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ROBUST PRECONDITIONERS FOR PERTURBED SADDLE-POINT
PROBLEMS AND CONSERVATIVE DISCRETIZATIONS OF BIOT'S

EQUATIONS UTILIZING TOTAL PRESSURE\ast 
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RICARDO RUIZ-BAIER\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We develop robust solvers for a class of perturbed saddle-point problems arising in
the study of a second-order elliptic equation in mixed form (in terms of flux and potential), and of the
four-field formulation of Biot's consolidation problem for linear poroelasticity (using displacement,
filtration flux, total pressure, and fluid pressure). The stability of the continuous variational mixed
problems, which hinges upon using adequately weighted spaces, is addressed in detail; and the
efficacy of the proposed preconditioners, as well as their robustness with respect to relevant material
properties, is demonstrated through several numerical experiments.
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1. Introduction. Disparity of model parameters is a phenomenon commonly
encountered in a variety of applications, and it is of paramount importance that the
formulation of multiphysics problems and the design of discretizations and efficient
solvers are robust with respect to at least some of the parameters with wide value
ranges. We will consider here the equations of linear poroelasticity, where fluid flows
in isothermal deformable porous media, assuming that the solid skeleton undergoes
small strains. The poroelastic Biot equations that form the subject of this study are

 - \bfnabla \cdot (2\mu \bfitvarepsilon (\bfitu ) + (\lambda \nabla \cdot \bfitu  - \alpha p)I) = \bfitb in \Omega \times (0, tend],(1.1a)

K - 1\bfitw +\nabla p = 0 in \Omega \times (0, tend],(1.1b)

\partial t(cp+ \alpha \nabla \cdot \bfitu ) +\nabla \cdot \bfitw = f in \Omega \times (0, tend],(1.1c)

equipped with suitable boundary (and initial) conditions to be specified later. Here,
\bfitu (t) : \Omega \rightarrow \BbbR d is the solid displacement vector, \bfitw (t) : \Omega \rightarrow \BbbR d is the Darcy flux or
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B962 BOON, KUCHTA, MARDAL, AND RUIZ-BAIER

percolation velocity, p(t) : \Omega \rightarrow \BbbR is the fluid pressure, the symbol \partial t denotes the
partial derivative with respect to time, \bfitb (t) : \Omega \rightarrow \BbbR d is a prescribed body force per
unit volume of the porous medium, the symmetric part of the displacement (row-wise)
gradient defines the infinitesimal strain tensor \bfitvarepsilon (\bfitu ) = 1

2 (\nabla \bfitu +\nabla \bfitu \ttt ), the parameters
\lambda , \mu are the Lam\'e constants of the solid, K is the hydraulic conductivity (ratio between
the material permeability and fluid viscosity), f(t) : \Omega \rightarrow \BbbR is a source or sink of fluid
mass, and c, \alpha are the total storage capacity and Biot--Willis poroelastic coefficient,
respectively.

Several types of discretizations for (1.1) are available from the literature, including
mixed and continuous elements, least-squares mixed, stabilized H(div)-conforming
and other nonconforming schemes, adaptive mixed methods, weak Galerkin, enriched
Lagrangian, and hybrid finite-volume finite element methods (see, e.g., [30, 4, 44, 24,
34, 41, 20, 42, 36, 16] and the references therein).

A main challenge for these equations is the construction of solvers that scale
properly for nearly incompressible solids where the Lam\'e dilation modulus tends to
infinity, as well as in the case of nearly incompressible fluids, for which the constrained
specific storage coefficient approaches zero, or the nearly impermeable regime where
the hydraulic conductivity is very small. These scenarios entail not only a complica-
tion at the practical and implementation level, but also a difficulty inherent to the
functional setting of the abstract formulation (see, e.g., [31, 18, 43]). In more detail,
for almost incompressible solids (\lambda \gg \mu ), the primal form of the elasticity equation,
used in (1.1a), here scaled by \lambda ,

 - \bfnabla \cdot 
\Bigl( 
2
\mu 

\lambda 
\bfitvarepsilon (\bfitu ) + (\nabla \cdot \bfitu )I

\Bigr) 
= \bfitb in \Omega ,

is known to suffer from locking when using standard elements such as Lagrange el-
ements. The reason is that the problem is a singular perturbation problem, where
stability in H1(\Omega ) decays as \mu /\lambda tends to zero and where stability can only be ob-
tained in H(div,\Omega ). A remedy is to use elements that are stable in both H(div,\Omega ) and
H1(\Omega ) such as in [18, 19] where stabilized Brezzi--Douglas--Marini (BDM) elements
are employed. Another alternative is to employ a technique similar to Herrmann's
method [17] where an additional solid pressure, p = \lambda \nabla \cdot \bfitu , is introduced. It has been
shown that a straightforward application of Herrmann's method is unstable, but that
the technique can be adjusted such that the discretization becomes stable [23, 29]
for displacement-pressure formulations, the so-called total-pressure formulation. The
method was extended to conservative formulations, i.e., displacement-flux-pressure,
in [22], but robustness with respect to all parameters was not established.

A second singular perturbation problem occurs when the hydraulic conductivity
(K) tends to zero. To prevent nonphysical pressure oscillations, mixed schemes in-
volving both flux and pressure are often used, i.e., ignoring for the moment the elastic
deformation, the equations read

K - 1\bfitw +\nabla p = 0 in \Omega \times (0, tend],

\partial tcp+\nabla \cdot \bfitw = f in \Omega \times (0, tend].

Hence, upon time-discretization, this system is a mixed Darcy problem with a lower-
order perturbation term for the pressure and we will consider the cases where one or
both of K \rightarrow 0 and c \rightarrow 0 is allowed. It is seen that if the perturbation is sufficiently
small (such that the additional term is bounded by the pressure norm), then the

perturbed problem is well posed if a weighted L2-norm, i.e., K
1
2L2(\Omega ), is used for the
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PRECONDITIONING PERTURBED SADDLE-POINT PROBLEMS B963

pressure. This observation has been frequently employed [18, 32, 39, 40] in various
porous media flow applications. However, if the hydraulic conductivity ratio K is
small, then (the fluid part of) the perturbation cannot be bounded by the K

1
2L2(\Omega )-

norm, preventing a robust stability result. With this in mind, a convenient rescaling
of the employed norms seems to produce better results, as recently suggested in [3].

We also mention that for conservative Biot formulations such as (1.1a)--(1.1c), the
stability, i.e., the inf-sup condition, of the porous media problem can be weakened,
as observed in [20, 25]. We will show, for the total pressure formulation of the con-
servative form of Biot's equations (1.1a)--(1.1c), that the scaling of the fluid pressure
cannot be chosen independently of the coupling to the solid displacement and that
the stability of the fluid pressure in L2(\Omega ) +K

1
2H1(\Omega ) is crucial.

A key tool for our stability analysis is the seminal paper [8] which analyzed saddle-
point problems with penalty terms corresponding to singular perturbation problems.
Therein, it is shown that, depending on the penalty term, the perturbation may
either stabilize or destabilize the saddle-point problem. The Biot equations in study
here involve two saddle-point problems with penalties corresponding to two singular
perturbation problems that may be strongly coupled. The analysis leads us to utilize
nonstandard Sobolev spaces to untangle the precise stability problems required in
both the continuous and discrete settings.

This paper is structured as follows. The motivating problem of Biot consolidation
and its variational formulation are presented in the remainder of this section. Then
in section 2 we give an overview of the analysis of perturbed saddle-point problems
following [8]. In section 3, this theoretical framework is used to show that a gener-
alized Poisson equation in mixed form with Dirichlet boundary conditions is stable
in appropriately weighted norms, and there we also discuss the case of Neumann
boundary conditions. Section 4 contains an application of the theory to the four-field
formulation of Biot equations. In section 5 we make precise the norms and spaces re-
quired at the discrete level, and in section 6 we collect numerical results that test the
performance of the proposed block preconditioners for the modified Poisson equation
and the Biot consolidation system.

1.1. Problem formulation. Let us consider the time domain t \in (0, tend] and
an open, bounded connected Lipschitz spatial domain \Omega \subset \BbbR d, d = 2, 3, on which the
Biot equations in quasi-static form, (1.1), are posed.

We introduce the total pressure (the sum of the volumetric contributions to the
poroelastic Cauchy stress; cf. [23, 29]) as

pT = \lambda \nabla \cdot \bfitu  - \alpha p.(1.2)

We substitute (1.2) in the momentum balance equation and use it to rewrite the
volumetric term in the mass balance equation:

\alpha \nabla \cdot \bfitu =
\alpha 

\lambda 
pT +

\alpha 2

\lambda 
p.

This leads to the four-field formulation of Biot's equation (see, e.g., [18, 22])
written in operator form\left[    

 - \bfnabla \cdot (2\mu \bfitvarepsilon )  - \nabla 
K - 1 \nabla 

 - \nabla \cdot 1
\lambda 

\alpha 
\lambda 

\nabla \cdot \alpha 
\lambda \partial t (c+ \alpha 2

\lambda )\partial t

\right]    
\left[    
\bfitu 
\bfitw 
pT
p

\right]    =

\left[    
\bfitb 
0
0
f

\right]    .
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B964 BOON, KUCHTA, MARDAL, AND RUIZ-BAIER

Regarding boundary conditions, we assume that the boundary \partial \Omega = \Gamma \bfitu \cup \Gamma \bfitsigma , with
\Gamma \bfitu \cap \Gamma \bfitsigma = \emptyset and | \Gamma \bfitu | \not = 0 \not = | \Gamma \bfitsigma | , splits into two subregions: \Gamma \bfitu where displacement
and normal filtration flux are prescribed (the solid is clamped and the fluid slips), and
\Gamma \bfitsigma where we set zero total traction and zero fluid pressure:

\bfitu = 0 and \bfitnu \cdot \bfitw = 0 on \Gamma \bfitu \times (0, tend],(1.3a)

[2\mu \bfitvarepsilon (\bfitu ) - pT I]\bfitnu = 0 and p = 0 on \Gamma \bfitsigma \times (0, tend],(1.3b)

where \bfitnu is the unit normal vector on the boundary \partial \Omega . We also suppose that the
system is initially at rest:

(1.3c) \bfitu = 0, p = 0 in \Omega \times \{ 0\} .
Let us consider a backward Euler time discretization of the four-field formulation

with time step \tau . We let \bfitw \tau := \tau \bfitw , and group the displacement and flux unknowns
into a vector \vec{}\bfitu , and the total pressure and fluid pressure into \vec{}p so that the vector of
unknowns (at the current time step) is (\vec{}\bfitu , \vec{}p)\ttt = (\bfitu ,\bfitw \tau , pT , p)

\ttt . After a rescaling of
the equations similar to [18], we have the operator:

\scrA 
\biggl[ 
\vec{}\bfitu 
\vec{}p

\biggr] 
:=

\left[    
 - \bfnabla \cdot (2\mu \bfitvarepsilon )  - \nabla 

(\tau K) - 1 \nabla 
 - \nabla \cdot 1

\lambda 
\alpha 
\lambda 

\nabla \cdot \alpha 
\lambda c+ \alpha 2

\lambda 

\right]    
\left[    
\bfitu 
\bfitw \tau 

pT
p

\right]    .(1.4)

Note that from the time-discrete formulation (1.4) and from the setup of bound-
ary conditions (1.3a)--(1.3b), the natural trial and test spaces (before scaling) for
displacement, filtration flux, total pressure, and fluid pressure, are, respectively,

H1
\Gamma \bfitu (\Omega ), H\Gamma \bfitu (div,\Omega ), L2(\Omega ), L2(\Omega ).

Note also that system (1.4) adopts the structure\biggl[ 
A  - B\ttt 

B C

\biggr] \biggl[ 
\vec{}\bfitu 
\vec{}p

\biggr] 
=

\biggl[ 
f
g

\biggr] 
,(1.5)

with A and C symmetric, positive semidefinite operators, and where the right-hand
side vectors f, g contain contributions from the body load and volumetric source, as
well as from quantities in the previous time step that arise from the discretization
in time. More precisely, we have the weak formulation: Find (\vec{}\bfitu , \vec{}p) \in 

\bigl( 
H1

\Gamma \bfitu (\Omega ) \times 
H\Gamma \bfitu (div,\Omega )

\bigr) 
\times 
\bigl( 
L2(\Omega )\times L2(\Omega )

\bigr) 
such that

a(\vec{}\bfitu , \vec{}\bfitv ) - b(\vec{}\bfitv , \vec{}p) = F (\vec{}\bfitv ) \forall \vec{}\bfitv \in H1
\Gamma \bfitu (\Omega )\times H\Gamma \bfitu (div,\Omega ),

b(\vec{}\bfitu , \vec{}q) + c(\vec{}p, \vec{}q) = G(\vec{}q) \forall \vec{}q \in L2(\Omega )\times L2(\Omega ),

where \vec{}\bfitv = (\bfitv , \bfitzeta , qT , q), and the bilinear forms and functionals adopt the form

a(\vec{}\bfitu , \vec{}\bfitv ) := 2\mu 

\int 
\Omega 

\bfitvarepsilon (\bfitu ) : \bfitvarepsilon (\bfitv ) +
1

\tau K

\int 
\Omega 

\bfitw \tau \cdot \bfitzeta ,

b(\vec{}\bfitv , \vec{}q) :=  - 
\int 
\Omega 

\nabla \cdot \bfitv qT +

\int 
\Omega 

\nabla \cdot \bfitzeta q,

c(\vec{}p, \vec{}q) :=
1

\lambda 

\int 
\Omega 

pT qT +
\alpha 

\lambda 

\int 
\Omega 

p qT +
\alpha 

\lambda 

\int 
\Omega 

pT q +

\biggl[ 
c+

\alpha 2

\lambda 

\biggr] \int 
\Omega 

p q,

G(\vec{}q) :=

\int 
\Omega 

\biggl( 
\tau f +

\biggl[ 
c+

\alpha 2

\lambda 

\biggr] 
pn +

\alpha 

\lambda 
pnT

\biggr) 
q, F (\vec{}\bfitv ) :=

\int 
\Omega 

\bfitb \cdot \bfitv ,
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PRECONDITIONING PERTURBED SADDLE-POINT PROBLEMS B965

where pn, pnT denote the approximations of fluid and total pressure on the previous
iteration of backward Euler's method.

Let us point out that using (\vec{}\bfitu , \vec{}p)\ttt as a test function, we are led to the following
poroelastic energy norm:

\langle \scrA (\vec{}\bfitu , \vec{}p), (\vec{}\bfitu , \vec{}p)\rangle = 2\mu \| \bfitvarepsilon (\bfitu )\| 20,\Omega + (\tau K) - 1\| \bfitw \tau \| 20,\Omega +
1

\lambda 
\| pT + \alpha p\| 20,\Omega + c\| p\| 20,\Omega .

(1.6)

However, an issue with writing a global multilinear form and trying to analyze its
stability is that this naturally induced seminorm does not take into account the term
\nabla \cdot \bfitw , and therefore, one loses separate control over pT and p if c = 0. In particular,
the operators A and C do not possess sufficient coercivity to ensure this (see, e.g.,
[6, 15]). We thus require a more involved strategy in order to obtain a stability bound
in a stronger norm than (1.6). This will be presented in section 4, for which we
first need to discuss theoretical aspects of perturbed saddle-point systems, which we
exemplify with a simpler problem.

We also point out that the parabolic-elliptic nature of the coupled system may
suggest, as an alternative to the monolithic approach leading to (1.4), to use operator
splitting techniques that allow one to solve smaller and better conditioned systems in
an iterative manner, as studied in, e.g., [1, 7, 27]; however, we do not address those
lines here.

2. Abstract analysis of perturbed saddle-point problems. Typically, the
stability analysis of perturbed saddle-point problems of type (1.5), posed on V \times Q,
assumes a given norm on the space Q and uses this norm in its assumptions on the
bilinear forms. However, we obtain two different types of control of the solution p \in Q,
through the operators B and C, respectively. It is essential in the context of robust
preconditioning to understand these two effects so that the dependencies on model
parameters can be properly captured. This section, therefore, presents an analysis
of (1.5) with the use of two different (semi)norms, reflecting the roles that B and C
play. For this, we rely on the analysis presented in [8].

We start by introducing notation. Let V and Qb be two Hilbert spaces endowed
with norms \| \cdot \| V and \| \cdot \| Qb

that are possibly parameter-dependent. Let Q be a dense
linear subspace of Qb. We have three bilinear forms a : V \times V \rightarrow \BbbR , b : V \times Qb \rightarrow \BbbR ,
and c : Q\times Q \rightarrow \BbbR , of which we assume that a and b are continuous and that a and
c are symmetric and positive (semi)definite, i.e.,

a(u, v) \lesssim \| u\| V \| v\| V , b(u, q) \lesssim \| u\| V \| q\| Qb
\forall u, v \in V, \forall q \in Q,

a(u, v) = a(v, u), a(v, v) \geq 0 \forall u, v \in V,

c(p, q) = c(q, p), c(q, q) \geq 0 \forall p, q \in Q.

Here, we use the notation x \lesssim y to denote that a constant c0 > 0 exists, independent
of model parameters such that x \leq c0y. The relation \gtrsim has analogous meaning, and
we denote x \eqsim y if x \lesssim y \lesssim x.

It is important to note that c may potentially be unbounded with respect to the
norm \| \cdot \| Qb

, as is the case in the examples we consider below. Let c generate the
(semi)norm

| p| 2c := c(p, p) \forall p \in Q,

and we assume that Q is complete with respect to the norm \| p\| 2Q := \| p\| 2Qb
+ | p| 2c .

We emphasize that completeness of Q is assumed with respect to the stronger norm
\| \cdot \| Q whereas the density of Q in Qb concerns the weaker norm \| \cdot \| Qb

.
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The linear operators associated to a(\cdot , \cdot ), b(\cdot , \cdot ), and c(\cdot , \cdot ) are denoted by A : V \rightarrow 
V \prime , B : V \rightarrow Q\prime 

b, and C : Q \rightarrow Q\prime , respectively. Let B\ttt : Qb \rightarrow V \prime be the adjoint of
B. Letting 0 \leq t \leq 1 be a scaling parameter, we consider the following problem:
Find (u, p) \in V \times Qb such that\biggl[ 

A  - B\ttt 

B t2C

\biggr] \biggl[ 
u
p

\biggr] 
=

\biggl[ 
f
g

\biggr] 
.(2.1)

We assume that the following bounds, known as the Brezzi conditions, hold:

\forall v \in KerB, a(v, v) \gtrsim \| v\| 2V ,(2.2a)

\forall p \in Qb, sup
v\in V

b(v, p)

\| v\| V
\gtrsim \| p\| Qb

.(2.2b)

Note the use of the norm \| \cdot \| Qb
on p in (2.2b). This distinguishes our analysis from

the convention in which the norm \| \cdot \| Q is used in (2.2b) instead; see, e.g., [6, 37].
Finally, we introduce the parameter-dependent energy norm

| | | (v, q)| | | 2 := \| v\| 2V + \| q\| 2Qb
+ t2| q| 2c .(2.3)

Note that t in this norm reflects the additional stability obtained from the C-
block. For t = 0, we obtain stability directly from the Brezzi conditions. However,
for the range t \in [0, 1], we require an additional inf-sup condition, as presented in the
following theorem.

Theorem 2.1 (Brezzi--Braess). Let the bilinear forms a and b satisfy the Brezzi
conditions (2.2). If, moreover,

\forall u \in V, sup
(v,q)\in V\times Q

a(u, v) + b(u, q)

| | | (v, q)| | | \gtrsim \| u\| V ,(2.4)

then problem (2.1) is stable in the energy norm (2.3).

Proof. See [8, Lemma 3] for the proof.

In the following, we refer to (2.4) as the Braess condition. We will now demon-
strate the use of this result for an exemplary problem concerning the modified Poisson
equation, followed by the four-field formulation of Biot's equations (1.4).

3. A generalized Poisson (or simplified Helmholtz) equation in mixed
form.

3.1. Dirichlet boundary conditions. Let us consider the following elliptic
problem (here referred to as generalized Poisson equation, or also modified/simplified
Helmholtz equation because the squared wavenumber is taken with the opposite sign):

(3.1)  - \nabla \cdot (K\nabla p) + \alpha p = f in \Omega , p = 0 on \partial \Omega ,

with coefficient matrix K, prescribed right-hand side f , and scalar parameter 0 \leq 
\alpha \leq 1 (the squared wavenumber), and its mixed formulation in operator form, given
as follows:
Find \bfitu \in V and p \in Q such that

(3.2)

\biggl[ 
K - 1I \nabla 
\nabla \cdot \alpha I

\biggr] \biggl[ 
\bfitu 
p

\biggr] 
=

\biggl[ 
0
f

\biggr] 
.
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PRECONDITIONING PERTURBED SADDLE-POINT PROBLEMS B967

Note that this problem has the structure of (1.5) (see similar mixed and mixed-
hybrid formulations using Raviart--Thomas elements in, e.g., [11, 28]). We now define
the appropriate function spaces and energy norm (2.3) using the properties of the
operators A, B, and C.

Starting with the Brezzi conditions (2.2), we follow the theory presented in [3]
and consider the spaces

V := K - 1
2L2(\Omega ) \cap H(div,\Omega ), Qb := K

1
2H1(\Omega ) + L2(\Omega ).(3.3)

These intersection and summation spaces are defined by the parameter-dependent
norms

\| \bfitu \| 2V := \| K - 1
2\bfitu \| 20,\Omega + \| \nabla \cdot \bfitu \| 20,\Omega ,(3.4a)

\| p\| 2Qb
:= inf

r\in K
1
2 H1(\Omega )

\biggl( 
\| p - r\| 20,\Omega + \| K 1

2\nabla r\| 20,\Omega 
\biggr) 
.(3.4b)

As shown in [3], both the inf-sup (2.2b) and coercivity (2.2a) conditions hold in these
norms. For more information on summation spaces, we refer the reader to [5].

Letting \alpha play the role of t2 from section 2, we have C = I and thus

\| p\| 2c := c(p, p) = \| p\| 20,\Omega ,

and we remark that \| p\| c \not \lesssim \| p\| Qb
. However, we have Q := L2(\Omega ) \cap Qb = L2(\Omega ), and

it remains to show that Q is dense in Qb. But this is immediate from the fact that
Q\bot Qb = \{ 0\} .

Lemma 3.1. Given the spaces V and Q, their associated norms, and the bilinear
forms in (3.2), the assumptions of Theorem 2.1 then hold. In turn, the problem is
stable in the energy norm (2.3).

Proof. The validity of the Brezzi conditions (2.2) is shown in [3]. Hence, it remains
to show the Braess condition (2.4) and we proceed as follows. Given \bfitu \in V , let
\bfitv = \bfitu \in V and q = \nabla \cdot \bfitu \in Q. It follows that

a(\bfitu ,\bfitv ) + b(\bfitu , q) = \| K - 1
2\bfitu \| 20,\Omega + \| \nabla \cdot \bfitu \| 20,\Omega = \| \bfitu \| 2V .

Moreover, we have

| | | (\bfitv , q)| | | 2 := \| \bfitv \| 2V + \| q\| 2Qb
+ \alpha \| q\| 2c \lesssim \| \bfitu \| 2V + \| \nabla \cdot \bfitu \| 20,\Omega \lesssim \| \bfitu \| 2V .

Remark 3.2. For scalar K, it seems natural to consider the norms \| \bfitv \| 2V :=

\| K - 1
2\bfitv \| 20,\Omega +\| \nabla \cdot K - 1

2\bfitv \| 20,\Omega and \| q\| Qb
:= \| K 1

2 q\| 0,\Omega instead, similar to [39]. Follow-

ing the proof of Lemma 3.1, we would then choose \bfitv = \bfitu and q =  - \nabla \cdot K - 1\bfitu , such
that

a(\bfitu ,\bfitv ) - b(\bfitu , q) = \| K - 1
2\bfitu \| 20,\Omega + \| \nabla \cdot K - 1

2\bfitu \| 20,\Omega = \| \bfitu \| 2V .(3.5)

However, for the second bound, we obtain

\alpha \| q\| 2c = \alpha \| \nabla \cdot K - 1\bfitu \| 20 \leq \alpha K - 1\| \bfitu \| 2V .(3.6)

For the case \alpha > 0, the bound (3.6) cannot be improved with a constant independent
of K. This explains the suboptimal performance of the preconditioner \scrB VV for K < \alpha 
observed in Table 6.1 of section 6.
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B968 BOON, KUCHTA, MARDAL, AND RUIZ-BAIER

Remark 3.3. Strictly speaking, the bilinear form c(\cdot , \cdot ) is not continuous in Qb \times 
Qb since the continuity constant would necessarily depend on K. For this reason,
Theorem 2.1 is more appropriate than the analysis presented in, e.g., [6, 37], where
continuity of c is assumed.

We remark that the energy norm is given by

| | | (\bfitu , p)| | | 2 := \| \bfitu \| 2V + \| p\| 2Qb
+ \alpha \| p\| 2c

\eqsim \| \bfitu \| 2V + inf
r\in K

1
2 H1(\Omega )

\biggl( 
(1 + \alpha )\| p - r\| 20,\Omega + \alpha \| r\| 20,\Omega + \| K 1

2\nabla r\| 20,\Omega 
\biggr) 
.(3.7)

Based on this norm, we use the theory from [26] to propose the following precon-
ditioner for problem (3.2):

(3.8) \scrB =

\Biggl[ \bigl( 
K - 1I  - \nabla \nabla \cdot 

\bigr)  - 1
0

0 ((1 + \alpha )I)
 - 1

+ (\alpha I  - K\Delta )
 - 1

\Biggr] 
.

3.2. Neumann boundary conditions. Consider the following generalized Poi-
sson problem with homogeneous Neumann boundary conditions for 0 \leq \alpha \leq 1:

\nabla \cdot ( - \nabla p) + \alpha p = f,  - \bfitnu \cdot \nabla p| \partial \Omega = 0.(3.9)

In the limit case of \alpha = 0, the solution p is only defined for compatible f . We thus
restrict this section to the case where f has zero mean, i.e.,

\=f = \Pi \BbbR f = 0,

with \Pi \BbbR the L2-projection onto constants. Applying this projection to the original
equation, we immediately obtain that \alpha \=p = 0. In the limit case, we have the freedom
to choose p with zero mean so this implies that \=p = 0 for all \alpha \geq 0. This property
is usually treated by searching the solution in the restricted function space L2(\Omega )/\BbbR .
However, this can be cumbersome to discretize so we present an alternative approach,
based on the observations from section 2.

Let us consider the following equivalent problem:
Find \bfitu \in H0(div,\Omega ) and p \in L2(\Omega ) such that

(3.10)

\biggl[ 
I \nabla 
\nabla \cdot \alpha I + (1 - \alpha )\Pi \BbbR 

\biggr] \biggl[ 
\bfitu 
p

\biggr] 
=

\biggl[ 
0
f

\biggr] 
.

Lemma 3.4. The solution (\bfitu , p) to (3.10) exists uniquely and satisfies

\| \bfitu \| div,\Omega + (1 +
\surd 
\alpha )\| p\| 0,\Omega \lesssim \| f\| Q\prime .

Proof. We first consider existence. Letting p be the solution to (3.9) and \bfitu =
 - \nabla p, it follows that (\bfitu , p) solves (3.10). Uniqueness, on the other hand, follows by
establishing the bound on the solution.

We decompose the solution p into its mean \=p \in \BbbR and the deviation \r p \in L2(\Omega )/\BbbR .
Let us consider these components separately. First, by applying \Pi \BbbR to the second
equation, we note that \=p is given by

\=p = \=f = 0.
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Second, (\bfitu ,\r p) \in H0(div,\Omega )\times L2(\Omega )/\BbbR solves\biggl[ 
I \nabla 
\nabla \cdot \alpha I

\biggr] \biggl[ 
\bfitu 
\r p

\biggr] 
=

\biggl[ 
0
\r f

\biggr] 
.(3.11)

This problem can be analyzed in the context of Theorem 2.1. We define the
spaces V := H0(div,\Omega ) and Qb = Q := L2(\Omega )/\BbbR and introduce the norms

\| \bfitu \| V := \| \bfitu \| div,\Omega , \| p\| Qb
= | p| c := \| p\| 0,\Omega .(3.12)

The Brezzi conditions (2.2) are well known to be satisfied for these spaces and
norms. Moreover, the Braess condition (2.4) can be verified by assuming given \bfitu ,
setting (\bfitv ,\r q) = (\bfitu ,\nabla \cdot \bfitu ), and noting that

a(\bfitu ,\bfitv ) + b(\bfitu , q) = \| \bfitu \| 2V ,(3.13a)

| | | (\bfitv , q)| | | 2 = \| \bfitu \| 2V + (1 + \alpha )\| \nabla \cdot \bfitu \| 20,\Omega \lesssim \| \bfitu \| 2V .(3.13b)

Hence, the assumptions of Theorem 2.1 are satisfied, and we obtain the result by
noting that p = \r p and f = \r f .

Remark 3.5. Unlike (3.9), problem (3.10) does not require compatible data, and
is uniquely solvable for all f \in L2(\Omega ). The ``incompatibility"" is captured by the mean
of p since \=p = \=f . The stability result of Lemma 3.4 remains valid since we trivially
have \| \=p\| Q = \| \=f\| Q\prime .

As a direct consequence of Lemma 3.4, we propose the following preconditioner
for (3.10):

\scrB =

\biggl[ 
(I  - \nabla \nabla \cdot ) - 1 0

0 ((1 + \alpha )I) - 1

\biggr] 
.(3.14)

Before returning to the problem of linear poroelasticity, we stress that a large
class of problems can be put in the framework developed in this section. As an exam-
ple, in Appendix C we discuss the application into the discretization of Herrmann's
formulation of linear elasticity [17], where the additional unknown of solid pressure is
added to avoid volumetric locking.

4. Back to the four-field formulation of Biot equations. At this point, we
want to apply the same strategy as in section 3 to construct a preconditioner for the
Biot system \scrA from (1.4) (endowed with the boundary and initial conditions (1.3)).
Let us consider the function spaces

V := 2\mu H1
\Gamma \bfitu (\Omega )\times [(\tau K) - 

1
2L2(\Omega ) \cap H\Gamma \bfitu (div,\Omega )],

Qb := \mu  - 1L2(\Omega )\times [(\tau K)
1
2H1(\Omega ) + L2(\Omega )],

and introduce the following (semi)norms:

\| \vec{}\bfitu \| 2V = 2\mu \| \bfitvarepsilon (\bfitu )\| 20,\Omega + (\tau K) - 1\| \bfitw \tau \| 20,\Omega + \| \nabla \cdot \bfitw \tau \| 20,\Omega ,(4.1a)

\| \vec{}p\| 2Qb
= \mu  - 1\| pT \| 20,\Omega + \| p\| 2

L2(\Omega )+(\tau K)
1
2 H1(\Omega )

,(4.1b)

| \vec{}p| 2c =
1

\lambda 
\| pT + \alpha p\| 20,\Omega + c\| p\| 20,\Omega .(4.1c)
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B970 BOON, KUCHTA, MARDAL, AND RUIZ-BAIER

We define Q as the subspace of Qb consisting of elements \vec{}q with | \vec{}q| c < \infty . Density
of Q in Qb follows once more from the fact that Q\bot Qb = \{ 0\} .

Recall that 0 \leq t \leq 1 is the perturbation parameter in (2.1). The energy norm is
given by (2.3), and we repeat it here for convenience:

| | | (\vec{}\bfitv , \vec{}q)| | | 2 := \| \vec{}\bfitv \| 2V + \| \vec{}q\| 2Qb
+ t2| \vec{}q| 2c .(4.2)

Although the relevant physical limits are not exactly given by a single parameter t,
we do note that t = 1 corresponds to the original problem (1.4). Moreover, the limit
case with (\lambda , c) \rightarrow (\infty , 0) is equivalent to setting t = 0. Since Theorem 2.1 covers
both cases, it forms the fundamental ingredient in our main result, presented in the
following theorem.

Theorem 4.1. Problem (1.4) is well posed and the solution (\vec{}\bfitu , \vec{}p) \in V \times Q sat-
isfies

\| \vec{}\bfitu \| 2V + \| \vec{}p\| 2Qb
+ | \vec{}p| 2c \lesssim \| F\| V \prime + \| G\| Q\prime .(4.3)

Proof. We show that the assumptions of Theorem 2.1 are satisfied. Thus, let us
consider the two Brezzi conditions (2.2) and the additional Braess condition (2.4):

\bullet Coercivity of A on KerB. For \vec{}\bfitv = (\bfitu ,\bfitw \tau ) \in KerB, we have \nabla \cdot \bfitw \tau = 0. It
then directly follows that

a(\vec{}\bfitv , \vec{}\bfitv ) = 2\mu \| \bfitvarepsilon (\bfitu )\| 20,\Omega + (\tau K) - 1\| \bfitw \tau \| 20,\Omega = \| \vec{}\bfitv \| 2V \forall \vec{}\bfitv \in KerB.

\bullet Inf-sup of B\ttt . Let \vec{}p = (pT , p) \in Qb be given. The usual inf-sup condition of
Stokes problems, after a scaling by \mu , gives us that

sup
\bfitv 

(\nabla \cdot \bfitv , pT )\Omega 
\| \mu 1

2\bfitv \| 1,\Omega 
\gtrsim \| \mu  - 1

2 pT \| 0,\Omega .

Moreover, it was shown in [3] that

sup
\bfitw \tau 

(\nabla \cdot \bfitw \tau , p)\Omega 
\| \bfitw \tau \| 

(\tau K) - 
1
2 \bfL 2(\Omega )\cap \bfH (div,\Omega )

\gtrsim \| p\| 
L2(\Omega )+(\tau K)

1
2 H1(\Omega )

.

Combining the above, we obtain

sup
\vec{}\bfitv 

b(\vec{}\bfitv , \vec{}p)

\| \vec{}\bfitv \| V
= sup

\vec{}\bfitv 

 - (\nabla \cdot \bfitv , pT )\Omega + (\nabla \cdot \bfitw \tau , p)\Omega 
\| \vec{}\bfitv \| V

\gtrsim \| \vec{}p\| Qb
.

\bullet Inf-sup of
\biggl[ 
A
B

\biggr] 
. Let \vec{}\bfitu = (\bfitu ,\bfitw \tau ) \in V be given. We then choose \vec{}\bfitv = \vec{}\bfitu and

\vec{}q = (0,\nabla \cdot \bfitw \tau ) to derive

a(\vec{}\bfitu , \vec{}\bfitv ) + b(\vec{}\bfitu , \vec{}q) = 2\mu \| \bfitvarepsilon (\bfitu )\| 20,\Omega + (\tau K) - 1\| \bfitw \tau \| 20,\Omega + \| \nabla \cdot \bfitw \tau \| 20,\Omega = \| \vec{}\bfitu \| 2V ,

| | | (\vec{}\bfitv , \vec{}q)| | | 2 = \| \vec{}\bfitu \| 2V + \| \nabla \cdot \bfitw \tau \| 2
L2(\Omega )+(\tau K)

1
2 H1(\Omega )

+

\biggl( 
\alpha 2

\lambda 
+ c

\biggr) 
\| \nabla \cdot \bfitw \tau \| 20,\Omega 

\lesssim \| \vec{}\bfitu \| 2V + \| \nabla \cdot \bfitw \tau \| 20,\Omega 
\lesssim \| \vec{}\bfitu \| 2V .

The proof is finalized by invoking Theorem 2.1 and noting that t = 1 forms a special
case.
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Given that Theorem 4.1 establishes a parameter-robust stability, we can straight-
forwardly use the general approach from [26] to construct the following preconditioner
involving the specific norms (4.1):

(4.4) \scrB =

\left[    
( - \bfnabla \cdot (2\mu \bfitvarepsilon )) - 1

0 0 0

0
\bigl( 
(\tau K) - 1I  - \nabla \nabla \cdot 

\bigr)  - 1
0 0

0 0 \scrP 
0 0

\right]    ,

where the fluid and total pressure preconditioner, \scrP , is a 2\times 2 operator defined as

\scrP =

\biggl( \biggl[ 1
\mu I 0

0 I

\biggr] 
+ \scrC 

\biggr)  - 1

+

\biggl( \biggl[ 1
\mu I 0

0  - \tau K\Delta 

\biggr] 
+ \scrC 

\biggr)  - 1

and \scrC =

\biggl[ 1
\lambda 

\alpha 
\lambda 

\alpha 
\lambda c+ \alpha 2

\lambda 

\biggr] 
.

We expect such a preconditioner to be robust in the sense that the condition num-
ber of the (left-)preconditioned matrix \scrB \scrA is bounded uniformly in the parameters
\{ \mu ,K, \tau , \lambda , \alpha , c\} .

5. Discrete stability.

5.1. Abstract setting. In order to define a finite element method, let \scrT h be a
conforming simplicial partition of \=\Omega , constituted by tetrahedra (or triangles in two
dimensions) K of diameter hK , with mesh size h := max\{ hK : K \in \scrT h\} . The mesh
is considered shape-regular. Given an integer s \geq 0 and a generic element K \in \scrT h,
the symbol \BbbP s(K) will denote the space of polynomial functions defined locally on the
element K and being of degree no greater than s.

For generic and conforming finite-dimensional subspaces Vh \subset V , Qh \subset Q, let us
consider the Galerkin scheme arising from the discretization of (2.1),

a(uh, vh) - b(vh, ph) = F (vh) \forall vh \in Vh,(5.1a)

b(uh, qh) + t2c(ph, qh) = G(qh) \forall qh \in Qh,(5.1b)

for which the following direct consequence of Theorem 2.1 holds.

Lemma 5.1. Let Vh, Qh be endowed with norms \| \cdot \| Vh
, \| \cdot \| Qb,h

, respectively, and
let | | | (\cdot , \cdot )| | | h be defined analogously to (2.3). Assume the following discrete counterparts
of the Brezzi conditions are fulfilled:

\forall vh \in KerBh, a(vh, vh) \gtrsim \| vh\| 2Vh
,(5.2a)

\forall ph \in Qb,h, sup
vh\in Vh

b(vh, ph)

\| vh\| Vh

\gtrsim \| ph\| Qb,h
,(5.2b)

together with the discrete analogue of the Braess condition (2.4),

\forall uh \in Vh, sup
(vh,qh)\in Vh\times Qh

a(uh, vh) + b(uh, qh)

| | | (vh, qh)| | | h
\gtrsim \| uh\| Vh

,(5.3)

with all constants in (5.2a), (5.2b), and (5.3) independent of the mesh size h and of
the perturbation parameter t. Then there exists a unique solution (uh, ph) \in Vh \times Qh

to (5.1), which is stable in the energy norm | | | (\cdot , \cdot )| | | h.
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5.2. Discrete generalized Poisson problem. According to Lemma 5.1, the
stability of discretizations to (3.2) holds as long as the discrete Brezzi conditions and
the discrete Braess condition are met by the chosen finite-dimensional spaces Vh, Qh.

Following [3], let us first denote by \widehat Vh the space of H(div,\Omega )-conforming vector
functions approximated using BDM elements of order s+ 1 [10], or Raviart--Thomas

elements of order s [33], and let \widehat Qh be the space of discontinuous piecewise polynomials

of order s. Then we can use the discrete gradient operator \nabla h : \widehat Qh \rightarrow \widehat Vh defined by

(5.4) (\nabla hqh,\bfitv h) =  - (qh,\nabla \cdot \bfitv h),

to define a discrete H1-norm as \| \nabla hqh\| 0,\Omega . This suffices to construct the approxima-
tion space for the potential as

(5.5) Qb,h = L2
h +K

1
2H1

h,

where L2
h corresponds to \widehat Qh equipped with the usual L2-norm and H1

h denotes the

space conformed by the set \widehat Qh in combination with the discrete H1-norm. Therefore,
the norm associated with (5.5) is

\| qh\| 2Qb,h
= inf

rh\in \widehat Qh

\biggl( 
\| qh  - rh\| 20,\Omega + \| K 1

2\nabla hrh\| 20,\Omega 
\biggr) 
.

On the other hand, for the flux we consider

(5.6) Vh = K - 1
2L2

h \cap Hh(div),

where L2
h corresponds to \widehat Vh equipped with the usual L2-norm and Hh(div) denotes

the space conformed by the set \widehat Vh in combination with the usual H(div)-norm. Since
Vh \subseteq V , we endow Vh with the V -norm (3.4a).

Lemma 5.2. There exists a unique solution (uh, ph) \in Vh\times Qh to the discretization
of problem (3.2), which is stable in the energy norm | | | (\cdot , \cdot )| | | h.

Proof. We verify the conditions of Lemma 5.1. First, the Brezzi conditions are
shown in [3]. Second, for the Braess condition, we follow the proof of Lemma 3.1 in
the discrete setting and note that we need \nabla \cdot \bfitu h \in Qh, which holds for the chosen
pairs of mixed finite element spaces.

5.3. Discrete mixed Biot consolidation system. For the case of Biot equa-
tions, considering again Lemma 5.1 but in the context of Theorem 4.1, we can identify
conditions for the discrete solvability and robust stability. It turns out that the ap-
proximation spaces for displacement and total pressure need to be inf-sup stable in
the sense of the Brezzi conditions, and also the pair of spaces for filtration velocity
and fluid pressure need to satisfy the discrete Brezzi conditions plus the additional
requirement that (0,\nabla \cdot \bfitw \tau ,h) \in Qb,h; however, it is not required that the divergence
of discrete displacements belongs to the space of discrete total pressures.

As feasible choices for the approximation spaces for two-dimensional problems, we
therefore take overall continuous and vector-valued, piecewise polynomials of degree
s + 2 to approximate displacements (denoted \widetilde Vh), and discontinuous and piecewise

polynomials of degree s for the total pressure (denoted \widehat Qh, as before). Alternatively,
we may choose the Taylor--Hood pair for both two- and three-dimensional problems.
Likewise, discrete inf-sup stability is required for the fluid flux-pressure pair, for which
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we consider H(div,\Omega )-conforming discretizations of the percolation fluxes using BDM

elements of order s+1 or Raviart--Thomas elements of order s (denoted \widehat Vh as before),
and piecewise polynomials (overall discontinuous) of degree s for the fluid pressure.

Similar to the modified Helmholtz system, in the spaces
(5.7)

Vh = 2\mu H1
\Gamma \bfitu ,h \times 

\Bigl[ 
(\tau K) - 

1
2L2

h \cap H\Gamma \bfitu ,h(div)
\Bigr] 
, Qb,h = \mu  - 1L2

h \times 
\Bigl[ 
(\tau K)

1
2H1

h + L2
h

\Bigr] 
,

the discrete space H1
\Gamma \bfitu ,h corresponds to \widetilde Vh (restricted to discrete functions vanishing

on \Gamma \bfitu ) equipped with the usualH1-norm andH\Gamma \bfitu ,h(div) denotes the space conformed

by the set \widehat Vh (restricted to discrete functions with normal traces vanishing on \Gamma \bfitu ) in
combination with the usual H(div)-seminorm. On Vh we can use the V -norm defined
in (4.1), while for Qh we employ the norm

\| \vec{}qh\| 2Qh
:=

1

\mu 
\| qT,h\| 20,\Omega + inf

rh\in \widehat Qh

\biggl( 
\| qh  - rh\| 20,\Omega + \| K 1

2\nabla hrh\| 20,\Omega 
\biggr) 

+
1

\lambda 
\| qT,h + \alpha qh\| 20,\Omega + c\| qh\| 20,\Omega .

Lemma 5.3. There exists a unique solution (\vec{}uh, \vec{}ph) \in Vh\times Qh to the discretization
of problem (1.4), which is stable in the energy norm | | | (\cdot , \cdot )| | | h.

Proof. Let us consider the conditions of Lemma 5.1. Following the same steps as
in Theorem 4.1, the Brezzi conditions follow directly from the choice of mixed finite
elements. Moreover, we note that (0,\nabla \cdot \bfitw \tau ,h) \in Qb,h by the assumptions in the
beginning of this section. Taking \vec{}\bfitv h = \vec{}\bfitu h and \vec{}qh = (0,\nabla \cdot \bfitw \tau ,h) then gives us the
Braess condition.

6. Numerical results. We demonstrate robustness of the proposed precondi-
tioners by considering spectra of the preconditioned systems. More precisely, for given
problem operator \scrA of the form (2.1), let \~\scrA be the symmetric operator obtained by
negating the second row of \scrA . We are interested in stability of the condition numbers
| \lambda h,max| /| \lambda h,min| , where \lambda h,max, \lambda h,min are the largest and smallest (in magnitude)

eigenvalues of the generalized eigenvalue problem \~\scrA hx = \lambda h\scrB hx with \~\scrA h, \scrB h being
the respective finite element approximations of \~\scrA and the preconditioner \scrB .

We remark that rather than the discrete H1-norm defined in terms of the discrete
gradient operator (5.4), we use an equivalent (see [35]), more implementation-friendly,

norm defined in terms of the bilinear form \Delta h : \widehat Qh \times \widehat Qh \rightarrow \BbbR given by

\Delta h(ph, qh) =
\sum 

K\in \scrT h

\int 
K

\nabla ph \cdot \nabla qhdx+
\sum 
E\in \scrE I

\int 
E

1

\{ \{ hE\} \} 
[[ph]][[qh]]ds+

\sum 
E\in \scrE D

\int 
E

1

hE
phqhds.

Here, \scrE I are the interior facets of \scrT h while \scrE D are the external facets associated with
pressure (Dirichlet) boundary conditions. The jump and average values of ph \in \widehat Qh

are defined as \{ \{ ph\} \} = 1
2 (ph| K+ + ph| K - ) and [[ph]] = ph| K+  - ph| K - , respectively,

with K\pm the two elements that share the internal facet.

6.1. Robust preconditioners for the generalized Poisson equation. In
the following we let \Omega = (0, 1)2 and \scrT h is a uniform structured triangulation of the
domain.

Dirichlet boundary conditions. Using the (stable) discretization given by
\BbbR \BbbT 0-\BbbP 0 elements, the robustness of (3.8) for the Dirichlet problem (3.1) can be seen
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Fig. 6.1. Performance of preconditioner (3.8) for the generalized Poisson problem with pressure
boundary conditions. Discretization by \BbbR \BbbT 0-\BbbP 0 elements.

Table 6.1
Condition numbers of (6.1) for the generalized Poisson (or modified Helmholtz) problem and

\alpha = 1. Pressure boundary conditions are prescribed and \BbbR \BbbT 0-\BbbP 0 is used for discretization. Condi-
tion numbers exceeding 104 are indicated as --. In contrast, our proposed preconditioner (3.8) does
perform robustly for K < \alpha , as shown in Figure 6.1.

K
h

2 - 2 2 - 3 2 - 4 2 - 5

10 - 8 577 2306 9216 --
10 - 6 577 2300 9133 --
10 - 4 545 1874 4797 7867
10 - 2 86 97 100 101
100 2.00 2.00 2.00 2.00
102 1.05 1.05 1.05 1.05
104 1.05 1.05 1.05 1.05
106 1.05 1.05 1.05 1.05
108 1.05 1.05 1.05 1.05

in Figure 6.1. To strengthen the numerical evidence, the experiments were carried
out also with the lowest-order BDM and \BbbR \BbbT 1-\BbbP 1 elements. The results are given in
Figures A.1 and A.2 in Appendix A.

Before proceeding further, we address two aspects of the analysis in section 3. To
compare (3.8) with alternatives, we recall a well-known K-robust preconditioner for
the Darcy problem (i.e., \alpha = 0 in (3.2)) proposed in [39]. Extending it directly to the
case of the generalized Poisson problem leads to

(6.1) \scrB VV =

\Biggl[ \bigl( 
K - 1I  - K - 1\nabla \nabla \cdot 

\bigr)  - 1
0

0 (KI + \alpha I)
 - 1

\Biggr] 
.

However, as noted in Remark 3.2, Table 6.1 shows that K < \alpha leads to a lack of
robustness in K.

Finally, Table 6.2 illustrates the necessity of the assumption of a small perturba-
tion, i.e., \alpha \leq 1, for stability of the preconditioner (3.8). Indeed, by setting \alpha = 102,
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Table 6.2
Condition numbers of (3.8) for the generalized Poisson (modified Helmholtz) problem (3.2),

setting \alpha = 102. Pressure boundary conditions are prescribed and \BbbR \BbbT 0-\BbbP 0 is used for discretization.
These results demonstrate the necessity of assuming small perturbations, i.e., \alpha \leq 1.

K
h

2 - 2 2 - 3 2 - 4 2 - 5

10 - 8 1.99 1.99 1.99 1.99
10 - 6 1.99 1.99 2.01 2.06
10 - 4 2.09 2.43 3.78 9.02
10 - 2 11 38 96 158
100 166 190 197 198
102 151 151 151 152
104 151 152 152 152
106 151 152 152 152
108 151 152 152 152

Table 6.3
Condition numbers obtained for the Neumann problem (3.10) using the preconditioner (3.14).

\alpha 
h

2 - 2 2 - 3 2 - 4 2 - 5

0 1.10 1.10 1.10 1.10
10 - 8 1.10 1.10 1.10 1.10
10 - 6 1.10 1.10 1.10 1.10
10 - 4 1.10 1.10 1.10 1.10
10 - 2 1.10 1.10 1.10 1.10
1 2.00 2.00 2.00 2.00

the sensitivity of the condition numbers for K < 1 becomes evident.

Neumann boundary conditions. Parameter stability of preconditioner (3.14)
for the Neumann problem (3.10) is illustrated in Table 6.3.

Regarding the Neumann problem (3.10) as a special case of

(6.2)

\biggl[ 
K - 1I \nabla 
\nabla \cdot \alpha I + (1 - \alpha )\Pi \BbbR 

\biggr] \biggl[ 
\bfitu 
p

\biggr] 
=

\biggl[ 
0
f

\biggr] 
,

let us finally address the preconditioning of problem (6.2). Combining the analysis
developed in sections 3.1 and 3.2, we propose
(6.3)

\scrB =

\Biggl[ \bigl( 
K - 1I  - \nabla \nabla \cdot 

\bigr)  - 1
0

0 (\alpha I + (1 - \alpha )\Pi \BbbR + I)
 - 1

+ (\alpha I + (1 - \alpha )\Pi \BbbR  - K\Delta )
 - 1

\Biggr] 

as a preconditioner for (6.2). The robustness of such a preconditioner is demonstrated
in Figure 6.2, and exemplified further in Figure A.3.

6.2. Robust preconditioners for the mixed Biot system. Due to its larger
parameter space we restrict numerical experiments for the Biot system to a single type
of finite element discretization, namely, we shall use continuous piecewise quadratic
vector valued (\BbbP 2) functions for the displacement and lowest-order Raviart--Thomas
elements for the percolation velocity. The total pressure will be discretized using
continuous piecewise linear Lagrange elements (\BbbP 1) if \Omega \subset \BbbR 3 while \BbbP 0 is used in the
two-dimensional case. Finally, the fluid pressure shall be approximated by piecewise
constants.
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Fig. 6.2. Performance of preconditioner (6.3) for the generalized Poisson (simplified Helmholtz)
equation (6.2) with flux boundary conditions. Discretization by \BbbR \BbbT 0-\BbbP 0 elements.

Parameter robustness. As in the case of the generalized Poisson problem
we consider a two-dimensional problem (1.4) with domain \Omega = (0, 1)2, and \Gamma \bfitu =
\{ (x, y) \in \partial \Omega : x = 0 or x = 1\} , \Gamma \bfitsigma = \partial \Omega \setminus \Gamma \bfitu . The domain is discretized by a uniform
mesh.

Figure 6.3 shows variations of the condition numbers for the (4.4)-preconditioned
Biot problem across the parameter ranges 10 - 12 \leq K \leq 1, 1 \leq \lambda \leq 1016, 0 \leq \alpha \leq 1,
c < 0 \leq 1. It can be seen that the preconditioner yields bounded condition numbers
(not exceeding 8 in the experiments). We remark that the time step \tau was kept fixed
at \tau = 1 as its variations effectively translate to a modified hydraulic conductivity
K\tau .

Scalable realization of the preconditioner. Numerical experiments presen-
ted thus far have utilized the exact Biot preconditioner, that is, each of the blocks
was computed by LU factorization. As such a construction is of limited interest in
practical/large scale applications, we next briefly discuss the realization of (4.4) in
terms of off-the-shelf scalable components.

Indeed, the displacement block of the preconditioner is a standard operator which
can be efficiently realized by, e.g., multigrid [9, 38]. Similarly, geometric (see [2]) and
algebraic (see [21]) multigrid methods have been proposed for the Riesz map with
respect to the weighted H(div)-inner product, which in our context corresponds to
the flux preconditioner in (4.4). These methods have been shown to be robust in
the respective parameters (cf. experiments in [21] for algebraic and [13, section 4.1]
for the geometric multigrid case). Finally, to the best of the authors' knowledge, the
approximation of the pressure block \scrP of the Biot preconditioner has not been studied
in the literature. In this case, as the operator consists of two inverses of symmetric
elliptic operators, we expect multigrid methods to perform well. We remark, however,
that the approximation might not be robust with respect to the model parameters.

In order to illustrate the performance of the multigrid realization of the Biot pre-
conditioner we consider the three-dimensional footing problem (see, e.g., [14, section
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Fig. 6.3. Performance of the preconditioner (4.4) for the Biot system (1.4). Discretization by
\BbbP 2-\BbbR \BbbT 0-\BbbP 0-\BbbP 0 elements. Values of \alpha and K vary along the vertical, respectively horizontal, axis,
while color encodes Lam\'e constant \lambda , and storage capacity is depicted with markers. In most cases,
the condition numbers for \lambda > 1 are very similar, leading to an overlap of the curves.

Table 6.4
Number of MinRes iterations obtained by using a multigrid realization of the Biot preconditioner

(4.4) for the three-dimensional footing problem. For the coarsest mesh the number in brackets
indicates the iteration count using an exact preconditioner with blocks computed by a direct solver.
Discretization by \BbbP 2-\BbbR \BbbT 0-\BbbP 1-\BbbP 0 elements.

h - 1 dimVh \times Qh
t

0.1 0.2 0.3 0.4 0.5

16 1.88\times 105 85(27) 92(31) 36(16) 36(16) 36(16)
32 1.46\times 106 92 99 38 39 39
48 4.86\times 106 101 110 41 41 41

5.2.2]) and set \alpha = c = 1/2. Here the displacement preconditioner and the compo-
nents of \scrP employ a single V-cycle of algebraic multigrid (implemented in hypre [12]),
while the flux preconditioner is realized with geometric multigrid using a hierarchy
of three meshes in combination with the star smoother [2]. The implementation has
been carried out using the PCPATCH framework [13].

Fixing the time step to \tau = 0.1, Table 6.4 displays the number of MinRes iter-
ations needed to reduce the preconditioned residual norm by a factor of 106 at each
step of the simulation. Taking the coarsest mesh for comparison, the use of multigrid
approximately doubles the number of solver iterations as compared to the exact pre-
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Fig. 6.4. Approximate solutions for the footing problem at t = 0.5 s. The percolation velocity
magnitude (left), total pressure (center), and fluid pressure (right) are shown on a domain deformed
by the computed displacement (scaled by a factor of 106).

conditioner. However, the iterations appear to be bounded in the mesh size. Samples
of the approximate solution at the final time can be seen in Figure 6.4.

Appendix A. Stability of the preconditioner for the generalized Poisson
problem. This section presents results of numerical experiments showing robustness
of the proposed preconditioners when different (from those in the main article text)
finite elements are used for the discretization.
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Fig. A.1. Performance of preconditioner (3.8) for the simplified Helmholtz equation with po-
tential boundary conditions. Discretization by \BbbB \BbbD \BbbM 1-\BbbP 0 elements.
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Fig. A.2. Performance of preconditioner (3.8) for the generalized Poisson equation with po-
tential boundary conditions. Discretization by \BbbR \BbbT 1-\BbbP 1 elements.
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Fig. A.3. Performance of preconditioner (6.3) for the generalized Poisson equation (6.2) with
flux boundary conditions. Discretization by \BbbB \BbbD \BbbM 1-\BbbP 0 elements.

Appendix B. Suboptimal preconditioners for Biot equations. Here we
present a few preconditioners that might be the natural and intuitive choices if one
starts from the original formulation (1.4), but that do not retain robustness with
respect to model parameters. For simplicity, we let \tau = 1 and \mu = 1 and only focus
on stability with respect to the remaining model parameters. Numerical experiments
then utilize the same (two-dimensional) setup as the robustness study of section 6.2.
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First, one can suggest a preconditioner being the inverse of

\scrB 1 =

\left[    
 - \bfnabla \cdot (2\mu \bfitvarepsilon ) 0 0 0

0 K - 1I  - \nabla \nabla \cdot 0 0
0 0 \mu  - 1I 0
0 0 0 I

\right]    ,

and one expects that the performance might be compromised for some combinations
of the model parameters \alpha , c, K, \lambda ; cf. Table B.1. Therefore, we consider other
options, for instance, exploring preconditioners based on the inverse of

\scrB 2 =

\left[    
 - \bfnabla \cdot (2\mu \bfitvarepsilon ) 0 0 0

0 K - 1(I  - \nabla \nabla \cdot ) 0 0
0 0 \mu  - 1I 0
0 0 0 KI

\right]    ,

or, alternatively, using

\scrB 3 =

\left[    
 - \bfnabla \cdot (2\mu \bfitvarepsilon ) 0 0 0

0 K - 1I  - \nabla \nabla \cdot 0 0
0 0 \mu  - 1I 0
0 0 0 (I + ( - \nabla \cdot K\nabla ) - 1) - 1

\right]    .

Table B.1
Condition numbers of \scrB 1-preconditioned Biot problem (1.4) with \alpha = 1, \mu = 1. The precondi-

tioner seems robust in K and \lambda for c = 1 but not for c < 1.

c K \lambda 
h

2 - 2 2 - 3 2 - 4

1

10 - 8
1 5.25 5.28 5.30

103 6.75 7.08 7.22
109 6.77 7.11 7.25

10 - 4
1 5.25 5.30 5.42

103 6.75 7.08 7.22
109 6.77 7.11 7.25

1
1 6.19 6.27 6.31

103 7.13 7.23 7.28
109 7.15 7.26 7.30

c K \lambda 
h

2 - 2 2 - 3 2 - 4

10 - 2

10 - 8
1 17.62 18.02 18.20

103 139 144 146
109 153 158 160

10 - 4
1 17.53 17.91 18.17

103 128 132 134
109 139 144 146

1
1 3.91 3.94 3.95

103 6.75 7.08 7.22
109 6.77 7.11 7.25

Finally, we can consider the following modification of \scrB 2:

\scrB 4 =

\left[    
\bfnabla \cdot (2\mu \bfitvarepsilon ) 0 0 0

0 K - 1(I  - \nabla \nabla \cdot ) 0 0
0 0 (\mu  - 1 + 1

\lambda )I
\alpha 
\lambda I

0 0 \alpha 
\lambda I (K + c+ \alpha 2

\lambda )I

\right]    .

However, these preconditioners yield suboptimal performance, as evidenced in Ta-
ble B.2.
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Table B.2
Condition numbers of (1.4) with \scrB 2 preconditioner (left), \scrB 3 preconditioner (center), and \scrB 4

preconditioner (right). In all cases \alpha = 1, \mu = 1, and c = 1. The preconditioners are not K,
\lambda -robust.

K \lambda 
h h h

2 - 2 2 - 3 2 - 4 2 - 2 2 - 3 2 - 4 2 - 2 2 - 3 2 - 4

10 - 8
1 1\times 1011 5\times 1011 2\times 1012 9\times 107 8\times 107 7\times 107 721 3\times 103 1\times 104

103 5\times 1010 2\times 1011 9\times 1011 1\times 108 1\times 108 1\times 108 833 4\times 103 1\times 104

109 5\times 1010 2\times 1011 9\times 1011 1\times 108 1\times 108 1\times 108 833 4\times 103 1\times 104

10 - 4
1 1\times 107 4\times 107 1\times 108 9\times 103 8\times 103 7\times 103 693 3\times 103 7\times 103

103 5\times 106 2\times 107 5\times 107 1\times 104 1\times 104 1\times 104 790 3\times 103 8\times 103

109 5\times 106 2\times 107 5\times 107 1\times 104 1\times 104 1\times 104 790 3\times 103 8\times 103

1
1 6.19 6.27 6.31 7.35 7.23 7.18 3.33 3.46 3.52

103 7.13 7.23 7.28 8.37 8.25 8.19 6.75 7.08 7.23
109 7.15 7.26 7.30 8.39 8.28 8.22 6.77 7.11 7.25

Appendix C. Herrmann formulation of linear elasticity. Let us consider
a two-dimensional domain on which the equations of linear elasticity are written as

 - \bfnabla \cdot (2\mu \bfitvarepsilon (\bfitu ) + pI) = f in \Omega ,

\nabla \cdot \bfitu  - \lambda  - 1p = 0 in \Omega ,

with pure displacement boundary conditions. In view of constructing locking-free
solvers, one is interested in discretizations that are robust with respect to \lambda (and also
with respect to \mu ).

The following preconditioner is robust:

(C.1) \scrB H =

\biggl[ 
 - \bfnabla \cdot (2\mu \bfitvarepsilon (\bfitu )) 0

0 \mu  - 1(I  - \Pi \BbbR ) + \lambda  - 1I

\biggr]  - 1

,

as we can see in Table C.1.

Table C.1
Condition numbers associated with the preconditioner (C.1) for the Herrmann problem.

\lambda \mu 
h

2 - 2 2 - 3 2 - 4

1

10 - 6 18.13 18.19 18.20
10 - 4 18.11 18.17 18.18
10 - 2 16.22 16.27 16.28
1 2.19 2.19 2.19

102 1.01 1.01 1.01
104 1.00 1.00 1.00
108 1.00 1.00 1.00
1010 1.00 1.00 1.00

102

10 - 6 18.13 18.19 18.20
10 - 4 18.13 18.19 18.20
10 - 2 18.11 18.17 18.18
1 16.22 16.27 16.28

102 2.19 2.19 2.19
104 1.01 1.01 1.01
108 1.00 1.00 1.00
1010 1.00 1.00 1.00

\lambda \mu 
h

2 - 2 2 - 3 2 - 4

104

10 - 6 18.13 18.19 18.20
10 - 4 18.13 18.19 18.20
10 - 2 18.13 18.19 18.20
1 18.11 18.17 18.18

102 16.22 16.27 16.28
104 2.19 2.19 2.19
108 1.00 1.00 1.00
1010 1.00 1.00 1.00

108

10 - 6 18.13 18.19 18.20
10 - 4 18.13 18.19 18.20
10 - 2 18.13 18.19 18.20
1 18.13 18.19 18.20

102 18.13 18.19 18.20
104 18.11 18.17 18.18
108 2.19 2.19 2.19
1010 1.01 1.01 1.01

In regard to Theorem 2.1, it is clear that for \lambda = \infty , the Brezzi conditions
are satisfied as the problem is then reduced to the Stokes problem on \mu 1/2H1

0(\Omega ) \times 
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\mu  - 1/2L2
0(\Omega ). Furthermore, as the bilinear form a(\cdot , \cdot ) is coercive in the whole space

\mu 1/2H1
0(\Omega ) the Braess condition is automatically satisfied.
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