = 6 3.961 4.064 3.632
k = 7 4.004 3.960 4.070
k = 8 3.996 4.004 3.960

Let SN = span {wn : n = 0, . . . , N − 1} and RM be the span of the M first functions in BJ0,ν
wave. The 

subspace cosine angle between SN and RM is defined as

cos(ω(RM ,SN )) = inf
f∈RM ,‖f‖=1

‖PSN
f‖ where ω(RM ,SN ) ∈ [0, π/2],

and PSN
is the projection operator onto SN . As both Bwh and BJ0,ν

wave are orthonormal bases, the synthesis 
and analysis operators are unitary. We therefore have

inf
f∈RM ,‖f‖=1

‖PSN
f‖ = inf

x∈CM ,‖x‖2=1
‖PNUPMx‖2. (6.13)

Furthermore notice that by Equation (5.35) and the definition of the balancing property, we have

cos(ω(RM ,SN )) = inf
x∈CM ,‖x‖2=1

‖PNUPMx‖2 ≥ θ, (6.14)

if and only if U satisfies the balancing property with constant θ ∈ (0, 1) for N and M . Note that (6.14) is 
equivalent to 1/ cos(ω(RM , SN )) ≤ 1/θ, where 1/θ > 1. Next for M ∈ N and γ > 1 we define the stable 
sampling rate as

Θ(M,γ) = min(N ∈ N : 1/ cos(ω(RM ,SN )) < γ).

We have thus shown that U satisfies the balancing property with constant θ ∈ (0, 1) for N and M if and 
only if N ≥ Θ(M, θ−1).

Rearranging the terms we see that if N , M satisfy the stable sampling rate of order γ = 1/θ > 1 then U
satisfies the balancing property with constant θ for N and M .

Theorem 1.1 in [37] states that for M = 2r, r ∈ N and for all γ > 1 there exists a constant Sγ > 1
(dependent on γ, but not on M), such that whenever N ≥ SγM , then 1/ cos(ω(RM , SN )) < γ. Therefore, 
we have the relation Θ(M, γ) ≤ SγM = O(M). Hence if q =

⌈
log2 S1/θ

⌉
we see that the proposition holds 

with N = 2k+q ≥ S1/θ2k > 2k = M .
Next, we comment on how Theorem 1.1 in [37] can be extended to periodic wavelets. We start by noticing 

that in Equation (4.7) in [37], the inner product 〈φs
j,k, wn〉 is split in the same way as we do in Equation 

(6.10). Thus, replacing the boundary wavelets with periodic wavelets results in a slightly different outer 
sum indices. Next, we follow the computations in the proof, with slightly different indices, until we reach 

Equation (4.15). Since we only consider periodic extensions, the proof simplifies, since all φ̂i

W
in the proof 

will now be pieces of the scaling function alone and not scaling function and scaling boundary functions. 
Hence inequality in Equation (4.15) in [37] still holds for periodic wavelets. The remaining parts of the proof 
of Theorem 1.1. in [37] is identical. �
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Proof of Proposition 4.6. Using Theorem 6.8, we see that μ(PNUP⊥
K ) � K−1. This gives

‖HP⊥
Kx‖2

2 =
r∑

k=1

Nk −Nk−1

mk

∑
i∈Ωk

∣∣∣∣ ∑
j>K

Uijxj

∣∣∣∣2

≤
r∑

k=1

Nk −Nk−1

mk

∑
i∈Ωk

(∑
j>K

√
μ(PNUP⊥

K )|xj |
)2

≤
r∑

k=1

(Nk −Nk−1)μ(PNUP⊥
K )
(∑

j>K

|xj |
)2

≤ Nμ(PNUP⊥
K )
(∑

j>K

|xj |
)2

� N

K
‖x‖2

1. �

Proof of Theorem 4.7. First recall that M = [2J0+1, . . . , 2J0+r] and N = [2J0+1, . . . , 2J0+r−1, 2J0+r+q]
where q ≥ 0 is chosen so that U satisfies the balancing property with constant 0 < θ < 1. From Lemma 3.4
we therefore have ‖G−1‖2 ≤ 1/

√
θ.

From Theorem 3.7 we know that the matrix A in equation (3.12) satisfies the G-RIPL with δs,M ≤ δ, with 
probability at least 1 − ε, provided the sample densities m ∈ Nr satisfy mk = Nk −Nk−1 for k = 1, . . . , r0, 
and

mk � δ−2 · ‖G−1‖2
2 · (Nk −Nk−1) ·

( r∑
l=1

μk,l · sl
)
· L, (6.15)

for k = r0 + 1, . . . , r. Next notice that Nk − Nk−1 = 2J0+k−1 for k = 2, . . . , r − 1, while Nr − Nr−1 =
2J0+r(2q − 2−1) and N1 −N0 = 2J0+1. Using the local coherences μk,l from Proposition 4.5 we obtain

(Nk −Nk−1)
( r∑

l=1

μk,lsl

)
� 2J0+k2q max{k+1−r,0}

( r∑
l=1

2−J0−k2−|l−k|sl

)

= 2q max{k+1−r,0}
( r∑

l=1

2−|k−l|sl

)
.

Inserting this and ‖G−1‖2
2 ≤ θ−1 into (6.15) leads to the sampling condition in Theorem 4.7. �

Proof of Theorem 4.8. The theorem is identical to Corollary 3.8, except that we have fixed M and N. The 
concrete values for these have been inserted in condition (iv) together with the local coherences μk,l. The 
computation of this can be found in the proof above. �
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