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PARAMETER ROBUST PRECONDITIONING BY CONGRUENCE
FOR MULTIPLE-NETWORK POROELASTICITY\ast 
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Abstract. The mechanical behavior of a poroelastic medium permeated by multiple interacting
fluid networks can be described by a system of time-dependent partial differential equations known as
the multiple-network poroelasticity (MPET) equations or multiporosity/multipermeability systems.
These equations generalize Biot's equations, which describe the mechanics of the one network case.
The efficient numerical solution of the MPET equations is challenging, in part due to the complex-
ity of the system and in part due to the presence of interacting parameter regimes. In this paper,
we present a new strategy for efficiently and robustly solving the MPET equations numerically. In
particular, we discuss an approach to formulating finite element methods and associated precondi-
tioners for the MPET equations based on simultaneous diagonalization of the element matrices. We
demonstrate the technique for the multicompartment Darcy equations, with large exchange variabil-
ity, and the MPET equations for a nearly incompressible medium with large exchange variability.
The approach is based on designing transformations of variables that simultaneously diagonalize (by
congruence) the equations' key operators and subsequently constructing parameter-robust block diag-
onal preconditioners for the transformed system. The proposed approach is supported by theoretical
considerations as well as by numerical results.
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1. Introduction. In this paper, we consider the preconditioned iterative solu-
tion of finite element discretizations of the multiple-network poroelasticity (MPET)
equations. These equations traditionally originate in geomechanics where they are
also known under the term multiporosity/multipermeability systems [1]. The MPET
equations generalize Biot's equations [2] from the one network to the multiple net-
work case, and multicompartment Darcy (MPT) equations [19] from a porous (but
rigid) to a poroelastic medium. Over the last decade, the MPT and MPET equations
have seen a surge of interest in biology and physiology, e.g., to model perfusion in the
heart [19, 14], brain [13], liver [3], or in cancer [25], or to model the interaction between
elastic deformation and fluid flow and transport in the brain [5, 6, 21, 28, 29, 30].

Concretely, the quasi-static MPET equations read as follows [1]: for a given
number of networks J \in \BbbN , find the displacement u and the network pressures pj for

\ast Submitted to the journal's Computational Methods in Science and Engineering section March
23, 2020; accepted for publication (in revised form) April 14, 2021; published electronically August
4, 2021.

https://doi.org/10.1137/20M1326751
Funding: The work of the second author was supported by the European Research Council

under the European Union's Seventh Framework Programme (FP7/2007-2013) ERC grant agreement
339643. The work of the third, fourth, and fifth authors was supported by the Research Council
of Norway under the FRINATEK Young Research Talents Programme through project 250731/F20
(Waterscape).
\dagger Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway (eleonora@simula.no).
\ddagger Department of Mathematics, Baylor University, One Bear Place \# 97328, Waco, TX 78798 USA

(jeonghun lee@baylor.edu).
\S Simula Research Laboratory, Norway. Current address: Mathematical Institute, Oxford Univer-

sity, Oxford, United Kingdom (thompsont@maths.ox.ac.uk).
\P Department of Mathematics, University of Oslo, P. O. Box 1053 Blindern, 0316 Oslo, Norway

and Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway (kent-and@simula.no).
\| Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway (meg@simula.no).

B984

D
ow

nl
oa

de
d 

02
/0

4/
22

 to
 5

1.
17

5.
74

.1
29

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/20M1326751
mailto:eleonora@simula.no
mailto:jeonghun_lee@baylor.edu
mailto:thompsont@maths.ox.ac.uk
mailto:kent-and@simula.no
mailto:meg@simula.no


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST PRECONDITIONER FOR MPET B985

Table 1
Sample parameter values for hydraulic conductivities and exchange coefficients with reference

to (1.1), and/or (1.2).

Parameter Unit Value Reference

Hydraulic conductivities (Kj) mm2 (kPa s) - 1

Brain gray matter 2.0\times 10 - 3 [27]
Brain white matter 2.0\times 10 - 2 [27]
Cardiac arteries 1.0 [19]
Cardiac capillaries 2.0 [19]
Cardiac veins 10.0 [19]
Brain vasculature 3.75\times 101 [30]
Brain fluid exchange 1.57\times 10 - 2 [30]

Exchange coefficients (\xi j\rightarrow i) (kPa s) - 1

Brain capillary--vasculature 1.5\times 10 - 16 [30]
Brain capillary--tissue fluid 2.0\times 10 - 16 [30]
Brain tissue fluid--veins 2.0\times 10 - 10 [30]
Cardiac capillary--arteries 2.0\times 10 - 2 [19]
Cardiac capillary--veins 5.0\times 10 - 2 [19]

j = 1, . . . , J such that

 - div(2\mu \varepsilon (u) + \lambda div u\BbbI ) +
\sum 

j \alpha j \nabla pj = f,(1.1a)

sj \.pj + \alpha j div \.u - divKj \nabla pj +
\sum 

i \xi j\leftarrow i(pj  - pi) = gj ,(1.1b)

where u = u(x, t), pj = pj(x, t) for x \in \Omega \subset \BbbR d (d = 1, 2, 3), t \in (0, T ], and \BbbI is the d\times d
identity matrix. Physically, (1.1) describe a porous and elastic medium permeated
by a number of fluid networks under the assumptions that the solid matrix can be
modeled as isotropic and linearly elastic with Lam\'e constants \mu > 0 and \lambda > 0, and the
transfer between the networks is regulated by the corresponding pressure differences
with exchange coefficients \xi j\leftarrow i \geq 0. For each network j, we define the Biot--Willis
coefficient \alpha j \in (0, 1] such that

\sum 
j \alpha j \leq 1, the storage coefficient sj > 0, and the

hydraulic conductivity tensor Kj = \kappa j/\nu j > 0 with \kappa j and \nu j being the permeability
and fluid viscosity, respectively. Moreover, \nabla denotes the column-wise gradient, \varepsilon 
is the symmetric gradient, div denotes the (rowwise) divergence, the superposed dot
denotes the time derivative(s), and I denotes the identity matrix. On the right-hand
side, f represents body forces and gj sources (or sinks) in network j for j = 1, . . . , J .

The MPT equations represent a reduced version of (1.1) that results from ignoring
the elastic contribution of the solid matrix. These equations then read as follows: for
a given number of networks J \in \BbbN , find the network pressures pj for j = 1, . . . , J such
that

(1.2)  - divKj \nabla pj +
\sum J

i=1 \xi j\leftarrow i(pj  - pi) = gj ,

where for i, j = 1, . . . , J , pj = pj(x) for x \in \Omega \subset \BbbR d (d = 1, 2, 3), the parameters Kj

and \xi j\leftarrow i remain the hydraulic conductivity and exchange coefficients, respectively,
and gj again represents other sources (or sinks) in each network. The relative size of
the conductivities Kj and the exchange coefficients \xi j\leftarrow i may vary tremendously in
applications. Large parameter variation is certainly present in applied problems of
a physiological nature; a selection of representative parameter values, from research
literature, is given in Table 1. Here, we see that the hydraulic conductivities span four
orders of magnitude while the exchange coefficients span fourteen orders of magnitude.
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B986 PIERSANTI ET AL.

Hence, there is a need for preconditioners that are robust with respect to variations in
parameters. Physiological applications, in particular, can benefit from preconditioners
which are robust with respect to Kj , \xi j\leftarrow i, and \lambda as in (1.1) and (1.2).

With this in mind, parameter-robust numerical approximations and solution al-
gorithms for (1.1) are currently active research topics. In the nearly incompressible
case \lambda \gg 1, the standard two-field variational formulation of (1.1) is not robust. To
address this challenge, we introduced and analyzed a mixed finite element method
for the MPET equations based on a total pressure formulation in [17]. We note
that the total pressure in the case of one network was presented in [16, 22]. Hong
et al. [9] shortly thereafter extended the three-field formulation in [8] to parameter-
robust MPET equations taking the displacement, the network fluid fluxes, and the
network pressures as unknowns. In fact, the approach of [9] is the first result advanc-
ing preconditioners which are robust with respect to every material and discretization
parameter, including the network transfer terms we consider here. As an alternative
to these fully coupled approaches a form of splitting scheme has been analyzed by
Lee [15]. Regarding the iterative solution and preconditioning of the fully coupled
formulations, a robust preconditioner for Biot's equations (the case for J = 1) was
presented by Lee, Mardal, and Winther [16]. Hong et al. [9] presented both theoret-
ical results and numerical examples regarding parameter-robust preconditioners for
the MPET equations with their extended three-field-type formulation. Hong et al.
further developed parameter-robust solver algorithms, an iterative solver algorithm
using the iterative coupling approach (cf. [20]) in [11], and an Uzawa-type algorithm
in [10].

In this paper, we present a parameter-robust preconditioning approach for linear
systems of equations resulting from a conforming finite element discretization of the
total pressure variational formulation of the MPET equations. The main focus of this
work is to achieve preconditioners which are robust for large ratios of exchange coeffi-
cients. The potential of diagonalization by congruence was also mentioned by Hong et
al. [9, Remark 6]. In this manuscript, we discuss diagonalization by congruence as a
general method in the context of preconditioning the MPET equations. The key idea
is, as introduced for the MPT equations in [23], to design a parameter-dependent
transformation of the pressure variables p = (p1, . . . , pJ) into a set of transformed
variables \~p. The transformation should be such that the originally coupled exchange
operator decouples while the originally decoupled diffusion operator remains decou-
pled (i.e., remains diagonal). We will discuss this approach, and its associated matrix
theory in detail. We illustrate the use of the method to construct parameter-robust
preconditioners for both the MPT equations (section 3) and the MPET equations
(section 4).

There are several notable differences between the approach of the current work
and that of [9]. First, the formulation of [9] introduces 2J+1 unknowns for a multiple
poroelasticity system consisting of J fluid networks. Conversely, the total pressure
formulation, which we use here, requires J+2 unknowns. Thus, our approach can con-
fer a significant computational savings for applications where J is appreciably large.
Second, the spatial discretization in [9] employs several H(div) finite element spaces;
as a result, multiple H(div) preconditioners are needed for robust preconditioning.
Conversely, we discretize by means of continuous Galerkin finite elements; as a result,
block preconditioners can be constructed using typical preconditioners for second or-
der elliptic operators. It should be noted, though, that our approach does not satisfy
local mass conservation; the paradigm of [9] is locally mass conservative, due to the
H(div) elements, with the price being an increase in computational cost. Third, the
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ROBUST PRECONDITIONER FOR MPET B987

preconditioning results of [9] are unequivocally robust for all parameter ranges; a first
result of its kind for generalized poroelasticity. Conversely, our approach requires a
slight restriction, in general, of the parameter ranges for the network storage coef-
ficients; this restriction can be removed, however, for materials with nondegenerate
storage coefficients satisfying \lambda  - 1 \lesssim sj (cf. Remark 4.4). Overall, if the number of
networks is small, local mass conservation is important for the application or, if the
material storage coefficients are degenerate then [9] is a strong option. Conversely,
if local mass conservation is not a strict application concern and the network stor-
age coefficients are not degenerate, our approach confers a significant computational
advantage, over that of [9] when the number of fluid networks (J) is large.

This manuscript is organized as follows. We introduce notation and review rele-
vant preconditioning and matrix theory in section 2. We briefly consider the reduced
case of the MPT equations in section 3 before turning to the analysis of the precon-
ditioner for the MPET equations in section 4. Finally, we present some conclusions
and outlook in section 5.

2. Preliminaries. In section 2.2 we briefly review preconditioning of parameter-
dependent systems and state a known result regarding simultaneous diagonalization
by congruence. Notation for the remainder of the manuscript is discussed in sec-
tion 2.1.

2.1. Notation. In the subsequent manuscript, we use the following notation.
Let \Omega be an open, bounded domain in \BbbR d, d = 2, 3, with Lipschitz polyhedral bound-
ary \partial \Omega . We denote by L2(\Omega ) the space of square integrable functions on \Omega with
inner product \langle \cdot , \cdot \rangle and norm \| \cdot \| . We denote by Hm(\Omega ) the standard Sobolev space
with norm \| \cdot \| Hm and seminorm | \cdot | Hm for m \geq 1 and Hm(\Omega ;\BbbR d) the corresponding
d-vector fields. We use Hm

0 (\Omega ) to denote the subspace of Hm(\Omega ) with vanishing trace
on the boundary of \Omega . Let \Gamma be a subset of \partial \Omega such that \partial \Omega \setminus \Gamma has a positive
(d  - 1)-dimensional Lebesgue measure. Hm

\Gamma (\Omega ) is the subspace of Hm(\Omega ) such that
the elements in Hm

\Gamma (\Omega ) have vanishing trace on \Gamma . Hm
\Gamma (\Omega ;\BbbR d) is the subspace of

Hm(\Omega ;\BbbR d) such that every vj in (v1, . . . , vd) \in Hm(\Omega ;\BbbR d) is an element in Hm
\Gamma (\Omega ).

Throughout this paper we set \Gamma as a fixed subset of \partial \Omega satisfying the aforementioned
assumption.

We introduce the parameter-dependent L2-inner product and norm:

\| p\| 2\beta = \langle p, p\rangle \beta = \langle \beta p, p\rangle 

for \beta \in L\infty (\Omega ), \beta (x) > 0, and p \in L2(\Omega ) (and similarly for vector or tensor fields).
The notation \BbbI will denote an identity d\times d matrix while IV will denote the identity
operator on a Hilbert space V . To be self-contained we recall the Kronecker product
of matrices. If A in \BbbR m\times n and B \in \BbbR r\times s are two real-valued matrices then A\otimes B is
the mr\times ns matrix defined by multiplying each entry of A by the matrix B. That is,

A\otimes B =

\left[     
a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

. . .
. . .

...
am1B am2B . . . amnB

\right]     .(2.1)

We can consider its natural extension for a matrix A and a linear operator B. More
specifically, if W is a Hilbert space, Q is the n-fold product Q = W \times W \times \cdot \cdot \cdot \times W , A
is an n\times n matrix, and B is a linear operator on W , then A\otimes B is the linear operator
on Q defined by (2.1).
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B988 PIERSANTI ET AL.

Finally, we introduce a notation for uniform proportionality, used throughout the
manuscript, as

X \lesssim Y.

That is, X \lesssim Y implies the existence of some real constant c0 > 0 such that X \leq c0Y ;
any relationship between c0 and pertinent mathematical objects, such as the total
number of porous media networks considered, will be specified.

2.2. Preconditioning of parameter-dependent systems. In this paper, we
consider the preconditioning of discretizations of the systems (1.1) and (1.2) under
large parameter variations. Therefore, we begin by summarizing core aspects of the
theory of parameter-robust preconditioning as presented in [18]. We will apply this
theory for formulations of the MPT equations (1.2) and MPET equations (1.1) in the
subsequent sections.

Let X be a separable, real Hilbert space with inner product \langle \cdot , \cdot \rangle X , norm \| \cdot \| X ,
and dual space X\ast . Let \scrA : X \rightarrow X be an invertible, symmetric isomorphism on
X such that \scrA \in \scrL (X,X\ast ), where \scrL (X,X\ast ) is the set of bounded linear operators
mapping X to its dual. Given f \in X\ast consider the problem of finding x \in X such
that

(2.2) \scrA x = f.

The preconditioned problem reads as follows,

(2.3) \scrB \scrA x = \scrB f,

where \scrB \in \scrL (X\ast , X) is a symmetric isomorphism defining the preconditioner. The
convergence rate of a Krylov space method for this problem can be bounded in terms
of the condition number \kappa (\scrB \scrA ), where

\kappa (\scrB \scrA ) = \| \scrB \scrA \| \scrL (X,X)\| (\scrB \scrA ) - 1\| \scrL (X,X).

Here, the operator norm \| \scrA \| \scrL (X,X\ast ) is defined by

(2.4) \| \scrA \| \scrL (X,X\ast ) = sup
x\in X

\| \scrA x\| X\ast 

\| x\| X
.

Now, for a parameter \varepsilon (or more generally a set of parameters \varepsilon ) consider the
parameter-dependent operator \scrA \varepsilon and its preconditioner \scrB \varepsilon . Assume that we can
choose appropriate spaces X\varepsilon and X\ast \varepsilon such that the norms

\| \scrA \varepsilon \| \scrL (X\varepsilon ,X\ast 
\varepsilon )

and \| \scrA  - 1\varepsilon \| \scrL (X\ast 
\varepsilon ,X\varepsilon )

are bounded independently of \varepsilon . Similarly, we assume that we can find a precon-
ditioner \scrB \varepsilon such that the norms \| \scrB \varepsilon \| \scrL (X\varepsilon ,X\ast 

\varepsilon )
and \| \scrB  - 1\varepsilon \| \scrL (X\ast 

\varepsilon ,X\varepsilon ) are bounded in-
dependently of \varepsilon . Given these assumptions, the condition number \kappa (\scrB \varepsilon \scrA \varepsilon ) will be
bounded independently of \varepsilon . We will refer to such a preconditioner as robust in (or
with respect to) \varepsilon . We conclude this section with a change of variables result, recalled
from basic matrix analysis [12], that will prove effective in the sections that follow.

Lemma 2.1 (diagonalization by congruence). Let W be a real Hilbert space and
Q = W \times W \times \cdot \cdot \cdot \times W be the n-fold direct product of W for a fixed n \in \BbbN . Let
A : W \rightarrow W \ast and B : W \rightarrow W \ast be linear operators. Suppose that K,E \in \BbbR n\times n are
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ROBUST PRECONDITIONER FOR MPET B989

symmetric matrices and that at least one of K or E is positive definite. Define the
operators S : Q \rightarrow Q\ast and T : Q \rightarrow Q\ast by

S = K \otimes A and T = E \otimes B,

where \otimes is the Kronecker product. Consider the variational problem given f \in Q\ast 

find p = (p1, p2, . . . , pn)
T \in Q such that

(2.5) \langle Sp, q\rangle + \langle Tp, q\rangle = \langle f, q\rangle \forall q \in Q,

where \langle \cdot , \cdot \rangle is the duality pairing of Q\ast and Q. Then there exists an invertible matrix
P \in \BbbR n\times n such that the above variational problem is equivalent to find \~p \in Q such
that

(2.6) \langle DS \~p, q\rangle + \langle DT \~p, q\rangle = \langle F, q\rangle \forall q \in Q,

where F = (PT \otimes IW\ast )f for IW\ast the identity operator on W \ast , and DS =
\bigl( 
PTKP

\bigr) 
\otimes A

and DT =
\bigl( 
PTEP

\bigr) 
\otimes B are block diagonal linear operators from Q to Q\ast .

Proof. Apply [12, Theorem 4.5.17a-b p. 287] the hypotheses on the matrices K
and E and properties of the tensor product; see Appendix A for details.

3. Preconditioning the MPT equations via diagonalization. In this sec-
tion, we present the method of simultaneous diagonalization by congruence, and
demonstrate how the method can be applied to variational formulations and their
associated preconditioners. Motivated by (1.1), we first consider the simpler MPT
equations as in [23]. The core idea is to reformulate the MPT equations using a change
of pressure variables p. In particular, we aim to find a transformation of the variables
p \mapsto \rightarrow \~p such that the transformed system of pressure equations decouple. Here, we will
consider a Hilbert space W and the J-fold product Q = W \times W \times \cdot \cdot \cdot \times W . Each pres-
sure pj , for j = 1, 2, . . . , J satisfies pj \in W and we will write p = (p1, p2, . . . , pJ) \in Q.
In the sections that follow, we briefly illustrate the core idea, formulation of the
MPT equations, and resulting preconditioner, and refer to [23] for more details. This
approach is then extended to the MPET equations in section 4.

3.1. The MPT equations in operator form. We consider the MPT equations
as defined by (1.2). We further impose homogeneous Dirichlet boundary conditions

for all pressures: pj = 0 on \partial \Omega for 1 \leq j \leq J . Define \xi j =
\sum J

i=1 \xi j\leftarrow i for each
1 \leq j \leq J . Let us define two J \times J matrices:

(3.1) K =

\left(     
K1 0 \cdot \cdot \cdot 0
0 K2 \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot KJ

\right)     , E =

\left(     
\xi 1  - \xi 1\leftarrow 2 \cdot \cdot \cdot  - \xi 1\leftarrow J

 - \xi 1\leftarrow 2 \xi 2 \cdot \cdot \cdot  - \xi 2\leftarrow J

...
...

. . .
...

 - \xi 1\leftarrow J  - \xi 2\leftarrow J \cdot \cdot \cdot \xi J

\right)     .

The system (1.2) can be expressed in operator form as given g \in Q find p \in Q
satisfying

(3.2) \scrA MPTp = g, where \scrA MPT =  - K \otimes \Delta + E \otimes IW .

In the above,  - K\otimes \Delta : Q \rightarrow Q\ast is the block diagonal operator such that its jth block
is given by the bilinear form \langle Kj\nabla pj ,\nabla qj\rangle for pj , qj \in Qj = W , and E\otimes IW : Q \rightarrow Q\ast 

is the block operator such that its (i, j)-block Eij is defined by the bilinear forms

 - \langle \xi i\leftarrow jpi, qj\rangle if i \not = j, \langle \xi jpj , pj\rangle if i = j.
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We note that K is real, positive definite and diagonal (and thus invertible), and
that E is real, symmetric, and (weakly row) diagonally dominant by definition. In
particular, E is symmetric positive semidefinite because of the identity

(3.3) wEwT =
\sum 

1\leq i,j\leq J

\xi i\leftarrow j(wi  - wj)
2

for w = (w1, w2, . . . , wJ) with the convention \xi i\leftarrow i = 0. A naive block diagonal
preconditioner \scrB MPT can be constructed by taking the inverse of the diagonal blocks
of \scrA MPT. However, as we demonstrated in [23], the resulting preconditioner is not
robust with respect to variations in the conductivity and exchange parameters. In
fact, the condition numbers increased linearly with the ratio between the exchange
and conductivity coefficients.

3.2. Diagonalizing the MPT equations by congruence. In this section we
discuss a reformulation of the MPT equations which, in turn, leads directly to a
parameter-robust preconditioner. Let P \in \BbbR J\times J be an invertible linear transforma-
tion defining a change of variables and let \~p and \~q be the new set of variables such
that

(3.4) p = (P \otimes IW ) \~p, q = (P \otimes IW ) \~q

with q = (q1, q2, . . . , qJ) and similarly for \~q, \~p. Since K and E are symmetric, we
apply Lemma 2.1 with A = \Delta and B = IW , to obtain a matrix, P , simultaneously
diagonalizing K and E by congruence, that is, the equivalent operators

\bigl( 
PTKP

\bigr) 
\otimes \Delta 

and (PTEP ) \otimes IW are block diagonal. The resulting formulation (cf. (2.6)) of the
MPT equations reads as follows: find the transformed pressures \~p = (\~p1, . . . , \~pJ) such
that, for a given g \in Q, we have the equality

(3.5) \~\scrA MPT\~p = ( - \~K \otimes \Delta + \~E \otimes IW )\~p =
\bigl( 
PT \otimes IW

\bigr) 
g,

where \~K = PTKP and \~E = PTEP are diagonal with

(3.6) \~K = diag( \~K1, . . . , \~KJ), \~E = diag(\~\xi 1, . . . , \~\xi J).

3.3. Preconditioning the transformed MPT system. The parameter de-
pendent norm, for the transformed system, can be immediately identified [23] as

\| \~p\| 2\~\scrB MPT
=

J\sum 
j=1

\langle \~Kj \nabla \~pj ,\nabla \~pj\rangle + \langle \~\xi j \~pj , \~pj\rangle .

The associated preconditioner, arising from the above norm, for (3.5) is

(3.7) \~\scrB MPT =

\left(     
( - \~K1\Delta + \~\xi 1I)

 - 1 0 \cdot \cdot \cdot 0

0 ( - \~K2\Delta + \~\xi 2I)
 - 1 \cdot \cdot \cdot 0

...
...

. . .
...

0 0 \cdot \cdot \cdot ( - \~KJ\Delta + \~\xi JI)
 - 1

\right)     .

Clearly, \~\scrA MPT and \~\scrB  - 1MPT are trivially spectrally equivalent. We refer to [23] for nu-
merical experiments comparing the standard and transformed formulation and pre-
conditioners.
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3.4. Finding the transformation matrix. There are two cases that we will
consider: the first case is when the matrix C = K - 1E (cf. Theorem (A.2)) has J
distinct eigenvalues, while the second case will be for the case where at least one
of the eigenvalues is repeated. In the case of distinct eigenvalues, the number of
distinct eigenvalues of C = K - 1E will depend on the material parameter values Kj

and \xi j\rightarrow i for 1 \leq i, j \leq J . In the common case where C has J distinct eigenvalues,
the transformation matrix is easily defined as follows. Let \lambda 1, . . . , \lambda J be the real
eigenvalues of C, and let v1, . . . , vJ be the corresponding normalized eigenvectors.
Then

(3.8) P = [v1, . . . , vJ ]

will diagonalize K and E by congruence. In [23], we presented numerical examples
for the case of J distinct eigenvalues (with J = 2).

The congruence matrix for the case of repeated eigenvalues is also easily construc-
ted. For these cases, the transform P can be constructed by repeated application of
blockwise eigenvector matrices; see [12] for the general procedure. In Example 3.1
below, we present an example on how to obtain the transformation matrix P in the
case where one of the eigenvalues has algebraic multiplicity 2 with J = 3.

Example 3.1. In this example we show how to obtain the transformation matrix
P for a three-network case when one of the eigenvalues of K - 1E has algebraic mul-
tiplicity 2. In this example, due to the presence of the repeated eigenvector, the
construction of P does not follow directly from the use of normalized eigenvectors
and, thus, P is not normalized a priori. We will, however, normalize P following
construction to maintain consistency with the previous case; in practice, either the
normalized or nonnormalized version of P may be used:

(3.9) K =

\left(  1.0 0 0
0 0.0001 0
0 0 0.01

\right)  , E =

\left(  1.01  - 0.01  - 1.0
 - 0.01 0.0101  - 0.0001
 - 1.0  - 0.0001 1.0001

\right)  .

By definition

(3.10) C = K - 1E =

\left(  1.01  - 0.01  - 1.0
 - 100 101  - 1.0
 - 100  - 0.01 100.01

\right)  .

The eigenvalues \lambda 1, \lambda 2, \lambda 3 and eigenvectors [v1, v2, v3] = P1 of C are then

\lambda 1 = 0, \lambda 2 = \lambda 3 = 101.01,

P1 =

\left(   - 0.5773  - 0.0071  - 0.0091
 - 0.5773 0.7070  - 0.4031
 - 0.5773 0.7070 0.9150

\right)  .
(3.11)

In this specific case the eigenvalues \lambda 2, \lambda 3 have algebraic multiplicity 2 and geometrical
multiplicity 1. If we try to diagonalize K and E by congruence via P1, we obtain

PT
1 KP1 =

\left(  3.3670\times 10 - 1 0 0
0 5.1007\times 10 - 3 6.5069\times 10 - 3

0 6.5069\times 10 - 3 8.4729\times 10 - 3

\right)  ,

PT
1 EP1 = 101.01

\left(  0 0 0
0 5.1007\times 10 - 3 6.5069\times 10 - 3

0 6.5069\times 10 - 3 8.4729\times 10 - 3

\right)  .

(3.12)D
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In this case, the resulting matrices are block diagonal. The lower right blocks are
multiples of each other. We can diagonalize the lower right blocks by computing the
eigendecomposition of either of these. The lower right block of PT

1 KP1 is

(3.13)

\biggl( 
5.1007\times 10 - 3 6.5069\times 10 - 3

6.5069\times 10 - 3 8.4729\times 10 - 3

\biggr) 
and its eigenpairs are

\lambda 1 = 6.4967\times 10 - 5, \lambda 2 = 1.3508\times 10 - 2,

P2 =

\biggl( 
 - 0.79083  - 0.6120
0.6120  - 0.7908

\biggr) 
.

(3.14)

The final transformation matrix P that diagonalizes K and E by congruence is then
(3.15)

P = P1

\left(  1 0 0
0
0

P2

\right)  =

\left(   - 5.7735\times 10 - 1 7.1935\times 10 - 5 1.1575\times 10 - 2

 - 5.7735\times 10 - 1  - 8.0594\times 10 - 1  - 1.1391\times 10 - 1

 - 5.7735\times 10 - 1 8.6590\times 10 - 4  - 1.1564

\right)  .

Note that despite the columns of P1 and P2 being normalized with norm 1, the
resulting matrix P 's columns are not normalized. After the normalization, the matrix
P looks as follows,

(3.16) P =

\left(   - 5.7735\times 10 - 1 8.9255\times 10 - 5 9.9611\times 10 - 2

 - 5.7735\times 10 - 1  - 9.9999\times 10 - 1  - 9.8026\times 10 - 2

 - 5.7735\times 10 - 1 1.0743\times 10 - 4  - 9.9513\times 10 - 1

\right)  ,

and the diagonalized matrices are as follows,

\~K = PTKP =

\left(  3.3670\times 10 - 1 0 0
0 1.0001\times 10 - 4 0
0 0 1.0003\times 10 - 2

\right)  ,

\~E = PTEP =

\left(  0 0 0
0 1.0102\times 10 - 2 0
0 0 1.0104

\right)  .

(3.17)

4. Preconditioning the MPET equations via diagonalization. In this sec-
tion, we present a change of variables for the total pressure formulation of the time-
discrete MPET equations; we propose and analyze a preconditioning strategy for the
resulting variational formulation. The change of MPET variables is guided by the
change of MPT variables presented in the previous section. The notation Q signifies,
as in section 3, the J-fold product of the Hilbert space W .

4.1. Total pressure formulation of the MPET equations. Throughout this
paper we assume the boundary conditions

u = 0 on \Gamma , (2\mu \varepsilon (u) + \lambda div u\BbbI )\nu = 0 on \partial \Omega \setminus \Gamma , pj = 0 on \partial \Omega , j = 1, . . . , J,

where \nu is the unit outward normal vector field on \partial \Omega . The total pressure formulation
of Biot's equations [16] and more generally the MPET equations [17] is a robust mixed
variational formulation targeting the nearly incompressible limit (\lambda \gg 1). The total
pressure, which we will see satisfies p0 \in L2(\Omega ), is defined by

(4.1) p0 = \lambda div u - \alpha \cdot p,
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ROBUST PRECONDITIONER FOR MPET B993

where1 \alpha = (\alpha 1, . . . , \alpha J) \in \BbbR J , p = (p1, . . . , pJ) \in Q, and \alpha \cdot p =
\sum J

i=1 \alpha ipi \in W .
The total pressure formulation of (1.1) then reads as follows: for t \in (0, T ], find the
displacement vector field u and the pressure scalar fields p0 and pj for j = 1, . . . , J
such that

 - div (2\mu \varepsilon (u) + p0\BbbI ) = f,(4.2a)

div u - \lambda  - 1p0  - \lambda  - 1\alpha \cdot p = 0,(4.2b)

\lambda  - 1 \.p0 + sj \.pj  - div(Kj\nabla pj) + \alpha j\lambda 
 - 1\alpha \cdot \.p+

\sum J
i=1 \xi j\leftarrow i(pj  - pi) = gj(4.2c)

for j = 1, . . . , J .
We consider an implicit Euler discretization in time of the total pressure for-

mulation of the time-dependent MPET equations (4.2) and examine the resulting
stationary problem at each time step. The resulting time-discrete version of (4.2)
with time step \tau > 0 reads as follows: find the displacement u and the pressures pj
for 0 \leq j \leq J such that

 - div (2\mu \varepsilon (u) + p0\BbbI ) = f,(4.3a)

div u - \lambda  - 1p0  - \lambda  - 1\alpha \cdot p = 0,(4.3b)

 - sjpj  - \alpha j\lambda 
 - 1p0  - \alpha j\lambda 

 - 1\alpha \cdot p+ \tau div(Kj\nabla pj) - \tau 
\sum J

i=1 \xi j\leftarrow i(pj  - pi) = gj(4.3c)

for 1 \leq j \leq J where the new right-hand sides gj for j = 1, . . . , J have been negated
and also contain terms from the previous time step. Again, we impose homogeneous
Dirichlet boundary conditions for all network pressures: pj = 0 on \partial \Omega for 1 \leq j \leq J .

Let V = H1
\Gamma (\Omega ;\BbbR d), Q0 = L2(\Omega ), and Qj = W = H1

0 (\Omega ) for 1 \leq j \leq J , and
\Omega \subset \BbbR d. Let Q = Q1 \times \cdot \cdot \cdot \times QJ . As in section 3, we write p = (p1, . . . , pJ),
q = (q1, . . . , qJ), and g = (g1, . . . , gJ). Multiplying by test functions, and integrating
second-order derivatives by parts, we obtain the following variational formulation
of (4.3): find u \in V and pi \in Qi for i = 0, . . . , J such that

a(u, v) + b(v, p0) = \langle f, v\rangle \forall v \in V,(4.4a)

b(u, q0) - c1(p0, q0) - c2(q0, p) = 0 \forall q0 \in Q0,(4.4b)

 - c2(p0, q) - c3(p, q) = \langle g, q\rangle \forall q \in Q.(4.4c)

The bilinear forms a : V \times V \rightarrow \BbbR and b : V \times Q0 \rightarrow \BbbR are defined as

a(u, v) = \langle 2\mu \varepsilon (u), \varepsilon (v)\rangle , b(v, q0) = \langle div v, q0\rangle ,(4.5)

while c1 : Q0 \times Q0 \rightarrow \BbbR , c2 : Q0 \times Q \rightarrow \BbbR , and c3 : Q\times Q \rightarrow \BbbR are defined as

c1(p0, q0) = \langle \lambda  - 1p0, q0\rangle ,(4.6)

c2(p0, q) = \langle \lambda  - 1\alpha \cdot q, p0\rangle ,(4.7)

c3(p, q) = \tau 

J\sum 
j=1

\langle Kj \nabla pj ,\nabla qj\rangle +
J\sum 

j=1

\langle sjpj , qj\rangle (4.8)

+ \tau 

J\sum 
j=1

J\sum 
i=1

\langle \xi j\leftarrow i(pj  - pi), qj\rangle + \langle \lambda  - 1\alpha \cdot p, \alpha \cdot q\rangle .

For future reference we define c : (Q0 \times Q)\times (Q0 \times Q) \rightarrow \BbbR via

c((p0, p), (q0, q)) = c1(p0, q0) + c2(p0, q) + c2(q0, p) + c3(p, q).(4.9)

1Note that we start counting at 1 in the definition of p here and throughout, in contrast to,
e.g., in [23].
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4.2. MPET as a parameter-dependent saddle point system. Construct-
ing parameter-robust block preconditioners for the system (4.4) is nontrivial. Here we
demonstrate how the technique of diagonalization by congruence [23], [9, Remark 6]
allows for easily extending the MPT preconditioning approach to that of the MPET
system. Note that the system (4.3) or equivalently (4.4) can be viewed as a saddle
point problem with a stabilization term (given by the bilinear form c). Thus, the equa-
tions fit well into Brezzi saddle point theory [4]. However, various material parameters
in different ranges are involved in the system, so constructing parameter-robust pre-
conditioners for this system is not a straightforward application of the Brezzi theory.
Let us recall the parameter ranges we are concerned with in this paper. The existing
literature covers the parameters

0 \leq sj \lesssim 1, 0 < Kj \ll 1, 1 \lesssim \mu \lesssim \lambda < +\infty , (1 \leq j \leq J).

In addition to these we are also interested in developing preconditioners which are
robust for the ratios of the exchange coefficients \xi i\rightarrow j 's.

We first consider construction of preconditioners utilizing the saddle point prob-
lem structure. To reveal the saddle point problem structure of (4.4) let us look at the
operator form of (4.4), which is

(4.10) \scrA MPET

\left(  u
p0
p

\right)  =

\left(   - 2 div(\mu \varepsilon )  - \nabla 0
div  - C1  - C\ast 2
0  - C2  - C3

\right)  \left(  u
p0
p

\right)  =

\left(  f
0
g

\right)  ,

where C1 : Q0 \rightarrow Q\ast 0, C2 : Q0 \rightarrow Q\ast , C3 : Q \rightarrow Q\ast are the operators associated with
the bilinear forms c1, c2, c3 in (4.6), (4.7), (4.8). Here C\ast 2 is the adjoint operator of
C2. We can rewrite \scrA MPET of (4.10) in the standard saddle point form

\scrA MPET =

\biggl( 
A B\ast 0
B0  - C

\biggr) 
by considering the product space grouping V \times (Q0 \times Q) and identifying

(4.11) A =  - 2 div(\mu \varepsilon ), B0 = (div,0)T , C =

\biggl( 
C1 C\ast 2
C2 C3

\biggr) 
.

One of the natural approaches to constructing block preconditioners for this system
is to use the block diagonal operator\biggl( 

A - 1 0
0 (C +B0A

 - 1B\ast 0)
 - 1

\biggr) 
or its approximation. However, the operator (C + B0A

 - 1B\ast 0)
 - 1 is not easy to im-

plement efficiently in practice. Moreover, the analysis for spectral equivalence of this
type of preconditioner is related to a nontrivial generalized eigenvalue problem. More
precisely, the spectral equivalence is equivalent to uniform upper and lower bounds
of the generalized eigenvalues, so it requires a deep analysis of the nontrivial general-
ized eigenvalue problem utilizing block matrix structures. In this paper we consider
a general MPET model with general J and general (constant) exchange coefficients,
so the number of blocks in block matrices is not restricted. This makes an analysis of
the generalized eigenvalue problem even more challenging, so we will not pursue this
approach further in this paper.

D
ow

nl
oa

de
d 

02
/0

4/
22

 to
 5

1.
17

5.
74

.1
29

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST PRECONDITIONER FOR MPET B995

Another natural choice of block preconditioners for this system is a direct exten-
sion of the preconditioner in [16]. In other words, we use the block diagonal operator
of the form

(4.12) \scrB MPET =

\left(  ( - \mu \Delta ) - 1 0 0
0 I - 1 0
0 0 D - 1

\right)  ,

where I : Q0 \rightarrow Q\ast 0 is the operator defined by the bilinear form \langle p0, q0\rangle for p0, q0 \in Q0,
D : Q \rightarrow Q\ast is the block diagonal operator such that its jth diagonal block (1 \leq j \leq J)
is defined by selecting the jth diagonal entry of the operator C3 associated with the
bilinear form (4.8), that is

\tau \langle Kj \nabla pj ,\nabla qj\rangle + \langle sjpj , qj\rangle + \tau \langle \xi jpj , qj\rangle + \langle \lambda  - 1\alpha jpj , \alpha jqj\rangle , p, q \in Q.

However, this preconditioner is not robust with respect to the material parameters,
particularly for the hydraulic conductivity and the exchange coefficients. We illustrate
numerical experiment results in Example 4.1.

Example 4.1. Let \Omega = [0, 1]2 \subset \BbbR 2, and consider a structured triangulation \scrT h of
\Omega constructed by dividing \Omega into N \times N squares and then subdividing each square
by a fixed diagonal. Let J = 2. Consider a finite element discretization of (4.4) using
the lowest order Taylor--Hood-type elements, i.e., continuous piecewise quadratics for
each displacement component, and continuous piecewise linear for all pressures [17].
Let \tau = 1.0, \mu = 1.0, sj = 1.0, \alpha j = 0.5, and K1 = 1.0, and consider ranges of
values for \lambda , \xi 1\leftarrow 2 and K2. We consider the case for s1 = s2 = 1.0 and s1 = s2 = 0.0.
Starting from an initial random guess, we consider a MinRes solver of the resulting
linear system of equations with an algebraic multigrid (Hypre AMG) preconditioner
of the form (4.12). The convergence criterion used was

(\scrB rk, rk)/(\scrB r0, r0) \leq 10 - 6,

where rk is the residual of the kth iteration. The resulting number of Krylov iterations
are shown in Table 2 for \xi 1\rightarrow 2 = 106 and ranges of K2 and \lambda . We observe that the
number of iterations is moderate (\approx 30) for K2 of comparable magnitude (106) to
\xi 1\leftarrow 2. The number of iterations increases with decreasing K2: up to \approx 1000 for
K2 = 1. For large K2, the number of iterations seems independent of the mesh
resolution N . In contrast, for smaller K2 (relative to \xi 1\rightarrow 2), the number of iterations
also increases with the mesh resolution. We note that the iteration counts do not vary
substantially with \lambda .

4.3. Diagonalizing the MPET equations by congruence. In this subsec-
tion, we present MPET equations which are transformed via change of variables for
construction of block preconditioners. As in the MPT problem we will find an invert-
ible linear map P \in \BbbR J\times J that provides a fortuitous codiagonalization; we will then
consider the change of variables

p = (P \otimes IW ) \~p,

which will lead to a (partial) diagonalization, in the spirit of Lemma 2.1, for the
transformed MPET system in the new unknowns (u, p0, \~p). For the discussions below
let us give remarks on the block operators defined by c1, c2, c3. Specifically, regarding
\alpha as a column vector,

(4.13) C2 =
\bigl( 
\lambda  - 1\alpha 

\bigr) 
\otimes IW , C3 =  - \tau K \otimes \Delta + (S + \tau E + L)\otimes IW ,
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Table 2
Number of MinRes iterations (cf. Example 4.1): (4.4) as discretized with Taylor--Hood-type

elements and an algebraic multigrid preconditioner of the form (4.12). Of note is the fact that the
number of iterations grows for K2 decreasing relative to \xi 2\rightarrow 1 = 106, and for increasing N .

K2 \lambda N = 16 32 64 128

100

100 738 1271 1756 1938
102 1024 1505 1679 1631
104 1028 1506 1666 1628
106 1004 1499 1677 1633

102

100 396 424 406 353
102 337 368 351 333
104 364 352 348 332
106 345 357 361 328

104

100 65 65 62 60
102 64 60 56 55
104 62 60 57 55
106 63 61 58 55

106

100 30 30 30 28
102 34 31 29 29
104 32 31 31 29
106 33 31 31 29

with K and E as in (3.1), L is the matrix Lij = \lambda  - 1\alpha i\alpha j , S is the diagonal matrix
such that its jth entry is sj , and IW is the identity (functional) on W ; we recall
that Q is the J-fold Cartesian product of W . We will first describe the transformed
MPET equations for a general coordinate transformation, P . From the form of the
transformed equations, we will extract the conditions for P that yield a system that
is suitable for the construction of parameter-robust block preconditioners.

Suppose we have a fixed but otherwise arbitrary, invertible coordinate transfor-
mation matrix P \in \BbbR J\times J . Applying this transformation of variables to the semi-
discretized total pressure variational formulation of the MPET equations (4.4), we
obtain the following variational formulation: find the displacement u \in V , the total
pressure p0 \in Q0, and the transformed pressures \~p = (\~p1, . . . , \~pJ) \in Q such that

a(u, v) + b(v, p0) = \langle f, v\rangle \forall v \in V,(4.14a)

b(u, q0) - c1(p0, q0) - \~c2(q0, \~p) = 0 \forall q0 \in Q0,(4.14b)

 - \~c2(p0, \~q) - \~c3(\~p, \~q) = \langle g, (P \otimes IW ) \~q\rangle \forall \~q \in Q,(4.14c)

where

(4.15) \~c2(q0, \~q) \equiv c2(q0, (P \otimes IW ) \~q), \~c3(\~p, \~q) \equiv c3((P \otimes IW ) \~p, (P \otimes IW ) \~q).

We define \~\scrA MPET : V \times Q0 \times Q \rightarrow (V \times Q0 \times Q)\ast as the operator corresponding to
the bilinear form (4.14). The operator form of the transformed system (4.14) then
reads as

(4.16) \~\scrA MPET

\left(  u
p0
\~p

\right)  =

\left(  f
0
\~g

\right)  , \~\scrA MPET =

\left(  A BT 0

B  - C1  - \~C2
\ast 

0  - \~C2  - \~C3

\right)  ,

where A =  - 2 div(\mu \varepsilon ), B = div as before, and \~g =
\bigl( 
PT \otimes IW

\bigr) 
g. By inserting (4.13)
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and reordering, we note that

\~C2 = PTC2 = (\lambda  - 1PT\alpha )\otimes IW ,

\~C3 = PTC3P =  - \tau (PTKP )\otimes \Delta +
\bigl( 
PTSP + PT (\tau E + L)P

\bigr) 
\otimes IW .

For simplicity we will write

(4.17) \~\alpha =
\bigl( 
PT \otimes IW

\bigr) 
\alpha .

We now look to apply Lemma 2.1 with the choice of operators S = K \otimes \Delta and
T = (\tau E + L)\otimes IW . The matrices K and \tau E+L satisfy the required conditions and,
thus, there exists (cf. Appendix A) an invertible transformation P simultaneously
diagonalizing K and \tau E+L by congruence. That is, we have matrices \~K and \~\Gamma given
by the formulas

\~K = PTKP = diag( \~K1, . . . , \~KJ),(4.18)

\~\Gamma = PT (\tau E + L)P = diag(\~\gamma 1, . . . , \~\gamma J).(4.19)

We point out that the storage coefficients \{ sj\} Jj=1 are not involved in this simultaneous
diagonalization process. This is critically important in order to achieve a precondi-
tioner that is parameter robust, even in the presence of vanishing storage coefficients.
For future reference we briefly note that

(4.20) \~\gamma j \geq \~\alpha 2
j/\lambda 

follows from the definition of \~\Gamma in (4.19) since E is positive semidefinite and therefore
\~\gamma j is greater than or equal to the jth diagonal entry of the matrix

\bigl( 
PTLP

\bigr) 
ij

=

\lambda  - 1\~\alpha i\~\alpha j .
We also remark that the following identity holds for \~c3:

\~c3(\~p, \~q) = \tau 

J\sum 
j=1

\langle \~Kj \nabla \~pj ,\nabla \~qj\rangle +
J\sum 

j=1

\langle sj ((P \otimes IW ) \~p))j , ((P \otimes IW ) \~q)j\rangle ,(4.21)

+ \tau 

J\sum 
j=1

J\sum 
i=1

\langle \xi j\leftarrow i(((P \otimes IW ) \~p)j  - ((P \otimes IW ) \~p)i), ((P \otimes IW ) \~q)j\rangle 

+ \langle \lambda  - 1\~\alpha \cdot \~p, \~\alpha \cdot \~q\rangle ,

where ((P \otimes IW ) \~p)j is the jth component of (P \otimes IW ) \~p.

4.4. Preconditioning of the transformed MPET system. In this subsec-
tion we show that a parameter-robust preconditioner can be constructed using an
appropriate parameter-dependent norm.

We first define a parameter-dependent norm

(4.22) \| (u, p0, \~p)\| 2\~\scrB = \| \varepsilon (u)\| 22\mu + \| p0\| 2(2\mu ) - 1 +

J\sum 
j=1

\| \nabla \~pj\| 2\tau \~Kj
+

J\sum 
j=1

\| \~pj\| 2\~\gamma j

and consider the associated block preconditioner of the form
(4.23)

\~\scrB MPET =

\left(       
( - 2\mu \Delta ) - 1 0 0 \cdot \cdot \cdot 0

0 2\mu I - 1 0 \cdot \cdot \cdot 0

0 0 ( - \tau \~K1\Delta + \~\gamma 1I)
 - 1 \cdot \cdot \cdot 0

...
...

...
. . .

...

0 0 0 \cdot \cdot \cdot ( - \tau \~KJ\Delta + \~\gamma JI)
 - 1

\right)       .
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B998 PIERSANTI ET AL.

Lemma 4.2 (continuity). Let \~\scrA MPET be defined by (4.16), and consider the
norm defined by (4.22). We assume that 2\mu \leq M0\lambda for some M0 > 0 and sj \lesssim \~\gamma j for
1 \leq j \leq J . Then there exists a constant C > 0, dependent on M0, the constants in
sj \lesssim \~\gamma j, the matrix P , but independent of any other problem parameters, such that

(4.24) \langle \~\scrA MPET(u, p0, \~p), (v, q0, \~q)\rangle \leq C\| (u, p0, \~p)\| \~\scrB \| (v, q0, \~q)\| \~\scrB 

for all (u, p0, \~p), (v, q0, \~q) \in V \times Q0 \times Q.

Proof. By redistributing the material parameter weights and the Cauchy--Schwarz
inequality, we obtain the preliminary upper bound

\langle \~\scrA MPET(u, p0, \~p), (v, q0, \~q)\rangle \leq Z1 + Z2 + Z3 =: Z,

where

Z1 = \| \varepsilon (u)\| 2\mu \| \varepsilon (v)\| 2\mu + \| p0\| (2\mu ) - 1\| div v\| 2\mu + \| q0\| (2\mu ) - 1\| div u\| 2\mu ,
Z2 = \| p0\| \lambda  - 1\| q0\| \lambda  - 1 + \| \~\alpha \cdot \~q\| \lambda  - 1\| p0\| \lambda  - 1 + \| \~\alpha \cdot \~p\| \lambda  - 1\| q0\| \lambda  - 1 ,

Z3 =
\sum J

j=1

\Bigl( 
\| \nabla \~pj\| \tau \~Kj

\| \nabla \~qj\| \tau \~Kj
+ \| \~pj\| \~\gamma j

\| \~qj\| \~\gamma j
+ \langle sj(P \~p)j , (P \~q)j\rangle 

\Bigr) 
.

Since \| div u\| \leq \| \varepsilon (u)\| and by 2\mu \leq M0\lambda and the assumptions on sj and \~\gamma j , it follows
that

Z \lesssim 
\Bigl( 
\| \varepsilon (u)\| 2\mu + \| p0\| (2\mu ) - 1 + \| \~\alpha \cdot \~p\| \lambda  - 1 +

\sum J
j=1

\Bigl( 
\| \nabla \~pj\| \tau \~Kj

+ \| \~pj\| \~\gamma j

\Bigr) \Bigr) 
\times 
\Bigl( 
\| \varepsilon (v)\| 2\mu + \| q0\| (2\mu ) - 1 + \| \~\alpha \cdot \~q\| \lambda  - 1 +

\sum J
j=1

\Bigl( 
\| \nabla \~qj\| \tau \~Kj

+ \| \~qj\| \~\gamma j

\Bigr) \Bigr) 
.

By the triangle inequality and (4.20) we obtain

(4.25) \| \~\alpha \cdot \~p\| \lambda  - 1 \leq 
J\sum 

j=1

\| \~pj\| \~\alpha 2
j/\lambda 

\leq 
J\sum 

j=1

\| \~pj\| \~\gamma j

and this completes the proof.

Lemma 4.3 (inf-sup condition). Let \~\scrA MPET, \~\scrB MPET, and all assumptions be as
in Lemma 4.2. Then, there exists a constant C > 0, dependent on M0, the constants
in sj \lesssim \~\gamma j, but independent of other material parameters, such that

(4.26) inf
(u,p0,p)

sup
(v,q0,q)

\langle \~\scrA MPET(u, p0, p), (v, q0, q)\rangle 
\| (u, p0, p)\| \~\scrB \| (v, q0, q)\| \~\scrB 

\geq C,

where the inf and sup are taken over the nonvanishing elements in V \times Q0 \times Q.

Proof. Consider any (u, p0, \~p) \in V \times Q0 \times Q, and choose \~q =  - \~p, and q0 =  - p0.
Let w \in V satisfy

(4.27) \langle divw, p0\rangle = \| p0\| 2(2\mu ) - 1 , \| \varepsilon (w)\| 2\mu \leq C0\| p0\| (2\mu ) - 1

for a C0 > 0 depending on the domain \Omega via Korn's inequality, and next choose
v = u+ 2\delta w for \delta > 0 to be further specified. We note that, with this choice of v, q0,
and q,

\| (v, q0, \~q)\| \~\scrB \lesssim \| (u, p0, \~p)\| \~\scrB 
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ROBUST PRECONDITIONER FOR MPET B999

with the inequality constant depending only on the domain \Omega and the choice of \delta 
since

\| \varepsilon (v)\| 2\mu \leq \| \varepsilon (u)\| 2\mu + 2\delta C0\| p0\| (2\mu ) - 1 \lesssim \| (u, p0, \~p)\| \~\scrB .

Therefore, it suffices to show that

(4.28) \langle \~\scrA MPET(u, p0, \~p), (v, q0, \~q)\rangle \gtrsim \| (u, p0, \~p)\| 2\~\scrB .

Using the definition of \~\scrA MPET together with (4.27), we find that

(4.29) \langle \~\scrA MPET(u, p0, \~p), (v, q0, \~q)\rangle = \| \varepsilon (u)\| 22\mu + 2\delta \langle \varepsilon (u), \varepsilon (w)\rangle 2\mu + 2\delta \| p0\| 2(2\mu ) - 1

+ c1(p0, p0) + 2\~c2(p0, \~p) + \~c3(\~p, \~p).

Note that c1(p0, p0) = \| p0\| 2\lambda  - 1 , \~c2(p0, \~p) = \langle \~\alpha \cdot \~p, p0\rangle \lambda  - 1 , and

\~c3(\~p, \~p) =
\sum J

j=1(\| \nabla \~pj\| 2\tau \~Kj
+ \| \~pj\| 2\~\gamma j

+ \langle sj(P \~p)j , (P \~p)j\rangle )

from the definitions of \~c2, \~c3, and the congruent diagonalization. Recall the inequality
(4.25). Then we obtain

\delta \| p0\| 2(2\mu ) - 1 + c1(p0, p0) + 2\~c2(p0, \~p) + \~c3(\~p, \~p)

\geq \delta \| p0\| 2(2\mu ) - 1 + \| p0\| 2\lambda  - 1 + 2\langle \~\alpha \cdot \~p, p0\rangle \lambda  - 1 +
\sum J

j=1(\| \~pj\| 
2
\~\gamma j

+ \| \nabla \~pj\| 2\tau \~Kj
)

\geq (\delta /M0 + 1) \| p0\| 2\lambda  - 1 + 2\langle \~\alpha \cdot \~p, p0\rangle \lambda  - 1 +
\sum J

j=1(\| \~pj\| 
2
\~\gamma j

+ \| \nabla \~pj\| 2\tau \~Kj
)

= \| 
\sqrt{} 
\delta /M0 + 1p0 + \~\alpha \cdot \~p\| 2\lambda  - 1  - 

\biggl( 
\delta 

M0
+ 1

\biggr)  - 1
\| \~\alpha \cdot \~p\| 2\lambda  - 1

+
\sum J

j=1(\| \~pj\| 
2
\~\gamma j

+ \| \nabla \~pj\| 2\tau \~Kj
)

\geq 
\sum J

j=1

\biggl( 
\delta 

M0 + \delta 
\| \~pj\| 2\~\gamma j

+ \| \nabla \~pj\| 2\tau \~Kj

\biggr) 
,

where the second inequality in the above follows from the assumption 2\mu \leq M0\lambda and
the third inequality follows from (4.25). Thus,

\langle \~\scrA MPET(u, p0, \~p), (v, q0, \~q)\rangle 

\geq \| \varepsilon (u)\| 22\mu + \delta \langle \varepsilon (u), \varepsilon (w)\rangle 2\mu + \delta \| p0\| 2(2\mu ) - 1 +
\sum J

j=1 \| \nabla \~pj\| 2\tau \~Kj
(4.30)

+
\delta 

M0 + \delta 

\sum J
j=1 \| \~pj\| 

2
\~\gamma j
.

On the other hand, the Cauchy--Schwarz inequality, the definition of w, and Young's
inequality give that

(4.31) \delta | \langle \varepsilon (u), \varepsilon (w)\rangle 2\mu | \leq \delta C0\| \varepsilon (u)\| 2\mu \| p0\| (2\mu ) - 1 \leq 1

2
\| \varepsilon (u)\| 22\mu +

1

2
\delta 2C2

0\| p0\| 2(2\mu ) - 1 .

Inserting the negation of (4.31) as a lower bound in (4.30), we thus obtain that

\langle \~\scrA MPET(u, p0, \~p), (v, q0, \~q)\rangle 

\geq 1

2
\| \varepsilon (u)\| 22\mu + \delta (1 - 1

2
\delta C2

0 )\| p0\| 2(2\mu ) - 1 +
\sum J

j=1

\biggl( 
\| \nabla \~pj\| 2\tau \~Kj

+
\delta 

M0 + \delta 
\| \~pj\| 2\~\gamma j

\biggr) 
.

By choosing \delta , in particular, e.g., by letting \delta < 2/C2
0 , the estimate (4.28) follows.

D
ow

nl
oa

de
d 

02
/0

4/
22

 to
 5

1.
17

5.
74

.1
29

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B1000 PIERSANTI ET AL.

Remark 4.4. In Lemmas 4.2 and 4.3 we assumed sj \lesssim \~\gamma j for 1 \leq j \leq J and
it covers the cases where the sj 's are degenerate. This assumption can be removed
if \lambda  - 1 \lesssim sj , 1 \leq j \leq J , hold with constants of scale 1. For parameter-robust
preconditioners we use P which gives a different simultaneous diagonalization. More
precisely, we consider P satisfying (4.18), and PT (S + \tau E + L)P = diag(\~\gamma 1, . . . , \~\gamma J)
instead of (4.19). The norm (4.22) with these new \~Kj 's and \~\gamma j 's, will be used to obtain
parameter-robust preconditioners. Since the modification of proofs is straightforward
and most steps are almost same, we omit the detailed proofs.

For concreteness, we here illustrate the form of the MPET equations and of the
proposed preconditioner in a specific example.

Example 4.5. We consider the simple case of two networks with K1 = K2 = 1.0,
s1 = s2 = 1.0, \alpha 1 = \alpha 2 = 0.5, \lambda = 1.0, \xi 1\rightarrow 2 = 0.0, and \tau = 1.0. The transformation
matrix in this case is

(4.32) P =
1\surd 
2

\biggl( 
1  - 1
1 1

\biggr) 
.

We remark that P is not normalized. The associated transformed MPET operator
(cf. (4.16) and associated definitions), is then

(4.33) \~\scrA MPET =

\left(    
 - 2\mu div \varepsilon  - \nabla 0 0

div  - \lambda  - 1  - (
\surd 
2\lambda ) - 1 0

0  - (
\surd 
2\lambda ) - 1  - \Delta + 3

2 0
0 0 0  - \Delta + 1

\right)    ,

and the proposed preconditioner will be in the following form:

(4.34) \~\scrB MPET =

\left(    
( - 2\mu div \varepsilon ) - 1 0 0 0

0 (2\mu ) - 1 0 0
0 0 ( - \Delta + 1) - 1 0
0 0 0 ( - \Delta + 1) - 1

\right)    .

The objective of this example was to illustrate the layout of the operators in a simple
case. The results for more general numerical examples will be presented later.

4.5. Numerical performance.

Example 4.6. In this example we demonstrate the robustness of the block diagonal
preconditioner (4.23) for a mixed finite element discretization of the transformed total
pressure MPET equations (4.16). We consider the same test case, discretization,
and solver setup as described in Example 4.1; the new preconditioner is the only
modification. Parameter ranges are as follows: K2 \in [10 - 6, 106], \xi 1\leftarrow 2 \in [10 - 6, 106],
and \lambda \in [1, 106].

The resulting number of iterations is shown in Figure 1 for K2 \in [10 - 6, 1] and
\xi 1\leftarrow 2 \in [1, 106] and s1 = s2 = 1.0; omitted values demonstrated similar behaviors.
Each of the subplots in Figure 1 represents a fixed choice of K2 and \xi 1\leftarrow 2. In each
subplot four curves are shown; these curves show the number of MinRes iterations
corresponding to different values of \lambda , indicated by their respective symbols, at dis-
cretization levels N = 16, 32, 64, and 128. In Figure 2 we performed the same
experiments with s1 = s2 = 0.0.

For completeness we also performed numerical examples for J = 3, 5, 10, and
Kj = 1.0, sj = 1.0, \xi 1\leftarrow 2 \in [1, 106], and \lambda \in [1, 106]. Results are reported in Figure 3.
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ROBUST PRECONDITIONER FOR MPET B1001

Fig. 1. Number of MinRes iterations: (4.4) discretized with Taylor--Hood-type elements and
algebraic multigrid for s1 = s2 = 1.0. K2 varies along the horizontal axis while the vertical axis
shows variations in \xi 1\leftarrow 2 for K2 fixed. Each subplot contains four piecewise linear curves; each
curve is decorated by a symbol indicating a corresponding value of \lambda and corresponds to results for
discretizations N = 16, 32, 64, and 128.

The stopping criterion was

( \~\scrB rk, rk)/( \~\scrB r0, r0) \leq 10 - 6,

where rk is the residual of the kth iteration. We observe that the number of iterations
is moderate in general. Moreover, the number of iterations does not grow for smaller
K2's relative to larger \xi 1\leftarrow 2 or larger N in contrast to what was observed for Example
4.1.

Example 4.7. In this final example we present a modified version of a 3-dimen-
sional (3D) footing problem [7, 24, 26]; we demonstrate the problem for two fluid
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B1002 PIERSANTI ET AL.

Fig. 2. Number of MinRes iterations: (4.4) discretized with Taylor--Hood-type elements and
algebraic multigrid for s1 = s2 = 0. K2 varies along the horizontal axis while the vertical axis
shows variations in \xi 1\leftarrow 2 for K2 fixed. Each subplot contains four piecewise linear curves; each
curve is decorated by a symbol indicating a corresponding value of \lambda and corresponds to results for
discretizations N = 16, 32, 64, and 128.

networks (J = 2) and use the standard unit cube, \Omega = [0, 1]3 \subset \BbbR 3, as computational
domain. At the base of the domain, homogeneous Dirichlet conditions for the displace-
ment and for both fluid pressures are imposed. At the topmost surface of the domain,
i.e., z = 1, a load of 0.1 N/m2 is applied on the square [0.25, 0.75]\times [0.25, 0.75], and a
no flow condition is applied to the fluid pressures. For all remaining boundary sides of
the domain, the zero stress condition is applied alongside a homogeneous Dirichlet con-
dition for the fluid pressures. In the numerical experiments we vary the exchange coef-
ficient \xi 1\leftarrow 2, and the mesh size, the other physical parameters are reported in Table 3.

In Table 4, we report the number of MinRes iterations for each time step (from
0.1 to 0.5), varying the mesh size and exchange parameters. The initial guess for the
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ROBUST PRECONDITIONER FOR MPET B1003

Fig. 3. Number of MinRes iterations: (4.4) for J = 3, 5, 10 discretized with Taylor--Hood-type
elements and algebraic multigrid for Kj = 1.0, sj = 1.0. \lambda varies along the horizontal axis while
the vertical axis shows variations in \xi 1\leftarrow 2. Each subplot contains one piecewise linear curve and
corresponds to results for discretizations N = 16, 32, 64, and 128.

Table 3
Parameters used in the numerical simulations.

Property Symbol Value Units
Young's modulus E 3\times 104 Pa
Poisson ratio \nu 0.45 [-]
Hydraulic conductivities K1,K2 10 - 6 m2(Pa s) - 1

Storage coefficients s1, s2 0.0 Pa - 1

Biot coefficient \alpha 1, \alpha 2 0.5 [-]

solution is set to zero. Similarly to what observed in Example 4.6, the number of iter-
ations is moderate also for this 3D case. In Figure 4 the solution for t = 0.5 is shown.
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Table 4
MinRes iterations for the footing problem (cf. Example 4.7).

h \xi 1\leftarrow 2
Number of iterations

t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

1/8
1.0\times 10 - 6 87 97 97 97 97
1.0 89 102 102 102 102

1/16
1.0\times 10 - 6 90 102 102 102 102
1.0 93 108 109 107 109

1/32
1.0\times 10 - 6 95 107 107 107 107
1.0 98 112 112 114 111

(a) fluid pressure p1 (b) fluid pressure p2
(c) displacement magnitude u

Fig. 4. A 3D Footing Problem, solution for 1/h = 32, \xi 1\leftarrow 2 = 1.0, at t = 0.5.

5. Conclusions. In this paper, we have presented a new strategy for decoupling
the total pressure variational formulation of the multiple-network poroelasticity equa-
tions. The decoupling strategy is based on a transformation via a change of variables,
allowing for simultaneous diagonalization by congruence of the equation operators.
In particular, the transformed equations are readily amenable for block diagonal pre-
conditioning. Moreover, we have proposed a block diagonal preconditioner for the
transformed system and shown theoretically that the preconditioner and the equa-
tion operator are norm equivalent, independently of the material parameters, under
reasonable parameter assumptions. The theoretical results are supported by numer-
ical examples. Combined, these results allow the efficient iterative solution of the
multiple-network poroelasticity equations, even in the case of nearly incompressible
materials.

We note that our strategy is based on spatially constant material parameters.
The applicability of this approach for spatially varying parameters has not yet been
considered.

Appendix A. Proof of Lemma 2.1. We first recall a basic [12] definition
and result for posterity.

Definition A.1. A matrix C \in \BbbC n\times n is diagonalizable if there exists an invertible
transformation, P , such that P - 1CP is diagonal. The matrix C is called diagonal-
izable by congruence if there exists P , not necessarily invertible, such that PTCP is
diagonal.

Theorem A.2 (see [12, 4.5.17a-b p. 287]). Suppose A and B \in \BbbC n\times n are
symmetric and that A is invertible. Then A and B are diagonalizable by congruence
if and only if C = A - 1B is diagonalizable.
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Proof of Lemma 2.1. Assume K and E satisfy the hypotheses of Lemma 2.1 and,
without loss of generality, suppose that K is positive definite. Then K is invertible
and we first show that this implies C = K - 1E \in \BbbR n\times n is diagonalizable. We note
that C satisfies

K1/2CK - 1/2 = K - 1/2EK - 1/2,

where K1/2 denotes the (unique, symmetric) principle square root of K. The right-
hand side, above, is symmetric due to the symmetry of K and E. Thus C is similar to
a real, symmetric matrix and is therefore diagonalizable. From [12, 4.5.17a-b] there
exists an invertible matrix P \in \BbbR n\times n such that

PTKP = \~DK and PTEP = \~DE ,

where \~DK , \~DE \in \BbbR n\times n are diagonal matrices.
Recalling Q = W \times \cdot \cdot \cdot \times W , define the change of variables \~p = (P - 1 \otimes IW )p for

p \in Q and substitute into (2.5) to get

\langle S(P \otimes IW )\~p, q\rangle + \langle T (P \otimes IW )\~p, q\rangle = \langle f, q\rangle \forall q \in Q.

Writing q = (P \otimes IW )(P - 1 \otimes IW )q and noting that the adjoint operator of P \otimes IW is
PT \otimes IW\ast , we have

\langle S(P \otimes IW )\~p, q\rangle = \langle (PT \otimes IW\ast )S(P \otimes IW )\~p, (P - 1 \otimes IW )q\rangle .

Since S = K \otimes A we can obtain (PT \otimes IW\ast )S(P \otimes IW ) = \~DK \otimes A (by the Hadamard
product). By a similar argument

\langle TP \~p, q\rangle = \langle ( \~DE \otimes B)\~p, (P - 1 \otimes IW )q\rangle .

Then DS := \~DK \otimes A and DT := \~DE \otimes B are block diagonal operators from Q to Q\ast .
Finally \langle f, q\rangle = \langle (PT \otimes IW\ast )f, (P - 1\otimes IW )q\rangle and the variational problem (2.6) follows
because q \in Q is arbitrary.

Remark A.3. The construction of the matrix P , yielding both PTKP = D1 and
PTEP = D2, is straightforward for the case when C = K - 1E has n distinct eigen-
values. In this case C has n linearly independent eigenvectors; if \{ v1, . . . , vn\} denote
these eigenvectors then P = [v1, . . . , vn] is the matrix whose jth column is vj . When
the eigenvalues of C are not distinct, P can be realized as the product of blockwise
eigenvector matrices. The general procedure for this case is discussed in [12]; an ex-
ample has been discussed in section 3. As a point of praxis it should be noted that
that diagonalization by congruence can face a practical challenge. In particular, if
the eigenvalues of C = K - 1E are very large and the eigenvectors of C have one or
more small entries then computing the transformation matrix P , using off-the-shelf
methods in, e.g., MATLAB or Mathematica, can be inexact. In such cases, the ma-
trices PTKP and PTEP are strongly diagonally dominant but may have off diagonal
entries that are approximately zero. In this case, alternative methods to compute the
eigenvector matrix P may be useful. For instance, one may consider using a package,
such as the Python mpmath package, that supports variable precision to compute the
eigenvectors and transformation matrices.
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